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Chapter 1 

 

Introduction 

 

 

 

1.1  Clathrate hydrates as energy resources 

 The increasing demand for energy to supply the needs of society and the escalating human 

population has led to accelerated mining and combustion of fossil fuels.  Massive fossil fuel 

consumption has brought about increased levels of atmospheric carbon dioxide.  Against this 

background of worldwide trends, natural gas is expected to be a future energy resource as the world 

moves from liquid-based fossil fuels to gas-based renewable fuel sources that include hydrogen.  

Natural gas is characterized by a lower discharge of CO2 at the time of combustion than coal or 

petroleum.  Thus, techniques for gas recovery, storage, transportation, separation along with 

methods for sequestration are needed both in the present and for the future.  Clathrate hydrates in 

the form of natural gas hydrates are energy resources, but clathrate hydrates can also act as storage 

media or provide selective separations and they have the possibility of being able to sequester 

carbon.  In the next section, methane clathrate hydrates that exist in the ocean and permafrost 
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zones of the world, will be introduced.  Then, clathrate hydrates that can be used in hydrogen 

storage are overviewed.  Finally, semi-clathrate hydrates that have potential for gas separations are 

discussed.  The subject of this thesis is regarding the properties and characteristics of clathrate 

hydrates for gas separation processes. 

 

1.1.1  Methane clathrate hydrate 

Clathrate hydrates are crystalline compounds that have water as its hydrogen-bonding 

framework.  Cages within the structure of these compounds provide the means for inclusion of gas 

molecules as in the schematic diagram (Figure 1-1). 

 

Figure 1-1.  Schematic diagram of methane clathrate hydrate. 

 

Methane clathrate hydrates are usually called natural gas hydrates or gas hydrates.  Gas clathrate 

hydrates have been confirmed in many regions of the world by bottom-simulating reflector (BSR) 

measurements
1-4

 and by actual recovery with sampling.
5-7

  Worldwide amounts of organic carbon 

bound in these natural gas hydrates can be conservatively estimated to total twice the amount of 

carbon found in all known fossil fuels on the Earth.
8,9

  Natural gas resources in the form of 

clathrate hydrates have been estimated to be up to 50 times that of conventional petroleum reserves, 

with as much as 2500-20000 trillion cubic meters of methane being available.
10

  These huge  

Water molecule

(host)

Included methane molecule

(guest)

Hydrogen bonding

framework

Empty cage
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amounts of natural gas hydrates exist below ocean floors and in permafrost zones around a number 

of regions in the world.
4-7,11

  In the Canadian Arctic off the Mackenzie Delta, thermal stimulation 

tests were conducted in 2002 by the Japex, JNOC and GSC 
12

, and depressurization tests to produce 

methane from hydrate were conducted in 2008 by JOGMEC and NRCan.
13

  In the Prudhoe Bay 

Unit on the Alaska North Slope, tests of natural gas extraction from methane hydrate using 

CO2-CH4 exchange methodology were conducted by Japan Oil, JOGMEC, ConocoPhillips and the 

U.S. Department of Energy
14,15

 in which CO2 was injected to produce methane from hydrate in 

2008.  This technology was developed, and tests were performed with a mixtures of CO2 and N2 to 

demonstrate the production of natural gas successfully in 2012.  The recovery of methane from 

hydrates under the seafloor methods has been investigated in Japan (Figure 1-2).
16,17

  A detailed 

treatise on natural gas hydrates is available in the monograph by Sloan and Koh.
18

 

  



Chapter 1 
 

- 4 - 

 

 

 

 

Figure 1-2.  Distribution chart of bottom-simulating reflector (BSR) around Japan
19

 showing 

points of the production test in Eastern Nankai trough
20

 and regions of newly discovered methane 

hydrates
21-23

: (a): red zone
19

 methane hydrate concentrated zones are confirmed partially by detailed 

surveys: 5,000 km
2
; (b): blue zone

19
 probable methane hydrate concentrations: 61,000 km

2
; (c): 

green zone
19

 unconfirmed methane hydrate concentrations: 20,000 km
2
; (d): blue-green zone

19
 

surveys insufficient for evaluation: 36,000 km
2
; (e): decompression procedure is underway for 

recovery of methane gas from methane hydrates probably in 2012
20

; (f): purple zone presence of 

methane hydrates confirmed and some recovery has been made of methane hydrate or gas by 

research groups at Meiji university, Kitami Institute of technology, and Tokyo university.
21-23
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1.1.2  Carbon dioxide sequestration in the marine sediment 

 Geological sequestration is regarded as a leading candidate for carbon dioxide capture and 

storage (CCS).
24

  Among all CSS options, ocean sequestration may be the most feasible choice for 

long-term storage of captured anthropogenic CO2.  Since the pressures and temperatures at ocean 

depths are suitable for CO2 clathrate hydrate formation,
25,26

 techniques for CO2 sequestration as 

clathrate hydrates have been investigated.  When CO2 is injected into the sea floor, a hydrate 

stratum is generated which forms a self-sealed structure.  These hydrates sink toward the deep sea 

bottom where they stabilize in the long term.
27,28

  The CO2 leakage rate during sequestration into 

marine sedimentary strata was simulated, and the results show that the effectiveness of CO2 ocean 

sequestration depends mainly on the injection conditions, the site geology and the 

chemical-physical behavior of CO2 in the marine environment.
29

  Additionally, the technique of 

CCS with combination of the methane in recovery
30

 and the integrated gasification combined cycle 

(IGCC) 
31,32

 has been proposed. 

 

1.1.3  Clathrate hydrate in hydrogen storage applications 

Applications of clathrate hydrate have been considered in the development of many types of 

renewable resources such as in distributed energy systems
33,34

 with hydrogen or biogas systems.  

Hydrogen clathrate hydrates form structure II at high pressures (≈ 200 MPa)
35

 because molecular 

size of hydrogen is very small.  Organic liquids such as tetrahydrofuran (THF) stabilize the 

structure of the clathrate hydrate above 273 K at atmospheric pressure as shown schematically in 

Figure 1-3.
36
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Figure 1-3.  Schematic diagram of hydrogen-tetrahydrofuran binay clathrate hydrate. 

  

The amount of hydrogen that can be stored in 5.6 mol% THF clathrate hydrate is lower than 

1.05 wt% at 270 - 278 K (temperature cycled method) and 60 MPa,
37

 at 277 K and 200 MPa
38

 for 

occupancy of hydrogen in all larger hexakaidecahedral (5
12

6
4
) cavities (L-cage) with THF 

molecules.  In H2-0.6 mol% THF or acetone binary clathrate hydrates formed from ice particles, 

hydrogen storage can be increased to ca. 3.5 wt% at 255 K and 74 MPa due to occupancy of 

L-cages with 4 hydrogen molecules.
39

  Clathrate hydrates have characteristics such as complete 

recovery of H2 without using high temperature
36

 and repeated use without degradation 
40

 so that the 

H2 + guest additive molecule binary clathrate hydrate can be anticipated as a hydrogen storage 

material.  Other potential applications for H2 clathrate hydrates are as buffer or membrane 

materials.  With the exception of H2, the applications of clathrate hydrate for fuel storage and 

transportation have been investigated.
41,42

 

 

1.1.4  Semi-clathrate hydrates for gas separations 

 Clathrate hydrate systems for gas separations have been investigated along with their physical 

properties.
43-47

  A semi-clathrate hydrate is formed when an ionic compound such as a quaternary 

ammonium salt (QAS) replaces part of the water in the hydrogen bonding framework.  A 

Water molecule (host)

Hydrogen molecule

(guest)

Tetrahydrofuran molecule

(guest additive)
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semi-clathrate hydrate is shown schematically in Figure 1-4. 

 

Figure 1-4.  Schematic diagram of quaternary ammonium salt (QAS) semi-clathrate hydrate. 

 

Semi-clathrate hydrates investigated in terms of gas separation media,
48-55

 because they are more 

stable than THF clathrate hydrates.
56

  In semi-clathrate hydrates, QAS replaces a small percentage 

of H2O molecules to form a hydrate framework with the tetra-n-butyl ammonium cation (TBA
+
) 

being included as guest molecule or guest additive and anions (Br
-
) substituting some number of 

host molecules.
57

  Semi-clathrate hydrates can be used repeatedly in many applications because the 

included salts are involatile unlike organic additives such as THF.  The characteristics of 

semi-clathrate hydrates vary greatly according to the type of QAS that is added, so that the gas 

adsorption behavior depends on many factors that have not been elucidated yet.  A better 

understanding of the role of QAS in semi-clathrate hydrate applications can be obtained by varying 

some of the anions systematically, so that characteristics of the particles formed can be related to 

gas adsorption behavior.  In this thesis, the effect of the anion (Br
-
, Cl

-
 and F

-
) of the TBA salt on 

the adsorption characteristics of semi-clathrate hydrate is investigated. 

 Typical structures of semi-clathrate hydrates are tetragonal structure-I (TS-I), hexagonal 

structure-I (HS-I) and super cubic structure-I (SCS-I) for TBA salts as discussed in Chapter 2.  The 

Empty cage

Hydrogen molecule

(host)

Water molecule

(host)

Anion of QAS

(host)

Cation of QAS

(guest additive)
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structures of semi-clathrate hydrates depend on the anion species and the concentration of the TBA 

salt.  For TBAB semi-clathrate hydrate, the dissociation temperatures for these structures which 

are important for practical application are different.
56

  For TBA chloride (TBAC) semi-clathrate 

hydrate, structure TS-I forms regardless of the concentration of TBAC,
58

 thus there are not clear 

metastable phases
59

 such as those observed for TBAB semi-clathrate hydrates.
56

  For TBA fluoride 

(TBAF) semi-clathrate hydrates, two structure types have been observed as TS-I
60

 and SCS-I,
60,61

  

in which there are not clear metastable phases, regardless of the structure.
61,62

  Thus, structure 

characteristics for TBAF and TBAC semi-clathrate hydrates are distinctly different from TBAB 

semi-clathrate hydrates. 

 Investigations regarding the structure and phase equilibria of semi-clathrate hydrates have been 

reported, however, studies regarding the gas adsorption rate of semi-clathrate hydrate particles are 

scarce.  Maximum theoretical H2 storage capacity depends on the clathrate or semi-clathrate 

hydrate structure,
63

 thus control of hydrate structure is an important issue in the use of 

semi-clathrate hydrate as separation media. 

 

  



Introduction 
 

- 9 - 

 

1.2  Goal and objectives 

 The goal of this thesis is to assess clathrate hydrates as separation media for H2/CO2 gas 

mixtures.  To make progress towards the goal, the following objectives were formulated according 

to chapter arrangement: 

 

 Objective 1 is to summarize the literature on available structural information and properties of 

clathrate hydrates, especially with respect to potential applications with the target gases H2 and CO2 

(Chapter 2). 

Objective 2 is to understand the effect that the anion of the TBA salt and hydrate crystal 

structure has on the phase equilibria of H2 and CO2 + TBA salt + water systems and to estimate 

probable operating conditions for a gas separation process (Chapter 3). 

Objective 3 is to develop a kinetic model for gas adsorption in clathrate hydrate particles that 

describes gas adsorption behavior and to understand mechanisms of gas adsorption and gas 

diffusion  (Chapter 4). 

Objective 4 is to analyze the gas adsorption behavior of semi-clathrate hydrate particles for the 

purpose of estimating the gas separation potential of semi-clathrate hydrates for the target gases and 

gas mixtures (H2, CO2, and H2 and CO2) (Chapter 5). 
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2.1  Introduction 

 Fundamental properties for applications with clathrate hydrates are important in the 

development of new technologies.  In this chapter, the characteristics of clathrate hydrates are 

reviewed with a focus on crystal structure, phase equilibria, clathrate hydrate formation and 

dissociation kinetics for the purpose of proposing new gas separation methods and gas storage 

options.  On the basis of the theory of clathrate hydrates, semi-clathrate hydrates formed with 

quaternary ammonium salts (QAS) are introduced as inclusion compounds that have many 

favorable properties. 

 

2.2  Clathrate hydrate structure 

2.2.1  Theory of classical structure 

 The structure of a clathrate hydrate depends on the guest molecules in the cavity of its cages 
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that are composed of hydrogen-bonded water molecules.  Clathrate hydrates, which are crystalline 

solids, typically form when small (< 0.9 nm) guest molecules such as CH4 or CO2 become 

surrounded by water molecules under appropriate conditions of temperature and pressure so that a 

cage structure forms around the guest molecule.  Figure 2-1 shows the types of structures of 

clathrate hydrates, and Table 2-1 summarizes their geometric characteristics. 

 

Figure 2-1.  Hydrate crystal structure type and their framework cages 

 

Table 2-1.  Geometric characteristics of clathrate hydrate crystal structures 

 Structure type 

Characteristic sI sII sH 

Cage Small Large Small Large Small Medium Large 

Description 5
12

 5
12

6
2
 5

12
 5

12
6

4
 5

12
 4

3
5

6
6

3
 5

12
6

8
 

Number of cages per unit cell 2 6 16 8 3 2 1 

Average cage radius [Å] 3.95 4.33 3.91 4.73 3.91 4.06 5.71 

Coordination number
*
 20 24 20 28 20 20 36 

Number of waters per unit cell 46 136 34 

*Number of oxygens at the periphery of each cage. 

sI sII sH

51262 51264 435663 51268512

L-cage L-cage S-cage M-cage L-cage

Cage

description

Framework

Abbreviated

cage name

Structure

type
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The formed hydrate crystal structure depends on the ratio between the van der Waals diameter and 

the free space diameter.   The free space diameter is defined as the length that remains after 

subtracting the van der Waals diameter of water molecule (2.8 Å) from the average cavity diameter 

(Table 2-1).  Table 2-2 summarizes the relationship between the ratio of the van der Waals 

diameter and the free space diameter according to the structure type. 

 

Table 2-2.  Relationship between guest molecule van der Waals diameter (dvdw), free space 

diameter (dfs) and structure for clathrate hydrates 

  dfs for sI dfs for sII 
Structure 

type 

formed 

Guest molecule 5
12

(5.10 Å) 5
12

6
2
(5.86 Å) 5

12
(5.02 Å) 5

12
6

4
(6.64 Å) 

Molecule dvdw [Å] (dvdw / dfs) for each cage type 

He 2.28 0.447 0.389 0.454 0.342 sII 

H2 2.72 0.533 0.464 0.542 0.408  

Ne 2.97 0.582 0.507 0.592 0.446  

Ar 3.8 0.745 0.648 0.757 0.571  

Kr 4.0 0.784 0.683 0.797 0.601  

N2 4.1 0.804 0.700 0.817 0.616  

O2 4.2 0.824 0.717 0.837 0.631  

CH4 4.36 0.855 0.744 0.868 0.655 sI 

Xe 4.58 0.898 0.782 0.912 0.687  

H2S 4.58 0.898 0.782 0.912 0.687  

CO2 5.12 1.00 0.834 1.02 0.769  

C2H6 5.5 1.08 0.939 1.10 0.826  

c-C3H6 5.8 1.14 0.990 1.16 0.871  

(CH2)3O 6.1 1.20 1.04 1.22 0.916 sII 

C3H8 6.28 1.23 1.07 1.25 0.943  

i-C4H10 6.5 1.27 1.11 1.29 0.976  

n-C4H10 7.1 1.39 1.21 1.41 1.07  
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Guest molecules that are smaller than O2 (4.2 Å) typically form structure II for which a higher 

proportion of S-cages exist than for structure I (Table 2-1) because small guest molecules are more 

stable in an S-cage than in an L-cage.  Guest molecules that are larger than CH4 (4.36 Å) typically 

form structure I as this structure has a higher proportion of L-cages than structure II (Table 2-1) as 

the larger guest molecules are stable in the L-cage of structure I.  Guest molecules such as 

(CH2)3O for which the van der Waals diameter is larger than 6 Å form structure II because the guest 

molecule cannot be included in the L-cage of structure I.  Guest molecules such as 

methylcyclohexane (MCH) for which the van der Waals diameter is larger than 7.5 Å form structure 

H due to the size of the L-cage of structure H (Figure 2-1).  In this case, additional gas molecules 

such as CH4 are needed for inclusion in S-cage and M-cage for structure H because the number of 

the L-cages of sH per unit cell is limited to one (Table 2-1). 

 

2.2.2  Semi-clathrate hydrate systems 

 Figure 2-2 shows typically semi-clathrate hydrate crystal structures, and Table 2-3 summarizes 

ideal semi-clathrate hydrate crystal structures.  A semi-clathrate hydrate differs from a clathrate 

hydrate in that an additive QAS replaces some of the water molecules in the clathrate hydrate 

structure.  Table 2-4 summarizes reported semi-clathrate hydrate structures. 
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Figure 2-2.  Semi-clathrate hydrate crystal structure.  S-cage is gas included cage, and combined 

L-cage is quaternary ammonium salt (QAS) included cage. 

 

L-cage

description
Combined cage

description

Hexagonal-I

(HS-I)

51262

512

51263

51264

Hexagonal-II

(HS-II)

(transformation of 

framework  cage)

Tetragonal-I

(TS-I)

Tetragonal-II

(TS-II)

Tetragonal-III

(TS-III)

Rhombic

(RS)

Superlattice of 

cubic structure-I

(SCS-I)

4(42596371)

4454

4258

S-cage

description
Structure type

3(51262)•(51263)

4(51262)

2(51262)•2(51263)

4(51263)

2(51262)•2(51263) •2(51263)
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Table 2-3.  Ideal crystal structures of semi-clathrate hydrate. 

Structure type 
ideal, H O2
N  

 
Cage description 

Reference Lattice constants [Å] 4
4
5

4
 4

2
5

8
 5

12
 5

12
6

2
 5

12
6

3
 5

12
6

4
 7

1
6

3
5

9
4

2
 

a b c Number of cages in unit cell 

Hexagonal (HS-I) 40 12.4 
 

12.5   3 2 2   McMullan(1959)
1
 

Hexagonal (HS-II) 68 12.1  19.7   8   4  McMullan(1970)
2
 

Tetragonal I(TS-I) 172 23.5   12.3     10 16 4    McMullan(1963)
3
 

Tetragonal II (TS-II) 68 15.4    4   8   Solobovnikov(1979)
4
 

Tetragonal III (TS-III) 108 16.894  17.111 4      16 Lipkowski(1994)
5
 

Rhombic (RS) 148 23.5 19.9 12.1   14 4 4 4  Alekseev(1982)
6
 

Superlattice of cubic structure-I (SCS-I)  368       16 48       Dyadin(1976)
7
 

2ideal,H O
N : ideal number of water molecules per unit cell 
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Table 2-4.  Reported semi-clathrate hydrate crystal structures. 

Guest molecule Crystal system 
2

H O

*N  
additive QAS
N  

 
Cage description 

Reference 

Lattice constants [Å] 5444 4258 512 51262 51263 51264 71635942 

a/ b/ c/ Number of cages in unit cell 

(C4H9)3PO orthorhombic 34.5 4 23.479 19.949 12.136   14 4 4 4   Alekseev6 

(C4H9)4NF cubic 28.6 12 24.4                 Dyadin7 

(C4H9)4NF tetragonal 32.3 5 23.5   12.3             Dyadin7 

(C4H9)4NF tetragonal 32.8 5 23.52   12.3             McMullan3 

(C4H9)4NF tetragonal 34 5 23.78   12.53             McMullan1 

(C4H9)4NF cubic 29.7 12 24.375       2 6       Komarov8 

(C4H9)4NCl tetragonal 24.5   23.608   12.561   10 16 4     Rodionova9 

(C4H9)4NCl rhombic  24   29 21 11.8             Rodionova9 

(C4H9)4NCl tetragonal 29.7   23.733   12.153   10 16 4     Rodionova9 

(C4H9)4NCl tetragonal 32.2   23.737   12.492   10 16 4     Rodionova9 

(C4H9)4NCl tetragonal 32.1 5 23.77   12.61             McMullan1 

(C4H9)4NBr Trigonal 2.33 6 16.609/90°   38.853/120°             Lipkowski10 

(C4H9)4NBr monoclinic 24 6 28.5 16.9/125° 16.5             Gaponenko11 

(C4H9)4NBr tetragonal 25.7 24 23.9   50.8             Gaponenko11 

(C4H9)4NBr tetragonal 31.5 10 33.4   12.7             Gaponenko11 

(C4H9)4NBr tetragonal 30.5 5 23.65   12.5             McMullan1 

(C4H9)4NBr orthorhombic 36.3 2 21.3 12.9 12.1             Gaponenko11  

(C4H9)4NBr orthorhombic 38 2 21.06 12.643 12.018   6 4 4     Shimada12 

(C4H9)4NBr tetragonal 32.8 5 23.57   12.3   10 16 4     Davidson13 

(C4H9)4NBr  - 26                     Oyama14 

(C4H9)4NBr  - 32                     Oyama14 
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Guest molecule Crystal system 
2

H O

*N  
additive QAS
N  

 Cage description 

Reference 

Lattice constants [Å] 5444 4258 512 51262 51263 51264 71635942 

a/ b/ c/ Number of cages in unit cell 

(C4H9)4NOH cubic 28.3 12 24.6                 Dyadin15 

(C4H9)4NOH tetragonal 32.3 5 23.6   12.6             Dyadin15 

(C4H9)4NNO3 tetragonal 26 6 23.3   13.2             Dyadin15 

(C4H9)4NNO3 tetragonal 31.8 5 23.5   12.5             Dyadin15 

(C4H9)4NHCO2 cubic 27.5 12 24.6                 Dyadin16 

(C4H9)4NHCO2 tetragonal 31.6 5 23.5   12.4             Dyadin16 

(C4H9)4NHCO2 tetragonal 33 5 23.77   12.34             McMullan1 

(C4H9)4NCH3CO2 cubic 25.9 12 24.5                 Dyadin16 

(C4H9)4NCH3CO2 tetragonal 30.7 5 23.62   12.38             McMullan1 

(C4H9)4NCH3CO2 tetragonal 31.4 5 23.6   12.2             Dyadin16 

(C4H9)4NC2H5CO2 cubic 26 12 24.7                 Dyadin16 

(C4H9)4NC2H5CO2 tetragonal 31.6 5 23.7   12.5             Dyadin16 

(C4H9)4NC2H5CO2 hexagonal 36.8 3 12.1   36.7             Dyadin16 

(C4H9)4NC3H7CO2 cubic 31.7 1.33 12.3                 Dyadin16 

(C4H9)4NC3H7CO2 tetragonal 32.6 5 23.5   12.4             Dyadin16 

(C4H9)4NC3H7CO2 tetragonal 35 4.44 23.6   12.5             Dyadin16 

(C4H9)4NC3H7CO2 tetragonal 40.4 4 23.7   12.4             Dyadin16 

(C4H9)4NC4H9CO2 cubic 31.6 1.33 12.4                 Dyadin16 

(C4H9)4NC4H9CO2 - 39.5   23.59   12.43             Beurskens17 

(C4H9)4NC4H9CO2 -     12.31                 Beurskens17 

(C4H9)4NC4H9CO2 tetragonal 39.7 4 23.5   12.3             Dyadin16 

(C4H9)4NC4H9CO2 tetragonal 39.8 4 23.322   12.278             Rodionova9 
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Guest molecule Crystal system 
2

H O

*N  
additive QAS
N  

 Cage description 

Reference 

Lattice constants [Å] 5444 4258 512 51262 51263 51264 71635942 

a/ b/ c/ Number of cages in unit cell 

(C4H9)4NC5H11CO2 tetragonal 40.4 4 23.7   12.5             Dyadin16 

(C4H9)4NC6H5CO2 - 39.5 4                   McMullan3 

(C4H9)4N-i-C3H7CO2 tetragonal 31.8 5 23.8   12.4             Dyadin16 

(C4H9)4N-i-C3H7CO2 cubic 24.8 15 26.8                 Dyadin16 

(C4H9)4N-i-C3H7CO2 tetragonal 39.4 4 23.8   12.7             Dyadin16 

(i-C5H11)4NF tetragonal 27 4 16.894   17.111 4          16 Lipkowski5 

(i-C5H11)4NF tetragonal 32.7 5 23.729   12.466   10 16 4     Lipkowski5 

(i-C5H11)4NF orthorhombic 38 2 12.08 21.61 12.822             Lipkowski5 

(i-C5H11)4NF orthorhombic 38.9 2 11.88 21.53 12.7   6 4 4     Lipkowski5 

(i-C5H11)4NF orthorhombic 40 2 12.08 21.61 12.82             McMullan1 

(i-C5H11)4NCl orthorhombic 38.3 2 11.98 21.48 12.83             McMullan1 

(i-C5H11)4NI orthorhombic 38 8 12.1 21.6 49.9             Dyadin15 

(i-C5H11)4PBr tetragonal 32 4 15.4   12  4      8     Solodovnikov4 

[(C4H9)4N]2HPO4 tetragonal 64.2 2.5 23.55   12.34             McMullan1 

[(C4H9)4N]2C2O4 cubic 57.3 6 24.6                 Dyadin16 

[(C4H9)4N]2C2O4 tetragonal 64 2.5 23.8   12.4             Dyadin16 

[(C4H9)4N]2C2O4 tetragonal 67 2.5 23.63   12.31             McMullan1 

[(C4H9)4N]2CH2C2O4 tetragonal 60.3 2.5 23.5   12.2             Dyadin16 

[(C4H9)4N]2CH2C2O4 tetragonal 63.3 2.5 23.6   12.5             Dyadin16 

[(C4H9)4N]2(CH2)2C2O4 tetragonal 60.2 2.5 23.4   12.4             Dyadin16 

[(C4H9)4N]2(CH2)2C2O4 tetragonal 62.6 2.5 23.6   12.6             Dyadin16 

[(C4H9)4N]2(CH2)3C2O4 cubic 55.2 6 24.5                 Dyadin16 
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Guest molecule Crystal system 
2

H O

*N  
additive QAS
N  

 Cage description 

Reference 

Lattice constants [Å] 5444 4258 512 51262 51263 51264 71635942 

a/ b/ c/ Number of cages in unit cell 

[(C4H9)4N]2(CH2)3C2O4 tetragonal 64.5 5 23.5   25.3             Dyadin16 

[(C4H9)4N]2CrO4 tetragonal 68 2.5 23.68   12.4             McMullan1 

[(C4H9)4N]2WO4 tetragonal 60 2.5 23.52   12.37             McMullan1 

[(C5H11)4N]2CrO4 orthorhombic 74.2 1 12.18 21.53 12.67             McMullan1 

[(C5H11)4N]2WO4 orthorhombic 80.7 1 12.06 21.39 12.7             McMullan1 

2

*
H O
N : reported number of water molecules per unit cell, additive salt

N : number of included additive salt in semi-clathrate hydrate per unit cell. 
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Many types of semi-clathrate hydrate crystal structures have been reported other than the typical 

ones shown in Figure 2-2.  The number of water molecules per unit cell 
2

*
H O
N is different from the 

ideal number
2ideal,H O

N  because the additive QAS replaces some number of water molecules in the 

hydrate structure.  The 
2

*
H O
N  is different for each literature report because it is possible for water 

molecules to be included in the various cages.
8
  In the application of semi-clathrate hydrates to gas 

separations, it is necessary to understand the effect of additive salts on the formed structures, which 

is one of the key topics in this thesis 

 

2.3  Phase equilibria of clathrate hydrate systems 

2.3.1   Effect of guest molecule on the phase equilibria of clathrate hydrates 

 

 

Figure 2-3.  Phase equilibria of H2 + water system (▲),
18

 H2 + tetrahydrothiophene + water system 

(◇),
19  H2 + furan + water system (▽),

19
 H2 + tetrahydrofuran (THF) + water system (□) 

20
 and 

H2 + cyclopentane + water system (○). 
20

 

 

Figure 2-3 shows the effect of a guest additive molecule on the phase equilibria of H2 clathrate 

hydrates.  Pure hydrogen hydrate forms structure II at high pressures (200 MPa),
18

 because the 
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molecular size of hydrogen is very small.  To reduce the equilibrium pressure of H2 clathrate 

hydrate for the purpose of storing hydrogen in technological applications, a guest molecule can be 

added to promote the formation of stable structures and allow hydrogen to be included in some of 

the cages at low pressures (6 MPa).
21

  The stability of the clathrate hydrate varies greatly 

according to the guest additive molecule.  Some proposed guest additive molecules for structure II 

clathrate hydrates are tetrahydrofuran (THF),
21,22

 cyclopentane (CP),
20,23

 tetrahydrothiophene 
19

 and 

furan,
19

 and those for structure H clathrate hydrates are 1,1-dimethylcyclohexane,
24

 methyl 

tert-butyl ether
24

 and methylcyclohexane.
24

 

 

2.3.2   Phase equilibria of semi-clathrate hydrates 

 Table 2-5 summarizes the phase equilibria data of semi-clathrate hydrates with gases. 

Table 2-5.  Summary of phase equilibria of semi-clathrate hydrates with gases. 

TBAB: tetra-n-butyl ammonium bromide, TBAC: tetra-n-butyl ammonium chloride, TBAF: 

tetra-n-butyl ammonium fluoride, TBPB: tetra-n-butyl phosphonium bromide, TBAN: tetra-n-butyl 

ammonium nitrate, TPAF: tetra-i-pentyl ammonium fluoride, TMA: trimethylamine  

  

Salt 

Concentration 

[mol%] Gas T [K] P [MPa] 

Data 

type Ref. 

TBAB 4.0 CH2F2 286-290 0.18-1.2 P-T Imai
25

 

TBAB 3.6 H2 285-287 0.13-14 P-T Hashimoto
26

 

TBAB 0.6-7 H2 279-287 0.49-15 P-T Hashimoto
27

 

TBAB 0.6 

0.6 

4.0 

0.3-2.3 

0.6 

0.6-4.0 

0.3-4.0 

none 

H2 

H2 

CH4 

N2 

CO2 

Natural gas 

280-280 

280-283 

286-289 

287-297 

285-293 

286-291 

280-292 

3.6-21 

4.2-23 

3.6-23 

1.4-41.4 

4.7-34 

1.2-4.1 

0.098-9.5 

 

P-T Arjmandi
28
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Salt 

Concentration 

[mol%] Gas T [K] P [MPa] 

Data 

type Ref. 

TBAB 0.29-0.61 

0.29-9.4 

0.29  

N2 

CO2 

CO2(16-22%) + N2 

279-284 

279-291 

282-295 

0.66-2.9 

0.29-9.4 

0.55-5.3 

P-T Duc 
29

  

 

TBAB 0.3-0.6 CO2 279-288 0.3-2.5 P-T Lin
30

 

TBAB 0.3-4.7 none 276-286 0.1 x-T Sun 
31

 

TBAB 2.3-4.4 CH4 282-291 0.5-7.0 P-T Sun
32

 

TBAB 0.3-3.4 CH4 281-295 0.5-11.0 P-T Li
33

 

TBAB 0.3-1.4 CH4 (30 %)+N2 (60%)+O2 282-290 1.0-6.6 P-T Zhong
34

 

TBAB 0.14-2.67 CO2 (19-40 %)+H2 274-289 0.25-7.3 P-T Li
35

 

TBAB 0.3 H2S 

CH4 

291-296 

284-290 

0.17-0.68 

1.3-11 

P-T Mohammadi
36

 

TBAB 0.3-5.3 CO2, N2, CH4, H2 278-295 0.46-15 P-T Mohammadi
37

 

TBAB 0.3-2.3 CO2  (15-85%)+N2 277-293 1.1-16 P-T Mohammadi
38

 

TBAB 0.05-0.3 CO2(15-75%)+H2 281-293         1.6-16           P-T Mohammadi
39

  

TBAB 0.3-1.4 CO2, CO, H2  283.1-291 4.7-6.6 P-T Wang
40

 

TBAB 

TBAC 

TBAF 

0.3-0.6 

0.3-0.6 

0.3-0.6 

CO2 

〃 

〃 

280-289 

280-289 

286-294 

0.40-3.4 

0.47-3.8 

0.53-3.0 

P-T Li
41

 

 

TBAB 1.1-3.6 

1.1-3.6 

3.6 

3.6 

N2 

CO2 

N2(75%)+CO2 

CH4(50%)+CO2 

285-295 

285-290 

285-293 

285-292 

0.1-25 

0.1-2.25 

0.1-9.2 

0.1-3.2 

P-T Deschamps
42

 

TBAB 

TBAC 

TBPB 

3.6 

3.3 

3.0 

H2 

〃 

〃 

287-287 

289-290 

285-287 

13-24 

15-30 

12-23 

P-T Deschamps
43

  

TBAB 3.7 H2 286-287 3.6-16 P-T Chapoy
44

 

TBAB 

TBAF 

0.3-7.7 

0.8-5.3 

N2 

〃 

280-290 

293-302 

4.0-9.2 

2.0-9.7 

P-T Lee 
45

 

TBAB 0.6-7.7 CO2 

CH4 

286-292 

286-294 

1.1-4.6 

2.1-9.2 

P-T 

T-x 

Lee
46

 

TBAB 0.29 CH4(54%)+N2 276-282 0.51-1.8 P-T Sun
47

 

TBAB 0.5-3.0 CO2(40%)+H2 283-290 2.5-5.0 P-T Kim
48

 

TBAB 0.3-1.4 CO2(20-75%)+N2 281-290 1.9-5.9 P-T Meysel
49

 

TBAB 0.3-1.4 CO2 (40-60%)+CH4 286-293 3-6.5 P-T Acosta
50

 

TBAB 0.6-7.7 CO2(40%)+H2 282-290 1.1-8.1 P-T Park 
51

 

TBAF 0.8-5.3 〃 293-301 1.1-7.8 P-T  
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Salt 

Concentration 

[mol%] Gas T [K] P [MPa] 

Data 

type Ref. 

TBAB 

TBAC 

TBAF 

0.293 

0.293 

0.293 

CO2(15%)+CH4 

〃 

〃 

282-291 

280-288 

284-291 

0.78-8.9 

0.90-8.4 

0.61-9.5 

P-T Fan 
52

 

TBAB 

+ 

NaCl 

0.3-1.4     

+ 

1.1-3.3 

          

CO2 

〃 

〃 

〃 

〃 

〃 

280-285 

281-284 

284-288 

284-287 

284-289 

285-288 

0.44-2.8 

0.60-3.0 

0.82-3.6 

0.85-3.6 

0.83-3.9 

0.84-3.8 

P-T Godishala
53

  

 

TBAC 3.23 C2H6 

H2 

N2 

CH4 

CO2 

288-288 

288-289 

289-290 

289-292 

289-293 

0.55-3.4 

0.55-4.6 

0.61-4.6 

0.61-4.9 

0.36-4.4 

P-T Makino 
54

 

TBAC 

TBAN 

TBPB 

3.5 

3.7 

3.0 

CO2 

〃 

〃 

288-292 

278-282 

281-289 

0.1-2.0 

0.1-2.0 

0.1-2.0 

P-T Mayoufi
55

 

TBAF 0.6-5.5 

1.8-3.4 

none 

H2 

291-301 

298-303 

0.1 

0.22-37.6 

x-T 

P-T 

Sakamoto
56

 

TBAF 0.1-1.2 

0.1-1.2 

0.4-1.2 

CH4 

CO2 

N2 

285-300 

285-299 

291-296 

1.1-10 

0.89-5.0 

3.9-10 

P-T 

P-T 

P-T 

Mohammadi 
57

 

TBPB 0.276-7.3 CO2 285-289 0.1-1.7 P-T Mayoufi
58

 

TBPB 2.6 H2 282-296 0.11-165 P-T Fujisawa
59

 

TBPB 0.2-2.8 CO2 

CH4 

N2 

283-292 

283-292 

283-287 

0.17-4.9 

0.15-5.1 

0.48-5.0 

P-T Suginaka
60

 

TBPB 0.3-7.4 

0.3-7.4 

CO2 

N2 

284-291 

282-292 

1.3-3.6 

7.2-17 

P-T Shi
61

 

TBAN 3.7 CO2, N2, CH4 282-291 1.2-33 P-T Du
62

 

TBAN 0.050-0.394 CO2 280.0-288.3 1.9-14       P-T Shi
63

 

TPAF - CH4 307-320 0.58-27 P-T Hughes
64

 

TMA 4.7-8.3 H2 276-301 0.31-173 P-T Ogata
65

 

There have been many phase equilibrium data reported for TBAB semi-clathrate hydrates.  

However, the phase equilibrium data for other semi-clathrate hydrates are not plentiful and so the 
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effect of the additive salt on the phase equilibrium data of pure gases or gas mixtures is difficult to 

compare.  One of the important topics of this thesis is to make a systematic study on the variation 

of the salts and the phase equilibria of semi-clathrate hydrates. 

