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Abstract

Recently, the number of RNA-Seq data registered in public repository is rapidly increasing

due to spreading of high throughput sequencing technology. Reanalyzing of these data is

promising approach to reveal gene modules or pathways. Although meta-analysis of gene

expression data was widely accepted in microarray data, meta-analysis in RNA-Seq is not

performed widely. Since reanalyzing RNA-Seq requires a lot of computational resource, it is

nearly impossible to calculate gene expression of all samples in public repository.

In this study, I proposed a novel method to estimate gene expression level from RNA-

Seq data rapidly. My proposing method uses N-grams that are unique to each gene to

map fragments to genes. Since aligning fragments to reference sequences requires high

computational cost, my method reduced calculation cost by using two methods: using only

N-grams that are unique to each gene and skipping uninformative region. As a result, my

proposing method outperformed previous methods in speed and accuracy.

I applied this method to RNA-Seq data of Homo sapiens, Mus musculus, Rattus norvegi-

cus, Danio rerio and Drosophila melanogaster for RNA-Seq based meta-analysis. I calculated

gene coexpression from estimated gene expression level using a proposed method. As a re-

sult, RNA-Seq based gene coexpression outperformed microarray based gene coexpression in

predicting gene functions in Homo sapiens and Mus musculus. Since numbers of samples is

highly correlated with performance of gene function prediction, RNA-Seq based coexpression

of other species will outperform microarray based coexpression in the future.

Finally, I compared gene coexpression among species. I developed a novel method
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to compare gene coexpression. In human and mouse comparison, my method predicted

functional gene modules more accurately than human coexpression. I also compared 11

species coexpression and a result showed that a similarity dendrogram of coexpression was

consistent with NCBI taxonomy in mammalian.

I also developed software to handle large dataset. Hyokai is a large table viewer to

summarize and narrow down. It can handle large table, such as a data with more than

1000,000 rows, quickly. DEG.js is a web-based RNA-Seq calculation tool for biologists. It

is not required installing and using command prompt.

In conclusion, I developed fast RNA-Seq analysis method for meta-analysis, and applied

it for gene coexpression and predicting gene functional module. As the result, my methods

succeeded to estimate gene expression fast and accurately, and predicted gene function

correctly.



General Introduction

Information science in the biology

Importance of information science in the biology is increasing due to growing of biological

data. In sequence analysis field, computational methods are essential. After the development

of Sanger sequencing [1], a number of nucleotide sequences were published. In 1977, the

first complete DNA genome of DNA virus was reported [2]. In 1995, the first complete

sequence of free-living organism was reported by Fleischmann et al. [3]. In the beginning

of 2000s, a lot of complete genomes of model organisms, such as Drosophila melanogaster

[4], Arabidopsis thaliana [5], Homo sapiens [6, 7], Schizosaccharomyces pombe [8] and Mus

musculus [9] were published. Currently, the numbers of sequenced data in GenBank [10],

European Nucleotide Archive [11], DNA Data Bank of Japan [12] continue to be increasing

rapidly.

While increasing the size of biological data, computational methods to deal with these

biological data were also developed. In the sequence analysis, FASTA [13] and BLAST [14]

are part of the largest impact software in sequence analysis. FASTA, BLAST and related

software enabled fast searching of similar sequences in the database.

Development of computational analysis methods also changed experimental methods.

R.Staden [15] proposed shotgun sequencing to sequence whole genome without restricting

maps. It was impossible to assemble many random sequenced fragments for human, but

the development of computers enabled assembling these fragments. Shotgun sequencing

accelerated decoding whole genome, and resulted first free-living organism genome [3].

1



2

Appearance of high throughput sequencing technology was an evolution in sequencing

technology. High throughput sequencing technology enabled sequencing a lot of DNA and

RNA with low cost. It changed approaches to biological questions. In 2004, 454 Life Science

appeared in the market. From 2005, the number of high throughput sequencing platforms,

such as Solexa, Illumina, Ion Torrent, were released [16]. Illumina platforms are the most

succeeded platform now. The cost of sequencing was also dropping down steadily.

Because of development of high throughput sequencing technology, the sequenced data

is also increasing rapidly. In 2007, NCBI started Sequence Read Archive [17]. Currently,

DDBJ Sequence Read Archive [18], NCBI Sequence Read Archive [17] and EBI Sequence

Read Archive [11] are collecting raw data of high throughput sequencing under International

Nucleotide Sequence Database Collaboration [19].

Since high throughput sequencing technology creates a huge amount of data, a new com-

putational analysis method is required. BWA [20, 21] and Bowtie [22, 23] are widely accepted

mapping tools for high throughput sequencing. They use Burrows-Wheeler transform [24]

and FM-Index [25, 26] to accelerate searching positions of reads in the genome. Burrows-

Wheeler transform was introduced in computer science first. BWA and Bowtie bring this

algorithm into biology.

High throughput experimental methods were also proposed in other biological field, such

as gene expression using microarray or protein-protein interaction. To deal with these large

amounts of data, information science becomes more important in biology.

Importance of database in the biology

Growth of biological database enabled us to take a different approach to biology. A classical

approach in biology was proposing a hypothesis, designing an experiment and discussing a

result. With biological database, we can use data-driven approach. Data-driven approach

gives us comprehensive view of biological knowledge.
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When we publish a new paper, authors are obliged to register raw data, such as sequences

from high throughput sequencer in most journals’ policy. For example, PLOS biology

requires registering all data to public repository and putting accession numbers in a paper

[27]. Therefore, almost all raw data in published papers, such as sequence data, protein

structures or gene expression profiles were registered in public databases.

Meta-analysis of these data enhances detection power by merging data from many studies.

For example, Sitras et al. [28] analyzed microarray data from 12 studies and found common

pathway between two diseases. Kim et al. [29] reported 18 genes related with toxicity based

on meta-analysis of massive gene expression profiles.

Re-analyzing published data also spawned the new aspect of biology. Gene coexpression

is one of most successful analysis of re-analyzing database. Gene coexpression data show

relationships between genes without any prior knowledge. Since thousands of gene expression

data are required to calculate gene coexpression, database of gene expression is indispensable.

Because of development of high throughput sequencing and growth of public database, it

is challenging performing meta-analysis of these data. Computational analysis with efficient

algorithm is fundamental to deal with large amount of data.

In this study, I performed a meta-analysis of a large amount of RNA-Seq data. Since

RNA-Seq data were generated by high throughput sequencer, the total data size of RNA-Seq

data is larger than 50 TB. Existing methods are too slow to analyze these data. In Part I, I

developed a novel method to quantify gene expression in RNA-Seq. The proposing method is

300 times faster than widely used methods, and 2.5 times faster than published fastest method.

In Part II, I calculated gene coexpression based on RNA-Seq. The performance of RNA-Seq

data based gene coexpression was better than microarray data based gene coexpression in

Gene Ontology prediction. In Part III, I compared gene coexpression between species and

showed conservation of gene relationship between human and mouse. I also created tools to

deal with such a large amount of data, as described in Part IV.
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Part I

The development of ultra fast RNA-Seq
analysis method
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Chapter 1

Introduction

Measuring gene expression is important to identify genes that work on a specific event

or interpret a cell state. Historically, gene expression is measured by northern blotting.

Northern blotting can detect the size of RNA and expression level [30, 31]. This method

is widely accepted and remains useful today. Since this method cannot detect many types

of mRNA at once, comprehensive study of gene expression requires other methods. In

1995, an appearance of microarray [32] technology enables high throughput, comprehensive

measurement of RNA. However, accuracy of expression measurement for lowly expressed

genes is limited. Dynamic range of microarray is also limited [33].

RNA-Seq [34] technology appeared nearly a decade ago. The development of high

throughput sequencing technology enabled RNA-Seq. RNA-Seq has a lot of advantage in

measuring gene expression, especially in accuracy and dynamic range [35]. Now, RNA-Seq

is a de facto standard of RNA analysis, and the number of RNA-Seq that are registered in

Short Read Archive is rapidly increasing. Although this technology also enabled to find de

novo transcripts or SNP analysis, I focused on gene expression quantification in this part.

Since the number of published RNA-Seq data is rapidly increasing, meta-analysis of

these data is a promising approach to investigate novel biological system. However, merging

quantified expression data provided by authors is difficult because they use different reference

sequences, different ID system and different quantification methods. Using different reference

7
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sequences or difference ID system makes difficult matching genes with other data. Comparing

gene expression profiles quantified by different methods cannot separate biological differences

from method bias. Therefore, quantifying from raw sequence for all data is required to meta-

analysis of RNA-seq.

A lot of quantification methods for RNA-Seq were proposed. One of the most used

methods is the pipeline using TopHat2 [36, 37] and cufflinks [38]. This method aligns

sequenced reads to a reference genome, then, it counts the number of fragments that are

mapped in a gene region, and estimates expression level by transcript level. This method can

be applied to species that have no reference transcript, and predict transcript candidates.

Some other methods, such as RSEM [39] and eXpress [40], map sequences to the

transcript reference. Since they require only reference transcript sequences, they can be

applied to species without reference genome. A de novo transcript assembler or an EST

database can be used for reference transcript sequences instead of curated reference transcript

databases. Both RSEM and eXpress use bowtie [22] to map a read sequence to a transcript.

Some of read sequences are mapped to multiple transcripts due to splicing variants. RSEM

and eXpress use Expectation-Maximization algorithm to resolve which of transcripts were

multi-mapped reads come from.

These alignment-based methods, such as TopHat2/cufflinks, RSEM or eXpress require a

lot of computational resource. To quantify expression of RNA-Seq sample, alignment is not

required because a position of a read is not important in quantification step. Some methods

do not map to transcript, but use N-gram of transcripts.

Sailfish [41] uses all N-grams found in the reference transcript. This method creates an

N-gram to containing transcript table, and counts the number of occurrence in RNA-Seq

data for each N-gram. Finally, it estimates expression level by transcripts using Expectation-

Maximization algorithm from counts of N-grams.

Another method, RNA-Skim [42], uses more efficient method. This method introduced
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sig-mers that appear only once in a subset of reference transcript. RNA-Skim counts the

number of sig-mers occurrence while processing RNA-Seq data, and calculates expression

level by Expectation-Maximization algorithm.

Kallisto [43] also uses N-grams. This method reduced calculation cost by skipping

fragment searching in an index. When an N-gram appeared, the next N-gram is limited to

one or few patterns. If the next N-gram is limited to one pattern, hashing the N-gram is not

required to determine the source isoform. Kallisto skips these non-informative N-grams for

fast estimation.

The speed of quantification is important to process thousands of RNA-Seq data. Although

these alignment-free methods, such as Sailfish and RNA-Skim, are much faster than alignment

based method, a faster method is needed to perform large-scale meta-analysis.

In addition, gene level quantification has enough information for usual analysis because

many studies [44, 45, 46, 47] disregard isoform specific expression. Some studies [48, 49]

regard differential usage of isoforms, but they analyzed few numbers of splicing changes. For

example, Wu et al. [48] perform gene level quantification for all genes first, and isoform level

quantification next.

Here, I proposed Matataki, the novel fast method to quantify expression in gene level.

Similar to RNA-Skim, this method uses N-grams that are unique to gene to quantify expres-

sion. However, this method reduces computational cost with two different approaches. First,

this method can calculate expression directly without Expectation-Maximization algorithm

because this method quantifies expression in gene level, and uses only gene specific N-grams.

Second, this method does not hash a fragment step by step. Since N-grams that are unique

to gene are usually found sequentially, hashing all fragments of a read does not improve

performance. This method hashes a fragment of reads every fixed count. To skip hashing,

exactly all N-grams that are unique to a gene should be listed up in the index. Therefore, fast

heuristic methods, such as bloom filter [50] cannot be applied to build index. However, in
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the large-scale meta-analysis, the speed of quantification is more important than the speed of

building index.

In this part, I describe the method of Matataki and the result of comparisons between my

method and other methods.



Chapter 2

Materials and Methods

I developed an ultra fast RNA-Seq quantification method based on N-grams that are unique

to each gene. Usually, this method requires two steps: building an index and quantifying

expressions. In this section, all running time and memory usage were measured in cluster

machines. Each cluster node has two Intel® Xeon® CPU E5-2680 v2 10-core 2.80GHz, and

130 GB RAM.

2.1 Preparation

In order to fast mapping, Matataki has to search all N-grams that are unique to each gene.

Selected N-grams should be included in all isoform transcripts of a gene to avoid effects of

differential expression of isoforms.

First, Matataki searches N-grams that are unique to each gene (Figure 2.1). Matataki

considers all N-grams in transcript sequences. To judge uniqueness of N-gram, Matataki

stores N-grams to a hash table. For example, first five 20-grams are unique to CARNS1, but

next three 20-grams are also found in DNER (shown in Figure 2.1). Therefore, 20-grams

unique to CARNS1 can be used for identifier of CARNS1, but 20-grams that are not unique to

CARNS1, such as GCCACTGCCACCGCCGCCGC, cannot be identifiers. Since a read strand is not

fixed unless strand-specific read, all reverse complements of N-grams should be considered.

Second, Matataki checks whether all isoforms of a gene have an N-gram. Since Matataki

11
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quantifies expression levels by genes, alternation of isoform specific expression should be

ignored. When isoform A has an N-gram and other isoforms do not have the N-gram, and

expression level of isoform A was replaced to the other isoform, the found reads appear

to be decreased, although a total gene expression level was not changed. To avoid this

isoform replace problem, N-grams that do not appear in all isoforms should be neglected.

For example, a sequence NM_001193533.1 is one isoform of NEK4 (shown in Figure 2.2).

In this sequence, a first 20-gram is unique to NEK4, but this sequence is not found in the

isoform XM_006713310.1. Matataki index N-grams that are unique to each gene and found

in all isoforms.

Finally, Matataki counts the numbers of indexed N-grams. This number will be used in

the FPKM quantification step.

Around 20 GB memory and 3 hours are required to build human index, when I used

in-memory hash table. A file based hash table mode is also available for small memory

machines. This building step is required only one time for one species before using Matataki.

2.2 Quantification

Quantification step has two sub-steps. The first step is counting N-grams, and the second

step is calculating FPKM and TPM from read counts.

First, Matataki searches indexed N-grams in a read. When a read has only one corre-

sponding gene, the read is estimated as a fragment of the gene. Matataki counts the number of

reads that corresponds to each gene. An example is shown in Figure 2.3 (A). In this example,

first six 20-grams were unique to SMYD1. On the other hand, next twenty 20-grams were

not found in the index because the read has a mutation (shown as red A in 2.3 (A)). When a

read corresponds to two or more genes, or no genes, the read will be neglected.

In the first step, searching all fragments of reads step by step is not necessary, because

the found N-grams are usually found sequentially. For example, Figure 2.3 (B) shows which
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CARNS1 (carnosine synthase 1) NM_001166222.1

Found in DNER

Unique to CARNS1

Sequence

GCTGTGCCACTGCCACCGCCGCCGCCG...

