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ON THE SETS OF BOUNDEDNESS OF SOLUTIONS
TO DEGENERATE FOURTH-ORDER EQUATIONS WITH
STRENGTHENINGLY MONOTONE PRINCIPAL PARTS,

ABSORPTION AND L1-DATA

ALEXANDER A. KOVALEVSKY - FRANCESCO NICOLOSI

We consider the Dirichlet problem for a class of degenerate nonlinear
elliptic fourth-order equations with strengtheningly monotone principal
parts, absorbing lower-order terms and L1-right-hand sides. We establish
existence of solutions of the given problem bounded on the sets where the
behaviour of the data of the problem is regular enough.

1. Introduction

In this article we consider degenerate nonlinear elliptic fourth-order equations
with strengtheningly monotone principal parts, absorbing lower-order terms and
L1-right-hand sides. A representative of such equations is the following one:

∑
|α|=2

Dα(µDαu)− ∑
|α|=1

Dα(ν |Dαu|q−2Dαu)+ |u|σ−1u = f in Ω,

where Ω is a bounded open set of Rn, n > 2, 2 < q < n, σ > 1, µ and ν are
positive functions in Ω and f ∈ L1(Ω).
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These equations belong to a class of degenerate fourth-order equations with
a strengthened ellipticity and L1-data. Existence and properties of solutions of
the Dirichlet problem for equations of this class were studied in [5] and [6].
Using considerations stated in [5] and a modification of the Moser method (see
for instance [9]), in [7] we proved that the given problem has solutions bounded
on the sets where the behavoour of the data of the problem is regular enough.
This fact has been established under the restriction

q < q̃(q−1)/q, (1.1)

where q is a number connected with the rate of growth of coefficients of the
equations with respect to the first-order derivatives of unknown function, and q̃
is an exponent characterizing an embedding of functional spaces involved.

The mentioned result of [7] can also be applied for the equations which we
consider in the present work. However, due to the absorbing term |u|σ−1u in the
equations and an appropriate condition on its exponent σ , really we can avoid
the use of restriction (1.1), keeping at the same time the similar result on the
sets of boundedness of solutions. The proof of the corresponding theorem is the
main goal of the article.

We remark that only to simplify considerations concerning the pointwise
convergence of the derivatives of solutions of some approximating problems,
we restrict ourselves in this work with a particular case of principal parts of
equations studied in [5]–[7]. The general situation can be treated following de-
tailed constructions given in [2] for a class of nondegenerate fourth-order equa-
tions with a strengthened ellipticity and L1-data. In its turn these constructions
develop the approach proposed in [1] for nondegenerate second-order equations
with L1-data.

Finally, we note that the boundedness and Hölder continuity of solutions
of nonlinear elliptic high-order equations with a strengthened ellipticity have
already been investigated in [9] (nondegenerate case) and in [8] and [3] (degen-
erate case). However, it has been made for equations with data regular enough
in all their domain of definition.

2. Preliminaries and auxiliary assertions

Let n ∈ N, n > 4, Ω be a bounded open set of Rn and q ∈ (4,n).
Let ν be a positive function on Ω such that

ν ∈ L1
loc(Ω),

(
1
ν

)1/(q−1)

∈ L1
loc(Ω).
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We denote by W 1,q(ν ,Ω) the set of all functions u ∈ Lq(Ω) having for every n-
dimensional multiindex α, |α| = 1, the weak derivative Dαu with the property
ν1/qDαu ∈ Lq(Ω). W 1,q(ν ,Ω) is a Banach space with the norm

‖u‖1,q,ν =

(∫
Ω

|u|qdx+ ∑
|α|=1

∫
Ω

ν |Dαu|qdx

)1/q

.

The closure of C∞
0 (Ω) in W 1,q(ν ,Ω) is denoted by

◦
W 1,q(ν ,Ω).

Let µ be a positive function on Ω such that

µ ∈ L1
loc(Ω),

1
µ
∈ L1

loc(Ω).

We denote by W 1,q
2,2 (ν ,µ,Ω) the set of all functions u ∈W 1,q(ν ,Ω) having for

every n-dimensional multiindex α, |α| = 2, the weak derivative Dαu with the
property µ1/2Dαu ∈ L2(Ω). W 1,q

2,2 (ν ,µ,Ω) is a Banach space with the norm

‖u‖= ‖u‖1,q,ν +

(
∑

|α|=2

∫
Ω

µ|Dαu|2dx

)1/2

.

The closure of C∞
0 (Ω) in W 1,q

2,2 (ν ,µ,Ω) is denote by
◦

W 1,q
2,2(ν ,µ,Ω).

Hypothesis 2.1. There exist real numbers q̃ > q and c > 0 such that for every

u ∈
◦

W 1,q(ν ,Ω),(∫
Ω

|u|q̃dx

)1/q̃

6 c

(
∑

|α|=1

∫
Ω

ν |Dαu|qdx

)1/q

.