 

2.4  Clathrate hydrate formation and dissociation kinetics 

Much literature is available on CH4 clathrate hydrate or CO2 clathrate hydrate dissociation and 

formation kinetics.  Many analytical techniques have been proposed for qualifying and quantifying 

individual (CH4 or CO2) clathrate hydrate dissociation and formation kinetics. Among the methods, 

material balance methods have been the most widely used.
66-74

  Other techniques that are used are 

XRD,
75

 neutron diffraction
76

 and Raman
71

 methods.  Particle size analysis is essential in 

experimental techniques because the particle size of hydrates greatly affects formation and 

dissociation kinetics.  Particle sizes can be selected in the experimental method by using classifiers 

(e.g. sieves) or they can be measured in situ by sonic or chemical techniques such as focused beam 

reflectance method (FBRM) 
68

 or by Zetasizer nano ZS particle-size analyzers.
66

 

 

2.4.1   Methane clathrate hydrate dissociation kinetics 

In the study of methane hydrate dissociation kinetics, pressure perturbation, thermal 

perturbation, or mechanical perturbations (e.g. shock) are candidates.  Literature related to the 

investigation of the methane clathrate hydrate dissociation is shown in Table 2-6.  In the 

literature,
77,78

 temperature differences between bulk fluid and hydrate phases have been assumed to 

be a single driving force. 
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Table 2-6.  Literature for investigations of methane hydrate dissociation.  Temperature (T), pressure (P), additive condition and analytical method 

were surveyed.  The EKd and ED are the activation energy of the hydrate dissociation and that of the diffusion in hydrate, respectively.    

Dissociation of methane hydrate is generally by depressurization.
67,70,71,73

  Kamath et al. studied methane hydrate dissociation with a thermal fluid.
77,78

 

Method T range [K] P range [MPa] Particle size [m] Additive EKd [kJ/mol] ED [kJ/mol] Reference 

MB 286 – 307 2.86 – 7.61 - - - - Kamath (1987) 
77

 

MB 283 – 296 4.03 – 5.72 - NaCl - - Kamath (1991) 
78

 

MB
 

274 – 283 0.17 – 6.97 ca. 16 - 78.3
 

- Kim (1987) 
70

 

MB 264 – 269  0.1 – 2.15 - - 96.12 1167.0 (0.96)
*1

 Liang (2005) 
73

 

MB 264 – 271  0.1 – 3.74 - Activated carbon 26.03 1496.2 (1)
*1

  

MB 273 – 276  0.1 – 5.07 - Activated carbon 88.98  379.0 (0.67)
*1

  

MB 264 – 269  0.1 – 2.15 - SDS 96.43 1446.6 (0.97)
*1

  

MB & PSA
 

275 – 281 3.19 – 6.21 ~ 26 (ethane) 
79

 - 81
 

- Clarke (2001) 
67

 

MB &
 
Raman

 
268 – 273 0.1 – 0.5 100 – 250 - -  229 (0.95)

*1
 Komai (2004) 

71
 

MB: material balance, PSA: on-line particle size analyzer. 

*1 
Estimate by using Arrhenius plot (determination coefficient).
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2.4.1.1  Thermal fluid studies 

Kamath et al. investigated methane hydrate dissociation kinetics with warm water
77

 or brine
78

 

injection and the hydrate dissociation rate was described as a function of a temperature driving 

force at the hydrate/water interface and interfacial area.
77,78,80

  The dissociation rates of methane 

clathrate hydrate are strongly influenced by brine salinity with the dissociation rate for 15 wt% 

brine being 40 times larger than that by pure warm water when temperature-driving force without 

the effect of salinity, T
0
, was 4.5 K.

78
  Application of brine, such as that available in surface 

waters, may be an effective method to enhance the production of methane gas from hydrate 

reservoirs.  Kamath et al.
77

 hypothesized that hydrate dissociation was a heat transfer limited 

process and the water generated from hydrate dissociation continually forms a thin liquid film on 

the surface of the remaining hydrate resulting in a resistance to heat transfer.  The heat transfer of 

dissociating hydrates was considered to be analogous to nucleation boiling phenomenon, in which 

the degree of convection depends on the size of the gas bubbles and the bubble generation 

frequency at the hydrate surface.  Thus, the rate of heat transfer for hydrate dissociation can be 

expected to be strong functions of the temperature gradient across the interfacial film.  Kamath et 

al.
77

 assumed that the dissociation rate was directly proportional to the surface area of the hydrate, 

so that their formulation was as follows: 

  bTa
A

q


H

g


               (2-1) 

where qg is the gas production rate from hydrate dissociation, H is volume fraction of hydrate in the 

core holder, A is the core cross-sectional area, and a and b are correlation parameters that depend on 
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injection fluid and hydrate type. The T in Eq. (2-1) is the actual temperature driving force.  Their 

results could be correlated with Eq. (2-1).
77,78,80

  Kamath et al. summarized a and b for previous 

results by standardizing the units of qg and A.
81

  Constants a and b for the methane hydrate 

dissociation by water,
77

 the methane hydrate dissociation by brine (concentration of NaCl range was 

from 5 to 15 wt %) 
78

 were 1.45110
-7

 scc/(cm
2•s ) and 2.16, 1.35310

-7
 scc/(cm

2•s ) and 2.195, 

respectively.  In their results, the constant a for methane hydrate dissociation by water
77

 was larger 

than that for brine, 
78

 which is unusual. 
78

  These experimental data are influenced by experimental 

conditions such as the thermal content of the injection.  Although heat transfer for hydrate 

dissociation has many complicated features, it can be expressed by relatively simple equations. 

 

2.4.1.2  Depressurization studies 

Whereas Kamath et al. investigated methane hydrate dissociation kinetics with thermal fluids 

77,78
 Kim et al. investigated methane hydrate dissociation kinetics with depressurization under, 

different pressures at isothermal conditions and modeled the phenomena by assuming the driving 

force was independent of the fugacity of that at the equilibrium pressure of the methane hydrate.
70

  

Kim et al.
70

 hypothesized that the dissociation process includes desorption of the guest molecule at 

certain points and that the mass-transfer of the molecule to the bulk phase could be represented as; 

  
seqd

guest
ffAK

dt

dn
              (2-2) 

where nguest is the moles of guest molecules in the hydrate phase, t is the reaction time, feq and fs are 

the fugacities at the hydrate equilibrium pressure and that for the solid surface, respectively.  The 
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Kd in Eq. (2-2) is the decomposition rate constant for the hydrate dissociation and A is the surface 

area between bulk fluid and hydrate phases.  Arrhenius-type plots were made with the use of Eq. 

(2-2) and experiments made at various temperatures, to determine the activation energy for the 

methane hydrate dissociation to gas and liquid water that was found to be 78 kJ/mol 
70

.  

Subsequent work by that group used on-line particle size analysis that allowed an improved 

estimation of the activation energy (81 kJ/mol).
67

 

 Hydrate dissociation can be written as an overall expression that separates the kinetics of 

desorption of the guest molecule from the hydrate cage from the mass transfer of the molecule in 

the bulk phase as:
79

 

 
mrd

111

kkK
                (2-3) 

where kr and km are the desorption rate constant and mass transfer coefficient from the reaction 

point to bulk phase.  Correlation with this model for ethane hydrate dissociation to gas and liquid 

water, showed that the obtained intrinsic rate constants had an activation energy of 104 kJ/mol,
79

 

which implies that the activation energy varies according to the species of the guest molecule when 

one considers the difference in activation energy values for methane and ethane. 

Although the literature tends to focus on dissociation kinetics above the ice point, there are 

some studies on kinetics below the ice point.
71,73

  Liang et al. investigated the temperature effect 

on hydrate dissociation kinetics using a material balance method.
73

  In their experiments, methane 

hydrates were prepared with or without porous wet activated carbon or sodium dodecyl sulfate 

(SDS).  Comparison of the preparation methods showed that methane hydrate dissociated the 
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fastest in the presence of activated carbon, and in the presence of the surfactant sodium dodecyl 

sulfate (SDS).  Liang et al. developed a mathematical model to describe the decomposition 

kinetics of methane hydrates below the ice point for which the decomposition process was assumed 

to occur in two steps.  The first step was the destruction of the clathrate host lattice and desorption 

of the methane molecule at the surface of the hydrate particle that was proposed in the study of Kim 

et al.
70

 and that was described by Eq.(2-2).  The second step was diffusion of the methane 

molecule through a porous ice layer, in which they assumed that the fugacity of gas varied linearly 

in the direction of the thickness of the porous ice layer mentioned above so that the gas diffusion 

rate was formulated as: 

  
gss

d ffA
L

D

dt

dn
              (2-4) 

where nd is the cumulative moles of gas, D is the diffusion coefficient of the gas molecule in the 

porous ice layer, L is the thickness of the porous ice layer, and fg is the fugacity of gas molecule in 

vapor phase.  At quasi-equilibrium conditions, the left-hand side of Eq. (2-2) equals to that of 

Eq.(2-4), thus, Eq. (2-5) can be developed by eliminating the fugacity for the solid surface: 

  geq

ssd

d

1

1
ff

DA

L

AK

dt

dn






















            (2-5) 

Temperature dependence of the decomposition rate constant shows that the activation energy (ΔEa) 

is strongly dependent on the preparation method.  The ΔEa for methane hydrate dissociation in the 

presence of activated carbon above the ice point (26 kJ/mol), below the ice point (89 kJ/mol), that 

in the presence of SDS below ice point (96 kJ/mol) and that without SDS below ice point (96 
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kJ/mol) show a wide range of values.  The decomposition rate constant depends weakly on the 

temperature above the ice point, and the activation energy (26 kJ/mol) is remarkably lower than 

values in previous literature, 78
70

 and 81 kJ/mol.
67

  Liang et al.
73

 thought that these differences 

could be interpreted by results reported by Circone et al.,
82

 who observed that when hydrates 

decompose above the ice point by rapid depressurization, there are large differences between 

sample temperature and the external bath temperature unlike for the case of the decomposition of 

hydrate below the ice point.  Sample temperatures are buffered in a narrow temperature range 

below the ice point by the latent heat of water and thus tend to be insensitive to the external bath 

temperature.  Following this line of reasoning, the dissociation rate of hydrate above the ice point 

is probably affected according to the rate of heat flow from the external bath.  Therefore, Liang et 

al. thought that the activation energy (26 kJ/mol) determined with Eq. (2-5) above the ice point 

should not be taken as the true activation energy. 

Komai et al. used in-situ Raman spectroscopy to follow hydrate dissociation in real time.
71

  

In-situ Raman spectroscopy is a feasible tool to follow conformational changes in solid structures, 

at isothermal or isobaric conditions.  The optical cell had a sapphire window and had an internal 

volume of about 10 cm
3
, in which powdered methane hydrates with an average diameter range of 

about 100-250 m were loaded.  Pressure was held constant by a regulator and a micrometering 

valve.  The relationship that they used for data reduction was: 

      
2

0

32 6
1213

r

Dt
tItI             (2-6) 

where I(t) is the integrated Raman intensity for an elapsed time t,  is a dimensionless parameter 
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derived from the driving force for hydrate dissociation, r0 is the initial hydrate radius, and D is the 

diffusion coefficient of methane in the ice layer. 

Using Eq.(2-6), Komai et al.
71

 found that the dissociation rates of methane hydrate at 0.1 MPa 

(272.7 and 271.2 K) were considerably faster than those at 0.25 and 0.5 MPa, and that the 

dissociation rates at 271.2 and 268.2 K became smaller after about 100 min.  This indicates a type 

of self-preservation that occurs for the clathrate hydrate structure through the renewal of a surface 

layer coated with ice
83,84

 or formation of quasi-liquid layers (QLL).
75,76,85,86

 

  

 

2.4.2   CO2 clathrate hydrate formation kinetics 

In the study of CO2 hydrate formation kinetics, ice particles or aqueous solutions are generally 

used.  For the hydrate formation from the aqueous solutions, solubility and mass transfer or 

diffusion to the bulk phase by guest molecules has to be considered. Literature related to the 

investigation of the CO2 clathrate hydrate formation is shown in Table 2-7. 
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Table 2-7.  Literature for investigations of CO2 hydrate formation kinetics.  Temperature (T), pressure (P), additives and analytical methods were 

surveyed.  The EKF
 and ED are the activation energy of the hydrate formation and that of the diffusion in hydrate, respectively.  Literature studies 

form CO2 hydrates by pressurization. 
66,68,69,72,74-76,87 

 

Method T range [K] P range [MPa] Particle size [m] Additive EKF
 [kJ/mol] ED [kJ/mol]  

MB
 

274 – 278 1.59 – 2.79 - - 53.7 (0.13)
*1

 - Malegaonkar (1997) 
74

 

MB
 

273 – 277 2.5 – 3.4 - NaCl & Porous media 35.2 (0.92)
*1, 2

 - Lee (2002) 
72

 

MB
 

273 – 277 2.0 – 3.0 - Surfactant & Porous media - - Kang (2010) 
69

 

MB &PSA 274 – 279 1.6 – 3.0 1 – 25 (t = 2320 s) - 45.2 (0.25)
*1

 - Clarke (2005) 
68

 

MB & PSA 275 – 279 2.01 – 3.05 - - 402 (0.98)
*1

 - Bergeron (2008) 
66

 

PD 276 2.9 – 3.9 - - - - He (2011)
87

 

ND
 

230 – 263 6.2 ca. 200 - - 27.3 Henning (2000) 
76

 

XRD 233 – 273 0.98 – 1.47 ca. 150 - 20 39 Takeya (2000) 
75

 

MB: material balance, PSA: on-line particle size analyzer, PD: pressure decay, ND: neutron diffraction, XRD: X-ray diffraction. 

*1 
Estimate by using Arrhenius plot (determination coefficient), 

*2
 CO2 hydrate in pure water at a temperature range from 273.2 to 276.2 K. 
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2.4.2 .1 Formation of clathrate hydrates from aqueous solutions 

 He et al. investigated the influence of supersaturation on induction time and half-life decay 

time for both CO2 and methane hydrate systems. 
87

  The degree of supersaturation, S
*
, is defined 

by relationship between the initial pressure and equilibrium pressure (S
*
 = Pinitial/Peq – 1).  The 

induction time for the CO2 + water system was shorter (ca. 53 min) than for the methane + water 

system (ca. 108 min) at very low degrees of supersaturation (ca. 0.45), however, as the degree of 

supersaturation increased, the induction times become larger such that at high degrees of 

supersaturation, induction times of CO2 + water (ca. 50 min when S
*
 was 0.54) became longer than 

those of methane + H2O (ca. 4 min when S
*
 was 0.54).  The critical size of nuclei is defined by a 

relationship between the interfacial tension and the Gibbs energy,
88

 and the Gibbs energy is 

proportional to the ratio of initial and equilibrium pressure.  Therefore, the results of He et al. 

indicate that the interfacial tension between water and gas hydrate in the CO2 + water system 

changes with the degree of supersaturation.  He et al. scaled decay time half-life, tscale-half, by using 

the pressure change to eliminate the influence of the absolute value of the decay pressure half-life as 

given by eq. (2-7) below. 

 
halfinitial

half
halfscale

PP

t
t


              (2-7) 

The scaled decay time half-life for the CO2 system (ca. 1) was shorter than that for the methane 

system (ca. 1.5) for the same range of degree of supersaturation (0.6 – 0.8).  The results revealed 

that the crystal growth of CO2 hydrates is faster than that for methane hydrates. 

Malegaonkar et al. measured CO2 hydrate formation kinetics using a semi-batch stirred tank 
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reactor at nominal temperatures of 274, 276 and 278 K and at pressures ranging from 1.59 to 2.79 

MPa.
74

  The used a kinetic model based on the crystallization theory coupled with the two-film 

theory for gas absorption in liquid phase, that was developed by Englezos et al. and considered the 

growth of a hydrate crystals as a two step process based on a fugacity driving force as given by Eqs. 

(2-8) to (2-13) below.
89

  It was assumed that the particles were spherical, with the outside surface 

of the surrounding layers being equal to the inside surface layer and that there was no accumulation 

in the diffusion layer.  Malegaonkar et al. modified the model equations
89

 by considering the 

particle size as the particle diameter consistently for the solubility of carbon dioxide in water.
74

  

The rate of growth per particle was given by: 

  eqpform

p

gas
ffAK

dt

dn











            (2-8) 

where ngas is moles of gas consumed, t is reaction time, (f – feq ) is the difference in the fugacity of 

the dissolved gas and its fugacity at the three phase equilibrium, defines the overall driving force.  

Kform is an overall rate constant for the formation and Ap is the surface area between bulk fluid and 

hydrate phases of each particles.  The global reaction rate for all the particles, Ry(t), is given by: 

    














0
pp

p

gas
ddtd

dt

dn
tRy ,            (2-9) 

where (dp, t) is the particle size distribution, dp is particle diameter.  The second moment of the 

particle,2, is given by: 

  



0

pp

2

p2 ddtdd ,              (2-10) 

Eq. (2-11) can be developed from Eq. (2-9) by using Eqs. (2-8) and (2-10). 
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    eq2form ffKtRy               (2-11) 

Assuming quasi steady state conditions, diffusion and reaction in the liquid film are given by 

Eq.(2-12): 

  
eq2form2

2

F ffK
dy

cd
D               (2-12) 

where DF is Fick’s diffusion coefficient of the gas, c is the concentration of gas in liquid water and y 

is the distance from the gas-liquid interface.  Following the development of Englezos et al.,
89

 the 

dynamic behavior of the process is described by Eq.(2-13): 
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       (2-13) 

where A(g-l) is the gas-liquid interfacial area, yL is the film thickness, and fg and fbulk are fugacities of 

the reactor gas phase and that of the bulk of the liquid phase, respectively.  Hatta number, , and 

D
*
 are given by Eqs. (2-14) and (2-15): 
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where H is Henry’s constant, ceq is the concentration of gas in liquid water at the three phase 

equilibrium conditions and cw0 is the initial concentration of water.  The definition of DF
*
 was 

modified from the Englezos et al. model
89

 for the solubility of carbon dioxide as Eq.(2-15).  In this 

model, the kinetic rate constants, Kform, obtained for methane and carbon dioxide could be used to 
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simulate hydrate formation from their mixtures,
90

 or to describe the kinetics of hydrate formation in 

aqueous electrolyte solutions.
91

  The Kform obtained for carbon dioxide hydrate formation (0.49×

10
-3

 mol/(m•s•MPa) at 274 K) determined from Eq. (2-13) are higher than those for methane 

hydrate (0.31×10
-4

 mol/(m•s•MPa) at 274 K).
74

  However, these values are much higher than 

previous values, for which Kform for methane hydrate formation obtained by Englezos et al. was 

0.65×10
-5

 mol/(m•s•MPa) at 274 K
89

 and that for carbon dioxide hydrate formation obtained by 

Chun and Lee were in the range from 0.69 to 0.71 ×10
-5

 mol/(m•s•MPa) at temperatures range 

from 275 to 279 K.
92

  Malegaonkar et al.
74

 considered that the values were higher due to 

corrections incorporated in the model according to the particle size in the derivation of the model 

equations.  In addition, it appears that Chun and Lee
92

 did not take into account the increase in the 

solution temperature during the turbidity time and subsequently during hydrate growth to calculate 

feq.  The turbidity time is the time during a stable critical size hydrate nuclei that appears in a 

catastrophic manner.
74

  Malegaonkar et al.
74

 took as zero time, the time after the turbidity time in 

the measurement of isotherm the gas consumption rate under isothermal conditions.  The 

temperature dependence of the rate constants for CO2 hydrate formation is not strong and thus, the 

activation energy for CO2 hydrate formation is generally not reported in the literature.
74

  The 

temperature dependence of the rate constant for CO2 hydrate formation can be observed after 

improving the estimation of surface area and this has been reported for the case of using in-situ 

particle size analysis,
68,74

 however, the differences are small.  The above researchers have reported 

a minimum value for the reaction rate constant in presence of several hydrate formers around 277 

K.
68,74,89

  The water density at this temperature is the highest for the liquid state, however, the 



Chapter 2 
 

 - 42 - 

change in water density is not significant over the temperature interval investigated.  This trend, 

for which the reaction rate constant around 277 K was the smallest among 273 – 280 K,
68,74,89

 could 

be attributed to the hydrate formation kinetics model based on a fugacity driving force and the 

two-film theory. 

Bergeron and Servio chose to use temperature and pressure conditions for investigating 

CO2 hydrate formation kinetics using a semibatch stirred-tank reactor incorporating a closed-loop 

particle size analyzer.
66

  Reaction rate constants were determined using a kinetic model that 

assumed that the mole fraction of the gas hydrate former in the bulk-liquid phase remained constant 

during hydrate growth as given by Eqs. (2-16) and (2-17), which are independent of dissolution rate 

at the vapor-liquid water interface.
93

  As for 2(t) given by Eq.(2-16), it can be obtained either 

experimentally, using the particle-size analyzer or using a population balance, which is a 

semitheoretical approach given by Eq.(2-17): 
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where VL is volume of liquid, w and MWw are density of and molecular weight of water, x
l
 is mole 

fraction of the gas hydrate former in the bulk liquid and x
H-L

 is solubility of the gas hydrate former 

under hydrate-liquid water equilibrium, 0
0
 is the initial number of hydrate particles, G is growth 

rate, dc is critical nuclei diameter, and kr is the reaction rate constant.  The obtained experimental 

and semi-theoretical reaction rate constants were 4.5 and 4.1 ×10
-8

 m/s at 277.5 K, these values 
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depended on the method used.  Hashemi et al.
94

 determined intrinsic kinetic rate constant of CO2 

hydrate formation from the experimental data of Clarke and Bishnoi 
68

 using a concentration driving 

force and the model of Englezos et al.
89

  The reaction rate constants of CO2 hydrate formation 

reported by Bergeron and Servio
66

 were in relatively good agreement with the value (1.2 ×10
-8

 

m/s) reported by Hashemi et al.
94

 using a population balance at 277.15 K.  The reaction rate 

constants reported by Bergeron and Servio increased with increasing temperature and their trend 

with temperature followed an Arrhenius-type relationship,
66

 which differs from previous literature.
74

  

However, the activation energy estimated by Arrhenius plot is ca. 402 kJ/mol, which is remarkably 

larger than estimated previously values (20 – 54 kJ/mol).
68,72,74

  This means that the assumption of 

hydrate crystal growth process had a significant influence on the temperature dependence on the 

reaction rate constants.  The model of Bergeron and Servio
66

 assumed a concentration driving 

force and independence of dissolution rate at the vapor-liquid water interface, which is different 

from the fugacity driving force and the diffusion in the liquid film in the model of Malegaonkar et 

al..
74

  On the other hand, the model of Hashemi et al.
94

 did not discuss temperature dependence on 

the intrinsic kinetic rate constant, which assumed a concentration driving force and the diffusion in 

the liquid film.  Thus, the temperature dependence on the driving force of the intrinsic kinetic rate 

constant for CO2 hydrate formation can be discussed by comparing the models of Malegaonkar et 

al.
74

 and Hashemi et al.
94

 and the assumption of diffusion in the liquid film can be discussed by 

comparing the models of Bergeron and Servio
66

 and Hashemi et al.
94

  If the influence of the 

driving force is negligibly small, the influence of the dissolution rate at the vapor-liquid water 

interface should be reconsidered.  Furthermore the mechanism can probably be understood directly 
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in terms of the physical chemistry.   

The effect of additives on CO2 hydrate formation kinetics has been studied in several 

works.  Use of NaCl solution inhibits the formation kinetics,
72

 while use of porous silica gel and 

sodium dodecyl sulfate (SDS) promotes formation rates.
69

  Kinetic data obtained under various 

SDS concentrations show a promotion of rates even when the SDS concentration is chosen to be 

less than the critical micelle concentration (CMC).  This behavior implies that characteristic 

hydrate formation is probably dominated by the solubility of the promoter rather than the CMC of 

the surfactant.
95,96

  Activation energy analyses for these additive effects are not available. 

 

2.4.2 .2 Formation of clathrate hydrates from ice particles 

Although the above-mentioned CO2 hydrate formation kinetics study focused on temperature 

conditions above the ice point, some reports have appeared for measurements below the ice 

point.
75,76

  Takeya et al. conducted in-situ observations of CO2 hydrate growth from ice particles 

using high-energy X-ray at high pressures.
75

  By assuming a two-stage kinetic model with a 

diffusion-limited reaction that proceeds with a pressure driving force as given by Eqs. (2-18) and 

(2-19), diffusion coefficients of CO2 and H2O molecules could be estimated at temperatures 

between 233 K and 272.5 K.  The growth rate in Stage (1), I can be described using a pressure 

difference relative to the dissociation pressure, p – pd(T),
97

 

   TppK dII               (2-18) 

where KI is the reaction rate constant and pd (T) is dissociation pressure of CO2 hydrate at 

temperature T.  The volume change of ice in Stage (2) can be written according to a diffusion 



Literature review 
 

 - 45 - 

equation as given by Eq. (2-19),
98
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where t is reaction time, Vi is the volume of ice, D is the inter-diffusion coefficient.  The ri and rh in 

Eq. (2-19) are the radii of the ice particle and hydrate particle, respectively.  In Eq. (2-19), i is the 

ice density (918 kg/m
3
) and hw is the water density of the hydrate (785 kg/m

3
).  The diffusion 

constants rapidly increase above ca. 263 K where the reaction seems to proceed in the quasi-liquid 

layer (QLL) existing on the surface of the ice particles.  Temperature dependence of the reaction 

constants below 263 K had an activation energy of ca. 20 kJ/mol.  In comparison with the 

literature,
85

 this value was not equal to the activation energy of diffusion of H2O molecule in 

hexagonal ice (ca. 59 kJ/mol), but was close to that in the QLL (ca. 24 kJ/mol).  Therefore, the 

nucleation and growth of hydrate on the ice surface might be determined by migration of H2O 

molecules on the ice surface.  The inter-diffusion coefficient for CO2 hydrate (ca. 8 ×10
-16

 m
2
/s 

at 263 K)
75

 was one to two orders smaller than that of air hydrate (ca. 2 ~ 4 ×10
-14

 m
2
/s at 263 

K).
98

  Between 238 K and 263 K, the diffusion activation energy for CO2 hydrate was ca. 39 

kJ/mol,
75

 which is comparable with that for air hydrate (30 ~ 50 kJ/mol).
98

  This result implies that 

the diffusion coefficient is determined by the diffusion of H2O molecules. 

Henning et al. used time-of-flight neutron powder diffraction for analyzing CO2 hydrate 

formation kinetics at temperatures ranging from 230 to 263 K in the presence of a CO2 gas phase.
76

 

Experimental data were correlated with a shrinking core diffusion model as given by Eq.(2-20): 
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where kD and r0 are the diffusion constant and the original radius of the particles, and r and r
*
 are 

degrees of reactions at times t and t
*
, respectively.  The term t* is indicates the time where the 

conversion process is initially dominated by the diffusion of CO2 molecules through the hydrate 

layer.  For each temperature, a straight line is obtained plotting (1 – r)
1/3

 as a function of (t – t
*
)
1/2

 

according to Eq.(2-20).  Since t* corresponds to ~ 20 % conversion for each temperature, after 

approximately 20 % conversion, the rate-limiting step of the process is the diffusion of CO2 

molecules through the layer of hydrate.  This is in agreement with the suggestion that the slower 

growth rate of CO2 hydrates in a water drop covered with a thin film of CO2 hydrate may cause the 

slow transport of CO2 molecules across the growing solid hydrate layer.
99

  The temperature 

dependence of the diffusion constants gave an activation energy of 27.3 kJ/mol,
76

 which is also 

close to the activation energy of diffusion of H2O molecules in the QLL (ca. 24 kJ/mol
85

).  This 

result shows that the formation of the hydrate is through a reaction between CO2 and water 

molecules in the QLL. 

For clathrate hydrates, many formation and dissociation phenomena have been studied.  

However, investigations on the formation phenomena the semi-clathrate hydrates are presently 

insufficient for understanding how these solids can be used in gas separation and gas storage 

processes. 
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2.4.3   Formation kinetics of semi-clathrate hydrates with gases 

 Trueba et al. investigated formation kinetics of H2-TBAB semi-clathrate hydrate
100

 or H2 and 

CO2-TBAF semi-clathrate hydrate.
101

  The influence of pressure (1.5 – 16 MPa), TBA salt 

concentration (1.8 – 3.7 mol%) and formation method (T-cycle method and T-constant method) on 

the induction time, the formation rate and the amount of gas storage were determined.  The 

induction time were favored at higher pressures and higher TBA salt concentrations due to the 

increase in supersaturation.
102

  The difference between the induction time of H2-TBAF-water 

system (150 – 250 min at pressure range of 5.0 – 13.0 MPa) and CO2-TBAF-water system (90 – 

150 min at pressure range of 1.6 – 2.3 MPa) at 3.4 mol% TBAF and similar temperature (H2: 294 K, 

CO2: 293 K) was thought to be due to the supersaturation of CO2 in the liquid phase being reached 

faster than the supersaturation of H2 because CO2 hydrates are stable at higher temperatures and 

lower pressures than H2 hydrates.  Namely, the subcooling of the CO2 system is larger than that of 

the H2 system.
101

  The rate of hydrate formation was calculated as the ratio of gas storage from the 

turbidity point to the stationary point over the formation time.  The gas storage amount was 

calculated from the (p-T) data using the Peng-Robinson equation of state.
103

  In H2-TBAB
100

 and 

H2-TBAF
101

 semi-clathrate hydrates, an increase in pressure and TBA salt concentration results in 

an increase in the formation rate (9.1 ×10
-2

 mmol/min at 3.4 mol% TBAF; 3.3 ×10
-2

 mmol/min at 

1.8 mol% TBAF at 13 MPa) and the H2 storage amount (12.0 mmol at 3.4 mol% TBAF; 4.5 mmol 

at 1.8 mol% TBAF at 13 MPa).  Results obtained from both formation methods (T-cycle method 

and T-constant method) for semi-clathrate hydrate formation rates and H2 storage amounts were 

similar and did not depend on the method.  The reason for this is that the formation rate is 
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proportional to the driving force (supersaturation),
90

 which increases with increasing H2 pressure 

and TBA salt concentration.  On the other hand, the salient dependence of TBAF concentration for 

formation rate and CO2 storage amount for CO2-TBAF semi-clathrate hydrate was not observed, 

and so only its CO2 pressure dependence could be obtained (5.8 ×10
-2

 mmol/min at 3.1 MPa and 1.8 

mol% TBAF; 2.2 ×10
-2

 mmol/min at 1.8 mol% TBAF at 2.3 MPa; 1.3 ×10
-2

 mmol/min at 3.4 mol% 

TBAF at 2.2 MPa).
101

  Thus, the supersaturation of CO2 seems to increase with pressure. 

 Fan et al. investigated the effect of TBAB and TBAF on the semi-clathrate hydrate formation 

rate and separation efficiency for CO2 (16.6 mol%) and N2 systems.
104

  The TBAB and TBAF 

concentration were 0.293 mol%.  The time to reach equilibrium with TBAF (ca. 0.25 h at 278 K) 

was about one-half that of TBAB (0.5 – 1 h at 278 K)
104

 and one-fourth that of THF (1 – 2 h at 273 

K and 0.5 – 1.5 mol% THF).
105

  Thus, TBAB and TBAF seem to possibly accelerate hydrate 

formation.  The semi-clathrate hydrate formation rate was quantitatively analyzed with a kinetic 

model given by Eq. (2-21).
104

  The chemical potential difference was used as the driving force and 

the apparent gas storage rate (-dn/dt = rf) was expressed as:
89,106

 

 f g eq

*r aK                (2-21) 

where a is the interfacial area, K
*
 is the overall kinetic constant, g and eq are chemical potentials 

of the guest molecule in the gas phase and in the hydrate phase, respectively.  The mass transfer 

was assumed to be fast enough compared with crystal growth in the agitated the reactor, since 

semi-clathrate hydrate formation rate can be expressed by: 
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where kf is the crystal growth constant, fg and feq are the fugacity of the gas phase and the hydrate 

phase at equilibrium conditions, respectively.  The Vg is the volume of the gas phase and t is the 

time to reach equilibrium storage.  Thus, the hydrate rate constant, akf, is expressed as: 
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The akf increased with increasing feed pressure, and under the same feed pressure, the akf with 

TBAF (akf =8.26 ×10
-7

 mol
2
/(s·J) at 6.8 MPa) was much higher than that with TBAB (akf =2.82 

×10
-7

 mol
2
/(s·J) at 7.31 MPa).  In addition, it was found that the CO2 recovery was about 50 % 

with TBAF or TBAB, and the optimum CO2 separation factor with TBAF was 37.  This value was 

higher than the CO2 separation factor with TBAB (9.8),
104

 with THF (7.6)
105

 or with pure water 

(13).
107

  Therefore, TBAF semi-clathrate can be considered to be a possible gas capture, 

membrane or separation material. 

 

2.5  Conclusions 

 For semi-clathrate hydrates, there are many structural and physical property data that are 

available.  Although semi-clathrate hydrates seem to be feasible for use as H2 storage materials, 

the H2 storage amount with semi-clathrate hydrates is lower than that for clathrate hydrates.  

Nevertheless, semi-clathrate hydrates have high potential for gas capture and separation because of 

their stability and their favorable hydrate formation kinetics.  For practical realization of the gas 
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separation technologies with semi-clathrate hydrate, it is important that their structure, phase 

equilibria and formation kinetics for guest molecules such as H2 or CO2 are studied in detail. 

 In this thesis, the objectives are to understand the gas inclusion phenomena in terms of crystal 

structure, phase equilibria, equilibrium gas storage amount and gas adsorption rate for gas 

separation method development in H2 purification process from biomass.  Therefore, in Chapter 3, 

the phase equilibria of gases + TBA salt + water system were measured, and a model for clathrate 

hydrate equilibria was developed.  In Chapters 4 and 5, gas adsorption rates for clathrate hydrate 

and semi-clathrate hydrate particles are measured.  A kinetic model for gas adsorption is 

developed in Chapter 4 that allows description of gas adsorption rate of clathrate hydrates.
108

  The 

model is extended to semi-clathrate hydrates in Chapter 5.  The theories and data for adsorption of 

H2 and CO2 with semi-clathrate particles are used to propose separation processes though 

simulation.  The simulations are confirmed with experimental measurements of gas mixtures with 

semi-clathrate hydrates in Chapter 5.  Conclusions and areas for future work are given in Chapter 

6. 
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Chapter 3 

 

Measurement and correlation of phase equilibria of 

semi-clathrate hydrates with H2 and CO2 

 

 

 

3.1  Introduction 

 Quaternary ammonium salts (QAS), such as tetra-n-butyl ammonium (TBA) salts, form 

semi-clathrate hydrates by replacing of water molecules in the crystal structure with the cation and 

anion of the QAS.  The crystal structures of semi-clathrate hydrates vary greatly according to the 

type of QAS that is added.
1-5

  The P-T diagram for gas + QAS semi-clathrate hydrate is related to 

the crystal structure and affects gas inclusion behavior.  Therefore, phase behavior as a function of 

temperature, pressure or composition is important for understanding the practical use of 

semi-clathrate hydrates. 

In this chapter, phase equilibria of gas + tetra-n-butyl ammonium (TBA) salt semi-clathrate 

hydrates are reported.  Gases studied are hydrogen (H2), carbon dioxide (CO2) and mixtures H2 

and CO2.  TBA salts studied are tetra-n-butyl ammonium bromide (TBAB), tetra-n-butyl 
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ammonium chloride (TBAC) and tetra-n-butyl ammonium fluoride (TBAF).  The effect of crystal 

structure and anion of the TBA salt on the phase equilibria are investigated.  Experimental data 

with pure gas systems are correlated with a modified van der Waals and Platteeuw model.  The H2 

and CO2 inclusion behavior is discussed in terms of the experimentally determined phase equilibria 

and in terms of the model correlation. 

 

3.2  Experimental 

3.2.1  Materials 

High-purity water obtained from a distillation unit (Advantec Toyo Kaisha, Ltd., RFD250NB) 

that had an electrical conductivity below 5.5 S/m was used in the experiments.  Hydrogen gas 

(99.99%), carbon dioxide (99.99%), a hydrogen-carbon dioxide gas mixture (H2 (99.99999%): ca. 

80 vol%, CO2 (99.995 %): ca. 20 vol%), tetra-n-butyl ammonium bromide (≥98.0%, Wako Pure 

Chemical Industries, Ltd.), tetra-n-butyl ammonium chloride (>98.0%, Tokyo Chemical Industry 

Co., Ltd.) and tetra-n-butyl ammonium fluoride trihydrate (≥97.0%, Sigma-Aldrich Co.) salts were 

used without further purification.  H2-CO2 gas mixture cylinder was made in a similar way with 

that in Chapter 5, thus H2 composition in Chapter 3 was assumed to be the same as that in Chapter 5 

(H2/CO2 = 3.4).  The quaternary ammonium salts are referred to as TBAB, TBAC and TBAF for 

bromide, chloride and fluoride anions, respectively.   
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3.2.2   Experimental apparatus 

 

Figure 3-1.  Schematic diagram of the experimental apparatus.  (a): overall view of the apparatus, 

(b): cross-section is taken at 90° to allow view of the thermowell.  1: thermowell, 2: O-ring made 

from polytetrafluoroetylene (PTFE), 3: O-ring made from nitrile butadiene rubber (NBR), 4: 

L-shape stirrer bar, 5: sapphire tube. 