20-gram

GCTGTGCCACTGCCACCGCC
 CTGTGCCACTGCCACCGCCG
  TGTGCCACTGCCACCGCCGC
   GTGCCACTGCCACCGCCGCC
    TGCCACTGCCACCGCCGCCG
     GCCACTGCCACCGCCGCCGC
      CCACTGCCACCGCCGCCGCC
       CACTGCCACCGCCGCCGCCG
        ACTGCCACCGCCGCCGCCGC
         CTGCCACCGCCGCCGCCGCT

Unique to CARNS1

Figure 2.1: Example of N-grams that are unique to genes

NEK4 (NIMA-related kinase 4) NM_001193533.1

Sequence

20-gram

AGCATGCGCAGAACTGCTCCCGGCC

AGCATGCGCAGAACTGCTCC
 GCATGCGCAGAACTGCTCCC
  CATGCGCAGAACTGCTCCCG
   ATGCGCAGAACTGCTCCCGG
    TGCGCAGAACTGCTCCCGGC
     GCGCAGAACTGCTCCCGGCC

Not found in
XM_006713310.1

Found in all
isoforms of NEK4

Figure 2.2: Example of common N-grams
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N-grams were found in the index. The second row shows a search result of the read. The

character “O” means a 20-gram from the position was a 20-gram that is unique to SMYD1,

and “.” means a 20-gram from the position was not found in the index.

I introduced “step-size S” to reduce the number of N-gram searching. As shown in

Figure 2.3(C), Matataki searches N-grams for every S N-grams. Since gene specific reads

have sequences of index N-grams usually, this omission does not have major effect to the

estimation quality.

I also introduced “accept-count M” to avoid a fragment of read sequence matches to

some indexed N-grams by chance. Since some reads may have sequencing error, mutation or

insertion/deletion, a fragment of a read can be matched to wrong indexed N-grams. Usually,

these wrong matches are not found consecutively in a read. Therefore, a read that indexed

N-grams appeared in less than M times deal with unmapped read to avoid wrong matching.

Second, Matataki calculated FPKM (Fragment Per Kilobase of Million) and TPM (Tran-

script Per Million) from gene specific read counts. FPKM can be calculated from formula

2.1 and TPM can be calculated from formula 2.2.

Fi =
Ci/Ki∑

j Cj
109 (2.1)

Ti =
Ci/Ki∑

j (Cj/K j )
106 (2.2)

, where Fi: FPKM, Ti: TPM, Ci: a count of gene-specific reads, Ki: the number of indexed

N-grams in a gene. Since Matataki uses only gene specific N-grams, no EM algorithm or

other algorithm to solve expression level are not required.

2.3 Implementation

I implemented Matataki with C++03, autotools and KyotoCabinet [51]. Since simplicity of

installing is important to distribute, a distribution file contains all libraries to compile, and
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uses autotools, a standard tools to build complex software. Automated unit-testing is also

important to maintain the quality of codes. Matataki uses Google Test for unit testing and

integrated it to autotools, therefore, we have to run nothing but make check to run all unit

tests.

In order to reduce memory usage and increase speed, a hash table format is optimized

for the RNA/DNA N-grams. First 4k bytes contain a header of an index. The number of

entries, the size of hash table and N are written in the header. After the header, N-grams

and corresponding gene indexes are written. Each entry have two sections, a gene index and

N-grams (shown in Table 2.1). N-gram is compressed as two bit representation of acids to

reduce memory usage and hash value calculation time. Since each N-gram has fixed length

in one index, entries do not have data of length. A hash function is also important for fast

looking up of the table. I used MurMurHash3 as a hash function of the hash table because it

is fast and widely accepted hash function.

Since all libraries except installed in almost all systems are included in the distribution

file, no extra libraries are required to build and run this method. To make install easy, the

built binaries are path independent. No special file layout or PATH environment is required

to run.

Table 2.1: The data format of the hash table
Entry Length
Gene Index 4 bytes
N-gram Variable (compressed in two bit representation, and aligned with 4 bytes)

2.4 Comparison with other softwares

I compared performances with bowtie 1.1.2 [22]/eXpress 1.5.1 [40], Sailfish 0.7.6 [41],

RNA-Skim [42] and Kallisto 0.42.4 [43]. I tested these softwares with default parameters.

I used binary distributed files for bowtie, eXpress, Sailfish. RNA-Skim and our method are



17

compiled with GCC 5.2.0.

2.5 Test Dataset

I used RefSeq and gene2refseq [17] to create a reference database. RefSeq and gene2refseq

were downloaded at June 26, 2015 from Human Genome Center, a mirror site of NCBI. I

extracted sequences of human from RefSeq. In the human RefSeq, 25,894 genes and 55,100

transcripts were available.

In comparison with RNA-Skim, I used the scripts to download and build index, which are

included in RNA-Skim. Therefore, the reference sequence of RNA-Skim is different from

other methods.

For quantification quality examination, I usedSRR1639212. This run is part ofSRP048993,

“Stem cell differentiation timecourse, six time points through induction from induced pluripo-

tency (day0) towards beating cardiomyocytes, mature at day14. ” SRR1639212 is the first day

0 sample. The length of reads in SRR1639212 is 100, and the number of reads is 172,340,634.

I also compared quantification quality with synthesis data. To create synthesis data, I

used rsem-simulate-reads that is included in RSEM. Models to synthesize were created

by quantifying ERR188074 and ERR188125 with RSEM.
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Chapter 3

Result & Discussion

3.1 Statistics of indexed N-grams

3.1.1 The number of genes with indexed N-grams

First, I calculated the number of genes with indexed N-grams (shown in Figure 3.2 and Table

3.1) and the nucleotide coverage of indexed N-grams (shown in Figure 3.1 and Table 3.1) in

human, mouse and Arabidopsis genes. I varied N-gram length from 10 to 100.

When N = 10, few human genes had indexed N-grams in all species. When N = 14,

96.8% of human genes in RefSeq had indexed N-grams. Coverage of genes were highest in

N = 34. On other hand, too large N made gene coverage lower, because some genes had

only small transcripts.

When looking at the coverage of nucleotide (shown in Figure 3.1), N = 14 was not

enough large to cover sequences with indexed N-grams regions. The nucleotide coverage

almost hit the ceiling in N = 18. This observation suggests that N should be larger than 18

to cover gene-specific regions of genes.

The same results were also observed in mouse and Arabidopsis. Since the average length

of genes in Arabidopsis is smaller than lengths in human and mouse, gene coverage and

nucleotide coverage in N = 10 and 12 were better than other species. I compared nucleotide

coverage with theoretical random coverage. The theoretical random coverage was defined as

19
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following formula.

C =
(
1 −

1
(4N + 4(N/2))/2

) l l
L

(3.1)

, where C is a nucleotide coverage, L is a total length of genes and l is a total length of

gene specific region. The results were consistent with actual coverage (shown in Figure 3.3,

3.4 and 3.5).

The effects to performance of N size will be discussed in the following section.

3.1.2 The distribution of indexed N-grams in transcript sequences in
human

I calculated the nucleotide coverage for each human gene when N = 32 (shown in Figure

3.6). As a result, the coverage was higher than 50% in 86.4% human genes. Moreover, in

61% genes, the coverage was higher than 90%.

The number of cover islands is shown in Figure 3.7. A cover island is a continuous region

of nucleotide that is a start point of indexed N-gram. As a result, 60% of genes have only one

or two cover islands. The length of cover islands and the longest and second longest length

of cover islands for each gene are shown in Figure 3.8 and 3.9. Although a median of second

longest cover island length for each gene is 327, a median of the longest cover island length

for each gene is 1,262. These observations suggest that most genes have a few cover islands,

namely a main cover island and some small satellite cover islands. Since the longest cover

islands for each gene were enough longer than N and step size S, introducing step size S did

not interfere quantification accuracy.

When N = 32, the number of genes without indexed N-grams was 717. The detail of

these uncovered genes is shown in Table 3.2. Half uncovered genes were non-coding genes.

Since non-coding genes cannot be amplified in the translation step, the number of copies in

genome is required to work properly. Another half of uncovered genes were protein-coding
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Table 3.1: The number of indexed N-grams and genes with indexed N-grams in human genes
N # of indexed N-grams # of genes Gene Coverage (%)
10 440 220 0.84
12 1535090 23101 89.21
14 41082576 25071 96.82
16 96190226 25143 97.09
18 108060135 25147 97.11
20 109992844 25153 97.13
22 110684112 25161 97.16
24 111141270 25166 97.18
26 111492136 25167 97.19
28 111769766 25171 97.20
30 111991000 25171 97.20
32 112168261 25177 97.23
34 112310635 25178 97.23
36 112421849 25176 97.22
38 112506091 25174 97.21
40 112567660 25177 97.23
42 112609502 25176 97.22
44 112633994 25176 97.22
46 112642942 25175 97.22
48 112638863 25171 97.20
50 112623384 25164 97.18
52 112597536 25155 97.14
54 112562252 25140 97.08
56 112518444 25119 97.00
58 112467189 25097 96.92
60 112409689 25064 96.79
62 112346699 25010 96.58
64 112278981 24958 96.38
66 112207391 24904 96.17
68 112132326 24820 95.85
70 112054386 24747 95.57
72 111974249 24642 95.16
74 111892097 24545 94.79
76 111808039 24452 94.43
78 111722329 24357 94.06
80 111635162 24273 93.73
82 111546656 24167 93.33
84 111457144 24054 92.89
86 111366760 23949 92.48
88 111275524 23855 92.12
90 111183488 23793 91.88
92 111090670 23745 91.70
94 110997032 23711 91.56
96 110902740 23641 91.29
98 110807946 23548 90.93
100 110712668 23497 90.74
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Table 3.2: A detail of uncovered genes
Type of Gene count
microRNA 233
ribosomal RNA 19
small nuclear RNA 35
small nucleolar RNA 45
Other non-coding RNA 61
Pseudo gene 21
protein-coding 303

genes. Most of these genes do not share functions and genome region. They may share

domains with other genes.

3.2 Quantification quality

In this section, I compared the expression levels of three methods with my method using

real data and synthesis data. I compared the result of bowtie/eXpress and my method. The

accession ID of the test real data is SRR1639212.

3.2.1 Comparison of FPKM

I compared Fragment Per Kilobase Million (FPKM) values between bowtie/eXpress and

my method. At first, I varied N from 16 to 56 and the result is shown in Figure 3.10. In

Figure 3.10, the x-axis shows FPKM values of eXpress, the y-axis shows FPKM values

of my method, and the color means indexed N-gram coverage of each gene. The Pearson

Correlation Coefficient values between my method and eXpress were higher than 0.92 when

N was larger than 24. Since larger N gives larger PCC value, large N is better to estimate

accurately.

However, large N is not always the best choice to analysis. In Short Read Archive, 9.2%

of human RNA-Seq data have reads shorter than 50 in lengths. To cover 99% of human

RNA-Seq data, N should be smaller than 34. In the following analysis, I used N = 32

because Matataki prefers a multiple of 4 as N due to implementation.
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Second, I varied the step size S from 1 to 16 (the result is shown in Figure 3.11).

This parameter was introduced because looking up every N-grams in a read provides less

information. As a result, larger S shows a better result in PCC. This result suggests some

junk reads may have an N-gram that is equal to indexed N-grams by chance. Since junk reads

have one or a few numbers of matched N-grams, these larger step size S can reduce invalid

matches. In the following analysis, I used S = 12 because 12 is accurate enough.

Finally, I varied the accept-count M from 1 to 4 (the result is shown in Figure 3.12).

I introduced this parameter to avoid that some fragments in a junk read matches to wrong

indexed N-grams by chance. According to Figure 3.12, PCC values of M > 1 was better than

a PCC value of M = 1. This result supports that some reads were counted as wrong genes.

On other hand, the PCC value of M = 4 was worse than the PCC value of M = 3. Since

the read length of the test data was 100, a few errors were allowed to accept a read. This

observation suggests too strict condition makes the result worse.

Selecting the best combination of N , step size S and accept-count M is one of the problems

in this method. The best combination depends on the read length and quality. According to

Figure 3.12, some errors should be allowed for accurate quantification.

3.2.2 Comparison of mapping rate

Mapping rate is also an important measure to evaluate this method. I compared mapping

rates by varying N , step size S and accept-count M . The result is shown in Figure 3.13. As

expected, the mapping rate became smaller when N became large because matching condition

was stricter in large N (shown in Figure 3.13 (A)). When N = 16, the mapping rate is larger

than the rate of bowtie. This observation suggested that Matataki count junk reads as some

gene’s read by chance.

On other hand, steps size S affected mapping rate slightly (shown in Figure 3.13 (B)).

This result indicated N-grams in a read that match to some indexed N-gram are continued.
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Figure 3.10: Comparison of FPKM when N was varied

Figure 3.11: Comparison of FPKM when step-size was varied
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Figure 3.12: Comparison of FPKM when accept-count was varied
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Finally, large accept-count M makes mapping rate lower (shown in Figure 3.13 (C)).

Especially, the mapping rate dropped largely at M = 4 when compared with other M .

Therefore, M = 4 is too strict in this data.

Other more detail comparison results are shown in Appendix A.

3.2.3 Compare quantification quality with synthesis data

I also compared Transcript Per Million (TPM) between my method, eXpress, Sailfish and

Kallisto in synthesis data. In this comparison, I used N = 32, S = 16 and M = 2 as

parameters of my method. As a result (shown in Figure 3.14 and Figure 3.15), my method

showed second best performance in linearity (i.e. PCC, shown in Figure 3.14 A, C, E, G

and Figure 3.15A) and best in error (i.e. absolute mean difference, show in Figure 3.14 B,

D, F, H and Figure 3.15B) in alignment free methods. Since an alignment based method,

eXpress showed the best performance in both of linearity and error, using eXpress result is

the best choice to evaluate prediction performance in real data. In this analysis, I included

genes that do not have indexed N-grams. My method cannot estimate expression level of

these genes. When I excluded these genes to calculate accuracy, my method showed the best

performance in both of linearity and error (shown in Figure 3.14 I, J and Figure 3.15 A, B as

MatatakiSubset).

Although my method is fastest, my method is most accurate to estimate gene expression

level for each gene in alignment free methods. Using indexed N-grams enables faster and

accurate RNA-Seq quantification.

3.3 Comparison of CPU time and memory usage

In this section, I compared the CPU time and memory usage of six existing methods with

Matataki in real data. I used four runs, ERR188074, ERR188125, ERR188171 and ERR188362

to compare CPU times and memory usage. The statistics of runs and mapping is shown in
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Figure 3.13: Mapping rate



32

Figure 3.14: Comparison of TPM among expected result and estimated result in a synthesis
data result

(A) A scatter plot of expected gene expression and estimated gene expression using proposing
method. (B) A density plot of difference between expected gene expression and estimated
gene expression using proposing method. (C, D) A scatter plot and a density plot using
eXpress. (E, F) A scatter plot and a density plot using Sailfish. (G, H) A scatter plot and a
density plot using Kallisto. (I, J) A scatter plot and a density plot using proposing method.
In these figures, genes that do not have indexed N-grams are neglected.
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Figure 3.15: Summary of synthesis data result

(A) Pearson Correlation Coefficient with expected expression and estimated expression using
each method. “Matataki” is a result of a proposing method and “MatatakiSubset” is a result
of the proposing method without uncovered genes. (B) Mean of absolute difference from
expected expression.
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Table 3.3. The results of CPU time are shown in Figure 3.16 and Table 3.4, and the results

of acceleration rate compared with existing methods are shown in Table 3.5. The CPU times

were measured 10 times and medians of these results are shown in Table 3.4 and Table 3.5.

