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Abstract

Recently, the number of RNA-Seq data registered in public repository is rapidly increasing
due to spreading of high throughput sequencing technology. Reanalyzing of these data is
promising approach to reveal gene modules or pathways. Although meta-analysis of gene
expression data was widely accepted in microarray data, meta-analysis in RNA-Seq is not
performed widely. Since reanalyzing RNA-Seq requires a lot of computational resource, it is

nearly impossible to calculate gene expression of all samples in public repository.

In this study, I proposed a novel method to estimate gene expression level from RNA-
Seq data rapidly. My proposing method uses N-grams that are unique to each gene to
map fragments to genes. Since aligning fragments to reference sequences requires high
computational cost, my method reduced calculation cost by using two methods: using only
N-grams that are unique to each gene and skipping uninformative region. As a result, my

proposing method outperformed previous methods in speed and accuracy.

I applied this method to RNA-Seq data of Homo sapiens, Mus musculus, Rattus norvegi-
cus, Danio rerio and Drosophila melanogaster for RNA-Seq based meta-analysis. I calculated
gene coexpression from estimated gene expression level using a proposed method. As a re-
sult, RNA-Seq based gene coexpression outperformed microarray based gene coexpression in
predicting gene functions in Homo sapiens and Mus musculus. Since numbers of samples is
highly correlated with performance of gene function prediction, RNA-Seq based coexpression

of other species will outperform microarray based coexpression in the future.
Finally, I compared gene coexpression among species. I developed a novel method

Xi



Xii

to compare gene coexpression. In human and mouse comparison, my method predicted
functional gene modules more accurately than human coexpression. I also compared 11
species coexpression and a result showed that a similarity dendrogram of coexpression was
consistent with NCBI taxonomy in mammalian.

I also developed software to handle large dataset. Hyokai is a large table viewer to
summarize and narrow down. It can handle large table, such as a data with more than
1000,000 rows, quickly. DEG.js is a web-based RNA-Seq calculation tool for biologists. It
is not required installing and using command prompt.

In conclusion, I developed fast RNA-Seq analysis method for meta-analysis, and applied
it for gene coexpression and predicting gene functional module. As the result, my methods
succeeded to estimate gene expression fast and accurately, and predicted gene function

correctly.



General Introduction

Information science in the biology

Importance of information science in the biology is increasing due to growing of biological
data. In sequence analysis field, computational methods are essential. After the development
of Sanger sequencing [1], a number of nucleotide sequences were published. In 1977, the
first complete DNA genome of DNA virus was reported [2]. In 1995, the first complete
sequence of free-living organism was reported by Fleischmann ef al. [3]. In the beginning
of 2000s, a lot of complete genomes of model organisms, such as Drosophila melanogaster
[4], Arabidopsis thaliana [5), Homo sapiens [6, 7], Schizosaccharomyces pombe [8] and Mus
musculus [9] were published. Currently, the numbers of sequenced data in GenBank [10],
European Nucleotide Archive [11], DNA Data Bank of Japan [12] continue to be increasing
rapidly.

While increasing the size of biological data, computational methods to deal with these
biological data were also developed. In the sequence analysis, FASTA [13] and BLAST [14]
are part of the largest impact software in sequence analysis. FASTA, BLAST and related

software enabled fast searching of similar sequences in the database.

Development of computational analysis methods also changed experimental methods.
R.Staden [15] proposed shotgun sequencing to sequence whole genome without restricting
maps. It was impossible to assemble many random sequenced fragments for human, but
the development of computers enabled assembling these fragments. Shotgun sequencing

accelerated decoding whole genome, and resulted first free-living organism genome [3].
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Appearance of high throughput sequencing technology was an evolution in sequencing
technology. High throughput sequencing technology enabled sequencing a lot of DNA and
RNA with low cost. It changed approaches to biological questions. In 2004, 454 Life Science
appeared in the market. From 2005, the number of high throughput sequencing platforms,
such as Solexa, Illumina, Ion Torrent, were released [16]. Illumina platforms are the most
succeeded platform now. The cost of sequencing was also dropping down steadily.

Because of development of high throughput sequencing technology, the sequenced data
is also increasing rapidly. In 2007, NCBI started Sequence Read Archive [17]. Currently,
DDBJ Sequence Read Archive [18], NCBI Sequence Read Archive [17] and EBI Sequence
Read Archive [11] are collecting raw data of high throughput sequencing under International
Nucleotide Sequence Database Collaboration [19].

Since high throughput sequencing technology creates a huge amount of data, a new com-
putational analysis method is required. BWA [20, 21] and Bowtie [22, 23] are widely accepted
mapping tools for high throughput sequencing. They use Burrows-Wheeler transform [24]
and FM-Index [25, 26] to accelerate searching positions of reads in the genome. Burrows-
Wheeler transform was introduced in computer science first. BWA and Bowtie bring this
algorithm into biology.

High throughput experimental methods were also proposed in other biological field, such
as gene expression using microarray or protein-protein interaction. To deal with these large

amounts of data, information science becomes more important in biology.

Importance of database in the biology

Growth of biological database enabled us to take a different approach to biology. A classical
approach in biology was proposing a hypothesis, designing an experiment and discussing a
result. With biological database, we can use data-driven approach. Data-driven approach

gives us comprehensive view of biological knowledge.



When we publish a new paper, authors are obliged to register raw data, such as sequences
from high throughput sequencer in most journals’ policy. For example, PLOS biology
requires registering all data to public repository and putting accession numbers in a paper
[27]. Therefore, almost all raw data in published papers, such as sequence data, protein
structures or gene expression profiles were registered in public databases.

Meta-analysis of these data enhances detection power by merging data from many studies.
For example, Sitras et al. [28] analyzed microarray data from 12 studies and found common
pathway between two diseases. Kim et al. [29] reported 18 genes related with toxicity based
on meta-analysis of massive gene expression profiles.

Re-analyzing published data also spawned the new aspect of biology. Gene coexpression
is one of most successful analysis of re-analyzing database. Gene coexpression data show
relationships between genes without any prior knowledge. Since thousands of gene expression
data are required to calculate gene coexpression, database of gene expression is indispensable.

Because of development of high throughput sequencing and growth of public database, it
is challenging performing meta-analysis of these data. Computational analysis with efficient
algorithm is fundamental to deal with large amount of data.

In this study, I performed a meta-analysis of a large amount of RNA-Seq data. Since
RNA-Seq data were generated by high throughput sequencer, the total data size of RNA-Seq
data is larger than 50 TB. Existing methods are too slow to analyze these data. In Part I, I
developed a novel method to quantify gene expression in RNA-Seq. The proposing method is
300 times faster than widely used methods, and 2.5 times faster than published fastest method.
In Part II, I calculated gene coexpression based on RNA-Seq. The performance of RNA-Seq
data based gene coexpression was better than microarray data based gene coexpression in
Gene Ontology prediction. In Part III, I compared gene coexpression between species and
showed conservation of gene relationship between human and mouse. I also created tools to

deal with such a large amount of data, as described in Part I'V.






Part 1

The development of ultra fast RNA-Seq
analysis method






Chapter 1

Introduction

Measuring gene expression is important to identify genes that work on a specific event
or interpret a cell state. Historically, gene expression is measured by northern blotting.
Northern blotting can detect the size of RNA and expression level [30, 31]. This method
is widely accepted and remains useful today. Since this method cannot detect many types
of mRNA at once, comprehensive study of gene expression requires other methods. In
1995, an appearance of microarray [32] technology enables high throughput, comprehensive
measurement of RNA. However, accuracy of expression measurement for lowly expressed

genes is limited. Dynamic range of microarray is also limited [33].

RNA-Seq [34] technology appeared nearly a decade ago. The development of high
throughput sequencing technology enabled RNA-Seq. RNA-Seq has a lot of advantage in
measuring gene expression, especially in accuracy and dynamic range [35]. Now, RNA-Seq
is a de facto standard of RNA analysis, and the number of RNA-Seq that are registered in
Short Read Archive is rapidly increasing. Although this technology also enabled to find de

novo transcripts or SNP analysis, I focused on gene expression quantification in this part.

Since the number of published RNA-Seq data is rapidly increasing, meta-analysis of
these data is a promising approach to investigate novel biological system. However, merging
quantified expression data provided by authors is difficult because they use different reference

sequences, different ID system and different quantification methods. Using different reference
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sequences or difference ID system makes difficult matching genes with other data. Comparing
gene expression profiles quantified by different methods cannot separate biological differences
from method bias. Therefore, quantifying from raw sequence for all data is required to meta-

analysis of RNA-seq.

A lot of quantification methods for RNA-Seq were proposed. One of the most used
methods is the pipeline using TopHat2 [36, 37] and cufflinks [38]. This method aligns
sequenced reads to a reference genome, then, it counts the number of fragments that are
mapped in a gene region, and estimates expression level by transcript level. This method can

be applied to species that have no reference transcript, and predict transcript candidates.

Some other methods, such as RSEM [39] and eXpress [40], map sequences to the
transcript reference. Since they require only reference transcript sequences, they can be
applied to species without reference genome. A de novo transcript assembler or an EST
database can be used for reference transcript sequences instead of curated reference transcript
databases. Both RSEM and eXpress use bowtie [22] to map a read sequence to a transcript.
Some of read sequences are mapped to multiple transcripts due to splicing variants. RSEM
and eXpress use Expectation-Maximization algorithm to resolve which of transcripts were

multi-mapped reads come from.

These alignment-based methods, such as TopHat2/cufflinks, RSEM or eXpress require a
lot of computational resource. To quantify expression of RNA-Seq sample, alignment is not
required because a position of a read is not important in quantification step. Some methods
do not map to transcript, but use N-gram of transcripts.

Sailfish [41] uses all N-grams found in the reference transcript. This method creates an
N-gram to containing transcript table, and counts the number of occurrence in RNA-Seq
data for each N-gram. Finally, it estimates expression level by transcripts using Expectation-

Maximization algorithm from counts of N-grams.

Another method, RNA-Skim [42], uses more efficient method. This method introduced



sig-mers that appear only once in a subset of reference transcript. RNA-Skim counts the
number of sig-mers occurrence while processing RNA-Seq data, and calculates expression

level by Expectation-Maximization algorithm.

Kallisto [43] also uses N-grams. This method reduced calculation cost by skipping
fragment searching in an index. When an N-gram appeared, the next N-gram is limited to
one or few patterns. If the next N-gram is limited to one pattern, hashing the N-gram is not
required to determine the source isoform. Kallisto skips these non-informative N-grams for

fast estimation.

The speed of quantification is important to process thousands of RNA-Seq data. Although
these alignment-free methods, such as Sailfish and RNA-Skim, are much faster than alignment

based method, a faster method is needed to perform large-scale meta-analysis.

In addition, gene level quantification has enough information for usual analysis because
many studies [44, 45, 46, 47] disregard isoform specific expression. Some studies [48, 49]
regard differential usage of isoforms, but they analyzed few numbers of splicing changes. For
example, Wu et al. [48] perform gene level quantification for all genes first, and isoform level

quantification next.