Further, let h ∈ C∞(R) be a nondecreasing functuion such that h = 0 in
(−∞,0] and h = 1 in [1,+∞). We set

c′ = 2 max
R

h′, c′′ = c′+max
R

|h′′|.

Now let for every s ∈ N, hs : R → R be the function such that

hs(η) = η +(s+1−η)h(η − s)− (s+1+η)h(−η − s), η ∈ R.

We have {hs} ⊂C∞(R) and for every s ∈ N the following properties hold:

hs(η) = η if |η |6 s, hs(η) = (s+1)signη if |η |> s+1.
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Moreover, for every s ∈ N and η ∈ R we have

0 6 h′s(η) 6 c′, |h′′s (η)|6 c′′.

Lemma 2.2. Let q1 ∈ (q, q̃), τ > q̃/(q̃− q1) and ψ ∈ Lτ(Ω), ψ > 0 in Ω. Let
Ω0 be a nonempty open set of Rn, Ω0 ⊂ Ω, and the restriction of the function
νq1/(q1−q) on Ω0 belongs to Lτ(Ω0). Let ϕ ∈C∞

0 (Ω), 0 6 ϕ 6 1 in Ω, meas{ϕ =

1}> 0 and suppϕ ⊂ Ω0. Let m0,m1,m2 > 0,q0 ∈ (q1, q̃),u ∈
◦

W 1,q(ν ,Ω),∫
Ω

|u|q0dx 6 m0,

and let for every s ∈ N, r > 0 and t > q the next inequality holds:

∫
Ω

{
∑

|α|=1
ν |Dαu|q

}
[1+h2

s (u)]rϕ tdx

6 m1(r + t)m2

∫
Ω

[ψ + |u|q1 ] [1+h2
s (u)]rϕ t−qdx.

Then
vrai max

{ϕ=1}
|u|6 M,

where M is a positive constant depending only on n, c, c′, q, q̃, q1, q0, τ, m0, m1,
m2, measΩ, max

Ω

|∇ϕ|, ‖ψ‖Lτ (Ω) and the norm of the restriction of the function

νq1/(q1−q) on Ω0 in Lτ(Ω0).
This lemma was proved in [7].
We set

µ1 = µ
q/(q−4)(1/ν)4/(q−4).

Lemma 2.3. Let µ1 ∈ L1(Ω), u ∈
◦

W 1,q
2,2(ν ,µ,Ω) and ϕ ∈C∞

0 (Ω), ϕ > 0 in Ω.
Let q1 ∈ (q, q̃), s ∈ N, r > 0 and t > 2. Let νϕ t−2 ∈ Lq1/(q1−q)(Ω) and

w = u[1+h2
s (u)]rϕ t ,

z = [1+h2
s (u)]r +2r[1+h2

s (u)]r−1hs(u)h′s(u)u.

Then w ∈
◦

W 1,q
2,2(ν ,µ,Ω) and the following properties hold:

(i) for every n-dimensional multiindex α, |α|= 1,

Dαw = zϕ
tDαu+ tu[1+h2

s (u)]rϕ t−1Dα
ϕ a.e. in Ω;
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(ii) for every n-dimensional multiindex α, |α|= 2,

|Dαw− zϕ
tDαu|6 20(c′′)2(t + r)2[1+h2

s (u)]rϕ t
{

∑
|β |=1

|Dβ u|2
}

+4c′(t + r)2(1+ |u|)[1+h2
s (u)]r

{
ϕ

t−1|Dα
ϕ|+ϕ

t−2
∑
|β |=1

|Dβ
ϕ|2
}

a.e. in Ω.

This result is a particular case of Lemma 3.4 given in [7].
Along with Lemmas 2.2 and 2.3 in the proof of our main theorem the fol-

lowing result will be used.

Lemma 2.4. Let µ1 ∈ L1(Ω), u ∈
◦

W 1,q
2,2(ν ,µ,Ω), and let χ ∈ C2(R) be the

function such that χ(0) = 0 and χ,χ ′,χ ′′ are bounded in R. Then χ(u) ∈
◦

W 1,q
2,2(ν ,µ,Ω) and the next properties hold:

(i) for every n-dimensional multiindex α, |α|= 1,

Dα
χ(u) = χ

′(u)Dαu a.e. in Ω;

(ii) for every n-dimensional multiindex α, |α|= 2,

|Dα
χ(u)−χ

′(u)Dαu|6 |χ ′′(u)|
{

∑
|β |=1

|Dβ u|2
}

a.e. in Ω.

Like the previous lemma this result is established with the use of smooth

approximations of functions in
◦

W 1,q
2,2(ν ,µ,Ω).