Memory usages are shown in Table 3.6. In this comparison, I used N = 32, S = 12 and

M = 3 as the parameters.

As results, my method was extremely faster than other alignment-based methods, Bowtie

without quantification, RSEM and eXpress. Matataki was twice faster than other alignment-

free methods, Sailfish, RNA-Skim and Kallisto. Since Matataki was even faster than gzip

uncompression (about 55 seconds) or bzip2 uncompression (about 285 seconds), a quantifi-

cation of gene expression in RNA-Seq is not bottleneck of RNA-Seq analysis. In memory

usage comparison, Matataki required the smallest memory size in alignment-free methods.
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Table 3.3: Run and mapping statistics
Run accession Number of reads Length of reads bowtie mapping rate
ERR188074 31,540,813 75 84.7%
ERR188125 28,810,860 75 80.2%
ERR188171 30,386,179 75 84.6%
ERR188362 26,255,381 75 80.4%

Table 3.4: CPU Time comparison

Run Accession eXpress RSEM Bowtie Sailfish RNA-Skim Kallisto Matataki
ERR188074 15080.6 22264.9 1477.2 303.3 521.2 119.3 47.9
ERR188125 25404.0 20428.3 1492.4 314.3 489.9 118.7 41.0
ERR188171 14109.1 21815.4 1429.5 333.5 494.2 123.2 38.6
ERR188362 24607.6 18831.7 1355.8 302.8 483.7 102.0 40.6

Table 3.5: Acceleration rate compared with existing methods
Run Accession eXpress RSEM Bowtie Sailfish RNA-Skim Kallisto
ERR188074 314.52 464.35 30.81 6.33 10.87 2.49
ERR188125 618.94 497.72 36.36 7.66 11.94 2.89
ERR188171 365.92 565.78 37.07 8.65 12.82 3.20
ERR188362 606.76 464.34 33.43 7.47 11.93 2.52

Table 3.6: Memory usage comparison

Method Memory usage (GB)
eXpress 4.0
RSEM 4.0
Bowtie 1.2
Sailfish 6.2
RNA-Skim 12.1
Kallisto 3.8
Matataki 3.5
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Chapter 4

Conclusion

Matataki is much faster and user-friendly quantification method for RNA-Seq. My method

archived more than 300 times faster than alignment based method, bowtie/eXpress. My

method is also more than two times faster than other alignment free method. In addition, the

memory usage of my method is smaller than other methods. Since Matataki is even faster

than uncompressing bzip2 format or SRA format, the bottleneck of RNA-Seq meta-analysis

is now uncompressing sequences, not mapping reads.
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Part II

The development of massive analysis
method for large RNA-Seq dataset
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Chapter 5

Introduction

In past two decades, the number of published microarray data was rapidly increasing. Using

these microarray data, thousands of meta-analysis were performed [52]. For example, Tang

et al. [53] analyzed microarray data in TCGA [54] and revealed let-7b as a biomarker of

cancer. For another example, Mabbott et al. [55] found signatures to distinct B-cell subsets.

Microarray meta-analysis was widely accepted method.

RNA-Seq technology [34] is now de facto standard to measure gene expression level. The

number of RNA-Seq is also rapidly increasing today. The same approach with microarray

can be applied to RNA-Seq data now. However, the calculation time to quantify RNA-Seq

data was a big problem to perform meta-analysis of RNA-Seq. As I described in Part I, I

developed very fast quantification method to resolve this problem.

Gene coexpression is one of the most powerful applications of gene expression meta-

analysis to unravel novel gene-to-gene relationship or gene functions. For example, Bottcher

et al. [56] found a biosynthetic pathway, and confirm the genes in the pathway are co-

expressed using a coexpression database.

Currently, some papers describing gene coexpression databases were published. COR-

NET 2.0 [57] is a plant specific database of coexpression, protein-protein interaction, regu-

latory interactions, gene associations and functional annotations. They created Arabidopsis

thaliana and Zea mays coexpression data from microarray data. They also integrated other

41
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annotation, and developed user-friendly web-interface.

STARNET2 [58] is another coexpression database. They targeted Homo sapiens, Rattus

norvegicus, Mus musculus, Gallus gallus, Danio rerio, Drosophila melanogaster, Caenorhab-

ditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana and Oryza sativa, and created

coexpression data from microarray data. They stopped updating coexpression and the web

service was inaccessible in November 2015.

GeneFriends [59] provided RNA-Seq and microarray based gene coexpression data. They

targeted human and mouse. To create RNA-Seq based gene coexpression, they mapped reads

to genome using STAR [60], and counted the number of reads in the gene position with their

original Java based software. Owing to STAR, they processed over 4,000 RNA-Seq data and

succeeded to predict some gene functions with their gene coexpression data.

COXPRESdb [61] and ATTED-II [62] are only coexpression databases that provided

coexpression of plants, animal and other species now, and the qualities of almost all coex-

pression data were evaluated properly. Originally, these databases provide microarray based

coexpression data. These databases are updated every two years, therefore, the quality of

coexpression is improving steadily.

In this part, I calculated RNA-Seq based coexpression for 5 species, human, mouse,

rat, zebrafish, fruit fly. All coexpression data were evaluated with Gene Ontology. Since

I introduced Matataki to calculate animal gene expression, my processing pipeline can deal

with larger number of RNA-Seq in near future. I describe the methods to calculate RNA-Seq

based coexpression, and the results of comparison with microarray based coexpression. The

calculated coexpression data were released in COXPRESdb [61].



Chapter 6

Materials and Methods

6.1 Downloading and managing SRA files

All sequenced data including genome, RNA-Seq or other NGS-based sequenced data are

archived in DDBJ Sequence Read Archive [18], NCBI Sequence Read Archive [17] and EBI

Sequence Read Archive [11] under International Nucleotide Sequence Database Collabora-

tion [19]. Since the data size of archived sequences is increasing at an exponential manner

[63], downloading all data in these databases is impossible in realistic time. To determine

which SRA files should be downloaded, I downloaded all metadata about these SRA files

first. All metadata are written in XML files separately for each submission. Each submission

has the information about a submission, studies, samples, experiments and runs. Submission

data have the submission date and the name of submitter. Studies data have metadata about

studies, such as a study title, an abstract. Samples data have metadata about experimented

samples. They contain taxonomy ID, name of the sample and other attributes of samples.

Each experiment data has the information about an instrument to sequence, library strategy,

sample and study ID, and other attributes about an experiment. Each experiment has a

run. One run corresponds to one sequencing. I transformed this information into SQLite3

database. I selected runs that library strategy is “RNA-Seq”, instruments were manufactured

by Illumina and the number of run in a study is smaller than 50 and larger than three. When

I calculated gene coexpression, I normalized bias of experimenters, sequence centers by a

43
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gene centering procedure. In the procedure, I subtracted a mean expression level from each

gene expression level for each study. If one study has too many runs, it is hard to normalize

condition bias. Therefore, the number of run in a study was limited to 50 for Homo sapiens

and Mus musculus. Since the number of RNA-Seq sample is small in other species, the num-

ber of run in a study was limited to 200 for Rattus norvegicus, Danio rerio and Drosophila

melanogaster.

6.2 Estimate gene expression level

Gene expression levels were estimated by using Matataki I described in Part I. The detailed

parameters used in this analysis are shown in Table 6.1. To calculate expression level in

parallel, calculation pipeline was integrated with GridEngine [64].

Table 6.1: Parameters to estimate gene expression
Parameters for fastq-dump

Quality Filter Filter used in current 1000 Genomes data
Minimum Length 50

Apply left and right clips yes
Command Options -W -M 50 --skip-technical -Z --split-files --qual-filter-1

Parameters for Matataki
N 32

Step size: S 16
Accept count: M 2

6.3 Calculation of gene coexpression

6.3.1 Normalize expression data

Raw read counts of a sample is not comparable with other samples because the total number

of read sequences and the total abundance of RNA are different for each sample. Some nor-

malization methods were proposed in previous studies. I compared four methods, TMM [65],

quantile normalization [66], normalize summation of FPKM and raw value of FPKM. After

normalizing value, logarithm function was applied to expression value. I compared these
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normalization methods by evaluating with Gene Ontology term, described in the following

section.

6.3.2 Calculation of gene coexpression

Gene coexpression represents that how similar two gene expression patterns are. Similarity

of two gene expression patterns was measured by Person Correlation Coefficient (PCC). I also

introduced pre-process and post-process to reduce sequence bias and improve relationship

prediction performance. The overview of calculation method is shown in Figure 6.1.

First, I did gene-centering to reduce bias of experimenters and machines. Since raw

RNA-Seq expression profiles are biased by of experimenters or other non-biological factors

[67], these biases should be normalized. In this analysis, I subtracted the mean of gene

expression level from each gene expression profile for every study and every gene (shown

in Figure 6.1 (A) and (B)). A definition of one study was one study entry in the Short Read

Archive.

Second, Person Correlation Coefficient values were calculated for each gene pair (shown

in Figure 6.1 (C)). PCC is defined in following formula.

PCC(x, y) =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

√∑n
i=1(yi − y)2

(6.1)

, where x is a progression of a gene expression level, and y is a progression of another gene

expression level. Since a value range of PCC was different for each gene, a rank of PCC

was better measure to represent strength gene relationship. I used Mutual Rank (MR) [68]

to measure gene relationship in this study (shown in Figure 6.1 (D), (E)). Mutual Rank is

defined as following formula.

MR(a, b) =
√

(Rank of PCC a → b) × (Rank of PCC b→ a) (6.2)

I compared the performance of gene function prediction by using gene coexpression between

Mutual Rank and PCC using Gene Ontology based evaluation method describing in Section
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6.3.4

6.3.3 Implementation of gene coexpression calculation

Since a gene-expression profile table is too large to calculate PCC with existing software,

such as R, I implemented C++ based fast PCC table calculation software. It is optimized for

workstation with large memory and multi-core CPUs. All expression profile and correlation

data are stored in a memory-mapped file to access data efficiently. It is also multi-threaded

using OpenMP. This software can calculate PCC, PCC rank and mutual rank for all gene

pairs in 30 minutes with Intel® Xeon® CPU E5-2690 and 32 GB memory when the number

of gene is 20,000 and the number of runs is 5,000.

6.3.4 Evaluation of gene coexpression by using Gene Ontology

Gene coexpression data were evaluated with Gene Ontology (GO) [69]. Gene Ontology is a

vocabulary of gene function annotation. Part of genes is annotated with Gene Ontology to

describe gene functions.

When gene A shares Gene Ontology Term with another gene B, gene A may be related

to gene B. Since gene coexpression represents the strength of gene-to-gene relationships,

these relationships can be evaluated using whether a gene shares a Gene Ontology Term with

strong related genes.

The quality of gene coexpression was measured by partial area under curve (pAUC)

of receiver operating characteristic curve (ROC curve). When I assume that sharing gene

function between two genes corresponds to correlating gene expression pattern, the quality of

gene coexpression can be evaluated with checking whether highly correlated gene pair shares

Gene Ontology Terms or not. I defined truly related gene pairs with sharing at least one GO

Term, and predicted related gene pairs with mutual rank (shown in Figure 6.2). When gene

A has GO X and GO Y, and a threshold of a mutual rank is 1.9, gene B in Figure 6.2 is a

“true positive” because gene B shares GO X with gene A and a mutual rank between gene A
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and gene B is smaller than the threshold. Similarly, gene C is a “false positive” , gene D is a

“false negative” and gene E is a “true negative”. I repeated this procedure for all gene pairs

to calculate a true positive rate and a false positive rate.

ROC curve is a plot of true positive rates and false positive rates when a threshold is varied.

When a predictor can predict perfectly, ROC curve goes through top left. If a predictor predicts

randomly, ROC curve looks like a diagonal. Since gene coexpression data are often used to

predict protein complex, metabolic pathway or other gene functional relationships, prediction

performance in low false positive area is important than total prediction performance. I used

partial AUC (pAUC) instead of total AUC to evaluate prediction performance in the low

false positive rate area (shown in Figure 6.3). In this study, I focused on the range that false

positive rate is less than 0.01. pAUC will be 5 × 10−5 when random predictor is evaluated.

In this study, I used only limited part of Gene Ontology Terms to evaluate performance.

Gene Ontology Terms that are annotated to many genes are not informative because predicting

general GO is easy problem. I limited Gene Ontology that is annotated to 20 genes or fewer

genes and 5 genes or more genes. I evaluated prediction performance for each namespace

separately because each namespace covers different domains.

All Gene Ontology and NCBI gene2go were downloaded at August 11th 2015 from

geneontology.org/ and Human Genome Center NCBI mirror site.
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Results & Discussion

7.1 Statistics of SRA files

On September 9th 2015, 1,403,951 runs were registered in Short Read Archive. The number

of RNA-Seq runs was 226,937. The numbers of RNA-Seq sequenced for each species are

shown in Table 7.1. Since this number includes controlled-access data, such as dbGaP

[70], some data is available only for permitted users. In this study, I narrowed down to

runs that were sequence by Illumina sequencers to avoid the bias of sequencers, and part of

“Transcriptome Analysis” to ensure that RNA-Seq was performed for transcriptome analysis.

The numbers of Illumina sequenced and part of “Transcriptome Analysis” is shown in Table

7.1, column “type A runs”.