Here, I proposed Matataki, the novel fast method to quantify expression in gene level.
Similar to RNA-Skim, this method uses N-grams that are unique to gene to quantify expres-
sion. However, this method reduces computational cost with two different approaches. First,
this method can calculate expression directly without Expectation-Maximization algorithm
because this method quantifies expression in gene level, and uses only gene specific N-grams.
Second, this method does not hash a fragment step by step. Since N-grams that are unique
to gene are usually found sequentially, hashing all fragments of a read does not improve
performance. This method hashes a fragment of reads every fixed count. To skip hashing,
exactly all N-grams that are unique to a gene should be listed up in the index. Therefore, fast

heuristic methods, such as bloom filter [5S0] cannot be applied to build index. However, in
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the large-scale meta-analysis, the speed of quantification is more important than the speed of

building index.

In this part, I describe the method of Matataki and the result of comparisons between my

method and other methods.



Chapter 2

Materials and Methods

I developed an ultra fast RNA-Seq quantification method based on N-grams that are unique
to each gene. Usually, this method requires two steps: building an index and quantifying
expressions. In this section, all running time and memory usage were measured in cluster
machines. Each cluster node has two Intel® Xeon® CPU E5-2680 v2 10-core 2.80GHz, and

130 GB RAM.

2.1 Preparation

In order to fast mapping, Matataki has to search all N-grams that are unique to each gene.
Selected N-grams should be included in all isoform transcripts of a gene to avoid effects of
differential expression of isoforms.

First, Matataki searches N-grams that are unique to each gene (Figure 2.1). Matataki
considers all N-grams in transcript sequences. To judge uniqueness of N-gram, Matataki
stores N-grams to a hash table. For example, first five 20-grams are unique to CARNS1, but
next three 20-grams are also found in DNER (shown in Figure 2.1). Therefore, 20-grams
unique to CARNSI can be used for identifier of CARNSI, but 20-grams that are not unique to
CARNSI, such as GCCACTGCCACCGCCGCCGC, cannot be identifiers. Since a read strand is not

fixed unless strand-specific read, all reverse complements of N-grams should be considered.

Second, Matataki checks whether all isoforms of a gene have an N-gram. Since Matataki

11
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quantifies expression levels by genes, alternation of isoform specific expression should be
ignored. When isoform A has an N-gram and other isoforms do not have the N-gram, and
expression level of isoform A was replaced to the other isoform, the found reads appear
to be decreased, although a total gene expression level was not changed. To avoid this
isoform replace problem, N-grams that do not appear in all isoforms should be neglected.
For example, a sequence NM_001193533.1 is one isoform of NEK4 (shown in Figure 2.2).
In this sequence, a first 20-gram is unique to NEK4, but this sequence is not found in the
isoform XM_006713310. 1. Matataki index N-grams that are unique to each gene and found
in all isoforms.

Finally, Matataki counts the numbers of indexed N-grams. This number will be used in
the FPKM quantification step.

Around 20 GB memory and 3 hours are required to build human index, when I used
in-memory hash table. A file based hash table mode is also available for small memory

machines. This building step is required only one time for one species before using Matataki.

2.2 Quantification

Quantification step has two sub-steps. The first step is counting N-grams, and the second
step is calculating FPKM and TPM from read counts.

First, Matataki searches indexed N-grams in a read. When a read has only one corre-
sponding gene, the read is estimated as a fragment of the gene. Matataki counts the number of
reads that corresponds to each gene. An example is shown in Figure 2.3 (A). In this example,
first six 20-grams were unique to SMYDI1. On the other hand, next twenty 20-grams were
not found in the index because the read has a mutation (shown as red A in 2.3 (A)). When a
read corresponds to two or more genes, or no genes, the read will be neglected.

In the first step, searching all fragments of reads step by step is not necessary, because

the found N-grams are usually found sequentially. For example, Figure 2.3 (B) shows which
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CARNS 1 (carnosine synthase 1) NM_OO 1166222.1

Sequence
GCTGTGCCACTGCCACCGCCGCCGCLCG. .

20-gram
GCTGTGCCACTGCCACCGCC

CTGTGCCACTGCCACCGCCG

TGTGCCACTGCCACCGCCGC Unique to CARNSI

GTGCCACTGCCACCGCCGCC
TGCCACTGCCACCGCCGCCG

CCACTGCCACCGCCGLCGLC
CACTGCCACCGCCGCCGCCG
ACTGCCACCGCCGCCGCLGL
CTGCCACCGCCGCCGCCGCLT,

GCCACTGCCACCGCCGCCGC }

Found in DNER

} Unique to CARNS1

Figure 2.1: Example of N-grams that are unique to genes

NEK4 (NIMA-related kinase 4) NM_001193533.1

Sequence
AGCATGCGCAGAACTGCTCCCGGCC

20-gram

AGCATGCGCAGAACTGCTCC
GCATGCGCAGAACTGCTCCC

CATGCGCAGAACTGCTCCCG

Not found in
XM _006713310.1

ATGCGCAGAACTGCTCCCGG
TGCGCAGAACTGCTCCCGGC
GCGCAGAACTGCTCCCGGCC

Found in all
isoforms of NEK4

Figure 2.2: Example of common N-grams



14

N-grams were found in the index. The second row shows a search result of the read. The
character “0” means a 20-gram from the position was a 20-gram that is unique to SMYDI,
and “.” means a 20-gram from the position was not found in the index.

I introduced “step-size S” to reduce the number of N-gram searching. As shown in
Figure 2.3(C), Matataki searches N-grams for every S N-grams. Since gene specific reads
have sequences of index N-grams usually, this omission does not have major effect to the
estimation quality.

I also introduced “accept-count M” to avoid a fragment of read sequence matches to
some indexed N-grams by chance. Since some reads may have sequencing error, mutation or
insertion/deletion, a fragment of a read can be matched to wrong indexed N-grams. Usually,
these wrong matches are not found consecutively in a read. Therefore, a read that indexed
N-grams appeared in less than M times deal with unmapped read to avoid wrong matching.

Second, Matataki calculated FPKM (Fragment Per Kilobase of Million) and TPM (Tran-
script Per Million) from gene specific read counts. FPKM can be calculated from formula

2.1 and TPM can be calculated from formula 2.2.

F Ci/Ki | o0 @.1)
NG '
Ci/K;

= — 7
2. (Ci/Kj)

0° (2.2)

, where F;: FPKM, T;: TPM, C;: a count of gene-specific reads, K;: the number of indexed
N-grams in a gene. Since Matataki uses only gene specific N-grams, no EM algorithm or

other algorithm to solve expression level are not required.

2.3 Implementation

I implemented Matataki with C++03, autotools and KyotoCabinet [51]. Since simplicity of

installing is important to distribute, a distribution file contains all libraries to compile, and
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uses autotools, a standard tools to build complex software. Automated unit-testing is also
important to maintain the quality of codes. Matataki uses Google Test for unit testing and
integrated it to autotools, therefore, we have to run nothing but make check to run all unit
tests.

In order to reduce memory usage and increase speed, a hash table format is optimized
for the RNA/DNA N-grams. First 4k bytes contain a header of an index. The number of
entries, the size of hash table and N are written in the header. After the header, N-grams
and corresponding gene indexes are written. Each entry have two sections, a gene index and
N-grams (shown in Table 2.1). N-gram is compressed as two bit representation of acids to
reduce memory usage and hash value calculation time. Since each N-gram has fixed length
in one index, entries do not have data of length. A hash function is also important for fast
looking up of the table. I used MurMurHash3 as a hash function of the hash table because it
is fast and widely accepted hash function.

Since all libraries except installed in almost all systems are included in the distribution
file, no extra libraries are required to build and run this method. To make install easy, the

built binaries are path independent. No special file layout or PATH environment is required

to run.
Table 2.1: The data format of the hash table
’ Entry Length ‘
Gene Index | 4 bytes
N-gram Variable (compressed in two bit representation, and aligned with 4 bytes)

2.4 Comparison with other softwares

I compared performances with bowtie 1.1.2 [22]/eXpress 1.5.1 [40], Sailfish 0.7.6 [41],
RNA-Skim [42] and Kallisto 0.42.4 [43]. I tested these softwares with default parameters.

I used binary distributed files for bowtie, eXpress, Sailfish. RNA-Skim and our method are
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compiled with GCC 5.2.0.

2.5 Test Dataset

I used RefSeq and gene2refseq [17] to create a reference database. RefSeq and gene2refseq
were downloaded at June 26, 2015 from Human Genome Center, a mirror site of NCBI. 1
extracted sequences of human from RefSeq. In the human RefSeq, 25,894 genes and 55,100
transcripts were available.

In comparison with RNA-Skim, I used the scripts to download and build index, which are
included in RNA-Skim. Therefore, the reference sequence of RNA-Skim is different from
other methods.

For quantification quality examination, I used SRR1639212. Thisrunis part of SRP§48993,
“Stem cell differentiation timecourse, six time points through induction from induced pluripo-
tency (day0) towards beating cardiomyocytes, mature at day14. > SRR1639212 is the first day
0 sample. The length of reads in SRR1639212 is 100, and the number of reads is 172,340,634

I also compared quantification quality with synthesis data. To create synthesis data, |
used rsem-simulate-reads that is included in RSEM. Models to synthesize were created

by quantifying ERR188074 and ERR188125 with RSEM.
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Chapter 3

Result & Discussion

3.1 Statistics of indexed N-grams

3.1.1 The number of genes with indexed N-grams

First, I calculated the number of genes with indexed N-grams (shown in Figure 3.2 and Table
3.1) and the nucleotide coverage of indexed N-grams (shown in Figure 3.1 and Table 3.1) in

human, mouse and Arabidopsis genes. I varied N-gram length from 10 to 100.

When N = 10, few human genes had indexed N-grams in all species. When N = 14,
96.8% of human genes in RefSeq had indexed N-grams. Coverage of genes were highest in
N = 34. On other hand, too large N made gene coverage lower, because some genes had

only small transcripts.

When looking at the coverage of nucleotide (shown in Figure 3.1), N = 14 was not
enough large to cover sequences with indexed N-grams regions. The nucleotide coverage
almost hit the ceiling in N = 18. This observation suggests that N should be larger than 18

to cover gene-specific regions of genes.

The same results were also observed in mouse and Arabidopsis. Since the average length
of genes in Arabidopsis is smaller than lengths in human and mouse, gene coverage and
nucleotide coverage in N = 10 and 12 were better than other species. I compared nucleotide

coverage with theoretical random coverage. The theoretical random coverage was defined as

19
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following formula.

1 Ly
C= (1_(4N+4(N/2))/2 T 3.1)

, where C is a nucleotide coverage, L is a total length of genes and / is a total length of
gene specific region. The results were consistent with actual coverage (shown in Figure 3.3,
3.4 and 3.5).

The effects to performance of N size will be discussed in the following section.

3.1.2 The distribution of indexed N-grams in transcript sequences in
human

I calculated the nucleotide coverage for each human gene when N = 32 (shown in Figure
3.6). As a result, the coverage was higher than 50% in 86.4% human genes. Moreover, in
61% genes, the coverage was higher than 90%.

The number of cover islands is shown in Figure 3.7. A cover island is a continuous region
of nucleotide that is a start point of indexed N-gram. As a result, 60% of genes have only one
or two cover islands. The length of cover islands and the longest and second longest length
of cover islands for each gene are shown in Figure 3.8 and 3.9. Although a median of second
longest cover island length for each gene is 327, a median of the longest cover island length
for each gene is 1,262. These observations suggest that most genes have a few cover islands,
namely a main cover island and some small satellite cover islands. Since the longest cover
islands for each gene were enough longer than N and step size S, introducing step size S did
not interfere quantification accuracy.