3. Statement of the problem and some results on its solvability

We will use the following notation: Λ is the set of all n-dimensional multiindices
α such that |α| = 1 or |α| = 2; Rn,2 is the space of all sets ξ = {ξα : α ∈ Λ}
of real numbers; if a function u ∈ L1

loc(Ω) has the weak derivatives Dαu, α ∈ Λ,
then ∇2u = {Dαu : α ∈ Λ}.

Let c1,c2,c3 > 0, g ∈ L1(Ω), g > 0 in Ω, and let for every α ∈ Λ, Aα :
Ω×Rn,2 → R be a Carathéodory function. We will suppose that for almost
every x ∈ Ω and every ξ ∈ Rn,2,

∑
|α|=1

[ν(x)]−1/(q−1) |Aα(x,ξ )|q/(q−1) + ∑
|α|=2

[µ(x)]−1 |Aα(x,ξ )|2

6 c1

{
∑

|α|=1
ν(x)|ξα |q + ∑

|α|=2
µ(x)|ξα |2

}
+g(x). (3.1)
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Moreover, we will assume that for almost every x∈Ω and every ξ ,ξ ′ ∈Rn,2 the
next inequalities hold:

∑
α∈Λ

[Aα(x,ξ )−Aα(x,ξ ′)] (ξα −ξ
′
α)

> c2

{
∑

|α|=1
ν(x)|ξα −ξ

′
α |q + ∑

|α|=2
µ(x)|ξα −ξ

′
α |2
}

, (3.2)

∑
|α|=2

|Aα(x,ξ )−Aα(x,ξ ′)|

6 c3

{
∑

|α|=1
ν(x)|ξα −ξ

′
α |+ ∑

|α|=2
µ(x)|ξα −ξ

′
α |
}

. (3.3)

We note that by virtue of (3.1) and (3.2) for almost every x ∈ Ω and every
ξ ∈ Rn,2,

∑
α∈Λ

Aα(x,ξ )ξα

>
c2

2

{
∑

|α|=1
ν(x)|ξα |q + ∑

|α|=2
µ(x)|ξα |2

}
−
(

2
c2

+1
)

g(x). (3.4)

Besides, from (3.2) it follows that for almost every x ∈ Ω and every ξ ,ξ ′ ∈
Rn,2,ξ 6= ξ ′,

∑
α∈Λ

[Aα(x,ξ )−Aα(x,ξ ′)] (ξα −ξ
′
α) > 0. (3.5)

Let a > 0, σ > 1 and f ∈ L1(Ω). We consider the following Dirichlet prob-
lem:

∑
α∈Λ

(−1)|α|DαAα(x,∇2u)+a|u|σ−1u = f in Ω, (3.6)

Dαu = 0, |α|= 0,1, on ∂Ω. (3.7)

Definition 3.1. A W -solution of problem (3.6), (3.7) is a function u∈
◦

W 2,1(Ω)∩
Lσ (Ω) such that:

(i) for every α ∈ Λ, Aα(x,∇2u) ∈ L1(Ω);
(ii) for every ϕ ∈C∞

0 (Ω),∫
Ω

{
∑

α∈Λ

Aα(x,∇2u)Dα
ϕ

}
dx+a

∫
Ω

|u|σ−1uϕ dx =
∫

Ω

f ϕ dx.
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Theorem 3.2. Suppose that µ1 ∈ L1(Ω) and the following conditions are satis-
fied:

(i) there exists a real number r1 > q̃/(q̃−q) such that ν ∈ Lr1(Ω);
(ii) there exists a real number r2 > q̃(q−1)/[q̃(q−1)−q] such that 1/µ ∈

Lr2(Ω).
Then there exists a W-solution of problem (3.6), (3.7).

We obtain this result taking into account inequalities (3.1), (3.4), (3.5) and
applying Theorem 3.1 of [5].

The next result is a consequence of Theorem 5.1 of [7].

Theorem 3.3. Suppose that all conditions of Theorem 3.2 are satisfied and q <
q̃(q−1)/q. Let q1 ∈ (q, q̃(q−1)/q), τ > q̃/(q̃−q1) and let Ω1 be a nonempty
open set of Rn such that Ω1 ⊂Ω. Let for every nonempty closed set G of Rn such
that G ⊂ Ω1 the restrictions of the functions νq1/(q1−q), µ1, g and | f |q1/(q1−1)

on G belong to Lτ(G). Then there exists a W-solution u of problem (3.6),
(3.7) such that for every closed set G of Rn with the properties G ⊂ Ω1 and
measG > 0 we have vraimax

G
|u|< +∞.

As we shall see in the next section the restricted requirement q < q̃(q−1)/q
in the given theorem can be omitted thanks to an appropriate condition on σ .
Naturally, it will imply a change of the inclusion for q1.

