ON BERNOULLI BOUNDARY VALUE PROBLEM

FRANCESCO A. COSTABILE - ANNAROSA SERPE

We consider the boundary value problem:

$$
\begin{cases}x^{(m)}(t)=f(t, \bar{x}(t)), & a \leq t \leq b, \quad m>1 \\ x(a)=\beta_{0} \\ \Delta x^{(k)} \equiv x^{(k)}(b)-x^{(k)}(a)=\beta_{k+1}, & k=0, \ldots, m-2\end{cases}
$$

where $\bar{x}(t)=\left(x(t), x^{\prime}(t), \ldots, x^{(m-1)}(t)\right), \beta_{i} \in \mathbf{R}, i=0, \ldots, m-1$, and f is continuous at least in the interior of the domain of interest.
We give a constructive proof of the existence and uniqueness of the solution, under certain conditions, by Picard's iteration. Moreover Newton's iteration method is considered for the numerical computation of the solution.

1. Introduction

In this paper we consider the following boundary problem:

$$
\begin{cases}(1 a) & x^{(m)}(t)=f(t, \bar{x}(t)), \tag{1}\\ (1 b) & x(a)=\beta_{0}, \quad \Delta x_{a}^{(k)} \equiv x^{(k)}(b)-x^{(k)}(a)=\beta_{k+1} \quad k=0, \ldots, m-2\end{cases}
$$

where $\bar{x}(t)=\left(x(t), x^{\prime}(t), \ldots, x^{(m-1)}(t)\right), f$ is defined and continuous at least in the domain of interest included in $[a, b] \times \mathbf{R}^{m} ;[a, b] \subset \mathbf{R}$, and $\beta_{i} \in \mathbf{R}, i=$

Entrato in redazione 1 gennaio 2007
AMS 2000 Subject Classification: C0D1C3, PR0V4
Keywords: Bernoulli, Green function, Picard's iteration,Newton iteration
$0, \ldots, m-1$.
This problem is called the Bernoulli boundary value ([4],[6]) problem.
The boundary conditions in $(1 a)-(1 b)$ are new and it is easy to give them physical and engineering interpretations [1]; this is the motivation of our investigation.
In [6] the authors give a non constructive proof of the existence and uniqueness of the solution of $(1 a)-(1 b)$, while in this work they prove the convergence of Picard's iteration under certain conditions and, therefore, supply a constructive proof.
The outline of the paper is the following: in section 2 we give the preliminaries, in section 3 we investigate the existence and uniqueness of the solution by Picard's iteration; finally, in section 4 we consider the Newton's iterations method for the numerical calculation of the solution.

2. Definitions and preliminaries

If $B_{n}(x)$ is the Bernoulli polynomial of degree n defined by [7]

$$
\begin{cases}B_{0}(x)=1 & \tag{2}\\ B_{n}^{\prime}(x)=n B_{n-1}(x) & n \geq 1 \\ \int_{0}^{1} B_{n}(x) d x=0 & n \geq 1\end{cases}
$$

in a recent paper Costabile [5] proved the following theorems.
Theorem 1. Let $f \in \mathbf{C}^{(v)}[a, b]$ we have

$$
\begin{equation*}
f(x)=f(a)+\sum_{k=1}^{v} S_{k}\left(\frac{x-a}{h}\right) \frac{h^{(k-1)}}{k!} \Delta f_{a}^{(k-1)}-R_{v}[f](x) \tag{3}
\end{equation*}
$$

where
$h=b-a, \quad S_{k}(t)=1 B_{k}(t)-B_{k}(0), \quad f_{a}=f(a), \quad \Delta f_{a}^{(k)}=f^{(k)}(b)-f^{(k)}(a)$

$$
R_{v}[f](x)=\frac{h^{(v-1)}}{v!} \cdot \int_{a}^{b}\left(f^{(v)}(t)\left(B_{v}^{*}\left(\frac{x-t}{h}\right)+(-1)^{v+1} B_{v}\left(\frac{t-a}{h}\right)\right)\right) d t
$$

and

$$
B_{m}^{*}(t)=B_{m}(t) \quad 0 \leq t \leq 1, \quad B_{m}^{*}(t+1)=B_{m}^{*}(t)
$$