When N = 32, the number of genes without indexed N-grams was 717. The detail of
these uncovered genes is shown in Table 3.2. Half uncovered genes were non-coding genes.
Since non-coding genes cannot be amplified in the translation step, the number of copies in

genome is required to work properly. Another half of uncovered genes were protein-coding
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Table 3.1: The number of indexed N-grams and genes with indexed N-grams in human genes

’ N ‘ # of indexed N-grams ‘ # of genes ‘ Gene Coverage (%) ‘
10 440 220 0.84
12 1535090 23101 89.21
14 41082576 25071 96.82
16 96190226 25143 97.09
18 108060135 25147 97.11
20 109992844 25153 97.13
22 110684112 25161 97.16
24 111141270 25166 97.18
26 111492136 25167 97.19
28 111769766 25171 97.20
30 111991000 25171 97.20
32 112168261 25177 97.23
34 112310635 25178 97.23
36 112421849 25176 97.22
38 112506091 25174 97.21
40 112567660 25177 97.23
42 112609502 25176 97.22
44 112633994 25176 97.22
46 112642942 25175 97.22
48 112638863 25171 97.20
50 112623384 25164 97.18
52 112597536 25155 97.14
54 112562252 25140 97.08
56 112518444 25119 97.00
58 112467189 25097 96.92
60 112409689 25064 96.79
62 112346699 25010 96.58
64 112278981 24958 96.38
66 112207391 24904 96.17
68 112132326 24820 95.85
70 112054386 24747 95.57
72 111974249 24642 95.16
74 111892097 24545 94.79
76 111808039 24452 94.43
78 111722329 24357 94.06
80 111635162 24273 93.73
82 111546656 24167 93.33
84 111457144 24054 92.89
86 111366760 23949 92.48
88 111275524 23855 92.12
90 111183488 23793 91.88
92 111090670 23745 91.70
94 110997032 23711 91.56
96 110902740 23641 91.29
98 110807946 23548 90.93
100 110712668 23497 90.74
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Table 3.2: A detail of uncovered genes

’ Type of Gene \ count ‘
microRNA 233
ribosomal RNA 19
small nuclear RNA 35
small nucleolar RNA 45
Other non-coding RNA 61
Pseudo gene 21
protein-coding 303

genes. Most of these genes do not share functions and genome region. They may share

domains with other genes.

3.2 Quantification quality

In this section, I compared the expression levels of three methods with my method using
real data and synthesis data. I compared the result of bowtie/eXpress and my method. The

accession ID of the test real data is SRR1639212.

3.2.1 Comparison of FPKM

I compared Fragment Per Kilobase Million (FPKM) values between bowtie/eXpress and
my method. At first, I varied N from 16 to 56 and the result is shown in Figure 3.10. In
Figure 3.10, the x-axis shows FPKM values of eXpress, the y-axis shows FPKM values
of my method, and the color means indexed N-gram coverage of each gene. The Pearson
Correlation Coefficient values between my method and eXpress were higher than 0.92 when
N was larger than 24. Since larger N gives larger PCC value, large N is better to estimate
accurately.

However, large N is not always the best choice to analysis. In Short Read Archive, 9.2%
of human RNA-Seq data have reads shorter than 50 in lengths. To cover 99% of human
RNA-Seq data, N should be smaller than 34. In the following analysis, [ used N = 32

because Matataki prefers a multiple of 4 as N due to implementation.
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Second, I varied the step size S from 1 to 16 (the result is shown in Figure 3.11).
This parameter was introduced because looking up every N-grams in a read provides less
information. As a result, larger S shows a better result in PCC. This result suggests some
junk reads may have an N-gram that is equal to indexed N-grams by chance. Since junk reads
have one or a few numbers of matched N-grams, these larger step size S can reduce invalid

matches. In the following analysis, I used S = 12 because 12 is accurate enough.

Finally, I varied the accept-count M from 1 to 4 (the result is shown in Figure 3.12).
I introduced this parameter to avoid that some fragments in a junk read matches to wrong
indexed N-grams by chance. According to Figure 3.12, PCC values of M > 1 was better than
a PCC value of M = 1. This result supports that some reads were counted as wrong genes.
On other hand, the PCC value of M = 4 was worse than the PCC value of M = 3. Since
the read length of the test data was 100, a few errors were allowed to accept a read. This
observation suggests too strict condition makes the result worse.

Selecting the best combination of N, step size S and accept-count M is one of the problems
in this method. The best combination depends on the read length and quality. According to

Figure 3.12, some errors should be allowed for accurate quantification.

3.2.2 Comparison of mapping rate

Mapping rate is also an important measure to evaluate this method. 1 compared mapping
rates by varying N, step size S and accept-count M. The result is shown in Figure 3.13. As
expected, the mapping rate became smaller when N became large because matching condition
was stricter in large N (shown in Figure 3.13 (A)). When N = 16, the mapping rate is larger
than the rate of bowtie. This observation suggested that Matataki count junk reads as some
gene’s read by chance.

On other hand, steps size S affected mapping rate slightly (shown in Figure 3.13 (B)).

This result indicated N-grams in a read that match to some indexed N-gram are continued.
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Finally, large accept-count M makes mapping rate lower (shown in Figure 3.13 (C)).
Especially, the mapping rate dropped largely at M = 4 when compared with other M.
Therefore, M = 4 is too strict in this data.

Other more detail comparison results are shown in Appendix A.

3.2.3 Compare quantification quality with synthesis data

I also compared Transcript Per Million (TPM) between my method, eXpress, Sailfish and
Kallisto in synthesis data. In this comparison, I used N = 32, S = 16 and M = 2 as
parameters of my method. As a result (shown in Figure 3.14 and Figure 3.15), my method
showed second best performance in linearity (i.e. PCC, shown in Figure 3.14 A, C, E, G
and Figure 3.15A) and best in error (i.e. absolute mean difference, show in Figure 3.14 B,
D, F, H and Figure 3.15B) in alignment free methods. Since an alignment based method,
eXpress showed the best performance in both of linearity and error, using eXpress result is
the best choice to evaluate prediction performance in real data. In this analysis, I included
genes that do not have indexed N-grams. My method cannot estimate expression level of
these genes. When I excluded these genes to calculate accuracy, my method showed the best
performance in both of linearity and error (shown in Figure 3.14 I, J and Figure 3.15 A, B as
MatatakiSubset).

Although my method is fastest, my method is most accurate to estimate gene expression
level for each gene in alignment free methods. Using indexed N-grams enables faster and

accurate RNA-Seq quantification.

3.3 Comparison of CPU time and memory usage

In this section, I compared the CPU time and memory usage of six existing methods with
Matataki in real data. I used four runs, ERR188074, ERR188125, ERR188171 and ERR188362

to compare CPU times and memory usage. The statistics of runs and mapping is shown in
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(A) A scatter plot of expected gene expression and estimated gene expression using proposing
method. (B) A density plot of difference between expected gene expression and estimated
gene expression using proposing method. (C, D) A scatter plot and a density plot using
eXpress. (E, F) A scatter plot and a density plot using Sailfish. (G, H) A scatter plot and a
density plot using Kallisto. (I, J) A scatter plot and a density plot using proposing method.
In these figures, genes that do not have indexed N-grams are neglected.
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(A) Pearson Correlation Coefficient with expected expression and estimated expression using
each method. “Matataki” is a result of a proposing method and “MatatakiSubset” is a result
of the proposing method without uncovered genes. (B) Mean of absolute difference from
expected expression.
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Table 3.3. The results of CPU time are shown in Figure 3.16 and Table 3.4, and the results
of acceleration rate compared with existing methods are shown in Table 3.5. The CPU times
were measured 10 times and medians of these results are shown in Table 3.4 and Table 3.5.
Memory usages are shown in Table 3.6. In this comparison, [ used N = 32, § = 12 and
M = 3 as the parameters.

As results, my method was extremely faster than other alignment-based methods, Bowtie
without quantification, RSEM and eXpress. Matataki was twice faster than other alignment-
free methods, Sailfish, RNA-Skim and Kallisto. Since Matataki was even faster than gzip
uncompression (about 55 seconds) or bzip2 uncompression (about 285 seconds), a quantifi-
cation of gene expression in RNA-Seq is not bottleneck of RNA-Seq analysis. In memory

usage comparison, Matataki required the smallest memory size in alignment-free methods.
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Table 3.3: Run and mapping statistics

Run accession | Number of reads | Length of reads | bowtie mapping rate
ERR188074 31,540,813 75 84.7%
ERR188125 28,810,860 75 80.2%
ERR188171 30,386,179 75 84.6%
ERR188362 26,255,381 75 80.4%

Table 3.4: CPU Time comparison
Run Accession | eXpress | RSEM | Bowtie | Sailfish | RNA-Skim | Kallisto | Matataki
ERR188074 | 15080.6 | 22264.9 | 1477.2 | 303.3 521.2 119.3 479
ERR188125 | 25404.0 | 20428.3 | 1492.4 | 3143 489.9 118.7 41.0
ERR188171 | 14109.1 | 21815.4 | 1429.5 | 3335 494.2 123.2 38.6
ERR188362 | 24607.6 | 18831.7 | 1355.8 | 302.8 483.7 102.0 40.6

Table 3.5: Acceleration rate compared with existing methods

Run Accession | eXpress | RSEM | Bowtie | Sailfish | RNA-Skim | Kallisto
ERR188074 314.52 | 464.35 | 30.81 6.33 10.87 2.49
ERR188125 618.94 | 497.72 | 36.36 7.66 11.94 2.89
ERR188171 365.92 | 565.78 | 37.07 8.65 12.82 3.20
ERR188362 606.76 | 464.34 | 33.43 7.47 11.93 2.52

Table 3.6: Memory usage comparison

| Method | Memory usage (GB) |
eXpress 4.0
RSEM 4.0
Bowtie 1.2
Sailfish 6.2
RNA-Skim 12.1
Kallisto 3.8
Matataki 3.5
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Chapter 4

Conclusion

Matataki is much faster and user-friendly quantification method for RNA-Seq. My method
archived more than 300 times faster than alignment based method, bowtie/eXpress. My
method is also more than two times faster than other alignment free method. In addition, the
memory usage of my method is smaller than other methods. Since Matataki is even faster
than uncompressing bzip2 format or SRA format, the bottleneck of RNA-Seq meta-analysis

is now uncompressing sequences, not mapping reads.
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Part 11

The development of massive analysis
method for large RNA-Seq dataset
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Chapter 5

Introduction

In past two decades, the number of published microarray data was rapidly increasing. Using
these microarray data, thousands of meta-analysis were performed [52]. For example, Tang
et al. [53] analyzed microarray data in TCGA [54] and revealed let-7b as a biomarker of
cancer. For another example, Mabbott et al. [55] found signatures to distinct B-cell subsets.

Microarray meta-analysis was widely accepted method.

RNA-Seq technology [34] is now de facto standard to measure gene expression level. The
number of RNA-Seq is also rapidly increasing today. The same approach with microarray
can be applied to RNA-Seq data now. However, the calculation time to quantify RNA-Seq
data was a big problem to perform meta-analysis of RNA-Seq. As I described in Part I, I

developed very fast quantification method to resolve this problem.