Some large scale studies have more than 100 runs. For example, a study SRP027537 has

4,894 runs. In the study, they performed a lot of single cell RNA-Seq and unraveled dynamic

paracrine control of cellular variation [71]. Normalizing experimenter or sequence bias of

these large scale studies is challenging because too large study may be performed by more

than one experimenter or sequencers. In this study, large-scale studies, that have more than

50 runs in a study were neglected to deal with bias and reduce download and calculation

time. The numbers of runs included in studies that have 50 runs or fewer are shown in Table

7.1, column “type B runs”. Since the numbers of RNA-Seq runs of other species were small,

I used 200 as the upper limit of runs in a study.
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Table 7.1: The number of RNA-Seq runs in Short Read Archive
Scientific name Taxonomy ID # of RNA-Seq runs # of Type A runs # of studies # of Type B runs

1 Mus musculus 10090 57311 49197 1192 12190
2 Homo sapiens 9606 59538 27692 1076 10738
3 Arabidopsis thaliana 3702 4294 3277 210 2278
4 Drosophila melanogaster 7227 8568 7620 228 1745
5 Saccharomyces cerevisiae 4932 3857 3022 90 927
6 Caenorhabditis elegans 6239 2125 1781 105 895
7 Danio rerio 7955 5676 5098 88 859
8 Zea mays 4577 2907 2253 82 669
9 Bos taurus 9913 1267 1005 46 587

10 Glycine max 3847 984 766 44 578
11 Rattus norvegicus 10116 4368 3987 59 469
12 Gallus gallus 9031 844 517 43 457
13 Chlamydomonas reinhardtii 3055 718 487 24 432
14 Sus scrofa 9823 495 411 39 319
15 Solanum lycopersicum 4081 1090 629 33 275
16 Escherichia coli 562 646 399 28 261
17 Schizosaccharomyces pombe 4896 539 222 30 222
18 Oryza sativa 4530 635 208 27 208
19 Ovis aries 9940 595 336 15 204
20 Oryza sativa Japonica Group 39947 427 199 15 199
21 Brassica napus 3708 313 268 13 193
22 Aedes aegypti 7159 953 839 13 156
23 Triticum aestivum 4565 626 304 18 147
24 Medicago truncatula 3880 365 143 11 143
25 Macaca mulatta 9544 910 577 21 142
26 Gossypium hirsutum 3635 335 139 21 139
27 Tribolium castaneum 7070 150 138 7 138
28 Escherichia coli str. K-12 substr. MG1655 511145 242 190 15 136
29 Vitis vinifera 29760 569 283 13 127
30 Xenopus (Silurana) tropicalis 8364 236 174 23 122
31 Solanum tuberosum 4113 157 118 11 118
32 Malus domestica 3750 278 216 13 117
33 Cryptococcus neoformans 5207 476 106 5 106
34 Neurospora crassa 5141 253 217 14 105
35 Anopheles gambiae 7165 505 148 13 96
36 Zea mays subsp. mays 381124 1017 863 10 95
37 Equus caballus 9796 728 656 8 95
38 Dictyostelium discoideum 44689 205 161 7 94
39 Pseudomonas aeruginosa 287 470 297 7 88
40 Staphylococcus aureus 1280 260 232 8 88
41 Callithrix jacchus 9483 166 88 7 88
42 Picea abies 3329 112 88 4 88
43 Salmo trutta 8032 88 88 4 88
44 Schmidtea mediterranea 79327 115 83 10 83
45 Candida albicans 5476 234 177 15 81
46 Mus musculus domesticus 10092 101 81 6 81
47 Macaca fascicularis 9541 312 80 5 80
48 Trypanosoma brucei 5691 86 78 7 78
49 Gasterosteus aculeatus 69293 105 75 4 75
50 Sorghum bicolor 4558 139 74 4 74

Type A run Study type is “Transcriptome Analysis” and platform is “ILLUMINA”
Type B run In type A runs, total numbers of runs in studies that have 50 runs or less
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7.2 Gene coexpression

I calculated gene coexpression for Homo sapiens (Human), Mus musculus (Mouse), Rattus

norvegicus (Rat), Danio rerio (Zebrafish) and Drosophila melanogaster (Fruit Fly). Mi-

croarray based gene coexpression data for performance comparisons were downloaded from

COXPRESdb [61]. The values of pAUC in GO prediction are shown in Table 7.2, 7.3, 7.4,

7.5 and 7.6. For quality control, I limited to RNA-Seq runs that have 50 or longer sequence

length and more than 5,000,000 mapped reads to calculate gene coexpression. The numbers

of RNA-Seq runs that were used to calculate gene coexpression are also shown in each table.

7.2.1 Comparison of normalizaiton factor

I compared four normalization methods: quantile normalization, TMM, summation and raw

value of FPKM. The results of human gene coexpression are shown in Table 7.2. As a

result, the prediction performance of quantile normalization showed the best pAUC score in

mutual rank and PCC. On other hand, summation normalization and TMM normalization

showed worse pAUC than other two normalization, raw FPKM and quantile normalization

in both mutual rank and PCC. The pAUC values of raw FPKM were the second best score

in both mutual rank and PCC, but the value of pAUC of PCC was much smaller than that of

quantile normalization. This tendency was also observed in Drosophila melanogaster and

Mus musculus.

7.2.2 Comparison with microarray-based coexpression

I compared the prediction performance with microarray based coexpression data. The results

are shown in Table 7.2, 7.3, 7.4, 7.5 and 7.6. As a result, the prediction performances of

Homo sapiens and Mus musculus were better than the performance of microarray based

gene coexpression data, even if the number of samples is much smaller than microarrays.

This observation suggests that gene expression quality of RNA-Seq is better than that of
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microarray, and RNA-Seq based gene coexpression is promising solution to predict gene-to-

gene relationship in the future.

The prediction performances based on RNA-Seq in other species, Rattus norvegicus,

Danio rerio and Drosophila melanogaster were worse than based on microarray. Since the

numbers of RNA-Seq samples of these species were much smaller than that of microarray

samples, more RNA-Seq samples are required to improve prediction performance.

7.2.3 Effect of sample size

I evaluated effect of the sample size for coexpression quality. I down-sampled RNA-Seq

studies and calculated pAUC of each Gene Ontology namespaces using Mutual Rank. As

shown in Figure 7.1, pAUC values were highly correlated with sample sizes in human and

mouse. This result suggests that Gene Ontology prediction performance of gene coexpression

will be improved when the number of RNA-Seq is increased in the future.

7.2.4 Availability

The result of gene coexpression is available as web-based databases at COXPRESdb (http:

//coxpresdb.jp/) and ATTED-II (http://atted.jp/).

http://coxpresdb.jp/
http://coxpresdb.jp/
http://atted.jp/
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Chapter 8

Conclusion

In this part, I calculated gene coexpression based on RNA-Seq and evaluated its performance

using Gene Ontology. As the result, gene coexpression based on RNA-Seq outperformed

in Homo sapiens and Mus musculus. In other species, performances of coexpression based

on RNA-Seq are worse than microarray because the numbers of runs are much smaller than

that of microarray. These results were published in web-based databases, COXPRESdb

(http://coxpresdb.jp/) and ATTED-II (http://atted.jp/). These databases are only databases

that the performances of coexpression were evaluated properly. I also evaluated normaliza-

tion methods of expression profiles and concluded quantile based normalization is the best

method.
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Part III

Comparison of Gene Coexpression
Profiles and Construction of Conserved

Gene Networks to Find Functional
Modules

61





63

This part is based on Okamura, Y., Obayashi, T. & Kinoshita, K. “Comparison of Gene

Coexpression Profiles and Construction of Conserved Gene Networks to Find Functional

Modules.” PLoS ONE (2015). doi:10.1371/journal.pone.0132039

http://dx.doi.org/10.1371/journal.pone.0132039
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Chapter 9

Introduction

With the sequencing of the human genome completed [6, 7, 72], the next step is to annotate all

of the functional elements in the genome, to reveal the genomic content. In spite of intensive

analyses using EST [73], CAGE [74] and/or comparative genomics [9, 75, 76], about half of

the genes remain uncharacterized. Thus, the focus has shifted to the functional annotation of

the genes [77, 78].

Although each gene has its specific function, complicated cellular functions are usually

achieved by combinations of individual functions, as in the ribosome, which synthesizes

proteins by the coordinated functions of many ribosomal proteins and RNAs. Metabolic

pathways are also good examples of genes that work together to achieve various biological

functions. Therefore, to understand the functional role of each gene, it is essential to

find groups of genes working with the same timing, by identifying genes with functional

relationships [79].

Various kinds of relationships can be considered to identify the functional modules.

Protein-protein interactions (PPI), obtained by high throughput experiments such as yeast

two-hybrid methods [80], provide some of the most comprehensive interaction data [81, 82],

but they only cover the proteins with direct interactions. In other words, genetic interactions

(e.g. transcription factor and target gene) and metabolic pathways are not included. Another

way to infer gene networks is based on the manual curation of the literature [83]. This
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approach provides high quality interaction data, but is quite time consuming and requires

large amounts of human resources.

DNA microarrays generate profiles of comprehensive gene expression patterns and their

clustering [84, 85] to detect functionally related genes. Since one gene expression profile

only provides a snapshot of a cell state, many expression profiles are required to detect related

genes with reliable accuracy. Currently, over ten thousand gene expression data points are

available for some microarray platforms, and they have been used to identify genes [86],

genetic interactions [87] and gene modules [88, 89].

To detect the regulatory relationships among genes, coexpression is a popular and promis-

ing approach [88, 90]. Coexpression is calculated from large amounts of expression data

obtained by microarray [32] or RNA-seq [34] experiments, to detect the genes with similar

expression profiles. In this part, I have focused on the microarray data, because the number

of available microarray samples is about 10 times larger than that of RNA-seq experiments.

RNA-seq has some advantages, in terms of the gene expression profile quality. However,

the number of samples is also an important factor to identify good functional relationships

between genes, because larger coverage of various conditions is necessary to detect subtle

functional connections. According to the progress of several international projects, such as

ENCODE [91], the amount of available expression data is rapidly increasing, but is still cur-

rently limited as compared with that of DNA microarrays. Our approach will be applicable

to RNA-seq data in the future, when larger amounts are available.

For the identification of gene functions, sequence conservation is also very useful. Since

comparative analyses of genome sequences have worked very well to identify new potentially

functional elements, as in the recent comparisons of 29 mammalian genomes [75], such

analyses are becoming a standard practice when new genome sequences are solved [76, 9, 92].

Since both gene expression and sequence conservation are useful to understand gene

functions, the introduction of conservation into analyses of gene expression profiles should be
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promising. Su et al. [93] compared the human and mouse transcriptomes, and found similar

gene expression profiles in the corresponding organs. More recently, Brawand et al. [94]

reported that the main differences in gene expression are due to the lineage, the chromosomes,

and the tissues. These approaches were very useful to characterize the functional relationships

among genes over species, but a serious problem still exists in the consideration of the

conservation of gene expression patterns. It is easy to obtain samples from similar organs,

but the similarity may not always indicate the correspondence of the organs. It is almost

impossible to obtain samples corresponding to the same type of cells in the same state.

To overcome this difficulty, some studies have proposed methods to match samples over

species. Le et al. [94] developed a method to match experiments over species, by introducing

a new distance function between the samples, and Wise et al. [95] tried to match experiments

based on their descriptions along with the expression data. These methods may work well

to find similar gene expression states, but they naively assume that homologous genes have

similar expression profiles. As I describe in this part, this assumption is not always true.

I now propose a new method to compare gene expression patterns without sample match-

ing, to focus on the relationships among the genes in each species and to compare the

relationships among species. In this approach, I assume that the interactions between genes

are conserved over species, if the interactions are fundamentally important for the biological

roles of the genes. More precisely, I introduced a new method to measure the coexpres-

sion similarities. I created gene networks based on the conserved gene coexpression to find

the functional modules by using a graph community detection algorithm, and found some

well-enriched functional gene modules without any prior knowledge.
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Chapter 10

Results

10.1 Patterns of coexpression conservation

I compared the gene lists of the corresponding (or homologous) gene pairs to evaluate the

conservation of coexpression patterns and expression data from two species, human and

mouse. For each human gene (referred to as the guide gene), a list of coexpressed genes

was created by ordering the genes by the coexpression strength, and a corresponding list of

mouse genes was constructed for each homologous gene to the guide gene. The coexpression

conservation of a homologous gene pair was measured as the similarity in the lists for the

top N genes (Figure 10.1A). When the human guide gene had multiple homologous mouse

genes, I compared the coexpressed gene lists for each pair of homologous genes. Next, I

drew a “conservation chart” based on the number of corresponding gene pairs in the most

coexpressed N genes, as shown in Figure 10.1B. If the human and mouse coexpression

lists are exactly equal, then the conservation chart should look like the blue dashed line in

Figure 10.1B. If the coexpression lists are equal to Figure 10.1A, then the conservation chart

looks like the red dashed line in Figure 10.1B. A conservation chart represents the degree of

similarity in the coexpression lists and indicates where the similarity exists.

One of the highly conserved genes was RPS14 (ribosomal protein S14), which had 71

corresponding genes in the top 100 most coexpressed genes (Figure 10.1C). Among the 60

genes, 55 are ribosomal genes, which correspond to 92% (=55/60) of the human ribosomal
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Figure 10.1: Overview of the conservation calculation method

(A) Schematic explanation of the comparison method for the conserved gene lists. Prepare
a gene list pair for an orthologous gene pair from human and mouse. Count the number
of human genes (yellow highlighted genes) with corresponding genes in the top N genes,
where green arrows mean corresponding gene pairs. When a human gene corresponds to
multiple mouse genes, I counted one human gene. However, when a mouse gene corresponds
to multiple human genes, I counted all of the human genes. (B) Conservation chart of (A).
This chart illustrates the change in the number of corresponding genes against the parameter
value, N. (C) An example of a conservation chart for the most conserved guide gene. (D)
An example of a conservation chart with a typical shape. (E) An example of genes with a
turning point.
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genes tested. This result partially demonstrates the potential of our approach to detect related

genes. However, many genes have low coexpression conservation, as in the example of

PSMD9 (Figure 10.1D). On average, 13.1 genes were found to have corresponding genes in

the top 100 most coexpressed genes.

Although the “shapes of the conserved lines” in the conservation charts were quite

divergent and thus prevented a systematic classification, I found an interesting pattern, as

shown in Figure 10.1E for SYCN (syncollin). This gene has a well-conserved region for

the top 39 genes, while there were only slight increases after that, and 24 of the 39 genes

have the homologous genes in mouse. SYCN is involved in the pancreatic secretion pathway

(KEGG:hsa04972), and 12 of the 24 genes are also involved in the same pathway. This

observation suggested that SYCN and the 24 genes may form a functional cluster for the

pathway. When we assume that functional gene clusters are conserved over species, then the

two coexpression lists for the orthologous gene should be similar over species. Therefore, it

may be possible to detect the functional clusters by focusing on the well-conserved regions.

Hereafter, I refer to the genes in conserved regions that have corresponding mouse genes

(namely, the 24 genes in the above example) as “conserved coexpressed genes” or in short

“CC genes”.

10.2 Identification of conserved coexpressed genes

To detect the CC genes from the conservation chart, I tried to identify a turning point, where

a well-conserved region goes into a less conserved one. For this purpose, I searched for

a point by detecting a flat region in each conservation chart, because a conservation chart

should be flat for the genes in a list if the orders of the two coexpression lists are random.

Thus, the initial point of the flat region was defined as the turning point, and I defined the

conserved region as the part on the left of the flat area. The CC genes were identified as the

corresponding genes between human and mouse of a guide gene in the conserved region. See



72

the Materials and Methods section for the details of the turning point detection and the CC

gene identification. As a result, 4,672 guide genes had a turning point. Each guide gene had

6.6 genes on average, and 3,776 non-redundant CC genes were identified.

10.3 Conserved gene network in human

To visualize the relationships among all of the guide genes and their CC genes, I represented

them in a network style, where each node corresponds to a gene and an edge is drawn from a

guide gene to a CC gene, and removed all of the unidirectional edges. The resulting networks

are shown in Figure 10.2A. The networks consisted of one large and twenty small networks.