 

 Figure 3-1 (a) shows a schematic diagram of the experimental apparatus and Figure 3-1 (b) 

shows a cross-sectional view of the cell.  The inner volume of the cell (Figure 3-1 b) was 1.3 cm
3
 

and its maximum was pressure 15 MPa.  The cell was fabricated out of 304 stainless steel and 

consisted of a seven piece assembly that included a sapphire tube (14.0 mm o.d., 10.0 mm i.d., 

length 17.7 mm, Ogura Jewel Industry Co., Ltd., Tokyo) which was held internally with two 

O-rings (PTFE) used on the outer lips of the tube and one O-ring (NBR, JIS class 1B) used on the 

inner surface of the tube (Figure 3-1 b).  The sapphire tube was maintained in a vertical position 

by a lower support and upper support gland nut that were held in an outer housing.  The outer 

housing (Figure 3-1 b) had two diametrically opposed view ports (10 mm diameter) that allowed for 
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visual observation of the cell contents.  A stirrer was made by wrapping and pressing a 1.58 mm 

diameter stainless tube (1/16 inch 316 stainless steel) around a teflon stirring bar (3 mm diameter  

8 mm long, rare-earth magnet, ca. 0.4 kG) into a coiled L-shape (8.95  9.40 mm).  The stirrer was 

interfaced to a magnetic stirrer (RP-1AR, Matsuura Seisakusyo, Ltd., Tokyo) that was outside of the 

temperature-controlled bath.  The entire cell assembly was thermally-insulated with Aeroflex sheet 

(Aeroflex, U.S.A) and immersed in a temperature-controlled ethylene glycol-water (ca. 24 mol% 

ethylene glycol) bath.  The volume of gas space (Figure 3-1 a) between the cell and the valve (v1) 

along with volume of the pressure transducer was ca. 2.57 cm
3
 and was kept in the 

thermally-controlled bath.  The temperature of the bath was controlled with a refrigerated 

circulator controller (Model MB, Julabo, Germany) and a chiller (CA-1112 type, Tokyo Rika Kikai 

Co., Ltd.).  The bath was thermally insulated on the sides and bottom with Aeroflex sheet 

(Aeroflex, U.S.A) and on the top with polypropylene balls (diameter, 10 mm, Matsuura Seisakusyo, 

Ltd., Tokyo) such that the temperature of the cell could be controlled to within ±17 mK at 273.6 K.  

The system temperature was measured with a platinum resistance temperature sensor (Pt 100 , 

3.17 mm diameter (1/8 inch), NR-350, 4-wire type, Netsushin) calibrated against a standard 

temperature probe (GE Kaye IRTD-400, accuracy 25 mK) that had a stated accuracy of 44 mK 

(Appendix A), and was inserted into a hole in the cell assembly wall.  The system pressure was 

measured by a sealed gauge pressure transducer (20 MPa F.S., PTX621-0, GE Sensing Japan) 

calibrated against a dead weight tester (Druck Pressurements M2200-5, stated accuracy 0.015%) 

that had a stated accuracy of 4.5 kPa (Appendix B). 
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3.2.3   Experimental procedure 

For the measurement of phase equilibria of gases with TBA salts and water, a TBA salt 

aqueous solution was charged into the cell that would give a TBAB mole fraction of 0.6 or 3.7 

mol%, a TBAC mole fraction of 3.3 mol%, or a TBAF mole fraction of 3.0 or 3.3 mol% which 

corresponded to literature data
6,7

 or stoichiometric compositions for TS-I (Table 5-1).  The cell was 

purged with H2, CO2 or H2 and CO2 mixture five times at 4 MPa to reduce the air concentration to 

trace, and was then pressurized to 12 MPa with H2, 5 MPa with CO2 or 8 MPa with H2 and CO2 

mixture gas.  The system temperature was maintained at 294 K (TBAB or TBAC systems) or 305 

K (TBAF systems) for 6 h as the solution was stirred.  The temperature was lowered to about 274 

K (TBAB or TBAC added systems) or 291 K (TBAF added systems), to initiate semi-clathrate 

hydrate formation.  For CO2 systems, however, the temperature was not lowered below 283 K 

since it was necessary to avoid liquefaction of CO2.  For TBAC or TBAF added systems, the 

temperature was increased to the semi-clathrate hydrate dissociation temperature so that the 

semi-clathrate hydrates would be in a liquid state and gas inclusion could be increased.  The 

semi-clathrate hydrate became solid by lowering the system temperature to below the dissociation 

temperature.  The system temperature was held constant until the system pressure stabilized. 
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Figure 3-2.  Typical pressure – temperature working plot for determining the hydrate dissociation 

pressure for the CO2 + TBAB + water system.  Red circles are experimental data point, green 

filled circle shows the dissociation temperature and pressure determined from the intersection of the 

H-L-V equilibrium line with the L-V equilibrium curve.  H: hydrate phase, L: liquid phase, V: 

vapor phase. 

 

In a typical set of measurements (Figure 3-2), the cell was heated in steps by gradually increasing 

the temperature and allowing the pressure to stabilize.  The system temperature and pressure 

stabilized rapidly and typically required three minutes, however, longer equilibration times (ca. > 3 

h) were used as noted below.  The step-size of the temperature increase was typically 0.1 K.  

After each temperature increase, pressure was allowed to equilibrate and to remain stable for at least 

3 h and in the vicinity of the hydrate dissociation temperature, the equilibration time used was 

typically 17 h.  Points were noted on the hydrate-vapor (H-V), hydrate-liquid-vapor (H-L-V) and 

liquid-vapor (L-V) equilibrium curves as shown in Figure 3-2.  The point of the hydrate 

dissociation was taken as the point at the intersection of the liquid-vapor (L-V) line and the 

hydrate-liquid-vapor (H-L-V) line as shown in Figure 3-2.  The temperature of hydrate 

dissociation was defined as the point of hydrate equilibria
8
 and was determined from the 

intersection of the H-L-V equilibrium line with the L-V equilibrium curve.  Visual observations 
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from the cell window were used to confirm the phase equilibria. 

 

3.3  Results and discussion  

3.3.1   Experimental results 

 Figure 3-3 show phase equilibria measurement and literature results of (a) H2-TBAB-water, 

H2-TBAC-water, (b) CO2 + TBAB or TBAC + water systems, Table 3-1 summarizes phase 

equilibrium data of the gases + TBA salt + water system measured in this work. 

 

 

Figure 3-3.  Phase diagram of (a) H2 + TBAB or TBAC + water systems and (b) CO2 + TBAB or 

TBAC + water systems.  Continuous lines are correlation results.  Red symbols (H2:▲this work,
9
 

◁,
10

 □,
11

 and ○.
12

 CO2: ◆this work,
9
 ▷,

13
 ▿14

 and   
10

) refer to 0.6 mol% TBAB systems.  Blue 

symbols (H2:●this work
9
 and ▿.

12
  CO2:▼this work

9
 and △14

) refer to 3.7 mol% TBAB systems.  

Green symbols (H2: □. 
6
  CO2: ○6

 ) refer to 3.3 mol% TBAC systems. 

 

The phase equilibria data measured in this work were compared with literature data
10-15

 (Figure 3-3) 

and were in agreement so that the experimental methods used could be confirmed.  
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Figure 3-4 show phase equilibria measurement and literature results of (a) H2 + TBAF + water 

systems, (b) CO2 + TBAF + water systems. 

 

Figure 3-4.  Phase diagram of (a) H2 + TBAF + water systems and (b) CO2 + TBAF + water 

systems.  Continuous lines are correlation results.  Olive symbols (H2:◆this work, CO2: ►this 

work) refer to 3.0 mol% TBAF systems.  Brown symbol (H2: ▽
7
 CO2:◄this work

9
) refer to 3.3 

mol% TBAF systems. 

 

For H2 and CO2 systems, dissociation temperatures were in the order of (largest to smallest) 3.0 

mol% TBAF, 3.3 mol% TBAF, 3.3 mol% TBAC, 3.7 mol% TBAB and 0.6 mol% TBAB.  The 3.0 

mol% TBAF semi-clathrate hydrate was most stable among the TBA salt systems studied (Figures 

3-3 and 3-4).  The order of the system stabilities corresponded to the order of their dissociation 

temperatures at atmospheric pressure.
7,16,17

  Although 3.0 mol% TBAF semi-clathrate hydrate had 

a comparable dissociation temperature at atmospheric pressure with that of 3.3 mol% TBAF 

semi-clathrate,
7
 the dissociation temperatures of 3.0 mol% TBAF semi-clathate hydrate were higher 

than those of 3.3 mol% TBAF semi-clathrate hydrates above 1 MPa (Figure 3-4).   
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Table 3-1.  Phase equilibrium data (H + L + V) for gases + tetra-n-butyl ammonium (TBA) salt + 

water systems measured in this work.  H: hydrate phase, L: liquid phase, V: vapor phase.  

Gas TBA salt T [K] P [MPa] 

H2 0.6 mol% TBAB
9
 281.25 8.715 

  281.65 11.774 

 3.7 mol% TBAB
9
 286.29 6.003 

  286.70 8.523 

  287.13 12.170 

 3.0 mol% TBAF 301.51 5.914 

  301.69 8.157 

  301.86 9.966 

CO2 0.6 mol% TBAB
9
 284.98 1.353 

  286.76 2.184 

  289.02 3.366 

 3.7 mol% TBAB
9
 288.11 1.345 

  288.99 2.127 

  290.55 3.233 

 3.0 mol% TBAF 300.97 0.717 

  301.33 1.414 

  301.75 2.255 

  302.06 3.114 

  302.24 3.671 

  302.52 4.621 

 3.3 mol% TBAF 301.07 0.715 

  301.55 2.267 

  301.67 2.985 

  301.97 3.643 

  302.10 4.479 

H2/ CO2 = 3.4 0.6 mol% TBAB
9
 282.72 3.360 

  283.41 5.041 

  283.44 4.993 

 3.7 mol% TBAB
9
 286.58 1.460 

  287.19 3.332 

  287.63 5.369 

  287.69 5.928 

  287.89 7.690 

 3.3 mol% TBAC 289.31 1.281 

  289.90 2.706 

  290.50 3.961 

  290.99 5.407 

 3.0 mol% TBAF 301.32 4.547 

  301.61 6.090 

  301.77 6.979 

TBAB : tetra-n-butyl ammonium bromide, TBAC: tetra-n-butyl ammonium chloride, TBAF: 

tetra-n-butyl ammonium fluoride. 
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For TBAF semi-clathrate hydrate, TS-I and SCS-I structures have been reported.
4,5

  The number of 

S-cages included with gas per H2O molecule for TS-I and SCS-I were 0.06 (=10/162) and 0.05 

(16/344) (Table 5-1), respectively, which means that the gas inclusion capacity of TS-I structure is 

higher than that of SCS-I structure.  The high stability of 3.0 mol% TBAF semi-clathrate hydrate 

at high pressure can probably be attributed to the amount of included gas because 3.0 mol% TBAF 

probably form TS-I structure and 3.3 mol% TBAF probably forms SCS-I structure at these 

conditions.  On the other hand, below 1 MPa, the dissociation temperature of 3.3 mol% TBAF 

semi-clathrate hydrate was higher than that of 3.0 mol% TBAF semi-clathrate hydrate (Figure 3-3 

d).  This trend implies that gas inclusion behavior and structure formation at high pressure are 

different from those at low pressure. 

Figure 3-5 shows phase equilibria measurements and literature results for H2 + TBAF + water 

and CO2 + TBAF + water systems. 

 

Figure 3-5.  Phase diagram of H2-CO2 gas mixture + TBA salt + water systems.  Continuous lines 

were correlation results.  ●: H2+CO2 (H2/CO2 = 3.4) + 0.6 mol% TBAB + water systems, ■: 

H2+CO2 (H2/CO2 = 3.4) + 3.7 mol% TBAB + water systems, ▼: H2+CO2 (H2/CO2 = 3.4) + 3.3 

mol% TBAC + water systems, ●: H2+CO2 (H2/CO2 = 3.4) + 3.0 mol% TBAF + water systems and 

△: H2+CO2 (H2/CO2 = 1.5) + 3.3 mol% TBAF + water systems.
18
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 For H2 + CO2 (H2/CO2 = 3.4) systems, the dP/dT of 3.7 mol% TBAB semi-clathrate hydrate 

was clearly larger than that of 0.6 mol% TBAB and 3.3 mol% TBAC semi-clathrate hydrate (Figure 

3-5 a).  The dP/dT of H2 + CO2 (H2/CO2 = 1.5) + 3.3 mol% TBAF semi-clathrate hydrate was 

comparable with that for H2 + CO2 (H2/CO2 = 3.4) + 3.0 mol% TBAF semi-clathrate hydrate 

despite the high CO2 composition (Figure 3-5b).  The crystal structure and anion of TBA salt seem 

to affect gas inclusion behavior. 

 

3.3.2   Thermodynamic model for semi-clathrate hydrate phase equilibira 

 The phase equilibrium model for gas clathrate hydrates by Parrich and Prausnitz
19

 that is based 

on the clathrate hydrate model by van der Waals-Platteeuw
20

 was modified to allow description of 

semi-clathrate hydrates.  In this thesis, the structure and thermal parameters prepared (section 

3.3.2.1) and the definition of the L-cage was changed (sections 2.2.2 and 3.3.2.2).  The proposed 

model follows the fundamental assumptions of Parrich and Prausnitz and van der Waals-Platteeuw, 

which are given as follows:
19

 

1. The host molecules contribution to the free energy is independent of their occupation in the 

cages.  This assumption implies that included guest molecules do not distort the cage. 

2. Each cage can contain at most one guest molecule, which cannot diffuse from the cage. 

3. There are no interactions of the solute molecules, such as the energy of each included guest 

molecule; each guest molecule is independent of the number and types of other solute molecules. 

4. No quantum effects are present and classical statistics are valid. 

The hydrate is considered to form from liquid water as a hypothetical empty hydrate structure and 
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then guest molecules are included into the hydrate cages.  Phase equilibria is considered to exist 

when the chemical potential difference between the liquid phase 
L

W
  and the empty hydrate phase 

W

  in Eq. (3-1) are equal to the chemical potential difference of clathrate hydrate phase 
H

W
  and 

the empty hydrate
W

  in Eq. (3-2) as: 

L β L

W W W
                   (3-1) 

H β H

W W W
                   (3-2) 

so that 

L H

W W
                   (3-3) 

 

3.3.2 .1  Chemical potential difference of the liquid phase 

The chemical potential difference of the liquid phase is determined from Eq. (3-4): 

 
L 0 L L

W W W W

W
0 0

2
0

ln
T P

T P

h
dT dP a

RT RT RTRT

     
            (3-4) 

where,
0

W
  is the differential chemical potential between water of empty hydrate structure and 

pure liquid water at reference conditions (T0 = 273.15 K, P0 = 0.1 MPa), and 
L

W
  is the molar 

volume difference between water of empty hydrate structure and pure liquid water.  The 
W,salt
a  is 

an activity of water in liquid phase as described by Eq.(3-5): 
21

 

W W,salt W,gas
ln ln lna a a              (3-5) 

The 
W,salt
a  and 

W,gas
a  are activity of water in TBA salt aqueous solution and in the presence of 

dissolved in pure water, respectively.  The 
L

W
h  is the enthalpy difference between water of the 

empty hydrate structure and pure liquid water, which is calculated from Eqs.(3-6) and (3-7) as: 
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L L

W pw
0

,0

T

W T
h h C dT                 (3-6) 

 pw pw,0 0
C C q T T                 (3-7) 

where 
pw
C  is thermal capacity differences between water of the empty hydrate structure and 

pure liquid water.  The q  is a correction for the difference of the reference temperature (T0 = 

273.15 K).  The 
0

W
 , 

pw,0
C and q  values used were those for structure I,

19
 namely, 

0

W


=1247 J·mol
-1

, 
pw,0
C = -38.13 J·mol

-1
·K

-1
 and q = 0.141 J·mol

-1
·K

-2
.  These values were used for 

all semi-clathrate hydrates.  It is important to note that thermal properties, L

W, 0
h , can be 

estimated from differential scanning calorimeter (DSC) analysis which is considered in this thesis 

(Appendix 3-1).  The 
L

W
  for each crystal structure were estimated from liquid water molar 

volume (18.02 cm
3
/mol) and water molar volume for TBAB semi-clathrate hydrate, which was 

calculated  (Appendix 3-2) from Eq. (3-8) as: 

 
2

24

*
10H A

W

H O

N
a b c

N
                 (3-8) 

The activity of water in TBA salt aqueous solution, 
W,salt
a was calculated from Eq. (3-9) as: 

 
 W c a

W,salt
ln

1000

mM
a

  
             (3-9) 

where m ,  , 
c

  and 
a

 are molar mass concentration, osmotic coefficient, and the valences of 

the cation and the anion, respectively.  The   were taken from literature data for each TBA salts 

(Appendix 3-3). 
22-24

  The activity of water in the presence of dissolved in pure water, 
W,gas
a  can 

be estimated assuming that the gas is dissolved in pure water as described by Eq. (3-10): 
25
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gas

gas gas

gas

gw

V

L1 1

exp

f
a x

P
H

RT

 
   

 
 
 
 

          (3-10) 

where 
gas

Lx  is the gas mole fraction in water, 
gas

Vf  is the fugacity of the chemical species in the 

vapor phase, 
gw
H  is Henry’s constant of gas in water

26
 and 

gas
   is molar volume of the gas at 

infinite dilution conditions.
27

  The estimation technique used for 
gas

Lx  is described in Appendix 

3-4. 

 

3.3.2 .2  Chemical potential difference of the hydrate phase 

 The chemical potential difference of the hydrate phase, 
H

W
  was determined by:  

H

W
ln 1
i ij

i j

RT v 
 

    
 

             (3-11) 

Eq. (3-11) assumes that the volume of unit cell of the clathrate hydrate and clathrate empty hydrate 

are equal.  In Eq. (3-11), the 
i
v  is number of cages i per water molecule and 

ij
  is the 

occupancy of cage i by gas j, which is calculated from: 

1
ik k

ik
ij j

j

C f

C f
 


              (3-12) 

where 
ik
C  and 

k
f  are the Langmuir constant of gas k in cage-i and fugacity of gas k, respectively.  

The gas fugacity was calculated with the Peng-Robinson equation of state.
28

  Determination of the 

H2-CO2 interaction parameters is described in Appendix C.  Combining Eqs. (3-11) and (3-12) 

gives: 
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H

W
ln 1
i ij j

i j

RT v C f
 

   
 

             (3-13) 

The theoretical formulas for HS-I, TS-I and SCS-I structures are 2TBA salt·76H2O, 5TBA 

salt·162H2O and 12TBA salt·344H2O for which the unit cells are 6(5
12

)·4(5
12

6
2
)·4(5

12
6

3
), 

10(5
12

)·16(5
12

6
2
)·4(5

12
6

3
) and 16(5

12
)·48(5

12
6

2
).

3
  Gas molecules are included in the 5

12
 cage, and 

the TBA salt is included in four cages that have combinations of 5
12

6
2
 and 5

12
6

3
, which are defined 

as the S-cage and the QL-cage, respectively (Figure 2-2).  Applying Eq. (3-13) gives Eq. (3-14) as: 

 H V L

W S QL TBA salt TBA saltS QL,
ln 1 ln 1

j j
j

RT v C f v C f
  

      
   

     (3-14) 

where 
L

TBA salt
f is the fugacity of the TBA salt in the aqueous solution, which is calculated from Eq. 

(3-15) as: 

 L sat

TBA salt TBA salt
L L sat

TBA salt TBA salt TBA salt TBA salt
exp

V P P
f x P

RT


 
 

  
 
 

      (3-15) 

where 
L

TBA salt
x , 

TBA salt
 , 

sat

TBA salt
P  and 

L

TBA salt
V  are the mole fraction of TBA salt in the liquid phase, 

the activity coefficient of the TBA salt, the saturation pressure of the TBA salt aqueous solution and 

the molar volume of the aqueous solution (Appendix 3-5), respectively.  The 
sat

TBA salt
P  was 

assumed to be equal to the saturation pressure of water as described Eq.(3-16): 
29

 

 sat sat

TBA salt w

6 6 27258.2
10 exp 73.649 7.3037 ln 4.1653 10P P T T

T
  

      
 

 (3-16) 

The 
TBA salt
  values were calculated from the eNRTL model

24
 that was fitted to literature data for 

each TBA salt (Appendix 3-6).
22-24

  The 
L

TBA salt
x  values were calculated with consideration for the 
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gas solubility (Appendix 3-7). 

 Langmuir constants were calculated from the Du-Gue model 
30

 as: 

2 2
H H

2S,H
exp

a b
C

T T

 
 
 
 

             (3-17) 

2 2
CO CO

2S,CO
exp

c d
C

T T

 
 
 
 

            (3-18) 

TBA salt TBA salt TBA salt

QL,TBAsalt
exp 1

A B C
C

T T m

    
         

    

       (3-19) 

where 
2

H
a , 

2
H
b , 

2
CO
c ,

2
CO
d , 

TBA salt
A , 

TBA salt
B  and 

TBA salt
C  are fitting parameters.  For TBAF 

systems, 
TBA salt
C  was set equal to zero due to the lack of phase equilibrium data at different TBA 

salt concentrations.  The initial values of 
2

H
b , 

2
CO
d  and 

TBA salt
B  were set by reference to 

literature values.
9,30,31

  Then, the values of 
2

H
a , 

2
CO
c  and 

TBA salt
A  were initialized in such a way 

that the calculated curves gave the trends of the experimental data.  Then, all fitting parameters for 

the same TBA salt and crystal structure systems were determined by using all experimental data of 

H2 + TBA salt + water system and CO2 + TBA salt + water system fixed TBA salt species and 

crystal structure. 

 

3.3.3   Correlation of phase equilibrium data 

 Figures 3-3 and 3-4 show correlation results for H2 or CO2 + TBAB, TBAC or TBAF + water 

systems.  Table 3-2 summarizes the fitting parameters and the average relative deviation (ARD) 

for each phase equilibrium system, where ARD is defined as: 
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   
 

exp calc

data exp

ARD %
100

i

P i P i

N P i


            (3-20) 

As shown in Figure 3-5 and Table 3-2, although the ARD of pressure for 3.7 mol% TBAB system is 

large, the modified thermodynamic model could describe the phase equilibria of H2 or CO2 + TBA 

salt + water systems well. 
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Table 3-2.  Langmuir expression fitting parameters, Eqs. (3-17) to (3-19), for H2, CO2 and tetra-n-butyl ammonium (TBA) salts determined. 

TBA salt 
H2
a  

[×10
-8

 K·Pa
-1

] 

H2
b  

[×10
3
 K]

CO2
c  

[×10
-6

 K·Pa
-1

] 

CO2
d  

[×10
3
 K] 

TBA salt
A  

[×10
-6

 K·Pa
-1

] 

TBA salt
B  

[×10
4
 K] 

TBA salt
C  

[mol/kg] 

ARD  
% 

0.6 mol% TBAB 5.639 1.335 2.282 1.400 3.691 1.129 -0.069 9.31 

3.7 mol% TBAB 2.416 1.391 8.119 0.926 3.082 1.100 -0.832 16.9 

3.3 mol% TBAC 2.997 1.131 2.609 1.230 2.929 1.115 -0.405 6.44 

3.0 mol% TBAF 3.140 1.546 3.653 0.824 3.793 1.205 0 8.76 

3.3 mol% TBAF 1.199 1.317 4.000 0.815 3.100 1.108 0 8.97 

TBAB : tetra-n-butyl ammonium bromide, TBAC: tetra-n-butyl ammonium chloride, TBAF: tetra-n-butyl ammonium fluoride. 
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 Figure 3-6 shows the temperature dependence of the Langmuir constants of H2 and CO2 for 

each TBA salt. 

  

Figure 3-6.  Calculated Langmuir constants of (a) H2 and (b) CO2 for each tetra-n-butyl 

ammonium (TBA) salt and crystal structure of semi-clathrate hydrate with Eqs. (3-17) and (3-18).  

Continuous lines show TBA salt and structure of semi-clathrate hydrate.  Lines: red, 0.6 mol% 

TBAB (HS-I); blue, 3.7 mol% TBAB (TS-I); green, 3.3 mol% TBAC (TS-I); olive, 3.0 mol% 

TBAF (TS-I); brown, 3.3 mol% TBAF (SCS-I). 

 

The Langmuir constants of H2 (ca. 10
-8

 Pa
-1

) were smaller than those of CO2 (ca. 10
-6

 Pa
-1

).  The 

reason for this is that the molecular size of H2 is smaller than that of CO2.  For H2 and CO2 of both 

systems, Langmuir constants for the HS-I structure were largest and those for the SCS-I structure 

were the smallest.  The crystal structure dependence of Langmuir constant in the H2 system was in 

accord with that in the CO2 system.  On the other hand, Langmuir constants of H2 for the TS-I 

structure increased in order of TBAF > TBAB > TBAC, and those of CO2 increased in order of 

TBAB > TBAC > TBAF.  Thus, the TBAF semi-clathrate hydrate for the TS-I structure of 

Langmuir constant in H2 systems was different from that in CO2 systems.  Therefore, gas inclusion 
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appears to vary according to both the anion of the TBA salt and the crystal structure of the 

semi-clathrate hydrate that is related to the size of the gas molecule, the electrophilicity of the 

anion
32

 and the gas capture cage size. 

 

 

3.3.4   Occupancy for mixed gas systems 

 Phase equilibrium diagram of the mixed gas system, H2 + CO2 + TBA salt + water systems, 

was calculated from the previously obtained fitting parameters (Section 3.3.3).  Figure 3-5 shows 

the results.  The model provides qualitative description of the phase equilibria of H2-CO2 (H2/CO2 

= 3.4)-3.3 mol% TBAC-water systems and H2-CO2 (H2/CO2 = 1.5)-3.3 mol% TBAF-water systems.  

From the trends, it can be concluded that mixture gas inclusion behavior changes according to TBA 

salt and gas composition 

 Figure 3-7 shows P-yH2 and P-xH2 diagram for each semi-clathrate hydrate.  The mole fractions 

of the vapor phase (yH2) and liquid phase (xH2) are calculated on an H2O-free and TBA salt-free basis.  

The xH2 were calculated from the gas occupancy in the S-cage as: 

2

2 2

eq.,H

eq.,H eq.,CO
2H
x



 



             (3-21) 

The H2/CO2 selectivity
H CO2 2
S  was calculated from Eq.(3-22): 

2 2

2 2

H H

H CO

CO CO
2 2

y x
S

y x
              (3-22) 
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. 

Figure 3-7.  Phase equilibria for H2–CO2 with each semi-clathrate hydrate, where yH2 is the 

composition of H2 the vapor phase and xH2 is the H2 composition without H2O and tetra-n-butyl 

ammonium (TBA) salt in the hydrate phase.  Continuous and dashed lines show yH2 and xH2, 

respectively.  Lines show TBA salt and dissociation temperature.  Lines: red, 0.6 mol% TBAB 

(HS-I), 282.7 K; blue, 3.7 mol% TBAB (TS-I), 287.0 K; green, 3.3 mol% TBAC (TS-I), 289.7 K; 

olive, 3.0 mol% TBAF (TS-I), 301 K; brown, 3.3 mol% TBAF (SCS-I), 301 K. 

 

The 
H CO2 2
S  increased with increasing H2 composition in the vapor phase.  The 

H CO2 2
S (H2/CO2 = 

3.4) were in the order of (largest to smallest) 3.3 mol% TBAC at 289.7 K (
H CO2 2
S = 123), 3.3 mol% 

TBAF at 301.0 K (
H CO2 2
S = 63), 3.7 mol% TBAB at 287.0 K (

H CO2 2
S = 67), 0.6 mol% TBAB at 

282.7 K (
H CO2 2
S = 51) and 3.0 mol% TBAF at 301.0 K (

H CO2 2
S = 11).  The 

H CO2 2
S  was high for 

3.3 mol% TBAC, because the 
H CO2 2
S  is greatly affected by the TBA salt and crystal structure.  

Especially, the 
H CO2 2
S  for 3.0 mol% TBAF at 301 K was small.  From the results of the 

calculations, the TBAF semi-clathrate hydrates were the most stable among the TBA salts examined.  

However, the gas selectivity of 3.0 mol% TBAF semi-clathrate hydrates is probably greatly reduced 

close to the equilibrium temperature due to decreasing differences between H2 and CO2 included 

amounts.  Therefore, the crystal structure is important for gas separation applications. 
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3.4 Conclusions 

 In this chapter, the phase equilibria of H2 and CO2 + tetra-n-butyl ammonium (TBA) salt + 

water systems were measured.  The TBA salts used were tetra-n-butyl ammonium bromide 

(TBAB), tetra-n-butyl ammonium chloride (TBAC) and tetra-n-butyl ammonium fluoride (TBAF).  

The apparatus and procedures in this work were confirmed to be sufficient for obtaining reliable 

data by comparison with literature data for TBAB semi-clathrate hydrate systems. 

 For TBAF semi-clathrate hydrates, dissociation temperatures varied according to TBAF 

concentration, in which 3.0 mol% TBAF semi-clathrate hydrate was found to be more stable than 

3.3 mol% TBAF semi-clathrate hydrate above 1 MPa.  Thus, it was confirmed that 3.0 mol% 

TBAF semi-clathrate hydrates form a different structure from that of 3.3 mol% TBAF 

semi-clathrate hydrate because the equilibrium gas inclusion amounts of 3.0 mol% TBAF 

semi-clathrate were larger than those of the 3.0 mol% TBAF semi-clathrate hydrate. 

 A phase equilibrium model was developed for semi-clathrate hydrates by using parameters for 

the QL-cage combined 5
12

6
2
 cage and 5

12
6

3
 cage, and estimating 

L

W
  from the molar volume of 

water for TBAB semi-clathrate hydrate.  The model could describe the phase equilibria of H2 or 

CO2-TBA salt-water binary systems well, but could only provide qualitative agreement for mixture 

systems.  The inclusion behavior of mixture gases is most likely different from that of pure gases 

and it seems to depend on the TBA salt.  The gas selectivity of semi-clathrate hydrates is affected 

by the crystal structure and the TBA salt.  Although the TBAF semi-clathrate hydrate can be 

readily applied because its high dissociation temperature, its selectivity for 3.0 mol% TBAF is 

probably low at temperatures close to its dissociation temperature. 
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Chapter 4 

 

Hydrogen adsorption behavior in clathrate hydrates 

and development of kinetic models 

 

 

 

4.1  Introduction 

 Gas adsorption rates of clathrate hydrates are important for their practical use.  There has 

been considerable research on hydrogen adsorption with clathrate hydrates that contain guest 

additives.
1-5

  For example, hydrogen adsorption kinetic models have been proposed for clathrate 

hydrates that contain guest additive tetrahydrofuran (THF).
2,4,5

  Although formation kinetics have 

been reported for other guest additives such as furan and tetrahydrothiophene (THT), hydrogen 

diffusion behavior in furan and THT clathrate hydrate particles is different from that in THF 

clathrate hydrate particles,
6
 and these have not been analyzed with kinetic models yet.  Hydrogen 

adsorption behavior in THF clathrate hydrates (D2O)
7
 and cyclopentane (CP) clathrate hydrates

7-9
 

which exist at higher temperatures than THF clathrate hydrates have not been reported yet.  

Further, kinetic models that describe adsorption behavior for guest additive clathrate hydrates might 



Chapter 4 
 

 - 88 - 

be expected to be applicable to gas adsorption with semi-clathrate hydrate particles, which is 

considered in Chapter 5 of this thesis. 

In this chapter, the objectives are to develop a H2 adsorption kinetic model that is applicable to 

a wide range of guest additives.  Guest additives considered are hydrophilic additives (THF and 

THF-d8) and hydrophobic additives (furan, CP and THT).  The kinetic model is assessed with 

adsorption data for clathrate hydrate particle through comparison with literature adsorption models. 

 

 

4.2  Experimental 

4.2.1   Materials 

High-purity water was obtained from Advantec Toyo Kaisha, Ltd., RFD250NB with an 

electrical conductivity below 5.5 S/m was used in the experiments.  H2 gas (99.99 %), 

tetrahydrofuran without stabilizer (99.5 %, Wako Pure Chemical, Inc.), D2O (Deuterated rate: 

99.8 %, Kanto Chemical), tetradrofuran-d8 (Deuterated rate: 99.5 %, Kanto Chemical), 

cyclopentane (≥ 99 %, Aldrich), furan with stabilizer (BHT) (≥ 99 %, Tokyo Chemical Industry), 

tetrahydrothiophene (≥ 99 %, Tokyo Chemical Industry), acetone-d6 (Deuterated rate: 99.9 %, 

Merck) were used without further purification. 

 

4.2.2   Clathrate hydrate preparation 

Batches of clathrate hydrate particles were made by loading water (or D2O) and THF (or 

THF-d8, CP, furan, THT) into a perfluoroalkoxyethylene vessel in such a way that the concentration 
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of organic liquids were 5.56 mol% with the contents being weighed to a precision of 1 mg with a 

balance (Mettler Toledo AX504) that was followed by cooling of the solution to 274 K with a low 

temperature-controlled bath while stirring.  The molar concentration chosen for the guest additive 

was the stoichiometric concentration for full occupancy of the guest additive in all L-cages for 

structure II (sII).  The formed clathrate hydrates were cooled to 253 K in a freezer for at least 6 

hours.  The solids were crushed with a mortar and pestle at liquid nitrogen temperatures and 

graded with stainless steel-type 316 sieves while being kept in the freezer at 253 K.  Particle size 

ranges of 500 – 600 m were used in the experiments.  Formation of clathrate hydrates were 

confirmed at room temperature and atmospheric pressure with a laser Raman spectrometer (JASCO, 

NR-2000) that had a holographic grating, CCD (Princeton Instruments, Inc.) (Appendix 4-1).  The 

existence of ice in clathrate hydrate particles was determined with X-ray diffraction (Rigaku, type 

Ultima III) using the CuK radiation (40 kV, 40 mA) at 123 K, and the lattice constants of the 

clathrate hydrates were calculated with RIETAN-2000 program.  The proportion of ice to hydrate 

was estimated with 
1
H NMR (AV-400, Bruker BioSpin K.K.) spectroscopy. 
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4.2.3   Experimental apparatus 

 

Figure 4-1. Schematic diagram of the apparatus for hydrogen adsorption experiments.  Labels, 1: 

H2 cylinder, 2: glycol jacket, 3: reservoir tank, 4: vacuum pump, 5: Pt 4-wire thermometer, 6: chiller, 

7: hydrate formation cell, 8: inner cell, 9: window for in-situ Raman measurements. 

 

Figure 4-1 shows a schematic diagram of the experimental apparatus.  The reservoir tank 

system was designed to be separated from the equilibrium cell during the loading of the reservoir 

tank with H2.  In the hydrate formation cell, the window was held externally with a O-ring 

(IIR-70°, Morisei Kako Co.) and the inner cell was made of brass.  The hydrate formation cell was 

maintained at the temperature of interest (265 to 273 K) to within ± 0.02 K by an integral cooling 

aluminum jacket that was cooled by a circulator (F32-HE, Julabo Co., Ltd.).  The reservoir tank 

was volume calibrated with nitrogen over a range of temperatures (265 – 273 K) and pressures (1.1 

– 5.6 MPa) and found to have an average volume of 304.67 cm
3
 from 11 independent trials ( = 

0.158 cm
3
) (Appendix D).  The hydrate formation cell was volume calibrated with nitrogen over a 

range of temperatures (269 – 273 K) and pressures (2.5 – 8.9 MPa) and found to have an average 

volume of 26.324 cm
3
 from 6 independent trials ( = 0.133 cm

3
) (Appendix D).  The temperature 
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of the reservoir tank could be controlled to within ± 0.05 K by an integral cooling glycol jacket that 

was cooled by a circulator (F25-MP, Julabo Co., Ltd.).  The system temperature was measured 

with two platinum resistance temperature sensors (Pt 100 , 3.17 mm diameter (1/8 in.), NR-350, 

four-wire type, Netsushin) calibrated against a standard temperature probe (GE Kaye IRTD-400, 

stated uncertainty ±25 mK).  The temperature sensors that inserted into a hole in the cell assembly 

wall had the uncertainty of ±29 (Appendix A).  The system pressure was measured by two sealed 

gauge pressure transducers (the cell: 14 MPa F.S. PMP4015, GE sensing Japan, the tank: 14 MPa 

F.S. PMP5013, GE sensing Japan) calibrated against a dead weight tester (Druck Pressurements 

M2200-5, stated uncertainty ±0.015 %).  The two pressure gauges on the cell and the tank had the 

uncertainty of ±1.7 and ±2.3 kPa, respectively (Appendix B). 