4. Main result

Theorem 4.1. Suppose that all conditions of Theorem 3.2 are satisfied and
σ > q. Let q < q1 < min(σ , q̃), τ > q̃/(q̃−q1) and let Ω1 be a nonempty open
set of Rn such that Ω1 ⊂Ω. Let for every nonempty closed set G of Rn such that
G ⊂ Ω1 the restrictions of the functions νq1/(q1−q), µ1, g and | f |q1/(q1−1) on G
belong to Lτ(G). Then there exists a W-solution u of problem (3.6), (3.7) such
that for every closed set G of Rn with the properties G⊂Ω1 and measG > 0 we
have vraimax

G
|u|< +∞.

Proof. We make the proof in some steps.

Step 1. Let us show that for every function ψ ∈ L∞(Ω) there exists a function

ψ̄ ∈
◦

W 1,q
2,2(ν ,µ,Ω)∩Lσ (Ω) such that for every ϕ ∈

◦
W 1,q

2,2(ν ,µ,Ω)∩L∞(Ω),

∫
Ω

{
∑

α∈Λ

Aα(x,∇2ψ̄)Dα
ϕ

}
dx+a

∫
Ω

|ψ̄|σ−1
ψ̄ϕ dx =

∫
Ω

ψϕ dx. (4.1)
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Let {χk} ⊂C2(R) be a sequence of functions such that for every k ∈ N,

χk(s) = s if |s|6 k, (4.2)

|χk|6 3k in R, (4.3)

0 < χ
′
k 6 1 in R, (4.4)

|χ ′′
k |6

8
k

χ
′
k in R. (4.5)

As far as the construction of such a sequence of functions is concerned see [2].
Let ψ ∈ L∞(Ω). From the proof of Theorem 3.4 of [6] it follows that there

exists a function ψ̄ ∈
◦

W 2,1(Ω)∩Lσ (Ω) such that the following properties hold:

(∗1) for every α ∈ Λ, Aα(x,∇2ψ̄) ∈ L1(Ω);

(∗2) for every ϕ ∈C∞
0 (Ω),

∫
Ω

{
∑

α∈Λ

Aα(x,∇2ψ̄)Dα
ϕ

}
dx+a

∫
Ω

|ψ̄|σ−1
ψ̄ϕ dx =

∫
Ω

ψϕ dx;

(∗3) for every k ∈ N, χk(ψ̄) ∈
◦

W 1,q
2,2(ν ,µ,Ω) and

∫
Ω

{
∑

|α|=1
ν |Dα

χk(ψ̄)|q + ∑
|α|=2

µ|Dα
χk(ψ̄)|2

}
dx 6 c4

∫
Ω

ψχk(ψ̄)dx+ c5,

where c4 and c5 are positive constants depending only on n,q,c1,c2 and the
norms in L1(Ω) of the functions g and µ1.

Since ψ ∈ L∞(Ω), ψ̄ ∈ Lσ (Ω) and σ > q, from property (∗3) we deduce that
the sequence {χk(ψ̄)} is bounded in W 1,q

2,2 (ν ,µ,Ω). Hence taking into account

that χk(ψ̄)→ ψ̄ strongly in Lq(Ω), we obtain ψ̄ ∈
◦

W 1,q
2,2(ν ,µ,Ω).

Let ϕ ∈
◦

W 1,q
2,2(ν ,µ,Ω)∩L∞(Ω). We take a sequence {ϕ j}⊂C∞

0 (Ω) bounded
in L∞(Ω) and such that ‖ϕ j −ϕ‖ → 0 and ϕ j → ϕ a.e. in Ω. Then by property
(∗2) for every j ∈ N we have∫

Ω

{
∑

α∈Λ

Aα(x,∇2ψ̄)Dα
ϕ j

}
dx+a

∫
Ω

|ψ̄|σ−1
ψ̄ϕ j dx =

∫
Ω

ψϕ j dx.

Hence passing to the limit as j → ∞, we get (4.1). This completes the first step.
Step 2. For every l ∈ N we define the function fl : Ω → R by

fl(x) =
{

f (x) if | f (x)|6 l,
0 if | f (x)|> l.
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By the assertion established at the first step we have: if l ∈ N, there exists

a function ul ∈
◦

W 1,q
2,2(ν ,µ,Ω)∩Lσ (Ω) such that for every ϕ ∈

◦
W 1,q

2,2(ν ,µ,Ω)∩
L∞(Ω),∫

Ω

{
∑

α∈Λ

Aα(x,∇2ul)Dα
ϕ

}
dx+a

∫
Ω

|ul|σ−1ulϕ dx =
∫

Ω

flϕ dx. (4.6)

We fix k, l ∈N. Due to (4.2)–(4.5) and Lemma 2.4 χk(ul) ∈
◦

W 1,q
2,2(ν ,µ,Ω)∩

L∞(Ω). Then by (4.6)∫
Ω

{
∑

α∈Λ

Aα(x,∇2ul)Dα
χk(ul)

}
dx+a

∫
Ω

|ul|σ−1ulχk(ul)dx =
∫

Ω

flχk(ul)dx.