Theorem 2. Putting

$$
\begin{equation*}
P_{v}[f](x)=f_{a}+\sum_{k=1}^{v} S_{k}\left(\frac{x-a}{h}\right) \frac{h^{(k-1)}}{k!} \Delta f_{a}^{(k-1)} \tag{4}
\end{equation*}
$$

the following equalities are true

$$
\left\{\begin{array}{l}
P_{v}[f](a)=f(a) \equiv f_{a} \tag{5}\\
P_{v}[f](b)=f(b) \equiv f_{b} \\
\Delta P_{v}^{(k)} \equiv P_{v}^{(k)}(b)-P_{v}^{(k)}(a)=f^{(k)}(b)-f^{(k)}(a) \equiv \Delta f_{a}^{(k)}, \quad k=1, \ldots, v-1
\end{array}\right.
$$

The conditions (5) in the previous equalities are called Bernoulli interpolatory conditions analogously to Lidstone interpolatory conditions [3],[4].
Theorem 3. If $f \in C^{(v+1)}[a, b]$ we have

$$
R_{v}[f](x)=\int_{a}^{b} G(x, t) f^{(v+1)}(t) d t
$$

where

$$
\begin{equation*}
G(x, t)=\frac{1}{v!}\left[(x-t)_{+}^{v}-\sum_{k=1}^{v} S_{k}\left(\frac{x-a}{h}\right) \frac{h^{(k-1)}}{k!}\binom{v}{k-1}(b-t)^{v-k+1}\right] \tag{6}
\end{equation*}
$$

with

$$
(x)_{+}^{k}= \begin{cases}x^{k} & \text { if } \quad x \geq 0 \\ 0 & \text { if } \quad x<0\end{cases}
$$

Theorem 4. For $f \in C^{(v)}[a, b]$ we have

$$
\begin{equation*}
\left|R_{v}[f](x)\right| \leq \frac{h^{v-1}}{6(2 \pi)^{v-2}} \int_{a}^{b}\left|f^{(v)}(t)\right| d t \tag{7}
\end{equation*}
$$

For the following, we need
Lemma 1.[6] If $f \in C^{(v)}[a, b]$ and satisfies the homogeneous Bernoulli interpolatory conditions i.e:

$$
\left\{\begin{array}{l}
f(a)=0 \tag{8}\\
f^{(k)}(b)-f^{(k)}(a)=0 \quad k=0, \ldots, v-2
\end{array}\right.
$$

putting

$$
M_{v}=\max _{a \leq t \leq b}\left|f^{(v)}(t)\right|
$$

the following inequalities hold

$$
\begin{equation*}
\left|f^{(k)}(t)\right| \leq C_{v, k} \cdot M_{v} \cdot(b-a)^{v-k} \quad 0 \leq k \leq v-1 \tag{9}
\end{equation*}
$$

where

$$
\left\{\begin{aligned}
C_{v, 0} & =\frac{1}{3(2 \pi)^{v-2}} \\
C_{v, k} & =\frac{1}{6(2 \pi)^{v-k-2}} \quad k=1,2, . ., v-1
\end{aligned}\right.
$$

Proof $>$ From (8) the expansion (3) becomes

$$
\begin{equation*}
f(t)=\frac{h^{v-1}}{v!}\left[B_{v}\left(\frac{t-a}{h}\right)-B_{v}\right] \Delta f_{a}^{(v-1)}-R_{v}[f](t) \tag{10}
\end{equation*}
$$

We also have

$$
f^{(v-1)}(t)=f^{(v-1)}(a)+\int_{a}^{t} f^{(v)}(s) d s
$$

from which

$$
\begin{equation*}
\left|\Delta f_{a}^{(v-1)}\right| \equiv\left|f^{(v-1)}(b)-f^{(v-1)}(a)\right| \leq M_{v}(b-a) \tag{11}
\end{equation*}
$$

Using the known inequalities in [7]

$$
\left|B_{l}(x)\right| \leq \frac{l!}{12(2 \pi)^{l-2}} \quad l \in N, \quad l \geq 0, \quad 0 \leq x \leq 1
$$

and $(7),(11)$ we have from (10)

$$
|f(t)| \leq \frac{h^{v} \cdot M_{v}}{3(2 \pi)^{v-2}}
$$

that is (9) for $k=0$.
With a successive derivation of (10) and by applying (8) we have

$$
\begin{align*}
f^{(k)}(t) & =\frac{h^{v-(k+1)}}{(v-k)!} \Delta f_{a}^{(v-1)} B_{v-k}\left(\frac{t-a}{h}\right)+ \\
& -\frac{h^{v-(k+1)}}{(v-k)!} \int_{a}^{b} f^{(v)}(t) B_{v-k}^{*}\left(\frac{t-s}{h}\right) d s \quad k=1,2, \ldots, v-1 \tag{12}
\end{align*}
$$

and applying the previous inequalities we get

$$
\left|f^{(k)}(t)\right| \leq \frac{h^{v-k} \cdot M_{v}}{6(2 \pi)^{v-k-2}} \quad k=1,2, \ldots, v-1
$$

that is (9) for $k=1,2, \ldots, v-1$.