Gene coexpression is one of the most powerful applications of gene expression meta-
analysis to unravel novel gene-to-gene relationship or gene functions. For example, Bottcher
et al. [56] found a biosynthetic pathway, and confirm the genes in the pathway are co-

expressed using a coexpression database.

Currently, some papers describing gene coexpression databases were published. COR-
NET 2.0 [57] is a plant specific database of coexpression, protein-protein interaction, regu-
latory interactions, gene associations and functional annotations. They created Arabidopsis

thaliana and Zea mays coexpression data from microarray data. They also integrated other
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annotation, and developed user-friendly web-interface.

STARNET?2 [58] is another coexpression database. They targeted Homo sapiens, Rattus
norvegicus, Mus musculus, Gallus gallus, Danio rerio, Drosophila melanogaster, Caenorhab-
ditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana and Oryza sativa, and created
coexpression data from microarray data. They stopped updating coexpression and the web
service was inaccessible in November 2015.

GeneFriends [59] provided RNA-Seq and microarray based gene coexpression data. They
targeted human and mouse. To create RNA-Seq based gene coexpression, they mapped reads
to genome using STAR [60], and counted the number of reads in the gene position with their
original Java based software. Owing to STAR, they processed over 4,000 RNA-Seq data and
succeeded to predict some gene functions with their gene coexpression data.

COXPRESdD [61] and ATTED-II [62] are only coexpression databases that provided
coexpression of plants, animal and other species now, and the qualities of almost all coex-
pression data were evaluated properly. Originally, these databases provide microarray based
coexpression data. These databases are updated every two years, therefore, the quality of
coexpression is improving steadily.

In this part, I calculated RNA-Seq based coexpression for 5 species, human, mouse,
rat, zebrafish, fruit fly. All coexpression data were evaluated with Gene Ontology. Since
I introduced Matataki to calculate animal gene expression, my processing pipeline can deal
with larger number of RNA-Seq in near future. I describe the methods to calculate RNA-Seq
based coexpression, and the results of comparison with microarray based coexpression. The

calculated coexpression data were released in COXPRESdb [61].



Chapter 6

Materials and Methods

6.1 Downloading and managing SRA files

All sequenced data including genome, RNA-Seq or other NGS-based sequenced data are
archived in DDBJ Sequence Read Archive [18], NCBI Sequence Read Archive [17] and EBI
Sequence Read Archive [11] under International Nucleotide Sequence Database Collabora-
tion [19]. Since the data size of archived sequences is increasing at an exponential manner
[63], downloading all data in these databases is impossible in realistic time. To determine
which SRA files should be downloaded, I downloaded all metadata about these SRA files
first. All metadata are written in XML files separately for each submission. Each submission
has the information about a submission, studies, samples, experiments and runs. Submission
data have the submission date and the name of submitter. Studies data have metadata about
studies, such as a study title, an abstract. Samples data have metadata about experimented
samples. They contain taxonomy ID, name of the sample and other attributes of samples.
Each experiment data has the information about an instrument to sequence, library strategy,
sample and study ID, and other attributes about an experiment. Each experiment has a
run. One run corresponds to one sequencing. I transformed this information into SQLite3
database. I selected runs that library strategy is “RNA-Seq”, instruments were manufactured
by Illumina and the number of run in a study is smaller than 50 and larger than three. When

I calculated gene coexpression, I normalized bias of experimenters, sequence centers by a
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gene centering procedure. In the procedure, I subtracted a mean expression level from each
gene expression level for each study. If one study has too many runs, it is hard to normalize
condition bias. Therefore, the number of run in a study was limited to 50 for Homo sapiens
and Mus musculus. Since the number of RNA-Seq sample is small in other species, the num-
ber of run in a study was limited to 200 for Rattus norvegicus, Danio rerio and Drosophila

melanogaster.

6.2 Estimate gene expression level

Gene expression levels were estimated by using Matataki I described in Part 1. The detailed
parameters used in this analysis are shown in Table 6.1. To calculate expression level in

parallel, calculation pipeline was integrated with GridEngine [64].

Table 6.1: Parameters to estimate gene expression
Parameters for fastq-dump
Quality Filter | Filter used in current 1000 Genomes data
Minimum Length | 50
Apply left and right clips | yes
Command Options | -w - 50 --skip-technical -Z --split-files --qual-filter-1

Parameters for Matataki
N | 32
Step size: S | 16

Accept count: M | 2

6.3 Calculation of gene coexpression

6.3.1 Normalize expression data

Raw read counts of a sample is not comparable with other samples because the total number
of read sequences and the total abundance of RNA are different for each sample. Some nor-
malization methods were proposed in previous studies. I compared four methods, TMM [65],
quantile normalization [66], normalize summation of FPKM and raw value of FPKM. After

normalizing value, logarithm function was applied to expression value. 1 compared these
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normalization methods by evaluating with Gene Ontology term, described in the following

section.
6.3.2 Calculation of gene coexpression

Gene coexpression represents that how similar two gene expression patterns are. Similarity
of two gene expression patterns was measured by Person Correlation Coefficient (PCC). I also
introduced pre-process and post-process to reduce sequence bias and improve relationship
prediction performance. The overview of calculation method is shown in Figure 6.1.

First, I did gene-centering to reduce bias of experimenters and machines. Since raw
RNA-Seq expression profiles are biased by of experimenters or other non-biological factors
[67], these biases should be normalized. In this analysis, I subtracted the mean of gene
expression level from each gene expression profile for every study and every gene (shown
in Figure 6.1 (A) and (B)). A definition of one study was one study entry in the Short Read
Archive.

Second, Person Correlation Coeflicient values were calculated for each gene pair (shown
in Figure 6.1 (C)). PCC is defined in following formula.

2 (i =) (i =)
VE G = B2 (- 902

, where x is a progression of a gene expression level, and y is a progression of another gene

PCC(x, y) =

6.1)

expression level. Since a value range of PCC was different for each gene, a rank of PCC
was better measure to represent strength gene relationship. I used Mutual Rank (MR) [68]
to measure gene relationship in this study (shown in Figure 6.1 (D), (E)). Mutual Rank is

defined as following formula.

MR(a, b) = y/(Rank of PCC a — b) x (Rank of PCC b — a) (6.2)

I compared the performance of gene function prediction by using gene coexpression between

Mutual Rank and PCC using Gene Ontology based evaluation method describing in Section
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6.3.4

6.3.3 Implementation of gene coexpression calculation

Since a gene-expression profile table is too large to calculate PCC with existing software,
such as R, I implemented C++ based fast PCC table calculation software. It is optimized for
workstation with large memory and multi-core CPUs. All expression profile and correlation
data are stored in a memory-mapped file to access data efficiently. It is also multi-threaded
using OpenMP. This software can calculate PCC, PCC rank and mutual rank for all gene
pairs in 30 minutes with Intel® Xeon® CPU E5-2690 and 32 GB memory when the number

of gene is 20,000 and the number of runs is 5,000.

6.3.4 Evaluation of gene coexpression by using Gene Ontology

Gene coexpression data were evaluated with Gene Ontology (GO) [69]. Gene Ontology is a
vocabulary of gene function annotation. Part of genes is annotated with Gene Ontology to
describe gene functions.

When gene A shares Gene Ontology Term with another gene B, gene A may be related
to gene B. Since gene coexpression represents the strength of gene-to-gene relationships,
these relationships can be evaluated using whether a gene shares a Gene Ontology Term with
strong related genes.

The quality of gene coexpression was measured by partial area under curve (pAUC)
of receiver operating characteristic curve (ROC curve). When I assume that sharing gene
function between two genes corresponds to correlating gene expression pattern, the quality of
gene coexpression can be evaluated with checking whether highly correlated gene pair shares
Gene Ontology Terms or not. I defined truly related gene pairs with sharing at least one GO
Term, and predicted related gene pairs with mutual rank (shown in Figure 6.2). When gene
A has GO X and GO Y, and a threshold of a mutual rank is 1.9, gene B in Figure 6.2 is a

“true positive” because gene B shares GO X with gene A and a mutual rank between gene A
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( A) Study X Study Y

Run1 Run2 Run3 Run4 Run5 Run6

GeneA|182.8 8813 | 2678 | 3069 | 1262 | 4077

GeneB| 11.2 | 327 | 37.3 || 0.0 | 43.9 | 6.99

A

| Mean of expression level in Gene B and Study X is 27.1 |

subtract the mean of gene expression level from each
gene expression profile for every study and every gene

(B) Run1 Run2 Run3 Run4 Run5 Run6

Gene A | -3147 | 4921 | -1213 | 266.9 | -1541 | 1274

GeneB | -158 | 565 | 10.2 | -17.0 | 26.9 | -9.98

Calculate Pearson Correlation Coefficient
for every gene pairs

-

(C) Gene A Gene B Gene C
GeneA | 1.0 |0.015| 0.22
GeneB | 0.015| 1.0 | 0.14
GeneC | 0.22 | 0.14 1.0

Calculate rank of PCC for every gene

-

(D) Gene A GeneB GeneC
Gene A 2 1
Gene B 2 1
Gene C 1 2

. Calculate Mutual Rank

(E) Gene A Gene B Gene C
Gene A 2 1
Gene B 2 1.4
Gene C 1 1.4

Figure 6.1: Overview of gene coexpression calculation
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and gene B is smaller than the threshold. Similarly, gene C is a “false positive” , gene D is a
“false negative” and gene E is a “true negative”. I repeated this procedure for all gene pairs
to calculate a true positive rate and a false positive rate.

ROC curve is a plot of true positive rates and false positive rates when a threshold is varied.
When a predictor can predict perfectly, ROC curve goes through top left. If a predictor predicts
randomly, ROC curve looks like a diagonal. Since gene coexpression data are often used to
predict protein complex, metabolic pathway or other gene functional relationships, prediction
performance in low false positive area is important than total prediction performance. I used
partial AUC (pAUC) instead of total AUC to evaluate prediction performance in the low
false positive rate area (shown in Figure 6.3). In this study, I focused on the range that false
positive rate is less than 0.01. pAUC will be 5 x 10~ when random predictor is evaluated.

In this study, I used only limited part of Gene Ontology Terms to evaluate performance.
Gene Ontology Terms that are annotated to many genes are not informative because predicting
general GO is easy problem. I limited Gene Ontology that is annotated to 20 genes or fewer
genes and 5 genes or more genes. I evaluated prediction performance for each namespace
separately because each namespace covers different domains.

All Gene Ontology and NCBI gene2go were downloaded at August 11th 2015 from

geneontology.org/ and Human Genome Center NCBI mirror site.
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Gene Ahas GO X and GO'Y

Mutual Gene
Rank  Ontology

Gene B 14 GO X True positive
GOZ
Gene C 1.7 GO Z [ False positive ]
MR threshold
Gene D 2 GOY [ False negative ]
Gene E 24 GO Z True negative
E True positive

True Positive Rate = — -
E(True positive + False negative)

E True negative
False positive Rate =
p E(True negative + False positive)

Figure 6.2: Evaluate gene coexpression with Gene Ontology
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True Positive Rate

Random predicted line

Observed predicted line

(Sensitivity)

False Positive Rate
(1 - Specificity)

partial Area Under Curve (pAUC)

Area Under Curve (AUC)

Figure 6.3: Description of ROC curve and AUC, partial AUC



Chapter 7

Results & Discussion

7.1 Statistics of SRA files

On September 9th 2015, 1,403,951 runs were registered in Short Read Archive. The number
of RNA-Seq runs was 226,937. The numbers of RNA-Seq sequenced for each species are
shown in Table 7.1. Since this number includes controlled-access data, such as dbGaP
[70], some data is available only for permitted users. In this study, I narrowed down to
runs that were sequence by Illumina sequencers to avoid the bias of sequencers, and part of
“Transcriptome Analysis” to ensure that RNA-Seq was performed for transcriptome analysis.
The numbers of Illumina sequenced and part of “Transcriptome Analysis” is shown in Table

7.1, column “type A runs”.

