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Chapter 1 

 

General introduction 

 

 

1.1 Current energy trend in the world  

 

 

Our energy utilization is rapidly increasing year by year. Moreover, most of the 

energy we use is fossil origin. This is because fossil fuels are still the most inexpensive 

and most convenient energy sources 
[1.1]

. Figure 1.1 (a) and (b) clearly show these facts 
[1.2]

. The world total energy supply has doubled in four decades since 1973 and more 

than 80 % of our energy comes from fossil fuel. In the future, the total rate of the energy 

utilization can be further accelerated, because of the current intense effort of less 

developed countries to catch up with developed ones, and the rapid growth in the 

planetary population. This can present difficult problems in many aspects, e.g. economy, 

politics, and environment. Most of the easily accessible sources of oil and gas have 

already been tapped and thus the cost to extract the leftover will be progressively more 

expensive. Also, most of the fuel used by developed countries is imported. In Japan, the 

dependence on foreign fossil fuel has been increased after the great east Japan 

earthquake and it accounts for 92.2% in 2012 
[1.3]

. This is because the dependence on 

nuclear energy has been decreased after the Fukushima nuclear accident. Therefore, in 

the future, the energy security can be a significant problem for nations poor in natural 

resources. And most importantly, the increase in the energy utilization contributes to 

significant global warming. The IPCC fifth assessment report has concluded that it is 

extremely likely that human influence has been the dominant cause of the observed 

warming since the mid-20th century, and continued emissions of greenhouse gases will 

cause further warming 
[1.4]

. Thus, setting aside the political correctness, the technologies 

to reduce the concentration of atmospheric greenhouse gases are highly required in 

order to prevent the global warming. This can, in principle, be achieved by reducing 
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emissions or by preventing emitted greenhouse gases from releasing into the air. 

Emissions can be reduced by decreasing the energy consumption, by employing 

alternative energy sources, by increasing the efficiency of energy use, and by switching 

to fuels that yield more energy per unit amount of carbon emitted 
[1.1]

.  

 

(a) 

 

(b) 

 

 

 

Fig.1.1 (a) the world total primary energy supply from 1973 to 2012 and (b) the fuel 

shares of world total primary energy supply in 1973 and 2012 
[1.2]
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1. 2. High temperature energy conversion devices 

 

One of the promising technologies which meet the above need is the high 

temperature energy conversion devices. Whereas mechanical heat engines generally 

convert the heat, which is released by the combustion of a chemical substance, into 

mechanical energy, the high temperature energy conversion devices such as fuel cells 

convert chemical energy directly into electricity. Thus this conversion generally has 

higher efficiency than mechanical heat engines without the limitation of the Carnot 

efficiency 
[1.5]

. Also, hydrogen is expected to be an alternative energy carrier of the next 

generation. High temperature energy conversion devices such as fuel cells, solid oxide 

electrolyzer, and gas separation membranes can play a central role in the future 

hydrogen base energy system 
[1.6]

.  

   In this section, the principles of some high temperature energy conversion devices 

are briefly reviewed. 

 

 

Fuel cells 

 

 

   Fuel cells are the energy conversion devices which directly produce electricity by an 

electrochemical reaction between a fuel and an oxidant 
[1.5]

. As previously mentioned, 

the efficiency of the fuel cells is not limited by the Carnot efficiency. Thus the fuel cells 

generally have high energy conversion efficiency. Furthermore, compared with 

conventional power generation devices, fuel cells have several merits such as minimal 

siting restriction, potential for cogeneration, and much lower production of pollutants 
[1.5]

.  

Figure 1.2 shows the schematic diagram of a single fuel cell. A fuel cell consists of 

cathode, anode, and electrolyte. Fuel is fed to the anode. Then the fuel is oxidized and 

simultaneously electrons are released to the external circuit. On the cathode side, 

oxidant is reduced and electrons are accepted from the external circuit. The electrolyte 

conducts ions between the anode and cathode. The fuel cells can be classified according 

to the electrolyte material. So far, aqueous alkaline solution, phosphoric acid, molten 

carbonate, polymer membrane, and solid oxides have been used as an electrolyte of the 

fuel cells 
[1.1]

.  

 

 



4 

 

 

 

Figure 1.2 Schematic diagram of a single fuel cell 

 

 

Solid oxide fuel cells (SOFCs) 

 

 

The fuel cell whose electrolyte is a solid oxide, namely, solid oxide fuel cell (SOFC) 

has several distinct advantages compared with other types of fuel cells. For instance, 

SOFCs do not need to use precious materials and liquid. Moreover, SOFCs are 

generally operated at high temperatures. This high temperature operation promotes 

rapid reaction kinetics, enables internal reforming of hydrocarbon fuels, and also 

enables us to utilize high quality waste heat which is suitable for congeneration 
[1.5]

. The 

fuel cell combined cycle with a gas turbine is regarded to be able to achieve the 

efficiency of 70 % 
[1.5]

. Therefore, SOFCs can be simple and more efficient than the 

other types of the fuel cells and many other technologies 
[1.5]

. Also, they can cover wide 

range of power output and can be applied from medium scale power generation systems 

to small generators for household use (Fig. 1. 3)
 [1. 7]

.  
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Fig. 1.3 A comparison of efficiencies of various power generation systems 
[1. 7]

. 
 

 

 

Solid oxide electrolyzer cells (SOECs) 

 

 

   Solid oxide electrolyzer cell is a device which converts water and DC electricity into 

gaseous hydrogen and oxygen, that is to say, the reverse of an SOFC 
[1.6, 1.8]

. Thus the 

fundamental components of a single SOEC are similar to those of SOFC; cathode, 

anode, and electrolyte although the materials used for cathode and anode are opposite of 

those of SOFCs. The schematic diagram of a single SOEC is shown in Fig. 1.4. Steam is 

fed to the cathode. When required electrical potential is applied to the SOEC, water 

molecules are dissociated to form hydrogen gas and oxygen ions at the cathode - 

electrolyte interface. The produced hydrogen gas on the cathode side is collected. The 

electrolyte conducts oxygen ions from the cathode to the anode. On the anode side, the 

oxygen ions are oxidized to oxygen gas. 

   The total energy demand (ΔH) for SOEC hydrogen production is expressed as 

follows 
[1.6, 1.8]

; 

STGH                                                       [1.1] 

where ΔG is the electrical energy demand (Gibbs free energy change) and TΔS is the 

1 k 100 k 10 M 1 G

20

40

60

80

Power output / W

P
o

w
e

r 
g

e
n

e
ra

ti
o

n
 e

ff
ic

ie
n

c
y
 /
 %

SOFC
MCFC

(Molten carbonate fuel cell)

Gas 

turbine(GT)

Steam 

turbine

Gas-steam 

combined 

turbine

Micro gas  

turbine

SOFC-GT 

cogeneration 

system

PEFC
(Polymer electrolyte fuel cell)

PAFC
(Phosphoric acid fuel cell)



6 

 

thermal energy demand (J/mol H2). Figure 1.5 shows the calculated energy demands as 

a function of temperature 
[1.6, 1.8]

. Although the total energy demand slightly increases 

with increasing temperature, the electrical energy demand more noticeably decreases 

with increasing temperature. Thus, the cost can be further reduced if the thermal energy 

demand is fulfilled by an external heat source such as nuclear power, renewable energy, 

or waste heat from high-temperature industrial processes 
[1.6, 1.8]

. Therefore, SOECs can 

produce hydrogen at a higher chemical reaction rate with a lower electrical energy 

requirement, compared with low-temperature proton exchange membrane (PEM) 

electrolysers and alkaline electrolysers. 

 

 

 

 

Fig. 1.4 Schematic diagram of a single solid oxide electrolyzer cell (SOEC). 
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Fig. 1.5 Calculated energy demands as a function of temperature 
[1.6]

. 

 

 

Gas separation membranes 

 

 

Gas separation membranes can selectively separate a specific gas from a mixture gas. 

One of the simplest cases of the gas separation membranes is oxygen separation 

membranes. There are two main types of the oxygen separation membranes; pure 

oxygen conducting membranes and mixed ionic–electronic conducting (MIEC) 

membranes 
[1.9]

. Figures 1.6 (a) and (b) show the schematic diagrams of the pure oxygen 

conducting membranes and the MIEC membranes, respectively. The difference between 

these two types of membranes is the driving force for the oxygen permeation. In both 

types of the membranes, the electric neutrality has to be always satisfied. Therefore, 

when oxygen ions move through the membrane, electrons have to move to the opposite 

direction to fulfill the electric neutrality. The pure oxygen conducting membranes need 

electrodes to transport electrons. In this system, the driving force is an electrical 

potential. The advantage of this system is that the amount of the generated oxygen can 
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be controlled by changing the applied electric current. On the other hand, the MIEC 

membranes require no electrodes since electrons can also move in the membrane. The 

driving force of this system is a chemical potential gradient i.e. gas component partial 

pressure. 

In addition to separating oxygen, those membranes can also be integrated in 

catalytic membrane reactors. For instance, the catalytic membrane reactors, which can 

carry out both separation and a petrochemistry process such as oxidative coupling of 

methane to ethylene and/or ethane (OCM), partial oxidation of methane to syngas 

(POM), partial oxidation of heptane to hydrogen (POH), selective oxidation of ethane to 

ethylene (SOE), and selective oxidation of propane to propylene (SOP), have been 

studied so far 
[1.10, 1.11]

. Figure 1.7 shows the principle of the partial oxidation of 

methane to syngas (CO+H2). In this system, oxygen ions which migrate to the fuel side 

partially oxidize methane and produce syngas. 

Furthermore, it is possible to separate hydrogen by using the same technology with 

proton conducting ceramics such as BaCe1-xMxO3 and SrCe1-xMxO3 (M is some rare 

earth element) 
[1.12-1.14]

. 

Therefore, gas separation membranes not only have great potential to meet the needs 

of the oxygen market but also have the possibility to contribute to the future hydrogen 

society. 

 

Fig.1.6 (a) Schematic diagrams of the pure oxygen conducting membranes and (b) 

MIEC membranes 
[1.9]

. 

e-

e-

A

O2 O2-
O2-O2- O2

e-

e-

e-

e-

  e4OO2 2

2  2

2 O2e4O

(a)

I

O2
P II

O2
P

II

O

I

O 22
PP 

O2-

e-

e-

(b)



9 

 

 

Fig.1.7 Principle of the partial oxidation of methane to syngas (CO+H2) 
[1.11]

. 

 

 

1.3 Perovskite and related oxides - Components of high temperature energy 

conversion devices 

 

 

The components of high temperature energy conversion devices require high ionic 

conductivity at high temperatures. For this reason, perovskite and related oxides are 

commonly used for the components. The ideal cubic structure of the perovskite oxides 

is based on mixed fcc packing of three O
2-

 anions and one A cation 
[1.15]

. Figure 1.8 

shows the ideal cubic structure of the perovskite type oxides. The A cations are located 

at the corners, and the B cations at the center of the cube. The O
2-

 anions are placed at 

the centers of the eight cube planes. The B cations are octahedrally coordinated by O
2-

 

and the A cations are 12-fold coordinated by O
2-

. There also exist oxides which are 

called perovskite related oxides. One of typical perovskite related oxides are layered 

perovskites 
[1.16]

. They consist of alternate stacking of the perovskite structure and 

another structure such as rock salt structure. As an example, Fig. 1.9 shows the crystal 

structure of La4Ni3O10, which is the n = 3 phase of the Ruddlesden-Popper type layered 

perovskites, [An+1BnO3n+1] 
[1.17]

. This material is composed of the alternate stacking of 
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the rock salt layer and n perovskite layers.  

The perovskite and related oxides are known to have comparatively large flexibility 

in their composition, as long as their composition satisfies the electrical neutrality, 

phase equilibria, and defect equilibria 
[1.18]

. For example, A and B cations can be 

partially substituted by other metal ions (A
*
and B

*
), which can be expressed with a 

general chemical formula, A1-xA
*
xB1-yB

*
yO3. Also, defects of ions can be generated at 

any site of A and B cations and O
2-

. Among them, oxygen defects are the most 

commonly observed in perovskite and related oxides. LaCoO3 based perovskites are 

stable over a comparatively wide oxygen nonstoichiometry range 
[1.19]

. It is known that 

oxygen ions can migrate via oxygen vacancies at high temperatures 
[1.20]

. Layered 

perovskites, such as La2NiO4 can accommodate the excess oxygen in its interstitial sites. 

J. D. Jorgensen et al. found that the interstitial oxygen exist at the center of La 

pseudo-tetrahedron in the rock salt layer of La2NiO4 
[1.21]

. The interstitial oxygen can 

migrate in the oxides at high temperatures. Therefore, some perovskite and related 

oxides have high ionic conductivity and often applied to the electrode of fuel cells and 

chemical sensors 
[1.22, 1.23]

. 

 

 

Fig.1.8 Ideal cubic structure of the perovskite type oxides. 
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Fig. 1.9 Structures of layered perovskites, La4Ni3O10, (n = 3 phase of the 

Ruddlesden-Popper series) 
[1.17]

. 

 

 

1.4 Development of high temperature energy conversion devices - SOFCs 

 

 

As mentioned in the previous section, SOFCs have the higher efficiency compared 

to conventional gas turbine systems and other types of fuel cells. Also, they can cover 

wide range of power output and can be applied to various scale systems from small 

generators for household use to large scale power generation plants 
[1. 24]

. Moreover its 

high operating temperature makes it possible to develop a combined system with a gas 

turbine 
[1.25, 1.26]

.  Therefore, a great deal of efforts has been made to commercialize 

SOFCs throughout the world. In this section, the development status of SOFCs is briefly 

reviewed.  
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1.4.1 Development status of SOFCs in the U.S., Europe, and Japan 

 

 

In the U.S., the development of advanced power generation system which is based 

on SOFC technology has been promoted under the Solid State Energy Conversion 

Alliance (SECA) program 
[1.27]

. This program is managed by the National Energy 

Technology Laboratory. Since the largest domestic energy resource in the U. S. is coal, 

they are aiming to develop coal-fueled SOFCs for central-station (>100MW) 

application, which simultaneously provide for effective carbon capture and lower 

pollutant emissions (Hg, NOx, and SOx). In the private sector, Bloom Energy 

Corporation in the U. S. achieved the practical use of SOFCs and already shipped their 

SOFCs to a lot of companies such as Google, eBay, Walmart, FedEx, The Coca-Cola 

Company, etc.
[1.28]

.
 
Their SOFC, Energy server, is a 200-kW SOFC and it has achieved 

the electric efficiency of over 50 % (AC net, LHV) 
[1.29]

. In 2013, the Bloom Energy 

Corporation established a joint venture, Bloom Energy Japan Ltd., with SoftBank 

Corporation in Japan and opened up a new market in Japan 
[1.30]

.  

A number of European research institutes and companies also work enthusiastically 

on the development of SOFCs 
[1.31-1.34]

. Forschungszentrum Jülich in Germany, for 

instance, has almost twenty year history in SOFC development 
[1.31]

. Recently, their long 

term tests with short stacks successfully reached 50,000h of continuous operation with a 

mean voltage degradation of 0.8 %/kh 
[1.32]

. Hexis. Ltd. in Switzerland and Germany has 

develop Galileo 1000N, which is an SOFC-based combined heat and power system for 

single family homes. It has achieved total efficiency of 95% (LHV) and electrical 

efficiency of around 35% (AC net, LHV) 
[1.33]

. Also, an international collaborative 

project, Real-SOFC, was conducted from 2004 to 2008 with twenty six European 

institutions, aiming at the improvement of the durability of planar SOFC stacks 
[1.34]

.  

Their planar stacks successfully achieved more than 10,000 hour operation and over 100 

thermal cycles and so on 
[1.34]

. 

In Japan, New Energy and Industrial Technology Development Organization 

(NEDO) has been promoting the development project of SOFCs under cooperation with 

domestic companies and universities. 
[1. 35]

 From the analysis of the data collected from 

the demonstrative research and earlier endurance tests, 
[1. 36]

 it was revealed that the 

commercialization of SOFCs required a further advancement of their performances, a 

cost reduction and the improvement of their durability and reliability. 
[1.36, 1.37]

 Therefore, 

in order to overcome those challenges, the NEDO project, “Development of System and 

Elemental Technology on Solid Oxide Fuel Cell” were conducted for five years from 



13 

 

2008. 
[1.35, 1.38]

 The main theme of this project was the basic research for improving the 

durability and reliability of SOFCs, targeting the duration time of over 40,000 hours, the 

tolerability of 250-time startup and stop operations, and voltage decrease rate less 

0.25 % / 1000 hours. Also it aimed at the technological development for improving 

practical utility. In October 2011, the first stationary SOFCs for household use, 

ENE-FARM type S went on sale from JX Nippon Oil and Energy Corporation 
[1. 39]

. 

Following JX Nippon Oil and Energy Corporation, Osaka Gas Co., Ltd., AISIN SEIKI 

Co., Ltd., KYOCERA Corporation, CHOFU SEISAKUSHO Co., Ltd., and TOYOTA 

MOTOR Corporation began selling the stationary SOFCs on April, 2012 
[1.40]

. Since 

then, although JX Nippon Oil and Energy Corporation have decided to cease the 

development of SOFCs at the end of March, 2015 
[1.41]

, the number of sales of SOFCs 

has been steadily increasing and it achieved a hundred thousand in 2014 
[1.42]

. Also, in 

2014, the new model of ENE-FARM type S was released from Osaka Gas Co., Ltd., 

AISIN SEIKI Co., Ltd., KYOCERA Corporation, and CHOFU SEISAKUSHO Co., Ltd. 
[1.43]

. This new model achieved cost reduction of about six hundred thousand yen, and it 

enabled the self-sustained operation in case of power outage 
[1.43]

. The SOFCs are 

expected to continuously become prevailed in the future all over the world. 

 

    

 

1.4.2 Challenges for further commercialization of SOFCs 

 

 

In the NEDO project, “Development of System and Elemental Technology on Solid 

Oxide Fuel Cell” from 2008 to 2013, the degradation factors of six types of cell stacks 

(including sealless tubular cells made by TOTO and disk-type planer cells made by 

Mitsubishi Materials Corp. and Kansai Electric Power Co.) were precisely examined 

after durability tests. Table 1.1 summarizes the six types of cell stacks, which was taken 

from literature [1.44]. This examination was conducted by means of thermodynamic, 

chemical and mechanical analysis under the cooperation in academia, industry and 

AIST 
[1.44, 1.45]

. From this examination, the specific degradation mechanisms in each cell 

stacks, and also the general degradation factors in different types of the cell stacks were 

successfully identified 
[1.44, 1.45]

. For example, it was revealed that NiO which was 

dissolved in YSZ electrolyte promoted the phase transition of YSZ from cubic to 

tetragonal symmetry and led to the conductivity lowering 
[1.46-1.48]

. As an example of the 

specific degradation mechanisms, the Cr poisoning in cathode was found to be the main 
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degradation factor of the segment-in-series cells by Mitsubishi Heavy Industries, Ltd. 

(MHI) 
[1.49]

. Cr was mixed in from alloy tubes and deposited on the three phase 

boundary (TPB) areas. After preventing Cr from mixing into the air, the cathode 

performance was well improved and essentially no degradation occured 
[1.50]

. A small 

amount of LaCrO3 was also found at the interface between cathode and (La, Sr)(Ga, 

Mg)O3 (LSGM) electrolyte in the microtubular cells by TOTO and caused the cathode 

degradation. Mechanical degradation was also found to be one of the strong factors in 

preventing the durability and reliability of SOFCs 
[1.44]

. The mechanical degradation was 

caused by the stress, which was associated with the thermal and/or chemical volume 

expansion of components 
[1.44]

. Therefore, in the NEDO project, the fundamental 

properties of the materials for SOFC components were systematically evaluated as 

function of temperature and oxygen partial pressure in order to predict the 

stress/deformation in components. The fundamental properties, which were evaluated in 

the project, included oxygen nonstoichiometry, chemical expansion coefficient, and 

mechanical properties. A part of studies in this thesis was made as a part of this project. 

After the examination on the degradation mechanisms in each cell stacks, the cell stacks 

were improved and their degradation rates were significantly suppressed. Table 1.2 

shows the final degradation rate and the start and shut down degradation of each cell 

stack 
[1.45]

. Indeed, the flatten-tubular cell stacks from KYOCERA Corporation, which 

were examined in this project, were actually employed in ENE-FARM Type S released 

by JX Nippon Oil and Energy Corporation in 2011 and AISHIN SEIKI Co., Ltd. 
[1.45]

. 

Therefore, it can be said that this project achieved a measure of success in improving 

the durability and reliability of SOFCs.  

On the other hand, H. Yokokawa pointed out that there appeared to be other 

degradation mechanisms which were still needed to be investigated 
[1.44]

. Some 

degradation in cell stacks were caused by complicated interactions among various 

chemical and electrochemical process in SOFC stacks. Therefore, in order to more 

correctly predict the life time of SOFC stacks, it is necessary to model the stack 

behavior both locally and globally, considering the various phenomena in the stack such 

as overpotential, electrochemical reaction, heat, current, and stress distribution, 

operation history and so on. Therefore, in 2013, NEDO launched a new project 

“Technology Development for promoting SOFC commercialization” in order to 

establish a new systematic approach to predict the life time of SOFC and actually 

achieve the long life time 
[1.45]

. 
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Table 1.1 The six types of cell stacks, which were examined in the the NEDO project, 

“Development of System and Elemental Technology on Solid Oxide Fuel Cell” from 

2008 to 2013 
[1.44]

. 

 

 

 

 

 

 

Table 1.2 Final degradation rate and the start and shut down degradation of six types of 

cell stacks 
[1.45]

. 
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1.4.3 Mechanical degradation and chemomechanical coupling phenomena in SOFCs 

 

 

   Since SOFCs use nonstoichiometric, ionically conductive ceramic materials 
[1.51]

, 

chemomechanical coupling phenomena are often observed in the SOFC operating 

conditions. For instance, when those materials are exposed to oxygen potential gradient, 

their oxygen defect concentrations vary with oxygen potential. The increase/decrease of 

oxygen defect concentration induces the lattice expansion/shrinkage due to the change 

in valence of cations and the repulsive force between cations
 [1. 52-1.55]

. Figure 1. 10 

shows the oxygen nonstoichiometry of La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 (LSGMC) as a 

function of oxygen partial pressure (P(O2)) 
[1.56]

. LSGMC is one of promising 

electrolyte materials of SOFCs because of its high ionic conductivity at intermediate 

temperatures 
[1.57]

. As this figure shows, the oxygen vacancy concentration in LSGMC 

increases with decreasing P(O2). When LSGMC is used as an electrolyte, it is exposed 

to an oxygen potential gradient. This means that there is a gradient of oxygen vacancy 

concentration in LSGMC. Kawada et al. calculated the oxygen vacancy concentration 

profile in LSGMC under the open circuit condition and at the terminal voltage of 0.7 V, 

by integrating local internal transport fluxes of ions and electrons 
[1.58]

. It was estimated 

that when LSGMC was used as an electrolyte and exposed to the terminal voltage of 0.7 

V, the oxygen vacancy concentration, δ, at the cathode side was approximately 0.17 but 

it increased to approximately 0.20 at the anode side (Fig. 1. 11). As mentioned above, 

the increase in the oxygen vacancy concentration causes the lattice expansion. This 

increase in the oxygen vacancy concentration from 0.17 to 0.20 changes the lattice 

constant of LSGMC approximately from 3.94 to 3.95 Å 
[1.56]

. Given this expansion is 

caused by the thermal expansion, it corresponds to the temperature difference of about 

200 K between cathode and anode sides 
[1.56]

. Thus the impact of the chemical lattice 

expansion is significant and can be a critical problem for the mechanical stability of 

SOFCs.  

Moreover, although cathode materials are generally exposed to only air, there can 

still exist an oxygen potential gradient in the cathode materials due to the overpotential. 