Since the large networks were too big to interpret, I separated them into more tightly

related gene modules for convenience. For this purpose, I used the community detection

algorithm developed by Palla et al. [97] for all of the networks shown in Figure 10.2A. This

algorithm searches for densely connected sub-networks by integrating small cliques, and thus

requires one parameter, the smallest clique size (SCS). I first used a default value (SCS = 4)

and found 70 modules, as shown in Table 10.1. To characterize the functional roles of the

modules, I performed GO enrichment analyses by the Fisher exact test, and selected the GO

term with the smallest p-value from the statistically significant terms as the representative

GO term.
Table 10.1: Detected gene modules Summary of detected gene modules and representative GO terms when SCS = 4

C1ID Size GOID Representative GO name # of GO annotated genes # of intersect p-value

1 404 GO:0002376 immune system process 1897 232 1.14E-99
2 97 GO:0043588 skin development 295 27 2.32E-19
3 83 GO:0030198 extracellular matrix organization 353 32 2.81E-26
4 67 GO:0006936 muscle contraction 255 35 4.16E-40
5 48 GO:0060271 cilium morphogenesis 153 7 1.68E-02
6 43 GO:0072376 protein activation cascade 52 11 5.09E-14
7 42 GO:0006414 translational elongation 88 35 3.85E-70
8 32 GO:0045333 cellular respiration 145 25 6.40E-41
9 31 GO:0006986 response to unfolded protein 128 10 1.84E-09

10 28 GO:0016126 sterol biosynthetic process 48 18 1.55E-35
11 23 GO:0008544 epidermis development 256 8 8.33E-05
12 22 GO:0007586 digestion 107 8 4.98E-08
13 21 GO:0007601 visual perception 175 16 4.15E-23
14 19 GO:0006520 cellular amino acid metabolic process 430 15 7.19E-16
15 19 　 　 　 　
16 18 　 　 　 　
17 17 GO:0048285 organelle fission 496 12 2.77E-10
18 17 　 　 　 　
19 16 　 　 　 　
20 15 GO:0019915 lipid storage 57 6 3.59E-07
21 14 GO:0048706 embryonic skeletal system development 116 11 4.46E-17
22 13 GO:0006458 ’de novo’ protein folding 52 9 8.23E-16
23 12 GO:0034728 nucleosome organization 87 5 1.42E-04
24 10 GO:0030317 sperm motility 35 3 4.26E-02
25 10 GO:0045333 cellular respiration 145 8 9.16E-11
26 10 GO:0006936 muscle contraction 255 6 1.45E-04
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ID Size GOID Representative GO name # of GO annotated genes # of intersect p-value

27 9 GO:0007156 homophilic cell adhesion via plasma membrane adhesion molecules 91 9 2.48E-16
28 9 GO:0042438 melanin biosynthetic process 14 6 5.12E-13
29 8 　 　 　 　
30 8 　 　 　 　
31 7 GO:0006397 mRNA processing 393 7 2.62E-07
32 7 GO:0006096 glycolytic process 61 6 7.87E-10
33 6 　 　 　 　
34 6 GO:0006956 complement activation 32 5 6.04E-09
35 6 GO:0031427 response to methotrexate 4 2 2.43E-02
36 6 　 　 　 　
37 6 　 　 　 　
38 6 GO:0043407 negative regulation of MAP kinase activity 65 4 1.50E-04
39 5 GO:0015988 energy coupled proton transmembrane transport, against electrochemical gradient 27 3 1.60E-03
40 5 　 　 　 　
41 5 GO:0007588 excretion 63 3 2.16E-02
42 5 GO:0006364 rRNA processing 107 5 5.32E-07
43 5 　 　 　 　
44 4 GO:0009954 proximal/distal pattern formation 29 4 3.52E-07
45 4 　 　 　 　
46 4 GO:0002331 pre-B cell allelic exclusion 3 2 4.87E-03
47 4 GO:0006631 fatty acid metabolic process 296 4 4.65E-03
48 4 　 　 　 　
49 4 GO:0008211 glucocorticoid metabolic process 24 4 1.57E-07
50 4 　 　 　 　
51 4 GO:0006687 glycosphingolipid metabolic process 49 4 3.14E-06
52 4 GO:0007339 binding of sperm to zona pellucida 32 3 1.09E-03
53 4 　 　 　 　
54 4 　 　 　 　
55 4 GO:0006521 regulation of cellular amino acid metabolic process 60 4 7.23E-06
56 4 　 　 　 　
57 4 GO:0022904 respiratory electron transport chain 93 3 2.83E-02
58 4 　 　 　 　
59 4 GO:0006986 response to unfolded protein 128 4 1.58E-04
60 4 　 　 　 　
61 4 　 　 　 　
62 4 　 　 　 　
63 4 　 　 　 　
64 4 GO:0019322 pentose biosynthetic process 4 4 1.48E-11
65 4 GO:0060481 lobar bronchus epithelium development 5 2 1.62E-02
66 4 GO:0070059 intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress 29 3 8.00E-04
67 4 　 　 　 　
68 4 　 　 　 　
69 4 　 　 　 　
70 4 GO:0002399 MHC class II protein complex assembly 4 2 9.74E-03

As a result, 45 of the 70 modules had significantly enriched GO terms. For example, the

representative term of the largest modules shown as ID: A-1 in Figure 10.2A was GO:0002376

(immune system process), where 232 out of 404 genes had the GO term.

Some detected modules are not labeled with a Gene Ontology Term, as in the cases

of the 15th, 16th, 18th and 19th modules. These modules had no significant terms with

P-values < 0.05, and thus might be novel functional modules, such as the other modules with

significant terms, because they have comparatively strong conserved coexpression.

Some gene modules had similar annotations and overlaps, indicating the existence of larger

modules, if I searched modules for lower density. To elucidate the relationships among the

modules, I observed the overlaps by changing three different SCS parameters of the module

detection algorithm. I used three, four and five as the SCS to reveal both the low-density

modules and high-density modules, as recommended by Palla et al. [97]. The numbers of