3. Existence and uniqueness

To the boundary value problem $(1 a)-(1 b)$ we associate the homogeneous boundary value problem

$$
\left\{\begin{array}{l}
x^{(m)}(t)=f(t, \bar{x}(t)), \quad a \leq t \leq b, \quad m>1 \tag{13}\\
x(a)=x(b)=0 \\
\Delta x^{(k)} \equiv x^{(k)}(b)-x^{(k)}(a)=0 \quad k=1, \ldots, m-2
\end{array}\right.
$$

From Theorem 3, the solution of the boundary value problem (13) is

$$
\begin{equation*}
x(t)=\int_{a}^{b} G(t, s) f(s, \bar{x}(s)) d s \tag{14}
\end{equation*}
$$

where $G(t, s)$ is the Green function [8] defined by (6), with $v=m-1$. The polynomial $P_{m-1}[x](t)$ defined by (4) with $x(a)=\beta_{0}, x^{(k)}(b)-x^{(k)}(a)=$ $\beta_{k+1}, \quad k=0, \ldots, m-2$, satisfies the boundary value problem:

$$
\left\{\begin{array}{l}
P_{m-1}^{(m)}[x](t)=0 \\
P_{m-1}[x](a)=\beta_{0} \\
\Delta P_{m-1}^{(k)} \equiv P_{m-1}^{(k)}(b)-P_{m-1}^{(k)}(a)=\beta_{k+1}, \quad k=0, \ldots, m-2
\end{array}\right.
$$

Therefore, the boundary value problem $(1 a)-(1 b)$ is equivalent to the following nonlinear Fredholm integral equation:

$$
\begin{equation*}
x(t)=P_{m-1}[x](t)+\int_{a}^{b} G(t, s) \cdot f(s, \bar{x}(s)) d s \tag{15}
\end{equation*}
$$

Now, we have the following results:
Theorem 5.[6] Let us suppose that
(i) $k_{i}>0, \quad 0 \leq i \leq m-1$ are given real numbers and let Q be the maximum of $\left|f\left(t, x_{0}, \ldots, x_{m-1}\right)\right|$ on the compact set $[a, b] \times D_{0}$, where $D_{0}=\left\{\left(x_{0}, \ldots, x_{m-1}\right):\left|x_{i}\right| \leq 2 k_{i}, \quad 0 \leq i \leq m-1\right\} ;$
(ii) max $\left|P_{m-1}^{(i)}[x](t)\right| \leq k_{i} \quad 0 \leq i \leq m-1$, where $P_{m-1}[x](t)$ is the polynomial relative to x as in (4);
(iii) $(b-a) \leq\left(\frac{k_{i}}{Q \cdot C_{m, i}}\right)^{\frac{1}{(m-i)}} \quad 0 \leq i \leq m-1$.

Then, the Bernoulli boundary value problem has a solution in D_{0}.
Proof. The set

$$
B[a, b]=\left\{x(t) \in C^{(m-1)}[a, b]:\left\|x^{(i)}\right\|_{\infty} \leq 2 \cdot k_{i}, \quad 0 \leq i \leq m-1\right\}
$$

is a closed convex subset of the Banach space $C^{(m-1)}[a, b]$.
Now we define an operator $T: C^{(m-1)}[a, b] \rightarrow C^{(m)}[a, b]$ as follows:

$$
\begin{equation*}
(T[x](t))=P_{m-1}[x](t)+\int_{a}^{b} G(t, s) \cdot f(s, \bar{x}(s)) d s \tag{16}
\end{equation*}
$$

It is clear, after (15), that any fixed point of (16) is a solution of the boundary value problem ($1 a$) and ($1 b$).
Let $x(t) \in B[a, b]$, then from (16), lemma 1, hypotheses (i),(ii),(iii) we find:
(a) $T B[a, b] \subseteq B[a, b]$;
(b) the sets $\left\{T[x]^{(i)}(t): x(t) \in B[a, b]\right\}, 0 \leq i \leq m-1$ are uniformly bounded and equicontinuous in $[a, b]$;On Bernoulli boundary value problem
(c) $\overline{T B[a, b]}$ is compact from the Ascoli - Arzela theorem;
(d) from the Schauder fixed point theorem a fixed point of T exists in D_{0}.