 

4.2.4   Experimental procedure 

 When the hydrate formation cell and the reservoir tank were cooled to 265 – 273 K, about 3 – 

5 g of the clathrate hydrate particles were loaded.  As soon as the system was briefly evacuated for 

3 s by a vacuum pump (Hitachi Koki Co., VR16L), V5 was closed.  After the reservoir tank was 

sufficiently evacuated by the vacuum pump, H2 gas was pressurized to about 4.3 – 11.2 MPa in the 

reservoir tank.  When temperature and pressure of the reservoir tank stabilized, H2 gas was loaded 

into the formation cell over a period of about 5 s.  The analysis method was based on the pressure 

decay method with material balances for H2 in both the formation cell and reservoir tank as in 

previous work, 
2
 however, the contribution of porosity is considered in this chapter.  The amount 

of H2 gas loaded 
2

H , load
n , was calculated by the difference in the H2 concentration before and after 
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loading of the reservoir tank by using Eq. (4-1) and the virial EoS that was correlated to NIST 

Chemistry WebBook (Appendix E).
10

 

 
2 2 2

H , load H , R, initial H , R, final
n n n   (4-1) 

The amount of H2 in the hydrate phase was calculated from relationships below. 

Volume of gas phase: 

 
 

2

2

H , load

Gas

H , Gas
0

n
V

C t



 (4-2) 

Moles of free H2 gas: 

  
 

2

2

2

H , Gas Gas

H , Gas

H

0C t V
n t

M


  (4-3) 

 

Moles of H2 in hydrate phase by material balance: 

  
2 2 2

H , Hyd H , load H ,Gas
( )n t n n t   (4-4) 

The volume of hydrate phase calculated from Eq. (4-5) was different from that of hydrate phase 

calculated from Eq. (4-6) using theoretical water density in the hydrate phase; Eq. (4-7). 

Volume of hydrate phase: 

 Gas,HcellHyd 2
VVV   (4-5) 

Volume of theoretical clathrate hydrate: 

 2 2

2

H O, Hyd H O

Theor

H O, Theor

n M
V


  (4-6) 
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Water density in the theoretical clathrate hydrate: 

 2 2

2

*

H O H O

H O, Theor

A

3

N M

N a
   (4-7) 

Since pores exist in clathrate hydrate particles,
11

 the theoretical volume of the clathrate hydrate was 

corrected using the porosity  : 

 Theor

Hyd 1

V
V





 (4-8) 

where the theoretical number of water molecules per unit cell 
2

*

H O
N  was taken to be 136 based on 

sII structure.  The lattice constant a  was calculated from observed full diffraction pattern by 

XRD by using RIETAN-2000 program.  The   was calculated from Eqs. (4-5), (4-6) and (4-8).  

For the clathrate hydrates in the hydrophobic guest additive systems, the mole ratio of the guest 

additive molecule to water was analyzed using 
1
H NMR spectroscopy.  Before each H2 adsorption 

experiment, hydrate powders were dissolved into acetone-d8 (Ac-d8), and the solutions were 

analyzed.  The ratio between guest additive molecule and water molecule was calculated from the 

relationship between peak area of 
1
H NMR, 

H1
A  and proton number, 

H1
N  corresponding to each 

molecule as given by Eq. (4-9): 

 

2 2

2

H, Guest H, Guest
Guest

apparatus

H O H, H O H, Ac-d8 H, H O H, H O

H, H O H, Ac-d8 H, Ac-d8 H, Ac-d8

1 1

1 1 1 1
2 2

1 1 1 1

*

*

A Nn
C

n A A A N

N N A N





 (4-9) 

where 
H1
*A  is the peak area given by 

1
H NMR analysis of the pure Ac-d8 liquid and 

apparatus
C is the 

apparatus constant for 
1
H NMR, that is the slope of the calibration curve with ordinate, loaded 
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composition, and abscissa, estimated composition, from the 
1
H NMR.  The clathrate hydrate mass 

(weight) was calculated from the following relationships by assuming that all L-cages of the 

clathrate hydrates were occupied by guest additive molecules as given by Eq. (4-10) – (4-12). 

Mass (weight) of guest additive molecule: 

 Total

OH

Guest

OH

Guest

OH

Guest

OH

Guest

Guest

22

22

1

W

M

M

n

n

M

M

n

n

W



  (4-10) 

Mass (weight) of H2O in hydrate phase: 

 
2

H O, Hyd Guest

Stoich

100
1W W

C

 
   
 

 (4-11) 

where 
Stoich
C  is the stoichiometric concentration when all L-cages are occupied by guest additive 

molecules (sII structure: 5.6 mol%). 

Mass (weight) of clathrate hydrate: 

 GuestHydO,HHyd 2
WWW   (4-12) 

Mass (weight) of ice: 

 
Ice Total Hyd
W W W   (4-13) 
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4.3  Results and discussion 

4.3.1   X-ray diffractometer analysis 

Figure 4-2 shows the XRD pattern of (a) THF clathrate hydrates, (b) CP clathrate hydrate as an 

example of the solids formed in this chapter.  For hydrophilic solvent systems (THF clathrate 

hydrate, THF clathrate hydrate (D2O), THF-d8 clathrate hydrate), the peaks showed the existence of 

clathrate hydrates (Appendix 4-2(a)) and almost a complete absence of ice peaks, so that the yield 

of clathrate hydrate for these samples was over 99%.  On the other hand, for hydrophobic guest 

additive systems (CP clathrate hydrate, furan clathrate hydrate, THT clathrate hydrate), ice peaks 

were observed (Appendix 4-2(b)). 

 

Figure 4-2.  X-ray diffraction pattern of (a) tetrahydrofuran (THF) clathrate hydrate, (b) 

cyclopentane (CP) clathrate hydrate at 123 K.  Down-pointing triangles and diamonds show 

clathrate hydrate structure II (sII) and ice, respectively. 
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hydrophobic guest additives become separated and ice forms without the addition of a compound 

such as a surface-active agent.  For hydrophobic guest additive systems, due to their XRD pattern 

and the availability of the structure parameters for only THF clathrate hydrate,
12

 the rates of the 

clathrate hydrate in the samples were estimated with 
1
H NMR spectroscopy. 

 

4.3.2   Hydrogen adsorption rate measurements 

 Table 4-1 summarizes the experimental runs made and the lattice constants determined.  

Figure 4-3 shows H2 adsorption as a function of time for clathrate hydrates of hydrophilic systems 

(runs 2, 13 and 19).  The occupancy of the S-cage, 
S
q  was calculated from Eq. (4-14) on the 

assumption that a single H2 molecule occupies the S-cage of the clathrate hydrate (Appendix 4-3). 

 2 2

2 2 S

*

H O H O

S

H H O, Hyd
W

2H ,Hyd
W M N

M N
q

q   (4-14) 

Gas adsorption rates for clathrate hydrates were assessed by the time required to reach half the 

equilibrium gas occupancy in the S-cage, 
half
t .  A small 

half
t  implies a fast adsorption rate.  The 

half
t  of H2 + THF-8 hydrate was shorter than that of H2 + THF clathrate hydrate (D2O) and H2 + 

THF clathrate hydrate (Table 4-2).  The deuteration effect of the host molecule was larger than that 

of the guest additive molecule for phase equilibria, which has been observed for H2 + THF + D2O, 

D2 + THF + H2O and H2 + THF-d8 + H2O systems.
7
  However, the H2 adsorption rate showed that 

the deuteration effect of the guest molecule was only slightly larger than that of the guest molecule 

(Table 4-2). 
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Figure 4-3.  H2 adsorption as a function of time in the clathrate hydrates of hydrophilic solvent 

system (d = 500 – 600 mm, T = 269 K, Pinitial = 8 MPa).  Red circles, blue squares and green 

triangles show tetrahydrofuran (THF), THF (D2O) and THF-d8 clathrate hydrate particles, 

respectively.  Inset: expanded view at 0 – 2 h. 

 

 

Figure 4-4.  H
2
 adsorption as a function of time in the clathrate hydrates of hydrophobic guest 

additive system (d = 500 – 600 m, T = 269 K, P
initial

 = 8 MPa).  Red circles, blue squares and 

green triangles show furan, cyclopentane (CP) and tetrahydrothiophene (THT) clathrate hydrate 

particles, respectively.  Inset: expanded view at 0 – 2 h.  
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Table 4-1.  H2 clathrate hydrate inclusion conditions and measured lattice constants. 

Run 
Host 

Molecule

Guest 

Molecule 

Conc. 

[mol%] 
T [K] 

Pinitial 

[MPa] 
WHyd [g] WIce [g] a [Å] 

1 H2O THF 5.6 265.1 8.10 2.90 - 17.147 

2    269.1 8.13 4.18 -  

3    273.0 8.14 4.62 -  

4    269.2 3.98 4.61 -  

5    269.3 10.22 4.80 -  

6   6.2 265.1 8.10 3.21 -  

7    269.2 8.17 4.52 -  

8    272.9 8.10 2.89 -  

9   4.4 269.3 8.18 3.89 0.90  

10   5.0 269.2 8.16 4.55 0.45  

11   6.8 269.1 8.12 4.32 -  

12 D2O THF 5.6 265.1 8.19 5.22 - 17.157 

13    269.1 8.19 5.01 -  

14    273.0 8.13 4.01 -  

15   6.2 265.1 8.19 5.24 -  

16    269.1 8.21 4.82 -  

17    273.0 8.18 5.16 -  

18 H2O THF-d8 5.6 265.1 8.17 4.57 - 17.160 

19    269.2 8.16 3.77 -  

20    273.0 8.16 4.18 -  

21 H2O furan 6.6 265.4 8.05 2.22 1.12 17.133 

22    269.1 8.08 1.92 1.57  

23    272.3 8.11 2.14 2.06  

24 H2O CP 6.0 265.1 8.15 5.03 0.00 17.238 

25    269.1 8.14 4.13 0.09  

26    273.0 8.09 4.10 0.13  

27 H2O THT 5.6 269.1 8.15 2.83 0.90 17.247 

T: temperature, Pinitial: initial pressure, WHyd: mass (weight) of hydrate in product .particles, WIce: mass (weight) of 

ice in product particles, a: hydrate lattice constant. 
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Table 4-2.  Results derived from H2 clathrate hydrate formation experiments. 

Run 
Host 

molecule 

Guest 

molecule 

Conc. 

[mol%] 
T [K] Pfinal [MPa] thalf [h] qeq [-] 

CH2, S 

[×10
-2

 MPa
-1

] 

Average S-cage 

diameter [Å] 

1 H2O THF 5.6 265.1 7.68 0.48 0.257 4.293 7.730 

2    269.1 7.53 0.83 0.244 4.077  

3    273.0 7.49 0.61 0.231 3.833  

4    269.2 3.64 0.79 0.130 4.008  

5    269.3 9.36 0.79 0.288 4.077  

6   6.2 265.1 7.64 0.61 0.264 4.469  

7    269.2 7.53 0.44 0.242 4.052  

8    272.9 7.71 0.38 0.243 3.977  

9   4.4 269.3 7.65 0.38 0.222 3.561  

10   5.0 269.2 7.50 0.56 0.236 3.933  

11   6.8 269.1 7.50 0.24 0.242 4.043  

12 D2O THF 5.6 265.1 7.46 0.88 0.254 4.356 7.734 

13    269.1 7.52 0.83 0.243 4.076  

14    273.0 7.63 0.70 0.230 3.723  

15   6.2 265.1 7.46 0.61 0.257 4.436  

16    269.1 7.58 0.44 0.243 4.032  

17    273.0 7.54 0.36 0.224 3.651  

18 H2O THF-d8 5.6 265.1 7.50 0.96 0.256 4.370 7.736 

19    269.2 7.63 0.79 0.245 4.057  

20    273.0 7.60 0.70 0.228 3.714  

21 H2O furan 6.6 265.4 7.72 0.14 0.256 4.241 7.724 

22    269.1 7.81 0.16 0.247 3.991  

23    272.3 7.85 0.12 0.199 3.018  

24 H2O CP 6.0 265.1 7.35 1.01 0.260 4.554 7.771 

25    269.1 7.54 0.92 0.247 4.150  

26    273.0 7.47 0.48 0.245 4.138  

27 H2O THT 5.6 269.1 7.77 0.79 0.231 3.681 7.775 

Pfinal: pressure at experimental finished, thalf: time for consumption of half of H2 gas, q eq: equilibrium occupancy, CS: Langmuir constants of H2 in S-cage.  
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Figure 4-4 shows H2 adsorption as a function of time in the clathrate hydrate of hydrophobic 

guest additive systems.  The 
half
t  of H2 were in the order (shortest to longest) of H2 + furan 

clathrate hydrate, H2 + CP clathrate hydrate, H2 + THT clathrate hydrate in the early stages of 

formation (Figure 4-4), but the 
half
t  of H2 + THT clathrate hydrate was shorter than that of H2 + 

CP clathrate hydrate (Table 4-2).  This was considered to be due to the formation processes of the 

H2 + guest additive clathrate hydrate being different in the early stage and in the later stage of 

formation.  Tsuda et al. reported that H2 adsorption is much faster in furan and THT clathrate 

hydrates than in THF clathrate hydrates at 275.1 K,
6
 which differs from the H2 adsorption rates 

found for the THT clathrate hydrates in this chapter.  The differences in rates are probably related 

to the formation of ice that occurs at low temperatures.  Therefore, it is necessary to consider the 

method of forming clathrate hydrates, which has an effect on H2 adsorption rates. 

Table 4-2 summarizes H2 clathrate hydrate experimental results.  The Langmuir constant for 

S-cage, 
S
C  was calculated from Eq. (4-15). 

 

 
2

S, eq

S

S, eq H , eq
1-

C
f

q

q
  (4-15) 

The Langmuir constant is a parameter that indicates the occupied capacity of H2 in the S-cage.  It 

was confirmed that the Langmuir constant had a similar value (0.041 MPa
-1

 at 269 K) for each 

initial pressure, runs 2, 4 and 5 (Appendix 4-4, Table 4-2).  This value was comparable to the 

calculated Langmuir constant (~0.04 MPa
-1

 at 280 K) of H2 molecules in the S-cage in H2-THF 

phase equilibria.
13

  Thus, the obtained Langmuir constants from H2 adsorption experiments were 

comparable with literature values.  The average S-cage diameters were calculated from the lattice 
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constants and oxygen atomic coordinate of water for H2S + THF clathrate hydrate.
14

  The 

interactions between host and H2 molecules as judged by the Langmuir constants became stronger 

as the Langmuir constant increased.  The Langmuir constants decreased slightly with an increase 

in the S-cage diameter (Table 4-2), which means that the difference of S-cage size has a slight effect 

on the interactions between host and H2 molecules.  However, this effect is small since H2 has a 

small molecular size compared with the S-cage size.  The Langmuir constant is related to the 

interaction energy between guest molecule and the hydrate cage.  The size ratio of the guest 

molecule in the hydrate cage can be considered as a factor that is related to the interaction energy.  

For example, the Langmuir constant of methane is large (~6 MPa
-1

 at 280 K)
13

 because the 

molecular size of methane is large, while molecules having very large Langmuir constants, such as 

THF (~1.5×10
6
 MPa

-1
), probably have the effect of stretching the cage size due to strong 

interactions with water molecules. 

 

4.3.3   Kinetic models 

4.3.3.1  Correlation of hydrogen adsorption data 

 Theoretical description of gas adsorption in hydrate particles can be grouped into two 

categories: (i) hydrogen delocalization (one-step) models and (ii) hydrogen inclusion – diffusion 

(two-step) models.   In the hydrogen delocalization model, it is assumed that hydrogen rapidly 

delocalizes into hydrate particles from the particle surface and is expressed by Eq. (4-16): 

  2

2

H

p, total H O Gas eq

dn
KA n f f

dt
   (4-16) 
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where K  is a kinetic constant for binary clathrate hydrate formation, 
p, total
A  is the total surface 

area of the clathrate hydrate particles and 
2

H O
n  is the amount of H2O molecules of H2 

non-inclusion clathrate hydrate particles.  Kawamura et al. 
15

 assumed that the area of active 

surface did not change with the reaction time for CO2 clathrate hydrate formation process on ice 

particles.  Nagai et al. improved the model of Kawamura et al., Eq. (4-16), by allowing the surface 

area to be variable so that the H2 consumption rate was proportional to the remaining amount of 

H2O, 
2

H O
n  as Eq. (4-17):

2
 

 
2 2

S

H O H O, 0

S, eq

1n n
q

q

 
  
 
 

 (4-17) 

where 
2

H O, 0
n  is the initial H2O moles of H2 non-included hydrate particles. 

 Hydrogen inclusion – diffusion (two step) models have been developed based on the shrinking 

core model.  The hydrogen hydrate phase diffusion (HHPD) model 
2,4

 assumes that H2 molecules 

are included and diffuse with the driving force for mass transfer being the difference between the 

hydrogen fugacity at the bulk and equilibrium conditions.  The fugacity gradient in the diffusion 

step is assumed as linear so that the H2 adsorption rate is expressed by Eq. (4-18) as: 

  2

2

H

Gas eq'

a c, total H c, total

'1
1

dn L
f f

k Adt D A

 
   
 
 

 (4-18) 

where 
a
k  and 

H2

'D  are constants for H2 adsorption and effective diffusion coefficient, 

respectively.  The 
'L  and 

c, total
A  are the H2 diffusion distance (Eq. (4-19)) and interfacial area for 

the H2 inclusion step (Eq. (4-20)), respectively: 
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 q

  
     

    

 (4-19) 

  c, total p p

2
'4A N r L   (4-20) 

where 
Hyd, total
V  and 

p
N  are total hydrate particle volume and particle number, respectively. 

 Hashimoto et al. 
5
 proposed a hydrogen absorption model and assumed that H2 molecules are 

included and diffuse with a driving force for mass transfer being the H2 molar concentration in gas 

phase.  The concentration gradient in the H2 occupying layer was calculated by integrating the 

equation for H2 consumption rate in the diffusion step, so that the H2 absorption rate is expressed as:  

 
2 22

H , 0, gas H hydH P

gas

e c p c c

V

,

2

4

1 1 1 1 1

n ndn N

dt

D r r k r

 


 
  

 
 

 (4-21) 

where 
gas
V ,

2
H , 0 gas,
n ,

2
H hyd,
n ,

c
r ,

c
k  and 

e
D  are the volume in the gas phase, initial molar quantity 

of H2 in the gas phase, molar quantity of H2 in the hydrate phase, radius of H2 non-included core, 

rate constant of inclusion at the interface of the H2 non-included core and effective diffusion 

coefficient of H2, respectively.  The kinetic models are summarized in Table 4-3. 

Figure 4-5 shows correlation results for H2 adsorption rates in THF clathrate hydrates (run 2) 

and CP clathrate hydrates (run 25) with models given by Eqs. (4-16), (4-18) and (4-21).  The 

HHPD model could describe the H2 adsorption process of the THF clathrate hydrate system (Figure 

4-5 a and c).  However, the model could not describe the initial adsorption process in the CP 

clathrate hydrate system (Figure 4-5 b and d).  Models based on shrinking core theory tend to give 

qualitative description of the H2 adsorption rate in THF clathrate hydrate particles, but cannot 

describe the H2 adsorption rate in CP clathrate hydrate particles (Figure 4-5, continuous line: H2 
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absorption model
5
 and dash line: HHPD model

2,4
) probably because there are several adsorption 

processes occurring, and those processes differ depending on the occupying guest additive 

molecule.  
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Table 4-3.  Summary of kinetic models and their parameters for describing H2 inclusion in clathrate hydrates. 

Kinetic model Delocalized state Shrinking core state Parameters 

H2 delocalization 

model 
2
 

 2

2

H

p, total H O Gas eq

dn
KA n f f

dt
    K  

HHPD model 
2,4

   2

2

'
H

Gas eq'
a c, total H c, total

1
1

dn L
f f

k Adt D A

 
   
 
 
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H2 absorption 

model
5
 

 

2 22
H ,0,gas H ,hydH P

gas

2
e c p c c

4

V 1 1 1 1 1

n ndn N

dt

D r r k r

 


 
  

 
 

 c
k  

e
D  

MAR model 

 2

2

H ,B1 S,B1

B1 a H ,bulkp
S,eq

p

1
dn

V K C
dt

q

q

  
    

   
   

 2

2

H ,B2 S,B2

B2 a GCC H ,bulkp
S,eq

p

1
dn

V K N C
dt

q

q

  
    

   
   

 

 

2

2

2

3
S,B32

c S,eq c H ,core
S,eqH ,B3

2

3
p S,B3 S,eq c c c

S,eq B3S,eq a

4 1

1 1 1
1

r k C
dn

dt
k r r

rD

q
 q

q

q q

q q

 
 

   
   

 
     

          

 

L  

a
K  

c
k  

a
D  

HHPD model: hydrogen hydrate phase diffusion model, MAR model: multiple adsorption resistance model 
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Figure 4-5.  Correlation of H2 adsorption rates in (a) tetrahydrofuran (THF) (run 2) and (b) 

cyclopentane (CP) (run 25) clathrate hydrate particles at 269 K and 8 MPa with a hydrogen 

delocalization model (Eq. (4-16)),
2
 the hydrogen hydrate phase diffusion (HHPD) model (Eq. 

(4-18))
2
 and the hydrogen absorption model (Eq. (4-21)).

5
  Hydrophilic solvent system (a): H2 

adsorption as a function of time in THF clathrate hydrate (circles).  Hydrophobic guest additives 

system (b): H2 adsorption as a function of time in CP clathrate hydrate (squares).  (c) and (d) show 

model deviations in THF and CP clathrate hydrate particles, respectively.  Continuous line (red), 

dashed line (blue) and dashed-dotted line (green) show the hydrogen absorption model,
5
 hydrogen 

hydrate phase diffusion (HHPD) model
2
 and delocalization model

2
 with inset: expanded view at 0 – 

2 h. 

 

In fact, the above kinetic models do not consider that pores exist on the clathrate hydrate particle 

surface.
11

  Compositional variations of included gases molecules in the reformed clathrate hydrate 

particle are also not considered.
16

  Therefore, a kinetic model that allows variation of the 

adsorption processes would be helpful to study some of the differences in the data. 
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4.3.3.2  Development of multiple adsorption resistance model 

This section describes in the development of a new model for adsorption in clathrate hydrates.  

The H2 adsorption process in a clathrate hydrate particle is assumed to consist of a delocalized state 

and a shrinking core state that have different adsorption resistances.  The H2 adsorption in clathrate 

hydrate particles is assumed to proceed according to an H2 molar concentration driving force and 

one H2 molecular inclusion in the S-cage.  Figure 4-6 shows a schematic diagram of the proposed 

multiple adsorption resistance (MAR) model that assumes three boundaries of differential H2 

adsorption system.  The three resistances for the H2 adsorption are (i) the clathrate hydrate 

framework, (ii) the guest included cage and (iii) the H2 adsorbed shell.  The H2 adsorption in all 

boundaries is affected by the hydrate framework characteristics such as cage size and number of 

possible inclusion cages. 

 

Figure 4-6.  Schematic diagram of the multiple adsorption resistance (MAR) model.  Blue color 

indicates hydrogen non-included regions.  Pink color indicates hydrogen included regions.  The 

symbols 
p
r , 

B3
r  and 

c
r  refer to particle radius, interface in shrinking core state (boundary 3) 

radius and non-included solid core radius, respectively. 
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In boundary 1 and 2 of Figure 4-6, H2 molecules adsorb in a delocalized state near the surface of the 

clathrate hydrate particle because pores exist on clathrate hydrate particle surface.
11

  The H2 

adsorption rate to empty S-cage ratio depends on the volume of the sorbable clathrate hydrate in 

boundary 1.  The ratio between the volume of sorbable clathrate hydrate 
B1,sorbable
V  and total 

clathrate hydrate 
B1
V  in boundary 1 (B1) is assumed to be given by Eq. (4-22) as: 

 
B1, sorbable S, B1

B1 S, eq
p

1
V

V

q

q

  
    

   
   

 (4-22) 

Then, the H2 adsorption rate in boundary 1 is expressed as Eq. (4-23): 

 

 

 

2

2

2

H B1

B1,sorbable a H , bulk
p

p

S, B1

B1 a H , bulkp
S, eq

,

1

dn
V K C

dt

V K C
q

q

 
  
 
 

 
  
 
 

 (4-23) 

where 
a
K  and 

2
H , bulk
C  are adsorption rate constant in delocalization adsorbed layer and H2 molar 

concentration in bulk (gas) phase. 

 Boundary 2 was assumed to have H2 adsorbed molecules in the sorbable S-cages with no 

access to the pores in the delocalized state.  Thus, the H2 molecules pass inward through the 

S-cage because the L-cage is occupied by a guest additive molecule.  The H2 hydrogen adsorption 

rate was assumed to depend on the number of gas capture cavities (S-cage) per host molecule, 

GCC
N ,

17
 and expressed by Eq. (4-24). 

  2

2

H B2 S, B2

B2 a GCC H , bulkp
S, eq

p

,
1

dn
V K N C

dt

q

q

  
    

   
   

 (4-24) 
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The volume rate between boundary 1 and boundary 2 was assumed to depend on 
GCC
N  as given 

by Eq. (4-25). 

 B1

GCC

B2

1 2
V

N
V

   (4-25) 

The volume of boundary 1 and total delocalization adsorbed layer 
delocal
V  were calculated by Eq. 

(4-26) and Eq. (4-27), respectively as: 

 
 

GCC

B1 delocal

GCC

1 2

2 1

N
V V

N





 (4-26) 

  delocal p B3

3 34

3
V r r   (4-27) 

where  B3 p
r r L   is the ratio of boundary 3, and L  is the thickness of the delocalized shell. 

 In boundary 3, the shrinking of non-included solid core was assumed to be the rate-limiting 

step.  The H2 adsorption rate was assumed to be described by an H2 diffusion process in H2 

adsorbed shell and an H2 adsorption process near the interfacial boundary of the non-included solid 

core.  In the diffusion process, an H2 molecule diffuses as the H2 concentration gradient is the 

driving force, and the diffusion rate depends on the number of non-sorbable S-cages of a particle
5
 as 

shown by Eq. (4-28): 

  2 2
H B3 H

c S, eq a

p

, 24 1
dn dC

r D
dt dr

 q
   
    

  
  

 (4-28) 

where 
a
D  is the apparent diffusion coefficient,  a e S, eq

1D D q   which is related to the 

effective diffusion coefficient by the occupancy at equilibrium.  The ratio between the volume of 

non-inclusion core 
c
V  and total hydrate 

B3
V  in boundary 3 (B3) is assumed as Eq. (4-29), and 
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then the ratio of non-included solid core in boundary 3, 
c
r is expressed as Eq. (4-30): 

 
S, B3

c

B S, eqp3

1
V

V

q

q

  
         

 (4-29) 

 

c S, B3

S, eq
B3

S, B3

c B3

S, eq

3

3

1

3

4

3 1
4

3

1

r

r

r r

 q

q


q

q

 
  
 
 

 
  
 
 

 (4-30) 

In the adsorption process, the H2 adsorption rate depends on the equilibrium occupancy,
5
 and 

depends on the sorbable area of interface of non-included solid core in boundary 3 because the 

unreacted core shrinks with the compositional gradient as shown by Eq. (4-31).  

 2

2

H B

c,sorbable S, eq c H , c

p

, 3
dn

A kC
dt

q
 
  
 
 

 (4-31) 

Since the outside clathrate hydrate particle becomes large as gases are included,
16

 the ratio between 

the sorbable and total area on interface of non-included solid core in boundary 3 is assumed as Eq. 

(4-32). 

 

 

c, sorbable S, B

c S, eq
p

S, B3

c, sorbable c
p

S, eq

2

3
3

2

3

2

1

4 1

A

A

A r

q

q

q


q

  
    

   
   

 
  
 
 

 (4-32) 

 Then, Eq. (4-31) is designated as Eq. (4-33). 
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2
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H B S, B3

c S, eq c H , c
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, 3 24 1

dn
r k C
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q
 q

q

  
    

   
   

 (4-33) 

 At equilibrium conditions or at the quasi-equilibrium conditions, the left-hand side of Eq. (4-28) 

equals to that of Eq. (4-33).  Then, by eliminating 
2

H , c
C , which is the H2 concentration at the near 

the interfacial boundary of the non-included solid core, Eq. (4-34) results: 

 

 

2

2

S, B

c S, eq c H , core

S, eqH B3
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S, B3 S, eq c c
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32
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4 1

1 1
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r k C
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k r r

rD

q
 q

q

q q

q q

 
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   
   

 
     

          

 (4-34) 

The H2 adsorbs inward from the interface at boundary 3 under quasi-equilibrium conditions, thus 

the H2 concentration at the interface between delocalized state and shrinking core state, 
2

H , core
C  is 

calculated from Eq. (4-35) as: 

 
S

2

S, eq

H , core

A

3

N
C

N a

q
q

              (4-35) 

The H2 occupancy of S-cage in each boundary i , 
S, Bi
q , the equilibrium H2 occupancy of S-cage 

S, eq
q  and the radius of non-included solid core 

c
r  are calculated from Eq. (4-36) and Eq. (4-37), 

respectively as: 

 
 

 2
H , B A

S, B

p, B p

3

1,2,3
1

i

i

i

n N a
i

V N
q


 


 (4-36) 
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2 2

2 2

H ,S H

S, eq

H ,S H
1

C f t
t

C f t
q 


 (4-37) 
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The equilibrium H2 occupancy 
S, eq
q  changes due to pressure drop according to the H2 consumed.  

The 
S, eq
q  is calculated from the H2 fugacity at a given time, which means that 

S, eq
q  at early H2 

adsorption times is larger than that at latter H2 adsorption times.  When 
S, B1 and B2
q  is larger than 

S, eq
q , the adsorption H2 amount in each boundary changes so as to become equal, namely 

S, B S,eqi
q q  because the time-to-equilibrium of 

S, B1 and B2
q  is faster than that of 

S, B3
q .  The 

amount of adsorbed H2 in each phase can be calculated from Eq. (4-38) by using Eqs. (4-23), (4-24) 

and (4-34). 

    
 

 2

2 2

H , B n

H , B n 1 H , B n p

p

1
1,2,3

i

i i

dn t
n t n t N dt i

dt





 
   
 
 

 (4-38) 

Fitting parameters in the model are the thickness of delocalized state, L (
p B3
r r  ), the adsorption 

rate constant in delocalized state, 
a
K , the inclusion rate constant on interface of H2 non-included 

solid core, 
c
k  and the apparent diffusion coefficient, 

a
D .  The model was correlated with the 

experimental data to minimize the average deviation (AD) defined as: 

    H , exp H , calc

data

AD
2 2

610

i

n i n i
N

   (4-39) 

where data
N  is the number of data points. 

 Figure 7 shows correlation results for H2 adsorption rates for all hydrates at 269 K and 8 MPa 

with the MAR model given by Eqs. (4-23) – (4-38).  Table 4-4 summarizes the vapor pressure,
18

 

S-cage diameter, the fitting parameters and the resulting average relative deviation (ARD) defined 

as: 
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Figure 4-7.  Correlation of H2 adsorption rate at 269 K and 8 MPa.  (a): hydrophilic solvents 

systems.  Red circles (continuous line), blue squares (dashed line) and green triangles 

(dashed-dotted line) show tetrahydrofuran (THF) clathrate hydrate, THF clathrate hydrate (D2O) 

and THF-d8 clathrate hydrate, respectively. (b): hydrophobic guest additive systems.  Red circles 

(continuous line), blue squares (dashed line) and green triangles (dashed-dotted line) show 

cyclopentane (CP) clathrate hydrate, tetrahydrothiophene (THT) clathrate hydrate and furan 

clathrate hydrate, respectively.  (c) and (d) show model deviations in hydrophilic solvent systems 

and hydrophobic guest additive systems, respectively.  Inset: expanded view at 0 – 2 h. 

 

As shown in Figure 4-7 and Table 4-4, the MAR model could describe the formation process for the 

clathrate hydrate particles well.  
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Table 4-4.  Correlation of H2 adsorption rate for each clathrate hydrate system. 

Run 
Host 

Molecule

Guest 

Molecule 

Conc. 

[mol%] 
T [K] 

Pinitial 

[MPa] 

Pvapor, guest 

[MPa] 

Average S-cage 

diameter [Å] 

L  

[m] 
aK  

[×10
-4

 s
-1

] 

ck  

[×10
-9

 ms
-1

] 

a
D  

[×10
-13

 m
2
s

-1
] 

ARD  
[%] 

1 H2O THF 5.6 265.1 8.10 5.06 7.730 55.0 21.98 37.43 13.79 1.07 

2    269.1 8.13   32.2 25.06 42.70 17.27 0.56 

3    273.0 8.14   35.4 29.54 53.38 20.57 0.85 

4    269.2 3.98   27.0 30.25 106.5 6.232 0.80 

5    269.3 10.22   30.1 28.66 40.67 13.60 0.48 

6   6.2 265.1 8.10   47.1 20.99 38.69 27.99 1.18 

7    269.2 8.17   47.2 23.37 48.30 31.79 0.25 

8    272.9 8.10   49.6 29.06 54.06 35.33 0.66 

9   4.4 269.3 8.18   43.2 24.07 103.2 11.03 1.01 

10   5.0 269.2 8.16   39.2 23.96 65.67 8.571 0.26 

11   6.8 269.1 8.12   62.9 25.75 72.96 48.59 0.61 

12 D2O THF 5.6 265.1 8.19  7.734 33.3 22.15 36.41 9.070 0.74 

13    269.1 8.19   29.5 25.86 47.24 11.71 0.75 

14    273.0 8.13   30.5 29.81 60.40 13.76 0.35 

15   6.2 265.1 8.19   35.0 23.89 53.99 18.32 0.28 

16    269.1 8.21   38.8 26.52 69.35 20.76 0.61 

17    273.0 8.18   41.8 30.66 88.41 24.07 0.93 

18 H2O THF-d8 5.6 265.1 8.17  7.736 27.8 26.35 41.21 9.042 0.49 

19    269.2 8.16   29.0 31.60 51.38 11.17 0.31 

20    273.0 8.16   25.2 36.66 74.86 13.53 2.24 

21 H2O furan 6.6 265.4 8.05 22.65 7.724 185 16.90 10.34 101.0 2.33 

22    269.1 8.08   172 18.91 12.41 121.9 0.48 

23    272.3 8.11   176 20.52 15.28 140.7 0.49 

24 H2O CP 6.0 265.1 8.15 11.60 7.771 85.9 4.513 4.513 18.87 1.56 

25    269.1 8.14   82.0 6.259 7.695 35.64 2.16 

26    273.0 8.09   120 7.210 12.57 70.07 1.60 

27 H2O THT 5.7 269.1 8.15 0.419 7.775 27.2 28.79 115.7 2.487 1.42 

Pvapor: Vapor pressure at 269 K.
18

  L : thickness of delocalized state.  aK : adsorption rate constant in delocalized state.  ck : inclusion rate constant on interface 

of H2 non-included solid core.  
a
D : apparent diffusion coefficient.  ARD : average relative deviation.  
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Figure 4-8.  Fitting parameters of each hydrate particles at 269 K and 8 MPa.  Blue circles were 

hydrophilic solvent systems, red squares was hydrophobic solvent systems.  (a): L  and (d): 
a
D

versus vapor pressure
18

 at 269 K, (b): aK  and (c): ck  versus lattice constant. 

 

 The L  and 
a
D  depend on the vapor pressure of the additive guest molecules while the aK  

and ck  depended on the S-cage size of each clathrate hydrate in hydrophilic solvent systems (269 

K and 8 MPa, Table 4-4 and Figure 4-8).  The L  and 
a
D  were found to be directly proportional 

to the vapor pressure of the guest additive molecule, which implies that the pores readily form near 

the particle surface and at the grain boundaries from inside of the particle where non-included guest 

additive molecules volatilize.  Therefore, the vapor pressure of the guest additive molecule is 

important in the H2 adsorption kinetics.  In furan clathrate hydrates, the H2 adsorption amount in 

the delocalization state (boundary 1 and 2) was 95% of the total H2 adsorption amount, so that the 
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observed formation of furan clathrate hydrate being the fastest in this work was most likely due to 

delocalized adsorption behavior.  The more that the S-cage size increased, the more that aK  and 

ck  increased in hydrophilic solvent systems as can be concluded without considering the 

thermodynamic stability of clathrate hydrates
7
 although the changes were small.  This dependency 

probably means that the H2 molecules were included in the hydrate cage without translation of 

water molecules. 