1C: Community
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RPN2

FKBP2 MRPS18C
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ELOVL1
KERA

MOB3A

CEBPZC12orf57

RHOG

S100A1

EFHD2

MSN

LRP10

PLEKHO2

PFDN5

CRY2

ORAI1

CWC22

FKBP5

SOD3

FMOD

ZC3H15

MGAT1

IRS2

SMTN

ANTXR2

SH3KBP1

ESF1

SSB

LTBR

MIF

MPHOSPH10

CA9

ATP5G2

TMBIM1

S100A16

SLC2A1STAT6

RPL27ARPS6
EEF2

RPL19
RPS21
RPS25

RPL36A
RPL22L1

RPS15A

RPS10

RPS2
RPLP1

NAA15

KLF7
KLF11

ARRDC3 CRIP1

CREG1

VEGFA

RPS9
RPS19ARRDC4

ARRDC2
RPL37ARPS26

EEF1GRPL24

PER1RPL6

PABPC1

TSC22D3

RPSA
RPL13A

RPL3PRELPRPL27
RPL23

RPS4X

S100A13
TNFRSF1A

TPT1

RPL18
EGLN3

RNF130

RPL10

STAT2

RPLP0
RPL32

GNB2L1

RPL34RPL4

EEF1B2

RPL7
EIF3H

RPS8

CD44CEBPD

TGFB1

JDP2

IL4R

VIM

AMOTL2

TWIST1

SHOX2TGFB3 CD248

ADAMTS5 KIRRELCOL15A1

ASPN

LTBP2
ADAM12

RPS6KA1

HNRNPA1

LPXN

CXCL13

AOC3

GNGT2

HLA-DRB1

CCL19

IKBIP

ELNTHBS1
C1QTNF2

GREM1 SET

MFAP4

RCN3

HLA-DMB

PLA2G2D CD74

STK17B

SRSF1

CIITA

FOLR2

GPX7

ITIH5
COL5A1WISP1

LTBP1

FST

EMILIN1

MYH10

CSRP2

GJC1

NSA2

GLT8D1

PTX3

ECM2

EDN1

IFNA1
RSL1D1 MT1E

TNFAIP6

NNMT
PXDN

IL1R1

VCAM1

EBF3

EPAS1

PARD3

DMD

TCEAL1AFAP1L2

PLAT

ROBO1

RAB34

ST5

VASN

LRRN4CL

EBF2
ENPP2

RBMS2
TBX15

ADAMTS1

MAP1B
COL11A1

TJP1TMEM47

SNED1

TIMP3

BNC2

MRGPRF

RILPL1

DAG1
TRIP6

CAPZA1

LSM5

ARMCX3

ACTR3

BHLHB9

CDH2

AMOTL1

TM4SF1

FBLN7NID1

SEMA3C

HTRA1

LHFP

SOX9

SYDE1

PHLDB2

COL4A2

YAP1

MYO1B
DPYSL3

CFL2

MXRA8CLMP

GNG12

AXL

SNX7

PLOD3

ERO1L

ARMCX1
ARMCX2

ARPC2

ARHGAP29

TCEAL8

ARMCX6

DNASE1L3C2

RARRES2SERPING1

FLRT2
TIMD4

C1R

PCDH7

CPXM1

LDLRAP1TNFRSF1B

EBF1

RNASE6

CD163

TNS1

VSIG4
FNDC1

TENC1

ZFPM2

HSPG2
C1S

VCAN

COL5A3

PCDH18

CNN3

FN1

NR2F2

BTF3L4

STAB2

CASKIN2

CD5L

ZEB2

MAGOH

PPIH

TCF4

CFH

FAT4

SLIT2

SPIC

RBMS3

COPS2
UCHL5

PSMC4
PTGES3 EIF2S2

MAP2K3
CCT2 DDX1

SPRY1 SNRPB2

ANTXR1
COL6A3COL6A2

LAMC1

LAMB2
LPAR1
MMP2

DDR2
EPHA3

LUM
DCN FIBIN

SDC2
COLEC12

COL6A1

HIC1

PTGFRN

CAV1

GPC6

PPIC

P4HA2

PTPN14

FERMT2
GPX8

OLFML2B

LEPREL2

HAS2

COL1A1

ZFHX4

CTHRC1

THBS2

TSPAN11

FKBP7

SVEP1

CXCL12

B3GNT9

DAB2

KDELC2

CAV2

SELM

LOXL2

SLC2A10

FAM114A1

TRAM2
APOD

LHFPL2
KDELR3

SULF1
FKBP14

NPR2PMP22
TMEM45A

TIMP2

WLS

GPC4

PRKD1

SNRPG
MPDZ

STIP1

GULP1

GLI3
SNRPF

CREB3L1

LEPRE1

FKBP10

LEPREL4

CERCAM
SLIT3

ACKR3

PFDN4

CAND1

RAN

HSP90AB1

LRPPRC

MKNK2

HSPE1

PSMD8

FAM98A

TCP1

CACYBP

LARS

RBM42

ADRM1

HSPA8

METAP2 CCT4

NARS

AHSA1CCT8
EIF3J

CCT5

HSPD1

CCT3

SLC3A2

HSP90AA1 PHGDH

SHMT2
CCT6A

MTHFD1L
MRPL3

TBC1D8B

LSM6

ARFGAP3

SLC30A7

XPOT

FNDC3B

SEC24D

CRADD

IL10RB
MARS

PDIA5

GARS
PNPT1

PSAT1

AARS PSPH

TOMM70A
IARS

SLC7A1

SEC11A

SDF2L1

SEC23B

SSR3

SSR1

DDOST

DNAJB11

GMPPBOSTC

TMED2

PARP3
IFITM3

NT5C3A

NOD1

IL15RA

AHNAK2

CMTR1

PDIA4CTSO CRELD2
RPN1TXNDC11

HERPUD1

IRF2 HSP90B1

DNAJB9

TARS

XBP1

FCGRT

IFNAR2
IFITM2

ABCE1

TCIRG1

MAPKAPK3

SLC35B1

HSPA5

FICD

SEP15
COPG1

SND1

PSMA1

NUCB2

HYOU1

UGGT1

PDIA3CANX
SH3BP2ARF1 MANF

PNRC1

IFI44L

LGALS3

ARPC1B

SLFN12

CMTM3

UBA7

ACSL5

DDIT3

GSDMDLGALS1

HERC6

CORO2ADTX3L

TRIM25

CASP7

BATF2

B2M

TRIB3

GPT2

BTG1CISH

ZC3HAV1

IDO1

HLA-E

DOCK4

CHAC1

NFKBIB

CXCL11

ETV5

CXCL10

EHD1

TAP2

TDRD7

EIF3M
PYCR1

IPO7
ASNS

CPQ

SLC7A5

DNAJA1ALDH1L2

PLTP
STC2 HSPH1

OSTF1
IPO5

COL8A2

IL18BP SPRED2
APOE

SLAMF8

CHORDC1
PRRX2ETV4

IFI27 MTHFD2

PCK2

SOCS2

CARS

CTH

EIF4EBP1

CRLF1

YARS

SARSTLR3IFI44

TRIM5

NMI

ZBP1

RSAD2

IFIH1

IL15
ERAP1

OASL

PARP12

ERH

ARPC5 MAGOHB

PTCD3
LSM7

FKBP4

EDNRA

ABI3BP
IGFBP7

PRRX1
AEBP1

TWIST2

ADAMTS12
SERPINH1

FZD1

COL3A1

PRSS23

SPARC

LAMB1

PARVA
TEAD1

EHD2 MXRA7

IGFBP5

RCN1
WISP2

P4HA1

BMPER

PLS3

PLOD1
PRKCDBP

GAS1NBL1 SNRPD1

AJUBA
CSPG4

PPAP2B FAT1PTRF

YPEL3
ACAT2

AACS

INSIG1
DHCR7

SC5D

ACSL3

HSD17B7

C14orf1

FDFT1

EBP
FDPS

PMVK

HDAC5

RNF167

ACLY

FASN

MVK

TPRG1L

INPP5KABTB1
SREBF1

FADS1

MVD

SREBF2

PCSK9

LSS

FADS2

ACACA

PINK1

STARD4
WDR45

RDH11
CNOT3

HMGCR

CIC

IDI1

DHCR24

NSDHL

MSMO1

LDLR

CYP51A1

MRPS18B

HMGCS1

SQLE

GUCA2A

GADD45GIP1

MRPL12

PSMB3

MRPS7STOML2

MRPS12

WDTC1

RAVER1

PSMB2

PDK2

DRG2

MRPL38

CHP2

TM4SF20

PPP1R14D

MISP

CDX1

SLC26A3

TRIM31

HNF4G

ITLN1

CDH17
GUCY2C

EPS8L3

NME1

GPA33

ALG1

LGALS4

KRT20
MYO1A

MUC13

PJA2

PPP6C

CUL3

ATAD3A

TBC1D15

THOC6

ACE2

HNRNPL

GUCA2B
MEP1B

PABPN1

ANXA13

SNRNP40

CCNDBP1

SRSF9

RBP2

LRRC66

CDHR2

TRIM15

CIRH1A

RRP9

GRWD1

HPDL

ALG3

NLE1
POLR3D

ZNF593

TOMM40 HSPBP1

ALYREF

LAMP2

MAX

GABARAPL2

GABARAPL1

TM4SF5

GCNT3

GIP

TRIM40

PRAP1

IHH

CDX2

SLC51B

SLC39A5

TRAP1

IMMP2L

MIPEP

FHIT

CLUH

ATAD3B

CLYBL

ETFB

ENDOG

ECI1

SARAF

ITM2B

ECHS1

FAM195A

CHCHD10

SERINC1

WDR4

DPH2

TAF7

LAPTM4A

RNF11

NOB1

PPAN

BCKDHB

GPBP1
HSD17B4

PWP2

NOP2

OSGEPL1

UTP20

HADHA

ACADM

QDPR RSRC2

ECE2

BYSL

METTL1

BNIP3L

WDR1

DNAJC14

WDR74

NOP16

PAFAH1B2

ARF6

PRPF4 MAP1LC3B

PSMD1 PSMD12

PSMD2

FAM134A

PSMC2

PHB

CNPPD1
VCP

ICT1GRINA

RENBP
LRPAP1

ATG9A

NUDT18

RANBP1

CLCA1

DPP7

CALCOCO1

HGS

AK2

ABCF3

EIF2B5

NUDT11

PRRC2A

ASAH1

MANBA

SUMF1

SLC8B1

MFSD1

NHP2

ABHD12

P2RX4

HMOX1
TMEM179B

PLBD2

TSPAN4

ARSA

CHID1

GHDC

CRTAP

RGL1

DDRGK1
MRPL17

MRPL36

KIF12
FXYD4

KCNJ16

FOXI1 BSND

CDH16

TMEM213

SLC23A3

TMEM72

SLC17A1

CLCNKB
AQP2

SLC22A12 UMOD

KCNJ1

SLC12A1

SLC6A19

SLC7A13

SLC22A6

SLC5A2

MIOX

FAM151A

SLC22A8

TREH

SLC34A1

SLC28A3

PDZK1IP1

MEP1A

GIPC2

SLC51A

SLC5A1

TINAG

LRRC19

TMEM174

NPHS2

SLC5A10

TMEM207

SLC13A3

HNF1B

SLC5A12

KL

C14orf105

WDR18

TMEM27

NAT8

THOP1

ACSM5

AGXT2

SLC17A3

GLYAT

CLDN10

ATP6V0A4

PAX8

UAP1L1
C1orf85

PSMA6

PSMA4

SERP1

SARNP

SIL1
PHKG2

PSMA3

WBP2

AOC1

PSMC1

DERL2

RUVBL1

PPP2R3C

DDX18

CRIPT

SF3B6

FARSB

ULK1
RPP40

ATG2A

PSMD4

HARS

EPRS

NUDC PSMD13

KARS

WDR12

CHIC1

ZNF711

FASTKD2

BEX1

BEX2
WBP5

BEX4

NGFRAP1

EIF2B3

CDK4

CCT7

PLD1

DNAJB2

PSMC5

GART

WDR75 MAGED1

GSPT2

SCD
SMARCA1

MAGED2

SERPINA7F2

SERPINA10

FGB
APOC4

CPN2

IGFBP1

HPX

VTN

SLC10A1
ABCG5

MTTP

SLC3A1

LEAP2CYP3A4 PDZK1

ADH4

PROC

CYP3A43

PGLYRP2
SLC38A3

KLKB1
SAA4

SLC17A2

ITIH1

F11

HAAO

ABCB11

APOH
MASP2

ITIH2

CRP

SERPINC1

ITIH3

HAO1
MAT1A

ABCC6FTCD

AGXT
C9 APOA4

GCKRHOGA1

HRG
CREB3L3

CYP2C19

HGFAC

CYP1A2
APOA5

APOA2

CPB2

APOC3FGA

C8A
C8B

SLC25A47

AMBP

ANGPTL3
TTR

SERPINF2

AHRR

CYP8B1

ABCG8

PLA2G12B

CYP1A1

NR1I3
CLDN2

HPD
CA5A FETUB

CYP3A7
PLG

MRAP
RBP7 TIMP4

PAK4

DGAT2

PDCD10

AGPAT2

PCK1
CMPK1

SH3BP5 C14orf180

UBE2G1

KLB

RPA3

LDHD

PPP2CA

CEBPA

MOB4

INHA

IFT74

PCBP2

PCBP1

EFCAB7

CCDC34

EIF4H

ACYP1

HSD3B2

NR1H3

CYP17A1

CYP11A1

CYP21A2

MGARP

ITGB3BP

LHCGR

SOAT2

LSM3

FAM103A1

RBP4ALDH4A1

CYP11B1

C19orf80

STAR

WDR60
BBS2

WDR19

DYNC2LI1

IFT88

HIST1H3A
HIST1H3E

OPN1SW HIST1H3I UTF1

PRPH2

SAG

PDE6C
RP1

IMPG1

ANKRD33

RD3 KCNV2

GNAT2

PDE6H

RPGRIP1

HIST3H2A

HIST1H3B

HIST1H1C

HIST1H2BJ

HIST1H3F

HIST1H2BD

HIST1H3C

HIST1H3G

HIST1H3J

HIST1H1E

HIST1H2BK

CRX

RBP3

RGS9BP

CABP5GNB3

TULP1

PDE6ANRL

GNAT1PDCPDE6G
GNGT1

ARR3
RCVRN

IAPP

SERPINI2

PNLIP
INS

CUZD1
PRSS1 CPA1

GKN2

GKN1

GIF

ATP4A

ANXA10

VSIG1

GHRLATP4B

GAST

PGC

PNLIPRP1

REG1B CTRL

SYCN
REG3G

GP2CELA3B

CTRC
PNLIPRP2

CELA2A
CTRB2CLPS

CPA2

PPY
CPB1

PLA2G1B

C17orf105

TMCO2

PRM2

CCDC54

CAPZA3

GALNTL5
EQTN

HMGB4

KLHL10

LDHC

PGK2

TEX33

TNP1

TNP2

FAM221B

AKAP4

SPACA7

SSMEM1TMEM225

CABS1
ACRV1 C3orf30

LYPD4C7orf62

TMCO5A

DDI1

ASB17

SCP2D1

C3orf22

PLCZ1

LRP4

SP5

TNFRSF19

NKD1

ZNRF3

AXIN2

APCDD1

NOTUMPCDHB7

PCDHB11

PCDHB14

PCDHB13

PCDHB5

PCDHB15

PCDHB12

PCDHB16PCDHB3

CLIP3

MAP1A

RAB39B
KIF5C

ARNT2

KIF5A

NAP1L2

SYT11

MAEL

DPPA2

ZSCAN10
NAP1L3

NAP1L5

GTSF1

TDRD12

GDF3

ZFP42 TSPYL4

DPPA5

STK31

NODAL

OOEPLEFTY2

CHCHD6

IRAK1BP1

IFT22B9D1

TMEM107
TCTEX1D2

DPCD

TXNRD3

TMEM231LRRC48

IFT81

ARL6

STEAP1
BBS5

TTC26

DYNLRB2

KIAA0895

NPHP1

STEAP2

C11orf70

MORN2

FAM229B
SPA17

DNAH12

DYNC2H1

PPP1R36

CFAP45

NME5

C6orf165

CCDC65

RIIAD1

PIFO

C14orf79

KIAA1377

ARMC3 C17orf97

OSCP1

CFAP69
MEIG1

WDR63

LRGUK

CFAP43MAATS1

DNALI1

LRRC23

SPAG17

CCDC151

EXO1

MKI67
DNAJC9

RBBP8

CDK1

TROAP

IQGAP3

TOP2A

FANCA GTSE1
CDCA5 MCM10

KIF15 DIAPH3

SUV39H2

WDHD1

CHEK1

HELLS

CENPH

AURKA

PKMYT1

NCAPH

CENPOPOLQ

PTTG1

MTFR2 HAUS8

PIF1

C16orf59

BUB1

C1orf112

FANCB

KIF24

HMGB2

KIAA0101

SAE1

ERCC6L

PRIM2

FEN1

RRM1

CKAP5

CIT

CENPM

WEE1

TFDP1

REEP4

CDCA3
CDC6

RAD54B

PBK

ESCO2

TK1

DDX11 TONSL

XRCC3

CHTF18

RECQL4

CCHCR1

H2AFZ

LBR

BUB3

SAP30

TMPO

RFC5

LIG1

MCM7
NASP

SSRP1

MCM2

RFC2

DNMT1RCC2

CD36

TBC1D17
MEOX2

ADIPOQ

ABRACL

FABP4

OSMR

ARHGEF3

PPHLN1

DHX15

GIMAP8

RNF138
GIMAP4

S1PR1

STOML3TTC29CCDC103

CDHR3

FAM216B

CAPSL

TMEM232

DNAJB13

LCA5L

ZMYND10C1orf194 STK33 PIH1D2C9orf116
IQUB

RAP1A

ANGPTL1

RAP1B

CAPZA2

MEOX1

CFD

GPD1
THRSP

LIPE

FOXJ1

RSPH4A

ZMYND12

C1orf192

TTC25

DNAI1

FAM154B
C4orf22C11orf97

CCDC11RSPH1
MYCBPAP

UBXN10

TEKT1

TSNAXIP1

HSPA2

CCDC81

TEKT2

WDR16

G0S2

TTC8

QKI

GIMAP1

GIMAP7

HSD11B1

GIMAP5

INF2

VAPA

PPARG

CIDEA

CIDEC
LPL

SOX13

PDK4

AQP7

PLIN4

ACVR1C

GPR143
SLC45A2

MLANA

TYR

OCA2

PMEL

DCT
TYRP1

AIM1

TMC4

MPZL2 MPZL3

WFDC2

EPS8L1

PKP3

EVPL

GJB3

GYLTL1B

CRB3
LAD1

KIAA1522
LLGL2

TMPRSS4

CCDC64

ATP2C2
CBLC

IGSF9 CAMSAP3
TJP3

TMPRSS11ESULT2B1

OVOL1

GRHL1

MUC15

CCDC64B
FAM83F

ST14

CGN

EPCAM
BAIAP2L1

ARHGEF16
BNIPL

ELF5

GRB7

CLDN3

CLDN7 EPB41L4B

ATP6V1C2

RAB17

EPB41L5

TMEM79

DSG2

KRT7

CLDN4
F11R

KRT8

PKP2

SPDEF

KIAA1324

MLPH

MANSC1

KIAA1244

KRTCAP3

OVOL2PRSS8

KRT18KDF1MARVELD3

ESRP2

C1orf210

CDH1

TMPRSS2

MAP7

PARD6B

AP1M2

TUFT1

PRR15L
BSPRY

HOOK1

F2RL1

PTPRF

C4orf19
LRRC1

MYO5B

B3GNT3

CXADR

GOLT1A

KIAA1804

DSC2

EFNA1

PERP

HOOK2

ELMO3

ELF3LRRC8E

SPINT1

RIPK4RASSF7

PIGH

AGR2

KIAA1598

GPR160

STX3

CAPN9 SLC44A3

PLEKHH1
RBM47

EPPK1

TSPAN1

SLC44A4

RHPN2

ZDHHC23

LNX2

MAL2

EPS8L2

ERBB3

GRHL2
PROM2

MYO6

USP43

FAM83H

ILDR1

ALAD

TBCEL

GLRX5

UBAC1

SLC48A1ABCG2

TAL1UROD

MARCH2

HAGH

DENND2C

HBE1

TRIM10

HBZ SLC25A37

BPGM

GYPC
FAM210BEPB42

PAQR9
FECH PROK2

BLVRB

HMBS

C17orf99

XK

FAM117A

UBE2O

PIP5K1B

STRADB

RANBP10

RNF123

MKRN1

DCAF12

FES
RASGRP4

FGR

MCEMP1

PLBD1

IRAK3

CLEC4D

PSTPIP2

PLCB2

NFE2

GATA1

CA2

COL7A1
TMEM40

GFI1B

SLC4A1

YPEL4

SLC14A1

CA1

FHDC1

SLCO4C1

ELANE

RHD

TMCC2

ICAM4

SPTB

TMOD1

ART4

ANK1

MBOAT2

SLC38A5

SMIM5

KLF1

RHAG

RHCE

TSPO2

SNCAKEL

ALAS2

HEMGN

SPTA1

CBFA2T3

EBI3

CLEC4A

CXCR2

FHL1

PPBP

PHF21B

GAP43

MINK1

CELSR3

NEUROD1

ASCL1

IGFBPL1

MYT1

INSM1

DLL3

HEPACAM2

MAST1

APC2

PTPRN2

SCGN

PCSK1

TFEB

DPYSL5
TAGLN3

MAP7D2

INA

NEFM

STMN2

DCX

NEFH

CRMP1

STMN4

MARK1

AP3B2

CADPS

CHGB

SVOP

SCG2

RAB3C

CHGA

FAXC

DISP2

SCG3

RUNDC3A

SST

SYT4

PPFIA2

SCG5

ARHGEF7

TMEM130

SLC7A14

GPR85

NRSN1

GPR22

ERC2

NMNAT2

ZNF385A

ZBTB7B

CAMTA2

SHDELAVL4

SLC17A6

SYN2

RIT2

RALYL

NPY

NALCN

MYT1L

ST8SIA3

MAP4

FAM155A

MEX3B
TUBB2B

SOX11

RCOR2

ATXN2L

TUBB2A

CHRNA1

CACNG1

TECRLTXLNB

UNC45BCACNB1

SYNPO2L

NMRK2

LRRC39

RYR1

MYL1TNNC2

GGA1

MYL2

MSS51

MYH1

TCAP

LMOD2TNNI1

SH3BGR
MYPN

CACNA1S

RBM20 ACTN3

MYH8HFE2 PGAM2
MYOT

XIRP1
LOC285556

TNNI2AP2A1
LMOD3PYGM

ATP2A1
KLHL41TTN

MYH4
LRRC2

MYBPC2

MYOZ2

MYOM2

AMPD1

ASB2

TMOD4

PDLIM5

CSRP3

SGCG

PRKAG3

CORO6

ANKRD2

IP6K3

TRIM63

ASB11

PRR14

HSPB2
SCAF1

ITGA7

CRYAB

FLJ22184

MYLPFTNNT3

ANKRD1

APOBEC2

MYOM3

CKMT2

MB
DES

SMTNL2

ABRA

SRL

MYH6
LDB3

COX6A2 MED25

NEB

ACTA1

MYBPH

FLNC

DUSP27

HSPB7

ACTC1

MYL3

MYBPC1
NRAP

SMYD1

RBM24

PPAPDC3

KLHL40

ACTN2

FABP3

TRIM54

MYH3

RAPSN

MURC

MYH7

TNNT1

CLCA2
TRPM1

TSPAN10

GRHL3

KLK8
TNS4

NTF4

CALML3
FAT2

SERPINB7

LAMA3
KLK7

ALOX12B IL20RB

KRT14

CAPNS2

SPRR3

COL17A1TGM1 KRT16

KLK10 KRT6A

TMPRSS11D

LAMC2

SFN

FGFBP1

MUC1

AQP3

PLEK2
GPRC5A

STX19

LAMB3

GJB5

ABCA7

VANGL2

PCBP4 WASF1

DBN1

HTATSF1

PAXBP1

GPC2

FBRS

H2AFY2

FSCN1SALL2

BCL9

SLC24A3

MEX3A

CACNB3

CTXN1

SYNPO2

RBM25

OGT

WASL

ZRANB2
LUC7L

NBEAL2
UPF3B

PNISR TMEFF1

CSPP1

UPF2

SRRM2

HDHD3

FAM214BSLC25A39

SLTM LUC7L3SYTL1

ZFC3H1

UBN1

ADIPOR1

RNF10

DDX17

PRRC2CNPRL3

EHMT1TTC30APCMTD2FLOT1NELL2PDLIM2LIG4LRRC42

ARHGAP1UBR1MPP5CASP4

PEX11B CASP1CCND2BDKRB1 ADD1RALGAPA1ARHGAP5RDH16COL4A3COL4A5SLAIN2 MAGI2 ACTL6ATIAM2FBXO16 TMEM11 ZNF358CTBS CRYBB1ZNF250DLX1DLX3