Corollary 1. Suppose that the function $f\left(t, x_{0}, x_{1}, \ldots, x_{m-1}\right)$ on $[a, b] \times \mathbf{R}^{m}$ satisfies the following condition

$$
\left|f\left(t, x_{0}, x_{1} \ldots, x_{m-1}\right)\right| \leq L+\sum_{i=0}^{m-1} L_{i}\left|x_{i}\right|^{\alpha_{i}}
$$

where $L, L_{i} \quad 0 \leq i \leq m-1$ are non negative constants, and $0 \leq \alpha_{i} \leq 1$.
Then the boundary value problem $(1 a)-(1 b)$ has a solution.
Lemma 2 [6] For the Green function defined by (6), for $v=m-1$ the following inequalities hold:

$$
|G(t, s)| \leq g
$$

withOn Bernoulli boundary value problem

$$
g=\frac{1}{v!}(b-a)^{m}\left(1+\frac{2 \pi^{2} m!}{3(2 \pi-1)}\right)
$$

Proof. The proof follows from the known inequalities of Bernoulli polynomials and from simple calculations.
Theorem 6.[6] Suppose that the function $f\left(t, x_{0}, x_{1} \ldots, x_{m-1}\right)$ on $[a, b] \times D_{1}$ satisfies the following condition

$$
\begin{equation*}
\left|f\left(t, x_{0}, x_{1} \ldots, x_{m-1}\right)\right| \leq L+\sum_{i=0}^{m-1} L_{i}\left|x_{i}\right| \tag{17}
\end{equation*}
$$

where

$$
\begin{gathered}
D_{1}=\left\{\left(x_{0}, x_{1} \ldots, x_{m-1}\right):\left|x_{i}\right| \leq \max _{a \leq t \leq b}\left|P_{m-1}^{(i)}[x](t)\right|+\right. \\
\left.+C_{m, i}(b-a)^{m} g \cdot h \cdot\left(\frac{L+C}{1-\theta}\right), \quad 0 \leq i \leq m-1\right\} \\
C=\max _{a \leq t \leq b} \sum_{i=0}^{m-1} L_{i}\left|P_{m-1}^{(i)}[x](t)\right|
\end{gathered}
$$

$$
\begin{equation*}
\theta=h \cdot g \cdot\left(\sum_{i=0}^{m-1} C_{m, i} L_{i}(b-a)^{m-i}\right)<1, \quad h=b-a \tag{18}
\end{equation*}
$$

Then, the boundary value problem $(1 a)-(1 b)$ has a solution in D_{1}. Proof. Let $y(t)=x(t)-P_{m-1}[x](t)$, so that (1a) and (1b) is the same as

$$
\left\{\begin{array}{l}
y^{(m)}(t)=f(t, \bar{y}(t)) \tag{19}\\
y(a)=y(b)=0 \\
\Delta y_{a}^{(k)}=0 \quad 1 \leq k \leq m-2
\end{array}\right.
$$

whereOn Bernoulli boundary value problem

$$
\bar{y}(t)=y(t)+P_{m-1}[x](t), \quad y^{\prime}(t)+P_{m-1}^{\prime}[x](t), \ldots ., y^{(m-1)}(t)+P_{m-1}^{(m-1)}[x](t)
$$

Define $M[a, b]$ as the space of m times continuously differentiable functions satisfying the boundary conditions of (19). If we introduce in $M[a, b]$ the norm:

$$
\|y(t)\|_{\infty}=\max _{a \leq t \leq b}\left|y^{(m)}(t)\right|
$$

then it becomes a Banach space. As in theorem 5, it suffices to show that the operator $T: M[a, b] \rightarrow M[a, b]$ defined by

$$
T[y](t)=\int_{a}^{b} G(t, s) \cdot f(s, \bar{y}(s)) d s
$$

maps the set

$$
S=\left\{y(t) \in M[a, b]:\|y\|_{\infty} \leq h g\left(\frac{L+C}{1-\theta}\right)\right\}
$$

into itself. In order to demonstrate this, it is sufficient to utilise the conditions (17), lemma 1 and lemma 2.
The thesis follows from the application of the Schauder fixed point theorem to the operator T.
Definition 1. A function $\bar{x}(t) \in C^{(m)}[a, b]$ is called an approximate solution of $(1 a)-(1 b)$ if there exist non-negative constants δ and ε such that:

$$
\begin{align*}
& \max _{a \leq t \leq b}\left|\bar{x}_{(m)}(t)-f(t, \bar{x}(t))\right| \leq \delta \\
& \max _{a \leq t \leq b}\left|P_{m-1}^{(i)}[x](t)-\bar{P}_{m-1}^{(i)}[x](t)\right| \leq \varepsilon \cdot C_{m, i} \cdot(b-a)^{m-i}, \quad 0 \leq i \leq m-1 \tag{20}
\end{align*}
$$

where $\bar{P}_{m-1}^{(i)}[x](t)$ and $P_{m-1}^{(i)}[x](t)$ are the polynomials defined by (5).
The inequality (20) means that there exists a continuous function $\eta(t)$ such that:

$$
\bar{x}^{(m)}(t)=f(t, \bar{x}(t))+\eta(t)
$$

and

$$
\max _{a \leq t \leq b}|\eta(t)| \leq \delta
$$

Thus the approximate solution $\bar{x}(t)$ can be expressed as:

$$
\bar{x}(t)=\bar{P}_{m-1}[x](t)+\int_{a}^{b} G(t, s) \cdot[f(s, \bar{x}(s))+\eta(s)] d s
$$

In the following we shall consider the Banach space $C^{(m-1)}[a, b]$ and for $y(t) \in C^{(m-1)}[a, b]$ the norm $\|y\|$ is defined by:

$$
\|y\|=\max _{0 \leq j \leq m-1}\left\{\frac{C_{m, 0}(b-a)^{j}}{C_{m, j}} \cdot \max _{a \leq t \leq b}\left|y^{j}(t)\right|\right\}
$$

Now we have:
Theorem 7.(Picard's iteration) [2]
With respect to the boundary value problem $(1 a)-(1 b)$ we assume the existence of an approximate solution $\bar{x}(t)$ and:
(i) the function $f\left(t, x_{0}, \ldots, x_{m-1}\right)$ satisfies the Lipschitz condition:

$$
\begin{gathered}
\qquad\left|f\left(t, x_{0}, \ldots, x_{m-1}\right)-f\left(t, \bar{x}_{0}, \ldots, \bar{x}_{m-1}\right)\right| \leq \sum_{i=0}^{m-i} L_{i}\left|x_{i}-\bar{x}_{i}\right| \quad \text { on }[a, b] \times D_{2} \\
\text { where } D_{2}=\left\{\left(x_{0}, \ldots, x_{i}\right):\left|x_{j}-\bar{x}^{(j)}(t)\right| \leq N \cdot \frac{C_{m, j}}{C_{m, 0}(b-a)^{j}}, 0 \leq j \leq m-1\right\}
\end{gathered}
$$

(ii) $\theta<1$
(iii) $N_{0}=(1-\theta)^{-1} \cdot(\varepsilon+\delta) \cdot C_{m, 0}(b-a)^{m} \leq N$

Then, the following results hold:
$\left(21_{a}\right)$ there exists a solution $x^{*}(t)$ of $(1 a)$ and $(1 b)$ in

$$
\bar{S}\left(\bar{x}, N_{0}\right)=\left\{x \in C^{(m-1)}[a, b]:\|x-\bar{x}\| \leq N_{0}\right\}
$$

$\left(21_{b}\right) \quad x^{*}(t)$ is, the, unique solution of $(1 a)$ and $(1 b)$ in $\bar{S}(x, N)$
$\left(21_{c}\right)$ the Picard iterative sequence $x_{n}(t)$ defined by:

$$
\left\{\begin{array}{l}
x_{0}(t)=\bar{x}(t) \\
x_{n+1}(t)=P_{m-1}(t)+\int_{a}^{b} G(t, s) \cdot f\left(s, \bar{x}_{n}(s)\right) d s \quad n=0,1, \ldots
\end{array}\right.
$$

converges to $x^{*}(t)$ with: $\left\|x^{*}-x_{0}\right\| \leq \theta^{n} \cdot N_{0}$ and

$$
\left\|x^{*}-x_{n}\right\| \leq \theta(1-\theta)^{-1} \cdot\left\|x_{0}-x_{n-1}\right\|
$$

Proof. It suffices to show that the operator $T: \bar{S}(\bar{x}, N) \rightarrow C^{(m)}[a, b]$ defined by

$$
T[x](t)=P_{m-1}[x](t)+\int_{a}^{b} G(t, s) \cdot f(s, X(s)) d s
$$

where $X(s)=\left(x(s), x^{\prime}(s), \ldots, x^{(m-1)}(s)\right)$, satisfies the conditions of the contraction mapping theorem.