The overpotential in cathode can be associated with oxygen reduction reaction. Figure 

1.12 shows the several oxygen reduction reaction processes which are considered to 

occur in the cathode. The oxygen reduction reaction consists of several reaction 

processes such as (a) diffusion of oxygen molecules in a gas phase, (b) adsorption of 

oxygen molecules to the cathode surface, (c) dissociation of oxygen molecules, (d) 

diffusion of oxygen ions on the surface or in the bulk, and (e) transportation of oxygen 
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ions to an electrolyte. Since the driving force of these reaction processes is oxygen 

potential, the oxygen potential varies in a cathode as schematically described in Fig. 1. 

11 
[1.24]

. Thus there can exist an oxygen potential gradient in the cathode material. 

Further, in the actual cathode, the porosity forms a complicated geometry, and it makes 

the oxygen potential distribution more complex 
[1.59-1.61]

.
 
Also, there exits the triple 

phase boundary (TPB) of gas phase, an electrode and an electrolyte at the boundary 

between an electrode and an electrolyte. The oxygen reduction reaction most actively 

proceeds at TPB 
[1.62, 1.63]

. Therefore, oxygen potential is considered to drastically 

change in the vicinity of TPB. 
[1.64, 1.65] 

Thus it is possible that even if the cathode 

material is exposed to the air, there can locally exist a steep oxygen potential gradient in 

the cathode, and hence, a steep stress gradient due to the chemical expansion. In order to 

model the above mentioned stress distribution, which is caused by the 

chemomechanical and sometimes the electro-chemo-mechanical coupling phenomena, 

firstly it is necessary to acquire reliable data on material properties such as the ionic and 

electronic conductivities, the expansion coefficients, oxygen nonstoichiometry, and the 

mechanical properties as functions of temperature and P(O2). However, whereas the 

ionic and electronic conductivities, the expansion coefficients, oxygen nonstoichiometry 

have been extensively studied 
[1.5, 1.191, 1.52, 1.53, 1.54, 1.56, 1.57]

, the mechanical properties of 

component materials, especially under operating conditions, are still poorly available. 

 

Fig. 1.10 Oxygen nonstoichiometry of La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 (LSGMC) as a 

function of oxygen partial pressure (P(O2)) 
[1.56]
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Fig. 1.11 Oxygen vacancy concentration profile in LSGMC under the open circuit 

condition and at the terminal voltage of 0.7 V 
[1.58]

. 

 

Fig. 1.12 Schematic diagram of the oxygen reaction path and oxygen potential 

distribution on a cathode side 
[1.24]
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1.5 Mechanical properties of perovskite and related oxides for high temperature 

energy conversion devices 

 

 

As mentioned above, one of the important applications of the perovskite and related 

oxides is high temperature energy conversion devices, such as SOFCs. However, the 

mechanical properties of the perovskite and related oxides, especially under operating 

conditions, are still poorly available. This makes it difficult to predict the mechanical 

degradation in SOFCs and hence obstructs the further commercialization of SOFCs. In 

this section, the reported mechanical properties of perovskite and related oxides for 

SOFC components are briefly reviewed. This section mainly focuses around the elastic 

modulus, which is an essential data in predicting the stress distribution in SOFCs.  

 

 

1.5.1 LaMnO3 based oxides 

 

 

   Y. Shirai systematically evaluated the temperature dependence of the Young’s 

modulus of Sr-substituted LaMnO3 based oxides, La1-xSrxMnO3 (LSM, x = 0.2~0.7) 
[1.66]

. 

Their measurements were performed by using a resonance method with dense samples 

(relative density: 91.6-98.0 %) in the temperature range between 298 and 1273 K under 

P(O2) of 1.0 x 10
-4

 bar. Figure 1.15 shows their results. The Young’s modulus of LSM 

with x = 0.2 and 0.3 gradually decreased with increasing temperature up to 673 and 

1023 K, respectively. Above those temperatures, it gradually increased with increasing 

temperature. The Young’s modulus of LSM with x = 0.4, 0.5, 0.6 gradually decreased 

with increasing temperature up to 973, 673, 423 K, respectively. Then it drastically 

increased above those temperatures. After the drastic increase, the Young’s modulus 

again gradually decreased with increasing temperature. On the other hand, the Young’s 

modulus of LSM with x = 0.7 gradually increased with increasing temperature up to 723 

K and then slightly decreased. At further higher temperatures, it again gradually 

increased with increasing temperature. The temperature, at which the drastic increase in 

the Young’s modulus of LSM with x = 0.4, 0.5, 0.6 was observed, agreed with the phase 

transition temperature from rhombohedal to cubic structure 
[1.67, 1.68]

. Thus it is possible 

that the drastic increase was related with the phase transition. However, the phase 

transition temperatures of LSM with x = 0.2 and 0.3 are reported to be 1508-1598 
[1.69]

, 

1123-1273 K 
[1.70]

, respectively. Thus the temperature at which the gradual increase in 
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the Young’s modulus was observed was not agreed with the phase transition 

temperature. Further, the crystal structure of LSM with x = 0.7 is cubic over the 

temperature range from room temperature to 1273 K 
[1.67]

. Therefore, the gradual 

increase which was observed with LSM with x =0.7 at high temperatures cannot be 

explained by the phase transition.  

S. Giraud et al. also evaluated the mechanical properties of LSM with x = 0.2 and 

with different porosities as a function of temperature in pure argon atmosphere by using 

impulse excitation technique (IET) 
[1.71]

. Their results are also plotted in Fig. 1.15. LSM 

1-1, LSM 2-1, LSM 3-1, and LSM 4-1 have different open and closed porosities. The 

open porosities of LSM 1-1, LSM 2-1, LSM 3-1, and LSM 4-1 are 29, 9, 0, and 0 %, 

respectively. The close porosities of those materials are 0, 2.5, 9, and 3-4 %, 

respectively. Thus LSM 4-1 is the densest sample and LSM 1-1 is the opposite. The 

absolute values of the Young’s modulus of those samples are different from each other. 

This difference is considered to be due to the difference in open and closed porosities. 

The temperature dependence of LSM is significantly different depending on their 

porosity. The Young’s modulus of LSM with totally or partially opened porosity (LSM 

1-1 and LSM 2-1) is almost constant over the measuring temperature range. On the 

other hand, the Young’s modulus of LSM with a fully closed porosity (LSM 3-1 and 

LSM 4-1) is strongly dispersed below 873 K and not shown in Fig.1.14. Above 873 K, 

the Young’s modulus monotonically increased with increasing temperature in common 

with the results of Y. Shirai. Although they reported the peculiar temperature 

dependence of the Young’s modulus of LSM, they do not provide for any explanation 

for this behavior.  

Also, it is reported that LSM and Ca-substituted LaMnO3 based oxides show an 

elastic anomaly at around the Curie temperature, which is possibly related to the phase 

transition from paramagnetic to ferromagnetic phase 
[1.72, 1.73]

 or the distortion of oxygen 

ochtahedra 
[1.74]

. 
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Fig. 1.13 Temperature dependence of the Young’s modulus of Sr-substituted LaMnO3 

based oxides, La1-xSrxMnO3 (LSM, x = 0.2~0.7) 
[1.66]

 and La0.8Sr0.2MnO3 with different 

open and closed porosities 
[1.71]
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1.5.2 LaCoO3 based oxides 

 

 

   The Young’s modulus of LaCoO3 has been measured by several researchers at room 

temperature. Figure 1.16 shows the Young’s modulus of LaCoO3 reported in literatures. 

K. Kleveland et al. measured the Young’s modulus by uniaxial compression tests and 

the value is ~110 GPa 
[1.75]

. S. Pathak et al. measured the Young’s modulus using three 

different methods, namely, IET, four point bending tests, and uniaxial compression tests 

at room temperature and 1073 K 
[1.76]

. In Fig.1.16, the Young’s modulus measured by 

IET was only plotted because they believe it is the most accurate value among the 

values measured by the three methods 
[1.76]

. The value measured by IET is 76 GPa at 

room temperature and 101 GPa at 1073 K. N. Orlovskaya et al. measured the Young’s 

modulus by four point bending tests and it is 47.8 ± 7.8 GPa 
[1.77]

. Z. Zhang et al. 

measured the Young’s modulus of LaCoO3 below room temperature by resonance 

ultrasound spectroscopy (RUS) 
[1.78]

. The Young’s modulus gradually decreases with 

increasing temperature and the value at around 280 K is 36.7 GPa. The difference in the 

value reported in the above literatures is possibly due to the porosity of the samples. The 

porosities of the samples of K. Kleveland et al. is around 7.4 % 
[1.75]

, of S. Pathak et al. 

is around 10.2 % 
[1.76]

, of N. Orlovskaya et al. is around 16 % 
[1.77]

, and of Z. Zhang et al. 

is around 30 % 
[1.78]

. Thus the value of the Young’s modulus is negatively correlated 

with the porosity.  

H. L. Lein et al. reported the temperature dependence of the Young’s modulus of 

50 % Sr-substituted LaCoO3 which was measured using RUS in the temperature range 

between 273 and 1473 K 
[1.79]

. Over the measuring temperature range, The Young’s 

modulus monotonically decreases with increasing temperature regardless of the 

measuring atmospheres. 
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Fig. 1.14 Young’s modulus of LaCoO3 based oxides which are taken from literatures 

[1.75-1.79].  
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1.5.3 LaFeO3 based oxides 

 

 

   A. Fossdal et al. reported the Young’s modulus of LaFeO3 measured by four point 

bending tests and uniaxial compression tests at room temperature and 1073 K 
[1.80]

. The 

Young’s modulus measured by the four point bending tests at room temperature is 213 ± 

14 GPa while the one measured by the uniaxial compression tests is 195 ± 5 GPa, which 

is within the uncertainty of the one measured by the four point bending tests (Fig. 1.17). 

N. Orlovskaya et al. measured the Young’s modulus of 40 % Sr-substituted LaFeO3 

based oxides, La0.6Sr0.4FeO3, at room temperature by uniaxial compression tests 
[1.81]

. 

They report the Young’s modulus of La0.6Sr0.4FeO3 is 131 GPa.  

A. Julian et al. evaluated the temperature dependence of the Young’s modulus of 

La0.8Sr0.2FeO3-δ (LSF821) and La0.8Sr0.2Fe0.7Ga0.3O3-δ (LSFG8273) in the temperature 

range from room temperature to 1373 K in air and pure nitrogen atmosphere by using 

ultrasonic pulse echo technique 
[1.82]

. The measurements were performed both upon 

heating and cooling. Their results are also plotted in Fig. 1.17. The Young’s modulus of 

LSF821 decreases by 38 % of the initial value with increasing temperature up to 613 K. 

Then it increases by 19 % from the minimum value up to 1073 K and again decreases 

by 3 % in air and 7 % in nitrogen at higher temperatures. The Young’s modulus of 

LSCF8273 decreases by 33 % of the initial value with increasing temperature up to 543 

K, then increases by 15% up to 1133 K in air and 1073 K in nitrogen. Then the Young’s 

modulus decreases by 3.5 % in air and 5 % in nitrogen. On cooling, the similar 

temperature dependence is observed but the onsets of the decrease and the increase in 

the Young’s modulus of both LSF821 and LSFG8273 are observed at different 

temperatures. They attribute the cause of the decrease observed at lower temperature to 

the distortion of oxygen octahedra. Also, they reported that the temperature at which the 

increase in the Young’s modulus of both materials agreed with the phase transition 

temperature. Thus the increase in the Young’s modulus may be associated with the 

phase transition. The slight decrease observed at higher temperatures is related with the 

thermal expansion and a weight loss of the material, according to their explanation. 

They associate the difference in the temperature dependence of the Young’s modulus of 

LSFG 8273 upon heating and cooling, with the difference in the phase transition 

temperature, which is caused by the residual oxygen vacancies.  

   The drastic increase is also observed in the Young’s modulus of La1/3Sr2/3FeO3-δ, 

Pr1/3Sr2/3FeO3-δ, and (La1-xPrx)1/3Sr2/3FeO3-δ 
[1.83]

. Z. C. Xu et al. interpret this increase as 

indicating the phase transition from rhombohedral to cubic 
[1.83]

.  
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A small elastic anomaly is also observed in the Young’s modulus of Sr-substituted 

LaFeO3 based oxides and Ca-substituted LaFeO3 based oxides below the room 

temperature. This anomaly is explained to be due to a charge ordering transition 
[1.84-1.87]

.  

 

 

 

Fig. 1.15 Young’s modulus of LaFeO3 based oxides which are taken from literatures 

[1.80-1.82].  



26 

 

1.5.4 (La, Sr)(Co, Fe)O3 based oxides 

 

 

   At room temperature, several researchers measured the Young’s modulus of  

(La, Sr)(Co, Fe)O3 based oxides (LSCF). Figure 1.18 shows the Young’s modulus of 

LSCF which are taken from literature 
[1.79, 1.88-1.90]

. Y. S. Chou et al. systematically 

evaluated the Young’s modulus of La1-xSrxCo0.2Fe0.8O3-δ (x = 0.2; LSCF8228, 0.4; 

LSCF6428, 0.6; LSCF4628, and 0.8; LSCF2828) using ultrasonic pulse echo method 
[1.88]

. The values of LSCF8228, 6428, 4628, and 2828 are 161, 152, 167, and 188 GPa. 

Thus the Young’s modulus seems to increase with increasing Sr content. The relative 

densities of those materials are 95.89, 95.36, 96.54, and 94.95 %. Z. Chen et al. also 

measured the Young’s modulus of LSCF6428 using IET. The Young’s modulus and the 

relative density of Z. Chen et al. are 147 ± 3 GPa and 94.78 ± 0.01 %, respectively 
[1.89]

. 

Thus considering the difference in the relative density, the value of the Young’s modulus 

measured by Z. Chen et al. is comparable to the one by Y. S. Chou et al..  

H. L. Lein et al. reported the temperature dependence of the Young’s modulus of 

LSCF5555 as a function of temperature 
[1.79]

. They measured the Young’s modulus by 

RUS in the temperature range from room temperature and 1473 K in air and nitrogen 

atmosphere. The Young’s modulus monotonically decreases with increasing temperature 

and the value is not significantly influenced by the measuring atmosphere. B. X. Huang 

et al. measured the Young’s modulus of La0.58Sr0.4Co0.2Fe0.8O3 as a function of 

temperature in air and in vacuum by ring-on-ring tests 
[1.90]

. Contrary to the results of H. 

L. Lein et al., The Young’s modulus initially decreases by approximately 20% of the 

initial value with increasing temperature. Then it again increases under both conditions, 

which starts at ~873 K and ~973 K in vacuum and in air, respectively. Upon cooling, 

the Young’s modulus decreases significantly, but the value is higher than that upon 

heating. In air, the increase and decrease in the Young’s modulus occurs in a narrow 

temperature range. In vacuum, a large hysteresis is observed. They also evaluated the 

temperature dependence of the Young’s modulus of La0.58Sr0.4Co0.2Fe0.8O3 in air by 

using IET, although the absolute value is not provided 
[1.91]

. Again, the initial drastic 

decrease and the significant increase in the Young’s modulus at intermediate 

temperatures are observed. As well as the case of Sr-substituted LaMnO3 reported by Y. 

Shirai, the significant increase in the Young’s modulus occurs at around the phase 

transition temperature from rhombohedral to cubic. This suggests that the increase is 

related with the phase transition. They interpret the difference in the temperature at 

which the increase starts in air and vacuum to be due to the difference in the oxygen 



27 

 

vacancy concentration. They believe that the increase starts at lower temperature in 

vacuum since cubic symmetry is more stable at high temperature and higher oxygen 

vacancy concentration. X. S. Wu et al. measured the shear modulus of 

La0.6Sr0.4Co1-xFexO3 (0 ≤ x ≤ 0.8) in the temperature range between 120 and 650 K by 

the forced-vibration method, changing measuring frequency 
[1.92]

. They also observed 

the drastic decrease in the Young’s modulus above the room temperature. Also the onset 

of the decrease is observed at different temperature depending on measuring frequency.      

B. X. Huang et al. evaluated the influence of oxygen potential gradient of 

mechanical properties 
[1.93]

. They annealed the disc-shaped samples of 

La0.58Sr0.4Co0.2Fe0.8O3 at 1173 K for 50 h under an oxygen potential gradient. The top 

surface was exposed to air while the bottom surface was exposed to vacuum (P(O2) = 

2mbar). Then the samples were slowly cooled to room temperature (0.5 K/min) and 

indentation tests were performed on the cross section of the sample at room temperature. 

However, the Young’s modulus is almost constant along the cross section and no 

significant dependence on oxygen potential gradient is observed.  

 

 

Fig. 1.16 Young’s modulus of (La, Sr)(Co, Fe)O3 based oxides which are taken from 

literatures [1.79, 1.88-1.90].  
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1.5.5 LaGaO3 based oxides 

 

    

A. A. Yaremchenko et al. measured the Young’s modulus of LaGa0.65Mg0.15Ni0.20O3-δ 

at room temperature by three point bending tests, four point bending tests, tension tests, 

and compression tests 
[1.94]

. Their results are shown in Fig. 1.19. The value is 

significantly different depending on measuring method but no explanation is provided 

for the cause of this difference.  

T. Okamura et al. measured the Young’s modulus of La0.9Sr0.1Ga0.8Mg0.2O3-δ as a 

function of temperature by resonance method 
[1.95]

. The value at room temperature is 

176 GPa. The Young’s modulus rapidly decreases with increasing temperature over the 

temperature range from 473 and 873 K. Then it increases with increasing temperature in 

the temperature range from 873 to 1173 K and again decreases at further higher 

temperatures. They attribute the cause of the elastic anomaly to the successive structural 

change of rhombohedral structure.  

A. A. Yaremchenko et al. also measured the P(O2) dependence of the Young’s 

modulus of LaGa0.65Mg0.15Ni0.20O3-δ at 773 and 1173 K, which is shown in Fig. 

1.120
[1.94]

. At both temperatures, the Young’s modulus of LaGa0.65Mg0.15Ni0.20O3-δ is 

almost independent of P(O2).   

 

Fig. 1.17 Young’s modulus of LaGaO3 based oxides which are taken from literatures 

[1.94, 1.95]. 
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Fig. 1.18 P(O2) dependence of the Young’s modulus of LaGa0.65Mg0.15Ni0.20O3-δ at 773 

and 1173 K 
[1.94]

. 

 

      

 

1.5.6 LaCrO3 based oxides 

 

 

   Y. S. Chou et al. reported the Young’s modulus of La1-xSrxCr0.2Fe0.8O3 (LSCrF, x = 

0.2: LSCrF8228, x = 0.2: LSCrF6428, x = 0.6: LSCrF4628, x = 0.8: LSCrF2828) at 

room temperature 
[1.96]

. They measured the Young’s modulus by IET. The results are 

shown in Fig. 1.21. Contrary to the results of La1-xSrxCo0.2Fe0.8O3-δ, the Young’s 

modulus of LSCrF decreases with increasing Sr content. The relative densities of 

LSCrF8228, LSCrF6428, LSCrF4628, and LSCrF2828 are 92.9, 96.8, 97.2, and 96.0 %, 

respectively. Therefore, it is considered that the decrease in the Young’s modulus with 

increasing Sr content is not related with the relative density. They consider the cause of 

this decrease is due to the crystal structure. It is said that the Young’s modulus is 

inversely related to the high power of nearest-neighbor separation 
[1.97]

. They 

investigated the cubic root of unit volume of LSCrF and found it increased from 3.866 
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to 3.893-3.896 Å with increasing Sr content. On the other hand, Tai et al. reported that 

the cubic root of unit volume of LSCF decreases with increasing Sr content 
[1.98]

. Thus 

the Sr content dependence of the Young’s modulus of both LSCrF and LSCF can be 

reasonably explained by considering the high power of nearest-neighbor separation.  

S. W. Paulik et al. evaluated the P(O2) dependence of the Young’s modulus of 

La1-xCaxCrO3 (x = 0.25: LCC25 and 0.30: LCC30) and La1-xSrxCrO3 (x = 0.16: LSC16, 

0.20: LSC20, and 0.24: LSC24) which is shown in Fig. 1.22 
[1.99]

. The Young’s modulus 

was measured by the sonic pulse technique at room temperature after the samples were 

heat-treated at 1273 K and under various oxygen partial pressures for 2 h. Whereas the 

Young’s modulus of LCC25 and LCC30 is almost independent of P(O2), the Young’s 

modulus of LSC16, LSC20, and LSC24 significantly increases with decreasing P(O2) 

under reducing atmospheres. However, they do not give any clear explanation for the 

increase in the Young’s modulus of LSC16, LSC20, and LSC24. They consider it may 

arise from changes in the grain-boundary structure. 

 

 

 

Fig. 1.19 Young’s modulus of La1-xSrxCr0.2Fe0.8O3 (LSCrF, x = 0.2: LSCrF8228, x = 0.2: 

LSCrF6428, x = 0.6: LSCrF4628, x = 0.8: LSCrF2828) at room temperature measured 

by the impulse echo tests 
[1.96]
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Fig. 1.20 P(O2) dependence of the Young’s modulus of La1-xCaxCrO3 (x = 0.25: LCC25 

and 0.30: LCC30) and La1-xSrxCrO3 (x = 0.16: LSC16, 0.20: LSC20, and 0.24: LSC24) 
[1.99]

. The Young’s modulus was measured by the sonic pulse technique at room 

temperature after the samples were heat-treated at 1273 K and under various oxygen 

partial pressures for 2 h.  
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1.5.7 La2NiO4 based oxides 

 

 

   B. X. Huang et al. evaluated the temperature dependence of the Young’s modulus of 

La2NiO4 (LN214) from room temperature to 1173 K 
[1.100]

. They prepared porous 

samples (relative density ~48 %) and dense samples (~94 %). The Young’s modulus of 

the porous samples was measured by the four point bending tests while the one of the 

dense samples was measured by IET. The four point bending tests were performed in air 

and vacuum while the IET measurements were performed in air. Figure 1.23 shows their 

results. The values of the Young’s modulus of the porous samples are significantly 

lower than that of the dense samples due to the larger porosity. The Young’s modulus of 

the porous samples is essentially independent of temperature within the limits of 

uncertainty. The value of the Young’s modulus measured at 1073 K and in vacuum 

appears to be slightly higher than the value in air. The Young’s modulus of LN214 

measured by IET decreases by 10 % with increasing temperature up to 373 K and then 

slightly decreases with increasing temperature. They attribute the cause of the 10 % 

decrease in the Young’s modulus below 373 K to the phase transition from 

orthorhombic to tetragonal.  

T. M. Brill et al. evaluated the temperature dependence of the elastic constants of 

single-crystal LN214 by using rf-pulse-echo method 
[1.101]

. Figure 1.24 shows their 

results. They also reported the elastic anomaly in the elastic constant, especially c66, at 

around 360 K, at which the phase transition from orthorhombic to tetragonal is 

considered to occur.  

T. Nakamura et al. measured the Young’s modulus of LN214 at 1073 K and under 

P(O2) of 1.0 and 1.0 x 10
-4

 bar by small punch tests as shown in Fig. 1.25 
[1.102]

. 

However, from their data, it is difficult to judge if the Young’s modulus of LN214 

depends on P(O2), since the data contain large uncertainty. 
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Fig. 1.21 Temperature dependence of the Young’s modulus of porous samples (relative 

density ~48 %) and dense samples (~94 %) of La2NiO4 (LN214) from room temperature 

to 1173 K 
[1.100]

. Young’s modulus of the porous samples was measured by the four point 

bending tests while the one of the dense samples was measured by IET.  
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Fig. 1.22 Temperature dependence of the elastic constants of single-crystal La2NiO4 

(LN214) measured by using rf-pulse-echo method
 [1.101]

.  

 

 

 

 

Fig. 1.23 Young’s modulus of LN214 at 1073 K and under P(O2) of 1.0 and 1.0 x 10
-4

 

bar measured by small punch tests 
[1.102]
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1.5.8 Nonelastic behavior of rhombohedral perovskite oxides at low temperatures 

 

 

   At low temperatures, some perovskite oxides with rhombohedral symmetry are 

reported to exhibit a nonelastic behavior. This behavior is observed with LaCoO3 based 

oxides 
[1.75, 1.103-1.108]

, LaFeO3 based oxides 
[1.81]

, (La, Sr)(Co, Fe)O3 based oxides 
[1.109-1.111]

, (Ba, Sr)(Co, Fe)O3 based oxides 
[1.112]

, LaMnO3 based oxides 
[1.113]

, LaCrO3 

based oxides 
[1.114]

.  