DLX2 FAM174A ZNF623 EMC6DLX4UBA2HIPK3 ATL1TFB1MFZD3

EEA1TMEM60ATP6V1E1HPCAUPK3ADNAJC4MAFG RPAP2 MAB21L1 HS3ST3B1BTDTEN1SRFBP1TEKT3 THNSL1AGO4 NDST1IDH3AIFNAR1DNAJB4TBC1D10AIGSF1INHBCARL6IP6

SLC22A1CDK6HAS1ASB8COL4A4COL4A6NCOR2CRYBA4

DIDO1CLEC4GLCMT2 CEP170CPEB2 SLC6A12

MRPL9 PRICKLE3 MRPS6ANAPC4RPP25LRXRASCAI SCARA5 BARHL1SNX16ZNF217

OIT3FAM217B CCDC88ASMPD1 PEX12 SLC6A13CPEB4KCNIP4 KIAA0907FAIM2FAM126B

FGF12CD99L2LCOR PPP1R3DSNCB

C2orf49ZADH2EXOSC4ZCCHC18SAMD8FA2H

ZBTB44APBA2ABHD13 ABL1FLOT2 TMPRSS6C8orf58 DCKTTC30B

FBXL15DRAM2TMEM256RSBN1RBFOX1PKIAFOXF1ZNF207RAB27B RAB5B RAB5A TBC1D21WDR62RAD17PDPRSGSH CHMP6PARP8 PRKCSHOR51B4PRPHPSEN1SNRKHAUS3TBC1D19ATP6V0D2

ROCK2ISCA2RTCBCACNG3UPK2TRPT1FXR2DYDC1 GLMNHACL1NT5CSENP8 RIOK2 MAB21L2 HSPB11HS3ST3A1PLEKHM3 ARHGAP36 LMF2 FBXO30 GIT2 DLAT TSPAN9
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Figure 10.2: Detected gene networks

(A) Gene networks based on coexpression conservation. I generated networks with 3,776
genes. The largest gene network contained 2,717 genes. Genes (nodes) were colored when
they were a member of the top 20 largest modules with SCS=4. Gray nodes were parts
of some smaller modules, and black nodes were not parts of any modules. I prepared this
picture of the network with Cytoscape [96]. (B) The largest gene modules with SCS=3 and
the large modules with SCS=5 are colored. This module has the representative term “immune
system process”, but not all of the sub-modules with SCS=5 have immune-related GO terms,
as discussed in the text. (C) The gene network without a turning point. Since some gene
networks had high coexpression conservation, no flat region was found. I used 100 instead
of a turning point, because turning points cannot be defined for these genes. This network
was generated from these highly conserved genes.
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detected gene modules were 107, 70 and 42, and the mean numbers of genes were 17.4, 19.3

and 24.6, respectively. The number of detected module with SCS=4 (70 modules) may be

larger than expected as expected, but it should be noted that our method will not detect the

gene modules that were changed from mouse to mouse, because our method is based on the

conservation between human and mouse, which may result in that the number of modules

was limited.

The largest gene module in SCS = 3 is shown in Figure 10.2B. In this module, 308

out of 767 genes had the GO term GO:0002376 (immune system process). This module

can be further separated into 9 sub-modules with 10 or more genes by using SCS=5, as

indicated in Figure 10.2B, where different colors represent the different modules with SCS

= 5. Some of the colored gene modules were related to the immune system GO term,

but others were not. For example, the ID: B-1, B-2 and B-4 gene modules in Figure

10.2B are related to GO:0002376 (immune system process), while the ID: B-5 gene module

at the bottom right in Figure 10.2B with the representative GO: 0030198 (extracellular

matrix organization), and some other enriched GO Terms as shown in the web database

at http://v1.coxsimdb.info/coxsim/hsa-v13-01/mmu-v13-01/SCS:5/5. Most of the enriched

GO terms are directly related with immune system process, but I can also see some interesting

terms such as GO: 0032963 (collagen metabolic process) and GO: 0001568 (blood vessel

development). This result may indicate that the immune system tightly cooperates with

collagen metabolic process, blood vessel development and other systems.

Some genes lacked turning points and had large numbers of corresponding genes, indi-

cating that the genes are quite strongly conserved. To characterize them, I generated another

gene network for them by regarding 100 as the tentative turning point, instead of determining

a turning point. As a result, 336 genes, 1,953 edges and 8 individual networks were detected

(shown in Figure 10.2C). Only 9 genes among the 336 genes had no connection with other

genes without any turning points. I applied the community detection algorithm again for

http://v1.coxsimdb.info/coxsim/hsa-v13-01/mmu-v13-01/SCS:5/5
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this network, and found 13 modules. The largest module was ID: C-1 (Figure 10.2C), where

95 genes were involved and 85 of them were annotated as GO:0007049 (cell cycle). This

result suggests that the genes for fundamental functions, such as cell cycle, translation or

cytoskeleton, have highly conserved coexpression and are tightly connected in each function.

10.4 Effect of the introduction of conservation

I performed the same module detection analysis for a human coexpression network without

conservation, to evaluate the effect of the conservation. Coexpression data for human were

obtained from COXPRESdb [61], where the strengths of coexpression are described by a

rank-based measure called Mutual Rank (MR) [68]. Smaller MR values indicate stronger

coexpression.

When I used MR = 3, 5, 10, 15, 20, and 30 as cutoffs, 22, 165, 458, 600, 667, and

622 modules were detected, respectively . I calculated the GO enrichment of the modules

for each MR threshold, and found that 5/22, 41/165, 76/458, 56/600, 56/667, and 33/622

modules were enriched with at least one GO term. However, the conservation filtering method

proposed in this part detected 45 enriched modules out of 70 modules (Figure 10.3A), and

the ratio of enriched modules based on coexpression conservation is clearly better than the

ratios of enriched modules based on the non-filtering method with COXPRESdb at any MR

threshold (< 41/165 with MR=5, see Figure 10.3B). This observation suggests that the

conservation-based method may reduce false positives to identify functional modules.

To check the reduction of false positives in each module, I further compared the modules

with MR = 10 (458 modules) and the modules identified by conserved coexpression (70

modules). I found that 47 modules were similar, where a pair of modules was judged to be

similar if the number of common genes was significantly large (Fisher’s exact test, p-value

< 0.05 with Bonferroni correction). If a module had multiple similar modules, then only

the mutually best pair was used. I also counted the number of genes with the representative
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GO term of the module (Ngene
rep GO), and used the ratio to the number of genes in the module

(Ngene
rep GO/N

gene ) as an indicator to evaluate the goodness of the modules. If I assume that the

representative GO term truly explains the function of a module, then a higher ratio indicates

a better module explanation, or a module with fewer falsely related genes (or genes with

different annotations). As a result, 13 out of 47 modules were found to share the same

representative GO term, and the average ratio (Ngene
rep GO/N

gene ) was 1.18 times higher in the

conservation-based method than the COXPRESdb method. Notably, the raw number Ngene
rep GO

was also 1.18 times higher and the sizes of the conservation coexpression-based modules

were larger than those of the COXPRESdb-based modules (Figure 10.3C), indicating that

fewer falsely related genes were included in the modules.

Some examples of similar module pairs are shown in Figure 10.4. The first module pair

in Figure 10.4 has different representative GO terms with 25 common genes, one for “skin

development” and the other has no significant term, where the size of the conservation-based

module (97 = 72+25) is much larger than that of COXPRESdb (42 = 25 + 17). The larger

size and the existence of the representative GO term indicate the enhanced enrichment of

the related genes. The second module pair also has a larger number of genes with the

representative term in the conservation-based module (35) than that of COXPRESdb (24).

Since it shares the same representative GO terms, the larger number of genes with the

representative GO term may indicate the presence of a smaller number of related genes

outside of the module. However, the ratio of the genes with a representative GO term for the

conservation-based module (0.52) is smaller than that of COXPRESdb (0.62), which indicates

the inclusion of a larger number of unrelated genes in the conservation-based modules. Since

the conservation charts of the large module member genes have few flat regions in a small N

range, the turning points of these genes were found in a large N range. Therefore, genes that

are not directly related to a representative term may be included in the detected gene module.

As described above, the conservation-based modules have better Ngene
repGO/Ngene ratios on
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average, as in the case of the third example. However, in some cases the COXPRESdb-based

modules produce better modules from the viewpoint of the inclusion of falsely related genes,

as in the second example. In short, coexpression conservation may reduce the number of

false negatives and false positives, to detect the functionally related genes on average.

10.4.1 Comparison of coexpression conservation between species

I compared coexpression similarity among 16 coexpression platforms of eleven species,

including RNA-Seq based and microarray based, using mean of COeXpression SIMilarity

(COXSIM) as described in section 11.3. I defined distances among coexpression platforms

as mean values of COXSIMs.

As shown in Figure 10.5, coexpression platforms of one species belonged to same branch

(shown in Figure 10.5 with blue dot lines) expects Rattus norvegicus (shown in Figure 10.5

with red dot lines). Since the number of samples in RNA-Seq based coexpression of Rattus

norvegicus is small, the quality of the coexpression was not enough to compare coexpression

similarities.

In mammalian, a dendrogram of coexpression similarity is almost consistent with NCBI

taxonomy except Canis lupus familiaris. This result indicates that mammalians have similar

gene expression pattern, and similarities among these species is consistent with similarities of

genomes. Since the coexpression of Canis lupus familiaris is calculated with small number

of samples (636), the position in the dendrogram was inaccurate.

The dendrogram of other species, such as Drosophila melanogaster or Caenorhabditis

elegans, was not consistent with NCBI taxonomy. For example, Danio rerio should be located

beside Gallus gallus. This observation suggests that gene expression pattern of these species

too divergent to discuss similarities of gene coexpression.
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Figure 10.3: Comparison between the conserved coexpression-based modules and those
based on coexpression without conservation
(A) The number of detected gene modules against MR for the coexpression-based method (left
6 bars) and the conservation-based method (right bar). The modules are colored according
to whether a module had enriched GO terms. (B) The ratio of enriched gene modules. (C)
A box plot of the gene module size distribution.

Conservation Based COXPRESdb

Representative GO term:
  GO:0043588	skin development
# of genes with rep term
  27
Ratio of genes with rep term
  0.28

Representative GO term:
  GO:0072376	protein activation cascade
# of genes with rep term
  11
Ratio of genes with rep term
  0.26

Representative GO term:
  none

Representative GO term:
  GO:0072376	protein activation cascade
# of genes with rep term
  11
Ratio of genes with rep term
  0.13

72 172572 1725

42 142542 1425

6120 23 6120 23

Representative GO term:
  GO:0006936	muscle contraction
# of genes with rep term
  35
Ratio of genes with rep term
  0.52

Representative GO term:
  GO:0006936	muscle contraction
# of genes with rep term
  24
Ratio of genes with rep term
  0.62

Figure 10.4: Example of the correspondence between the conservation-based method mod-
ules and the COXPRESdb-based modules
The three module pairs with the largest numbers of intersecting genes are shown.
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10.4.2 Implementation of web-based database

All results of coexpression conservation, CC genes, and module detection are available

through the web database named COeXpression SIMilarity DataBase (COXSIMdb, http:

//v1.coxsimdb.info). The overview of the database is shown in Figure 10.6. To use this web

database, insert the gene symbol or entrez gene ID into the search field at the top of the

COXSIMdb page (shown in Figure 10.6A). This web service provides a list of genes related

to the query, with a view of the results of the coexpression conservation of a gene (Figure

10.6B). Figure 10.6C illustrates an example of a COXSIMdb main result view. The result

view has up to 4 sections. The first section is a summary of the human and mouse genes

and a conservation chart. The second section is a list of CC genes and any associated KEGG

pathway. The third section is a list of detected gene modules that include the gene if it is

involved in the modules. The gene modules detected with SCS=4 are shown in the default

mode, but links to the modules detected with SCS=3 and SCS=5 are also provided. The last

section is a table view of the comparison of coexpressed genes between human and mouse.

Each gene is colored by the gene type and whether it is a CC gene, and homologous genes

are shown in a pop-up window when the cursor moves over the genes.

http://v1.coxsimdb.info
http://v1.coxsimdb.info
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Figure 10.6: How to use COXSIMdb
(A) First, search for a gene by its symbol or entrez gene ID. (B) Second, select a gene of
interest. (C) View of the coexpression conservation results. This view provides a summary of
the genes, a list of CC genes, the detected gene modules, and a comparison of coexpression.



Chapter 11

Material and Methods

11.1 Dataset

All human and mouse coexpression data were obtained from COXPRESdb [61], versions

Hsa.c4-1 (20,280 genes) and Mmu.c3-1 (20,959 genes), respectively. COXPRESdb is a

database of co-regulated gene relationships. The coexpression strengths were obtained

from COXPRESdb, and are represented by Mutual Rank (MR) [68]. MR is a rank-based

measure, and smaller values indicate stronger coexpression. I prefer MR over the Pearson

Correlation Coefficient (PCC), because MR shows better performance in GO prediction [68].

All homologous gene sets were obtained from HomoloGene [17], version build 65, and the

genes that were not in HomoloGene were removed from the analyses. There were 18,981

human genes and 21,766 mouse genes in HomoloGene, and I used 14,611 homologous gene

pairs between human and mouse in our analyses. I used Gene Ontology Terms (GO Terms)

[69] to annotate the functions of the gene modules. The correspondence between the genes

and the GO terms was obtained from the gene2go file in NCBI [17].