 On the other hand, the trends found for hydrophobic guest additive systems were not observed 

for hydrophilic solvent systems.  In hydrophobic guest additive systems, there is the presence of 

ice, non-included guest additive molecules and water molecules, all of which have a large influence 

on the H2 adsorption phenomenon. 

 Correlation results for H2 adsorption rate in each concentration THF hydrate are given in 

Figure 4-9 and Table 4-4.  Although aK  does not seem to depend on THF concentration (Figure 

4-10), L , ck  and 
a
D , on the other hand, show concentration dependence (Figure 4-10).  The L  

and ck  in the stoichiometric (5.6 mol%) THF were smallest, and L  and 
a
D  in 6.8 mol% THF 

were highest at these concentrations.  Ice and non-included THF seemed to deform the hydrate 

cages and promote formation of pores in the clathrate hydrate particles.  The effect of 

non-included THF was higher than that of ice.  It is considered that non-included THF promoted 

the diffusion rate of H2 by reducing the crystallinity of clathrate hydrate through the formation of 

grain boundaries.  However, the existence of ice or non-included guest additive molecules had a 

negligible effect on aK  and ck  for CP hydrate.  In other words, interactions between CP and 

H2O or CP and H2 probably inhibited the inclusion of H2 molecules in the clathrate hydrate cages. 
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Figure 4-9.  Correlation of H2 adsorption rates in tetrahydrofuran (THF) clathrate hydrate particles 

at 269 K with multiple adsorption resistant (MAR) model.  Red up-pointing triangles 

(dashed-dotted line), brown squares (dashed line), green circles (continuous line), olive diamonds 

(dashed line) and blue down-pointing triangles (dashed-dotted line) show 6.8 (run 11), 6.2 (run 7), 

5.6 (run 2), 5.0 (run 10) and 4.4 (run 9) mol% THF clathrate hydrate particles, respectively.  Inset: 

expanded view at 0 – 2 h. 

 

 

Figure 4-10.  Fitting parameters of each concentration THF hydrate particles at 269 K and 8 MPa.    

(a): L , (b): aK , (c): ck , (d): 
a
D . 
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4.3.4   Activation energy 

Correlated results for H2 adsorption rate in each clathrate hydrate particles at 265 – 273 K are given 

in Table 4 (Appendix 4-5).  Arrhenius plots were made by for each parameter (Figure 4-8) to 

determine activation energies from Eqs. (4-41) – (4-43): 

 a*

a a
exp

K
E

K K
RT

 
 
 
 

 (4-41) 

 c*

c c
exp

k
E

k k
RT

 
 
 
 

 (4-42) 

 a*

a a
exp

D
E

D D
RT

 
 
 
 

 (4-43) 

Tables 4-5 and 4-6 summarize constituent molecule dependencies of the activation energies for each 

parameter and the activation energies of formation rate for gas clathrate hydrate systems in previous 

studies, respectively.  The temperature dependence of each parameter was confirmed because most 

R
2
 values were near unity.  The activation energies of hydrogen adsorption reaction 

a
K
E  were 

17 to 25 kJ/mol.  This implies that the H2 adsorbs at surface of hydrate particles by a similar 

mechanism for either hydrate particle.  The activation energies of hydrogen inclusion reaction 

c
k
E  in each hydrate other than CP clathrate hydrate were 26 to 45 kJ/mol.  Previous studies for 

CH4 and CO2 systems reported the following: CH4 clathrate hydrate (61.5 kJ/mol,
19

 39.7 kJ/mol,
11

 

92.8 kJ/mol
20

), CH4 clathrate hydrate (D2O) (33.9 kJ/mol 
11

), CO2 clathrate hydrate (27.2 kJ/mol 
21

 ) 

and CO2 clathrate hydrate (D2O) (42.3 kJ/mol 
22

). 
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Table 4-5.  Activation energy E  of adsorption (
a
K
E ), inclusion (

c
k
E ), and apparent diffusion 

(
a
D
E ) for H2 systems studied in this thesis. 

Host 

molecule 
Guest molecule a

K
E

[kJ/mol] 
R

2
 c

k
E  

[kJ/mol] 
R

2
 a

D
E  

[kJ/mol] 
R

2
 

H2O 5.6 mol% THF 22.59 0.9930 27.08 0.9723 30.65 0.9973 

H2O 6.2 mol% THF 24.87 0.9488 25.90 0.9775 17.97 0.9997 

D2O 5.6 mol% THF 22.61 0.9999 38.59 0.9999 31.79 0.9883 

D2O 6.2 mol% THF 19.03 0.9869 37.69 0.9998 20.83 0.9949 

H2O 5.6 mol% THF-d8 25.25 0.9987 45.47 0.9714 30.79 0.9999 

H2O Furan 16.84 0.9988 33.75 0.9913 28.79 0.9994 

H2O CP 24.15 0.9985 78.24 0.9999 100.1 0.9985 
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Table 4-6.  Activation energy E  of formation (
form.
K
E ) and effective diffusion (

e
D
E ) for gas 

clathrate hydrate systems in experimented and simulation studies. 

Experimental values 

Target  Particle type 
form.
K
E . [kJ·mol

-1
] 

e
D
E . [kJ·mol

-1
] Reference 

H2 THF hydrate -28 52 – 64 Yoshioka et al.
4
 

  58 30 Hashimoto et al.
5
 

 THF-d8 hydrate (D2O)  3 ± 1 Okuchi et al
1
 

CH4 Ice 61.5  Wang et al.
19

 

  39.7  Staykova et al.
11

 

  92.8 52.1 Kuhs et al.
20

 

 Ice (D2O) 33.9 59.8 Staykova et al.
11

 

CO2 Ice 27.2  Henning et al.
21

 

   38.6 Takeya et al.
23

 

  42.3 54.6 Genov et al
22

 

Molecular dynamics (MD) simulation values 

Target Particle type 
Barrier energy 

[kJ/mol] e
D
E . [kJ/mol] Reference 

H2 Hydrate structure  32.3 Frankcombe and Kroes
24

 

 Hexagonal face (L-cage) 23.8 and 27.6   

  24 – 27   Alavi and Ripmeester
25

 

 Pentagonal face (S-cage) Over 200  Frankcombe and Kroes 
24

 

  99 – 118  Alavi and Ripmeester 
25
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Figure 4-8.  Arrhenius plots for (a): the adsorption rate in delocalized state, aK , (b): the interface 

of non-included solid core, ck  and (c): the H2 diffusion rate in H2 included shell, 
a
D  in each 

hydrate particles.  Red circles (continuous line), filled red circle (dashed line), blue squares 

(continuous line), filled blue squares (dashed line), green triangles (continuous line), blown 

pentagons (continuous line) and olive diamonds (continuous line) were 5.6 mol% tetrahydrofuran 

(THF), 6.2 mol% THF, 5.6 mol% THF (D2O), 6.2 mol% THF (D2O), 5.6 mol% THF-d8, furan, 

cyclopentane (CP) clathrate hydrate, respectively. 

 

The 
c
k
E , other than CP clathrate hydrate in this chapter agreed with values of previous studies 

11,21,22
 and this means that the molecular inclusion process is similar regardless of the gas.  In H2 

systems, Yoshioka et al. reported that the activation energy of adsorption in THF clathrate hydrate 

particle had a negative value of -28 kJ/mol 
4
.  The negative value is probably due to the enthalpy 
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of adsorption reaction according to the van’t Hoff equation because the clathrate hydrate formation 

reaction is exergonic.  The H2 adsorption and dissociation reactions are reversible so that the 

adsorption rate constant in the HHPD model possibly allows one to estimate the equilibrium 

constant of the adsorption process, which is the ratio between adsorption and dissociation rate 

constants under quasi-equilibrium conditions.  Hashimoto et al. reported an activation energy of 

H2 adsorption in THF clathrate hydrate particle as being +58 kJ/mol,
5
 which is higher than the value 

in this work.  Hashimoto et al. estimated the actual H2 adsorption rate constant with the 

relationship between the obtained H2 adsorption rate constant from correlation with Eq. (4-21) and 

the equilibrium H2 occupancy at the end of the experiment.
5
  In this experiment, the equilibrium 

H2 occupancy decreased with time because pressure decreased with H2 adsorption.  Thus, the 

effect of occupancy of H2 on adsorption process is dynamically considered in the MAR model.  As 

a consequence, the temperature dependence of the adsorption rate constant for MAR model was 

smaller than that for the H2 absorption model.
5
  In CP clathrate hydrates, the activation energy for 

ck  was higher than other clathrate hydrates.  The 
c
k
E  for CP clathrate hydrate (79 kJ/mol) was 

close to the CH4 clathrate hydrate formation value from ice particles (61.5 kJ/mol
19

 and 92.8 

kJ/mol
20

).  This is probably because very little ice exists inside the CP clathrate hydrate particles 

which reacts with non-included CP molecules to form a new CP clathrate hydrate. 

The activation energies of hydrogen diffusion in each clathrate hydrate were 29 to 32 kJ/mol in 

5.6 mol% THF clathrate hydrate, 5.6 mol% THF clathrate hydrate (D2O), THF-d8 clathrate hydrate 

and furan clathrate hydrate.  These values were lower than those of previous reports for CH4 

clathrate hydrate (52.1 kJ/mol
20

), CH4 clathrate hydrate (D2O) (59.8 kJ/mol 
11

), CO2 clathrate 
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hydrate (38.6 kJ/mol
23

), CO2 clathrate hydrate (D2O) (54.6 kJ/mol
22

) and H2-THF clathrate hydrate 

(52 to 64 kJ/mol
4
 and were comparable to H2-THF clathrate hydrate 30 kJ/mol

5
).  These results are 

considered to be due to the small molecular size of H2.  Okuchi et al.
1
 reported 3 ± 1 kJ/mol in 

H2-THF-d8 clathrate hydrate (D2O), which was lower than the above values.  Their measurements 

were based on the principle of diffusion-ordered spectroscopy 
26

 with NMR.  The observed 

diffusion pathway is probably different between NMR and the differential methods.  Alavi and 

Ripmeester reported that the energies required for the H2 molecule to migrate through a hexagonal 

face of the L-cage were 24 to 27 kJ/mol and through pentagonal faces were 99 to 118 kJ/mol with 

molecular dynamics (MD) simulation.
25

  Frankcombe and Kroes reported that the activation 

energy was 32.3 kJ/mol, which was similar to the calculated barrier energies for migration through 

hexagonal faces (L-cage) (27.6 and 23.8 kJ/mol) in H2 clathrate hydrate with MD simulation.
24

  

The barrier energies for migration through pentagonal face (S-cage) is more than 200 kJ/mol.
24

  

Mizuno and Hanafusa reported that the activation energy of diffusion of H2O molecule in ice was 

58 kJ/mol.
27

  In agreement with the literature, the results in this work support that H2 molecules 

diffuse through some of the S-cages and L-cages along with H2O translation.  On the other hand,  

the activation energies of H2 diffusion process were 19 to 21 kJ/mol for 6.2 mol% THF clathrate 

hydrates, which were lower than these in stoichiometric concentration (5.6 mol%) THF clathrate 

hydrates.  This implies that non-included THF molecules promote formation of a grain boundary 

and a quasi-liquid layer (QLL) because the activation energy of diffusion of H2O molecule in QLL 

was 23.5 kJ/mol (253.2 to 271.7K).
27

  In CP clathrate hydrate, the activation energy of H2 

diffusion process was 100 kJ/mol, which was similar to the energy barrier of H2 migration through 
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pentagonal faces (S-cage) (99 – 118 kJ/mol 
25

), which implies that the H2 molecule diffuses only 

through S-cages.  Therefore, the H2 diffusion pathway in hydrate particles depends on the guest 

additive molecule. 

 

4.4  Conclusions 

 In this chapter, the formation clathrate hydrate particles were analyzed by Raman spectra and 

XRD and the lattice constants of the clathrate hydrates were calculated with RIETAN-2000 

program.  The H2 adsorption rates were measured in the clathrate hydrate particles with pressure 

decay method at 265 – 273 K and 4 – 10 MPa.  The clathrate hydrate particles consisted of host 

molecule (H2O and D2O) and guest additive molecule (THF, THF-d8, furan, CP and THT) so that 

the effect of the constituent molecule of clathrate hydrate on H2 adsorption rate in the clathrate 

hydrate particle could be investigated.  For hydrophobic guest additive systems (furan, CP and 

THT), the spectra of ice with clathrate hydrate was observed by using XRD.  The effect of ice or 

non-included guest additive molecules on H2 adsorption rate was investigated.  The H2 adsorption 

rates in furan and 6.8 mol% THF clathrate hydrates were fastest among the systems studied in this 

chapter. 

 The multiple adsorption resistance (MAR) model model was constructed by assuming three 

boundaries of differential H2 adsorption system.  The three resistances in the MAR model for H2 

adsorption are (i) the clathrate hydrate framework, (ii) the guest included cage and (iii) the H2 

adsorbed shell.  In boundary 1 and 2, H2 molecules adsorb in a delocalized state near the surface of 

the clathrate hydrate particles due to existence of pores.  Especially, H2 molecules are included in 
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the gas capture cage (S-cage) near pores in boundary 1, H2 molecules are included in S-cages 

distant from the pores in boundary 2.  In boundary 3, the shrinking of non-adsorbed core is 

assumed to be rate-limiting, so that the H2 adsorption rate is described by H2 diffusion in the H2 

adsorbed layer and the H2 adsorption process near the interfacial boundary of the non-included solid 

core.  The H2 concentrations in boundary 1 and 2 were as the concentration in bulk phase due to 

H2 delocalization adsorption.  The H2 concentration at interface of boundary 3 was calculated from 

the number of S-cage and the equilibrium H2 occupancy due to the quasi-equilibrium adsorbed 

conditions.  The thickness of the delocalized state L , the adsorption rate in delocalized state aK  

and the interface of non-included solid core ck , and the H2 diffusion rate in H2 included shell eD  

can be analyzed with the MAR model. 

 The L  and 
a
D  in the model depend on the vapor pressure of the guest additive molecule 

and concentration of THF.  This means that non-included guest molecules promote formation of 

the pore and grain boundary when clathrate hydrate particles are formed.  On the other hand, aK  

and ck  depend on the S-cage size of each clathrate hydrate in hydrophilic solvent systems without 

considering the thermodynamic stability of clathrate hydrate.  In hydrophilic systems of THF 

clathrate hydrates, H2 molecules become included in the clathrate hydrate cage without translation 

of water molecules.  However, this phenomena does not seem to occur according to analyses with 

the proposed model of hydrophobic guest additive of CP clathrate hydrates.  In CP clathrate 

hydrate, the activation energies of ck  and 
a
D  were 78 and 100 kJ/mol, respectively, which were 

higher than those of other clathrate hydrates studied in this work.  The activation energy for ck  

was similar to those for CH4 clathrate hydrate formation from ice, so this implies that little ice 
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exists inside CP clathrate hydrates.  The activation energy of 
a
D  was similar to the energy barrier 

of H2 migration through pentagonal faces (S-cage), so this implies that diffusion of H2 molecules 

through the L-cage is difficult.  Therefore, it can be concluded that the H2 diffusion pathway in 

clathrate hydrate particles depends on the guest additive molecules and these affect the possible 

resistances in different ways for hydrophilic and hydrophobic guest additive systems. 

 In Chapter 5, semi-clathrate hydrate systems are considered for which gas adsorption and 

diffusion characteristics are complicated because guest additive salts and clathrate structures both 

affect gas adsorption behavior.  The MAR model can be applied to analyze H2 adsorption behavior 

for a variety of clathrate hydrate systems which have the different pathways of diffusion for the H2 

molecules in the clathrate hydrate particle and so the MAR model will be used to study gas 

adsorption behavior in semi-clathrate hydrate systems. 
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4.5  Nomenclature 

A  = area [m
2
] 

H1
A  = peak area of 

1
H NMR [-] 

H1
*A  = peak area of 

1
H NMR when analyzed pure acetone-d8 liquid [-] 

AD  = average deviation [mol] 

ARD  = average relative deviation [%] 

a  = lattice constant of hydrate structure II [Å] 

apparatus
C  = apparatus constant [-] 

H2
C  = hydrogen concentration [mol/m

3
] 

S
C  = Langmuir constant of S-cage [Pa

-1
] 

stoich
C  = stoichiometric concentration [wt%] 

e
D  = effective diffusion coefficient in models based on shrinking core model [m

2
/s] 

a
D  = apparent diffusion coefficient in models based on shrinking core model [m

2
/s] 

a

*D  = frequency factor for 
a
D  [m

2
/s] 

2
H

'D  = effective diffusion coefficient in hydrogen hydrate phase 

  diffusion model [mol/(Pa·s·m)] 

f  = fugacity [Pa] 

K  = kinetic constant in hydrogen delocalization model [(Pa·s·m
2
)
-1

] 

a
K  = adsorption rate constant in delocalized state [s

-1
] 

a

*K  = frequency factor for 
a
K  [s

-1
] 

a
k  = kinetic constant in hydrogen adsorption in hydrogen hydrate  

   phase diffusion model [mol/(Pa·s·m
2
)] 

c
k  = inclusion rate constant on interface of H2 non-included solid core [m/s] 

c

*k  = frequency factor for 
c
k  [m/s] 

L  = thickness of delocalized state [m] 

'L  = phase thickness of hydrogen included clathrate hydrate [m] 

M  = molecular weight [kg/mol] 

N  =  number [-] 

H1
N  = proton number [-] 
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A
N  = Avogadro constant [mol

-1
] 

2
H O

*N  = theoretical number of water molecules per unit cell [-] 

n  = mole number [mol] 

2
H O
n  = amount of H2O molecules of H2 non-inclusion clathrate hydrate particle [mol] 

r  = radius [m] 

t  = time [s] 

V  = volume [m
3
] 

W  = mass weight [kg] 

 

Greek letters 

a
K
E  = activation energy for 

a
K  [J/mol] 

c
k
E  = activation energy for 

c
k  [J/mol] 

e
D
E  = activation energy for 

e
D  [J/mol] 

  = porosity [-] 

S
q  = occupancy in S-cage [-] 

  = density [kg/m
3
] 

 

Subscripts 

0  = initial 

B  = Boundary 

bulk  = bulk phase 

c  = interface of non-included solid core 

calc  = calculation 

cell  = hydrate formation cell 

data  = data point 

delocal  = delocalized state 

eq  = equilibrium state 

exp  = experiment 
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Gas  = gas phase 

GCC  = gas capture cavity 

Guest  = guest additive molecule 

H
2
 = hydrogen 

H O
2

 = water 

half  = half of the equilibrium occupancy for H2 molecule 

Hyd  = hydrate phase 

Ice  = ice phase 

load  = loading 

p  = particle 

R,initial  = before loading of reservoir tank 

R,final  = after loading of reservoir tank 

core  = interface between delocalized state and shrinking core state 

sorbable  = sorbable state 

Theor  = theoretical hydrate 

Total  = total loaded sample particle 
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Chapter 5 

 

Gas adsorption and diffusional characteristics of 

semi-clathrate hydrates for gas separation processes 

 

 

 

5.1  Introduction 

 In Chapter 3, the phase equilibria of tetra-n-butyl ammonium (TBA) salt semi-clathrate with 

H2 and CO2 was shown to vary greatly according to the type of TBA salt that was added and this 

implied that the gas inclusion behavior was affected by the additive TBA salt.  The gas adsorption 

behavior must depend on different factors, many of which have not been elucidated yet.  A better 

understanding of the role of quaternary ammonium salt (QAS) in semi-clathrate hydrate 

applications can be obtained by varying some of the anions systematically, so that characteristics of 

the particles formed can be related to gas adsorption behavior. 

In this chapter, the effect of anion (Br
-
, Cl

-
 and F

-
) of TBA salt on the H2 and CO2 adsorption 

characteristics of semi-clathrate hydrate for the purpose of gas separations is investigated.  Gas 

adsorption mechanisms in semi-clathrate hydrate are investigated quantitatively with a 
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newly-developed model that is referred to as multiple adsorption resistance (MAR) model (Chapter 

4).  The separation potential of TBA salts semi-clathrate hydrates was estimated for H2 and CO2 

mixture gases with the MAR model.  Validities of the simulation results are demonstrated by 

H2-CO2 mixture gas adsorption measurements with characterized semi-clathrate hydrate particles. 

 

5.2  Experimental 

5.2.1   Materials 

High-purity water was obtained from Advantec Toyo Kaisha, Ltd., RFD250NB with an 

electrical conductivity below 5.5 S/m was used in the experiments.  Helium gas (99.99%, ), 

argon gas (99.99%, ), hydrogen gas (99.99%), carbon dioxide (99.99%), hydrogen-carbon dioxide 

mixture gas (H2 (99.99999%): ca. 80 vol%, CO2 (99.995 %): ca. 20 vol%), tetra-n-butyl ammonium 

bromide (≥98.0%, Wako Pure Chemical Industries, Ltd.), tetra-n-butyl ammonium chloride 

(>98.0%, Tokyo Chemical Industry Co., Ltd.) and tetra-n-butyl ammonium fluoride trihydrate (≥

97.0%, Sigma-Aldrich Co.) salts were used without further purification.  Tetra-n-butyl ammonium 

salts are referred to as TBAB, TBAC and TBAF, for bromide, chloride and fluoride compounds, 

respectively. 

 

5.2.2   Semi-clathrate hydrate preparation and characterization 

 Batches of semi-clathrate hydrate particles were made by loading water (ca. 15 g) and TBA 

salts (TBAB, TBAC, and TBAF) into a perfluoroalkoxyethylene vessel in such a way that the 

concentration of TBA salts were 2.6 – 3.7 mol% and then the contents were weighed to a precision 
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of 1 mg with a balance (Mettler Toledo AX504) that was followed by cooling of the solution to a 

predefined temperature (274 – 295 K) with low temperature-controlled bath (LP-50P, Nippon 

Medical & Chemical Ins. Co., Ltd.) while stirring with a hand-made stirring bar attachment that 

promoted mixing throughout the vessel. 

 For TBAB semi-clathrate hydrates, the effect of formation temperature on the formation 

structure was confirmed.  For TBAC semi-clathrate hydrates, the effect of the concentration of 

TBAC on the formation structure was confirmed.  For TBAF semi-clathrate hydrates, the effect of 

the concentration of TBAF and formation temperature on the formation structure was confirmed.  

The formed semi-clathrate hydrates were cooled to 253 K in a freezer for at least six hours.  The 

solids were crushed with a mortar and pestle at liquid nitrogen temperatures and then graded with 

stainless steel-type 316 sieves while being kept in the freezer at 253 K.  Particle size ranges of 

106-150 or 250-355 m were used in the experiments.  The H2 equilibrium adsorption amount was 

measured as with experimental methods and apparatus used in Chapter 4.  The formation of 

hydrates was confirmed with differential scanning calorimetry (DSC-6100, SII Ltd.) and laser 

Raman spectroscopy (NRS-5100, JASCO, Tokyo) with experimental methods described in 

Appendix 5-4.  Table 5-1 summarizes the preparation conditions and characterization of the 

semi-clathrate hydrates. 
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Table 5-1.  Description of semi-clathrate hydrate structures, hexagonal structure-I (HS-I), tetragonal structure-I (TS-I) and superlattice of cubic 

structure-I (SCS-I).  Lattice constants are typical for each structure and tetra-n-butyl ammonium (TBA) salt as compiled from the literature. 

Crystal system 

(abbreviation) 

2
H O
N  

(
2

ideal, H O
N ) 

TBA salt
N  

S
N  

TBA 

salt 

Hydration 

number 2

*
H O
N  

Lattice constants [Å] 
Ref. 

a b c 

Orthorhombic (HS-I) 76 (80) 2 6 TBAB 38 76 21.06 12.643 12.018 Shimada (2005)
1
 

Tetragonal (TS-I) 162 (172) 5 10 TBAB 32.8 164 23.57  12.3 Davidson (1973)
2
 

    TBAC 30.4 152 23.582  12.415 Rodionva (2010)
3
 

    TBAF 32.8 164 23.52  12.3 Dyadin (1976)
4
 

Cubic (SCS-I) 344 (368) 12 16 TBAF 29.7 356.8 24.375   Komarov (2007)
5
 

TBAB : tetra-n-butyl ammonium bromide, TBAC: tetra-n-butyl ammonium chloride, TBAF: tetra-n-butyl ammonium fluoride. 

2ideal,H O
N : ideal number of water molecules per unit cell, 

2H O
N : number of non-replaced water molecules as host molecule by cation and anion of TBA 

salt per unit cell, 
2

*
H O
N : reported number of water molecules per unit cell, TBA salt

N : number of included TBA salt molecules in semi-clathrate hydrate 

structure per unit cell, 
S
N : number of S-cage of semi-clathrate hydrate per unit cell. 
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5.2.3   Experimental apparatus 

The experimental apparatus consisted of a hydrate formation cell and a reservoir tank as 

described in Chapter 4.  The reservoir tank system was designed to be separated from the 

equilibrium cell during the loading of the reservoir tank with gas.  In the hydrate formation cell, 

the window was held externally with an O-ring (IIR-70°, Morisei Kako Co. (H2 systems) or KEF 

Co. (CO2 systems)) and the inner cell was made of brass.  In CO2 systems, CO2 is soluble in the 

O-ring used in H2 systems thus an O-ring (IIR-70°, KEF Co.) that had low CO2 gas solubility was 

developed.  The inner volumes of the hydrate formation cell and reservoir tank were 304.7 and 

26.3 cm
3
, respectively (Appendix D).  The cell and the tank were maintained to within ± 0.02 K 

and ± 0.05 K, respectively.  Two temperature sensors that were inserted into a hole in the cell 

assembly wall and into the reservoir tank had uncertainties of ±29 and ±78 mK, respectively 

(Appendix A).  Two pressure gauges on the cell and the tank had uncertainties of ±1.7 and ±2.3 

kPa, respectively (Appendix B).  Detailed specifications of the apparatus, such as temperature 

control system, temperature sensor and pressure gauges have been described in Chapter 4. 

 

5.2.4   Experimental procedure 

 The experimental procedure was similar to that used in Chapter 4 and is briefly described here. 

When the hydrate formation cell and the reservoir tank were cooled to 269 K, about 4 g of the TBA 

salt semi-clathrate hydrate particles was loaded.  As soon as the hydrate formation cell and the 

reservoir tank were evacuated for 5 s by a vacuum pump (Hitachi Koki Co., VR16L), the valve 

between the hydrate formation cell and the reservoir tank was closed.  After the reservoir tank was 
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sufficiently evacuated by the vacuum pump, H2 gas was pressurized to about 4.3 MPa, CO2 gas was 

pressurized to about 0.9 MPa, or H2-CO2 mixture gas was pressurized to about 4.9 MPa in the 

reservoir tank.  The CO2 and H2-CO2 mixture pressures were set so as to not form pure CO2 

clathrate hydrate that are known to be ice-hydrate-vapor phase equilibrium at conditions of 268.9 K 

and 0.924 MPa.
6
  The H2 pressure was set to be about four times the initial CO2 pressure value on 

the assumption of the theoretical reactions of the reforming of CH4 and water gas shift (CH4 + 

2H2O → 4H2 + CO2).
7
  When temperature and pressure of the reservoir tank stabilized, the gas 

was loaded into the formation cell over a period of about 5 s (H2) or 10 s (CO2 or H2-CO2).  The 

analysis method was based on the pressure decay method with material balances being used in the 

formation cell and reservoir tank as in Chapter 4.  The amount of gas loaded 
gas, load
n , was 

calculated by the difference in the gas density before and after loading of the reservoir tank 

(Eq.(5-1)) with the virial EoS calibrated to NIST correlations(Appendix E).
8
  The second and third 

virial coefficients of H2 were estimated from the molar volume at temperatures of 240 – 300 K and 

at pressures of 0.05 – 14 MPa, and those for CO2 were estimated from the saturated pressure at 

temperatures from 217 to 303 K.  The second and third mixture virial coefficients of the virial 

equation of state were estimated from liquid-vapor equilibria of H2-CO2 systems (Appendix E).
9-12

 

 
gas, load gas, R, initial gas, R, final
n n n            (5-1) 

The amount of gas in the hydrate phase was calculated from the relationships below. 

Volume of vapor phase: 

 
 

gas, load gas

vapor

gas, vapor
0

n M
V

t



           (5-2) 
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Moles of free gas in vapor phase: 

  
 gas, vapor vapor

gas, vapor

gas

t V
n t

M


           (5-3) 

Moles of gas in hydrate phase by material balance: 

  gas, Hyd gas, load gas, vapor gas, leak
( ) ( )n t n n t n t          (5-4) 

where the leak rate in Eq. (5-4) was assumed to be constant.  The leak rates of H2 and CO2 were 

(6.2 ±  0.9) ×  10
-4

 mmol/h and (1.30 ±  0.10) ×  10
-3

 mmol/h, respectively, which 

corresponds to a pressure drop rate of 0.05 – 0.11 kPa/h.  The experiment for the run was judged to 

have reached the equilibrium adsorption amount when the leak rate for the run was close to that for 

a system without sample according to values noted above.  The leak amount of gas from the 

O-ring, 
gas, leak

( )n t  was calculated by using the leak rate at the end of the experiment.  The volume 

of hydrate phase was calculated from Eq. (5-5) and that of the hydrate phase was calculated from 

Eq. (5-6) using the theoretical water density in the hydrate phase (Eq. (5-7)) as given below. 

Volume of hydrate phase: 

 
Hyd cell vapor
V V V              (5-5) 

Volume of theoretical hydrate phase: 

 2 2

2

H O, Hyd H O

Theor Hyd

H O, Theor Hyd

n M
V


            (5-6) 

Theoretical water density in the hydrate phase is: 

 
 

2 2

2

H O H O

H O, Theor Hyd

A

N M

a b c N
 

 
          (5-7) 
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Because pores exist in the hydrate particles,
13

 the difference was corrected using the porosity,  as 

in Eq.(5-8): 

 
Theor Hyd

Hyd 1

V
V





              (5-8) 

where 
2

H O
N  is the theoretical number of water molecules per unit cell.  The lattice constants a, b 

and c were taken from the literature.
1-5

  Table 5-1 summarizes 
2

H O
N  and lattice constants for 

each semi-clathrate hydrate.  In H2-CO2 mixture systems, the gas composition of the vapor phase 

was analyzed with gas chromatography (GC) (INFICON 3000 Micro Gas Chromatograph, Agilent 

Technologies, Inc.) with a two column systems and a thermal conductivity detector (TCD).  In the 

MolSieve 5A PLOT (10 m) backflush column system, the carrier was argon gas, injection time was 

20 ms and back flash time was 15 s.  In the PLOT Q (8 m) column system, the carrier was helium 

gas and injection time was 100 ms.  In both columns, temperatures in the injector and column, and 

pressure of carrier gas were 323 K, 323 K and 172 kPa, respectively.  The amount of sample gas in 

the cell was diluted by 1:6 by volume with Ar gas to increase its volume.  Similarly, the sample 

gas in the tank was analyzed after dilution with Ar gas to standardize the sample gas conditions.  

The H2 composition of sample gas in vapor phase, 
2

H
y  was calculated from the peak area of GC, 

GC, gas
A  corresponding to each gas as given by Eq. (5-9): 

 2 2

2

2 2

2 2

GC, H GC, H

H

GC, H GC, CO

GC, H GC, CO

*

* *

A A
y

A A

A A





            (5-9) 

where *

GC, gas
A  is the peak area given by GC analysis of the pure gas, which was measured for run 

numbers 16 – 20.  These data reported represent the average of three values.  The uncertainly of 
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the selectively was estimated from error analysis of the H2 composition (Appendix 5-1). 

 

5.3  Results and Discussion  

5.3.1  Assessment of semi-clathrate hydrate particles 

Figure 5-1 shows typical DSC curves of TBA salt semi-clathrate hydrates for differential 

formation conditions and Table A5-1 (Appendix 5-2) summarizes their characterization.  Figure 

A5-1 (Appendix 5-2) shows all DSC curves in Chapter 5  In TBAB systems (Figure 5-1 a and b), 

the dissociation temperature was similar to literature values
14

 for each structure and a single DSC 

peak derived from TBAB semi-clathrate hydrate was observed.  Thus, it can be concluded that 2.6 

mol% TBAB semi-clathrate hydrate was mainly HS-I hydrate and 3.7 mol% TBAB semi-clathrate 

hydrate was mainly TS-I hydrate.  The ice in the prepared particles for the 2.6 mol% TBAB 

semi-clathrate hydrates was neglected (272.5 K) because the peak was small.  In TBAC systems 

(Figure 5-1 c, Figure A5-1 c – f), the dissociation temperatures were similar to literature values
15

 for 

all formation conditions and a single DSC peak derived from TBAC semi-clathrate hydrate was 

confirmed.  A peak corresponding to ice was observed for TBAC concentrations other than 3.2 

mol% (Figure A5-1 c – f).  The reason for ice formation in 3.7 mol% TBAC system is considered 

to be that non-included TBAC became hydrated separately from the semi-clathrate hydrate.  

Therefore, it was confirmed in this work that 3.2 mol% TBAC system can form TBAC 

semi-clathrate hydrate without forming ice (Figure 5-1 c).  In TBAF systems (Figure 5-1 d and e, 

Figure A5-1 g – j), the dissociation temperatures were similar to literature values
16

 and a single 

DSC peak derived from the TBAF semi-clathrate hydrate was observed for all formation conditions 
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Figure 5-1.  DSC curves of tetra-n-butyl ammonium (TBA) salt semi-clathrate hydrates at 

atmospheric pressure for a heating rate of 1 K/min.  Symbol:: decomposition temperature.  

TBAB semi-clathrate hydrates were formed at (a) 2.6 mol% TBAB and 274 K (red line), (b) 3.7 

mol% TBAB and 283 K (blue line).  TBAC semi-clathrate hydrates were formed at (c) 3.2 mol% 

TBAC and 276 K (green line).  TBAF semi-clathrate hydrates were formed at (d) 3.0 mol% TBAF 

and 296 K (brown line), (e) 3.3 mol% TBAF and 296 K (brown line). 

 

5.3.2  Raman analysis 

 Figure 5-2 shows typical Raman spectra for the TBA salt semi-clathrate hydrates for each 

formation condition.  Figure A5-2 (Appendix 5-3) shows Raman spectra of all semi-clathrate 

hydrates studied in this chapter.  Raman peaks at around 700 – 1500 cm
-1

 and 2800 – 3100 cm
-1

 

correspond to the TBAB molecules,
17

 TBAC molecules or TBAF molecules.
16,18 

  Broad peaks at 

3200 – 3400 cm
-1

 corresponding to O-H vibration of the H2O molecules.  Hashimoto et al. 

reported that the Raman peak around 1134 cm
-1

 for the TBAB semi-clathrate hydrate in HS-I 

structure was not observed for HS-I structure.
17

  The effect of formation temperature on the 
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structure of 2.6 mol% TBAB semi-clathrate hydrate was obtained (Appendix 5-4).  the peak 

around 1134 cm
-1

 was hardly observed for 2.6 mol% TBAB semi-clathrate hydrate formed at 274 K, 

which indicates that 2.6 mol% TBAB semi-clathrate hydrate is mainly HS-I structure.  However, 

changes in specific Raman peaks were not observed for other TBA salt semi-clathrate hydrates.  

The semi-clathrate hydrate structures were assessed for their H2 equilibrium storage amount. 

 

Figure 5-2.  Raman spectra for tetra-n-butyl ammonium (TBA) salts systems at room temperature 

and atmospheric pressure.  TBAB semi-clathrate hydrates were formed at (a) 2.6 mol% TBAB and 

274 K (red line), (b) 3.7 mol% TBAB and 283 K (blue line).  TBAC semi-clathrate hydrates were 

formed at (c) 3.2 mol% TBAC and 276 K (green line).  TBAF semi-clathrate hydrates were 

formed at (d) 3.0 mol% TBAF and 296 K (brown line), (e) 3.3 mol% TBAF and 296 K (brown line).  

The Raman peak around 1134 cm
-1

 depends on TBAB semi-clathrate hydrate structure.
17
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5.3.3  Equilibrium hydrogen storage 

Figure 5-3 shows H2 equilibrium storage amount in TBAB, TBAC or TBAF semi-clathrate 

hydrates and Table 5-2 and 5-3 summarizes experimental conditions and results.  The H2 

equilibrium storage amounts with respect to the sample (hydrate and ice), 
2

eq., H
X  were calculated 

from Eq. (5-10): 

2

2

2

eq., H , Hyd

eq., H

H O, load TBA salt, load

n
X

n n



           (5-10) 

where 
H O, load2
n  and 

TBA salt, load
n  are the amount of H2O and TBA salt contained in the sample 

powder, respectively.  The 
2

eq., H
X  greatly depended on the semi-clathrate hydrate structure, but 

did not seem to be affected by the presence of ice.  The 
2

eq., H
X for the 2.6 mol% TBAB 

semi-clathrate that had HS-I structure (Sections 5.3.1 and 5.3.2) exhibit the highest values for H2 

solubility (ca. 7 mmol-H2 /mol-H2O+TBA salt) among the semi-clathrate hydrates (Table 5-4, runs 1 – 

10).  The 
2

eq., H
X  for the TBAC semi-clathrate hydrate systems and the 3.0 mol% TBAF 

semi-clathrate hydrate systems were about the same (ca. 3 mmol-H2 /mol-H2O+TBA salt).  The 
2

eq., H
X  

for 3.3 mol% TBAF semi-clathrate hydrate system values (ca. 2 mmol-H2 /mol-H2O+TBAF) were lower 

those that for other semi-clathrate hydrate systems (Table 5-4, runs 1 – 10).  This change in the 

2
eq., H
X  implies some differences in the semi-clathrate hydrate structures. 