4. Newton's iteration

For an efficient numerical calculation of the solution of problem (1a) - (1b) we can consider Newton's iteration method. For our problem (1a) - (1b) the quasilinear iterative scheme is defined as:
$\left(22_{a}\right) \quad x_{n+1}^{(m)}(t)=f\left(t, \bar{x}_{n}(t)\right)+\sum_{i=0}^{m-1}\left(x_{n+1}^{(i)}(t)-x_{n}^{(i)}(t)\right) \cdot \frac{\partial f\left(t, \bar{x}_{n}(t)\right)}{\partial x_{n}^{(i)}(t)}$
$\left(22_{b}\right)\left\{\begin{array}{l}x_{n+1}(a)=\beta_{0} \\ x_{n+1}^{(h)}(b)-x_{n+1}^{(h)}(a)=\beta_{h+1}, \quad h=0, \ldots, m-2, \quad n=0,1, \ldots\end{array}\right.$
where $x_{0}(t)=\bar{x}(t)$ is an approximate solution of $(1 a)-(1 b)$.
Theorem 8.(Newton's iteration)
With respect to the boundary value problem $(1 a)-(1 b)$ we assume that there exists an approximate solution $\bar{x}(t)$, and:
(i) the function $f\left(t, x_{0}, x_{1}, \ldots, x_{m-1}\right)$ is continuously differentiable with respect to all $x_{i} \quad 0 \leq i \leq m-1$ on $[a, b] \times D_{2} ;$
(ii) there exist non-negative constants $L_{i}, 0 \leq i \leq m-1$ such that for all $\left(t, x_{0}, \ldots, x_{m-1}\right) \in[a, b] \times D_{2}$ we have:

$$
\left|\frac{\partial f\left(t, x_{0}, \ldots, x_{m-1}\right)}{\partial x_{i}}\right| \leq L_{i}
$$

(iii) $3 \theta<1$
(iv) $N_{3}=(1-3 \theta)^{-1}(\varepsilon+\delta) \cdot C_{m, 0}(b-a)^{m} \leq N$

Then, the following results hold:
$\left(23_{a}\right)$ the sequence $x_{n}(t)$ generated by the iterative scheme $\left(22_{a}\right)-\left(22_{b}\right)$ remains in $\bar{S}\left(\bar{x}, N_{3}\right)$.
$\left(23_{b}\right)$ the sequence $x_{n}(t)$ converges to the unique solution $x^{*}(t)$ of the boundary value problem $(1 a)-(1 b)$.

Proof. The proof requires the equalities and the inequalities that we have previously determined and is based on inductive arguments.

REFERENCES

[1] R.P. Agarwal - G. Akrivis, Boundary value problem occuring in plate deflection theory, Computers Math. Appl. 8 (1982), 145 154.
[2] R.P. Agarwal, Boundary value Problems for Higher Order Differential equations, World Scientific Singapore, 1986.
[3] R.P. Agarwal - P.J.Y. Wong, Lidstone polynomials and boundary value problems, Computers Math. Appl. 17 (1989), 1377-1421.
[4] F.A. Costabile - F. Dell'Accio, Polynomial approximation of C^{M} functions by means of boundary values and applications: A survey, J.Comput.Appl.Math. doi: 10.1016/j.cam.2006.10.059, 2006.
[5] F.A. Costabile, Expansions of real functions in Bernoulli polynomial and applications, Conferences Seminars Mathematics University of Bari 273 (1999), 1-13.
[6] F.A. Costabile - A. Bruzio - A. Serpe, A new boundary value problem, Pubblicazione LAN, Department of Mathematics, University of Calabria 18, 2006.
[7] C. Jordan, Calculus of Finite Differences, Chelsea Pu.Co., New York, 1960.
[8] I. Stakgold, Green's Functions and boundary value problems, John Wiley Sons, 1979.

FRANCESCO A. COSTABILE Department of Mathematics, University of Calabria via P. Bucci - Cubo 30/A - 87036 Rende(CS) Italy e-mail: costabil@unical.it

ANNAROSA SERPE
Department of Mathematics, University of Calabria via P. Bucci - Cubo 30/A - 87036 Rende(CS) Italy e-mail: annarosa.serpe@unical.it