11.2 Detection of turning point and conserved coexpression
genes

As described in the Results and Discussion section, I counted the number of human genes

with mouse homologs to draw the conservation chart (Figure 10.1A and B), and then searched
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for the lines with a turning point. It should be noted that I counted the number of human

genes when a gene had multiple homologous genes in mouse. In other words, a human gene

with two or more homologous genes in mouse was counted as one, while a mouse gene with

two human homologs was counted twice.

In the example shown in Figure 10.1E, some conservation charts have two distinct re-

gions, highly conserved and non-conserved, which can be detected as a turning point in the

conservation chart. When a functional gene relationship is conserved between two species,

the gene coexpression relationship will also be conserved. Therefore, to detect the functional

modules, I tried to detect the turning point in each conservation chart.

The turning point is detected by focusing on the flat area in a conservation chart. If a gene

module has k genes, then the two coexpression lists should have the same order in the top k

genes, but the orders in the list after the k genes can be expected to be random. Therefore,

if no new corresponding genes are found after the highly conserved region, it should be the

turning point. I defined the turning point as the region with a 10-length flat region, which is

a region with no new corresponding genes, and defined the conserved region as the region

to the left of the turning point. I searched for turning points among the top 400 coexpressed

genes.

When I also checked 5, 10, 15 and 20 as the length of the flat region to define the

turning point, 1,890, 3,776, 3,478 and 2,783 non-redundant conserved-coexpressed genes

(CC genes, as described below) were found, respectively. I selected the length of the flat

region to maximize the number of CC genes. On the one hand, the use of flat regions longer

than 10 to detect the turning point decreased the number of CC genes, because no flat region

was found in the conservation chart. On the other hand, the shorter flat region also made the

number of CC genes decrease, because turning points were found in the first position.

The genes in the conserved regions can be considered to have strong functional rela-

tionships. Therefore, I focused on the genes in the conserved regions, to emphasize their
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strong relationship with the guide gene. Since some unrelated genes can be mixed in the

coexpression lists due to coexpression noise, I used the genes mutually found in the conserved

regions and named them CC genes. In other words, if gene A is the CC gene of guide gene B,

then guide gene B should also be a CC gene of gene A. If there were multiple turning points,

our turning point detection algorithm selected the first one of them, and tended to select the

turning point at the smallest N.

Some genes did not have a flat area because their coexpression lists were highly conserved.

I also generated a conserved coexpression gene network by using the following method. Since

these genes did not have a flat area, I could not determine a turning point. I used 100 as

the threshold of N instead of the turning point in these cases. Subsequently, I generated a

coexpression gene network without a flat area, using the same procedure described above.

11.3 Definition of COXSIM

I defined COXSIMhuman(M, ghuman, gmouse) to measure coexpression similarity with one value.

The definition of this COXSIMhuman values is follows:

COXSIMhuman(M, ghuman, gmouse) =∑M
N=1 number of corresponding genes(N, ghuman, gmouse)

M (M + 1)/2

, where the value of M is a parameter to define the similarity, ghuman and gmouse are gene

lists of human and mouse, and smaller values of M indicate that I focus on tightly coupled

gene clusters. Very large M values have no meaning, because the minimum number of

corresponding genes will increase. Compared with the similar formulation proposed by Yang

et al. [98], our simple formulation can be applied to more complicated gene relationships

including homologous genes.

COXSIM is sensitive to the parameter M by nature, but other rank-base indexes such as

Spearman correlation coefficient are not suitable for this comparison. Since the importance
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of genes is different between a strongly coexpressed gene and a lowly coexpressed gene, I

introduced our original conservation similarity, COXSIM, to focus on strongly coexpressed

genes. It emphasized the effects of tightly coexpressed genes because this score is cumulative

value.

11.4 Analysis of the gene network and module detection

Since the CC genes are those with a tight functional relationship to the guide gene, I repre-

sented the relationship as a network, where a node indicated a gene and an edge represented

a relationship between a CC gene and the guide gene.

Biological networks tend to be scale-free, with a small world network and a modular

structure [99, 100, 101]. Since our network also had similar features, we applied a community

detection algorithm implemented in networkx [102] to find the functional modules, according

to Palla et al. [97]. To characterize the functional roles of the modules, enrichment analyses

were performed, using TargetMine [103] and based on Fisher’s exact test. I defined the

representative GO term as the GO term with the smallest p-value in a module.

Since some gene modules had overlaps or similar annotations, we performed the module

detection with three different strictness values, corresponding to the change in a parameter for

the smallest clique size (SCS) used in Palla et al. [97]. Detection with a larger SCS yielded

smaller and higher clustering coefficient modules. More precisely, I used three, four and

five for the three different SCS values, and calculated the overlaps between the detected gene

modules. Finally, I performed clustering of the gene modules by connecting the overlapped

modules.



Chapter 12

Conclusion

In this part, I have described a new method to compare gene expression patterns by focusing

on gene coexpression, to avoid the problem of sample matching. I also developed an

algorithm to detect the conserved modules, and the GO term enrichment analyses revealed

that the conserved gene modules have strong functional relationships. In other words, our

method could detect some functional modules, without any prior knowledge. Many modules

are well known, such as ribosomal protein or immune system, but some detected modules

have significantly enriched GO terms, and thus they will be good candidates for further

experimental analyses to identify the novel functional modules.
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Part IV

The development of large dataset analysis
helper tools
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Chapter 13

Hyokai : A fast table viewer for big data
analysis

13.1 Introduction

In bioinformatics research area, huge amount of data are generated everyday. Therefore,

data handling is one of the fundamental problems to use such big data. Microsoft Excel is

widely used as the first choice for users to view these large results. Excel is convenient to

represent, visualize, filter and summarize data, but handling large data with Excel requires

much machine power. In contrast, R language [104] and its GUI clients, such as Rstudio, are

also powerful tools to summarize and visualize huge data, but users are required to learn R

programming. In addition, R has no easy-to-use GUI to represent raw table data. Another

solution to handle big data is SQL-based databases such as SQLite [105] and MySQL. They

can store large data and look the data up fast, but users should learn SQL programming. To

achieve powerful analytic environment, I developed a new GUI client for big data analysis

based on SQLite and R.

13.2 Implementation

I implemented Hyokai, a fast table viewer for big data analysis. Hyokai is cross-platform,

tested on Windows and Mac OS X. The interface is built on Qt, a cross-platform application

and UI framework. Hyokai was implemented with C++ because C++ is one of the highest
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performance programming languages. I use SQLite3 as database format, therefore, database

can be accessed from C, Python, R, Ocaml or a lot of other programming languages. Since

Hyokai was built on well developed file formats and GUI toolkit, Hyokai and work on various

platforms and can be integrated with various programming languages.

13.3 Features

This software has simple GUI, with powerful data analysis backends, SQLite and R language.

Learning SQL and R language are not required for basic use, such as filtering data, joining two

tables, plotting histograms or plotting scatter plots. For advanced use, such as combinations

of joining and filtering or data grouping, SQL and R language are useful. Since Hyokai is

based on a relational database, SQLite, it is easy to convert IDs, join two different tables or

add annotations to rows. Since writing SQL codes to join tables is difficult for beginners,

Hyokai has GUI wizard for joining tables. Designing a table schema to use SQL can also

be problem for SQL beginners, but automatic table schema suggesting system is included

in Hyokai. This system suggests a suitable table schema for tab-separated values (TSV) or

comma separated values (CSV) that are exported from Excel or other software. Hyokai is

also integrated with R language. This software can generate codes to export filtered or joined

data to R. This software also has the visualizer to plot histograms and scatter plots.

13.4 Result

One of most usable application of Hyokai is differentially expressed gene (DEG) analysis.

When I used edgeR [65] for DEG analysis, I have to deal with large table as shown in Figure

13.1. Since gene IDs in this figure were written in Entrez Gene ID, it is hard to associate

gene IDs to gene functions. In this case, SQL Join Wizard (shown in Figure 13.2 and result

of joining is shown in 13.3) is useful to convert to gene symbols and descriptions from gene

IDs. Filtering rows by some conditions is also common task to analyze data. Hyokai can
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filter rows with complex conditions by using SQL Where statement (shown in Figure 13.4).

Figure 13.1: Hyokai Screen Shot

13.5 Availability

The source code of Hyokai is available at GitHub (https://github.com/informationsea/Hyokai)

under GNU General Public License version 3. The binary distribution and sample databases

are available without any fee at https://hyokai.info.

13.6 Conclusion

Hyokai is a use-friendly big data analysis tool. Hyokai enables fast viewing, filtering and

summarizing big table. Since Hyokai uses common data format, SQLite, it is easy to exchange

data with other programming languages.

https://github.com/informationsea/Hyokai
https://hyokai.info
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Figure 13.2: JOIN SQL Wizard

Figure 13.3: JOIN SQL Result
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Figure 13.4: Filtering Rows
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Chapter 14

DEG.js : A web-based RNA-Seq Analysis
Tool

14.1 Introduction

Recent years, RNA-Seq is widely performed because of development of high throughput

sequencing technology. To make use of RNA-Seq, bioinformatics plays a large role. Since

RNA-Seq data is large and cannot interpret directly, it is hard to analyze without information

science background. Existing widely used open-source methods requires command line

operation. Some methods, such as RNASeqGUI [106], can analyze with graphical user

interface, but they still hard to install into a local machine. To make RNA-Seq analysis

easy without any complex operations, I developed DEG.js, a web-based RNA-Seq analysis

platform. Since I built on standard web platform, users can perform simple analysis without

downloading any software expect a modern browser.

14.2 Implementation

To make easy to use, client side software was implemented with JavaScript. Since recent

modern browsers, such as Google Chrome, Firefox or Internet Explorer 11, support File

API, a FASTQ file can be parsed with JavaScript on client browser. Server side software

was implemented with JavaScript and C++. Since counting and quantifying gene expression

require high calculation cost, these functions are implemented with C++. Other server side

97



98

Figure 14.1: FASTQ Selection

software, such as communicating with client or handing counting and quantifying software,

is implemented with JavaScript. To communicate a client and a server, I used socket.io.

14.3 Result

DEG.js is easy to use. When a user opened DEG.js with a browser, FASTQ selector is opened

(shown in Figure 14.1). When the user selects FASTQ files and clicks “Start Mapping”,

DEG.js starts mapping fragments and visualizing result. As shown in Figure 14.2, a result

page is refreshing in real-time. The user can stop mapping and download a result at any time.

14.4 Conclusion

I developed easy to use RNA-Seq analysis tool, DEG.js. DEG.js do not require a user to

install any software to use. Since any difficult handing, such as command line operation or

downloading correct files, is not required to use DEG.js, any users who have basic computer

skills can perform simple RNA-Seq analysis easily.
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Figure 14.2: A result page of DEG.js
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Conclusion

In this thesis, I focused fast meta-analysis method for RNA-Seq. The number of RNA-Seq

data that are deposited in public database is quickly increasing because of spreading of high

throughput sequencing technology. Although reanalyzing these a lot of RNA-Seq data is

promising approach, few studies focused in meta-analysis of RNA-Seq. I resolve bottleneck

problems to perform RNA-Seq meta-analysis and apply to gene function prediction using

gene coexpression.

A most large problem of RNA-Seq meta-analysis is high calculation cost to estimate gene

expression level from raw RNA-Seq data. To calculate gene expression level fast, I used

two approaches: using only N-grams that are unique to each gene for mapping and skipping

uninformative N-grams for mapping. Proposed method outperformed previous methods in

both speed and accuracy. Proposed method is 300 times faster than previous alignment based

methods and twice faster than a fastest previous alignment free method.

I applied proposed method to gene coexpression. Previously, gene coexpression was

calculated from microarray-based gene expression. With proposed RNA-Seq quantification

method, I succeeded to calculate RNA-Seq based gene coexpression in realistic time. When

I applied RNA-Seq based gene coexpression to gene function prediction, RNA-Seq based

coexpression shows better result than microarray based method in human and mouse. Since

the number of samples plays a major role in quality of gene coexpression, prediction per-

formances of RNA-Seq based gene coexpression in other species will be expected to exceed

performances of microarray based gene coexpression in the future.
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I also compared gene coexpression between species and predicted gene modules. As a

result, I succeeded to predict more accurate functional gene modules by using coexpression

conservation than single species coexpression.

Here, I resolved bottleneck of RNA-Seq based meta-analysis and performed meta-analysis

in several species. Performance of RNA-Seq based coexpression in gene function prediction

was better than that of microarray based coexpression. By introducing coexpression con-

servation, performance in functional gene module prediction was improved. In conclusion,

my method enabled RNA-Seq based meta-analysis and allowed data-driven research using

RNA-Seq data.
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Appendix A

Supplementary Figures for Matataki

A.1 Mapping result detail of SRR1639212

The experiment accession for SRR1639212 is SRX750225, and the study accession for

SRR1639212 is SRP048993. The study abstract is “Stem cell differentiation timecourse, six

time points through induction from induced pluripotency (day0) towards beating cardiomy-

ocytes, mature at day14. Accompanying study investigates careful differentiation protocols.”.

Figure A.1 shows a distribution of FPKM and mapping rates of Matataki when parameters

were varied. Figure A.2, A.3, A.4 and A.5 show comparison with eXpress results.

A.2 Mapping result detail of ERR266335

The experiment accession for ERR266335 is ERX182652, and the study accession for

ERR266335 is ERP002045. The study title is “Transcriptional and epigenetic profiling

of the progression of hESCs to beta cells”. Figure A.6 shows a distribution of FPKM and

mapping rates of Matataki when parameters were varied. Figure A.7, A.8, A.9 and A.10

show comparison with eXpress results.

A.3 Mapping result detail of SRR1013361

The experiment accession for SRR1013361 is SRX365386, and the study accession for

SRR1013361 is SRP031478. The study title is “Altered Epigenetic Regulation of Homeobox

Genes in Human Oral Squamous Cell Carcinoma Cells”. Figure A.11 shows a distribution

of FPKM and mapping rates of Matataki when parameters were varied. Figure A.12, A.13,

A.14 and A.15 show comparison with eXpress results.
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Figure A.1: SRR1639212: A distribution of FPKM and mapping rate
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Figure A.2: SRR1639212: Comparison with eXpress when M = 1
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Figure A.3: SRR1639212: Comparison with eXpress when M = 2
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Figure A.4: SRR1639212: Comparison with eXpress when M = 3
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Figure A.5: SRR1639212: Comparison with eXpress when M = 4
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Figure A.6: ERR266335: A distribution of FPKM and mapping rate
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Figure A.7: ERR266335: Comparison with eXpress when M = 1
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Figure A.8: ERR266335: Comparison with eXpress when M = 2
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Figure A.9: ERR266335: Comparison with eXpress when M = 3
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Figure A.10: ERR266335: Comparison with eXpress when M = 4
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Figure A.11: SRR1013361: A distribution of FPKM and mapping rate



135

Figure A.12: SRR1013361: Comparison with eXpress when M = 1
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Figure A.13: SRR1013361: Comparison with eXpress when M = 2
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Figure A.14: SRR1013361: Comparison with eXpress when M = 3
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Figure A.15: SRR1013361: Comparison with eXpress when M = 4
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