Some large scale studies have more than 100 runs. For example, a study SRPO27537 has
4,894 runs. In the study, they performed a lot of single cell RNA-Seq and unraveled dynamic
paracrine control of cellular variation [71]. Normalizing experimenter or sequence bias of
these large scale studies is challenging because too large study may be performed by more
than one experimenter or sequencers. In this study, large-scale studies, that have more than
50 runs in a study were neglected to deal with bias and reduce download and calculation
time. The numbers of runs included in studies that have 50 runs or fewer are shown in Table
7.1, column “type B runs”. Since the numbers of RNA-Seq runs of other species were small,

I used 200 as the upper limit of runs in a study.

51



52

Table 7.1: The number of RNA-Seq runs in Short Read Archive

[ [ Scientific name [ Taxonomy ID [ # of RNA-Seq runs [ # of Type A runs [ # of studies [ # of Type B runs ]
1 | Mus musculus 10090 57311 49197 1192 12190
2 | Homo sapiens 9606 59538 27692 1076 10738
3 | Arabidopsis thaliana 3702 4294 3277 210 2278
4 | Drosophila melanogaster 7227 8568 7620 228 1745
5 | Saccharomyces cerevisiae 4932 3857 3022 90 927
6 | Caenorhabditis elegans 6239 2125 1781 105 895
7 | Danio rerio 7955 5676 5098 88 859
8 | Zea mays 4577 2907 2253 82 669
9 | Bos taurus 9913 1267 1005 46 587

10 | Glycine max 3847 984 766 44 578
11 | Rattus norvegicus 10116 4368 3987 59 469
12 | Gallus gallus 9031 844 517 43 457
13 | Chlamydomonas reinhardtii 3055 718 487 24 432
14 | Sus scrofa 9823 495 411 39 319
15 | Solanum lycopersicum 4081 1090 629 33 275
16 | Escherichia coli 562 646 399 28 261
17 | Schizosaccharomyces pombe 4896 539 222 30 222
18 | Oryza sativa 4530 635 208 27 208
19 | Ovis aries 9940 595 336 15 204
20 | Oryza sativa Japonica Group 39947 427 199 15 199
21 | Brassica napus 3708 313 268 13 193
22 | Aedes aegypti 7159 953 839 13 156
23 | Triticum aestivum 4565 626 304 18 147
24 | Medicago truncatula 3880 365 143 11 143
25 | Macaca mulatta 9544 910 577 21 142
26 | Gossypium hirsutum 3635 335 139 21 139
27 | Tribolium castaneum 7070 150 138 7 138
28 | Escherichia coli str. K-12 substr. MG1655 511145 242 190 15 136
29 | Vitis vinifera 29760 569 283 13 127
30 | Xenopus (Silurana) tropicalis 8364 236 174 23 122
31 | Solanum tuberosum 4113 157 118 11 118
32 | Malus domestica 3750 278 216 13 117
33 | Cryptococcus neoformans 5207 476 106 5 106
34 | Neurospora crassa 5141 253 217 14 105
35 | Anopheles gambiae 7165 505 148 13 96
36 | Zea mays subsp. mays 381124 1017 863 10 95
37 | Equus caballus 9796 728 656 8 95
38 | Dictyostelium discoideum 44689 205 161 7 94
39 | Pseudomonas aeruginosa 287 470 297 7 88
40 | Staphylococcus aureus 1280 260 232 8 88
41 | Callithrix jacchus 9483 166 88 7 88
42 | Picea abies 3329 112 88 4 88
43 | Salmo trutta 8032 88 88 4 88
44 | Schmidtea mediterranea 79327 115 83 10 83
45 | Candida albicans 5476 234 177 15 81
46 | Mus musculus domesticus 10092 101 81 6 81
47 | Macaca fascicularis 9541 312 80 5 80
48 | Trypanosoma brucei 5691 86 78 7 78
49 | Gasterosteus aculeatus 69293 105 75 4 75
50 | Sorghum bicolor 4558 139 74 4 74

Type Arun | Study type is “Transcriptome Analysis” and platform is “ILLUMINA”

Type Brun | Intype A runs, total numbers of runs in studies that have 50 runs or less
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7.2 Gene coexpression

I calculated gene coexpression for Homo sapiens (Human), Mus musculus (Mouse), Rattus
norvegicus (Rat), Danio rerio (Zebrafish) and Drosophila melanogaster (Fruit Fly). Mi-
croarray based gene coexpression data for performance comparisons were downloaded from
COXPRESdD [61]. The values of pAUC in GO prediction are shown in Table 7.2, 7.3, 7.4,
7.5 and 7.6. For quality control, I limited to RNA-Seq runs that have 50 or longer sequence
length and more than 5,000,000 mapped reads to calculate gene coexpression. The numbers

of RNA-Seq runs that were used to calculate gene coexpression are also shown in each table.

7.2.1 Comparison of normalizaiton factor

I compared four normalization methods: quantile normalization, TMM, summation and raw
value of FPKM. The results of human gene coexpression are shown in Table 7.2. As a
result, the prediction performance of quantile normalization showed the best pAUC score in
mutual rank and PCC. On other hand, summation normalization and TMM normalization
showed worse pAUC than other two normalization, raw FPKM and quantile normalization
in both mutual rank and PCC. The pAUC values of raw FPKM were the second best score
in both mutual rank and PCC, but the value of pAUC of PCC was much smaller than that of
quantile normalization. This tendency was also observed in Drosophila melanogaster and

Mus musculus.

7.2.2 Comparison with microarray-based coexpression

I compared the prediction performance with microarray based coexpression data. The results
are shown in Table 7.2, 7.3, 7.4, 7.5 and 7.6. As a result, the prediction performances of
Homo sapiens and Mus musculus were better than the performance of microarray based
gene coexpression data, even if the number of samples is much smaller than microarrays.

This observation suggests that gene expression quality of RNA-Seq is better than that of
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microarray, and RNA-Seq based gene coexpression is promising solution to predict gene-to-
gene relationship in the future.

The prediction performances based on RNA-Seq in other species, Rattus norvegicus,
Danio rerio and Drosophila melanogaster were worse than based on microarray. Since the
numbers of RNA-Seq samples of these species were much smaller than that of microarray

samples, more RNA-Seq samples are required to improve prediction performance.
7.2.3 Effect of sample size

I evaluated effect of the sample size for coexpression quality. I down-sampled RNA-Seq
studies and calculated pAUC of each Gene Ontology namespaces using Mutual Rank. As
shown in Figure 7.1, pAUC values were highly correlated with sample sizes in human and
mouse. This result suggests that Gene Ontology prediction performance of gene coexpression

will be improved when the number of RNA-Seq is increased in the future.
7.2.4 Availability

The result of gene coexpression is available as web-based databases at COXPRESdb (http:

/Icoxpresdb.jp/) and ATTED-II (http://atted.jp/).


http://coxpresdb.jp/
http://coxpresdb.jp/
http://atted.jp/
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Chapter 8

Conclusion

In this part, I calculated gene coexpression based on RNA-Seq and evaluated its performance
using Gene Ontology. As the result, gene coexpression based on RNA-Seq outperformed
in Homo sapiens and Mus musculus. In other species, performances of coexpression based
on RNA-Seq are worse than microarray because the numbers of runs are much smaller than
that of microarray. These results were published in web-based databases, COXPRESdb
(http://coxpresdb.jp/) and ATTED-II (http://atted.jp/). These databases are only databases
that the performances of coexpression were evaluated properly. I also evaluated normaliza-
tion methods of expression profiles and concluded quantile based normalization is the best

method.
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Part 111

Comparison of Gene Coexpression
Profiles and Construction of Conserved

Gene Networks to Find Functional
Modules
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This part is based on Okamura, Y., Obayashi, T. & Kinoshita, K. “Comparison of Gene
Coexpression Profiles and Construction of Conserved Gene Networks to Find Functional

Modules.” PLoS ONE (2015). doi:10.1371/journal.pone.0132039


http://dx.doi.org/10.1371/journal.pone.0132039
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Chapter 9

Introduction

With the sequencing of the human genome completed [6, 7, 72], the next step is to annotate all
of the functional elements in the genome, to reveal the genomic content. In spite of intensive
analyses using EST [73], CAGE [74] and/or comparative genomics [9, 75, 76], about half of
the genes remain uncharacterized. Thus, the focus has shifted to the functional annotation of

the genes [77, 78].

Although each gene has its specific function, complicated cellular functions are usually
achieved by combinations of individual functions, as in the ribosome, which synthesizes
proteins by the coordinated functions of many ribosomal proteins and RNAs. Metabolic
pathways are also good examples of genes that work together to achieve various biological
functions. Therefore, to understand the functional role of each gene, it is essential to
find groups of genes working with the same timing, by identifying genes with functional

relationships [79].

Various kinds of relationships can be considered to identify the functional modules.
Protein-protein interactions (PPI), obtained by high throughput experiments such as yeast
two-hybrid methods [80], provide some of the most comprehensive interaction data [81, 82],
but they only cover the proteins with direct interactions. In other words, genetic interactions
(e.g. transcription factor and target gene) and metabolic pathways are not included. Another

way to infer gene networks is based on the manual curation of the literature [83]. This

65



66

approach provides high quality interaction data, but is quite time consuming and requires

large amounts of human resources.

DNA microarrays generate profiles of comprehensive gene expression patterns and their
clustering [84, 85] to detect functionally related genes. Since one gene expression profile
only provides a snapshot of a cell state, many expression profiles are required to detect related
genes with reliable accuracy. Currently, over ten thousand gene expression data points are
available for some microarray platforms, and they have been used to identify genes [86],

genetic interactions [87] and gene modules [88, 89].

To detect the regulatory relationships among genes, coexpression is a popular and promis-
ing approach [88, 90]. Coexpression is calculated from large amounts of expression data
obtained by microarray [32] or RNA-seq [34] experiments, to detect the genes with similar
expression profiles. In this part, I have focused on the microarray data, because the number
of available microarray samples is about 10 times larger than that of RNA-seq experiments.
RNA-seq has some advantages, in terms of the gene expression profile quality. However,
the number of samples is also an important factor to identify good functional relationships
between genes, because larger coverage of various conditions is necessary to detect subtle
functional connections. According to the progress of several international projects, such as
ENCODE [91], the amount of available expression data is rapidly increasing, but is still cur-
rently limited as compared with that of DNA microarrays. Our approach will be applicable

to RNA-seq data in the future, when larger amounts are available.

For the identification of gene functions, sequence conservation is also very useful. Since
comparative analyses of genome sequences have worked very well to identify new potentially
functional elements, as in the recent comparisons of 29 mammalian genomes [75], such

analyses are becoming a standard practice when new genome sequences are solved [76, 9, 92].