For TBAC semi-clathrate hydrates, the H2 equilibrium storage amounts (Figure 5-3 and Table 

5-3, runs 3 – 6) were in order of (largest to smallest) 3.2 mol% TBAC (run 5), 3.0 mol% TBAC 

(run 4), 3.7 mol% TBAC (run 6), and 2.6 mol% TBAC (run 3).  The reason that the H2 equilibrium 

storage amount for 3.2 mol% TBAC semi-clathrate hydrate was the highest among the 
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concentrations examined is probably due to the formation of ice (Figure A5-1 c – f).  Since H2 

equilibrium storage amount given by in Eq.(5-10) is lowered by the existence of ice, some TBAC 

essentially had no contribution to hydrate formation due to the standardized loading amounts of the 

salts used.  However, the H2 equilibrium storage amount did not change greatly among the TBAC 

semi-clathrate hydrates and those values were close to those for 3.7 mol% TBAB semi-clathrate 

hydrate of TS-I structure (Table 5-3, run 2).  These results are evidence that TBAC semi-clathrate 

hydrate had TS-I structure independent of the TBAC concentration. 

 

Figure 5-3.  Hydrogen equilibrium storage amount tetra-n-butyl ammonium bromide (TBAB), 

chloride (TBAC) or fluoride (TBAF) semi-clathrate hydrates (dp = 250 – 355 m, T = 269 K, Pinitial 

= 4.0 MPa).  Symbols show semi-clathrate hydrate formation temperatures.  Red triangle, TBAB, 

274 K; blue circle, TBAB, 283 K; green squares, TBAC, 276 K; brown diamonds, TBAF, 297 K; 

filled brown diamonds, TBAF, 276 K. 

 

For TBAF semi-clathrate hydrate in Table 5-3, the H2 equilibrium storage amount for 3.3 

mol% TBAF (run 10) was lower than half of that for 3.0 mol% TBAF (run 8).  Thus, the effect of 

TBAF concentration on the H2 equilibrium storage amount for TBAF semi-clathrate hydrates was 

larger than that for TBAC semi-clathrate hydrates (Figure 5-3 and Table 5-3).  The difference in H2 
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equilibrium storage amounts for 3.0 mol% TBAF semi-clathrate hydrates and 3.3 mol% TBAF 

semi-clathrate hydrates formed near the dissociation temperature (T = 5 K) was larger than that for 

TBAF semi-clathrate hydrates formed at 276 K (T = 25 K).  These results imply that 

semi-clathrate hydrates of different structures are formed between 3.0 mol% TBAF and 3.3 mol% 

TBAF, and these two structures probably formed at the same time for the given set of conditions in 

which there was a large degree of supercooling (T).  The H2 equilibrium storage amount for 3.0 

mol% TBAF semi-clathrate hydrate formed at T equal to 5 K (Table 5-2, run 8) was close to that 

for 3.7 mol% TBAB semi-clathrate hydrate of TS-I structure (Table 5-3, run 2), thus it can be 

concluded that the TBAF semi-clathrate hydrate (Table 5-3, run 8) is TS-I structure rich.  The 3.3 

mol% TBAF semi-clathrate hydrate formed at T equal to 5 K (Table 5-2, run 10) for which the H2 

equilibrium storage amount was lowest (Table 5-3) is most likely SCS-I structure rich.  The TS-I 

structure seemed to readily form for 3.0 mol% TBAF and the SCS-I structure seemed to readily 

form for 3.3 mol% TBAF.  
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Table 5-2.  Gas adsorption experimental conditions for semi-clathrate hydrate particles (T = 269.2 

K).  Particle sizes for H2 systems were 250 – 355 m and those for CO2 system were 106 – 150 

m. 

Run Gas 
TBA 

salt 

Conc. 

[mol%]
T [K] 

Pinitial 

[MPa] 
WHyd [g] 

1 H2 TBAB 2.6 9 4.02 4.369 

2   3.7 2 3.99 5.217 

3  TBAC 2.6 12 4.07 7.501 

4   3.0 12 4.05 7.319 

5   3.2 12 4.05 8.192 

6   3.7 12 4.05 8.795 

7  TBAF 3.0 25 4.02 7.324 

8   3.0 5 4.05 5.368 

9   3.3 25 4.12 7.213 

10   3.3 5 4.02 6.609 

11 CO2 TBAB 2.6 9 0.82 2.389 

12   3.7 2 0.84 2.862 

13  TBAC 3.2 12 0.85 3.380 

14  TBAF 3.0 5 0.84 4.349 

15   3.3 5 0.83 3.789 

16 H2/CO2 = 3.4 TBAB 2.6 9 4.50 4.054 

17   3.7 2 4.49 3.791 

18  TBAC 3.2 12 4.51 3.782 

19  TBAF 3.0 5 4.49 4.257 

20   3.3 5 4.51 4.570 

TBAB : tetra-n-butyl ammonium bromide, TBAC: tetra-n-butyl ammonium chloride, TBAF: 

tetra-n-butyl ammonium fluoride. 

T: degree of supercooling, T: temperature, Pinitial: initial pressure, WHyd: mass (weight) of hydrate 

in product particles  
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Table 5-3.  Results derived from gas adsorption in semi-clathrate hydrates experiments.  Time at 

completion of experiment was 4.0 h (runs: 16 – 20) 

Run Pure gas 
TBA 

salt 

Conc. 

[mol%]
T 

[K] 

Pfinal 

[MPa] 
half
t  

[h] 

Xeq., gas 

gas

H O+TBA salt2

mmol

mol

 
  

 
eq., gas, S


[-] 

Cgas, S  

[×10
-1

 MPa
-1

] 

1 H2 TBAB 2.6 9 3.90 0.79 6.67 0.087 0.238 

2   3.7 2 3.93 0.74 3.21 0.052 0.136 

3  TBAC 2.6 12 3.97 0.15 2.73 0.045 0.117 

4   3.0 12 3.94 0.22 2.90 0.048 0.126 

5   3.2 12 3.93 0.94 3.07 0.051 0.134 

6   3.7 12 3.93 0.48 2.88 0.048 0.126 

7  TBAF 3.0 25 3.91 0.27 3.05 0.051 0.134 

8   3.0 5 3.97 0.31 3.21 0.054 0.140 

9   3.3 25 4.04 0.52 2.09 0.046 0.118 

10   3.3 5 3.97 0.15 1.45 0.032 0.081 

11 CO2 TBAB 2.6 9 0.56 3.24 35.58 0.413 13.15 

12   3.7 2 0.68 13.1 14.02 0.236 4.991 

13  TBAC 3.2 12 0.60 14.1 19.40 0.325 8.341 

14  TBAF 3.0 5 0.55 4.24 16.93 0.283 7.504 

15   3.3 5 0.65 14.0 9.82 0.218 4.489 

 
Gas 

mixture 
    X H2 X CO2 H , S2

  
CO , S2

  

16 

H2/CO2 

TBAB 2.6 9 4.21 2.97 17.68 0.039 0.230 

17  3.7 2 4.40 1.70 5.63 0.029 0.095 

18 TBAC 3.2 12 4.40 1.43 7.07 0.024 0.118 

19 TBAF 3.0 5 4.35 1.02 8.02 0.017 0.133 

20  3.3 5 4.44 0.96 3.82 0.021 0.085 

H2/CO2: H2 + CO2 mixture gas (H2/CO2=3.4).  TBAB : tetra-n-butyl ammonium bromide, TBAC: 

tetra-n-butyl ammonium chloride, TBAF: tetra-n-butyl ammonium fluoride.  

Pfinal: pressure at experimental finished, half
t : time to reach half the equilibrium gas occupancy in 

S-cage, Xgas: gas mole number in semi-clathrate hydrate phase by H2O and TBA salt molecules in 

samples,  eq: equilibrium occupancy, CS: Langmuir constants of gas in S-cage.  
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5.3.4  Characteristics of gas occupancy 

 Table 5-2 and 5-3 summarize experimental conditions and results for the gas adsorption 

experiments.  Figure 5-4 shows gas occupancy in the S-cages as a function of time for the TBA 

salt semi-clathrate hydrates for either H2 or CO2.  The gas occupancy in the S-cage, 
gas, S
  was 

calculated from Eq. (5-11) based on the assumption of single occupancy in the S-cage: 

 2

2

gas, Hyd H O

gas, S

H O, load S

n N

n N
               (5-11) 

where 
S
N  is the number of S-cages according to the unit cell.  When 

H , S2
  is 1, all S-cages are 

occupied with H2 molecules.  In Eq. (5-11), water molecules are assumed to not occupy the S-cage 

for simplicity.  It should be noted, however, that different occupancies for H2O molecules have 

been reported for the SCS-I structure of the TBAF semi-clathrate hydrate.
4,5

  This point is 

considered in a later section.  Gas adsorption rates for semi-clathrate hydrates were assessed by the 

time required to reach half the equilibrium gas occupancy in the S-cage, 
half
t .  A low 

half
t  value 

means that the adsorption rate is high and that adsorption occurs fast.  The 
half
t  for H2 systems 

(Table 5-3) were in order of (shortest to longest) 3.3 mol% TBAF (run 10), 3.0 mol% TBAF (run 8), 

3.7 mol% TBAB (run 2), 2.6 mol% TBAB (run 1), and 3.2 mol% TBAC (run 5).  The 
half
t for H2 

systems were influenced more by the anion of the TBA salt than the structure of the semi-clathrate 

hydrate and were in order of (shortest to longest) TBAF, TBAB and TBAC. 
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Figure 5-4.  Experimental results of H
2
 or CO2 occupancy as a function of time in S-cages of the 

semi-clathrate hydrates at 269 K.  (a): H2 adsorption systems (dp = 250 – 355 m, P
initial

 = 4.0 

MPa).  (b): CO2 adsorption systems (dp = 106 – 150 m, P
initial

 = 0.8 MPa).  Symbols show 

tetra-n-butyl ammonium (TBA) salt and structure of semi-clathrate hydrate.  Symbols: red 

up-pointing triangles, 2.6 mol% TBAB (HS-I); blue circles, 3.7 mol% TBAB (TS-I); green squares, 

3.2 mol% TBAC (TS-I); olive diamonds, 3.0 mol% TBAF (TS-I); brown down-pointing triangles, 

3.3 mol% TBAF (SCS-I). 

 

 The 
half
t  for CO2 systems (Table 5-3) were in order of (shortest to longest) 2.6 mol% TBAB, 

(run 11), 3.0 mol% TBAF (run 14), 3.7 mol% TBAB (run 12), 3.3 mol% TBAF (run 15), and 3.2 

mol% TBAC (run 13).  The 
half
t  for CO2 systems depended not only on the anion of the TBA salt, 

but also on the semi-clathrate hydrate structures.  Considering the TBA anion and clathrate 

structure, the 
half
t  for CO2 systems were in order of (shortest to longest) TBA salt (TBAF, TBAB 

and TBAC) and semi-clathrate hydrate structure (HS-I, TS-I and SCS-I).  The effect of the TBA 

anion on 
half
t  for CO2 systems corresponded to that for H2 systems.  This implies that the area of 

the crystal grain boundary, Agb for the semi-clathrate hydrates increases in order of Agb,TBAF > 

Agb,TBAB > Agb,TBAC.  In fact, TBAF semi-clathrate hydrates could be easily crushed when the 

hydrate particles were prepared (Section 5.2.2).  The effect of clathrate structure on 
half
t  for CO2 
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systems seems to be in correspondence with the hydration number (Table 5-1).  Low hydration 

numbers of TBA salts (
H O TBA salt2
N N , Table 5-1) tended to have high anion compositions as the 

host molecule.  This means that the anion of host molecule inhibited the gas adsorbed into the 

semi-clathrate hydrate.  The inner diameter of the S-cage with the anion is probably smaller than 

that of other S-cages because the anion radius
19

 is larger than that of water.
20

  Therefore, the 

dependence of the CO2 adsorption rate on semi-clathrate hydrate structure implies that the anion as 

host molecule physically inhibits CO2 adsorption due to the CO2 molecular size being close to the 

S-cage size.  Especially for the TS-I structure, the half
t  for the TBAF semi-clathrate hydrate was 

significantly shorter than that for the TBAB and TBAC semi-clathrate hydrate because the ionic 

radius of F
-
 (1.71 Å) is much smaller than that of Cl

-
 (2.23 Å) and Br

-
 (2.35 Å).

19
 

 The H2 equilibrium occupancies in the S-cage, 
2

eq., H ,S
  (Table 5-3) were in order of (largest to 

smallest) for the semi-clathrate hydrates: 2.6 mol% TBAB (run 1), 3.0 mol% TBAF (run 8), 3.7 

mol% TBAB (run 2), 3.2 mol% TBAC (run 5), and 3.3 mol% TBAF (run 10).  The effect of the 

anion on the 
2

eq., H ,S
  for TS-I structure (Table 5-3, runs 8, 2 and 5) was small but seemed to 

correspond to the size of the unit cell for TS-I structure (Table 5-1), since the 
2S, H , eq

 increased as 

the size of unit cell decreased.  Thus, this result implies that van der Waals interactions between H2 

and H2O increase as the size of the S-cage becomes smaller.  On the other hand, the 
2

eq., H ,S


seemed to be more strongly influenced by the semi-clathrate hydrate structure (Table 5-3, runs 1, 5 

and 10).  This trend implies that the S-cage was occupied by H2O molecules, because the 

occupancy of H2 decreases with the introduction of other guest molecules as Eq. (5-12): 
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  2 2

2

2 2

H , S H

eq., H , S eq., other, S

H , S H

*

*
1

1

C f

C f
  


          (5-12) 

where 
2

*
H , S
C  and f  are the actual Langmuir constant and fugacity, respectively.  The occupancy 

of H2O probably depended on the number of anions of TBA salt as host molecule regardless of the 

anion species of the TBA salt.  For the case of occupied H2O as a guest molecule, the 
2

eq., H ,S
  

changes slightly because the 
2

eq., H ,S
  calculated from Eq. (5-11) changes from 

2
H O
N  to 

2

*

H O
N .  

The 
2

*
H , S
C  was calculated from Eqs. (5-13) and (5-14) by considering the number of H2O 

molecules occupied in the S-cage per unit cell, 
Occ, H O2
N  as follows: 

 
 
 

2 2 2

2

2 2

eq., H , Hyd H O Occ, H O
*

eq., H , S

H O, load S Occ, H O

n N N

n N N






          (5-13) 

 

 
2

2

2 2

*

eq., H , S

H , S *

H eq., H , S

*

1
C

f







            (5-14) 

where 
2

*

eq., H , S
  is the equilibrium occupancy of H2 in the S-cage non-occupied with H2O.  The 

2

*
H , S
C  was assumed to be equal to that for clathrate hydrates of sII structure, because the effect of 

distortion of the S-cage on 
2

*

H , S
C  is small in the sII structure due to the small molecular size of 

H2.
21

  The Langmuir constant for H2 in the S-cage for sII structure, 
2

*

H , S
C  was 0.04 MPa

-1
 at 269 

K from the measurements in Chapter 4, thus 
2

*

eq., H , S
  was 0.14 at 4 MPa.  The 

2Occ,H O
N  was 

estimated by using the 
2

*

eq., H , S
 , structure parameters (

2
H O
N  and 

S
N ) and experimental results 

(
2

H O, load
n  and 

2
eq., H , Hyd
n ) in Eq. (5-13).  The 

2Occ,H O
N  for HS-I, TS-I and SCS-I structures were 

taken to be 2.1, 6.0 and 12.2, respectively.  These values correspond to the number of included 

TBA salt molecules per unit cell, 
TBAsalt
N  (Table 5-1) and implies that the number of included H2O 
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molecules are strongly related to the number of included TBA salt species.  In these results, the 

occupancy of H2O molecules in the S-cage were about 0.35, 0.6 and 0.76 for HS-I, TS-I and SCS-I 

structures, respectively.  Komarov et al. reported that the occupancy of H2O molecules in the 

S-cage was 0.8 for the SCS-I structure of TBAF semi-clathrate hydrate,
5
 so that results in this work 

are in accordance with the literature.
5
  From these results, it can be implied that gas adsorption 

capacities can be increased if the occupancy of H2O molecules can be inhibited. 

 The CO2 equilibrium occupancy in the S-cage, 
2S, CO , eq

 for semi-clathrate hydrates (Table 5-3) 

were in order of (largest to smallest) 2.6 mol% TBAB (run 11), 3.2 mol% TBAC (run 13), 3.0 

mol% TBAF (run 14), 3.7 mol% TBAB (run 12), and 3.3 mol% TBAF (run 15).  The 
2

eq., CO ,S
  

depended not only on the structure, but also on the anion of the TBA salt in contrast to the H2 

systems.  The 
2

eq., CO ,S
 for TBAC semi-clathrate hydrate (Run 13) was highest among TS-I 

structures (Runs 12 – 15) regardless of the order of ion radii (F
-
: 1.71 Å, Cl

-
: 2.23 Å and Br

-
: 2.35 

Å).
19

  This result implies that the size of the S-cage of TBAC semi-clathrate hydrate is optimum 

for CO2 molecule. 

 

5.3.5  Analysis of gas adsorption behavior with MAR model 

 The multiple adsorption resistance (MAR) model described in Chapter 4 was applied to results 

in this work.  For semi-clathrate hydrates, three resistances for gas adsorption are (i) the 

semi-clathrate hydrate framework, (ii) the anion of the TBA salt, (iii) the guest included cage and 

(iv) the gas adsorbed shell in Chapter 4, in addition, one resistance is (iv) the anion of the TBA salt.  

The MAR model has the assumptions for the three boundaries of differential gas adsorption.  In 
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boundaries 1 and 2 (B1 and B2), gas molecules adsorb in a delocalized state near the surface of the 

semi-clathrate hydrate particle in which pores exist.  Boundary 2 (B2) is a domain with no access 

to the pores in the delocalized state.  Boundary 3 (B3) is an inner core of semi-clathrate hydrate 

particle for which the shrinking of the non-included gas solid core was assumed to be the 

rate-limiting step.  Gas adsorption in semi-clathrate hydrate particles in boundaries B1 and B2 

were assumed to proceed according to a gas molar concentration in the bulk phase, 
gas, bulk
C  driving 

force and one gas molecular inclusion in the S-cage without regard to occupancy by H2O molecules.  

The gas adsorption rate in each boundary was expressed as Eq. (5-15) – (5-19). 

  gas B1 S, B1

B1 a gas, bulk
p

S, eq
p

,
1

dn
V K C

dt





  
    

   
   

         (5-15) 

  gas B 2 S, B 2

B 2 a GCC gas, bulk
p

S, eq
p

,
1

dn
V K N C

dt





  
    

   
   

        (5-16) 

  B B2 p p

3
3

1

4

3
V V r r L

 
    

 
           (5-17) 

where 
B1
V , 

B2
V , 

a
K , and L  are the volume of boundary 1 and 2, the gas adsorption rate 

constant in the delocalized adsorbed shell, the thickness of the delocalized adsorbed shell and the 

number of gas capture cavities (S-cage), respectively.  The  
2

GCC S ideal, H O
N N N  in Eq.(5-16) is 

defined as number of S-cage of the unit cell, 
S
N , per number of ideal host molecules of the unit 

cell 
2

ideal, H O
N .

22
  The gas adsorption rate in boundary B3 was assumed to proceed according to the 

molar concentration of gas in the solid particle expressed as: 
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 

S, B

c S, eq c gas, core

S, eqgas B3

p
S, B3 S, eq c c

c

S, eq B3
S, eq a

1

2

3
32

,

2

3

4 1

1 1
1

r k C
dn

dt
k r r

rD


 



 

 

 
 

   
   

 
     

     
      

       (5-18) 

 
 

S S, eq

gas, core

A

N
C

N a b c




 
            (5-19) 

The 
p
r , 

B3
r  and 

c
r  are the radius of particle, boundary 3 and gas non-included solid core in 

boundary 3, respectively and the 
c
k  is the inclusion rate constant on interface of gas non-included 

solid core, and 
a
D  is the apparent diffusion coefficient.  The 

gas, core
C  is the gas molar 

concentration at interface between the delocalized gas-adsorbed outer shell and the localized 

gas-adsorbed inner core.  Fitting parameters in this model are L , 
a
K , 

c
k  and 

a
D .  Figure 5-5 

shows the relationship between a schematic diagram of the MAR model and fitting parameters.  

The model was correlated with the experimental data in such a way that average deviation (AD) 

was minimized as: 

    gas, exp gas, calc

data

AD
610

i

n i n i
N

            (5-20) 

where 
data
N  is the number of data points. 
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Figure 5-5.  Schematic diagram of the multiple adsorption resistance (MAR) model and its fitting 

parameters.  L : thickness of the delocalized adsorbed shell, 
a
K : gas adsorption rate constant in 

the delocalized gas-adsorbed shell, 
c
k : inclusion rate constant on interface of gas non-included 

solid core and 
a
D : apparent diffusion coefficient.  Blue area, the non-included gas solid; red area, 

gas-included solid. 

 

  

Figure 5-6.  Correlation results of H
2
 or CO2 occupancy as a function of time in S-cages of the 

semi-clathrate hydrates at 269 K with multiple adsorption resistant (MAR) model.  (a): H2 

adsorption systems (dp = 250 – 355 m, P
initial

 = 4.0 MPa).  (b): CO2 adsorption systems (dp = 106 

– 150 m, P
initial

 = 0.8 MPa).  Continuous lines are correlation results.  Symbols show 

tetra-n-butyl ammonium (TBA) salt and structure of semi-clathrate hydrate.  Symbols: red 

up-pointing triangles, 2.6 mol% TBAB (HS-I); blue circles, 3.7 mol% TBAB (TS-I); green squares, 

3.2 mol% TBAC (TS-I); olive diamonds, 3.0 mol% TBAF (TS-I); brown down-pointing triangles, 

3.3 mol% TBAF (SCS-I).  
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Table 5-4.  Correlation results of gas adsorption rates for semi-clathrate hydrate particles. 

Run Gas 
TBA 

salt 

Conc. 

[mol%]

T 

[K] 

L  

[m] 

aK  

[×10
-4

 s
-1

] 

ck  

[×10
-9

 ms
-1

] 

a
D  

[×10
-13

 m
2
s

-1
] 

ARD

% 

1 H2 TBAB 2.6 9 28.2 9.116 34.89 15.76 0.69 

2   3.7 2 33.2 4.094 52.34 5.127 1.74 

3  TBAC 2.6 12 38.1 14.60 285.6 12.18 6.05 

4   3.0 12 42.9 7.756 104.2 19.59 3.07 

5   3.2 12 20.0 7.630 87.55 1.934 2.17 

6   3.7 12 27.9 5.656 145.0 6.949 7.02 

8  TBAF 3.0 5 78.2 2.560 10.89 20.03 1.47 

10   3.3 5 56.1 5.000 60.81 18.96 1.98 

11 CO2 TBAB 2.6 9 10.7 35.09 0.706 0.0238 1.58 

12   3.7 2 5.11 6.170 1.642 0.0073 1.83 

13  TBAC 3.2 12 3.70 3.445 2.313 0.0111 2.49 

14  TBAF 3.0 5 11.4 10.59 1.264 0.0122 1.42 

15   3.3 5 6.91 5.907 10.36 0.0034 0.95 

TBAB: tetra-n-butyl ammonium bromide, TBAC: tetra-n-butyl ammonium chloride, TBAF: 

tetra-n-butyl ammonium fluoride. 

T: degree of supercooling, L : thickness of delocalized state, aK : adsorption rate constant in 

delocalized state, ck : inclusion rate constant on interface of gas non-included solid core, a
D : 

apparent diffusion coefficient, ARD: average relative deviation. 

 

 Figure 5-6 shows correlation results for H2 and CO2 adsorption in semi-clathrate hydrate 

particles with the MAR model (Table 3, H2: runs 1, 2, 5, 8, 10, CO2: runs 11 – 15).  Table 5-4 

summarizes fitting parameters and average relative deviation (ARD) of the model, where ARD is 

defined as: 

 
   

 
gas, exp gas, calc

data gas, exp

ARD %
100

i

n i n i

N n i


          (5-21) 
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As shown in Figure 5-6 and Table 5-4, the MAR model could describe the gas adsorption process 

for both CO2 and H2 well. 

The L  in the MAR model is the thickness of the delocalized gas-adsorbed outer shell, which 

is probably related to the area of the crystal grain boundary.  Clathrate hydrate particles for which 

L is large have many cracks and pores.  In the TS-I structure, the L  values were in order of 

(largest to smallest) TBAF, TBAB and TBAC, and thus this implies that the area of the crystal grain 

boundary was in order of (largest to smallest) TBAF, TBAB and TBAC.  The adsorption rate 

constants 
a
K  for the CO2 systems (3.4 – 35 ×10

-4
 s

-1
) had the trend of being larger than those for 

the H2 systems (2.6 – 9.1 ×10
-4

 s
-1

), which implies that the stable gas in the S-cage is rapidly 

adsorbed from vapor phase.  In contrast, the inclusion rate constant 
c
k  for H2 systems (11 – 88×

10
-9

 m·s-1
) were larger than those for CO2 systems (0.7 – 10 ×10

-9
 m·s-1

).  On the interface of the 

non-included gas solid core, the gas is included from the gas included shell.  Thus, the stable gas 

in the S-cage probably transfers with difficulty from the gas included shell.  In the gas included 

shell, a gas molecule diffuses through an empty S-cage or grain boundary.  The diffusion 

coefficients 
a
D  for H2 systems (1.9 – 21 ×10

-13
 m

2·s-1
) were larger than those for CO2 systems 

(0.3 – 2.4 ×10
-15

 m
2·s-1

) as should be expected, because the molecular size of CO2 is much larger 

than that of H2.  The MAR model provides trends in accordance with general physics. 

 Table 5-5 summarizes the effect of TBA salt and structure on fitting parameters (
a
K , 

c
k  and 

a
D ).  In H2 systems, the 

a
K , 

c
k  for TS-I structure were in order of (largest to smallest) TBAC, 

TBAB and TBAF (run 5, 2 and 8) in Table 5-4, which corresponds to descending order of the lattice 

constant or S-cage size (TBAC, TBAB and TBAF) in Table 5-1.  This dependence for the S-cage 
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size was observed for H2-additive binary clathrate hydrates
21

 and means that H2 molecules were 

included in the S-cage of semi-clathrate hydrates without translation of water molecules as for 

H2-additive binary clathrate hydrates.
21

  The cause of this is thought to be that H2 adsorption is 

difficult to be inhibited by the QAS anion due to the small molecular size of H2.  The 
a
D  for TS-I 

structures were in order of (largest to smallest) TBAF, TBAB and TBAC in Table 5-4, which 

corresponds to ascending order of the area of the crystal grain boundary inferred from the relative 

values of L .  Thus H2 molecules probably diffuse through the grain boundaries of semi-clathrate 

hydrate particles. 

 In CO2 systems, the 
c
k  for TS-I structure were in order of (largest to smallest) TBAC, TBAB 

and TBAF (Table 5-4, runs 12 – 14) and these had similar trends for 
c
k  in H2 systems (Table 5-4, 

runs 2, 5 and 8).  However, the 
a
K  for TS-I structure were in order of (largest to smallest) TBAF, 

TBAB and TBAC in contrast to H2 systems, which corresponds to ascending order of the area of the 

crystal grain boundary.  Thus, the 
a
K  in CO2 systems were strongly influenced by the diffusivity 

of CO2.  The 
a
D  for TS-I structure were in order of (largest to smallest) TBAF, TBAC and 

TBAB, which corresponds to ascending order of the ionic radii of the anions.  This result implies 

that the diffusion of CO2 molecules was physically inhibited by the anion, and that the relationship 

between the size of the gas molecule, the anion and the S-cage is important for this inhibition effect. 
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Table 5-5.  Effect of tetra-n-butyl ammonium (TBA) salts and clathrate structures on fitting 

parameters. 

H2 systems  

Parameter Order Involved properties Relationship 

aK   TBAC > TBAB > TBAF S-cage size P 

 HS-I > TS-I < SCS-I Distortion of hydrate cage P 

ck  TBAC > TBAB > TBAF S-cage size P 

 SCS-I > TS-I > HS-I Number density of S-cage P 

a
D  TBAF > TBAB > TBAC Area of crystal grain boundary P 

 HS-I > TS-I > SCS-I Number density of S-cage P 

CO2 systems  

aK   TBAF > TBAB > TBAC Area of crystal grain boundary P 

 HS-I > TS-I > SCS-I Area of crystal grain boundary P 

ck  TBAC > TBAB > TBAF S-cage size P 

 SCS-I > TS-I > HS-I Number density of S-cage InvP 

a
D  TBAF > TBAC > TBAB Ionic radius of anion InvP 

 
HS-I > TS-I > SCS-I 

 

Number density of S-cage 

Number density of anion 

P 

InvP 

aK : adsorption rate constant in delocalized state, ck : inclusion rate constant on interface of gas 

non-included solid core, 
a
D : apparent diffusion coefficient, P : proportional, InvP: inversely 

proportional.  HS-I: hexagonal structure-I, TS-I: tetragonal structure-I, SCS-I: superlattice of cubic 

structure-I. 

 

 The effect of semi-clathrate hydrate structure on 
a
K , 

c
k  and 

a
D  is best discussed for a 

given TBA salt semi-clathrate hydrate.  Specifically, TS-I structures are compared with HS-I 

structures for TBAB systems, and TS-I structures are compared with SCS-I structures for TBAF 

systems.  However HS-I structures cannot be compared directly with the SCS-I structures due to 

the lack of the common TBA salt semi-clathrate hydrate.  In H2 systems, 
a
K  for the TS-I 

structure were larger than those values for the HS-I structure (Table 5-4, runs 1 and 2) and for the 
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SCS-I structure (Table 5-4, runs 8 and 10).  It is probable that lattice defects of the semi-clathrate 

hydrate HS-I and SCS-I structures were larger than those for the TS-I structure.  For the HS-I 

structure, other crystals such as ice probably formed in the formation process.  Water molecules in 

the HS-I structure are affected by that of ice, so that lattice defects in the HS-I structure probably 

occur.  For the SCS-I structure, the number of anions as host molecules seems to be related to the 

distortion of the hydrate cages.  The lattice defect of semi-clathrate hydrate cages are probably 

distorted by the ionic size and attracted H2O molecules to the anion as host molecule.  The number 

of the anions as host molecules for the SCS-I structure was largest among those structures (Table 

5-1).  Thus, the distortion of the hydrate cage for the SCS-I structure was probably larger than that 

for the TS-I structure.  The c
k  for each structure were in order of (largest to smallest) SCS-I, TS-I 

and HS-I, which corresponds to ascending order for the number of S-cages per ideal number of 

water molecules of the unit cell (Table 5-1).  On the other hand, the 
a
D  for each structure were in 

order of (largest to smallest) HS-I, TS-I and SCS-I, which corresponds to descending order for the 

number of S-cages per ideal number of water molecules of unit cell (Table 5-1).  The relationship 

between the c
k , the 

a
D  and the number density of S-cages of the semi-clathrate hydrates 

exhibited similar dependencies with occupancy of the S-cage as that observed for H2-THF clathrate 

hydrates.
23

  Therefore, it can be implied that the H2 adsorption rate is faster as the number density 

of sorbable sites decreases. 

 In CO2 systems, the a
K  for each structure were in order of (largest to smallest) HS-I, TS-I 

and SCS-I, which corresponds to descending order of the L  parameter that is related to the area of 

the crystal grain boundary (Table 5-4, runs 11, 12, 14 and 15) as well as the anions (Table 5-4, runs 
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12 – 14).  The c
k  for each structure were in order of (largest to smallest) SCS-I, TS-I and HS-I, 

and the 
a
D  for each structure were in order of (largest to smallest) HS-I, TS-I and SCS-I as with 

H2 systems.  Therefore, the relationship between CO2 adsorption or diffusion rate and the number 

density of sorbable sites are the same as that for H2 systems.  In CO2 systems, the descending 

order of the 
a
D  for each structure corresponds to the ascending order of the number density of the 

anions in semi-clathrate hydrates, because the diffusion of CO2 molecules is inhibited by the anion 

as a host molecule. 

 

Figure 5-7.  Correlation of H2 adsorption rates in tetra-n-butyl ammonium chloride (TBAC) 

semi-clathrate hydrate particles with multiple adsorption resistant (MAR) model (dp = 250 – 355 

m, T = 269 K, P
initial

 = 4.0 MPa).  Symbols show TBAC concentration.  Symbols: red 

up-pointing triangles, 3.7 mol% (Run 11); olive squares, 3.2 mol% (Run 7); green circles, 3.0 mol% 

(Run 2); blue down-pointing triangles, 2.6 mol% (Run 10). 

 Figure 5-7 shows correlation results for H2 adsorption for each concentration of TBAC 

semi-clathrate hydrate particles with MAR model (Run 3 – 6).  Table 5-4 summarizes fitting 

parameters and average relative deviations (ARD) for H2 adsorption.  The a
K  for each TBAC 

concentration were in order of (largest to smallest) 2.6, 3.0, 3.2 and 3.7 mol%, which implies that 

the non-included TBAC inhibited H2 adsorption and diffusion.  The c
k  for each TBAC 

concentration were in order of (largest to smallest) 2.6, 3.7, 3.0 and 3.2 mol%, which implies that 
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ice was present and that TBAC deformed the S-cages in the TS-I structure, assuming that the c
k  is 

related to the distortion of the S-cage as well as the structure dependence of the c
k  in H2 systems.  

The 
a
D  for each TBAC concentration were in order of (largest to smallest) 3.0, 2.6, 3.7 and 3.2 

mol%, which corresponds to the descending order of the L  as well as the anion dependency of 

a
D  and L  for TS-I structure in H2 systems.  This implies that the ice and the non-included 

TBAC increased the area of the crystal grain boundary, but also that the ice and the non-included 

TBAC caused large resistance to H2 diffusion. 

 

5.3.6  Measurement and simulation of H2/CO2 selectivity of hydrate particles 

 Mixture gas (H2 and CO2) adsorption behavior was simulated by using the correlated values 

from the gas adsorption measurements with MAR model to estimate H2/CO2 selectivities.  The 

conditions of the simulation were assumed to be those of the experimental conditions as 

summarized in Table 5-2 (runs 16 – 20).  The Langmuir constant and the parameters for MAR 

model in Tables 5-3 and 5-4 were used (runs 1, 2, 5, 8, and 10 – 15).  The parameter L  is the 

semi-clathrate hydrate particle property, thus the L  values used for mixture gas adsorption 

simulation were same as those used at CO2 adsorption experiments because particle diameter for 

mixture gas adsorption experiment was the same as that in the CO2 adsorption experiments.  

 Figure 5-8 shows experimental and calculated H2/CO2 selectivities for TBA salt semi-clathrate 

hydrates with results being summarized in Table 5-6.  In the simulation results (Table 5-6), the 

equilibrium H2/CO2 selectivities 
H CO2 2
S  for the semi-clathrate hydrates were in order of (largest to 

smallest) 3.2 mol% TBAC, 2.6 mol% TBAB, 3.0 mol% TBAF semi-clathrate hydrate, 3.3 mol% 
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TBAF and 3.7 mol% TBAB.  The H2/CO2 selectivity for 3.2 mol% TBAC semi-clathrate hydrate 

was highest among the semi-clathrate hydrates.  The 
H CO2 2
S  in each semi-clathrate hydrate were 

higher than the 
H CO2 2
S  by gas clathrate hydrate formation without additive guest molecules (T = 

273 K, Pinitial = 3.8 MPa, nH2/nCO2 = 1.6).
24

 

  

Figure 5-8.  H2 selectivity for CO2 as a function of time for semi-clathrate hydrate particles (dp = 

128 m, T = 269 K, P
initial

 (H2/CO2 = 3.4) = 4.5 MPa).  (a): long time-scale and (b): short 

time-scale.  Lines show the simulation results with the multiple adsorption resistance (MAR) 

model.  Symbols show tetra-n-butyl ammonium (TBA) salt and structure of semi-clathrate hydrate.  