Whereas the stress-strain relationship of conventional ceramics such as alumina is 

linear until the fracture occurs, N. Orlovskaya et al. reported that La0.6Sr0.4FeO3 with 

rhombohedral symmetry shows a nonlinear stress-strain relationship as shown in Fig. 

1.26 
[1.81]

. Thus the apparent elastic modulus of La0.6Sr0.4FeO3 with rhombohedral 

symmetry, which is determined from the slope of the stress-strain relationship, depends 

on the applied stress.  

M. Lugovy et al. reported the creep-like time dependent strain of LaCoO3 under 

constant stress at room temperature (Fig. 1.27) 
[1.104]

. This creep-like strain has a 

characteristic different from the one of the high temperature creep. The strain of the 

high temperature creep, which is a function of stress, time, temperature, grain size, 

shape, microstructure, defect mobility, and other material parameters, continues to 

increase and eventually leads to a fracture of a sample if a constant stress is applied. On 

the other hand, the strain of the low temperature creep-like behavior reported by Lugovy 

et al. has an equilibrium value at a given stress.  

Those nonelastic behaviors of perovskite oxides with rhombohedral symmetry are 

considered to be caused by ferroelastic domain switching 
[1.110]

. This effect should be 

taken into account when the Young’s modulus of rhombohedral perovskite oxides is 

evaluated. 
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Fig. 1.24 Stress-strain relationship of La0.6Sr0.4FeO3 with rhombohedral symmetry 

measured by uniaxial compression tests at room temperature 
[1.81]

. 

 

 

Fig. 1.25 Creep-like time dependent strain of LaCoO3 under constant stress at room 

temperature . The stress is uniaxially applied to the sample 
[1.104]
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1.6 Scope of this study 

 

 

   The perovskite and related oxides are one of the important components of high 

temperature energy conversion devices, such as SOFCs. For further commercialization 

of SOFCs, it is necessary to suppress the mechanical degradation and improve their 

reliability and durability. In order to do this, the mechanical properties of perovskite and 

related oxides for SOFC components should be correctly understood. However, as 

briefly reviewed in the above section, the mechanical properties of the perovskite and 

related oxides at high temperatures under controlled atmospheres are still poorly 

available compared to their room temperature mechanical properties. This is despite that 

the temperature dependence of the Young’s modulus of perovskite and related oxides 

can be significantly influenced by the phase transition which occurs at intermediate or 

high temperatures. Moreover, the oxygen defect concentration of perovskite and related 

oxides can change depending on temperature and P(O2). However, there are few studies 

which examine the influence of the defect concentration on the mechanical properties. 

Furthermore, several perovskite oxides with rhombohedral symmetry are reported to 

show the nonelastic behavior.  

Therefore, in this thesis, the mechanical properties of perovskite and related oxides 

for energy conversion devices are evaluated at high temperatures and under controlled 

atmospheres. 

   In chapter 2, mechanical properties of perovskite and related oxides, 

La0.6Sr0.4Co1-yFeyO3-δ (LSCF, LSC for y = 0, LSCF6482 for y = 0.2, LSCF6428 for y = 

0.8, LSF for y = 1) and La2NiO4 (LN214) were investigated at high temperatures under 

controlled atmospheres by using resonance method and small-punch tests. 

   In chapter 3, the P(O2) dependence of mechanical properties of LSCF6428 and 

LN214 were directly evaluated at high temperatures in order to understand the influence 

of the defect concentration on the mechanical properties. 

   In chapter 4, the stress-strain relationship of LSCF was investigated by uniaxial 

compression tests. And the amplitude and frequency dependence of the elastic modulus 

and the internal friction of perovskite and related oxides were evaluated by the 

resonance method and dynamic mechanical analysis (DMA) in order to understand the 

influence of ferroelasticity on the mechanical properties. In addition, DMA was also 

performed with LSCF6428 with various oxygen vacancy concentrations, in order to 

understand the influence of the interaction between the ferroelastic domain walls and 

the oxygen vacancies on the mechanical properties. 
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   In chapter 5, two cases of simulations were performed in order to separately 

examine the influence of the domain switching and the change in the defect 

concentration on the stress distribution in the energy conversion devices. 

    

 

1. 7 References 

 

 

[1.1] A. V. da Rosa, Fundamentals of Renewable Energy processes second Edition, pp. 

5-26, pp. 287-329, Academic Press, San Diego, 2009. 

[1.2] International Energy Agency, 2014 Key World Enrgy Statistics, The Electronics 

Division, 

http://www.iea.org/publications/freepublications/publication/KeyWorld2014.pdf. 

[1.3] Agency for Natural Resources and Energy, Ministry of Economy, Trade and 

Industry, Japanese Government, 2014 White Paper for Energy Usage, The Electronics 

Division, 

http://www.enecho.meti.go.jp/about/whitepaper/2014pdf/whitepaper2014pdf_1_1.pdf. 

[1.4] The IPCC fifth assessment report has concluded that it is extremely likely that 

human influence has been the dominant cause of the observed warming  

Intergovernmental Panel on Climate Change, IPCC fifth Assessment Report, The 

Electronics Division, 

 http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_SPM_FINAL.pdf. 

[1.5] N. Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993). 

[1.6] M. Ni, M. K. H. Leung, and, D. Y. C. Leung, Int. J. Hydrogen Energy, 33, 2337 

(2008). 

[1.7] H. Kawamoto, Proc. Soc. Mater. Sci., Japan, 51, 363 (2003). 

[1.8] M.A. Laguna-Bercero, J. Power Sources, 203, 4 (2012). 

[1.9] J. Sunarso, S. Baumann, J.M. Serra,W.A. Meulenberg, S. Liu, Y.S. Lin, J.C. Diniz 

da Costa, J. Membr. Sci., 320, 13 (2008). 

[1.10] W. Yang, H. Wang, X. Zhu, and L. Lin, Top. Catal., 35, 155 (2005). 

[1.11] H. J. M. Bouwmeester, Catal. Today, 83, 141 (2003). 

[1.12] H. Iwahara, Solid State Ionics, 77, 289 (1995). 

[1.13] H. Iwahara, Solid State Ionics, 86-88, 9 (1996). 

[1.14] T. Norby, Y. Larring, Solid State Ionics, 136-137, 139 (2000). 

[1.15] M. D. Graef and M.E. McHenry, Structure of Materials An Introduction to 

Crystallography, Diffraction, and Symmetry, p. 671, Cambridge university Press, New 



39 

 

York, 2007. 

[1.16] R.E. Schaak and T. E. Mallouk., Chem. Mater., 14, 1455 (2002). 

[1.17] Z. Zhang and M. Greenblatt, J. Solid State Chem.,117, 236 (1995). 

[1.18] M. A. Pena and J. L. G. Fierro, Chem. Rev., 101, 1981 (2001). 

[1.19] J. Mizusaki, Y. Mima, S. Yamauchi, and K. Fueki, J. Solid State Chem., 80, 102 

(1989). 

[1.20] T. Ishigaki, S. Yamauchi, J. Mizusaki, and K. Fueki, J. Solid State Chem., 54, 100 

(1984). 

[1.21] J.D. Jorgensen, B. Dabrowski, S. Pei, D. R. Richards, and D. G. Hinks, Phys. Rev. 

B, 40, 2187 (1989). 

[1.22] A. J. Jacobson, Chem. Mater., 22, 660 (2010). 

[1.23] H. Obayashi, Y. Sakurai, and T. Gejo, J. Solid State Chem., 17, 299 (1976). 

[1.24] K. Eguchi, Development of Solid Oxide Fuel Cells, pp. 1-24, 161-171, 215-222 

CMC Press, Tokyo, 2005. 

[1.25] B. C. H. Steele and A. Heinzel, Nature, 414, 345 (2001). 

[1.26] H. Yokokawa, N. Sakai, T. Horita and K. yamaji, Fuel Cells, 1, 117 (2001). 

[1.27] S. D. Vora, ECS Trans., 57(1), 11 (2013). 

[1.28] Bloom Energy, Data available online at www.bloomenergy.com. 

[1.29] Bloom Energy Corporation, PRODUCT DATASHEET, The Electronics Division,  

http://www.bloomenergy.co.jp/wp-content/themes/bloomenergy/files/be_datasheet_es-5

700-j_japanese.pdf. 

[1.30] Bloom Energy Corporation, Press release (7/17/2013), “SoftBank & Bloom 

Energy Form Joint Venture to Provide Clean, Reliable, and Affordable Energy to 

Japan”, Data available at  

 http://www.bloomenergy.co.jp/information/news/press-release-07-17-2013-60. 

[1.31]L. Blum, P. Batfalsky, L.G.J. de Haart, J. Malzbender, N. H. Menzler, R. 

Peters,W. J. Quadakkers, J. Remmel, F. Tietz, and D. Stolten, ECS Trans., 57(1), 23 

(2013). 

[1.32] L. Blum, U. Packbier, I. C. Vinke, and L.G. J. deHaart, Fuel Cells, 13, 646 

(2013). 

[1.33] A. Mai, B. Iwanschitz, J. A. Schuler, R. Denzler, V. Nerlich, A. Schuler, ECS 

Tran., 57(1), 73 (2013). 

[1.34] R. Steinberger-Wilckens, O. Bucheli, L.G.J. de Haart, A. Hagen, J. Kiviaho J. 

Larsen, S. Pyke, B. Rietveld, J. Sfeir, F. Tietz, and M. Zahid, ECS Trans., 25(2), 43 

(2009).  

[1. 35] K. Hosoi, M. Ito and M. Fukae, ECS Trans., 35, 11 (2011).   



40 

 

[1.36] T. Horita, K. Yamaji, H. Kishimoto and H. Yokokawa, Bull. Ceram. Soc. Jpn., 44, 

267 (2009). 

[1.37] New Energy Foundation, Accomplishment report of the demonstrative research 

project of solid oxide fuel cells, 2011, Data available at www.nef.or.jp. 

[1.38] Fuel cells and hydrogen project group, NEDO(2008), An outline of 

“Development of System and Elemental Technology on Solid Oxide Fuel Cell” , Data 

available online at www.nedo.go.jp. 

[1.39] JX Holdings, Inc., Press release (9/15/2011), Data available at 

http://www.noe.jx-group.co.jp/newsrelease/2011/20110915_01_0950261.html. 

[1.40] Osaka Gas Co., Ltd., Press release (3/13/2012), Data available at 

http://www.osakagas.co.jp/company/press/pr_2012/1196121_5712.html. 

[1.41] JX Holdings, Inc., Press release (10/10/2014), Data available at 

http://www.noe.jx-group.co.jp/newsrelease/2014/20141010_01_1030113.html. 

[1.42] ENEFARM PARTNERS, Press release (9/29/2014), Data available at 

http://www.gas.or.jp/user/comfortable-life/enefarm-partners/common/data/20140929_w

eb.pdf. 

[1.43] Osaka Gas Co., Ltd., Press release (3/10/2014), Data available at 

http://www.osakagas.co.jp/company/press/pr_2014/1209206_10899.html. 

[1.44] H. Yokokawa, ECS. Trans., 57(1), 299 (2013). 

[1.45] K. Horiuchi, ECS Trans., 57(1), 3 (2013). 

[1.46] T. Shimonosono, H. Kishimoto, K. Yamaji, M. E. Brito, T. Horita and H. 

Yokokawa, Solid State Ionics, 225, 61 (2012). 

[1.47] T. Shimonosono, H. Kishimoto, K. Yamaji, M. E. Brito, T. Horita and H. 

Yokokawa, Solid State Ionics, 255, 69 (2012). 

[1.48] H. Kishimoto, K. Yashiro, T. Shimonosono, M. E. Brito, K. Yamaji, T. Horita, 

H.Yokokawa, and J. Mizusaki, Electrochem. Acta, 82, 263 (2012). 

[1.49] H. Yokokawa, H. Kishimoto, K. Yamaji, T. Horita, T. Watanabe, T. Yamamoto, 

K. Eguchi, T. Matsui, K. Sasaki, Y. Shiratori, T. Kawada, K. Sato, T. Hashida, A. 

Unemoto, T. Kabata, and K. Tomida, ECS Trans., 35(1), 2191 (2011). 

[1.50] H. Yokokawa, T. Horita, K. Yamaji, H. Kishimoto, T. Yamamoto, M. 

Yoshikawa, Y. Mugirura, K. Tomida, Fuel Cells, 13, 526 (2013). 

[1.51] J.G. Swallow, W. H. Woodford, Y. Chen, Q. Lu, J. J. Kim, D. Chen, Y.-M. 

Chiang, W. C. Carter, B. Yildiz, H. L. Tuller, and K. J. Van Vliet, J. Electroceram., 32, 

3 (2014). 

[1.52] S. Hashimoto, Y. Fukuda, M. Kuhn, K. Sato, K. yashiro and J. Mizusaki, Solid 

State Ionics, 186, 37 (2011). 



41 

 

[1.53] S. Wang, M. Katsuki, T. Hashimoto and M. Dokiya, J. Electrochem. Soc., 150, 

A952 (2003). 

[1.54] T. R. Armstrong, J. W. Stevenson, L. R. Pederson and P. E. Raney, J. Electrochem. 

Soc., 143, 2919 (1996). 

[1.55] S. R. Bishop, Acta Mech. Sinica 29, 312 (2013). 

[1.56] S. Nakayama, S. Hashimoto, K. Sato, K. Yashiro, K. Amezawa, and J. Mizusaki, 

ECS Trans., 25(2), 1701 (2009). 

[1.57] T. Ishihara, H. Furutani, M. Honda, T. Yamada,T. Shibayama, T. Akbay, N. 

Sakai, H. Yokokawa, and Y. Takita, Chem. Mater., 11, 2081 (1999). 

[1.58] T. Kawada, S. Watanabe, S. Hashimoto, T. Sakamoto, A. Unemoto, M. 

Kurumatani, K. Sato, F. Iguchi, K. Yashiro, K. Amezawa, K. Terada, M. Kubo, H. 

Yugami, T. Hashida, and J. Mizusaki, ECS Trans., 25(2), 467 (2009). 

[1.59] T. Kawada, T. Horita, N. Sakai, H. Yokokawa, M. Dokiya and J. Mizusaki, Solid 

State Ionics, 131(2000)199. 

[1.60] S. B. Adler, Chem. Rev., 104, 4791 (2004). 

[1.61] F. Tariq, M. Kishimoto, S. J. Cooper, P. Shearing, and N. Brandon, ECS Trans., 

57(1), 2553 (2013). 

[1.62] T. Kawada, T. Horita, N. Sakai, H. Yokokawa, M. Dokiya and J. Mizusaki, Solid 

State Ionics, 131, 199 (2000). 

[1.63] T. Horita, K. Yamaji, N. Sakai, X. P. Xiong, T. Kato, H. Yokokawa and T. 

Kawada, J. Power Sources, 106, 224 (2002).. 

[1.64] J. Winkler, P. V. Hendriksen, N. Bonanos and M. Mogensen, J. Electrochem. Soc., 

145, 1184 (1998). 

[1.65] K. Amezawa, T. Ina, Y. Orikasa, A. Unemoto, H. Watanabe, F. Iguchi, Y. Terada, 

T. Fukutsuka, T. Kawada, H. Yugami and Y. Uchimoto, ECS Trans., 25(2009)345. 

[1.66] Y. Shirai, Mechanical Properties of Complex Oxides for Solid Oxide Fuel Cells, 

Master thesis, Graduate School of Environmental Studies, Tohoku University (2012). 

[1.67] S. Miyoshi, A. Kaimai, H. Matsumoto, K. Yashiro, Y. Nigara, T. Kawada, and J. 

Mizusaki, Solid State Ionics, 175, 383 (2004). 

[1.68] O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, J. D. Jorgensen, and S. Short, 

Phys.Rev B., 67, 094431 (2003). 

[1.69] T. Grande, J. R. Tolchard, and S. M. Selbach, Chem. Mater., 24, 338 ( 2012). 

[1.70] H. Cerva, J. Solid State Chem., 120, 175 (1995). 

[1.71] S. Giraud and J. Canel, J. Eur. Ceram. Soc., 28, 77 (2008). 

[1.72] K. Sakthipandi, V. Rajendran, T. Jayakumar, Mater. Res. Bull., 48, 1651 (2013). 

[1.73] F. Cordero, C. Castellano, R. Cantelli, and M. Ferretti, Phys. Rev. B, 65, 012403 



42 

 

(2001). 

[1.74] Y.Q. Ma, W.H. Song, J. Yang, R.L. Zhang, B.C. Zhao, Z.G. Sheng, W.J. Lu, J.J. 

Du, Y.P. Sun, Solid State Commun., 133, 163 (2005). 

[1.75] K. Kleveland, N. Orlovskaya, T. Grande, A. M. Mardal Moe, M.-A. Einarsrud, K. 

Breder, and G. Gogotsi, J. Am. Ceram. Soc., 84, 2029 (2001). 

[1.76] S. Pathak, J. Kuebler, A. Payzant, and N. Orlovskaya, J. Power Sources, 195, 

3612 (2010).  

[1.77] N. Orlovskaya, K. Kleveland, T. Grande, and M.-A. Einarsrud, J. Eur. Ceram. 

Soc., 20, 51 (2000). 

[1.78] Z. Zhang, J. Koppensteiner, W. Schranz, D. Prabhakaran, and M. A Carpenter, J. 

Phys.: Condens. Matter, 23, 145401 (2011). 

[1.79] H. L. Lein, O. S. Andersen, P. E. Vullum, E. Lara-Curzio, R. Holmestad, M.-A. 

Einarsrud, and T. Grande, J. Solid State Electrochem., 10, 635 (2009). 

[1.80] A. Fossdal, M.-A. Einarsrud, and T. Grande, J. Eur. Ceram. Soc., 25, 927, (2005). 

[1.81] N. Orlovskaya, H. Anderson, M. Brodnikovskyy, M. Lugovy, and M. J. Reece, J. 

Appl. Phys., 100, 026102 (2006). 

[1.82] A. Julian, E. Juste, P.M. Geffroy, N. Tessier-Doyen, P. Del Gallo, N. Richet, T. 

Chartier, J. Euro Ceram. Soc., 29, 2603 (2009). 

[1.83] Z. C. Xu, C. C. Chen, X. N. Ying, Applied Physics Letters, 105, 061905 (2014). 

[1.84] X.S. Wu, Y.B. Zuo, J.H. Li, C.S. Chen, W. Liu, J. Alloys Compd., 462, 432 

(2008). 

[1.85] Z. C. Xu, M. F. Liu, C. C. Chen, and X. N. Ying, J. Applied Physics, 115, 123516 

(2014). 

[1.86] X. N. Ying, Applied Physics Letters, 101, 211906 (2012). 

[1.87] X. N. Ying and L. Zhang, Solid State Commun., 152, 1252 (2012). 

[1.88] Y. S. Chou, J. W. Stevenson, T. R. Armstrong, and L. R. Pederson, J. Am. Ceram. 

Soc., 83, 1457 (2000). 

[1.89] Z. Chen, X. Wang, V. Bhakhri, F. Giuliani, and A. Atkinson, Acta Mater., 61, 

5720 (2013). 

[1.90] B.X. Huang, J. Malzbender, R.W. Steinbrech, and L. Singheiser, Solid State 

Ionics, 180, 241 (2009). 

[1.91] B.X. Huang, J. Malzbender, and R.W. Steinbrech, J. Mater. Res., 26, 1388 

(2011). 

[1.92] X. S. Wu, J. F. Cao, H. Kong, Z. J. Chen, and W. Liu, J. Alloys Compd., 509, 

5029 (2011). 

[1.93] B. X. Huang and J. Malzbender, J. Eur. Ceram. Soc., 34, 1777 (2014). 



43 

 

[1.94] A. A. Yaremchenko, V. V. Kharton, E. N. Naumovich, D. I. Shestakov, V. F. 

Chukharev, A. V. Kovalevsky, A. L. Shaula, M. V. Patrakeev, J. R. Frade, F. M. B. 

Marques, Solid State Ionics, 177, 549, (2006). 

[1.95] T. Okamura, S. Shimizu, M. Mogi, M. Tanimura, K. Furuya, F. Munakat, J. 

Power Sources, 130, 38 (2004). 

[1.96] Y. S. Chou, K. Kerstetter, L.R. Pederson, and R.E. Williford, J. Mater. Res., 16, 

3545 (2001). 

[1.97] M.L. Cohen, Phys. Rev. B, 32, 7988 (1985). 

[1.98] L-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, and S.R. Sehlin, Solid 

State Ionics, 76, 272 (1995). 

[1.99] S. W. Paulik, S. Baskaran, and T. R. Armstrong, J. Mater. Scie., 33, 2397 (1998). 

[1.100] B. X. Huang, J. Malzbender, and R. W. Steinbrech, J. Mater. Sci., 46, 4937 

(2011). 

[1.101] T. M. Brill, G. Hampel, F. Mertens, R. Schurmann, W. Assmus, and B. Luthi, 

Phys. Rev. B, 43, 10548 (1991). 

[1.102] T. Nakamura, Y. Takeyama, S. Watanabe, K. Yashiro, K. Sato, T. Hashida, and J. 

Mizusaki, ECS Trans., 25(2), 2573 (2009). 

[1.103] N. Orlovskaya, Y. Gogotsi, M. Reece, B. Cheng, and I. Gibson, Acta Mater., 50, 

715 (2002).  

[1.104] M. Lugovy, V. Slyunyayev, N. Orlovskaya, D. Verbylo and M. J. Reece, Phys. 

Rev. B, 78, 024107 (2008). 

[1.105] S. Faaland, T. Grande, M.-A. Einarsrud, P. E. Vullum, and R. Holmestad, J. Am. 

Ceram. Soc., 88, 726 (2005). 

[1.106] W. Araki, T. Abe, and Y. Arai, J. Appl. Phys., 116, 043513 (2014). 

[1.107] A. Aman, Y. Chen, M. Lugovy, N. Orlovskaya, M. J. Reece, D. Ma, A. D. 

Stoica,and K. An,J. Appl. Phys., 116, 013503 (2014). 

[1.108] M. Lugovy, A. Aman, Y. Chen, N. Orlovskaya, J. Kuebler, T. Graule, M. J. 

Reece, D.Ma, A. D. Stoica, and K. An, J. Appl. Phys., 116, 013504 (2014). 

LaFeO3 

[1.109] W. Araki and J. Malzbender, J. Eur. Ceram. Soc., 33, 805 (2013). 

[1.110] P. E. Vullum, R. Holmestad, H. L. Lein, J. Mastin, M.-A. Einarsrud, T. Grande, 

Adv. Mater., 19, 4399 (2007). 

[1.111] B. X. Huang, J. Malzbender, R. W. Steinbrech, E. Wessel, H. J. Penkalla, and L. 

Singheiser, J. Membr. Sci., 149, 183 (2010). 

[1.112] W. Araki and J. Malzbender, Scripta Mater., 69, 278 (2013). 

[1.113] D. L. Meixner and R. A. Cutler, Solid State Ionics, 146, 285 (2002). 



44 

 

[1.114] N. Orlovskaya, M. Lugovy, D. Verbylo, and M. J. Reece, Scripta Mater., 60, 

783, (2009).  