Since both gene expression and sequence conservation are useful to understand gene

functions, the introduction of conservation into analyses of gene expression profiles should be
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promising. Su et al. [93] compared the human and mouse transcriptomes, and found similar
gene expression profiles in the corresponding organs. More recently, Brawand et al. [94]
reported that the main differences in gene expression are due to the lineage, the chromosomes,
and the tissues. These approaches were very useful to characterize the functional relationships
among genes over species, but a serious problem still exists in the consideration of the
conservation of gene expression patterns. It is easy to obtain samples from similar organs,
but the similarity may not always indicate the correspondence of the organs. It is almost
impossible to obtain samples corresponding to the same type of cells in the same state.

To overcome this difficulty, some studies have proposed methods to match samples over
species. Le ef al. [94] developed a method to match experiments over species, by introducing
anew distance function between the samples, and Wise et al. [95] tried to match experiments
based on their descriptions along with the expression data. These methods may work well
to find similar gene expression states, but they naively assume that homologous genes have
similar expression profiles. As I describe in this part, this assumption is not always true.

I now propose a new method to compare gene expression patterns without sample match-
ing, to focus on the relationships among the genes in each species and to compare the
relationships among species. In this approach, I assume that the interactions between genes
are conserved over species, if the interactions are fundamentally important for the biological
roles of the genes. More precisely, I introduced a new method to measure the coexpres-
sion similarities. I created gene networks based on the conserved gene coexpression to find
the functional modules by using a graph community detection algorithm, and found some

well-enriched functional gene modules without any prior knowledge.
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Chapter 10

Results

10.1 Patterns of coexpression conservation

I compared the gene lists of the corresponding (or homologous) gene pairs to evaluate the
conservation of coexpression patterns and expression data from two species, human and
mouse. For each human gene (referred to as the guide gene), a list of coexpressed genes
was created by ordering the genes by the coexpression strength, and a corresponding list of
mouse genes was constructed for each homologous gene to the guide gene. The coexpression
conservation of a homologous gene pair was measured as the similarity in the lists for the
top N genes (Figure 10.1A). When the human guide gene had multiple homologous mouse
genes, | compared the coexpressed gene lists for each pair of homologous genes. Next, |
drew a “conservation chart” based on the number of corresponding gene pairs in the most
coexpressed N genes, as shown in Figure 10.1B. If the human and mouse coexpression
lists are exactly equal, then the conservation chart should look like the blue dashed line in
Figure 10.1B. If the coexpression lists are equal to Figure 10.1A, then the conservation chart
looks like the red dashed line in Figure 10.1B. A conservation chart represents the degree of

similarity in the coexpression lists and indicates where the similarity exists.

One of the highly conserved genes was RPS14 (ribosomal protein S14), which had 71
corresponding genes in the top 100 most coexpressed genes (Figure 10.1C). Among the 60

genes, 55 are ribosomal genes, which correspond to 92% (=55/60) of the human ribosomal
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(A) Schematic explanation of the comparison method for the conserved gene lists. Prepare
a gene list pair for an orthologous gene pair from human and mouse. Count the number
of human genes (yellow highlighted genes) with corresponding genes in the top N genes,
where green arrows mean corresponding gene pairs.
multiple mouse genes, I counted one human gene. However, when a mouse gene corresponds
to multiple human genes, I counted all of the human genes. (B) Conservation chart of (A).
This chart illustrates the change in the number of corresponding genes against the parameter
value, N. (C) An example of a conservation chart for the most conserved guide gene. (D)
An example of a conservation chart with a typical shape. (E) An example of genes with a
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genes tested. This result partially demonstrates the potential of our approach to detect related
genes. However, many genes have low coexpression conservation, as in the example of
PSMD9 (Figure 10.1D). On average, 13.1 genes were found to have corresponding genes in
the top 100 most coexpressed genes.

Although the “shapes of the conserved lines” in the conservation charts were quite
divergent and thus prevented a systematic classification, I found an interesting pattern, as
shown in Figure 10.1E for SYCN (syncollin). This gene has a well-conserved region for
the top 39 genes, while there were only slight increases after that, and 24 of the 39 genes
have the homologous genes in mouse. SYCN is involved in the pancreatic secretion pathway
(KEGG:hsa04972), and 12 of the 24 genes are also involved in the same pathway. This
observation suggested that SYCN and the 24 genes may form a functional cluster for the
pathway. When we assume that functional gene clusters are conserved over species, then the
two coexpression lists for the orthologous gene should be similar over species. Therefore, it
may be possible to detect the functional clusters by focusing on the well-conserved regions.
Hereafter, I refer to the genes in conserved regions that have corresponding mouse genes
(namely, the 24 genes in the above example) as “conserved coexpressed genes” or in short

“CC genes”.

10.2 Identification of conserved coexpressed genes

To detect the CC genes from the conservation chart, I tried to identify a turning point, where
a well-conserved region goes into a less conserved one. For this purpose, I searched for
a point by detecting a flat region in each conservation chart, because a conservation chart
should be flat for the genes in a list if the orders of the two coexpression lists are random.
Thus, the initial point of the flat region was defined as the turning point, and I defined the
conserved region as the part on the left of the flat area. The CC genes were identified as the

corresponding genes between human and mouse of a guide gene in the conserved region. See



72

the Materials and Methods section for the details of the turning point detection and the CC
gene identification. As a result, 4,672 guide genes had a turning point. Each guide gene had

6.6 genes on average, and 3,776 non-redundant CC genes were identified.

10.3 Conserved gene network in human

To visualize the relationships among all of the guide genes and their CC genes, I represented
them in a network style, where each node corresponds to a gene and an edge is drawn from a
guide gene to a CC gene, and removed all of the unidirectional edges. The resulting networks
are shown in Figure 10.2A. The networks consisted of one large and twenty small networks.

Since the large networks were too big to interpret, I separated them into more tightly
related gene modules for convenience. For this purpose, I used the community detection
algorithm developed by Palla et al. [97] for all of the networks shown in Figure 10.2A. This
algorithm searches for densely connected sub-networks by integrating small cliques, and thus
requires one parameter, the smallest clique size (SCS). I first used a default value (SCS =4)
and found 70 modules, as shown in Table 10.1. To characterize the functional roles of the
modules, I performed GO enrichment analyses by the Fisher exact test, and selected the GO

term with the smallest p-value from the statistically significant terms as the representative

GO term.
Table 10.1: Detected gene modules Summary of detected gene modules and representative GO terms when SCS = 4
l C'ID ] Size ] GOID ] Representative GO name ] # of GO annotated genes ] # of intersect ] p-value ‘

1 404 G0:0002376 immune system process 1897 232 1.14E-99
2 97 G0:0043588 skin development 295 27 2.32E-19
3 83 G0:0030198 extracellular matrix organization 353 32 2.81E-26
4 67 GO:0006936 muscle contraction 255 35 4.16E-40
5 48 GO0:0060271 cilium morphogenesis 153 7 1.68E-02
6 43 GO0:0072376 protein activation cascade 52 11 5.09E-14
7 42 GO0:0006414 translational elongation 88 35 3.85E-70
8 32 GO:0045333 cellular respiration 145 25 6.40E-41
9 31 GO:0006986 response to unfolded protein 128 10 1.84E-09

10 28 GO0:0016126 sterol biosynthetic process 48 18 1.55E-35

11 23 GO:0008544 epidermis development 256 8 8.33E-05

12 22 GO:0007586 digestion 107 8 4.98E-08

13 21 GO0:0007601 visual perception 175 16 4.15E-23

14 19 G0:0006520 cellular amino acid metabolic process 430 15 7.19E-16

15 19

16 18

17 17 GO0:0048285 organelle fission 496 12 2.77E-10

18 17

19 16

20 15 GO0:0019915 lipid storage 57 6 3.59E-07

21 14 GO0:0048706 embryonic skeletal system development 116 11 4.46E-17

22 13 GO:0006458 ’de novo’ protein folding 52 9 8.23E-16

23 12 GO0:0034728 nucleosome organization 87 5 1.42E-04

24 10 G0:0030317 sperm motility 35 3 4.26E-02

25 10 G0:0045333 cellular respiration 145 8 9.16E-11

26 10 GO0:0006936 muscle contraction 255 6 1.45E-04
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ID ize ID Representative name # of annotated genes # of intersect -value
S GO P GO f GO d g f p-val

27 9 GO:0007156 homophilic cell adhesion via plasma membrane adhesion molecules 91 9 2.48E-16
28 9 G0:0042438 melanin biosynthetic process 14 6 5.12E-13
29 8
30 8
31 7 GO:0006397 mRNA processing 393 7 2.62E-07
32 7 GO:0006096 glycolytic process 61 6 7.87E-10
33 6
34 6 GO:0006956 complement activation 32 5 6.04E-09
35 6 GO:0031427 response to methotrexate 4 2 2.43E-02
36 6
37 6
38 6 GO0:0043407 negative regulation of MAP kinase activity 65 4 1.50E-04
39 5 GO0:0015988 energy coupled proton transmembrane transport, against electrochemical gradient 27 3 1.60E-03
40 5
41 5 GO:0007588 excretion 63 3 2.16E-02
42 5 GO:0006364 rRNA processing 107 5 5.32E-07
43 5
44 4 G0:0009954 proximal/distal pattern formation 29 4 3.52E-07
45 4
46 4 G0:0002331 pre-B cell allelic exclusion 3 2 4.87E-03
47 4 GO0:0006631 fatty acid metabolic process 296 4 4.65E-03
48 4
49 4 GO:0008211 glucocorticoid metabolic process 24 4 1.57E-07
50 4
51 4 GO:0006687 glycosphingolipid metabolic process 49 4 3.14E-06
52 4 GO:0007339 binding of sperm to zona pellucida 32 3 1.09E-03
53 4
54 4
55 4 GO0:0006521 regulation of cellular amino acid metabolic process 60 4 7.23E-06
56 4
57 4 GO0:0022904 respiratory electron transport chain 93 3 2.83E-02
58 4
59 4 GO:0006986 response to unfolded protein 128 4 1.58E-04
60 4
61 4
62 4
63 4
64 4 GO0:0019322 pentose biosynthetic process 4 4 1.48E-11
65 4 G0:0060481 lobar bronchus epithelium development 5 2 1.62E-02
66 4 G0:0070059 intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress 29 3 8.00E-04
67 4
68 4
69 4
70 4 G0:0002399 MHC class II protein complex assembly 4 2 9.74E-03

As aresult, 45 of the 70 modules had significantly enriched GO terms. For example, the

representative term of the largest modules shown as ID: A-1 in Figure 10.2A was GO:0002376

(immune system process), where 232 out of 404 genes had the GO term.

Some detected modules are not labeled with a Gene Ontology Term, as in the cases

of the 15th, 16th, 18th and 19th modules. These modules had no significant terms with
P-values < 0.05, and thus might be novel functional modules, such as the other modules with
significant terms, because they have comparatively strong conserved coexpression.