Symbols: red up-pointing triangle (dashed-dotted line), 2.6 mol% TBAB (HS-I); blue circle (dotted 

line), 3.7 mol% TBAB (TS-I); green square (continuous line), 3.2 mol% TBAC (TS-I); olive 

diamond (dashed line), 3.0 mol% TBAF (TS-I); brown down-pointing triangle (dashed-two dotted 

line), 3.3 mol% TBAF (SCS-I).  Langmuir constants and fitting parameters of MAR model for 

each gas and semi-clathrate hydrate are given in Tables 5-4 and 5-5. 

 The rate of increase in the 
H CO2 2
S  at the early stages of adsorption were in order of (largest to 

smallest) 3.0 mol% TBAF, 2.6 mol%, 3.3 mol% TBAF, 3.2 mol% TBAC and 3.7 mol% TBAB 

semi-clathrate hydrate according to the simulation.  In the experimental results (Table 5-6), the 

H2/CO2 selectivities 
H CO2 2
S  for the semi-clathrate hydrates at 4 h were in order of (largest to 

smallest) 3.0 mol% TBAF (run 19), 2.6 mol% TBAB (run 16), 3.2 mol% TBAC semi-clathrate 
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hydrate (run 18), 3.3 mol% TBAF (run 20) and 3.7 mol% TBAB (run 17).  The 
H CO2 2
S  of the 

simulation results were close to those of the experimental results as shown in Figure 5-8 and Table 

5-6.  Therefore, 3.0 mol% TBAF semi-clathrate hydrate is considered to be applicable as 

separation media for H2/CO2 systems in pressure swing adsorption (PSA) processes.  Because the 

cycle time of the gas adsorption and desorption is generally on the order of minutes, high selectivity 

at short contact times is required.  In this section, the structure of semi-clathrate hydrates as 

separation media is unified as much as possible.  However, the gas adsorption rate increases with 

increasing area of crystal grain boundaries so that by mixing other crystals, such as TBAC 

semi-clathrate hydrates it may be possible to create more favorable systems (Figure 5-7).  The gas 

selectivity and adsorption rate of semi-clathrate hydrates can possibly be improved by combining 

semi-clathrate hydrates with additive salts and considering the structures. 

Table 5-6.  H2/CO2 selectivity semi-clathrate hydrates obtained from experiment and by simulation 

with the multiple adsorption resistance (MAR) model. 

Run 
TBA salt 

semi-clathrate 
Time [h] 

H2/CO2 selectivity, SH2/CO2 [-] 

Experiment Simulation 

16 2.6 mol% TBAB 4 28.0 26.8 

  400  50.4 

17 3.7 mol% TBAB 4 12.2 10.4 

  400  32.2 

18 3.2 mol% TBAC 4 18.8 15.9 

  400  55.5 

19 3.0 mol% TBAF 4 32.1 31.4 

  400  48.0 

20 3.3 mol% TBAF 4 15.1 18.4 

  400  46.8 

TBAB : tetra-n-butyl ammonium bromide, TBAC: tetra-n-butyl ammonium chloride, TBAF: 

tetra-n-butyl ammonium fluoride. 
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5.3.7  Simulation of H2/CO2 selectivity with hydrate membrane 

 Theoretical selectivity with polymeric membranes to separate a gas mixture can be calculated 

from the solubility and diffusivity of the species.
25

  The theoretical selectivity 
2 2

H CO
 with hydrate 

membranes is calculated from Eq. (5-22) as: 

 
22 2

2 2

2 2 2

H ,SH H

H CO

CO CO ,S CO

Cp D

p C D
              (5-22) 

where p is the species permeability.  However, the apparent diffusion coefficient depends on 

occupancy,
23

 which means that the diffusion coefficient depends on the partial pressure of the gas, 

Pgas.  Thus, the gas permeability is calculated from Eqs. (5-23) – (5-26) with Langmuir constants 

and apparent diffusion coefficients as: 

 

 
m gas

gas

m gas, inlet gas, outlet

d F
p

A P P



           (5-23) 

 
 gas, m, inlet gas, m, outlet

gas e, gas m

m

0

0

C CRT
F D A

P d


          (5-24) 

  e,gas S,gas a,gas
1D D              (5-25) 

 

2

gas,S gas, inlet
S

gas, m, inlet

A unit cell H ,S H , inlet CO ,S CO , inlet2 2 2
1

C fN
C

N V C f C f

 
 

  
 

      (5-26) 

where Am, dm, F, Cgas,m,inlet, S and Cgas,S are the membrane area, membrane thickness, gas permeate 

flow rate, supply side gas concentration, S-cage occupancy and Langmuir constant for the gas in the 

S-cage, respectively.  The effective diffusion coefficient, 
e, gas
D  in Eq.(5-25) is related to the 

apparent diffusion coefficient, 
a, gas
D  by the occupancy in the S-cage.   Figure 5-9 shows the 
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pressure dependence of H2 and CO2 permeability. 

 

  

Figure 5-9.  Effect of pressure on gas permeability for semi-clathrate hydrate membrane at 269 K 

and initial H2/CO2 = 3.4.  (a): H2 permeability and (b) CO2 permeability.  Lines show 

tetra-n-butyl ammonium (TBA) salt and crystal structure of semi-clathrate hydrate.  Lines: red 

dashed-dotted line, 2.6 mol% TBAB (HS-I); blue dotted line, 3.7 mol% TBAB (TS-I); green 

continuous line, 3.2 mol% TBAC (TS-I); olive dashed line, 3.0 mol% TBAF (TS-I); brown 

dashed-two dotted line, 3.3 mol% TBAF (SCS-I). 

 

As the total pressure increases, the H2 and CO2 permeability decreases for all semi-clathrate 

hydrates.  As the gas partial pressure increases, the adsorption amount of the gas increases.  

However, as the occupancy of the gas increases, the effective diffusion coefficient decreases as 

Eq.(5-25).  Therefore, this trend is due to the decrease in the ratio of gas diffusion rate being larger 

than the increase in the ratio of the gas adsorption amount.  Figure 5-10 shows the pressure 

dependence of H2/CO2 selectivity versus H2 permeability.  As the H2 permeability increases, 

H2/CO2 selectivity decreases for all semi-clathrate hydrates.  This reason for this is thought to be 

due to the decreasing ratio of CO2 permeability for partial pressures larger than that of H2 
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permeability (Figure 5-9) because the CO2 occupancy of the S-cage is larger than the H2 occupancy 

of the S-cage.  This trend is different from the separation characteristics of materials such as 

polymeric membranes.
25

  For semi-clathrate hydrate membranes, as pressure increases, H2/CO2 

selectivity increases.  The SCS-I structure TBAF semi-clathrate hydrate seems to be most 

favorable for use as a hydrate membrane among the semi-clathrate hydrates since it can be used at 

conditions close to ambient temperature.  Therefore, it is probable that gas selectivity of 

semi-clathrate hydrates can be made high for QAS that lower the permeability of large size 

molecules or by control of the clathrate structure.  Based on the above results, the semi-clathrate 

hydrates examined in this work are favorable for applications in membrane separation due to their 

high selectivity and mild operating conditions.  Further research is needed on membrane support 

materials for semi-clathrate hydrates and on conditions for semi-clathrate hydrate thin film 

formation. 

 

Figure 5-10.  Relationship between H2 permeability and H2/CO2 selectivity at 269 K and initial 

H2/CO2 = 3.4.  Lines show tetra-n-butyl ammonium (TBA) salt and structure of semi-clathrate 

hydrate.  Lines: red, 2.6 mol% TBAB (HS-I); blue, 3.7 mol% TBAB (TS-I); green, 3.2 mol% 

TBAC (TS-I); olive, 3.0 mol% TBAF (TS-I); brown, 3.3 mol% TBAF (SCS-I). 
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5.4  Conclusions 

 In this chapter, the formation tetra-n-butyl ammonium (TBA) salt semi-clathrate hydrate 

particles were analyzed by differential scanning calorimetry, Raman spectroscopy and by 

consideration of the equilibrium H2 storage amounts for understanding of the role of quaternary 

ammonium salt (QAS) in semi-clathrate hydrate.  The TBA salts used were tetra-n-butyl 

ammonium bromide (TBAB), tetra-n-butyl ammonium chloride (TBAC) and tetra-n-butyl 

ammonium fluoride (TBAF).  TBAC semi-clathrate hydrate formed TS-I structure regardless of 

TBAC concentration, and 3.2 mol% TBAC semi-clathrate hydrate formed without forming ice.  

TBAF semi-clathrate hydrate formed TS-I structure for 3.0 mol% TBAF and SCS-I structure for 3.3 

mol% TBAF at small degrees of supercooling. 

 The H2 or CO2 adsorption rates with the semi-clathrate hydrate particles were measured with a 

pressure decay method.  The time for half of the equilibrium consumption, half
t , strongly depended 

on the anion of TBA salt for H2 systems, whereas H2 adsorption was not a strong function of the 

semi-clathrate hydrate structure.  The half
t  in CO2 systems depended not only on the anion of the 

TBA salt, but also on the semi-clathrate hydrate structure, and this is attributed to the size of the 

CO2 molecule.  The equilibrium H2 occupancy in the S-cage 
2S, H , eq

  strongly depended on the 

semi-clathrate hydrate structure rather than on the anion of the TBA salt, which might also be 

affected by some S-cages being occupied by H2O molecules.  The equilibrium CO2 occupancy in 

S-cage 
2S, CO , eq

  depended not only on the semi-clathrate structure but also on the TBA salt for 

TS-I structure.  The size of S-cage of TBAC semi-clathrate hydrate is optimum for CO2 molecule 

because the 
2S, CO , eq

  for TBAC semi-clathrate hydrate was highest among TS-I structures. 
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 From the analysis results made with the multiple adsorption resistance (MAR) model in this 

chapter, it is implied that the gas in the S-cage is rapidly adsorbed from the vapor phase, since the 

adsorption rate constants 
a
K  of H2 were larger than those of CO2 for the same semi-clathrate 

hydrate systems.  On the other hand, the gas in the S-cage transfers with difficulty in the more 

stable hydrate phase as can be concluded from the simulation results.  Namely, the inclusion rate 

constants 
c
k  and the apparent diffusion coefficients 

a
D  for H2 systems were larger than those for 

CO2 systems.  The adsorption and diffusion rate for both H2 and CO2 systems were proportional to 

crystal grain boundary and the number density of S-cages.  The reason for this is that gas 

molecules could probably penetrate into the inside of the particles and increase the diffusion 

pathway.  The 
c
k  increased for both H2 and CO2 systems with increasing the number density of 

S-cages.  In contrast, the 
a
D  for both H2 and CO2 systems decreased with increasing the number 

density of S-cages.  Therefore, the gas adsorption rate became faster as the number density of 

sorbable sites decreased, and the gas diffusion rate became faster as the number density of sorbable 

site increased.  In addition, the 
a
D  for CO2 systems decreased with increasing the number density 

of the anions.  This means that the diffusion of CO2 molecules is inhibited by anion as host 

molecule. 

 The H2/CO2 selectivities 
2 2

H CO
S  for TBA salt semi-clathrate hydrates were obtained from 

MAR model simulations with Langmuir constants obtained from experiments.  In the simulation 

results, the 
2 2

H CO
S  for 3.2 mol% TBAC semi-clathrate hydrate was highest among TBA salt 

semi-clathrate hydrates.  On the other hand, the 
2 2

H CO
S  for 3.0 mol% TBAF semi-clathrate 

hydrate in the early stages of gas adsorption was the highest among TBA salt semi-clathrate 
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hydrates.  Therefore 3.0 mol% TBAF semi-clathrate hydrate is considered to be appropriate as 

separation media for H2/CO2 systems in pressure swing adsorption processes among the 

semi-clathrate hydrate systems studied in this paper.  The H2/CO2 selectivities for semi-clathrate 

hydrates can probably be improved by using additive salts to control the structure. 

 The H2/CO2 selectivities 
2 2

H CO
  for TBA salt semi-clathrate hydrates were calculated from 

Langmuir constants and apparent diffusion coefficients.  The 
2 2

H CO
  for 3.3 mol% TBAF 

semi-clathrate hydrate was highest among TBA salt semi-clathrate hydrates, which was more than 

100.  Thus, the applicability of semi-clathrate hydrates as membrane separation media is 

confirmed.  For semi-clathrate hydrates, the 
2 2

H CO
  increased with decreasing gas permeability.  

Therefore, the characteristics required for semi-clathrate hydrate membranes are different from 

semi-clathrate hydrate particles that might be used for a pressure swing adsorption process.  In 

either separation process, however, the adsorption and diffusion characteristics of the larger 

molecules can be controlled by choice of the QAS and the use of conditions to form appropriate 

semi-clathrate hydrate structures. 

 

 

5.5  Nomenclature 

 

GC
A  = peak area of gas chromatography (GC) [-] 

GC

*A  = peak area given by GC analysis for the pure gas [-] 

m
A  = membrane area [m

2
] 

AD  = average deviation [mol] 

ARD  = average relative deviation [%] 

, ,a b c  = lattice constants [Å] 
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gas
C  = gas concentration [mol/m

3
] 

S
C  = Langmuir constant of S-cage [Pa

-1
] 

*

S
C  = actual Langmuir constant of S-cage [Pa

-1
] 

a
D  = apparent diffusion coefficient [m

2
/s] 

e
D  = effective diffusion coefficient [m

2
/s] 

m
d  = membrane thickness [m] 

F  = gas permeate flow rate [m
3
(STP)/s] 

f  = fugacity [Pa] 

a
K  = adsorption rate constant in delocalized state [s

-1
] 

c
k  = inclusion rate constant on interface of H2 non-included solid core [m/s] 

L  = thickness of delocalized gas-adsorbed outer shell [m] 

M  = molecular weight [g/mol] 

N  =  number [-] 

A
N  = Avogadro constant [mol

-1
] 

2
H O

*N  = theoretical number of water molecules per unit cell [-] 

2
ideal,H O
N  = number of water molecules per unit cell of structure non-replaced H2O [-] 

2
Occ,H O
N  = number of occupied water molecules in S-cage per unit cell [-] 

n  = mole number [mol] 

p  = permeability [m
3
(STP)m/(m

2
·s·Pa)] ×1.33×10

17
 [Barrer] 

r  = radius [m] 

H CO2 2
S  = equilibrium H2/CO2 selectivity for semi-clathrate hydrate particles [-] 

t  = time [h] 

V  = volume [m
3
] 

X  = storage amount with respect to the hydrates [mmol-gas/mol-H2O+TBA salt] 

y  = composition in vapor phase [-] 
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Greek letters 

2 2
H CO

  = H2/CO2 selectivity for semi-clathrate hydrate membrane [-] 

T  = degree of supercooling [K] 

  = porosity [-] 

S
  = occupancy in S-cage [-] 

*

S
  = occupancy in S-cage non-occupied with H2O [-] 

  = density [g/m
3
] 

 

Subscripts 

B  = Boundary 

bulk  = bulk phase 

CO2 = carbon dioxide 

c  = interface of non-included solid core 

calc  = calculation 

cell  = hydrate formation cell 

core  = interface between delocalized gas-adsorbed outer shell and localized 

  gas-adsorbed inner core 

data  = data point 

eq  = equilibrium state 

exp  = experiment 

Gas  = gas molecule 

GCC  = gas capture cavity 

gb = grain boundary 

H
2  = hydrogen 

H O
2  = water 

Hyd  = hydrate phase 

half  = half of the equilibrium occupancy for gas molecule 

inlet = supply side 

load  = loading 

m = membrane 

other = other guest molecule 
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outlet = permeation side 

p  = particle 

R, initial  = before loading of reservoir tank 

R, final  = after loading of reservoir tank 

S = S-cage 

TBAB = tetra-n-butyl ammonium bromide 

TBAC = tetra-n-butyl ammonium chloride 

TBAF = tetra-n-butyl ammonium fluoride 

TBA salt = tetra-n-butyl ammonium salt 

Theor Hyd  = theoretical hydrate 

vapor = vapor phase 

leak = leak of gas molecule 
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Chapter 6 

 

Conclusions and future work 

 

 

 

6.1  Summary and conclusions 

 In this thesis, the phase equilibria, the equilibrium adsorption and the adsorption rates of H2 

and CO2 + tetra-n-butyl ammonium (TBA) salts semi-clathrate hydrate were measured.  The TBA 

salts studied were TBA bromide (TBAB), TBA chloride (TBAC) and TBA fluoride (TBAF).  A 

phase equilibrium model was modified to describe the phase equilibria of H2 and CO2 + TBA salt + 

water systems.  A gas adsorption kinetics model was developed to describe the H2 and CO2 

adsorption behavior in guest additive clathrate hydrates or TBA salt semi-clathrate hydrates.  The 

H2/CO2 selectivity was estimated with experimentally determined Langmuir constants and fitted 

diffusion coefficients for semi-clathrate hydrate particles or membranes. 
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Phase equilibria of H2 and CO2 + TBA salt semi-clathrate hydrate (Chapter 3) 

 The phase quilibria of H2 and CO2 + TBA salt + water systems were measured.  For CO2 + 

TBAF semi-clathrate hydrates, dissociation temperatures vary according to TBAF concentration, in 

which 3.0 mol% TBAF semi-clathate hydrate was found to be more stable than 3.3 mol% 

semi-clathrate hydrate above 1 MPa.  This finding is evidence that the crystal structure of 3.0 

mol% TBAF semi-clathrate hydrate is different from that of 3.0 mol% TBAF semi-clathrate hydrate.  

A phase equilibrium prediction model was developed for semi-clathrate hydrates by using 

parameters for the QL-cage that combines 5
12

6
2
 cage with 5

12
6

3
 cage, and by estimating 

L

W
  

from the molar volume of water for TBAB semi-clathrate hydrate.  The model could describe the 

phase equilibria of binary mixtures H2 + TBA salt or CO2 + TBA salt semi-clathrate hydrate + water 

systems quantitatively, but could only describe ternary mixture H2 + CO2 + TBA salt semi-clathrate 

hydrate equilibria qualitatively.  The inclusion behavior of mixture gas is most likely different 

from that of pure gases and it depends on the TBA salt.  Although the TBAF semi-clathrate 

hydrate can be readily applied because its high dissociation temperature (ca. 301 K), its selectivity 

for 3.0 mol% TBAF is probably low at temperatures close to its dissociation temperature. 

 

Development of H2 adsorption kinetic model (Chapter 4) 

 The multiple adsorption resistance (MAR) model model was constructed by assuming three 

boundaries of differential H2 adsorption system.  The three resistances in the MAR model for H2 

adsorption are the clathrate hydrate framework, the guest included cage and the H2 adsorbed shell.  

In boundary 1 and 2, H2 molecules adsorb in a delocalized state near the surface of the clathrate 
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hydrate particles due to existence of pores.  Especially, H2 molecules are included in the gas 

capture cage (S-cage) near pores in boundary 1, H2 molecules are included in S-cages distant from 

the pores in boundary 2.  In boundary 3, the shrinking of non-adsorbed core is assumed to be 

rate-limiting, so that the H2 adsorption rate is described by H2 diffusion in the H2 adsorbed layer and 

the H2 adsorption process near the interfacial boundary of the non-included solid core.  The H2 

concentrations in boundary 1 and 2 are assumed to be the same as the concentration in bulk phase 

due to H2 delocalization adsorption.  The H2 concentration at the interface of boundary 3 is 

calculated from the number of S-cages and the equilibrium H2 occupancy due to the 

quasi-equilibrium adsorbed conditions.  The MRA model is able to describe the H2 adsorption 

behavior in guest additive clathrate hydrate particles well.  Based on the activation energies of 

diffusion, the H2 diffusion pathway in hydrate particles depends on the clathrate hydrate formation 

process and the interactions between guest additive molecule and the host molecule. 

 

Gas adsorption and diffusional characteristics with semi-clathrate hydrates (Chapter 5) 

 The equilibrium adsorption amounts of H2 depend on the crystal structure of the semi-clathrate 

hydrate.  On the other hand, the equilibrium adsorption amounts of CO2 depend not only on the 

anion of the TBA salt, but also on the semi-clathrate hydrate structure.  The adsorption and 

diffusion characteristic of large molecules such as CO2 probably depend on the anion of TBA salt 

much more so than small molecules such as H2. 

 The H2/CO2 selectivity 
H CO2 2
S for 3.2 mol% TBAC semi-clathrate hydrate was highest among 

the TBA salt semi-clathrate hydrates.  However, the 
H CO2 2
S  for 3.0 mol% TBAF semi-clathrate 
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hydrate in the early stages of gas adsorption was the highest among TBA salt semi-clathrate 

hydrates.  Therefore, 3.0 mol% TBAF semi-clathrate hydrate is considered to be appropriate as 

separation media for H2/CO2 systems that use pressure swing adsorption (PSA) processes for gas 

separations.  On the other hand, the H2/CO2 selectivity 
H CO2 2

  for 3.3 mol% TBAF 

semi-clathrate hydrate was highest among the TBA salt semi-clathrate hydrates exauined and had a 

value greater than 100.  Thus, the applicability of semi-clathrate hydrates as possible membrane 

separation media is confirmed through results in this thesis. 

 

6.2  Future work 

 There are a number of topics that are listed below for future work: 

1.  In this thesis, it was determined that semi-clathrate hydrates exhibit selectivity for different 

gases.  The detailed mechanism on why this selectivity occurs is presently not known.  Further 

experiments on mixed gases, H2 and CO2 are needed to understand not only the adsorption kinetics 

but also the equilibrium of mixed gases with semi-clathrate hydrates. 

 

2.  In this thesis, it was determined that the structure of the semi-clathrate hydrate affects both the 

adsorption kinetics and equilibrium, especially for CO2.  It is likely that other structures can be 

manipulated to tailor the structure to accomodate more of a particular gas or to improve the kinetics 

of adsorption.  Therefore, new studies are needed that explore structural changes of the 

semi-clathrate hydrates possibly through the use of mixed guest additives or through the use of 

particle formation techniques. 
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3.  In this thesis, the practical application of H2 and CO2 gas separation was studied.  It would be 

interesting and beneficial to construct small-scale membrane or pressure-swing adsorption 

apparatus to check aspects of cycling the semi-clathrate hydrates including heat transfer.  The 

study of these processes would also help to develop the necessary thermodynamic models required 

in engineering. 

 

4.  The thermodynamic model developed in this thesis was effective for binary gas + 

semi-clathrate systems, however, it was only qualitative for gas mixtures.  One assumption in the 

model is that the bulk gas concentration is equal to the delocalized concentration on the surface of 

the hydrate particle.  This assumption needs to be studied in detail with short time-scale 

experiments or theoretical simulations to develop a mechanism for gas mixtures. 

 

5.  The gas mixture studied in this thesis was CO2 + H2.  However, the study of other gas 

mixtures needs to be made.  For example, semi-clathrate hydrates can possibly be used in natural 

gas processing to remove H2S and other gases.  There are also many other gas mixtures for which 

semi-clathrate hydrates could be used advantageously. 
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Appendix A  Calibration of temperature sensor 

Three platinum resistance temperature sensors (Pt 100 W, 3.17 mm diameter (1/8 in), NR-350, 

four-wire type, Netsushin) that were used in Chapters 3 – 5 were calibrated against a standard 

temperature probe (GE Kaye IRTD-400, stated uncertainty ± 25 mK).  The temperature sensor in 

the reservoir tank was calibrated only at the ice point.  Reported temperatures are corrected with 

Eq. (A-1): 

calc raw
T aT b               (A-1) 

 

Table A-1.  Parameters of Eq. (A-1) and uncertainty of each platinum resistance temperature 

sensor.  The uncertainty is calculated as 25 mK plus two times the standard deviation. 

Apparatus a b Uncertainty [mK] 

Phase equilibria cell 0.99678 0.16871 ±44 

Hydrate formation cell 0.99885 0.04954 ±29 

Reservoir tank 1 -0.4652 - 

                                   

 

Figure A-1. Deviation of calculation values for each platinum resistance temperature sensor. 

Symbols: blue square, phase equilibrium cell; red circles, hydrate formation cell.  
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Appendix B  Calibration of pressure gauge 

A sealed gauge pressure transmitter (20 MPa F.S., PTX621-0, GE Sensing Japan) that were 

used in Chapter 3 and two sealed gauge pressure transducers (hydrate formation cell: 14 MPa F.S. 

PMP4015, GE sensing Japan, reservoir tank: 14 MPa F.S. PMP5013, GE sensing Japan) that were 

used in Chapters 4 and 5 were calibrated against a dead weight tester (Druck Pressurements 

M2200-5, stated uncertainty ±0.015%, Figure A-2). 

 

 

Figure A-2. Schematic diagram of the dead weight tester. 

 

Calibration curve of the sealed gauge pressure transmitter: 

calc DC
P dA h               (A-2) 

where ADC is current in units of mA, and d and h are given in Table A-2. 

Calibration curve of the sealed gauge pressure transducers: 

calc a DC b DC c

2P fV fV f               (A-3) 

a
f aT b                (A-4) 

  
b
f cT d                (A-5) 

c

2f eT gT h                (A-6) 

where VDC is the direct-current voltage and T is the surrounding temperature of pressure gauge.  

P r e s s u r e  p u m p

P r e s s u r e  m e t e rP i s t o n

O i l  v a l v e

C y l i n d e r PO i l  t a n k
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Parameters in Eqs. (A-4) – (A-6) are given in Table A-2. 

 

 

Table A-2.  Calibration curve parameters and uncertainty of each pressure gauge.  The 

uncertainty is calculated as two times the standard deviation. 

Apparatus a×10
-6

 b×10
-3

 c×10
-4

 d e×10
-6

 g ×10
-3

 h 
Uncertainty 

 [kPa] 

Equilibria cell - - - 1249 - - -4.881 ±4.5 

Formation cell 4.796 -2.590 -2.348 2.874 -4.238 2.537 -0.293 ±1.7 

Reservoir tank - - 1.247 2.762 - -2.032 0.682 ±2.3 

                                                        

 

Figure A-3.  Deviation of calculation values for each pressure gauge taken with the high-pressure 

range dead weight piston.  Symbols: blue square, phase equilibrium cell at room temperature; red 

circles, hydrate formation cell at 273 K; green triangles, reservoir tank at 273 K.  Green symbols 

(Pcalc – Pstd < -3) at low pressure P < 3 MPa are data based on the low-pressure range dead weight 

piston. 
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Appendix C  Peng-Robinson equation of state (PR-EoS) 

PR-EoS is described by Eqs. (A-7) – (A-11): 

   
RT a

P
b b b b   

 
   

           (A-7) 

 
 
 
2 1

ln 1 ln ln
2 2 2 1

Z Bf A
Z Z B

P B Z B

     
       

    
 

      (A-8) 

     3 2 2 2 31 3 2 0Z B Z A B B Z AB B B               (A-9) 

2 2

aP
A
RT

                (A-10) 

bP
B
RT

                 (A-11) 

where R is the universal gas constant, P is the pressure, T is the temperature, v is the molar volume, 

f is the fugacity and Z is the compressibility factor.  The a is a function of T, a(T) and the b is a 

constant as described by Eqs. (A-12) – (A-15): 

      ,rc TTaTa               (A-12) 

 
c

2

c

2

c 45724.0
P

TR
Ta               (A-13) 

     2

r

2

r 126992.054226.137464.01, TT         (A-14) 

 
c

c
c 07780.0

P

RT
Tb               (A-15) 

  

where Tc is the critical temperature, Tr = T/Tc, Pc is critical pressure,  is acentric factor.  Table 

A-3 summarizes the critical properties of H2 and CO2. 
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Table A-3 .  Critical properties of each molecule.
1
 

Molecule Mw [g/mol] Tc [K] Pc [MPa] [-] 

H2 2.016 32.98 1.293 -0.2170 

CO2 44.01 304.20 7.383  0.2240  

 

Fugacity of i component in the mixture,
kf̂ , is described by Eqs. (A-16) – (A-20): 

   
 
  








































mix

mix

mix

*

mix

*

mix

mix
mix

mix

*

12

12
ln

22
ln1

ˆ
ln

BZ

BZ

b

b

a

a

B

A
BZZ

b

b

Px

f kkk

k

k  (A-16) 

 
22

mix
mix

TR

Pa
A                 (A-17) 

 
RT

Pb
B mix

mix                 (A-18) 

 
i

ikik axa 2
*

              (A-19) 

 
i

ikik bbxb mix

*
2              (A-20) 

where x is the composition.  The vdW2 mixing rule is described by Eqs. (A-21) – (A-24): 


i j

ijji axxamix
             (A-21) 

  jjiiijij aaka  1               (A-22) 


i j

ijji bxxbmix
              (A-23) 

 
2

1
jjii

ijij

bb
lb


              (A-24) 

The interaction parameter, kij, is considered to be function of temperature as shown in Eq. (A-25)

and lij is considered to be independent of temperature. 

c
*

ij T
k k k T                (A-25) 
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 The correlations in this thesis used H2 + CO2 vapor-liquid equilibria from the literature.
2-5

  The 

experimental conditions were 220 – 290 K and 1 – 20 MPa.  The fitting parameters were kc, kT and 

lij.  The ARD described by Eq. (A-26): 

ARD %
exp calc

exp

1
100

N

i

x x

N x


             (A-26) 

Table A-4 summarizes the interaction parameters and ARD, and Figure A-4 shows correlation 

results for H2-CO2 vapor-liquid equilibria. 

Table A-4.  Interaction parameters and ARD of correlation results for H2-CO2 vapor-liquid 

equilibria. 

kc [-] kT [×10
3
 K

-1
] lij [-] ARD % 

-0.5704 2.657 -0.0417 7.63 

 

 

Figure A-4.  Correlation results for H2-CO2 vapor-liquid equilibria.  The continuous lines and 

dash lines show correlation results for vapor phase (yH2) and liquid phase (xH2), respectively.  The 

filled symbols and unfilled symbols show experimental results for vapor phase (yH2) and liquid 

phase (xH2), respectively.  Colors show temperature: red, 290 K; orange, 280 K; olive, 273 K; green, 

260 K; blue green, 250 K; purple, 245 K; brown, 235 K; blue, 225 K; navy blue, 220 K.  
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Appendix D  Calibration of tank and cell volumes 

The reservoir tank and the hydrate formation cell were volume calibrated with nitrogen and 

water (Chapters 4 and 5). 

 Figure A-5 shows experimental set up for inner volume calibration of the reservoir tank. 

 

Figure A-5.  Experimental apparatus of inner volume calibration of reservoir tank. 

The inner volume between valve 2 (V2, Figure A-5) and valve 4 (V4, Figure A-5) was calibrated 

with pressurized water supplied by a high performance liquid chromatography (HPLC) pump 

(PU-1580, JASCO Co.).  The inner volume between V2 and the reservoir tank was calibrated by 

subtracted the weight of N2 between V2 and V4 from that between V4 and the reservoir tank.  

Tables A-5 and A-6 summarize volume calibration results.  

Glycol jacket

(hard vinyl chloride )

Reservoir tank

Insulation

(AEROFLEX®)

V2

Sampling 

bomb

4-wire Pt 

thermometer

V4

V3

P



Appendices 
 

- 191 - 

 

Table A-5.  Calibration results for volume between V2 and V4 (Figure A-5) 

Run T [K] P [MPa] WH2O[g] H2O [g/cm
3
] VV2-V4 [cm

3
] Deviation [cm

3
] 

1 293.7 12.7 1.721 1.0038 1.715 -0.021 

2 293.5 14.3 1.717 1.0045 1.709 -0.026 

3 294.2 12.4 1.767 1.0035 1.761 0.025 

4 294.7 13.9 1.757 1.0041 1.750 0.015 

5 294.8 16.3 1.751 1.0051 1.742 0.007 

           Average: 1.735 cm
3
, uncertainty: 0.022 cm

3
. 

Table A-6.  Calibration results for volume between V2 and reservoir tank (Figure A-5) 

Run T [K] P [MPa] WN2 [g] N2 [×10
-2 

g/cm
3
] VV2-tank [cm

3
] Deviation [cm

3
] 

1 265.00 2.412 9.453 3.1037 304.579 -0.093 

2 264.99 5.175 20.477 6.7186 304.778 0.106 

3 264.98 1.208 4.708 1.5458 304.578 -0.093 

4 264.99 2.586 10.138 3.3292 304.508 -0.163 

5 264.88 5.554 22.007 7.2207 304.772 0.100 

6 269.12 2.344 9.029 2.9647 304.562 -0.109 

7 269.11 5.028 19.534 6.4093 304.773 0.101 

8 269.15 1.102 4.224 1.3863 304.698 0.026 

9 269.15 2.343 9.028 2.9631 304.691 0.019 

10 269.02 4.976 19.347 6.3445 304.936 0.265 

11 273.11 4.814 18.365 6.3011 304.512 -0.160 

         Average: 304.672 cm
3
, uncertainty: 0.136 cm

3
. 

The reservoir tank was volume calibrated with nitrogen over a range of temperatures (265 – 273 K) 

and pressures (1.1 – 5.6 MPa) and was found to have an average volume of 304.67 cm
3
 from 11 

independent trials.  Total uncertainty was estimated as 0.022 cm
3
 (Table A-5) + 0.136 cm

3
 (Table 

A-6) for a total uncertainty of 0.158 cm
3
. 
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 Figure A-6 shows experimental apparatus used for volume calibration of the hydrate formation 

cell. 

 

Figure A-6.  Experimental apparatus for volume calibration of hydrate formation cell. 

The inner volume between valve 3 (V3, Figure A-6) and valve 4 (V4, Figure A-6) was calibrated 

with pressurized water by HPLC pump (PU-1580, JASCO Co.).  The inner volume between V3 

and the hydrate formation cell was calibrated by subtracting the weight of N2 between V3 and V4 

from that between V4 and the hydrate formation cell.  Tables A-7 and A-8 summarize volume 

calibration results for the hydrate formation cell. 

Table A-7.  Calibration results for volume between V2 and V4 (Figure A-5) 

Run T [K] P [MPa] WH2O[g] H2O [g/cm
3
] VV3-V4 [cm

3
] Deviation [cm

3
] 

1 294.2 17.3 3.597 1.0057 3.577 0.036 

2 293.6 10.6 3.598 1.0029 3.588 0.047 

3 293.7 9.9 3.545 1.0025 3.536 -0.004 

4 293.7 12.9 3.526 1.0039 3.512 -0.028 

5 295.4 9.4 3.497 1.0019 3.490 -0.050 

6 295.3 15.7 3.541 1.0047 3.524 -0.016 

          Average: 3.541 cm
3
, uncertainty:  0.041 cm

3
.
  

 

Sampling

bomb

Hydrate 

formation cell

V4 V3

P

4-wire Pt thermometer
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Table A-8.  Calibration results for volume between V3 and hydrate formation cell (Figure A-6) 

Run T [K] P [MPa] WN2 [g] N2 [×10
-2 

g/cm
3
] VV3-cell [cm

3
] Deviation [cm

3
] 

1 269.19 8.270 2.784 10.568 26.342 0.018 

2 269.17 6.166 2.062 7.872 26.196 -0.128 

3 269.18 2.456 0.815 3.107 26.227 -0.097 

4 269.18 4.656 1.563 5.928 26.367 0.043 

5 273.21 8.872 2.936 11.126 26.389 0.065 

6 273.20 3.848 1.271 4.809 26.421 0.098 

         Average: 26.324 cm
3
, uncertainty: 0.091 cm

3
. 

The reservoir tank was volume calibrated with nitrogen over a range of temperatures (269 – 273 K) 

and pressures (2.5 – 8.9 MPa) and was found to have an average volume of 26.324 cm
3
 from 6 

independent trials.  Total uncertainty was estimated as 0.041 cm
3
 (Table A-7) + 0.091 cm

3
 (Table 

A-8) for a total uncertainty of 0.133 cm
3
. 

 

  



Appendices 
 

- 194 - 

 

Appendix E  Virial equation of state (Virial-EoS) 

Virial-EoS is described by Eqs. (A-27) – (A-30): 

2 3

RT RTB RTC
P

  
               (A-27) 

2

2

2 3
ln ln

2

f B C
Z

P Z Z

  
   

 
           (A-28) 

3 2 2 0Z Z BZ C                 (A-29) 

P

RT
                  (A-30) 

where R is the universal gas constant, P is the pressure, T is the temperature, v is the molar volume, 

f is the fugacity and Z is the compressibility factor.  The B and C are the second and third virial 

coefficient, respectively, and are only a function of temperature as described by Eqs. (A-31) and 

(A-32): 

2B aT bT c                 (A-31) 

2C dT eT g                 (A-32) 

where a, b, c, d, e and g  are fitting parameters.  Virial coefficients for H2 were estimated from 

the molar volume at temperatures of 240 – 300 K and at pressures of 0.05 – 14 MPa,
6
 and those for 

CO2 were estimated from the saturated pressure at temperatures from 217 to 303 K
6
 with Deiters 

method.
7
  Table A-9 summarizes the fitting parameters determined. 