Hence taking into account property (i) of Lemma 2.4, we get

∫
Ω

{
∑

α∈Λ

Aα(x,∇2ul)Dαul

}
χ
′
k(ul)dx+a

∫
Ω

|ul|σ−1ulχk(ul)dx

6
∫

Ω

flχk(ul)dx+ Jl, (4.7)

where

Jl =
∫

Ω

{
∑

|α|=2
|Aα(x,∇2ul)| |Dα

χk(ul)−χ
′
k(ul)Dαul|

}
dx.

Using (3.4) and (4.4), we obtain the inequality

c2

2

∫
Ω

{
∑

|α|=1
ν |Dαul|q + ∑

|α|=2
µ|Dαul|2

}
χ
′
k(ul)dx

6
∫

Ω

{
∑

α∈Λ

Aα(x,∇2ul)Dαul

}
χ
′
k(ul)dx+

(
2
c2

+1
)∫

Ω

gdx, (4.8)

and using property (ii) of Lemma 2.4, (3.1), (4.4) and (4.5), we establish that

Jl 6
c2

4

∫
Ω

{
∑

|α|=1
ν |Dαul|q + ∑

|α|=2
µ|Dαul|2

}
χ
′
k(ul)dx

+
c2

4

∫
Ω

gdx+8n2 [32nq(c1 +1)/c2](q+4)/(q−4)
∫

Ω

µ1 dx. (4.9)

We note that the latter estimate is derived in the same way as an analogous
estimate in the proof of Theorem 3.4 of [6].
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Setting

c6 = c2

∫
Ω

gdx+8n2 [32nq(c1 +1)/c2](q+4)/(q−4)
∫

Ω

µ1 dx,

from (4.7)–(4.9) we deduce that

c2

4

∫
Ω

{
∑

|α|=1
ν |Dαul|q + ∑

|α|=2
µ|Dαul|2

}
χ
′
k(ul)dx+a

∫
Ω

|ul|σ−1ulχk(ul)dx

6
∫

Ω

flχk(ul)dx+ c6.

Hence taking into account (4.2)–(4.4) and the definition of the function fl , we
get

a
∫

Ω

|ul|σ |χk(ul)|dx 6 3k
∫

Ω

| f |dx+ c6, (4.10)

c2

4

∫
Ω

{
∑

|α|=1
ν |Dαul|q + ∑

|α|=2
µ|Dαul|2

}
χ
′
k(ul)dx 6 3k

∫
Ω

| f |dx+c6. (4.11)

Since by (4.2) and (4.4) for every s ∈R, |s|> k, the inequality |χk(s)|> k holds,
from (4.10) we obtain

a
∫
{|ul |>k}

|ul|σ dx 6 3
∫

Ω

| f |dx+ c6. (4.12)

This completes the second step.

Step 3. From (4.12) we obtain that there exists c7 > 0 such that for every
l ∈ N, ∫

Ω

|ul|σ dx 6 c7. (4.13)

Now we fix an arbitrary multiindex α , |α|= 1, and l ∈N. Let k ∈N, k1 ∈N
and

kq/(1+σ) < k1 6 kq/(1+σ) +1. (4.14)

We have

meas{ν
1/q|Dαul|> k}6 meas{|ul|> k1}+measG, (4.15)

where G = {|ul|< k1, ν1/q|Dαul|> k}. By (4.13)

meas{|ul|> k1}6 c7k−σ

1 , (4.16)
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and using (4.11), (4.2) and (4.4), for the measure of the set G we obtain the
following estimate:

measG 6
4
c2

{
3
∫

Ω

| f |dx+ c6

}
k1k−q. (4.17)

From (4.14)–(4.17) we get that for every multiindex α , |α|= 1, and k, l ∈N,

meas{ν
1/q|Dαul|> k}6 c8k−qσ/(1+σ), (4.18)

where c8 is a positive constant depending only on c2,c6,c7 and the norm of the
function f in L1(Ω).

Due to (4.18) and Lemma 2.6 of [2] we have

if α is a multiindex and |α|= 1, for every λ ∈ (0,qσ/(1+σ))

the sequence{ν
1/qDαul} is bounded in Lλ (Ω). (4.19)

Next, it is clear that there exists a number t1 > 1 such that

1
2
− 1

q
− q

4q̃(q−1)
<

1
t1

<
q−1

q
− 1

σq
. (4.20)

Define
t2 =

qt1
4q− (q−4)t1

.