45 

 

Chapter 2 

The text presented in this Chapter is reproduced in part with permission from: 

Y. Kimura, T. Kushi, S. Hashimoto, K. Amezawa and T. Kawada, , J. Am. Ceram. Soc., 95, 2608 (2012). 

 

Evaluation of mechanical properties of perovskite and related oxides at 

high temperatures 

 

 

2.1 Introduction 

 

 

Perovskite and related oxides such as LaCoO3-based oxides, LaGaO3-based oxides, 

and La2NiO4-based oxides are expected to be a promising candidate for the components 

of high temperature energy conversion devices, e.g. solid oxide fuel cells (SOFCs) and 

permeation membranes 
[2.1-2.4]

. One of the biggest problems for the full-scale 

commercialization of the high temperature energy conversion devices is to improve 

their durability and reliability 
[2.5]

. Especially, it has been pointed out that the 

mechanical degradation of the components is one of the serious problems in securing 

the durability and the reliability 
[2.6, 2.7]

. In order to suppress the mechanical degradation, 

it is necessary to correctly understand the mechanical properties of the components of 

the high temperature energy conversion devices. However, the data of their mechanical 

properties, especially at high temperatures, are still limited 
[2.8-2.10]

, although their 

chemical or electrochemical properties have been widely investigated 
[2.11-2.13]

. It is 

expected that the mechanical properties of the components vary with temperature and 

oxygen partial pressure, P(O2) 
[2.8-2.10]

. For instance, La0.6Sr0.4Co1-yFeyO3-δ, which is one 

of the common cathode materials for SOFCs, changes its crystal structure and also 

shows a comparatively large oxygen nonstoichiometry depending on temperature and 

P(O2) 
[2.13-2.19]

. When perovskite and related oxides are used as an SOFC component, 

they are exposed not only to high temperatures but also to a certain oxygen potential 

gradient. Therefore, it is important to understand influences of temperature and P(O2) 

on mechanical properties of perovskite and related oxides in suppressing the mechanical 

degradations.  

In this study, mechanical properties of perovskite and related oxides, 
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La0.6Sr0.4Co1-yFeyO3-δ (LSCF, LSC for y = 0, LSCF6482 for y = 0.2, LSCF6428 for y = 

0.8, LSF for y = 1) and La2NiO4 (LN214) were investigated at high temperatures under 

controlled atmospheres by using resonance method and small-punch tests. 

 

 

2.2 Experimental 

 

2.2.1. Resonance method 

 

 

Powders of LSCF6428 were obtained from AGC SEIMI CHEMICAL Co., Ltd. and 

those of LSC, LSCF6482, LSF, LN214 were synthesized by the Pechini method. Nitrate 

solutions of La
3+

, Sr
2+

, Co
3+

, Fe
3+

, and Ni
2+

, ethylene glycol and citric acid were mixed 

in an appropriate ratio, and heated to 673 K. The obtained polymeric precursor was 

calcined at 1173-1473 K. The obtained powders were hydrostatically pressed at 150 

MPa, sintered at 1473-1673 K for 6 hours, and then slowly cooled with the rate of 106 

K / h to avoid cracking. It was confirmed from X-ray diffraction that all of the 

as-sintered samples of LSC, LSCF6482, LSCF6428, and LSF had a single phase of 

rhombohedral perovskite (space group: R3
-

c) and LN214 had a single phase of 

tetragonal perovskite (space group: I4/mmm). The sintered samples were cut into a 

rectangular shape with 45 x 10 x 1.5 mm. The length, the width and the thickness of a 

sample were machined so that respective deviations in parallelism were less than 0.1, 

0.1 and 0.02 mm. The surfaces were polished with a diamond paste of 3 µm. 

The resonance measurements were performed at high temperatures and under 

controlled atmospheres by using EGII-HT (Nihon Technoplus Co., Ltd., Japan). The 

experimental apparatus used for the resonance method is shown in Fig. 2.1. EGII-HT 

performs cantilever measurements. One end of a sample is rigidly fixed while the other 

end is attached to a bar which is placed perpendicular to a sample. The bar has three 

electromagnetic actuators at the center and the both ends. The electromagnetic actuator 

at the center applies a flexural oscillation to a sample while the ones at the ends do a 

torsional oscillation. The resonance frequency of each oscillation is detected by eddy 

current sensors which are equipped at the opposite sides of the actuators across the bar. 

The Young’s modulus, E, and the shear modulus, G, are evaluated from the respective 

resonance frequencies and the sample dimension according to the following relations; 

 

                                                       [2.1] 
2

2

424
ff

I

SL
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                                                       [2.2] 

 

where ff, ft, L, α, ρ, S, I, K, and β are the flexural resonance frequency, the torsional 

resonance frequency, the length of the sample, a constant given by the boundary 

conditions, the density of the sample, the cross-sectional area of the sample, the second 

moment of the area, the adjustment parameter and the inertia moment of the driven 

section, respectively. The Poisson’s ratio, μ, was calculated from the Young’s and the 

shear moduli as follows; 

 

                                                          [2.3] 

 

Prior to the measurements at high temperatures under controlled atmospheres, the 

Young’s and shear moduli were measured by using JE and JG (Nihon Technoplus Co., 

Ltd., Japan) at room temperature. JE and JG perform free hold resonance measurements 

and generally have a higher accuracy than cantilever ones 
[2.20]

, although JE and JG are 

available only for measurements at room temperature. The measurement methodologies 

of JE and JG confirm to the Japanese Industrial Standards (JIS) R 1602 
[2.21]

. JE applies 

a flexural oscillation to a sample which is held on two thin wires at oscillation node 

points while JG does a torsional oscillation to a sample which is put on crossed wires. 

The flexural and torsional oscillations are electrostatically excited and the resonance 

frequencies of the respective oscillations are detected by an acoustic wave displacement 

sensor. In this work, absolute values of the elastic moduli obtained at room temperature 

with EGII-HT were calibrated by those with JE and JG.  

Although JE and JG have a relatively high accuracy, measured values of the elastic 

moduli were slightly different from sample to sample. Such a slight discrepancy is 

considered to be mainly because of an incomplete parallelism of the sample. The 

maximum deviation among the elastic moduli of different samples having the same 

composition was about 3 %. 

In this study, the elastic mouduli of LSCF were evaluated as a function of 

temperature under a constant P(O2) of 1 x 10
-1

 or 1 x 10
-4

 bar. P(O2) around the sample 

was controlled by flowing a mixture gas of O2 and Ar, and monitored by an 

yttria-stabilized zirconia oxygen sensor. Resonance measurements were repeated until 

the measured value of the elastic moduli reached a constant while keeping temperature 

and P(O2) constant, i.e., until the sample equilibrated with the applied temperature and 

P(O2). The time required for the equilibration was typically 5-24 hours, and was longer 

at lower temperature and P(O2). 

2

t

2216
f
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Fig. 2.1. The experimental apparatus used for the resonance method. 

 

 

2.2.2 Small punch testing method 

 

 

   The powders were pressed into disks at 2 MPa and isostatically pressed at 150 MPa. 

The samples were then sintered in air at 1573 K for 6h and gradually cooled to room 

temperature with the cooling rate of 106 K/h. The sintered samples were cut into a 

square shape with the dimension of about 7 x 7 x 0.5 mm and polished with a diamond 

paste of 3 µm. The relative density of the sintered samples was over 96 %.  

   The Young’s modulus of LSCF6428 were measured under a constant P(O2) of 1 x 

10
-1

 bar by SP testing method. The experimental apparatus used for the SP tests is 

shown in Fig. 2.2 
[2.22]

. The samples were simply supported at the circumferential edge 

and subjected to a concentrated load at their center position. The SP tests were 

performed on a universal testing machine (INSTRON Type 5565, INSTRON, USA) at 

room temperature, 873K, 973 K, and 1073 K. The load was applied through a puncher 

until a final failure was observed. The cross head speed was 0.1 mm/min. The load-line 

deflection of the specimens was measured by monitoring the movement of an Al2O3 rod 

using a laser displacement sensor (LK-G15, Keyence, Japan). The resolution of the 
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vibration
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displacement sensor was within 1.0 μm. The Young’s modulus, Esp, was calculated 

using the following equations 
[2.23]

; 

 

                                                            [2.4] 

 

where P, d, μ, a, t, and f(t/a) are puncher load, displacement, Poisson’s ratio, die radius, 

sample thickness, and adjustment parameter, respectively. The adjustment parameter is 

given by the following equation 
[2.23]

; 

 

                                                            [2.5] 

 

The Young’s modulus was calculated from the linear slope of the load versus 

displacement records. The Poisson’s ratio was taken from the data measured by the 

resonance method. Three samples were tested at each temperature. 

 

 

 

Fig. 2.2. The experimental apparatus used for the SP tests 
[2.22]

. 
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2.3. Results 

 

  

2.3.1 Temperature Dependence of Mechanical Properties of LN214 

 

 

Figure 2.3 shows the temperature dependence of the Young’s and the shear moduli 

and the Poisson’s ratio of LN214. The Young’s modulus of LN214 monotonically 

decreased with increasing temperature. The shear modulus was almost independent of 

temperature. The Poisson’s ratio monotonically decreased with increasing temperature. 

Fig. 2.4 shows the temperature dependence of the internal friction of LN214. The 

internal friction of LN214 was very small over the whole temperature range.  

 

 

 
 

Fig. 2.3. Temperature dependence of the Young’s and shear moduli of La2NiO4 (LN214) 

measured by the resonance method under P(O2) of 1.0 x 10
-1

 bar. 
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Fig. 2.4. Temperature dependence of the Young’s and shear moduli of La2NiO4 (LN214) 

measured by the resonance method under P(O2) of 1.0 x 10
-1

 bar. 
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2.3.2 Temperature dependence of E, G, and Q
-1

 of LSCF6428 

 

 

Figure 2.5 shows the temperature dependence of the Young’s and the shear moduli of 

LSCF6428 measured by the resonance method under P(O2) of 1.0 x 10
-1

 and 1.0 x 10
-4

 

bar. Under P(O2) of 1.0 x 10
-1

 bar, the Young’s and the shear moduli significantly 

decreased up to 823 K, gradually increased up to 973 K and then drastically increased at 

further higher temperatures. The Young’s modulus of LSCF6428 at room temperature 

measured by the resonance method was 164 GPa. This value is slightly higher than the 

literatures reported by Y.-S. Chou et al. 
[2.24]

 (152 ± 3 GPa) and Z. Chen et al. 
[2.25]

 (147 

± 3 GPa). Y.-S. Chou et al. measured the Young’s modulus by the ultrasonic/pulse-echo 

method while Z. Chen et al. did by the impulse excitation technique. This difference in 

the absolute value of the Young’s modulus is possibly due to the difference in relative 

densities between the samples. The relative density of our sample was 98 %, while the 

relative densities of the samples of Y.-S. Chou et al. was 95.36 ± 0.22 % and the 

samples of Z. Chen et al. was 94.78 ± 0.01 %. Z. Chen et al. estimated the effect of 

porosity based on the model proposed by Ramakrishnan and Arunachalam 
[2.26]

. 

According to their model, the Young’s modulus of a porous solid can be estimated by 

the following equation; 

 

                                                                   [2.6] 

 

where Ep is the Young’s modulus of the porous solid, p is porosity, E0 is the Young’s 

modulus of the fully dense solid, and μ0 is the Poisson’s ratio of the fully dense solid. 

Table 1 shows the Young’s modulus of the fully dense LSCF6428 extrapolated by using 

the eq. [] and reported Young’s modulus and porosity. The Poisson’s ratio of the fully 

dense solid was assumed to be 0.29, which is the value at room temperature measured 

by the resonance method. The Young’s modulus of the fully dense LSCF6428 

extrapolated by using reported Young’s modulus and porosity was all in good agreement 

within experimental error. Thus it can be said the main reason of the discrepancy the 

Young’s modulus of this work and the literatures is the porosity of the samples. In Fig. 

2.5, the temperature dependence of the Young’s modulus of LSCF6428 measured by the 

SP tests were also depicted by open circle symbols (○). The Young’s modulus measured 

by SP tests at room temperature was much higher than that by resonance method. It 

significantly decreased with increasing temperature up to 673 K. Although the data was 

scattered above 873 K, the Young’s modulus seemed to increase with increasing 
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temperature above 873 K. The absolute values were different depending on the 

measuring method, the significant decrease in the Young’s modulus at lower 

temperatures and the increase at higher temperatures were also observed by a static 

measurement, namely the SP tests. A similar temperature dependence was observed also 

under P(O2) of 1.0 x 10
-4

 bar. However, the temperature at which the elastic moduli 

started to increase, Tc, was about 100 K lower than that under P(O2) of 1.0 x 10
-1

 bar. 

Figure 2.6 shows the temperature dependence of the internal friction of LSCF6428 

under P(O2) of 1.0 x 10
-1

 and 1.0 x 10
-4

 bar. Under P(O2) of 1.0 x 10
-1

 bar, there seemed 

to be 2 broad peaks in the temperature range between 423 and 873 K. The internal 

friction greatly decreased above 823 K. The temperature dependence of the internal 

friction under P(O2) of 1.0 x 10
-4

 bar was similar to that under P(O2) of 1.0 x 10
-1

 bar. 

But the peak was slightly higher, and the internal friction decreased more drastically 

above 823 K. 

 

 

 

 

 

Table 1. The Young’s modulus of the fully dense LSCF6428 extrapolated by using the 

eq. [] and reported Young’s modulus and porosity. The Poisson’s ratio of the fully dense 

solid was assumed to be 0.29. 

 

Literature Young’s modulus 

/ GPa 

Porosity / % The extrapolated 

Young’s modulus / GPa 

Z. Chen et al. [2.24] 147 ± 3 5.22± 0.01 173± 4 

Y.-S. Chou et al. [2.25] 152 ± 3 4.64 ± 0.22 176 ± 2 

This work 164 2 175 
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Fig. 2.5. Temperature dependence of the Young’s (E) and the shear moduli (G) of 

La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) measured by the resonance method under P(O2) of 

1.0 x 10
-1

 and 1.0 x 10
-4

 bar and the Young’s modulus measured by the SP tests under 

P(O2) of 1.0 x 10
-1

 bar. 

 

 

 

Fig. 2.6. Temperature dependence of the internal friction of La0.6Sr0.4Co0.2Fe0.8O3-δ 

(LSCF6428) measured by the resonance method under P(O2) of 1.0 x 10
-1

 and 1.0 x 10
-4
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2.3.3 Temperature dependence of E, G, and Q
-1

 of LSCF with other compositions 

 

 

The Young’s and the shear moduli of LSC, LSCF6482, and LSF are shown in Figs. 

2.7-2.9 as a function of temperature, respectively. Regardless of P(O2), they basically 

showed similar temperature dependence as those of LSCF6428. That is, the elastic 

moduli significantly decreased with increasing temperature in the low temperature range 

and drastically increased at intermediate temperatures, and Tc was lower under P(O2) of 

1.0 x 10
-4

 bar than 1.0 x 10
-1

 bar. However, some minor differences were found among 

the temperature dependence of these compositions. First, Tc was different from material 

to material, and was higher in order of LSC, LSCF6482, LSCF6428, and LSF. Secondly, 

the gradual increase before the drastic increase, which was observed with LSCF6428 

and LSF, was not detected with LSC and LSCF6482. Figure 2.10 shows the temperature 

dependence of the internal friction of LSC under P(O2) of 1.0 x 10
-1

 and 1.0 x 10
-4

 bar. 

A sharp and pronounced peak was observed in the temperature range between 423 and 

573 K. There seemed to be one more shoulder peak at around 600 K. Above 823 K, the 

internal friction took very small values. The difference between the results under P(O2) 

of 1.0 x 10
-1

 and 1.0 x 10
-4

 bar was not so large. However, the temperature at which the 

internal friction became very small was smaller under 1.0 x 10
-4

 bar than under P(O2) of 

1.0 x 10
-4

 bar. Figures 2.11 and 2.12 show the temperature dependence of the internal 

friction of LSCF6482 and LSF, respectively, under P(O2) of 1.0 x 10
-1

 and 1.0 x 10
-4

 bar. 

Two peaks were observed in the internal friction of LSCF6482 and LSF. One was 

observed at around 423 K and another was observed at around 700 K. The internal 

friction of LSCF6482 became very small above 873 K while the internal friction of LSF 

became very small above 1000 K. As well as LSC, The difference between the results 

under P(O2) of 1.0 x 10
-1

 and 1.0 x 10
-4

 bar was not so large, although the temperature 

at which the internal friction of LSF became very small was smaller under 1.0 x 10
-4

 bar 

than under P(O2) of 1.0 x 10
-4

 bar. 
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Fig. 2.7. Temperature dependence of the Young’s (E) and the shear moduli (G) of 

La0.6Sr0.4CoO3-δ (LSC) measured by the resonance method under P(O2) of 1.0 x 10
-1

 and 

1.0 x 10
-4

 bar. 

 

 

Fig. 2.8. Temperature dependence of the Young’s (E) and the shear moduli (G) of 

La0.6Sr0.4FeO3-δ (LSF) measured by the resonance method under P(O2) of 1.0 x 10
-1

 and 

1.0 x 10
-4

 bar. 
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Fig. 2.9. Temperature dependence of the Young’s and the shear moduli of 

La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF6482) measured by the resonance method under P(O2) of 

1.0 x 10
-1

 bar. 

 

 

 

Fig. 2.10. Temperature dependence of the internal friction of La0.6Sr0.4CoO3-δ (LSC) 

measured by the resonance method under P(O2) of 1.0 x 10
-1

 and 1.0 x 10
-4

 bar. 

200

150

100

50

0

E
la

st
ic

 m
o
d
u
lu

s 
/ 

G
P

a

12001000800600400200

Temperature / K

La0.6Sr0.4Co0.8Fe0.2O3- (LSCF6482)

 P(O2) = 1 x 10
-1

 bar

 Young's modulus
 Shear modulus

100x10
-3

80

60

40

20

0

In
te

rn
al

 f
ri

ct
io

n
 

12001000800600400200

Temperature / K

La0.6Sr0.4CoO3- (LSC)
Q

-1
        P(O2)

      1 x 10
-1

 bar

      1 x 10
-4

 bar



58 

 

 

 

 

Fig. 2.11. Temperature dependence of the internal friction of La0.6Sr0.4CoO3-δ (LSF) 

measured by the resonance method under P(O2) of 1.0 x 10
-1

 and 1.0 x 10
-4

 bar. 

 

 

 

Fig. 2.12. Temperature dependence of the internal friction of La0.6Sr0.4Co0.8Fe0.2O3-δ 

(LSCF6482) measured by the resonance method under P(O2) of 1.0 x 10
-1

 bar. 
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2.3.4 Temperature Dependence of Poisson’s ratio of LSCF 

 

 

Figure 2.13 shows the Poisson’s ratio of LSCF6428 under P(O2) of 1.0 x 10
-1

 and 

1.0 x 10
-4

 bar. Under P(O2) of 1.0 x 10
-1

 bar, the Poisson’s ratio was almost constant at 

around 0.3 below 973 K. But it sharply decreased at 1023 K and then became constant 

at around 0.2. It showed a similar temperature dependence under P(O2) of 1.0 x 10
-4

 bar 

although the sudden decrease was observed at 873 K. Figure 2.14 shows Poisson’s 

ratios of LSC LSCF6482, and LSF under P(O2) of 1.0 x 10
-1

 bar. The Poisson’s ratio of 

LSF was around 0.35 up to 973 K and decreased above 973 K. The Poisson’s ratio of 

LSC and LSCF6482 was scattered around 0.3 below 773 K. But it decreased at 823 K 

and became stable at around 0.2, 0.1 above 823 K, respectively. The reason for the 

scattering is probably the measurement error of the elastic moduli.  

 

 

 
 

Fig. 2.13. Temperature dependence of Poisson’s ratio of La0.6Sr0.4Co0.2Fe0.8O3-δ 

(LSCF6428) under P(O2) of 1.0 x 10
-1

 and 1.0 x 10
-4

 bar. 
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Fig. 2. 14. Temperature dependence of Poisson’s ratio of La0.6Sr0.4CoO3-δ (LSC), 

La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF6482), and La0.6Sr0.4FeO3-δ (LSF) under P(O2) of 1.0 x 

10
-1

 bar. 

 

 

2.4 Discussion 

 

 

2.4.1 Temperature Dependence of Mechanical Properties of LN214 

 

 

The gradual decrease in the Young’s modulus of LN214 with increasing temperature 

is a typical temperature dependence of the conventional ceramics such as Al2O3 
[2.27]

. 

This gradual decrease in the Young’s modulus with increasing temperature is interpreted 

to be because of the decrease in the bonding strength due to the thermal expansion 
[2.27]

. 

This gradual decrease due to the thermal expansion is often described by the following 

equation 
[2.27]

; 

                                                             

                                                                   [2.7] 
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where E is the Young’s modulus at an arbitrary temperature, E0 is the Young’s modulus 

at 0K, b is a constant, T is temperature, Tm is the melting point. The b usually takes the 

value between 0.02 and 0.05 
[2.27]

. The temperature dependence of the Young’s 

modulus of LN214 was fitted by the above equation. The fitting curve was shown in 

the Fig.2.3. The above equation fitted well the temperature dependence of the Young’s 

modulus of LN214. The calculated values of E0, b, Tm were 177 GPa, 0.05, 2006 K, 

respectively. The melting point of LN214 is reported to be 1957 K 
[2.28]

. Thus the 

calculated melting point agreed well with the literature. 

 

 

2.4.2 Temperature Dependence of E, G, Q-1 of LSCF 

 

 

A drastic increase in the elastic moduli at intermediate temperatures was reported 

also with La0.58Sr0.4Co0.2Fe0.8O3-δ and La0.8Sr0.2FeO3-δ 
[2.29, 2.30]

. Such an increase in the 

elastic modulus can be associated with the phase transition 
[2.31, 2.32]

. The crystal 

structures of LSCF are known to transform from rhombohedral to cubic by a 

second-order phase transition with increasing temperature 
[2.14-2.19]

.  

The Tc and the phase transition temperatures of LSCF with each composition 

reported in literatures are summarized in Table 1 
[2.14-2.19]

. Since the phase transition 

temperatures in the literatures were measured in air, Tc under P(O2) of 1.0 x 10
-1

 bar, 

which is close to P(O2) in air, was here compared. Although the reported phase 

transition temperatures of LSCF are slightly different from literature to literature, Tc 

seems to comparatively agree with the phase transition temperatures. In the case of LSC 

and LSF, it is reported that the phase transition temperature becomes lower with 

decreasing P(O2) 
[2.19, 2.33]

. Accordingly, Tc also became lower under P(O2) of 1.0 x 10
-4

 

bar than 1.0 x 10
-1

 bar. These facts support the hypothesis that the drastic increase in the 

elastic moduli is related to the phase transition.   
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Table 1. Temperatures at which Young’s and shear moduli increased, Tc, under P(O2) of 

1.0 x 10
-1

 bar and phase transition temperatures in air. 

 

Composition Tc / K Phase transition temperature / K 

La0.6Sr0.4CoO3-δ 773 753 [2.15] 

673-773 [2.16] 

La0.6Sr0.4Co0.8Fe0.2O3-δ 773 773 [2.16] 

La0.6Sr0.4Co0.2Fe0.8O3-δ 973 873-973 [2.17] 

La0.6Sr0.4FeO3-δ 1073 1073-1173 [2.18] 

1173 ≤ [2.19] 

 

 

 

 

   The phase transition of LSCF and the following drastic increase in the elastic 

modulus can be phenomenologically explained by the polynominal Gibbs free energy 

and the coupling theory 
[2.32, 2.34]

. LSCF has a high symmetry cubic phase (space group: 

Pm3
-

m) at higher temperatures and a low symmetry rhombohedral phase (space group: 

R3
-

c) at lower temperatures 
[2.14-2.19]

. The phase transition from cubic to rhombohedral 

phase is followed by the compression of the cubic unit cell and the BO6 octahedron 

along the [111] direction and the rotation of the BO6 octahedron around the three cubic 

axes 
[2.35]

. The difference in Gibbs free energy between both phases, which determines 

the stable phase under a certain condition, can be described by some classical 

thermodynamic parameters, such as temperature, T, pressure, P, chemical composition, 

N, and an additional parameter, the order parameter, φ. The order parameter specifies 

the thermodynamic state of the rhombohedral phase 
[2.34]

. In the case of R3
-

c ↔ Pm3
-

m 

transition in LSCF, the rotation angle of the BO6 octahedron around the three cubic axes 

can be taken as a primary order parameter 
[2.36]

. In what follows, the difference in Gibbs 

free energy between both phases is referred to as the excess Gibbs free energy, Gex. The 

excess Gibbs free energy is often assumed to have a simple polynomial form with 

coupling terms between the order parameter and the elastic strain, and has to fulfill all 
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symmetry requirements of the material 
[2.34]

. The excess Gibbs free energy for R3
-

c ↔ 

Pm3
-

m transition in a perovskite oxide can be written as follows, taking the rotation 

angle of the BO6 octahedron around the three cubic axes as a primary order parameter 
[2.32]

; 

 

 

 

                                                                   [2.8] 

 

where A, B, λ1, λ2 are constants which are independent of temperature, Tc is a critical 

temperature, C11
o
, C12

o
, and C44

o
 are the elastic constants of the cubic LSCF, e is a strain 

tensor, e1, e2, e3, and e4, are elastic strains. In the above equation, the effects of pressure, 

P, and chemical composition, N, were ignored since our main concern is the effect of 

temperature and the other parameters, φ and e. The coupling terms mean the external 

stress can be relaxed by the change in the primary order parameter 
[2.34]

. The equilibrium 

condition with respect to φ under a constant strain at a constant temperature is given by 
[2.34]

; 

 

                                                                   [2.9] 

 

Moreover, the elastic constants of the rhombohedral phase, Cij, can be expressed by the 

following equation 
[2.37]

; 

 

                                                                  [2.10] 

 

The matrix Rkl is given by; 

 

                                                                  [2.11] 

 

Substituting the eq. [2.8] into [2.10], the elastic constant of the rhombohedral phase, C11, 

for instance, can be obtained as follows; 

 

                                                                  [2.12] 

The above equation suggests the elastic constant of the rhombohedral phase can be 
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reduced by the relaxation of the primary order parameter. And it abruptly changes from 

C11 to C11
0
 at the phase transition temperature. The phase transition in other materials 

such as the R3
-

c ↔ Pm3
-

m transition in LaAlO3 and the I4/mcm ↔ Pm3
-

m transition in 

SrTiO3 have been successfully explained by the similar argument 
[2.31, 2.32]

. 