Some gene modules had similar annotations and overlaps, indicating the existence of larger
modules, if I searched modules for lower density. To elucidate the relationships among the
modules, I observed the overlaps by changing three different SCS parameters of the module
detection algorithm. I used three, four and five as the SCS to reveal both the low-density

modules and high-density modules, as recommended by Palla et al. [97]. The numbers of

IC: Community
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Figure 10.2: Detected gene networks

(A) Gene networks based on coexpression conservation. I generated networks with 3,776
genes. The largest gene network contained 2,717 genes. Genes (nodes) were colored when
they were a member of the top 20 largest modules with SCS=4. Gray nodes were parts
of some smaller modules, and black nodes were not parts of any modules. I prepared this
picture of the network with Cytoscape [96]. (B) The largest gene modules with SCS=3 and
the large modules with SCS=5 are colored. This module has the representative term “immune
system process’, but not all of the sub-modules with SCS=5 have immune-related GO terms,
as discussed in the text. (C) The gene network without a turning point. Since some gene
networks had high coexpression conservation, no flat region was found. I used 100 instead
of a turning point, because turning points cannot be defined for these genes. This network
was generated from these highly conserved genes.
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detected gene modules were 107, 70 and 42, and the mean numbers of genes were 17.4, 19.3
and 24.6, respectively. The number of detected module with SCS=4 (70 modules) may be
larger than expected as expected, but it should be noted that our method will not detect the
gene modules that were changed from mouse to mouse, because our method is based on the
conservation between human and mouse, which may result in that the number of modules

was limited.

The largest gene module in SCS = 3 is shown in Figure 10.2B. In this module, 308
out of 767 genes had the GO term GO:0002376 (immune system process). This module
can be further separated into 9 sub-modules with 10 or more genes by using SCS=5, as
indicated in Figure 10.2B, where different colors represent the different modules with SCS
= 5. Some of the colored gene modules were related to the immune system GO term,
but others were not. For example, the ID: B-1, B-2 and B-4 gene modules in Figure
10.2B are related to GO:0002376 (immune system process), while the ID: B-5 gene module
at the bottom right in Figure 10.2B with the representative GO: 0030198 (extracellular
matrix organization), and some other enriched GO Terms as shown in the web database
at http://v1.coxsimdb.info/coxsim/hsa-v13-01/mmu-v13-01/SCS:5/5. Most of the enriched
GO terms are directly related with immune system process, but I can also see some interesting
terms such as GO: 0032963 (collagen metabolic process) and GO: 0001568 (blood vessel
development). This result may indicate that the immune system tightly cooperates with

collagen metabolic process, blood vessel development and other systems.

Some genes lacked turning points and had large numbers of corresponding genes, indi-
cating that the genes are quite strongly conserved. To characterize them, I generated another
gene network for them by regarding 100 as the tentative turning point, instead of determining
a turning point. As a result, 336 genes, 1,953 edges and 8 individual networks were detected
(shown in Figure 10.2C). Only 9 genes among the 336 genes had no connection with other

genes without any turning points. I applied the community detection algorithm again for


http://v1.coxsimdb.info/coxsim/hsa-v13-01/mmu-v13-01/SCS:5/5

76

this network, and found 13 modules. The largest module was ID: C-1 (Figure 10.2C), where
95 genes were involved and 85 of them were annotated as GO:0007049 (cell cycle). This
result suggests that the genes for fundamental functions, such as cell cycle, translation or

cytoskeleton, have highly conserved coexpression and are tightly connected in each function.

10.4 Effect of the introduction of conservation

I performed the same module detection analysis for a human coexpression network without
conservation, to evaluate the effect of the conservation. Coexpression data for human were
obtained from COXPRESdb [61], where the strengths of coexpression are described by a
rank-based measure called Mutual Rank (MR) [68]. Smaller MR values indicate stronger
coexpression.

When I used MR = 3, 5, 10, 15, 20, and 30 as cutoffs, 22, 165, 458, 600, 667, and
622 modules were detected, respectively . I calculated the GO enrichment of the modules
for each MR threshold, and found that 5/22, 41/165, 76/458, 56/600, 56/667, and 33/622
modules were enriched with at least one GO term. However, the conservation filtering method
proposed in this part detected 45 enriched modules out of 70 modules (Figure 10.3A), and
the ratio of enriched modules based on coexpression conservation is clearly better than the
ratios of enriched modules based on the non-filtering method with COXPRESdb at any MR
threshold (< 41/165 with MR=5, see Figure 10.3B). This observation suggests that the
conservation-based method may reduce false positives to identify functional modules.

To check the reduction of false positives in each module, I further compared the modules
with MR = 10 (458 modules) and the modules identified by conserved coexpression (70
modules). I found that 47 modules were similar, where a pair of modules was judged to be
similar if the number of common genes was significantly large (Fisher’s exact test, p-value
< 0.05 with Bonferroni correction). If a module had multiple similar modules, then only

the mutually best pair was used. I also counted the number of genes with the representative
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GO term of the module (Nrge;néo), and used the ratio to the number of genes in the module

(Nrgeepnéo/ NE&"¢ ) as an indicator to evaluate the goodness of the modules. If I assume that the
representative GO term truly explains the function of a module, then a higher ratio indicates
a better module explanation, or a module with fewer falsely related genes (or genes with
different annotations). As a result, 13 out of 47 modules were found to share the same
representative GO term, and the average ratio (Ni;néo /N&" ) was 1.18 times higher in the

conservation-based method than the COXPRESdb method. Notably, the raw number Nrge;néo
was also 1.18 times higher and the sizes of the conservation coexpression-based modules
were larger than those of the COXPRESdb-based modules (Figure 10.3C), indicating that

fewer falsely related genes were included in the modules.

Some examples of similar module pairs are shown in Figure 10.4. The first module pair
in Figure 10.4 has different representative GO terms with 25 common genes, one for “skin
development” and the other has no significant term, where the size of the conservation-based
module (97 = 72+25) is much larger than that of COXPRESdb (42 = 25 + 17). The larger
size and the existence of the representative GO term indicate the enhanced enrichment of
the related genes. The second module pair also has a larger number of genes with the
representative term in the conservation-based module (35) than that of COXPRESdb (24).
Since it shares the same representative GO terms, the larger number of genes with the
representative GO term may indicate the presence of a smaller number of related genes
outside of the module. However, the ratio of the genes with a representative GO term for the
conservation-based module (0.52) is smaller than that of COXPRESdb (0.62), which indicates
the inclusion of a larger number of unrelated genes in the conservation-based modules. Since
the conservation charts of the large module member genes have few flat regions in a small N
range, the turning points of these genes were found in a large N range. Therefore, genes that

are not directly related to a representative term may be included in the detected gene module.

gene

As described above, the conservation-based modules have better N repG

o/ Ngene ratios on
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average, as in the case of the third example. However, in some cases the COXPRESdb-based
modules produce better modules from the viewpoint of the inclusion of falsely related genes,
as in the second example. In short, coexpression conservation may reduce the number of

false negatives and false positives, to detect the functionally related genes on average.

10.4.1 Comparison of coexpression conservation between species

I compared coexpression similarity among 16 coexpression platforms of eleven species,
including RNA-Seq based and microarray based, using mean of COeXpression SIMilarity
(COXSIM) as described in section 11.3. I defined distances among coexpression platforms

as mean values of COXSIMs.

As shown in Figure 10.5, coexpression platforms of one species belonged to same branch
(shown in Figure 10.5 with blue dot lines) expects Rattus norvegicus (shown in Figure 10.5
with red dot lines). Since the number of samples in RNA-Seq based coexpression of Rattus
norvegicus is small, the quality of the coexpression was not enough to compare coexpression

similarities.

In mammalian, a dendrogram of coexpression similarity is almost consistent with NCBI
taxonomy except Canis lupus familiaris. This result indicates that mammalians have similar
gene expression pattern, and similarities among these species is consistent with similarities of
genomes. Since the coexpression of Canis lupus familiaris is calculated with small number

of samples (636), the position in the dendrogram was inaccurate.

The dendrogram of other species, such as Drosophila melanogaster or Caenorhabditis
elegans, was not consistent with NCBI taxonomy. For example, Danio rerio should be located
beside Gallus gallus. This observation suggests that gene expression pattern of these species

too divergent to discuss similarities of gene coexpression.
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Figure 10.3: Comparison between the conserved coexpression-based modules and those
based on coexpression without conservation

(A) The number of detected gene modules against MR for the coexpression-based method (left
6 bars) and the conservation-based method (right bar). The modules are colored according
to whether a module had enriched GO terms. (B) The ratio of enriched gene modules. (C)
A box plot of the gene module size distribution.

# of modules.
of enriched modules.
Size of modules

Ratio

Conservation Based COXPRESdb
Representative GO term:
G0:0043588 skin development
# of genes with rep term Representative GO term:
27 none
Ratio of genes with rep term
0.28
Representative GO term: Representative GO term:
G0:0006936 muscle contraction G0:0006936 muscle contraction
# of genes with rep term # of genes with rep term
35 24
Ratio of genes with rep term Ratio of genes with rep term
0.52 0.62
Representative GO term: Representative GO term:
G0:0072376 protein activation cascade GO0:0072376 protein activation cascade
# of genes with rep term # of genes with rep term
11 11
Ratio of genes with rep term Ratio of genes with rep term
0.26 0.13

Figure 10.4: Example of the correspondence between the conservation-based method mod-
ules and the COXPRESdb-based modules
The three module pairs with the largest numbers of intersecting genes are shown.
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10.4.2 Implementation of web-based database

All results of coexpression conservation, CC genes, and module detection are available
through the web database named COeXpression SIMilarity DataBase (COXSIMdb, http:
/Iv1.coxsimdb.info). The overview of the database is shown in Figure 10.6. To use this web
database, insert the gene symbol or entrez gene ID into the search field at the top of the
COXSIMdb page (shown in Figure 10.6A). This web service provides a list of genes related
to the query, with a view of the results of the coexpression conservation of a gene (Figure
10.6B). Figure 10.6C illustrates an example of a COXSIMdb main result view. The result
view has up to 4 sections. The first section is a summary of the human and mouse genes
and a conservation chart. The second section is a list of CC genes and any associated KEGG
pathway. The third section is a list of detected gene modules that include the gene if it is
involved in the modules. The gene modules detected with SCS=4 are shown in the default
mode, but links to the modules detected with SCS=3 and SCS=5 are also provided. The last
section is a table view of the comparison of coexpressed genes between human and mouse.
Each gene is colored by the gene type and whether it is a CC gene, and homologous genes

are shown in a pop-up window when the cursor moves over the genes.


http://v1.coxsimdb.info
http://v1.coxsimdb.info
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Figure 10.6:

How to use COXSIMdb

(A) First, search for a gene by its symbol or entrez gene ID. (B) Second, select a gene of
interest. (C) View of the coexpression conservation results. This view provides a summary of
the genes, a list of CC genes, the detected gene modules, and a comparison of coexpression.



Chapter 11

Material and Methods

11.1 Dataset

All human and mouse coexpression data were obtained from COXPRESdb [61], versions
Hsa.c4-1 (20,280 genes) and Mmu.c3-1 (20,959 genes), respectively. COXPRESdb is a
database of co-regulated gene relationships. The coexpression strengths were obtained
from COXPRESdb, and are represented by Mutual Rank (MR) [68]. MR is a rank-based
measure, and smaller values indicate stronger coexpression. I prefer MR over the Pearson
Correlation Coeflicient (PCC), because MR shows better performance in GO prediction [68].
All homologous gene sets were obtained from HomoloGene [17], version build 65, and the
genes that were not in HomoloGene were removed from the analyses. There were 18,981
human genes and 21,766 mouse genes in HomoloGene, and I used 14,611 homologous gene
pairs between human and mouse in our analyses. I used Gene Ontology Terms (GO Terms)
[69] to annotate the functions of the gene modules. The correspondence between the genes

and the GO terms was obtained from the gene2go file in NCBI [17].