From (4.20) it follows that

t2 <
q̃(q−1)

q̃(q−1)−q
,

t1
t1−1

<
qσ

σ +1
. (4.21)

The first of this inequalities and condition (ii) of Theorem 3.2 imply that

1
µ
∈ Lt2(Ω). (4.22)

Using the definition of the function µ1 and Young’s inequality, we obtain(
1
ν

)t1/q

= µ
(q−4)t1/4q
1 ·

(
1
µ

)t1/4

6 µ1 +
(

1
µ

)t2
.

Hence, taking into account the inclusion µ1 ∈ L1(Ω) and (4.22), we deduce that

1
ν
∈ Lt1/q(Ω). (4.23)
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This with (4.19) and the second inequality in (4.21) implies that for every mul-
tiindex α , |α| = 1, the sequence {Dαul} is bounded in L1(Ω). In its turn, the
latter fact and (4.13) allow us to conclude that the sequence {ul} is bounded in
◦

W 1,1(Ω). Therefore, there exist an increasing sequence {li}⊂N and a functuion
u ∈ L1(Ω) such that

‖uli −u‖L1(Ω) → 0, (4.24)

uli → u a.e. in Ω. (4.25)

Step 4. Let l,m ∈ N. By Lemma 2.4 we have χ1(ul − um) ∈
◦

W 1,q
2,2(ν ,µ,Ω)

and the following properties hold:

(∗4) if |α|= 1, Dα χ1(ul −um) = χ ′
1(ul −um)Dα(ul −um) a.e. in Ω;

(∗5) if |α|= 2, |Dα χ1(ul −um)−χ ′
1(ul −um)Dα(ul −um)|

6 |χ ′′
1 (ul −um)| ∑

|β |=1
|Dβ (ul −um)|2 a.e. in Ω.

From (4.6) it follows that

∫
Ω

{
∑

α∈Λ

[
Aα(x,∇2ul)−Aα(x,∇2um)

]
Dα

χ1(ul −um)
}

dx

6
∫

Ω

| fl − fm| |χ1(ul −um)|dx.

Hence, using inequalities (3.2), (3.3), properties (4.2)–(4.5), (∗4), (∗5) and mak-
ing considerations analogous to those given in [4], we get

∫
{|ul−um|61}

{
∑

|α|=1
ν |Dαul −Dαum|q + ∑

|α|=2
µ|Dαul −Dαum|2

}
dx

6
6
c2

∫
Ω

| fl − fm|dx+ c9

∫
{|ul−um|>1}

(ν + µ1)dx, (4.26)

where c9 is a positive constant depending only on n, q, c2 and c3.
From (4.25), (4.26) and the strong convergence of { fl} to f in L1(Ω) we

derive that: if |α| = 1, there exists a measurable function vα : Ω → R such
that ν1/qDαuli → vα in measure; if |α| = 2, there exists a measurable function
wα : Ω → R such that µ1/2Dαuli → wα in measure.
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Clearly, without loss of generality we may assume that

if |α|= 1, ν
1/qDαuli → vα a.e. in Ω, (4.27)

if |α|= 2, µ
1/2Dαuli → wα a.e. in Ω. (4.28)

Step 5. We set σ1 = q̃(q−1)/q and fix k, l ∈ N. Since χk(ul) ∈
◦

W 1,q(ν ,Ω),
by virtue of Hypothesis 2.1, assertion (i) of Lemma 2.4, (4.4) and (4.11) we
have ∫

Ω

|χk(ul)|q̃dx 6 c10kq̃/q,

where c10 is a positive constant depending only on q, q̃, c, c2, c6 and the norm
of the function f in L1(Ω). Then taking into account that |χk(s)| > k if |s| > k,
we obtain

meas{|ul|> k}6 c10k−σ1 .

Using this estimate, (4.11) and Lemma 2.6 of [2], by analogy with (4.19) we get

if α is a multiindex and |α|= 1, for every λ ∈ (0,qσ1/(1+σ1))

the sequence{ν
1/qDαul} is bounded in Lλ (Ω); (4.29)

if α is a multiindex and |α|= 2, for every λ ∈ (0,2σ1/(1+σ1))

the sequence{µ
1/2Dαul} is bounded in Lλ (Ω). (4.30)

Owing to (4.19), the second inequality in (4.21), (4.23), (4.24), (4.27), con-
dition (ii) of Theorem 3.2, (4.28) and (4.30) for every α ∈ Λ there exists the
weak derivative Dαu, Dαu ∈ L1(Ω) and

Dαuli → Dαu a.e. in Ω, (4.31)

Dαuli → Dαu strongly in L1(Ω). (4.32)

From (4.24) and (4.32) it follows that uli → u strongly in W 2,1(Ω) and therefore,

u ∈
◦

W 2,1(Ω).
Thus, taking into account (4.13) and (4.25), we have

u ∈
◦

W 2,1(Ω)∩Lσ (Ω). (4.33)