With LSC, LSCF6482, and LSF, the Young’s and the shear moduli showed the 

gradual decrease after the drastic increase. Such a gradual decrease can be explained as 

follows. LSCF expands the crystal lattice with increasing temperature, i.e. thermal 

expansion, as conventional ceramics do. In addition, LSCF shows a significant change 

in the oxygen nonstoichiometry by the formation of oxygen vacancies at higher 

temperatures. The amount of oxygen vacancies increases with increasing temperature. 

An increase of oxygen vacancies leads to the expansion of the lattice, i.e. chemical 

expansion. Both thermal and chemical expansions reduce the bond strength, and thus 

decrease the elastic moduli, with increasing temperature 
[2.10]

. Furthermore, the 

formation of oxygen vacancies leads to the decrease in the average valence of cations as 

well as disappearance of a part of chemical bonds between oxygens and cations. These 

also may reduce the bonding strength in the lattice, and the elastic moduli 
[2.10]

.  

At lower temperatures up to about 800 K, the Young’s and the moduli of LSCF 

decreased by 35-50 % of the initial value at room temperature. In this temperature range, 

the variation of the oxygen nonstoichiometry is negligibly small. In addition, such a 

considerable decrease cannot be explained only by the thermal expansion. In the 

temperature range in which the significant decrease was observed, several peaks were 

also observed in the internal friction of LSCF. Huang et al. also reported that the 

internal friction of La0.58Sr0.4Co0.2Fe0.8O3-δ showed comparatively larger values and had 

several peaks in the temperature range between 400 and 1000 K 
[2.29]

. Such a large 

internal friction may indicate ferroelasticity of LSCF. It is reported that rhombohedral 

LaCoO3-based oxides exhibit a ferroelastic behavior 
[2.38-2.40]

. In rhombohedral 

LaCoO3-based oxides, there can exist 4 domain states which have a different 

rhombohedral principal axis. When a stress which is higher than a certain level is 

applied, a part of domains switch their state to the other. Such a ferroelastic domain 

switching can relieve the stress and thus be the cause of the decrease in the elastic 

modulus. However, further investigation is needed to identify the main cause of the 

decrease in the elastic modulus of LSCF at low temperatures.  
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2.4.3 Poisson’s ratio of LSCF 

 

 

   For all materials investigated in this work, the temperature at which the Poisson’s 

ratio decreased corresponded to the temperature at which the elastic moduli drastically 

increased. This suggests that the decrease in the Poisson’s ratio is considered to be 

caused by the phase transition. On the other hand, at temperatures except around the 

phase transition temperatures, the Poisson’s ratios were almost independent of 

temperature. These indicate that the Poisson’s ratio is insignificantly affected by the 

thermal and the chemical expansion, and the formation of oxygen vacancy. 

 

 

2.5. Conclusion 

 

 

The Young’s and the shear moduli, the internal friction, and the Poisson’s ratio of 

La2NiO4 (LN214), La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF6482), 

La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428), and La0.6Sr0.4FeO3-δ (LSF) were evaluated as a 

function of temperature under a constant P(O2) of 1 x 10
-1

 or 1 x 10
-4

 bar by using the 

resonance method and the small punch testing method. Whereas the Young’s and the 

shear moduli of LN214 monotonically decreased with increasing temperature and the 

internal friction was very small, the Young’s and the shear moduli of LSCF significantly 

decreased with increasing temperature at lower temperatures and drastically increased at 

intermediate temperatures. The Young’s modulus of LSC, LSCF6482, and LSF 

gradually decreased with increasing temperature at further higher temperatures. The 

internal friction had one or two peak/peaks in the temperature range in which the 

Young’s modulus significantly decreased. The temperature at which the Poisson’s ratio 

of LSCF6428, LSC, and LSF decreased corresponded to the temperature at which the 

elastic moduli drastically increased. The gradual decrease in the Young’s modulus of 

LN214 is possibly due to the thermal expansion. The abrupt change in the Young’s and 

the shear moduli of LSCF at intermediate temperatures is considered to be associated 

with the phase transition. The abrupt change in the Young’s and the shear moduli were 

phenomenologically explained based on the polynominal Gibbs free energy and the 

coupling theory. It was suggested that the significant decrease in the Young’s and the 

shear moduli of LSCF at lower temperatures was related with the ferroelastic domain 

switching. The gradual decrease in the Young’s and the shear moduli of LSCF above the 
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phase transition temperature may be associated with the decrease in the bonding 

strength due to the thermal and the chemical expansion.  



67 

 

2.6. References 

 

 

[2.1] A. Mai, V. A.C. Haanappel, S. Uhlenbruck, F. Tietz, and D. Stöver, Solid State 

Ionics, 176, 1341(2005). 

[2.2] J. W. Fergus, J. Power Sources, 162, 30 (2006). 

[2.3] R. Sayers, M. Rieu, P. Lenormand, F. Ansart, J.A. Kilner, S.J. Skinner, Solid State 

Ionics, 192, 531 (2001). 

[2.4]X. Tan, Y. Liu, K. Li, AIChE journal, 51, 1991 (2005). 

[2.5] K. Hosoi, M. Ito, M. Fukae, ECS Transactions, 35, 11 (2011). 

[2.6] J. Malzbender, R. W. Steinbrech and L. Singheiser, Fuel Cells, 9, 785 (2009). 

[2.7] K. Sato, T. Hashida, K. Yashiro, H. Yugami, T. Kawada and J. Mizusaki, J. Ceram. 

Soc. Jpn.,
 
113, 562 (2005). 

[2.8] T. Kushi, K. Sato, A. Unemoto, S. Hashimoto, K. Amezawa and T. Kawada, J. 

Power Sources, 196, 7989 (2011). 

[2.9] S. Giraud and J. Canel, J. Eur. Ceram. Soc., 28, 77 (2008). 

[2.10]K. Amezawa, T. Kushi, K. Sato, A. Unemoto, S. Hashimoto and T. Kawada, Solid 

State Ionics, 198, 32 (2011). 

[2.11]T. Nakamura, K. Yashiro, K. Sato and J. Mizusaki, Phys. Chem. Chem. Phys., 11, 

3055 (2009). 

[2.12]A. Esquirol, N. P. Brandon, J. A. Kilner, and M. Mogensen, J. Electrochem. Soc., 

151, A1847 (2004). 

[2.13]S. Hashimoto, Y. Fukuda, M. Kuhn, K. Sato, K. Yashiro, J. Mizusaki, Solid State 

Ionics, 181, 1713 (2010). 

[2.14] M. Kuhn, S.Hashimoto, K.Sato, K.Yashiro, J.Mizusaki, J. Solid Oxide Chem., 

197, 38 (2013). 

[2.15] J. Mastin, M.-A. Einarsrud and T. Grande, Chem. Mater., 18, 6047 (2006). 

[2.16] S. Wang, M. Katsuki, M. Dokiya and T. Hashimoto, Solid State Ionics, 159, 71 

(2003). 

[2.17] B. X. Huang, J. Malzbender, R. W. Steinbrech and L. Singheiser, Solid State 

Ionics, 180, 241 (2009). 

[2.18] A. Fossdal, M. Menon, I. Wærnhus, K. Wiik, M.-A. Einarsrud and T. Grande, J. 

Am. Ceram. Soc., 87, 1952 (2004). 

[2.19] M. Kuhn, S. Hashimoto, K. Sato, K. Yashiro and J. Mizusaki, Solid State Ionics, 

195, 7 (2011). 

[2.20] Japanese Industrial Standards, ‘Test Method for Young’s Modulus of Metallic 



68 

 

Materials at Elevated Temperature,’ JIS Z 2280, 1993. 

[2.21] Japanese Industrial Standards, ‘Test Method for Young’s Modulus of Fine 

Ceramics,’ JIS R 1602, 1994. 

[2.22] K. Sato, T. Miyasaka, S. Watanabe, and T. Hashida, ECS Transactions, 57 (1) 753 

(2013). 

[2.23] S. Okuda, M. Saito, T. Hashida, H. Takahashi, Trans. JSME(A), 57, 940 (1991). 

[2.24] Y.-S. Chou, J. W. Stevenson, T. R. Armstrong, and L. R. Pederson, J. Am. Ceram. 

Soc., 83, 1457 (2000). 

[2.25] Z. Chen, X. Wang, V. Bhakhri, F. Giuliani, and A. Atkinson, Acta Mater., 61, 

5720 (2013). 

[2.26] N. Ramakrishnan and V. S. Arunachalam, J. Mater. Sci., 25, 3930 (1990). 

[2.27] O. Kamigaito and N. Kamiya, セラミックスの物理, pp. 76-78, 内田老鶴圃, 

(1998). 

[2.28] M. Zinkevich, F. Aldinger, J. Alloys Compd., 375, 147 (2004).  

[2.29] B. X. Huang, J. Malzbender and R. W. Steinbrech, J. Mater. Res., 26, 1388 

(2011). 

[2.30] A. Julian, E. Juste, P. M. Geffroy, N. Tessier-Doyen, P. Del Gallo, N. Richet and T. 

Chartier, J. Eur. Ceram. Soc., 29, 2603 (2009). 

[2.31] J. F. Scott and H. Ledbetter, Z. Phys. B, 104, 635 (1997). 

[2.32] M. A. Carpenter, S. V. Sinogeikin and J. D. Bass, J. Phys. Condens. Matter, 22, 

035404 (2010). 

[2.33] A. Mineshige, M. Kobune, S. Fujii, Z. Ogumi, M. Inaba, T. Yao and K. Kikuchi, J. 

Solid State Chem, 142, 374 (1999). 

[2.34] E. K. H. Salje, Phase transitions in ferroelastic and co-elastic crystals Student 

Edition, pp. 28-43, Cambridge University Press, New York, 1993. 

[2.35] A. M. Glazer, Acta Crystallogr. A, 31, 756 (1975). 

[2.36] S. A. Hayward, F. D. Morrison, S. A. T. Redfern, E. K. H. Salje, J. F. Scott, K. S. 

Knight, S. Tarantino, A. M. Glazer, V. Shuvaeva, P. Daniel, M. Zhang, and M. A. 

Carpenter, Phys. Rev. B, 72, 054110 (2005). 

[2.37] J. C. Slonczewski and J. Thomas, Phys. Rev. B, 1, 3599 (1970). 

[2.38] P. E. Vullum, R. Holmestad, H. L. Lein, J. Mastin, M.–A. Einarsrud, and T. 

Grande, Adv. Mater., 19, 4399 (2007). 

[2.39] W. Araki and J. Malzbender, J. Euro. Ceram. Soc., 33, 805 (2013). 

[2.40] S. Faaland, T. Grande, M.-A. Einarsrud, P. E. Vullum and R. Holmestad, J. Am. 

Ceram. Soc., 88, 726 (2005). 

 



69 

 

Chapter 3 

 

The text presented in this Chapter is reproduced in part with permission from: 

Y. Kimura, T. Kushi, S. Hashimoto, K. Amezawa and T. Kawada, , J. Am. Ceram. Soc., 95, 2608 (2012). 

 

Influence of oxygen defects on the mechanical properties of perovskite 

and related oxides 

 

 

3.1 Introduction 

 

 

As mentioned in the previous chapter, the knowledge of the mechanical properties 

of perovskite and related oxides for energy conversion devices, especially at high 

temperatures and under controlled atmospheres, is necessary for suppressing the 

mechanical degradations. The mechanical properties of those oxides may change at high 

temperatures and under controlled atmospheres since the defect concentration and 

crystal structure can change in those conditions. For the above background, the elastic 

modulus and the internal friction of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428), 

La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF6482), La0.6Sr0.4FeO3-δ (LSF), 

and La2NiO4 (LN214) were evaluated at high temperatures under controlled 

atmospheres by using the resonance method in the chapter 2. It was found that the 

Young’s and the shear moduli of LSC, LSCF6482, and LSF gradually decreased with 

increasing temperature at high temperatures. It was suggested that this gradual decrease 

in the Young’s and the shear moduli at high temperatures was associated with the 

thermal expansion, the formation of oxygen vacancies and the following decrease in the 

bonding strength due to the chemical expansion. Such a change in the Young’s and the 

shear moduli which is related with the change in the oxygen defect concentration is also 

reported with other oxides 
[3.1-3.4]

. For instance, the Young’s modulus of gadolinium 

doped ceria is independent of oxygen partial pressure, P(O2), in the oxidizing 

atmospheres. On the other hand, it noticeably decreases with decreasing P(O2) in the 

reducing atmospheres, in which the oxygen vacancy concentration significantly 
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increases with decreasing P(O2)
 [3.1-3.3]

. Conversely, the room temperature elastic 

modulus of La1-xSrxCrO3 (x ≤ 0.24) is reported to increase when the material is 

preliminarily annealed under low oxygen partial pressure, compared to the one annealed 

under high oxygen partial pressure. The cause of this increase is considered to be due to 

the structural change to the lattice 
[3.4]

.  Thus the change in oxygen partial pressure, 

more strictly speaking, the change in the defect concentration, does have influence on 

the mechanical properties of some oxides. However, in most studies, the measurements 

are performed in air and at room temperature, using samples annealed under controlled 

atmospheres
 [3.2, 3.4].

 On the other hand, the studies in which the mechanical properties 

are directly measured at high temperatures under controlled atmospheres are limited 
[3.1, 

3.3]
. It is possible that the sample surfaces are partially oxidized when the sample is 

annealed and cooled to room temperature. This partially oxidized layer can affect the 

mechanical properties and prevent the accurate evaluation. Therefore, the influence of 

oxygen defects on the mechanical properties should be directly evaluated at high 

temperatures and controlled atmospheres. 

In this study, the P(O2) dependence of mechanical properties of LSCF6428 and 

LN214 were directly evaluated at high temperatures in order to understand the influence 

of the defect concentration on the mechanical properties. These two materials were 

chosen for the evaluation since these materials have different kinds of oxygen defects. 

That is, LSCF6428 is known to show a comparatively large oxygen deficient 

composition 
[3.5]

. On the other hand, LN214 is known to show a large oxygen excess 

composition 
[3.6]

. 
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3.2 Experimental 

 

 

The P(O2) dependence of mechanical properties of LSCF6428 and LN214 was 

measured by the resonance method. The detailed procedure for the sample preparation 

and the resonance measurements is described in the chapter 2. P(O2) was changed from 

1 x 10
-1

 to 1 x 10
-4

 bar at a constant temperature of 873, 973, 1073 and 1173 K. P(O2) 

around the sample was controlled by flowing a mixture gas of O2 and Ar, and monitored 

by an yttria-stabilized zirconia oxygen sensor. Resonance measurements were repeated 

until the measured value of the elastic moduli reached a constant while keeping 

temperature and P(O2) constant, i.e., until the sample equilibrated with the applied 

temperature and P(O2). The time required for the equilibration was typically 5-24 hours, 

and was longer at lower temperature and P(O2). 

 

 

3.3 Results and discussion 

 

 

3.3.1 P(O2) dependence of the mechanical properties of LSCF6428 

 

 

Figure 3.1 shows the Young’s and the shear moduli of LSCF6428 as a function of 

P(O2) at 873, 973, 1073, and 1173 K. The Young’s and the shear moduli showed a 

different P(O2) dependence at each temperature. At 873 K, the Young’s and the shear 

moduli were almost independent of P(O2). On the other hand, they considerably 

increased with decreasing P(O2) at 973 K. At 1073 K, the Young’s and the shear moduli 

slightly increased with decreasing P(O2) down to 5 ×10
-3

 bar and then decreased in 

further lower P(O2). At 1173 K, they monotonically decreased with decreasing P(O2).  

Figure 3.2 shows the oxygen nonstoichiometry of LSCF6428 as a function of P(O2) 

at 873, 973, and 1073 K taken from the literature [3.5]. At each temperature, the oxygen 

vacancy concentration increases with decreasing P(O2). It increases more significantly 

at higher temperature.  

As previously seen in the chapter 2, the Young’s and the shear moduli of LSCF6428 

are considered to be influenced by the phase transition and the variation in the oxygen 

vacancy concentration. It appears that the phase transition temperature of LSCF6428 

becomes lower with decreasing P(O2), more precisely speaking, with increasing the 
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oxygen vacancy concentration 
[3.7, 3.8]

. Therefore, at a constant temperature, the gradual 

phase transition from rhombohedral to cubic tends to proceed when P(O2) decreases. 

The Young’s and the shear moduli are considered to increase with the phase transition 

from rhombohedral to cubic. On the other hand, the increase in the oxygen vacancy 

concentration is considered to slightly decrease the Young’s and the shear moduli. 

Considering the above discussions, the P(O2) dependence of the Young’s and the shear 

moduli in Fig. 3.1 can be explained as follows; At 873 K, the crystal structure as well as 

the oxygen vacancy concentration do not significantly change with P(O2). Therefore, 

the elastic moduli are independent of P(O2). At 973 K, the phase transition is not 

completed and the oxygen vacancy concentration increases with decreasing P(O2). 

Therefore, it is considered that the crystal structure gradually approaches to cubic and 

thus the Young’s and the shear moduli increase with decreasing P(O2). At 1073 K, it is 

supposed that the crystal structure is close to cubic but the transition may not fully 

completed yet under higher P(O2). The Young’s and the shear moduli thus increase with 

decreasing P(O2) under higher P(O2) due to the gradual phase transition. Once the phase 

transition is completed, the Young’s and the shear moduli decrease with decreasing 

P(O2) due to the increase in the oxygen vacancy concentration. This is probably the 

situation under lower P(O2) at 1073 K. At sufficiently high temperatures, i.e. 1173 K, 

the phase transition is completed even under high P(O2). Then, at 1173 K, the Young’s 

and the shear moduli are influenced only by the variation in the oxygen vacancy 

concentration. An increase of oxygen vacancies leads to the expansion of the lattice, i.e. 

chemical expansion. This chemical expansion reduce the bond strength, and thus 

decrease the Young’s and the shear moduli 
[3.1]

. Furthermore, the formation of oxygen 

vacancies leads to the decrease in the average valence of cations as well as 

disappearance of a part of chemical bonds between oxygens and cations. These also 

may reduce the bonding strength in the lattice, and the Young’s and the shear moduli 
[3.1]

. 

Figure 3.3 shows the Poisson’s ratio of LSCF6428 as a function of P(O2). At 873 

and 1173 K, it was almost independent of P(O2) and was around 0.3 and 0.2, 

respectively. On the other hand, it decreased with decreasing P(O2) at 973 K. At 1073 K, 

it slightly decreased with decreasing P(O2) down to 1.0 x 10
-2

 bar and became constant 

at around 0.2 under further lower P(O2). Comparing to the P(O2) dependence of the 

Young’s and the shear moduli, it seems that the Poisson’s ratio is affected by the phase 

transition but not significantly by the change in the oxygen vacancy concentration.  

   Figure 3.4 shows the internal friction of LSCF6428 as a function of P(O2). At 873 K, 

the internal friction showed comparatively larger values compared to the other 
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temperatures, and it slightly decreased with decreasing P(O2). At 973 K, the internal 

friction slightly decreased with decreasing P(O2). At 1073 and 1173 K, the internal 

friction showed small values and almost independent of P(O2). At 873 K, the crystal 

structure of LSCF6428 is rhombohedral while it is cubic above 1073 K 
[3.9]

. At 973 K, it 

seems that the phase transition is not completed and the crystal structure gradually 

approaches from rhombohedral to cubic with decreasing P(O2). Thus the internal 

friction showed larger values when the crystal structure was rhombohedral compared to 

the values when the crystal structure was cubic. One possible reason why the internal 

friction showed larger values is the energy loss due to the ferroelastic domain switching 
[3.10]

. However, the interpretation of the large values in the internal friction needs further 

investigation.  
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Fig. 3.1. P(O2) dependence of Young’s (E) and shear (G) moduli  of 

La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) at 873, 973, 1073 and 1173 K. 

 

 

 

Fig.3.2 Oxygen nonstoichiometry of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) as a function 

of P(O2) at 873, 973, and 1073 K taken from the literature [3.5]. 
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Fig. 3.3. P(O2) dependence of Poisson’s ratio, μ, of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) 

at 873, 973, 1073, and 1173 K. 

 

 

 

Fig. 3.4. P(O2) dependence of internal friction, Q
-1

, of La0.6Sr0.4Co0.2Fe0.8O3-δ 

(LSCF6428) at 873, 973, 1073, and 1173 K. 
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3.3.2 P(O2) dependence of the mechanical properties of LN214 

 

 

Figure 3.5 shows the Young’s and the shear moduli of LN214 as a function of P(O2) 

at 873, 973, and 1073 K. In contrast to the results of LSCF6428, the Young’s and the 

shear moduli were almost independent of P(O2) at each temperature. Figure 3.6 shows 

the P(O2) dependence of the Poisson’s ratio of LN214 at 873, 973, and 1073 K. 

Although the Poisson’s ratio at 873 K was slightly higher than the one at the other 

temperatures, it was almost independent of P(O2) at all measuring temperatures. The 

internal friction was also independent of P(O2) and showed small values irrespective of 

the measuring temperature as shown in Fig.3.7. LN214 is formed by stacking the rock 

salt layer (AO) and the perovskite layer (ABO3) alternatively. Above 873 K and in the 

P(O2) range between 1 x 10
-4

 and 1 x 10
-1

 bar, LN214 is known to have tetragonal 

symmetry 
[3.11]

. Therefore, it is considered that the P(O2) dependence of the mechanical 

properties of LN214 are not influenced by the crystal structure change. Futhermore, 

LN214 has an excess oxygen composition. Figure 3.8 shows the oxygen 

nonstoichiometry of LN214 as a function of P(O2) at 873, 973, 1073, and 1173 K, 

which is taken from the literature [3.6]. The amount of excess oxygen atoms is greater 

at lower temperatures and decreases with decreasing P(O2). This change in the oxygen 

nonstoichiometry of LN214 leads to the change in the lattice parameters 
[3.11]

. Since 

LN214 has tetragonal symmetry, it has two lattice parameters e.g. the lattice constants, a 

and c. Figures 3.9 (a)-(c) show the lattice parameters of LN214 as a function of P(O2); 

(a) a vs. P(O2), (b) c vs. P(O2), and (c) cell volume vs. P(O2), respectively, which are 

taken from the literature [3.11]. The a of LN214 increases while the c decreases with 

decreasing P(O2) at each temperature. Considering the above, the reason why the 

Young’s and the shear moduli of LN214 were independent of P(O2) can be interpreted 

as follows. As previously mentioned in the section of LSCF6428, the increase in the 

lattice constant results in the decrease in the bonding strength and thus is considered to 

decrease the elastic modulus. Conversely, the decrease in the lattice constant is 

considered to lead to the increase in the elastic modulus. Taking the above into account, 

it is considered that the elastic constants, C11 and C22, of LN214 increase while C33 

decreases with decreasing P(O2). Since the sample of LN214 is polycrystalline, the 

influence of the change in each elastic constant on the Young’s and the shear moduli is 

averaged. Therefore the Young’s and the shear modulus are macroscopically 

independent of the changes in the amount of excess oxygen atoms.  
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Fig. 3.5. P(O2) dependence of Young’s (E) and shear (G) moduli  of La2NiO4+δ 

(LN214) at 873, 973, and 1073 K. 