Table A-9.  Fitting parameters determined for second and third virial coefficients of H2 and CO2. 

Molecule a ×10
-10

 

[m
3
/(mol·K

2
)] 

b ×10
-7

 

[m
3
/(mol·K)] 

c ×10
-6

 

[m
3
/mol] 

d ×10
-15

 

[m
6
/(mol

2
·K

2
)] 

e ×10
-12

 

[m
6
/(mol

2
·K)] 

g ×10
-10

 

[m
6
/mol

2
] 

H2 -1.379 1.022 -3.793 1.847 -1.715 7.116 

CO2 -27.03 31.37 -815.4  -365.6 123.8 0.8041 

 



Appendices 
 

- 195 - 

 

Fugacity of i component in the mixture,
kf̂ , is described by Eqs. (A-33) – (A-36): 

* 2 *

mix2
mix mix

ˆ 2 3
ln lnZ

2
k k k

k

f B C

x P Z Z

  
   

 
 

          (A-33) 

mix mix mix mix mix

3 2 2 0Z Z B Z C               (A-34) 

*
k i ki

i

B x B                (A-35) 

*
k i j kij

i j

C x x C              (A-36) 

Mixing rules for B and C are described by Eqs. (A-37) – (A-41): 

mix i j ij
i j

B x x B              (A-37) 

mix i j k ijk
i j k

C x x x C             (A-38) 

 
1 3

ijk ij jk ik
C C C C               (A-39) 

c

T
ij

B
B B

T
                 (A-40) 

c

T
ij

C
C C

T
                 (A-41) 

The fitting parameters are BT, Bc, CT and Cc in Eqs. (A-37) – (A-41).  These parameters were 

determined by using H2 + CO2 binary equilibria data from the literature
2-5

 and the ARD described 

by Eq. (A-26).  The experimental conditions were 245 – 290 K and 2 – 26 MPa.  Figure A-7 

shows correlation results for H2-CO2 vapor-liquid equilibria
2-5

 and Table A-10 summarizes the 

second and third cross virial coefficients parameters and ARD. 
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Table A-10.  Second and third cross virial coefficients parameters and ARD of correlation results 

for H2-CO2 vapor-liquid equilibria. 

Bc [×10
-5

 m
3
/mol] BT [×10

-3
 K·m

3
/mol] Cc [×10

-9
 m

6
/mol

2
] CT [×10

-7
 K·m

6
/mol

2
] ARD % 

2.484 -7.390 -1.271 9.003 9.17 

 

 

Figure A-7.  Correlation results for H2-CO2 vapor-liquid equilibria.  The continuous lines and 

dash lines show correlation results for vapor phase (yH2) and liquid phase (xH2), respectively.  The 

filled symbols and unfilled symbol show experimental result for vapor phase (yH2) and liquid phase 

(xH2), respectively.  Colors show temperature: red, 290 K; orange, 280 K; blue green, 273 K; purple, 

270 K; brown, 260 K; blue, 250 K; navy blue, 245 K. 
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Chapter appendices 

Appendix 3-1  Thermal properties 

 The enthalpy difference between water of the empty hydrate structure and pure liquid water, 

L

W, 0
h , was estimated from differential scanning calorimeter (DSC) analysis.  The 

L

W, 0
h  was 

assumed to depend only on the crystal structure, namely hexagonal structure-I (HS-I), tetragonal 

structure-I (TS-I) and superlattice of cubic structure-I (SCS-I).  Results for tetra-n-butyl 

ammonium bromide (TBAB) semi-clathrate hydrate were used (
L dis

W,0 TBAB,structure
h h   ) because 

dehydration free energy for bromide was smallest among the anions.
8
  However, TBAB 

semi-clathrate hydrate cannot form SCS-I so that the 
dis

TBAB,SCS-I
h  was estimated from the 

relationship between the dehydration free energy of anions (Br
-
 and F

-
) and the dissociation 

enthalpy of crystal structures (TS-I and SCS-I) as described by Eq. (A3-1): 

 
dis dis

TBAB,TS-I TBAF,TS-Idis dis

TBAB,SCS-I TBAF,SCS-I Dehyd,Br Dehyd,F

Dehyd,Br Dehyd,F

h h
h h E E

E E
 

 

  
    


   (A3-1) 

where 
dis

TBA salt,structure
h  is the dissociation enthalpy of TBA salt semi-clathrate hydrate for the crystal 

structure, 
Dehyd,anion
E  is the dehydration free energy of the anion.  Table A3-1 summarizes the 

dehydration energy of anion and the dissociation enthalpy of TBA salt semi-clathrate hydrates. 

Table A3-1.  Dehydration energy of anion and dissociation enthalpy of tetra-n-butyl ammonium 

(TBA) salt semi-clathrate hydrates 

TBA 

salt 

EDehyd 

[kJ/mol]
8
 

HS-I TS-I SCS-I 

dish [J/g] [kJ/mol-H2O] 
dish [J/g] [kJ/mol-H2O] 

dish [J/g] [kJ/mol-H2O] 

TBAB 346.0 172 4.581 153 4.300 - 3.841 

TBAF 501.2 - - 238 6.241 212 5.782 
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Appendix 3-2  Volume change due to dehydration 

The molar volume difference between water in the empty hydrate structure and pure liquid 

water, 
L

W
 , for each crystal structure was estimated from liquid molar volume of water (18.02 

cm
3
/mol) and volume of the water in TBAB semi-clathrate hydrate per mole of pure water,

H

W
  

because dehydration energy for bromide was smallest for bromide, chloride and fluoride anion.
8
  

The 
L

W
  was assumed to depend on only the crystal structure, namely hexagonal structure-I 

(HS-I), tetragonal structure-I (TS-I) and superlattice of cubic structure-I (SCS-I).  However, TBAB 

semi-clathrate hydrate cannot form SCS-I.  Thus, the 
H

W,TBAB,SCS-I
  was estimated from the 

relationship between the dehydration energy of anions (Br
-
 and F

-
) and the water molar volume for 

the crystal structures (TS-I and SCS-I) as described by Eq. (A3-2): 

 
H H

W,TBAB,TS-I W,TBAF,TS-IH H

W,TBAB,SCS-I W,TBAF,SCS-I Dehyd,Br Dehyd,F

Dehyd,Br Dehyd,F

E E
E E

 
 

 

 


  


   (A3-2) 

The 
H

W
  were calculated from Eq. (3-7) and the structure parameters (Table 5-1).  Table 3-2 

summarizes the dehydration energy of anion and the 
H

W
  and 

L

W
 for TBA salt semi-clathrate 

hydrates. 

Table A3-2.  Dehydration energy of anion and volume of the water in tetra-n-butyl ammonium 

(TBA) salt semi-clathrate hydrate per mole pure water, 
H

W
  and molar volume difference between 

water in the empty hydrate structure and pure liquid water, 
L

W
  for each crystal structure. 

  HS-I TS-I SCS-I 

TBA 

salt 

EDehyd 

[kJ/mol]
8
 

H

W
  

[cm
3
/mol-H2O]  

L

W


[cm
3
/mol-H2O] 

H

W
  

[cm
3
/mol-H2O]  

L

W


[cm
3
/mol-H2O] 

H

W
  

[cm
3
/mol-H2O]  

L

W


[cm
3
/mol-H2O] 

TBAB 346.0 25.36
9
 7.34 25.40

10
 7.38 25.50 7.48 

TBAF 501.2 - - 25.25
11

 7.23 25.35
12

 7.33 
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Appendix 3-3  Osmotic coefficient 

 Osmotic coefficient, , for TBA salt is described by Eq. (A3-3): 

 
1 2 3 2 5 22 31 am bm cm dm em gm                (A3-3) 

 

where m is molality.  The fitting parameters in Eq, (A3-3) are a, b, c, d, e andg .  Figure A3-1 

shows correlation results of the osmotic coefficient for tetra-n-butyl ammonium bromide (TBAB) 

(m: 0.1 – 3 mol/kg),
13

 tetra-n-butyl ammonium chloride (TBAC) (m: 0.1 – 2.5 mol/kg)
13

 and 

tetra-n-butyl ammonium fluoride (TBAF) (m: 0.1 – 1.6 mol/kg),
14

 and Table A3-3 summarizes the 

fitting parameters and ARD.   The ARD was calculated with Eq. (A3-4): 

ARD %
exp calc

exp

1
100

N

iN

 




             (A3-4) 

 

Table A3-3.  Fitting parameters for osmotic coefficient (Eq. (A3-3)) of tetra-n-butyl ammonium 

(TBA) salt determined from literature data.
13,14

 

TBA 

salt 

a  

[(kg/mol)
1/2

] 

b 

[kg/mol] 

c 

[(kg/mol)
3/2

] 

d 

[(kg/mol)
2
] 

e  

[(kg/mol)
5/2

] 

g

[m(kg/mol)
3
] 

ARD

% 

TBAB -0.518 0.478 -0.360 0.136 -0.023 0.0015 0.91 

TBAC -0.399 0.554 -0.484 0.452 -0.212 0.0257 0.35 

TBAF -0.140 0.573 0.002 0.020 -0.001 -0.0032 0.43 
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Figure A3-1.  Correlation results for the osmotic coefficient of tetra-n-butyl ammonium (TBA) 

salts.  The lines showed correlation results and symbols show experimental data.
13,14

  Colors 

show anion: red, bromide;
13

 blue, chloride;
13

 green, fluoride.
14
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Appendix 3-4  Gas mole fraction in water 

 Gas mole fraction in water, 
gas

Lx  is described by Eq. (A3-5) using the 

Krichevsky-Kasarnovsky equation: 
15

 

gas

gas

gas

gw

V

L

exp

f
x

P
H

RT

 


 
 
 
 

            (A3-5) 

where 
gas

Vf  is the fugacity of the chemical species in the vapor phase, 
gas

  is molar volume of gas at 

infinite dilution conditions, and 
gw
H  is Henry’s constant of gas in water as described by Eq. 

(A3-6) in units of Pa
-1

: 

 
[2]

gw[1] [3] [4]

gw gw gw gw
101325 exp ln

H
H H H T H T

T

   
       
    

    (A3-6) 

Table A3-4 summarizes the 
g

   and the Henry’s constant parameters ( [1]

gw
H , [2]

gw
H , [3]

gw
H  and [4]

gw
H ). 

 

Table A3-4.  Molar volume of gas at infinite dilution condition
16

 and Henry’s constant parameters 

( [1]

gw
H , [2]

gw
H , [3]

gw
H  and [4]

gw
H ).

17
 

Molecule gas
   [cm

3
/mol] [1]

gw
H  [-] [2]

gw
H  [K] [3]

gw
H  [-] [4]

gw
H  [K

-1
] 

H2 26.7±0.2 -86.855 4178.717 10.4935 0.00632 

CO2 33.9±0.4 -159.868 8742.426 21.6712 -0.0011 
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Appendix 3-5  Densities of aqueous tetra-n-butyl ammonium salt solution 

 Density, , of aqueous solution for tetra-n-butyl ammonium chloride (TBAC) and tetra-n-butyl 

ammonium fluoride (TBAF) were measured with a Stabinger viscometer SVM3000 (Anton Paar 

GmbH).  Tables A3-5 and A3-6 summarize experimental densities of TBAC and TBAF aqueous 

solutions at 0.1 MPa, respectively. 

 

Table A3-5.  Densities of tetra-n-ammonium chloride (TBAC) aqueous solutions at 0.1 MPa. 

 TBAC concentration 

[mol%] 0.0 0.6 1.3 2.0 2.6 3.0 3.3 3.7 4.1 

[wt%] 0.0 8.6 16.9 24.3 29.4 32.3 34.2 37.4 39.8 

T [K] Density, , of TBAC aqueous solution [g/cm
3
] 

288.2 0.9994 0.9963 0.9949 0.9945 0.9938 0.9933 0.9927 0.9917 0.9907 

293.2 0.9984 0.9949 0.9930 0.9920 0.9909 0.9901 0.9895 0.9883 0.9872 

298.2 0.9972 0.9934 0.9910 0.9895 0.9880 0.9870 0.9862 0.9849 0.9838 

303.2 0.9957 0.9916 0.9888 0.9868 0.9849 0.9838 0.9830 0.9815 0.9803 

308.2 0.9941 0.9897 0.9864 0.9840 0.9819 0.9806 0.9797 0.9781 0.9768 

313.2 0.9922 0.9875 0.9839 0.9811 0.9787 0.9773 0.9764 0.9764 0.9733 

318.2 0.9901 0.9851 0.9812 0.9780 0.9754 0.9739 0.9729 0.9711 0.9697 
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Table A3-6.  Densities of tetra-n-ammonium fluoride (TBAF) aqueous solutions at 0.1 MPa. 

 TBAF concentration 

[mol%] 0.0 0.6 1.3 2.0 2.6 3.0 3.3 3.7 4.1 

[wt%] 0.0 8.1 16.0 22.9 27.9 31.1 33.1 35.8 38.2 

T [K] Density, , of TBAF aqueous solution [g/cm
3
] 

298.2 0.9971 0.9945 0.9930 0.9925 0.9918 - - - - 

303.2 0.9957 0.9927 0.9908 0.9897 0.9887 0.9870 0.9864 0.9855 0.9840 

308.2 0.9940 0.9908 0.9884 0.9869 0.9856 0.9836 0.9831 0.9820 0.9804 

313.2 0.9921 0.9887 0.9859 0.9840 0.9823 0.9803 0.9796 0.9785 0.9769 

318.2 0.9901 0.9864 0.9832 0.9810 0.9791 0.9769 0.9762 0.9749 0.9733 

323.2 0.9878 0.9839 0.9804 0.9779 0.9757 0.9735 0.9727 0.9714 0.9696 

328.2 0.9854 0.9812 0.9775 0.9747 0.9723 0.9700 0.9692 0.9678 0.9659 

 

Densities, , of TBA salts aqueous solutions were described by Eqs. (A3-7) and (A3-8):
18

 

 L L

TBA salt W TBA salt

3

1

100
i

i
i

w  


           (A3-7) 

2
i i i i
aT bT c                (A3-8) 

where 
TBA salt
w  is the mass fraction of TBA salt and 

L

W
  is the density of pure water as described 

by Eq. (A3-9): 

L

W

6 2 34.04318 10 2.13909 10 0.718781T T             (A3-9) 

The ai, bi and ci are fitting parameters.  Figure A3-2 shows correlation results of the density of 

TBA salt aqueous solutions at 303 K and 0.1 MPa, and Table A3-7 summarizes the fitting 

parameters and ARD as described by Eq. (A3-10).  Densities of TBAB aqueous solutions were 

obtained from literature data.
18

 

ARD %
exp calc

exp

1
100

N

iN

 




           (A3-10) 
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Table A3-7.  Fitting parameters for densities of tetra-n-butyl ammonium (TBA) salts. 

TBA salt TBAB TBAC TBAF 

a1 [×10
-8 

g/(K
2
·cm

3
)] -2.5534 -5.1741 3.4887 

b1 [×10
-5 

g/(K·cm
3
)] 1.2324 2.8282 -2.5404 

c1 [×10
-4 

g/(cm
3
)] -6.6735 -44.020 40.120 

a2 [×10
-10 

g/(K
2
·cm

3
)] 52.594 77.630 -3.5598 

b2 [×10
-7 

g/(K·cm
3
)] -35.638 -51.536 -1.0291 

c2 [×10
-5 

g/(cm
3
)] 60.659 86.360 7.9944 

a3 [×10
-11 

g/(K
2
·cm

3
)] -6.7218 -10.538 14.036 

b3 [×10
-8 

g/(K·cm
3
)] 4.6078 7.0959 -8.3610 

c3 [×10
-6 

g/(cm
3
)] -7.9381 -12.074 12.163 

wTBA salt [-] 0.0 – 0.5 0.0 – 0.4 0.0 – 0.4 

T [K] 293 – 328 288 – 318 298 – 328 

ARD % 0.0008 0.0060 0.0182 

 

 

Figure A3-2.  Correlation results for the osmotic coefficient for tetra-n-butyl ammonium (TBA) 

salts.  The lines show correlation results and symbols show experimental data (TBAB: literature 

data,
18

 TBAC, TBAF: this thesis).  Colors show anion: red, bromide;
18

 blue, chloride; green, 

fluoride). 
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Appendix 3-6  Electrolyte Non-Random Two-Liquid (eNRTL) model 

The activity coefficients of the tetra-n-butyl ammonium (TBA) salt 
TBA salt
  were calculated 

from the eNRTL model
19

 as described by Eqs. (A3-11) – (A3-13): 

TBAsalt mean
  


              (A3-11) 

       mean c c a a s

1
ln ln ln ln 1 0.001

i i
Mm     



  

  
    
 

    (A3-12) 

     NRTLPDH
lnlnln


 iii            (A3-13) 

where 
mean

 


 is the average activity coefficient, m is the molality and the c and a are the 

numbers of cations and anions in the solution, respectively, with the constraint that  = c + a.  In 

Eq. (A3-12), Ms is the molecular weight of the solvent.  The 
PDH
i
 

and 
NRTL
i
 

 in Eq. (A3-13) 

are the activity coefficient of i species of the Pitzer-Debye-Huckel (PDH) and the NRTL model, 

respectively.  The 
PDH
i
 

 is described by Eq. (A3-14): 

   
s

2 2 0.5 1.5
PDH * 0.5

* 0.5

2 21000
ln ln 1

1
i i

i

Z Z I I
A I

M I
 

 


 

    
  

    (A3-14) 

where A


 is Debye-Huckel parameter as described by Eq. (A3-15): 

      
   
   

2

0 0 0 0

0 0

2 2
0 0

61.44534 exp / 2.864468 exp /

183.5379 ln / 0.6820223

0.0007875695 58.95788 /

A T T T T T T

T T T T

T T T T


    

  

  

  (A3-15) 

and T0 is 273.15 K.  In Eq. (A3-15), the Zi is electric charge of i species, the *  is closest 

approach parameter (= 14.9) and the I is ionic strength as described by Eq. (A3-16): 
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
i

ii xZI
2

2

1
              (A3-16) 

where x is mole fraction of species i.  The 
NRTL
i
 

 is described by: 

 
 

 

ca,s s ca,s s,ca c s s,ca

c

a s s,ca
a ca,s c ca,s s

s,ca a a s s,ca

ca,s ca,s s,ca c

s s,ca c

2
NRTL

2

2

ln
x G Z xG

x xGx G x G x

Z x xG
G Z

xG x

 



 

  
 

  



      (A3-17) 

 
 

 

ca,s s ca,s s,ca a s s,ca

a

c s s,ca
a ca,s c ca,s s

s,ca c c s s,ca

ca,s ca,s s,ca a

s s,ca a

2
NRTL

2

2

ln
x G Z xG

x xGx G x G x

Z x xG
G Z

xG x

 



 

  
 

  



      (A3-18) 

 ca,s ca,s
expG               (A3-19) 

  s,ca s,ca
expG               (A3-20) 

where   is the nonrandomness factor (=0.2) and the 
ca,s
  and 

s,ca
  are fitting parameters.  The 

s
x , 

c
x  and 

a
x  were calculated with consideration for the gas solubility (Appendix 3-7).  Figure 

A3-3 shows correlation results of the activity coefficient of TBA salt in aqueous solutions at 298 K 

and 0.1 MPa, and Table A3-8 summarizes the eNRTL parameters and ARD as described by Eq. 

(A3-21). 

TBA salt,exp TBA salt,calc

TBA salt,exp

ARD %
1

100
N

iN

 




         (A3-21) 
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Table A3-8.  Parameters determined for the eNRTL model for aqueous tetra-n-butyl ammonium 

(TBA) salt solutions.  

TBA salt m [mol/kg-H2O] ca,s
  [-] 

s,ca
 [-] ARD % 

TBAB 0.1 – 3.0 -3.6179 8.0993 2.61 

TBAC 0.1 – 2.0 -2.1991 2.7004 4.49 

TBAF 0.1 – 1.6 -4.3541 3.5464 1.85 

      m: molality. 

 

Figure A3-3.  Correlation results for the osmotic coefficient for tetra-n-butyl ammonium (TBA) 

salts.  Lines show correlation results and symbols show experimental data.
13,14

  Colors show 

anion: red, bromide;
13

 blue, chloride;
13

 green, fluoride.
14
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Appendix 3-7  Mole fraction with consideration for gas solubility 

Assumption: tetra-n-butyl ammonium (TBA) salt is treated as a molecular species. 

Mole fraction of water in aqueous TBA salt solution is described by Eq. (A3-22) as: 

w

w

saltw salt w

w

1 1

1 0.001
1

n
x

nn n mM

n

  
 



         (A3-22) 

where m is molality and Mw is molecular weight of water.  The mole fraction of TBA salt in 

aqueous solution with consideration for gas solubility, 
L

TBA salt
x , was described by Eqs. (A3-23) – 

(A3-27) as: 

For a gas-water mixture: 

gas

gas

w gas

n
x

n n



              (A3-23) 

rearranging, 

gas gas

w gas
1

n x

n x



              (A3-24) 

For a salt-water mixture: 

salt

salt

w salt

n
x

n n



              (A3-25) 

rearranging: 

salt salt

w salt
1

n x

n x



              (A3-26) 

For gas-salt-water mixture: 

salt salt

L salt w salt

TBA salt w

gas gasw salt gas salt salt

w w salt gas

1

1 1
1 1

n x

n n x
x

n xn n n n x

n n x x


  

 
   

 

    (A3-27) 
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Assumption: tetra-n-butyl ammonium (TBA) salt is treated in terms of its cation and anion. 

Mole fraction of solvent in aqueous TBA salt solution is described by Eq. (A3-28) as: 

 
H O

H O

c aH O c a c a w

H O

2

2

2

2

1 1

1 0.001
1

n
x

n nn n n mM
n

 
  

   


     (A3-28) 

where 
c

 , 
a

 are the valences of the cation and the anion.  The 
s
x , 

c
x  and 

a
x  with 

consideration for gas solubility (Appendix 3-6) were described by Eqs. (A3-29) – (A3-35) as: 

For a H2O-ions mixture: 

c

c

H OH O c a a

c c

22

1

1

n
x

nn n n

n





 
 

 

          (A3-29) 

rearranging, 

c c

H O a

c

c

2 1 1

n x

n
x






 

   
 

             (A3-30) 

a

a

H OH O c a c

a a

22

1

1

n
x

nn n n

n





 
 

 

          (A3-31) 

rearranging, 

a a

H O c

a

a

2 1 1

n x

n
x






 

   
 

             (A3-32) 

For a gas-H2O-ions mixture: 

H O

H O,mix

H O c a gasH O c a gas gas

H O gasH O H O

2

2

22

22 2

1 1

1

1

n
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n n n xn n n n n
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   (A3-33) 
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H Oc c

c,mix H O,mix

H O c aH O c a gas gas a
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cH O H O
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2 2

1 1
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Appendix 4-1  Raman spectra of guest additives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4-1.  Raman spectra of (a) tetrahydrofuran (THF) + water systems, (b) THF + D2O 

systems, (c) THF-d8 + water systems, (d) furan + water systems, (e) cyclopentane (CP) + water 

systems and (f) tetrahydrothiophene (THT) + water systems at room temperature and atmospheric 

pressure.  The continuous (red), dashed-dotted (black) and dashed (blue) lines show clathrate 

hydrate product, organic aqueous solution and organic liquid, respectively.  
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Appendix 4-2  X-ray diffraction patterns of clathrate hydrates 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4-2.  XRD patterns of (a) hydrophilic solvent systems (tetrahydrofuran (THF) hydrate, 

THF hydrate (D2O) and THF-d8 hydrate) and (b) hydrophobic solvent systems (cyclopentane (CP) 

hydrate, furan hydrate and tetrahydrothiophene (THT) hydrate) at 123 K.  Down-pointing triangles 

(red) and diamond (blue) show hydrate (sII) and ice peaks, respectively. 
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Appendix 4-3  Raman spectra of hydrogen included in hydrates 

 

 

 

Figure A4-3.  Raman spectra of H2 in gas phase (blue) and clathrate hydrates (H2+tetrahydrofuran 

(THF), H2+THF (D2O), H2+THF-d8, H2+cyclopentane (CP) and H2+tetrahydrothiophene (THT)) 

phase (red) at room temperature. 
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Appendix 4-4  Pressure dependence of hydrogen adsorption 

 

 

 

 

Figure A4-4.  Correlated of H2 adsorption rates in tetrahydrofuran (THF) clathrate hydrate 

particles at 269 K with multiple adsorption resistant (MAR) model.  Red triangles (dashed-dotted 

line), green circles (dashed line) and blue squares (continuous line) show at 10 (Run 5), 8 (Run 2) 

and 4 (Run 4) MPa, respectively. 
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Appendix 4-5  Temperature dependence of hydrogen adsorption 
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Figure A4-5.  Correlated H2 adsorption rates for (a) 5.6 mol% tetrahydrofuran (THF) (Run 1 – 3), 

(b) 6.2 mol% THF (Run 6 – 8), (c) 5.6 mol% THF (D2O) (Run 12 – 14), (d) 6.2 mol% THF (D2O) 

(Run 15 – 17), (e) 5.6 mol% THF-d8 (Run 18 – 20), (f) furan (Run 21 – 23) and (g) cyclopentane 

(CP) (Run 24 – 26) clathrate hydrate particles at 8 MPa with multiple adsorption resistant (MAR) 

model.  Blue squares (continuous line), green circles (dashed line) and red triangles (dashed-dotted 

line) show at 273, 269 and 265 K, respectively.  Inset: expanded view at 0 – 2 h. 
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Appendix 5-1  Uncertainty of selectivities 

 The uncertainty of the selectivities was estimated from the H2 composition difference between 

initial and final conditions of the experiment.  The H2 composition used was the average value ± 

standard deviation.  The standard deviations of the H2 composition were 0.0004 – 0.0007.  Table 

A5-1 summarizes the relationship between the selectivity and the combination of the H2 

composition at initial and final conditions of the experiment. 

 

Table A5-1.  Relationship between the selectivity, 
H CO2 2
S  and the combination of the H2 

composition 
2

H
y  at initial and final conditions of the experiment.  The   is the standard 

deviation.  

 
H CO2 2
S  [-] 

2
H ,initial
y [-] 

2
H ,final
y  [-] 

Minimum 
2

H ,mean
y   

2
H ,mean
y   

Median 
2

H ,mean
y  

2
H ,mean
y  

Maximum 
2

H ,mean
y   

2
H ,mean
y   

The uncertainty of the selectivity,  H CO2 2
u S was defined as Eq. (A5-1): 

  H CO

H CO

H CO mean

% 2 2

2 2

2 2,

100
S

u S
S


            (A5-1) 

where 
H CO mean2 2,
S  and 

H CO2 2
S

  are the average and the standard deviation of 
H CO2 2
S , respectively.  

The selectivities were calculated from 
H CO minimum2 2,
S , 

H CO median2 2,
S  and 

H CO maximum2 2,
S .  Table 

A5-2 summarizes the uncertainties of the selectivity for runs 16 – 20 (Chapter 5). 
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Table A5-2.  Uncertainty of the selectivities,  H CO2 2
u S  and selectivity, 

H CO2 2
S  and standard 

deviation, 
H CO2 2
S

  for runs 16 – 20 (Chapter 5). 

 Minimum Median Maximum Mean Std. Dev. Uncertainty 

Run H CO2 2
S [-] 

H CO2 2
S

 [-]  H CO2 2
u S % 

16 25.31 28.02 31.25 28.19 2.97 10.5 

17 9.13 12.22 17.09 12.81 4.01 31.3 

18 14.83 18.82 24.84 19.49 5.04 25.9 

19 25.81 32.06 41.46 33.11 7.88 23.8 

20 11.24 15.05 21.25 15.85 5.05 31.8 
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Appendix 5-2  Differential scanning calorimetry of semi-clathrate hydrates 
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Figure. A5-1.  Differential scanning calorimeter (DSC) curves of TBA salts semi-clathrate 

hydrates decomposition process at atmospheric pressure for a heating rate of 1 K/min.  Symbol:: 

estimated decomposition temperature for each structure.  Red line (a) HS-I TBAB semi-clathrate 

hydrate, blue line (b) TS-I TBAB semi-clathrate hydrate, green lines (c – f) TBAC semi-clathrate 

hydrates and brown lines (g – j) TBAF semi-clathrate hydrates.  TBAB semi-clathrate hydrates 

were formed at (a) 2.6 mol% TBAB and 274 K (HS-I rich and ice), (b) 3.7 mol% TBAB and 283 K 

(TS-I rich).  TBAC semi-clathrate hydrates were formed at (c) 2.6 mol% TBAC and 276 K (TS-I 

and ice), (d) 3.0 mol% TBAC and 276 K (TS-I and ice), (e) 3.2 mol% TBAC and 276 K (TS-I) and 

(f) 3.7 mol% TBAC and 276 K (TS-I and ice).  TBAF semi-clathrate hydrates were formed at (g) 

3.0 mol% TBAF and 276 K (TS-I or SCS-I), (h) 3.0 mol% TBAF and 296 K (TS-I or SCS-I), (i) 3.3 

mol% TBAF and 276 K (TS-I or SCS-I) and (j) 3.3 mol% TBAF and 296 K (TS-I or SCS-I). 
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Appendix 5-3  Raman spectra of semi-clathrate hydrates 
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Figure. A5-2.  Raman spectra for TBA salts systems at room temperature, atmospheric pressure.  

Red line (a) HS-I TBAB semi-clathrate hydrate,
20

 blue line (b) TS-I TBAB semi-clathrate hydrate,
20

 

green lines (c – f) TBAC semi-clathrate hydrates and brown lines (g – j) TBAF semi-clathrate 

hydrates.  TBAB semi-clathrate hydrates were formed at (a) 2.6 mol% TBAB and 274 K (HS-I 

rich and ice), (b) 3.7 mol% TBAB and 283 K (TS-I rich).  TBAC semi-clathrate hydrates were 

formed at (c) 2.6 mol% TBAC and 276 K (TS-I), (d) 3.0 mol% TBAC and 276 K (TS-I), (e) 3.2 

mol% TBAC and 276 K (TS-I) and (f) 3.7 mol% TBAC and 276 K (TS-I).  TBAF semi-clathrate 

hydrates were formed at (g) 3.0 mol% TBAF and 276 K (TS-I or SCS-I), (h) 3.0 mol% TBAF and 

296 K (TS-I or SCS-I), (i) 3.3 mol% TBAF and 276 K (TS-I or SCS-I) and (j) 3.3 mol% TBAF and 

296 K (TS-I or SCS-I).  The Raman peak around 1134 cm
-1

 depends on TBAB semi-clathrate 

hydrate structure. 
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Appendix 5-4  Effect of formation temperature on structure of 2.6 mol% tetra-n-butyl 

ammonium bromide (TBAB) semi-clathrate hydrates 

The TBAB semi-clathrate hydrate forms tetragonal structure-I (TS-I) and hexagonal structure-I 

(HS-I).
9,10

  The formed semi-clathrate hydrate structures were confirmed with Raman spectroscopy 

(NRS-5100, JASCO, Tokyo) at room temperature and atmospheric pressure, and with differential 

scanning calorimeter (DSC).  The green laser used in the Raman measurements had a wavelength 

of 532 nm and the grating used was 1800 gr/mm.  The objective lens was twenty fold.  Spectral 

resolution was 1 cm
-1

 and exposure times used for the TBAB semi-clathrate hydrates were 25 s, 

with the cumulative number being three.  Raman peaks can be observed at around 700-1500 and 

2800-3000 cm
-1

 corresponding to the TBAB molecule, and the broad peak at 3200-3400 cm
-1

 

corresponds to O-H vibration of the water molecule.  Then, two wavenumbers in the center of 

these regions were set at 1100 cm
-1

 and 3150 cm
-1

 and used to compare the samples. 

For DSC analyses, sample pans used were alodine aluminum with a simple crimp seal.  The 

decomposition temperature for each heating rate was calibrated by using ice and gallium at a 

heating rate of 1 K/min in the DSC with a flow rate of 40 cm
3•min

-1
 of nitrogen.  About 2 - 5 mg 

of sample was placed in the sample pan that was kept in a refrigerator before being loaded into the 

DSC cell.  The sample was cooled to 233 K with dry ice and methanol solution.  Then, the 

sample was heated to 318 K at a heating rate of 1 K/min.  The decomposition temperature for each 

sample was determined from the intersection of the tangent of the endothermic curve and standard 

baseline on the lower temperature side of the endothermic peak. 

Table A5-3 summarizes hydrate formation conditions, adsorbent characteristics and 
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thermophysical properties of the prepared TBAB samples.  Results are discussed in detail in the 

following sections below.  Figure A5-3 shows the Raman spectra for the 2.6 mol% TBAB 

semi-clathrate hydrates. 

Table A5-3.  Hydrate formation conditions, adsorbent characteristics and thermophysical 

properties according to 2.6 mol% tetra-n-butyl ammonium bromide (TBAB) semi-clathrate hydrate 

formation temperature (Tform), and degree of supercooling (T).  The Aratio is the Raman peak area 

ratio of the peak at 1134 cm
-1

 to the peak at 1109 cm
-1

. 

Tform [K] T [K] Aratio [-] 
DSC peak [K] 

TS-I HS-I Ice 

281.6 1.2 0.37 286.4 - - 

278.1 4.7 0.17 284.0 281.5 272.5 

274.1 8.7 0.07 - 282.2 272.5 

   284.6
21

 282.8
21

 - 

 

Figure A5-3.  Raman spectra for 2.6 mol% tetra-n-butyl ammonium bromide (TBAB) 

semi-clathrate hydrate at room temperature, atmospheric pressure.  TBAB semi-clathrate hydrates 

were formed at (a) 281.6 K (TS-I rich), (b) 278.1 K (mixture of TS-I, HS-I and ice) and (c) 274.1 K 

(HS-I rich).  The Raman peak 1109 cm
-1

 was assumed as the independent of the semi-clathrate 

hydrate structure.  The Raman peak around 1134 cm
-1

 depends on TBAB semi-clathrate hydrate 

structure.
22
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The Raman peak around 1134 cm
-1

 for the TBAB semi-clathrate hydrate structure is known to 

change greatly with structure.
22

  Thus, the Raman peak at 1109 cm
-1

 was assumed as being 

independent of the semi-clathrate hydrate structure and the structure of 2.6 mol% TBAB 

semi-clathrate was assessed by the peak area ratio of the peak at 1134 cm
-1

 to the peak at 1109 cm
-1

.  

The peak area ratios (Table A5-3) for the degree of supercooling of 1, 5 and 9 K were 0.37, 0.17 and 

0.07, respectively.  These results indicate that the hydrate structure was HS-I rich for 2.6 mol% 

TBAB for a degree of supercooling of 9 K. 

Figure A5-4 shows DSC curves for the 2.6 mol% TBAB semi-clathrate hydrates.  The 

decomposition temperature point for the 2.6 mol% TBAB semi-clathrate hydrate at a degree of 

supercooling of 1 K were 286.4 K (Figure A5-4 a).  This value (Table A5-3) was close to that the 

literature value of 285.2 K for 3.7 mol% TBAB semi-clathrate hydrate of TS-I,
21

 and so it can be 

concluded that the sample (Figure A5-4 a) was rich in TS-I.  The decomposition temperature point 

for 2.6 mol% TBAB semi-clathrate hydrate at a degree of supercooling of 5 K was 272.5, 281.5 and 

284.0 K (Figure A5-4 b, Table A5-3).  Since the literature values (Table A5-3) for 2.6 mol% TBAB 

semi-clathrate hydrate of TS-I and HS-I were 284.6 and 282.8 K, respectively, it can be concluded 

that the sample (Figure A5-4 b) prepared with 5 K supercooling was a mixture of ice, TS-I and HS-I.  

The decomposition temperature point for 2.6 mol% TBAB semi-clathrate hydrate at a degree of 

supercooling of 9 K was 272.5 and 282.2 K (Figure A5-4 b, Table A5-3).  Since the peak of TS-I 

was not observed, analysis shows that the sample consisted of mainly HS-I.  However, some TS-I 

cannot be excluded as the peak might be hidden by the small peak observed for ice (Figure A5-4 c).  

The 2.6 mol% TBAB semi-clathrate hydrate prepared with a degree of supercooling of 9 K was 
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used in the adsorption experiments since it consisted mainly of HS-I. 

 

Figure A5-4  Differential scanning calorimeter (DSC) curves of 2.6 mol% tetra-n-butyl ammonium 

bromide (TBAB) semi-clathrate hydrate decomposition process at atmospheric pressure for a 

heating rate of 1 K/min.  Symbol:: decomposition temperature for each structure.  TBAB 

semi-clathrate hydrates were formed at (a) 281.6 K (TS-I rich), (b) 278.1 K (mixture of TS-I, HS-I 

and ice) and (c) 274.1 K (HS-I rich) 
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