Moreover, using (3.1), (4.29)–(4.31) and condition (i) of Theorem 3.2, we es-
tablish that for every α ∈ Λ,

Aα(x,∇2u) ∈ L1(Ω), (4.34)

Aα(x,∇2uli)→ Aα(x,∇2u) strongly in L1(Ω). (4.35)
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Step 6. Let ϕ ∈C∞
0 (Ω). By virtue of (4.6) for every i ∈ N we have∫

Ω

{
∑

α∈Λ

Aα(x,∇2uli)D
α

ϕ

}
dx+a

∫
Ω

|uli |σ−1uliϕ dx =
∫

Ω

fliϕ dx. (4.36)

Due to (4.35)∫
Ω

{
∑

α∈Λ

Aα(x,∇2uli)D
α

ϕ

}
dx →

∫
Ω

{
∑

α∈Λ

Aα(x,∇2u)Dα
ϕ

}
dx, (4.37)

and owing to the strong convergence of { fl} to f in L1(Ω) we get∫
Ω

fliϕ dx →
∫

Ω

f ϕ dx. (4.38)

Let us show that ∫
Ω

|uli |σ−1uliϕ dx →
∫

Ω

|u|σ−1uϕ dx. (4.39)

First of all, by analogy with Lemma 7.3 of [2] we establish that there exists
s positive constant c11 such that for every k, l ∈ N,

a
∫
{|ul |>2k}

|ul|σ dx 6 2
∫
{|ul |>k}

| f |dx+ c11k−1. (4.40)

Now let us fix an arbitrary ε > 0. Clearly, there exists ε1 > 0 such that for
every measurable set G with measG 6 ε1 we have∫

G
| f |dx 6 εa/2. (4.41)

We fix k ∈N such that k > max{(c7/ε1)1/σ , c11/εa}. Then using (4.13), (4.40)
and (4,41), we obtain that for every l ∈ N,∫

{|ul |>2k}
|ul|σ dx 6 2ε. (4.42)

Owing to (4.25) and D. Egorov’s theorem there exists a measurable set Ω′ ⊂ Ω

such that ∫
Ω\Ω′

|u|σ dx 6 ε, (4.43)

meas(Ω\Ω
′) 6 ε/(2k)σ , (4.44)

|uli |σ−1uli → |u|σ−1u uniformly in Ω
′. (4.45)
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From (4.45) it follows that there exists i0 ∈ N such that for every i ∈ N, i > i0,∫
Ω′

∣∣|uli |σ−1uli −|u|σ−1u
∣∣dx 6 ε. (4.46)

Let i ∈ N, i > i0. By (4.43) and (4.46)∫
Ω

∣∣|uli |σ−1uli −|u|σ−1u
∣∣dx 6

∫
Ω\Ω′

|uli |σ dx+2ε,

and using (4.42) and (4.44) we get∫
Ω\Ω′

|uli |σ dx =
∫

(Ω\Ω′)∩{|uli |<2k}
|uli |σ dx+

∫
(Ω\Ω′)∩{|uli |>2k}

|uli |σ dx

6 (2k)σ meas(Ω\Ω
′)+

∫
{|uli |>2k}

|uli |σ dx 6 3ε.

Therefore, ∫
Ω

∣∣|uli |σ−1uli −|u|σ−1u
∣∣dx 6 5ε.

This allows us to conclude that assertion (4.39) holds.
Now from (4.36)–(4.39) we get∫

Ω

{
∑

α∈Λ

Aα(x,∇2u)Dα
ϕ

}
dx+a

∫
Ω

|u|σ−1uϕ dx =
∫

Ω

f ϕ dx.

This with (4.33) and (4.34) implies that the function u is a W -solution of
problem (3.6), (3.7).

Step 7. It remains to show that for every closed set G of Rn with the proper-
ties G ⊂ Ω1 and measG > 0 we have vraimax

G
|u|< +∞.

Let G be a closed set of Rn, G ⊂ Ω1 and measG > 0. We set ρ =
dist(G,∂Ω1) and Ω0 = {x ∈ Rn : d(x,G) < ρ/2}. Evidently, Ω0 ⊂ Ω1. Let
χ : Ω → R be the characteristic function of the set Ω0. We define

ψ =
(
ν

q1/(q1−q) + µ1 +g+ | f |q1/(q1−1))
χ .

By conditions of the theorem we have ψ ∈ Lτ(Ω) and the restriction of the
function νq1/(q1−q) on Ω0 belongs to Lτ(Ω0).

We fix a function ϕ ∈C∞
0 (Ω) such that 0 6 ϕ 6 1 in Ω, ϕ = 1 in G, suppϕ ⊂

Ω0 and set

m(ϕ) = 1+max
Ω

{
∑
|β |=1

|Dβ
ϕ|2 + ∑

|β |=2
|Dβ

ϕ|
}

.