 

 

 

Fig. 3.6. P(O2) dependence of Poisson’s ratio, μ, of La2NiO4+δ (LN214) at 873, 973, 

1073, and 1173 K. 
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Fig. 3.7. P(O2) dependence of internal friction, Q
-1

, of La2NiO4+δ (LN214) at 873, 973, 

1073, and 1173 K. 
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Fig.3.8 Oxygen nonstoichiometry of La2NiO4+δ (LN214) taken from the literature [3.6].  

  

 

Fig. 3.9 The lattice parameters of La2NiO4+δ (LN214) as a function of P(O2); (a) a vs. 

P(O2), (b) c vs. P(O2), and (c) cell volume vs. P(O2), which are taken from the literature 

[3.11]. 
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3.4 Conclusions 

 

 

   The Young’s and the shear moduli and the Poisson’s ratio of La0.6Sr0.4Co0.2Fe0.8O3-δ 

(LSCF6428) and La2NiO4+δ (LN214) were evaluated as a function of P(O2). The 

Young’s and the shear moduli of LSCF6428 showed a different P(O2) dependence in 

response to temperature. The P(O2) dependence was qualitatively explained by complex 

influences of the phase transition, the chemical expansion and the variation of the 

oxygen nonstoichiometry and the cation mean valence. On the other hand, the 

mechanical properties of the Young’s and the shear moduli of LN214 were almost 

independent of P(O2). This is possibly because the decrease in the amount of excess 

oxygen atoms leads to the decrease in the elastic constant C33 and simultaneously the 

increase in the elastic constants, C11 and C22. Therefore, the Young’s the shear moduli 

are not macroscopically influenced by the change in the amount of excess oxygen 

atoms.  
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Chapter 4 

 

The text presented in this Chapter is reproduced in part with permission from: 

Y. Kimura, K. Yashiro, S. Hashimoto, T. Kawada, J. Electrochem. Soc., 161(11), F3079, 2014.  

Y. Kimura, J. Tolchard, M.-A. Einarsrud, T. Grande, K. Amezawa, M. Fukuhara, S. Hashimoto and T. 

Kawada,
 
Solid State Ionics, 262, 337 (2014). 

  

Influence of ferroelastcity on the mechanical properties of perovskite 

and related oxides 

 

 

4.1 Introduction 

 

 

In chapter 2, the elastic modulus and the internal friction of La0.6Sr0.4Co0.2Fe0.8O3-δ 

(LSCF6428), La0.6Sr0.4CoO3-δ  (LSC), La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF6482), 

La0.6Sr0.4FeO3-δ (LSF), and La2NiO4 (LN214) were evaluated at high temperatures 

under controlled atmospheres by using the resonance method 
[4.1]

. It was found that the 

elastic modulus of LN214 measured by the resonance gradually decreased with 

increasing temperature, which is a typical temperature dependence of conventional 

ceramics such as alumina 
[4.2]

. On the other hand, the elastic modulus of LSCF 

measured by the resonance method decreased by 35-50% of the value at room 

temperature with increasing temperature in the temperature range in which the crystal 

structure of LSCF was rhombohedral 
[4.1]

. Moreover, the internal friction of LSCF 

showed one or two broad peak/peaks in the same temperature range. The magnitude of 

the significant decrease observed in a rhombohedral phase could not be explained only 

by the thermal expansion, and it was suggested that there were other mechanisms which 

caused the significant decrease in the elastic modulus measured by the resonance 

method. A possible cause which can lead to the significant decrease in the elastic 

modulus measured by the resonance method, and a peak in the internal friction of LSCF, 

is the ferroelastic domain reorientations. The rhombohedral crystal structure of 

perovskite oxides
 
is formed by the compression of the ideal cubic structure along the 

<111> directions of a cubic unit cell. Therefore, the rhombohedral perovskite can have 
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four kinds of the ferroelastic domains which have a rhombohedral distortion along with 

one of [111], [111
-

], [11
-

1], and [1
-

11] directions 
[4.3, 4.4]

. If the material is cooled through 

the phase transition temperature, these four kinds of the ferroelastic domains are formed 

in the material. When stress which is large enough to unpin the ferroelastic domains is 

applied to the material, the ferroelastic domain walls will move. This motion of the 

ferroelastic domain walls relaxes the applied stress, and thus can be the cause of the 

apparent enormous decrease in the elastic modulus and the increase in the internal 

friction, which was observed in our previous experiments. The motion of the ferroelastic 

domain walls in LaCoO3-based perovskite oxides with rhombohedral symmetry has 

been confirmed by TEM and SEM observation 
[4.4, 4.5]

.  

If this motion of the ferroelastic domain walls occurs in LSCF, the stress-strain 

relationship of LSCF should be nonlinear. And thus the Young’s modulus measured by 

the resonance method should depend on the amplitude of the oscillation. Furthermore, 

the motion of the ferroelastic domains is considered to be a thermally activated process. 

Therefore, the temperature dependence of the elastic modulus and the internal friction 

of LSCF should depend also on measuring frequency.  

Furthermore, the mobility of the ferroelastic domain walls is considered to be 

controlled by various mechanisms, e.g. the interaction between domain walls and 

defects such as grain boundaries, dislocations, surfaces, and cation and anion vacancies 
[4.6-4.9]

. Especially, it is reported that the oxygen vacancies play a dominant role in 

determining the mobility of the ferroelastic domain walls in perovskite oxides 
[4.8, 4.10]

. 

LSCF shows relatively high oxygen nonstoichiometry at high temperatures while it has 

a very small oxygen vacancy concentration under equilibrium conditions at low 

temperatures 
[4.11]

. However, the oxygen vacancies can remain in LSCF even at low 

temperatures if LSCF is cooled from high temperatures so fast that LSCF cannot be 

equilibrated with ambient conditions. Thus the mechanical properties of rhombohedral 

LSCF can be strongly influenced by the presence of the oxygen vacancies due to the 

interaction between the ferroelastic domain walls and the oxygen vacancies.  

In this chapter, the stress-strain relationship of LSCF was investigated by uniaxial 

compression tests. And the amplitude and frequency dependence of the elastic modulus 

and the internal friction of perovskite and related oxides were evaluated by the 

resonance method and dynamic mechanical analysis (DMA) in order to understand the 

influence of ferroelasticity on the mechanical properties. In addition, DMA was also 

performed with LSCF6428 with various oxygen vacancy concentrations, in order to 

understand the influence of the interaction between the ferroelastic domain walls and 

the oxygen vacancies on the mechanical properties.  
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4.2 Experimental 

 

 

4.2.1 Uniaxial compression tests 

 

 

     The uniaxial compression tests were performed in order to evaluate the 

stress-strain curve of LSCF6428, LSC, and LSF in the temperature range between room 

temperature and 1073 K in air. Powders of LSCF6428 were purchased from AGC 

SEIMI CHEMICAL Co., Ltd. while powders of LSC and LSF were synthesized by the 

Pechini method. The detailed procedure for the sample preparation is given in chapter 2. 

The powders of LSCF6428, LSC, and LSF were first compacted into cylinders by 

uniaxial pressing at about 10 MPa and then isostatically pressed at 150 MPa. The 

compacts were sintered in air for 6 hours at 1473 K (LSC), 1573 K (LSCF6428 and 

LSF) and slowly cooled with the rate of 106 K/h to avoid cracking. The sintered 

compacts of LSCF were machined into cylindrical samples of diameter 5.0-5.1 mm and 

height 9.5-10 mm. The surfaces of the samples were polished to a 1 μm finish. The 

deviation in parallelism of the surfaces was less than 10μm. Relative densities of the 

samples were over 95 %. Details of the set-up are given elsewhere 
[4.12]

. A stress up to 

300 MPa was applied by a 20 kN uniaxial actuator (Cormet digital control, Cormet, 

Finland) and measured by 20 kN load cells (Cormet, Finland). The stress rate was ~25 

MPa/min. The deformation of a sample was measured by an extensometer (MTS 

634.31F-25 S/N 1144123, MTS Sensors, USA). The sample was held for 1 hour to 

attain equilibrium before each measurement. Once a measurement was performed, the 

load was removed from the sample and the sample was annealed at 1173 K for 1 hour, 

in order to “reset” the ferroelastic domain switching. Then it was cooled and the next 

measurement was successively performed with the same sample. 

 

 

4.2.2 Resonance measurements 

 

 

The dynamic amplitude dependence of Young’s modulus, E, and internal friction, 

Q
-1

, of LSCF6428 and LN214 was evaluated by the resonance method with an elastic 

modulus meter (EGII-HT, Nihon Technoplus Co., Ltd., Japan). One end of a 

rectangular-shaped sample is rigidly fixed and a flexural oscillation is applied to another 
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end of the sample by an electromagnetic actuator. The force applied to the sample was 

controlled by changing output voltage of the electromagnetic actuator. The resonance 

frequency of the sample was detected by an eddy current sensor. The eddy current 

sensor was calibrated by using a spectral-interference laser displacement meter (SI-F10, 

Keyence Corporation, Japan) to obtain the absolute value of the dynamic amplitude of 

the resonance oscillation. The P(O2) around the sample was controlled to be 1 x 10
-1

 bar 

by flowing a mixture gas of O2 and Ar, and monitored by an yttria-stabilized zirconia 

oxygen sensor. The measurements were repeated until the measured values of the 

Young’s modulus and the internal friction became constant at each temperature, i.e., 

until the sample equilibrated with the surrounding atmosphere.  

 

 

4.2.3 Dynamic mechanical analysis 

 

 

    The temperature dependence of the dynamic Young’s modulus and of the internal 

friction of LSCF6428, LN214, and La0.9Sr0.1Ga0.8Mn0.2O3 (LSGM) at low frequencies 

were measured by using the technique of DMA operating in three-point bend geometry 

(DMS6100, Hitachi High-Tech Science Co., Japan).  The powders of LSCF6428 and 

of LSGM were obtained from AGC SEIMI CHEMICAL Co., Ltd., Japan and KUSAKA 

RARE METAL, Japan, respectively. The powders of LN214 were synthesized by the 

Pechini method. The powders were hydrostatically pressed at 150 MPa and sintered at 

1573 K for 6 hours (LSCF6428) and at 1673 K for 10 h (LN214 and LSGM) in air. The 

sintered samples were cut into a rectangular shape and the surfaces were mirror polished. 

Then, the samples were annealed at 1173 K for 6 hours in air in order to get rid of the 

influence of the machining. The relative densities of the samples were over 95 %. 

   A sinusoidal force with the frequency in the range from 0.01 to 50 Hz was applied at 

the center of the sample. The amplitude of the applied force was determined so that the 

amplitude of the deflection of the sample would be 10 μm. The dynamic Young’s 

modulus, M
*
, and the internal friction, Q

-1
, were calculated from the amplitude of the 

applied force, F, and of the deflection, u, and the phase difference between the applied 

force and the deflection, φ, as follows: 

 i
u

F

wt

l
M exp

4 3

3
*                                                   [4.1] 

)tan(1 Q                                                         [4.2] 

where, l, w, t are the length, the width, and the thickness of the sample, which were 
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approximately 45, 1.3, and 0.7 mm, respectively. The real and imaginary components of 

the dynamic Young’s modulus are referred to as the storage (M’) and the loss (M’’) 

moduli, respectively. The storage and the loss moduli, and the internal friction have the 

following relationship:  

'

''1

M

M
Q                                                           [4.3] 

Therefore, given two of the above three parameters, another parameter can be 

calculated according to the eq. [4.3]. The measurements were performed at 100% N2, 

increasing the temperature from 243 to 773 K with the heating rate of 1.5 K/min and 

changing the frequency of the applied force from 0.01 to 50 Hz.  

 

 

4.2.4 Heat treatment for LSCF6428 

 

 

In order to create different oxygen vacancy concentrations, the samples of 

LSCF6428 were further heat treated in a glass tube in the following three different 

conditions: (1) a sample was heat treated at 873 K under P(O2) of 1 bar for 50 hours and 

cooled to room temperature with the cooling rate of 1.3 K/min; (2) a sample was heat 

treated at 973 K under P(O2) of 10
-2

 bar for 35 hours and quenched to room 

temperature; and (3) a sample was heat treated at 973 K under P(O2) of 10
-4

 bar for 35 

hours and quenched to room temperature. The quenching rate in the conditions (2) and 

(3) was approximately 140 K/min down to 423 K and 18 K/min for the range from 423 

K to room temperature. The P(O2) in the glass tube was controlled by flowing a mixture 

gas of O2 and Ar, and monitored by two zirconia oxygen sensors which were equipped 

at upper stream and downstream of the glass tube. In this paper, the samples heat treated 

in the conditions (1), (2), and (3) are referred to as LSCF1, LSCF2, and LSCF3, 

respectively. The oxygen vacancy concentration is small at 873 K under P(O2) of 1 bar 

(δ ≈ 0.005), while it is comparatively large at 973 K under P(O2) of 10
-2

 bar (δ ≈ 0.032) 

and 10
-4

 bar (δ ≈ 0.074) 
[4.11]

. Therefore, the LSCF1, LSCF2, and LSCF3 were thought 

to have the higher oxygen vacancy concentrations in the order of LSCF3, LSCF2, and 

LSCF1. The samples were analyzed by X-ray diffractometer (D8 DISCOVER, Bruker 

AXS, Germany, CuKα, 40 kV, 40 mA) in 2θ range of 20–100°, after the heat treatments. 

The crystal structure and the lattice parameters of the samples were analyzed by whole 

powder pattern decomposition (WPPD) method with software (DIFFRAC. TOPAS 

ver.4.2.0.2, Bruker AXS, Germany). It was confirmed that the crystal structure of all 



88 

 

three samples were rhombohedral perovskite (space group: R3
-

c).  

There is a possibility that the oxygen vacancy concentration in the samples changes 

at high temperatures during the experiment. In order to estimate the temperature range 

where the oxygen vacancy concentration in the samples remains unchanged, we roughly 

calculated the diffusion time of the oxygen diffusion at each temperature in the 

temperature range from 243 to 773 K using the chemical diffusion coefficient 
[4.13]

. The 

diffusion time, tDiff, can be given by;  

    
4 chem

2

Diff
D

t
t                                                        [4.4] 

Where t is the thickness of the sample and Dchem is the chemical diffusion coefficient. 

The value of Dchem was extrapolated from the data taken from the Ref. [4.13]. The 

diffusion time at room temperature was approximately 3.5 x 10
12

 hours while it was 

1900, 60, and 5 hours at 573, 673, and 773 K, respectively. Thus the estimated diffusion 

time is an order of magnitude greater than the total measuring time (5 hours) below 673 

K. The above estimation was based on the premise that the rate-determining step was 

the diffusion in the sample. If the surface reaction is the rate-determining step, the actual 

diffusion time is considered to be longer than the diffusion time estimated above. 

Therefore, it is believed that the oxygen vacancy concentration does not change below 

673 K.  

 

 

4.3 Results and discussion 

 

 

4.3.1 Uniaxial compression tests 

 

 

Stress-strain relationship at various temperatures 

 

Figure 4.1 (a) shows the stress-strain relationship of LSCF6428 under loading and 

unloading at room temperature in air. Under loading, the stress-strain relationship was 

almost linear at lower stress but a clearly nonlinear behavior was observed above 70 

MPa. The slope of the stress-strain curve became gradually steeper with increasing the 

applied stress above 70 MPa. Then it gradually became milder again above 150 MPa. 

The stress-strain relationship was almost linear again above 200 MPa. The stress-strain 
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relationship under unloading was almost linear. A residual strain was observed after 

unloading. The effective compliance, S, of LSCF6428, which is the first derivative of 

the strain with respect to the stress under loading, had a peak at about 150 MPa. Such a 

nonlinear stress-strain relationship with a residual strain and a peak in the effective 

compliance is also previously observed for LaCoO3 and La1-xCaxCoO3 
[4. 12]

.  

At 473, 673, and 873 K (Figs. 4.1 (b)-(d)), the stress-strain relationship was 

nonlinear even starting from low stress levels. A residual strain was also observed at 

these temperatures. It became smaller with increasing temperature. Under unloading, 

the stress-strain relationship was almost linear at higher stress but it became nonlinear at 

lower stress. A peak was observed in the effective compliance at 473 K. However, the 

stress level at which the peak was observed was much lower than that at room 

temperature. At 673 and 873 K, the peak in the effective compliance was not clearly 

observed. Instead, the effective compliance showed a comparatively large value in the 

neighborhood of zero stress. At 1073 K (Fig. 4.1 (e)), the stress-strain relationship under 

loading was almost linear up to about 250 MPa. The slope of the stress-strain curve 

became slightly steeper above 250 MPa. Contrary to the results below 873 K, the 

stress-strain relationship under unloading was nonlinear when higher stress was applied 

but it was almost linear at lower stress. A residual strain was also observed at this 

temperature. The effective compliance showed a slightly larger value at the beginning of 

loading and at around the maximum stress but it was almost constant over the wide 

range of the applied stress.  

The nonlinear stress-strain relationship with a residual strain, which was observed 

below 873 K, can be interpreted by considering the ferroelasticity. The phase transition 

temperature of LSCF6428 is reported to be 973-1073 K 
[4.14]

. Below the phase transition 

temperature, LSCF6428 has rhombohedral symmetry 
[4.14]

. If LSCF6428 is cooled 

through the phase transition temperature, randomly oriented ferroelastic domains are 

formed in the material. LSCF6428 with rhombohedral symmetry deforms elastically if 

the applied stress is very small. However, when sufficiently large stress is applied to 

LSCF6428 with rhombohedral symmetry, the ferroelastic domains with a proper 

orientation reorient to relax the stress. Considering the above, the stress-strain 

relationship of LSCF6428 with rhombohedral symmetry is expected to be as follows. 

When the applied stress is low, LSCF6428 deforms elastically and thus the stress-strain 

relationship is linear. When the applied stress surpasses a certain stress level, the 

ferroelastic domains start to reorient and relax the applied stress. This makes the 

stress-strain relationship nonlinear and the slope of the stress-strain curve steeper. At a 

certain stress level, the ferroelastic domain switching is completed and only the elastic 
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deformation is observed. Thus the slope of the stress-strain curve becomes milder and 

the stress-strain relationship becomes linear again. This change in the slope of the 

stress-strain curve is reflected on a peak in the effective compliance. During unloading, 

only the elastic deformation can occur and the strain due to the ferroelastic domain 

switching is preserved. Therefore, a residual strain is observed after unloading. The 

above discussion well describes the stress-strain relationship observed at room 

temperature.  

Since the phase transition of LSCF6428 is a second-order phase transition, the 

crystal structure of LSCF6428 gradually changes from rhombohedral to cubic with 

increasing temperature 
[4.14]

. As the crystal structure approaches from rhombohedral to 

cubic, the rhombohedral distortion becomes smaller. Thus the strain which is introduced 

by the domain switching is considered to be smaller with increasing temperature. This 

can explain why the residual strain became smaller with increasing temperature. At 673 

and 873 K, no peak was observed in the effective compliance. Instead the compliance 

showed a large value at very low stress. This suggests that the ferroelastic domain 

switching can occur even from the beginning of the stress application. Under unloading, 

the stress-strain relationship became nonlinear at lower stress above 473 K. This 

nonlinearity at lower stress is possibly associated with back switching of the ferroelastic 

domains, which is driven by residual stress in the sample 
[4.5]

. At these temperatures, the 

domain switching can occur even at low stress. Thus it is possible that the back 

switching can be initiated by small stress such as the residual stress. 

Above 1073 K in air, LSCF6428 has cubic symmetry 
[4.14]

 and the material is no 

longer ferroelastic. Therefore, LSCF6428 can deform only elastically above 1073 K. 

Thus, the stress-strain relationship should be linear with no residual strain and the 

effective compliance should be constant through the loading above 1073 K. However, in 

our measurement, the slope of the stress-strain curve became slightly steeper above 250 

MPa at 1073 K. Lein et al. reported a creep deformation of LSCF at 1073 K and under 

the load less than 300MPa 
[4.15]

. It is possible that the nonlinear stress-strain relationship 

at higher stress at 1073 K is due to the creep deformation. This is consistent with the 

fact that the stress-strain relationship at 1073 K was nonlinear at higher stress, at which 

the creep deformation is more likely to occur, while below 873 K, the nonlinear 

behavior was observed at lower stress. 

The similar irreversible stress-strain relationship and a residual strain were also 

observed in the stress-strain curves of LSC and LSF below 673 K (Figs. 4.2 (a)-(c)) and 

873 K (Figs. 4.3 (a)-(c)), respectively. On the other hand, such an irreversible 

stress-strain relationship was not observed above these temperatures (Figs. 4.2 (d)-(e) 



91 

 

and Figs. 4.3 (d)-(f)). Above 1073 K, the nonlinear stress-strain relationship, which is 

possibly due to the creep deformation, was also observed for both LSC and LSF. The 

phase transition temperatures of LSC and LSF are reported to be 753 K 
[4.16]

 and 1073 K 
[4.17]

, respectively. Thus the irreversible stress-strain relationship was observed only 

below the phase transition temperatures for both LSC and LSF. This fact supports that 

the irreversible stress-strain relationship and a residual strain is related with the 

ferroelastic domain switching. 
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Figure 4.1. Stress-strain relationship and the effective compliance of 

La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) under loading at various temperatures in air. (a) 

room temperature, (b) 473 K, (c) 673 K, (d) 873 K and (e) 1073 K. The dashed line 

indicates the effective compliance. 
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Figure 4.2. Stress-strain relationship and the effective compliance of La0.6Sr0.4CoO3-δ 

(LSC) under loading at various temperatures in air. (a) room temperature, (b) 473 K, (c) 

673 K, (d) 873 K and (e) 1073 K. The dashed line indicates the effective compliance. 
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Figure 4.3. Stress-strain relationship and the effective compliance of La0.6Sr0.4FeO3-δ 

(LSF) under loading at various temperatures in air. (a) room temperature, (b) 473 K, (c) 

673 K, (d) 873 K, (e) 1073 K and (f) 1173 K. The dashed line indicates the effective 

compliance. 
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Cyclic tests of LSC 

 

Figures. 4.4 (a)-(c) show the stress-strain relationship of LSC in loading-unloading 

cycles at room temperature, 873 K, and 1073 K, respectively. In these tests, the first and 

second loading-unloading cycles were subsequently performed without annealing the 

sample. At room temperature, the irreversible stress-strain relationship and a residual 

strain were observed in the first cycle. On the other hand, the stress-strain relationship 

was almost linear under both loading and unloading in the second cycle. No further 

residual strain was created after the second cycle. At 873 K, the stress-strain curve in the 

second cycle was almost the same as the one in the first cycle. The stress-strain 

relationship was linear in both the first and the second cycles and the residual strain was 

not observed after the unloading. At 1073 K, the width of the hysteresis in the second 

cycle was smaller compared with that of the first cycle. The maximum strain in the 

second cycle was slightly larger than that in the first cycle. The residual strain was also 

slightly increased after the second cycle. 

The result of the cyclic test at room temperature can be explained by considering the 

ferroelastic domain switching. As mentioned in the previous section, it is considered 

that the ferroelastic domain switching was completed during the first loading and only 

the elastic deformation can occur after the first loading. Thus in the second cycle, the 

sample is considered to deform only elastically and thus the stress-strain curve was 

linear and no further residual strain was created. On the other hand, LSC has cubic 

symmetry at 873 K. Thus LSC deforms elastically and the stress-strain curve was linear 

with no residual strain. At 1073 K, The maximum strain in the second cycle was slightly 

larger than that in the first cycle. The residual strain was also slightly increased after the 

second cycle. This is possibly because LSC experienced a creep deformation at this 

temperature.  

From the uniaxial compression tests and the cyclic tests, it was found that LSCF 

with rhombohedral symmetry shows the nonlinear stress-strain relationship, which can 

be well explained by the ferroelastic domain switching. This suggests that the apparent 

Young’s modulus of LSCF with rhombohedral symmetry depends on the applied stress. 

Above 473 K, the stress-strain relationship was nonlinear even starting from low stress 

levels. Therefore, the apparent Young’s modulus may be sensitive to the applied stress 

even the applied stress is very small above 473 K.   
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Figure. 4.4 Stress-strain relationship of LSC in the cyclic tests at (a) room temperature, 

(b) 873 K and (c) 1073 K. 1st and 2nd cycles of loading and unloading were 

subsequently repeated without annealing the sample.  
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4.3.2 Resonance method 

 

 

Figure 4.5 (a) shows the Young’s modulus of LSCF6428 as a function of the 

dynamic amplitude at each temperature measured by the resonance method. At room 

temperature and 1073 K, the Young’s modulus of LSCF6428 was independent of the 

dynamic amplitude, while it gradually decreased with increasing the dynamic amplitude 

in the temperature range from 473 to 873 K. Figure 4.5 (b) shows the dynamic 

amplitude dependence of the internal friction of LSCF6428. The internal friction was 

constant at room temperature and 1073 K but it increased with increasing the dynamic 

amplitude between 473 and 873 K. Figures. 4.6 (a) and (b) show the Young’s modulus 

and the internal friction of LN214 as a function of the dynamic amplitude at room 

temperature, 873 K, and 1073 K. Contrary to the case of LSCF6428, the Young’s 

modulus and the internal friction of LN214 were independent of the dynamic amplitude 

at each temperature.  

If the material is ideally elastic, the stress-strain relationship is linear and thus the 

Young’s modulus measured by the resonance method should be independent of the 

dynamic amplitude. Furthermore, there is no energy loss in the material, thus the 

internal friction should be zero. This is considered to be the case of LN214. LN214 can 

be regarded to be almost ideally elastic in this measuring condition.  

On the other hand, the stress-strain relationship of LSCF6428 with rhombohedral 

symmetry is nonlinear due to the ferroelastic domain switching. As shown in the 

previous section, at room temperature, LSCF6428 with rhombohedral symmetry 

deforms elastically if the applied stress is less than 70 MPa. However, the stress-strain 

relationship becomes nonlinear if the applied stress is above 70 MPa. Above 473 K, the 

stress-strain relationship of LSCF6428 with rhombohedral symmetry is nonlinear even 

the applied stress is very small. 

Taking the above into account, the dynamic amplitude dependence of the Young’s 

modulus and the internal friction of LSCF6428 can be explained as follows. At room 

temperature, the Young’s modulus was independent of the dynamic amplitude. This is 

possibly because the applied stress was small and thus LSCF6428 deformed elastically. 

Therefore, the Young’s modulus was independent of the dynamic amplitude and the 

internal friction was small. Above 473 K, the ferroelastic domain switching can occur 

even the applied stress is very small and the stress-strain relationship is nonlinear even 

starting from the lower stress level. Thus the Young’s modulus depended on the 

dynamic amplitude. When the dynamic amplitude increases, the magnitude of the 
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ferroelastic domain switching is considered to be more significant. Therefore, it is 

considered that the Young’s modulus decreased and the internal friction increased with 

increasing the dynamic amplitude. Above 1073 K, LSCF6428 has cubic symmetry 
[4.14]

. 

LSCF6428 with cubic symmetry deforms elastically. Thus the Young’s modulus was 

independent of the dynamic amplitude and the internal friction is very small. 

As described above, the dynamic amplitude dependence of the Young’s modulus and 

the internal friction can be explained by considering the ferroelastic behavior of 

LSCF6428. Therefore, it is considered that the Young’s modulus of LSCF6428 with 

rhombohedral symmetry measured by the resonance method can be affected by the 

ferroelastic domain switching.  
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Figure 4.5. Dynamic amplitude dependence of (a) the Young’s modulus and (b) the 

internal friction of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) in the temperature range 

between room temperature and 1073 K under P(O2) of 1.0 x 10
-1

 bar measured by using 

the resonance method.  
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Figure 4.6. Dynamic amplitude dependence of (a) the Young’s modulus and (b) the 

internal friction of La2NiO4 (LN214) in the temperature range between room 

temperature and 1073 K under P(O2) of 1.0 x 10
-1

 bar measured by using the resonance 

method.  
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4.3.3 Dynamic mechanical analysis 

 

 

Dynamic mechanical analysis for perovskite and related oxides 

 

 

   Figure 4.7 shows the temperature dependence of the storage modulus and of the 

internal friction of the LN214. As well as the results by the resonance method, the 

storage modulus of LN214 monotonically decreased with increasing temperature. 

Although the internal friction slightly increased at around 500 K, it was very small over 

the whole temperature range. 

   Figure 4.8 shows the temperature dependence of the storage modulus and of the 

internal friction of the LSCF1. LSCF1 is considered to have the smallest oxygen 

vacancy concentration and thus to be the least influenced by the oxygen vacancies in the 

prepared three LSCF samples. The storage modulus first decreased slightly and then 

increased gradually with increasing temperature. It decreased drastically above 400 K, 

as is seen in the resonance measurement. The temperature at which the drastic decrease 

was observed shifted higher with increasing frequency. Two peaks were observed in the 

internal friction. A broad and asymmetric peak was observed above 400 K (P1) and a 

smaller peak was observed below 400 K (P2). The onset of the peak P1 and the drastic 

decrease of the storage modulus were observed at almost the same temperature for each 

frequency. The peak P1 shifted to higher temperature with increasing frequency. This 

means the cause of the peak P1 is a thermally activated process. Similar temperature 

dependence of the storage modulus and of the internal friction has been observed with 

LaAlO3 with rhombohedral symmetry
 [4.6, 4.7]

. The storage modulus of LaAlO3 also 

decreases significantly with increasing temperature, and the decrease is accompanied by 

a broad peak which depended on frequency in the internal friction. Such a decrease in 

the storage modulus and a peak in the internal friction can be explained by the motion 

of the ferroelastic domains 
[4.6-4.9, 4.18, 4.19]

. The motion of the ferroelastic domains is 

often approximately described by an anelastic relaxation 
[4.6, 4.8, 4.18]

. The storage 

modulus, M’, and the internal friction, Q
-1

, of a standard anelastic solid can be given by; 
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where ω = 2πf is the angular frequency of the DMA experiment, MU is the unrelaxed 



102 

 

modulus, MR (< MU) is the relaxed modulus, Δ = (MU - MR) /MR, τ is the relaxation time, 

and τε = (1+Δ)
-1/2

τ 
[4.20]

. The domain wall unpinning is considered to be a thermally 

activated process 
[4.6, 4.8, 4.18]

. Thus, the relaxation time for the motion of the ferroelastic 

domain walls, τ, follows the Arrhenius relationship; 











RT

E
exp0                                                      [4.7] 

where τ0, E, R, and T are a constant, the activation energy, the gas constant, and the 

absolute temperature, respectively. When the temperature is sufficiently low, i.e. ωτ, ωτε 

>> 1, the relaxation time is too large and the ferroelastic domain walls are unable to 

unpin themselves on the timescale of the applied stress. Thus the ferroelastic domain 

walls are effectively frozen. In this case, the storage modulus is equal to the unrelaxed 

modulus, MU. Conversely, when the temperature is high enough, i.e. ωτ, ωτε << 1, the 

relaxation time is small enough and the ferroelastic domain walls can be moved by the 

applied stress. As a result, the storage modulus decreases from the unrelaxed value, MU, 

to the relaxed value, MR. The maximum in the internal friction occurs when ωτ = 1. 

Therefore, a peak in the internal friction accompanied by the decrease in the storage 

modulus is observed. However, the actual motion of the ferroelastic domain walls is 

controlled by various mechanisms, e.g. the interaction between domain walls and 

defects such as grain boundaries, dislocations, surfaces, and cation and anion vacancies 
[4.6-4.9]

. Therefore, it is reported that there is a distribution of the relaxation time for the 

motion of the ferroelastic domain walls in perovskite oxides 
[4.7, 4.9, 4.19]

. This distribution 

of the relaxation time can lead to a broad and asymmetric peak instead of a sharp 

symmetric peak described by eq. [4.6] in the internal friction 
[4.7, 4.9, 4.19]

. Considering 

this, the broad and asymmetric peak (P1) in the internal friction of LSCF6428 may 

reflect on the distribution of the relaxation time for the motion of the ferroelastic 

domain walls. 

   Figure 4.9 shows the temperature dependence of the storage modulus and of the 

internal friction of the LSGM. The storage modulus of LSGM gradually decreased with 

increasing temperature below 500 K but it drastically decreased above 500 K. A peak 

which depended on frequency was observed in the internal friction above 500 K. LSGM 

is known to have orthorhombic symmetry below 500 K and rhombohedral symmetry 

above 500 K [--]. LSGM with orthorhombic is not ferroelastic while LSGM with 

rhombohedral is ferroelastic [--]. As well as the case of LSCF1, the drastic decrease and 

the peak in the internal friction which depends on frequency were observed in the 

temperature range where LSGM is ferroelastic. This results also support that the cause 

of the drastic decrease is the ferroelastic domain switching.  
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Further studies will be required to identify the cause of the peak P2 and the 

following anomaly in the storage modulus observed in the temperature range where the 

ferroelastic domains are likely to be frozen. They were not observed in the resonance 

measurement. In fact, such a small internal friction peak accompanied by the anomaly 

in the storage modulus was also observed with LaAlO3 at low temperatures 
[4.7]

. 

Harrison et al. investigated the temperature dependence of the storage modulus and the 

internal friction of LaAlO3 with various dynamic amplitudes. They found that the 

storage modulus of LaAlO3 monotonically decreases with increasing temperature 

without the anomaly in the storage modulus and the small internal friction peak when 

the dynamic amplitude is small. However, the small peak and the following anomaly in 

the storage modulus appeared when the dynamic amplitude was large. Harrison et al. 

attributed the cause of the small peak to the partial domain reorientation of weakly 

pinned domains 
[4.7]

. They optically confirmed the small number of the ferroelastic 

domains could undergo small-amplitude displacements even at low temperatures. It is 

possible that there are weakly pinned domains also in LSCF6428 and the motion of 

these domains caused the peak P2.  

 

 

Oxygen vacancy concentration dependence 

 

 

   Figure 4.10 (a) shows the temperature dependence of the storage modulus and of the 

internal friction of LSCF2. The storage modulus of LSCF2 decreased monotonically 

with increasing temperature and depended on frequency. The slight decrease and the 

subsequent gradual increase which were observed in the storage modulus of LSCF1 

were not observed. The storage modulus of LSCF2 was significantly larger than that of 

LSCF1 particularly at low temperatures. The peaks P1 and P2 were not clearly observed 

in the internal friction of LSCF2. On the other hand, a small shoulder peak which 

depended on frequency was observed between 300 and 400 K (P3) as shown in Fig. 

4.10 (b). Figure 4.11 (a) shows the temperature dependence of the storage modulus and 

of the internal friction of LSCF3. The storage modulus of LSCF3 decreased 

monotonically with increasing temperature and depended on frequency as is the case in 

LSCF2. However, it showed higher values than that of LSCF2. The peaks P1 and P2 in 

the internal friction were both barely observed while the peak P3 became more 

noticeable and it clearly depended on frequency as shown in Fig. 4.11 (b). From this 

result, it is suggested that the peak P3 is related with one or more relaxation processes 
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and the peak height of the peak P3 depends on the oxygen vacancy concentration. 

Cordero has found that oxygen vacancies in SrTiO3-δ with δ < 0.01 can give rise to at 

least three anelastic relaxation processes associated with hopping of isolated vacancies, 

reorientation of pairs, and formation/dissolution of pairs and other clusters 
[4.23]

. LSCF2 

and LSCF3 is considered to have larger oxygen nonstoichiometry than δ = 0.01. 

Therefore, it is likely that the peak P3 was caused by the above mentioned mechanisms, 

which were related with the movement of the oxygen vacancies in LSCF6428.  

The reason that peaks P1 and P2 became smaller and the storage modulus became 

larger with increasing the oxygen vacancy concentration can be possibly explained by 

the pinning effect of oxygen vacancies 
[4.6-4.9]

. If this occurs in LSCF 2 and 3, the 

motion of the ferroelastic domain walls is suppressed. This lead to the smaller peak in 

the internal friction and higher storage modulus, compared to those of LSCF6428 with 

no oxygen vacancies. It is also reported that the ferroelastic domain walls become 

increasingly insensitive to point defects as the domain wall thickness increases 
[4.7, 4.24]

. 

The domain wall thickness increases with increasing temperature 
[4.7, 4.24]

. This means 

that the domain walls become increasingly insensitive with increasing temperature. The 

storage moduli of LSCF2 and 3 exhibited similar values with that of LSCF1 at high 

temperatures although they were significantly larger than that of LSCF1 at lower 

temperatures. This may be because the effect of the domain pinning by the oxygen 

vacancies is significant in LSCF2 and 3 at lower temperatures while it becomes less 

influential at higher temperatures due to the growth of the thickness of the ferroelastic 

domain walls. The above discussion suggests that the oxygen vacancies play a vital role 

in determining the mobility of the ferroelastic domains in LSCF6428 especially at low 

temperatures. On the other hand, above 673 K, the diffusion time of oxygen diffusion 

becomes almost comparable to the total measuring time. Therefore, it is possible that 

the difference in the oxygen vacancy concentration of LSCF1, 2, and 3 became smaller 

at high temperatures. This could be also the reason why the storage moduli of LSCF2 

and 3 exhibited similar values with that of LSCF1 at high temperatures. Furthermore, 

the internal friction and the storage modulus can be influenced by the crystal structure 

change, which was driven by a change in the oxygen vacancy concentration. It is 

reported that the crystal structure of LSCF becomes closer to cubic when the oxygen 

vacancy concentration in LSCF is higher 
[4.25, 4.26]

. This was also demonstrated by our 

XRD analysis. The rhombohedral angles of LSCF1, LSCF2, and LSCF3 were 60.32, 

60.28, and 60.17 degrees, respectively. The crystal structure is closer to cubic if the 

rhombohedral angle is closer to 60 degree. Therefore, the crystal structure of LSCF1, 

LSCF2, and LSCF3 were thought to be closer to cubic in the order of LSCF3, LSCF2, 
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and LSCF1. The extent of the macroscopic strain due to the motion of the ferroelastic 

domains depends on the magnitude of the rhombohedral distortion. Thus the energy 

dissipation and the decrease in the storage modulus, due to the motion of the ferroelastic 

domains, are more suppressed if the crystal structure of LSCF6428 is closer to cubic.  

It can be said that the motion of the ferroelastic domain walls and the oxygen 

vacancies have a strong influence on the storage modulus and the internal friction of 

LSCF6428 with rhombohedral symmetry, especially at low temperatures.   
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Figure 4.7. Temperature dependence of storage modulus (closed symbols) and of 

internal friction (open symbols) of La2NiO4 annealed at 873 K under the P(O2) of 1 bar 

(LSCF1) in the frequency range from 0.01 to 50 Hz. 
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Figure 4.8. Temperature dependence of storage modulus (closed symbols) and of 

internal friction (open symbols) of LSCF6428 annealed at 873 K under the P(O2) of 1 

bar (LSCF1) in the frequency range from 0.01 to 50 Hz. 
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Figure 4.9. Temperature dependence of storage modulus (closed symbols) and of 

internal friction (open symbols) of LSGM annealed at 873 K under the P(O2) of 1 bar 

(LSCF1) in the frequency range from 0.01 to 50 Hz. 
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Figure 4.10. Temperature dependence of storage modulus (closed symbols) and of 

internal friction (open symbols) of LSCF6428 annealed at 973 K under the P(O2) of 10
-2

 

bar (LSCF2) in the frequency range from 0.01 to 10 Hz. 
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Figure 4.11. Temperature dependence of storage modulus (closed symbols) and of 

internal friction (open symbols) of LSCF6428 annealed at 973 K under the P(O2) of 10
-4

 

bar (LSCF3) in the frequency range from 0.01 to 10 Hz.  
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4.4 Conclusions 

 

 

The stress-strain relationship of LSC, LSCF6428 and LSF was evaluated by the 

uniaxial compression tests in the temperature range between room temperature and 1173 

K. The nonlinear stress-strain relationship with a residual strain was observed below the 

phase transition temperature. On the other hand, the relationship was almost linear and 

almost no residual strain was observed above the phase transition temperature. Above 

1073 K, the stress-strain relationship of LSCF seemed to be affected by a creep 

deformation. These results suggest that the stress-strain relationship of LSC, LSCF6428 

and LSF is influenced by the ferroelastic domain switching below the phase transition 

temperature. Thus it is possible that the apparent Young’s modulus of LSCF with 

rhombohedral symmetry depends on the applied stress. Above 473 K, the stress-strain 

relationship was nonlinear even starting from low stress levels. Therefore, the apparent 

Young’s modulus may be sensitive to the applied stress even the applied stress is very 

small above 473 K.  

The dynamic amplitude dependence of the Young’s modulus and the internal friction 

of LSCF6428 and LN214 was evaluated. The Young’s modulus and the internal friction 

of LN214 were independent of the dynamic amplitude at each temperature. The Young’s 

modulus of LSCF6428 was independent of the dynamic amplitude at room temperature 

and 1073 K, while it gradually decreased with increasing the dynamic amplitude in the 

temperature range from 473 to 873 K. The internal friction was constant at room 

temperature and 1073 K but it gradually increased with increasing the dynamic 

amplitude between 473 and 873 K. The above dependence can be explained by the 

ferroelastic behavior of LSCF6428. Thus the drastic decrease in the Young’s modulus 

observed in the resonance measurement at low temperatures may be associated with the 

ferroelasticity. 

The temperature dependence of the dynamic Young’s modulus and of the internal 

friction of LN214, LSCF6428, and LSGM was investigated by using the technique of 

dynamic mechanical analysis. The storage modulus of LN214 monotonically decreased 

with increasing temperature. Although the internal friction slightly increased at around 

500 K, it was very small over the whole temperature range. The significant decrease in 

the storage modulus of LSCF6428 with low oxygen vacancy concentration (LSCF1) 

and a following broad and asymmetric peak (P1) was observed. Such a significant 

decrease in the storage modulus and a broad peak in the internal friction were also 

observed with LSGM with rhombohedral symmetry. This can be interpreted as due to 
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the motion of ferroelastic domain walls with a distribution of the relaxation time. The 

storage modulus of the LSCF6428 with higher oxygen vacancy concentration (LSCF2 

and 3) was significantly larger than that of LSCF1 particularly below at low 

temperatures. The P1 was barely observed while a small peak (P3) was observed in the 

internal friction of LSCF2 and 3. The peak height of P3 increased with increasing the 

oxygen vacancy concentration. It was suggested that the peak P3 was related with the 

movement of the oxygen vacancies. The increase in the storage modulus and the 

suppression of the peak P1 with increasing the oxygen vacancy concentration can be 

explained mainly by the pinning effect of the oxygen vacancies. This suggests that the 

oxygen vacancies play a vital role in determining the mobility of the ferroelastic 

domains in LSCF6428. 

From the above measurement, it was found that the elastic modulus of ferroelastic 

perovskite oxides was strongly influenced by the ferroelastic domain switching. It is 

possible that the drastic decrease in the Young’s modulus of LSCF6428 observed in the 

resonance measurement at low temperatures is also associated with the ferroelasticity. 

Furthermore, it was suggested that the oxygen vacancies can influence the mechanical 

properties of LSCF even at low temperatures through the interaction with the 

ferroelastic domain walls. 
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Chapter 5 

 

Simulation of the stress distribution in energy conversion devices with 

perovskite and related oxides 

 

 

5.1 Introduction 

 

 

So far we found that the mechanical properties of perovskite and related oxides 

significantly change at high temperatures and under controlled atmospheres due to the 

changes in defect concentrations and the ferroelastic domain switching. The changes in 

mechanical properties due to the changes in defect concentration and the ferroelastic 

domain switching can be a critical problem because those oxides are often used as 

components of the energy conversion devices and exposed to high temperatures and a 

certain oxygen potential gradient. Thus the actual stress distribution in the energy 

conversion devices during operation can be influenced by the change in the mechanical 

properties of perovskite and related oxides. So far, a number of numerical simulations 

have been performed in order to evaluate the stress distribution under operation and 

understand mechanisms of the mechanical degradation 
[1-5]

. In most of such studies, 

however, the data of mechanical properties at room temperature in air have been 

frequently used 
[1-5]

, because the data at high temperatures and under controlled 

atmospheres are limited. It is thus important to evaluate the influence of the change in 

the mechanical properties on the stress distribution in the energy conversion devices. 

It is considered that the change in the defect concentration will be more influential at 

higher temperatures. On the other hand, the influence of the ferroelastic domain 

switching becomes most significant in the low and medium temperature ranges because 

the low symmetry phase of the materials often exhibit the ferroelasticity. 

Therefore, in this study, two cases of simulations were performed in order to 

separately examine the influence of the change in the defect concentration and the 

domain switching on the stress distribution in the energy conversion devices. In one 

simulation, the stress distribution in a simple planer SOFC cell was calculated, 

considering the P(O2) dependence of the mechanical properties of LSCF6428. In 
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another study, the ferroelastic behavior of LSCF6428 was described by shape memory 

effect model and the stress distribution in a simple planer cell with LSCF cathode was 

calculated by ANSYS.  

 

 

5.2 Influence of the change in oxygen vacancy concentration on the stress 

distribution in a simple planer SOFC cell 

 

 

5.2.1 Modeling  

 

 

   The stress distribution in a simple electrolyte supported planer-type SOFC cell was 

calculated. The anode, the electrolyte, and the cathode of the cell were Ni-YSZ cermet 

(Ni-YSZ), 8% yittria stabilized zirconia (8YSZ), and LSCF6428, respectively. 

LSCF6428 and Ni-YSZ cermet were assumed to be baked on 8YSZ at 1273 K and then 

the cell was cooled to 873, 973, and 1073 K. The in-plane biaxial stress in each 

component was calculated at each temperature. The thicknesses of LSCF6428, 8YSZ, 

and Ni-8YSZ cermet were assumed to be 50, 100, and 50 μm, respectively (Fig. 5.1 (a)). 

We assumed that there was an effective reaction zone (ERZ) in the cathode, and for 

simplicity, the oxygen potential linearly changed in the ERZ. The thickness of the ERZ 

was assumed to be 4μm, according to literatures 
[6, 7]

. The change in oxygen potential in 

the ERZ was set to be comparable to the overpotential, η, of 100 mV (Fig. 5.1 (b)). At 

1273 K, LSCF6428 and Ni-YSZ cermet were jointed to 8YSZ and there was no stress in 

the cell. However, at 873, 973, and 1073 K, the strains resulting from the thermal and 

the chemical expansion generate stresses to maintain dimensional compatibility between 

materials. The cell was assumed to be simply supported and was free to deform without 

restraint. Also we assumed that the lateral dimension of the cell was much greater than 

its thickness and the bending was small with the curvature, κ. The general solution of 

this problem for the in-plane biaxial stress, σ, as a function of position from the origin, z, 

was given by L. B. Freund et al. 
[8, 9]

 as follows; 

 

                                                                   [5.1] 

 

where E
Λ

 is the effective biaxial modulus, which is related to Young’s modulus, E, and 

 )()()(ˆ zzzzE  
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Poisson’s ratio, μ, by 

 

                                   [5.2] 

 

The κ and z
_

 are given by the following equations, respectively; 

 

                                                                   [5.3] 

 

 

 

                                                                   [5.4] 

 

In the above equations, In and Jn are given by; 

 

                                                                   [5.5] 

 

and 

 

                                                                   [5.6] 

 

where h1 and h2 are the z-position of each material and ε is strain. The origin of the 

z-axis was set at the interface between the anode and the cathode. 