250 ALEXANDER A. KOVALEVSKY - FRANCESCO NICOLOSI

We also fix l ∈ N and set

Φl = ∑
|α|=1

ν |Dαul|q + ∑
|α|=2

µ|Dαul|2.

Let s ∈ N, r > 0 and t > q. Define

wl = ul[1+h2
s (ul)]rϕ t ,

zl = [1+h2
s (ul)]r +2r[1+h2

s (ul)]r−1hs(ul)h′s(ul)ul.

By virtue of Lemma 2.3 wl ∈
◦

W 1,q
2,2(ν ,µ,Ω) and the following properties hold:

(∗6) for every n-dimensional multiindex α, |α|= 1,

Dαwl = zlϕ
tDαul + tul[1+h2

s (ul)]rϕ t−1Dα
ϕ a.e. in Ω;

(∗7) for every n-dimensional multiindex α, |α|= 2,

|Dαwl − zlϕ
tDαul|6 20(c′′)2(t + r)2[1+h2

s (ul)]rϕ t
{

∑
|β |=1

|Dβ ul|2
}

+4c′m(ϕ)(t + r)2(1+ |ul|)[1+h2
s (ul)]rϕ t−2 a.e. in Ω.

Besides, due to Lemma 2.4 and (4.3) {χk(wl)} ⊂
◦

W 1,q
2,2(ν ,µ,Ω)∩L∞(Ω). Then

by (4.6) for every k ∈ N we have∫
Ω

{
∑

α∈Λ

Aα(x,∇2ul)Dα
χk(wl)

}
dx+a

∫
Ω

|ul|σ−1ulχk(wl)dx =
∫

Ω

flχk(wl)dx.

From this, taking into account (4.2), (4.4) and the definition of the function wl ,
we infer that for every k ∈ N,∫

Ω

{
∑

α∈Λ

Aα(x,∇2ul)Dα
χk(wl)

}
dx 6

∫
Ω

flχk(wl)dx.

Hence, taking into consideration Lemma 2.4 and properties of the functions χk,
k ∈ N, and passing to the limit as k → ∞, we get∫

Ω

{
∑

α∈Λ

Aα(x,∇2ul)Dαwl

}
dx 6

∫
Ω

flwl dx. (4.47)

We set

Il =
∫

Ω

{
∑

α∈Λ

Aα(x,∇2ul)[Dαwl − zlϕ
tDαul]

}
dx.
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From (3.4) and (4.47) it follows that

c2

2

∫
Ω

Φl[1+h2
s (ul)]rϕ tdx 6

∫
Ω

flwldx− Il

+
( 2

c2
+1
)

(1+4c′r)
∫

Ω

g [1+h2
s (ul)]rϕ tdx. (4.48)

Due to the definitions of the functions fl,wl and ψ we have∫
Ω

flwldx 6
∫

Ω

[ψ + |ul|q1 ][1+h2
s (ul)]rϕ tdx, (4.49)

∫
Ω

g [1+h2
s (ul)]rϕ tdx 6

∫
Ω

ψ [1+h2
s (ul)]rϕ tdx. (4.50)

In order to estimate the integral Il we use (3.1) and properties (∗6) and (∗7) and
argue as in analogous situation in the proof of Theorem 5.1 of [7]. Then we
obtain

|Il|6
c2

4

∫
Ω

Φl [1+h2
s (ul)]rϕ tdx

+ c12(r + t)q2/(q−4)
∫

Ω

[ψ +1+ |ul|q1 ] [1+h2
s (ul)]rϕ t−qdx,

where c12 is a positive constant depending only on n, q, q̃, c′′, c1, c2 and m(ϕ).
The latter estimate and (4.48)–(4.50) imply that

∫
Ω

{
∑

|α|=1
ν |Dαul|q

}
[1+h2

s (ul)]rϕ tdx

6 c13(r + t)q2/(q−4)
∫

Ω

[ψ +1+ |ul|q1 ] [1+h2
s (ul)]rϕ t−q dx,

where c13 is a positive constant depending only on the same parameters as the
constant c12.

Hence, taking into account (4.13) and applying Lemma 2.2, we deduce that
there exists a positive constant M > 0 such that for every l ∈ N, vraimax

G
|ul|6

M. This and (4.25) imply that vraimax
G

|u|6 M.

The theorem is proved.
From Theorem 4.1 we obtain the following consequence.

Corollary 4.2. Suppose that all conditions of Theorem 3.2 are satisfied and
σ > q. Let the functions ν , µ1, g and f belong to L∞

loc(Ω). Then there exists a
W-solution u of problem (3.6), (3.7) such that u ∈ L∞

loc(Ω).
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