   In order to evaluate the influence of the P(O2) dependence of the mechanical 

properties on the stress distribution, the following three cases are considered; the 

Young’s modulus and the Poisson’s ratio of LSCF6428 are independent of temperature 

and P(O2) and have the value at room temperature, 163 GPa and 0.29, respectively (case 

1); the Young’s modulus and the Poisson’s ratio of LSCF6428 depend on temperature 

but independent of P(O2), and have the values under the P(O2) of 0.1 bar (case 2); the 

Young’s modulus and the Poisson’s ratio of LSCF6428 depend on both temperature and 

P(O2) (case 3). The Young’s modulus and the Poisson’s ratio of LSCF6428 and their 

P(O2) dependence were taken from the data in chapter 3. The Young’s modulus and the 

Poisson’s ratio of 8YSZ and Ni-YSZ, and the thermal expansion coefficients of 

LSCF6428, 8YSZ, Ni-YSZ were taken from literatures and summarized in Table 5.1.  
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Table 5.1 Components of the planer cell and their mechanical properties and thermal 

expansion coefficient. 

 

 

Constants LSCF6428 8YSZ Ni-YSZ 

 

Young’s moudulus / 

GPa 

-- 873 K: 139 [11] 873 K: 55 [13] 

-- 973 K: 144 [11] 973 K: 55 [13] 

-- 1073 K: 152 [11] 1073 K: 55 [13] 

 

Poisson’s ratio 

-- 873 K: 0.41 [11] 873 K: 0.39 [14] 

-- 973 K: 0.40 [11] 973 K: 0.39 [14] 

-- 1073 K: 0.41 [11] 1073 K: 0.39 [14] 

Thermal expansion 

coefficient / K
-1

 

1.32 x 10
-5 

[10] 1.05 x 10
-5 

[12] 1.26 x 10
-5 

[15] 
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Fig. 5.1 (a) Overall view of the planer cell, (b) Cathode part and the effective reaction 

zone (ERZ) in the cathode of the planer cell.  
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5.2.2 Simulation results 

 

 

Figures 5.2 (a)-(c) show the in-plane biaxial stress distribution in the planer cell 

along the z-axis at 873, 973, and 1073 K, respectively. At each temperature, the anode 

(Ni-YSZ) was exposed to a tensile stress while the electrolyte (8YSZ) was essentially 

exposed to a compressive stress. The stress discontinuously changed at the interface 

between the anode and the electrolyte. The stress gap at the interface between the anode 

and the electrolyte was larger at lower temperature. The stress distribution in the anode 

was almost the same in the three cases. In the electrolyte, the compressive stress became 

larger with approaching to the cathode (LSCF6428) at each temperature. At the 

interface between the electrolyte and the cathode, the stress discontinuously changed 

and the tensile stress was generated at the cathode-side. The tensile stress at the cathode 

side was largest at 1073 K and decreased with decreasing temperature. The tensile stress 

in the cathode significantly decreased in the ERZ with increasing distance from the 

interface. Outside the ERZ, the stress gradually decreased with increasing distance from 

the interface. At 873 K, the cathode was exposed to the tensile stress while it was 

mostly exposed to the compressive stress at 973 and 1073 K aside from the ERZ.  

   There was a certain difference in the stress distribution in case 3, and cases 1 and 2. 

This is because the effective biaxial modulus of LSCF6428 at room temperature is 

higher than the one at higher temperatures. The difference in the stress distribution was 

more significant near the cathode. The compressive stress in the electrolyte at the 

interface between the electrolyte and the cathode in case 3 was larger than that of cases 

1 and 2. Accordingly, the tensile stress in the cathode at the interface and the 

compressive stress in the cathode in case 3 are also larger than those of cases 1 and 2. 

On the other hand, almost no difference in the stress distribution in case 1 and case 2 is 

observed at each temperature. This is not surprising at 873 and 1073 K since the 

Young’s modulus and the Poisson’s ratio of LSCF6428 have no great dependence on 

P(O2) and thus the effective biaxial modulus is also independent of P(O2). At 973 K, the 

Young’s modulus of LSCF6428 increases by approximately 40 % in the ERZ with 

approaching to the interface due to the changes in the oxygen potential. However, the 

difference in the tensile stress in the cathode at the interface in cases 1 and 2 was only ~ 

10 MPa. This is partly because the Poisson’s ratio of LSCF6428 simultaneously 

decreases about 30 % with approaching to the interface. Thus the difference in the 

effective biaxial modulus at the interface and another edge of the ERZ is only 

approximately 20 %. This result suggests that the P(O2) dependence of the Young’s 
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modulus and the Poisson’s ratio of LSCF6428 does not have the significant influence on 

the stress distribution in SOFCs. 

 

 

 

 

 

Fig. 5.2 Stress distribution in the planer cell along the z-axis (a) at 873 K, (b) at 973 K, 

and (c) at 1073 K. The z-axis lies perpendicular to the cell and the origin is at the 

interface between the anode and the electrolyte.  
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5.3 Influence of the ferroelastic domain switching on the stress distribution in a 

simple planer SOFC cell 

 

 

5.3.1 Modeling using shape memory effect (SME) model 

 

 

The ferroelastic materials have a characteristic stress-strain relationship. That is, 

under loading, the stress-strain relationship is linear when applied stress is low. 

However, it becomes nonlinear when the applied stress surpasses a certain value due to 

the ferroelastic domain switching. It again becomes linear after the ferroelastic domain 

switching is completed. Under unloading, the material deforms basically elastically, 

preserving the strain due to the ferroelastic switching. Thus the stress-strain relationship 

is linear under unloading and the residual strain is observed after unloading. If the 

material is successively exposed to a loading and unloading cycle again, then the 

material deforms only elastically. The residual strain will disappear and the material 

recovers its original shape if the material is heated above the phase transition 

temperature. 

In order to describe such a characteristic stress-strain relationship, the shape memory 

effect model (SME) was applied in this study 
[16-18]

. The shape memory alloy (SMA) is 

a metallic alloy that “remembers” its original shape. This alloy has high-symmetry 

austenite (A) phase at high temperatures and low stress. On the other hand, it has 

low-symmetry martensite (M) phase at low temperatures and high stress. The SMA 

undergoes a martensitic phase transformation between those two phases. This reversible 

martensitic phase transformation results in unique effects: the pseudoelasticity (PE) and 

the shape memory effect (SME). The pseudoelasticity is associated with a 

stress-induced phase transformation between a parent phase (austenite or twinned 

martensite) and a product phase (detwinned martensite) at constant temperature. Figure 

5.1 (a) shows the stress-strain relationship of a pseudoelastic material. When the applied 

stress is low, the material is assumed to have its parent phase which presents an elastic 

behavior (line AB in Fig. 5.1 (a)). If the applied stress surpasses a certain value (σH) 

then the material undergoes a stress-induced phase transformation to the product phase 

(curve BC). At a sufficiently high stress (point C), the phase transformation is 

completed and further loading leads to an elastic behavior of the product phase (line 

CD). If the material is unloaded from D, then the material deforms elastically (line DE). 

If the parameter σL is positive, then an inverse transformation from the product phase to 
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the parent one takes place until all the product phase disappears (curve EF). At the point 

F, the inverse transformation is completed. This means there is only the parent phase in 

the material. Thus the material deforms elastically under lower stress (line FA) and the 

material recovers completely its original shape. The parameters σH and σL decrease with 

decreasing temperature and the σL eventually becomes negative at a certain temperature. 

This case is shown in Figure 5.1 (b). A distinct feature of this case is that the material 

does not undergo the inverse transformation during unloading and the residual strain 

due to the twinning can be observed after unloading (Point E in Fig.5.1 (b)). If the 

material is heated to a certain temperature, then there exists only the parent phase in the 

material. Consequently, the residual strain disappears and the material recovers its 

original shape. This effect is called SME.  

 

 

 

Fig. 5.3 Typical stress-strain curve of shape memory alloys (a) at high temperatures 

(PE) and (b) at low temperatures (SME). 

 

 

Therefore, both of the SME and the ferroelastic behavior observed in perovskite and 

related oxides have essentially the same mechanism; both are related with the twinning 

in the low symmetry phase and the disappearance of the twins in the high symmetry 

phase. Thus it may be possible to describe the ferroelastic behavior of perovskite and 

related oxides by SME model. 

An engineering simulation software, ANSYS, can simulate the SME behavior of 

shape memory alloys. Therefore, in this study, the ferroelastic behavior of LSCF6428 

was simulated by using ANSYS. Figure 5.4 (a) shows a typical stress-strain curve of 
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SME behavior. In ANSYS, this behavior is modeled by a broken line as shown in 

Fig.5.4 (b). Also, the stress-temperature diagram of SMA is modeled as shown in 

Fig.5.4 (c). The lines AB and DE correspond to the elastic regions of twinned and 

detwined phases, respectively. The line BC indicates the region in which the twinning is 

undertaken. In ANSYS, such a stress-strain curve and the thermal loading behavior of 

SMA are determined by seven constants. Those seven constants are summarized in table 

5.2. Em is the elastic modulus, which is assumed to be identical for twinned and 

detwinned phases. ε
_

L is the maximum transformation strain which determines the 

magnitude of a residual strain. R is the elastic limit, which determines the maximum 

stress below which the material can deform only elastically. h is the hardening 

parameter, which determines the slope of the line BC. m is the lode dependency 

parameter, which is related to the uniaxial elastic limit in compression σH and in tension 

σT by the relation; 

 

                                                [5.7] 

T0 is the reference temperature. β is the temperature scaling parameter which determines 

the slope of the elastic limit above the reference temperature. In order to determine the 

above seven parameters, the stress-strain curve of LSCF6428, which was measured by 

the uniaxial compression tests, was fitted by a broken line using a broken line regression 

analysis program. Figure 5.5 shows the stress-strain curve of LSCF6428 and the fitting 

lines at each temperature. The obtained seven constants at each temperature were 

summarized in table 5.2. Since the elastic modulus is assumed to be identical for 

twinned and detwinned phases in ANSYS, the discrepancy was observed between the 

fitting lines and the experimental results under lower stress at room temperature. At 

higher temperatures, the nonlinear stress-strain relationship is observed from almost the 

onset of the loading. Because of this, the elastic limit was estimated to be higher than 

the actual ones. On the other hand, the residual strain was well described by fitting lines 

and the slope of the stress-strain curve under unloading also agreed well with the 

experimental results. 
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Figure 5.4 (a) shows a typical stress-strain curve of SMA; (b) the stress-strain curve of 

SMA modeled by ANSYS; and (c) stress-temperature diagram of SMA. 

 

 

Table 5.2 Constants to model the shape memory effect. 

Constants Properties 

Em Elastic modulus 

ε
_

L 
Maximum transformation strain 

R Elastic limit 

h Hardening parameter 

m Lode dependency parameter 

T0 Reference temperature 

β Temperature scaling parameter 
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Table 5.3 Constants to model the shape memory effect at each temperature determined 

from the stress-strain curve of LSCF6428. 

Temperature / 

K 

Em  

/ MPa 
ε
_

L  
R  

/ MPa 

h 

/ MPa 

m T0 

/ K 

Β 

/ MPa・K
-1

 

298 112 0.00325 78.0 23.6 0 653 1E+10 

473 68.5 0.00316 30.1 10.7 0.06 653 1E+10 

673 73.0 0.00219 26.5 13.8 0.08 653 1E+10 

873 135 0.00139 16.1 12.8 0.01 653 1E+10 

 

 

  

  

 

Fig. 5.5 The stress-strain curve of LSCF6428 and the fitting lines at each temperature. 
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5.3.2 Simulation of uniaxial compression tests and a thermal cycle 

 

 

   The uniaxial compression tests of LSCF6428 and a thermal cycle were simulated by 

ANSYS, using the seven parameters obtained by the fitting, in order to see if the SME 

model can describe the characteristic ferroelastic behaviors of LSCF6428. The sample 

dimension in the simulation was set to be the same as the one used in the uniaxial 

compression tests performed in the chapter 4; radius 2.5 mm × height 10mm. 

Considering the axial symmetry, the behavior of the rectangle shape with the dimension 

of 2.5 mm × 10mm was simulated as shown in Fig. 5.6. The frictionless support was 

applied on one short side and one long side of the rectangle. A time-dependent pressure 

was applied to another short side of the rectangle from 0 to 350 MPa. Figure 5.7 shows 

the uniaxial compression test at room temperature. Not surprisingly, the stress-strain 

curve was the same as the fitting curve. After the first loading and unloading cycle, 

which was drawn by a blue line, the second loading and unloading cycle was 

subsequently applied. In the second cycle, then the sample deformed only elastically, 

preserving the residual strain. This result agrees well with the result of the actual cyclic 

uniaxial compression tests. Similarly, the stress-strain curve was the same as the fitting 

curve and the results of the cyclic tests were well described at other temperatures. 

   The effect of the thermal cycle was also simulated with the same sample model. 

Figure 5.8 (a) shows the loading and thermal history of this simulation as a function of 

normalized time. The sample was first exposed to a loading and unloading cycle at 

room temperature and then heated to 1173 K and cooled to room temperature without 

stress. Figure 5.8 (b) shows the compressive stress and the compressive strain of the 

sample. After the loading and unloading cycle (t = 0.5), the residual strain was observed. 

During heating, the sample expanded linearly but when the temperature reached at 973 

K, which was assumed to be the phase transition temperature, the strain of the sample 

discontinuously changed, this means that the strain due to the ferroelastic twinning was 

released at the phase transition temperature. Above 973 K, the sample again expanded 

linearly. After the cooling, the sample completely recovered its original shape. Thus the 

strain due to the twinning which was generated in the loading process was completely 

released after the thermal cycle. 
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Fig. 5.6 Geometry of the model for the uniaxial compression tests 

 

 

Fig. 5.7 Simulation result of the cyclic uniaxial compression test 
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Figure 5.8 (a) Loading and thermal history on the sample, (b) compressive stress and 

compressive strain of the sample as a function of normalized time. 

 

 

5.3.3 Simulation of the stress distribution in a simple planer cell during cooling process 

 

 

   The stress distribution in a simple planer cell during cooling process was simulated. 

The cell was an anode-supported cell and composed of Ni-8YSZ cermet, 8YSZ, 10 % 

gadolinium doped ceria (10GDC), and LSCF6482, which were used as an anode, an 

electrolyte, a diffusion layer, and a cathode of the cell, respectively. Figure 5.9 (a) 

shows the geometry of the model of the planer cell. The length of the cell was 40 mm 

and the thicknesses of an anode, an electrolyte, a diffusion layer, and a cathode were 

400, 12, 3, 22 μm, respectively. Considering the symmetry of the cell, the half part of 

the two dimensional cell was simulated. The frictionless support was applied on one 

short side of the cell and the movement in direction of y-axis of bottom-right vertex of 
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the cell was fixed (Fig. 5.9 (b)). The following condition was considered; the cell was 

cooled from 873 K to 298 K. At 873 K, there is no stress in the cell while the stress is 

generated in the cell during cooling due to the shrinkage of each component with 

different TEC. The values of the Young’s modulus, the Poisson’s ratio, and TEC of 

Ni-8YSZ cermet 
[15, 19]

, 8YSZ 
[11, 12]

, 10GDC 
[11, 20]

 were taken from literatures. The 

Young’s modulus and the Poisson’s ratio of the above materials were assumed to be 

temperature dependent. In order to evaluate the influence of the ferroelasticity of 

LSCF6428, the following 2 cases were considered. In case 1, the SME model was 

applied for LSCF6428. In case 2, LSCF6428 was assumed to be elastic and have the 

values of the Young’s modulus and Poisson’s ratio at room temperature. The phase 

transition temperature was assumed to be 973 K 
[21]

.  

 

 

 

 

Fig. 5.9 (a) Components of the planer cell and (b) Boundary condition of the planer cell. 
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   Figures 5.10 (a) and (b) show the contour plot of the displacement of the cell in 

y-direction in cases 1 and 2, respectively. The black solid line shows the original shape 

of the sample. In both cases, the displacement in y-direction was larger at the center of 

the cell and the cell was convexed upward. Figures 5. 11 (a)-(b) show the contour plot 

of the maximum and minimum principle stress in the cell in cases 1 and 2. In both cases, 

the tensile stress was generated in cathode layer and was almost uniformly distributed in 

the cathode layer. On the other hand, the electrolyte layer was exposed to a compressive 

stress and the compressive stress is also almost uniformly distributed in the electrolyte 

layer. Figure 5.12 (a) and (b) show the tensile stress and the displacement at the center 

of the cell (upper left corner of the model) in y-direction as a function of temperature in 

case 1 and 2, respectively. In case 2, the tensile stress linearly increased with decreasing 

temperature, while it non-linearly increased with decreasing temperature in case 1. Over 

the whole temperature range, the tensile stress in case 2 was larger than that in case 1. 

The difference between both cases was most significant at around 473 K. At this 

temperature, the tensile stress in case 2 was almost two times larger than that in case 1. 

At room temperature, the tensile stress in case 2 was about 30% larger than that in case 

1. The displacement in y-direction in case 1 was always larger than that in case 2 over 

the whole temperature range. At room temperature, the displacement in case 1 was 

almost 40% larger than that in case 2. Figure 5.13 shows the compressive stress at the 

center part of the electrolyte layer (left edge of the model) as a function of temperature 

in case 1 and 2. Over the whole temperature range, the compressive stress in case 2 was 

larger than that in case 1. However, the difference between these two cases was small. 

At room temperature, the compressive stress in case 2 was about 4 % larger than that in 

case 1. The above results suggest that the ferroelastic domain reorientation can affect 

the stress distribution in the planer cell and deformation of the cell. This effect is 

significant in the tensile stress in the cathode and deformation of the cell, while the 

ferroelastic domain switching does not have the large influence in the compressive 

stress in the electrolyte. 
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Fig.5. 10 Contour plot of the displacement of the cell in y-direction (a) in case 1 and (b) 

in case 2.  

(a

) 

(b) 
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Fig. 5.11 Contour plot of (a) maximum principle stress in case 1, (b) minimum principle 

stress in case 1, (c) maximum principle stress in case 2, and (d) minimum principle 

stress in case 2.  
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Fig. 5.12 Tensile stress and displacement at the center of the cell (upper left corner of 

the model) in y-direction as a function of temperature in case 1 and 2. 
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Fig. 5. 13 Compressive stress at the center part of the electrolyte layer (left edge of the 

model) as a function of temperature in case 1 and 2. 

 

 

5.4 Conclusion 

 

 

   Two cases of simulations were performed in order to separately examine the 

influence of the change in the defect concentration and the domain switching on the 

stress distribution in the energy conversion devices.  

In one simulation, the stress distribution in a simple planer SOFC cell was 

calculated, considering the P(O2) dependence of the mechanical properties of 

LSCF6428. It was suggested that the P(O2) dependence of the mechanical properties of 

LSCF6428 had no significant influence on the stress distribution in a SOFC cell. This is 

because the P(O2) dependence is not great at 873 and 1073 K. Although the Young’s 

modulus of LSCF6428 becomes significantly larger with decreasing P(O2) at 973 K, the 

Possion’s ratio also decreases with decreasing P(O2). Therefore, the effective biaxial 

elastic modulus does not greatly depend on P(O2) at 973 K. 

In another study, the ferroelastic behavior of LSCF6428 was described by shape 

memory effect model (SME) and the stress distribution in a simple planer cell with 

LSCF cathode was calculated by ANSYS. The SME model could well reproduce the 

250

200

150

100

50

0

C
o

m
p

re
ss

iv
e 

st
re

ss
 /

 M
P

a

900800700600500400300
Temperature / K

 Case 1
 Case 2



136 

 

results of the uniaxial compression tests and the thermal cycle. The simulation of stress 

distribution in a simple SOFC planer cell suggests that the ferroelastic domain 

switching can relax the tensile stress in the cathode and lead to larger deformation of the 

cell but does not have a strong influence on a compressive stress in the electrolyte. 
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Chapter 6 

 

General conclusion 

 

 

In this thesis, the mechanical properties of perovskite and related oxides for energy 

conversion devices are evaluated at high temperatures and under controlled 

atmospheres. 

In chapter 2, the Young’s and the shear moduli, the internal friction, and the 

Poisson’s ratio of La2NiO4 (LN214), La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4Co0.8Fe0.2O3-δ 

(LSCF6482), La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428), and La0.6Sr0.4FeO3-δ (LSF) were 

evaluated as a function of temperature under a constant P(O2) of 1 x 10
-1

 or 1 x 10
-4

 bar 

by using the resonance method and the small punch tests. Whereas the Young’s and the 

shear modulus of LN214 monotonically decreased with increasing temperature and the 

internal friction was very small, the Young’s and the shear moduli of LSCF significantly 

decreased with increasing temperature at lower temperatures and drastically increased at 

intermediate temperatures. The Young’s modulus of LSC, LSCF6482, and LSF 

gradually decreased with increasing temperature at further higher temperatures. The 

abrupt change in the Young’s and the shear moduli of LSCF at intermediate 

temperatures is considered to be associated with the phase transition. The abrupt change 

in the Young’s and the shear moduli were phenomenologically explained based on the 

polynominal Gibbs free energy and the coupling theory.  

In chapter 3, the Young’s and the shear moduli and the Poisson’s ratio of 

La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) and La2NiO4+δ (LN214) were evaluated as a 

function of P(O2). The Young’s and the shear moduli of LSCF6428 showed a different 

P(O2) dependence in response to temperature. The P(O2) dependence was qualitatively 

explained by complex influences of the phase transition, the chemical expansion and the 

variation of the oxygen nonstoichiometry and the cation mean valence. On the other 

hand, the mechanical properties of the Young’s and the shear moduli of LN214 were 

almost independent of P(O2). This is possibly because the decrease in the amount of 

excess oxygen atoms leads to the decrease in the elastic constant C33 and simultaneously 

the increase in the elastic constants, C11 and C22. Therefore, the Young’s modulus and 

the shear modulus is not macroscopically influenced by the change in the amount of 
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excess oxygen atoms. 

In chapter 4, the stress-strain relationship of LSC, LSCF6428 and LSF was 

evaluated by the uniaxial compression tests in the temperature range between room 

temperature and 1173 K. Also, the dynamic amplitude dependence of the Young’s 

modulus and the internal friction of LSCF6428 and LN214 was evaluated. Further, the 

temperature dependence of the dynamic Young’s modulus and of the internal friction of 

LN214, LSCF6428, and LSGM was investigated by using the technique of dynamic 

mechanical analysis. From the above measurements, it was found that the elastic 

modulus of ferroelastic perovskite oxides was strongly influenced by the ferroelastic 

domain switching. It is possible that the drastic decrease in the Young’s modulus of 

LSCF6428 observed in the resonance measurement at low temperatures is also 

associated with the ferroelasticity. Furthermore, it was suggested that the oxygen 

vacancies can influence the mechanical properties of LSCF even at low temperatures 

through the interaction with the ferroelastic domain walls. 

In chapter 5, two cases of simulations were performed in order to separately 

examine the influence of the change in the defect concentration and the domain 

switching on the stress distribution in the energy conversion devices. It was suggested 

that the P(O2) dependence of the mechanical properties of LSCF6428 had no significant 

influence on the stress distribution in a SOFC cell. Further, the simulation of stress 

distribution in a simple SOFC planer cell suggests that the ferroelastic domain 

switching can relax the tensile stress in the cathode and lead to larger deformation of the 

cell but does not have a strong influence on a compressive stress in the electrolyte. 

Through the work in this thesis, the mechanical properties of perovskite and related 

oxides at high temperatures and under controlled atmospheres were measured and the 

influence of oxygen defects and ferroelasticity on the mechanical properties was 

successfully evaluated. Although further work is necessary to obtain deeper 

understanding about the microscopic mechanisms through which the oxygen defects 

and ferroelasticity affect the mechanical properties, the author is confident that the 

results shown in this thesis contribute to both scientific and industrial fields. From the 

industrial point of view, this thesis provided the fundamental data of mechanical 

properties of perovskite and related oxides. Also this thesis proposed a methodology to 

evaluate the influence of oxygen defects and ferroelasticity on the stress distribution in 

the energy conversion devices. And from the scientific point of view, the methodology 

and the techniques to evaluate the mechanical properties used in this study are also valid 

to examine other functional materials.  
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