11.2 Detection of turning point and conserved coexpression
genes

As described in the Results and Discussion section, I counted the number of human genes

with mouse homologs to draw the conservation chart (Figure 10.1A and B), and then searched
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for the lines with a turning point. It should be noted that I counted the number of human
genes when a gene had multiple homologous genes in mouse. In other words, a human gene
with two or more homologous genes in mouse was counted as one, while a mouse gene with

two human homologs was counted twice.

In the example shown in Figure 10.1E, some conservation charts have two distinct re-
gions, highly conserved and non-conserved, which can be detected as a turning point in the
conservation chart. When a functional gene relationship is conserved between two species,
the gene coexpression relationship will also be conserved. Therefore, to detect the functional

modules, I tried to detect the turning point in each conservation chart.

The turning point is detected by focusing on the flat area in a conservation chart. If a gene
module has k genes, then the two coexpression lists should have the same order in the top k
genes, but the orders in the list after the k genes can be expected to be random. Therefore,
if no new corresponding genes are found after the highly conserved region, it should be the
turning point. I defined the turning point as the region with a 10-length flat region, which is
a region with no new corresponding genes, and defined the conserved region as the region
to the left of the turning point. I searched for turning points among the top 400 coexpressed

genes.

When I also checked 5, 10, 15 and 20 as the length of the flat region to define the
turning point, 1,890, 3,776, 3,478 and 2,783 non-redundant conserved-coexpressed genes
(CC genes, as described below) were found, respectively. I selected the length of the flat
region to maximize the number of CC genes. On the one hand, the use of flat regions longer
than 10 to detect the turning point decreased the number of CC genes, because no flat region
was found in the conservation chart. On the other hand, the shorter flat region also made the

number of CC genes decrease, because turning points were found in the first position.

The genes in the conserved regions can be considered to have strong functional rela-

tionships. Therefore, I focused on the genes in the conserved regions, to emphasize their
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strong relationship with the guide gene. Since some unrelated genes can be mixed in the
coexpression lists due to coexpression noise, I used the genes mutually found in the conserved
regions and named them CC genes. In other words, if gene A is the CC gene of guide gene B,
then guide gene B should also be a CC gene of gene A. If there were multiple turning points,
our turning point detection algorithm selected the first one of them, and tended to select the
turning point at the smallest N.

Some genes did not have a flat area because their coexpression lists were highly conserved.
I also generated a conserved coexpression gene network by using the following method. Since
these genes did not have a flat area, I could not determine a turning point. I used 100 as
the threshold of N instead of the turning point in these cases. Subsequently, I generated a

coexpression gene network without a flat area, using the same procedure described above.

11.3 Definition of COXSIM

I defined COXSIMhyman (M, human> Emouse) t0 Measure coexpression similarity with one value.

The definition of this COXSIMpuman Values is follows:

COXSIMhuman (M, ghumans mouse) =
Z%Zl number of corresponding genes(N, ghuman, £mouse)
MM +1)/2

, where the value of M is a parameter to define the similarity, ghyman and gmouse are gene
lists of human and mouse, and smaller values of M indicate that I focus on tightly coupled
gene clusters. Very large M values have no meaning, because the minimum number of
corresponding genes will increase. Compared with the similar formulation proposed by Yang
et al. [98], our simple formulation can be applied to more complicated gene relationships
including homologous genes.

COXSIM is sensitive to the parameter M by nature, but other rank-base indexes such as

Spearman correlation coefficient are not suitable for this comparison. Since the importance
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of genes is different between a strongly coexpressed gene and a lowly coexpressed gene, |
introduced our original conservation similarity, COXSIM, to focus on strongly coexpressed
genes. It emphasized the effects of tightly coexpressed genes because this score is cumulative

value.

11.4 Analysis of the gene network and module detection

Since the CC genes are those with a tight functional relationship to the guide gene, I repre-
sented the relationship as a network, where a node indicated a gene and an edge represented
a relationship between a CC gene and the guide gene.

Biological networks tend to be scale-free, with a small world network and a modular
structure [99, 100, 101]. Since our network also had similar features, we applied a community
detection algorithm implemented in networkx [102] to find the functional modules, according
to Palla et al. [97]. To characterize the functional roles of the modules, enrichment analyses
were performed, using TargetMine [103] and based on Fisher’s exact test. I defined the
representative GO term as the GO term with the smallest p-value in a module.

Since some gene modules had overlaps or similar annotations, we performed the module
detection with three different strictness values, corresponding to the change in a parameter for
the smallest clique size (SCS) used in Palla e al. [97]. Detection with a larger SCS yielded
smaller and higher clustering coefficient modules. More precisely, I used three, four and
five for the three different SCS values, and calculated the overlaps between the detected gene
modules. Finally, I performed clustering of the gene modules by connecting the overlapped

modules.



Chapter 12

Conclusion

In this part, I have described a new method to compare gene expression patterns by focusing
on gene coexpression, to avoid the problem of sample matching. I also developed an
algorithm to detect the conserved modules, and the GO term enrichment analyses revealed
that the conserved gene modules have strong functional relationships. In other words, our
method could detect some functional modules, without any prior knowledge. Many modules
are well known, such as ribosomal protein or immune system, but some detected modules
have significantly enriched GO terms, and thus they will be good candidates for further

experimental analyses to identify the novel functional modules.
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Part IV

The development of large dataset analysis
helper tools
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Chapter 13

Hyokai : A fast table viewer for big data
analysis

13.1 Introduction

In bioinformatics research area, huge amount of data are generated everyday. Therefore,
data handling is one of the fundamental problems to use such big data. Microsoft Excel is
widely used as the first choice for users to view these large results. Excel is convenient to
represent, visualize, filter and summarize data, but handling large data with Excel requires
much machine power. In contrast, R language [104] and its GUI clients, such as Rstudio, are
also powerful tools to summarize and visualize huge data, but users are required to learn R
programming. In addition, R has no easy-to-use GUI to represent raw table data. Another
solution to handle big data is SQL-based databases such as SQLite [105] and MySQL. They
can store large data and look the data up fast, but users should learn SQL programming. To
achieve powerful analytic environment, I developed a new GUI client for big data analysis

based on SQLite and R.

13.2 Implementation

I implemented Hyokai, a fast table viewer for big data analysis. Hyokai is cross-platform,
tested on Windows and Mac OS X. The interface is built on Qt, a cross-platform application

and UI framework. Hyokai was implemented with C++ because C++ is one of the highest
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performance programming languages. I use SQLite3 as database format, therefore, database
can be accessed from C, Python, R, Ocaml or a lot of other programming languages. Since
Hyokai was built on well developed file formats and GUI toolkit, Hyokai and work on various

platforms and can be integrated with various programming languages.

13.3 Features

This software has simple GUI, with powerful data analysis backends, SQLite and R language.
Learning SQL and R language are not required for basic use, such as filtering data, joining two
tables, plotting histograms or plotting scatter plots. For advanced use, such as combinations
of joining and filtering or data grouping, SQL and R language are useful. Since Hyokai is
based on a relational database, SQLite, it is easy to convert IDs, join two different tables or
add annotations to rows. Since writing SQL codes to join tables is difficult for beginners,
Hyokai has GUI wizard for joining tables. Designing a table schema to use SQL can also
be problem for SQL beginners, but automatic table schema suggesting system is included
in Hyokai. This system suggests a suitable table schema for tab-separated values (TSV) or
comma separated values (CSV) that are exported from Excel or other software. Hyokai is
also integrated with R language. This software can generate codes to export filtered or joined

data to R. This software also has the visualizer to plot histograms and scatter plots.

13.4 Result

One of most usable application of Hyokai is differentially expressed gene (DEG) analysis.
When [ used edgeR [65] for DEG analysis, I have to deal with large table as shown in Figure
13.1. Since gene IDs in this figure were written in Entrez Gene ID, it is hard to associate
gene IDs to gene functions. In this case, SQL Join Wizard (shown in Figure 13.2 and result
of joining is shown in 13.3) is useful to convert to gene symbols and descriptions from gene

IDs. Filtering rows by some conditions is also common task to analyze data. Hyokai can
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filter rows with complex conditions by using SQL Where statement (shown in Figure 13.4).

[ X N ] & example : edgeR-example
LECE@SFABEERB+ -3
example | S Assist Clear
GenelD logFC logCPM F Pvalue FDR

1 6192 9.80814 6.48994 290.155 5.2045e-55 | 1.34776e-50
2 8653 9.84508 5.14001 238.99  2.23513e-43 2.89405e-39
3 7503 -8.33347 4.9002 203.053 | 4.27281e-37 | 3.68829e-33
4 9086 9.49387 4.41654 198.306 | 1.29665e-35 | 8.38449e-32
5 8287 9.79171 4172586 188.524 | 1.29733e-33 | 6.71911e-30
[ 8284 9.77676 3.27173 136.054 | 7.92736e-24 | 3.42145e-20
7 723778 -6.2677 4.06066 125.222 | B.86816e-23 3.28071e-19
8 7544 11.4987 2.63586 111.149 2.42341e-19 7.84457e-16
9 64595 11.3915 253275 106.279 | 162892e-18  4.68695e-15
10 5616 10.9753 212169 89.8353 | 8.93911e-16 2.31487e-12
n 3128 -10.8032 1.96501 86.6558 | 2.97733e-15 7.00917e-12
12 7404 10.3553 1.51538 709102 B.7806e-13  1.89485e-09
13 2044 8.22085 176131 69.415 | 1.62853e-12  3.24403e-09
14 441454 -5.74481 257652 67.2324 | 2.79368e-12 5.16751e-09
15 346171 -10.0852 11799 64.2497 B8.15642e-12 1.40812e-08
18 644961 472412 3.07997 621451 1.23823e-11 2.00407e-08
17 7535 -5.90257 2.04638 579216 | 1.09028e-10 _ 1.66082e-07
{ example 25896 rows

Figure 13.1: Hyokai Screen Shot

13.5 Availability

The source code of Hyokai is available at GitHub (https://github.com/informationsea/Hyokai)
under GNU General Public License version 3. The binary distribution and sample databases

are available without any fee at https://hyokai.info.

13.6 Conclusion

Hyokai is a use-friendly big data analysis tool. Hyokai enables fast viewing, filtering and
summarizing big table. Since Hyokai uses common data format, SQLite, it is easy to exchange

data with other programming languages.


https://github.com/informationsea/Hyokai
https://hyokai.info
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Figure 13.2: JOIN SQL Wizard

SQL edgeR-example

o
| SELECT * FROM cxample NATURAL LEFT OUTER JOIN gi.gena_info

Figure 13.3: JOIN SQL Result
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&[]

& example : edgeR-example

EBow @ -5

example R < 0.05 AND absllogFC) > 4| | | hssist Clear
GenelD logFC: e T ’PVa\ua FDR
1 6192 9.80814 6.48994 290.155 5.2045e-55  1.34776e-50
2 8653 9.84508 514001 23699 2.23513e-43 2.88405e-39
3 7503 -8.33347 49002 203.053 | 4.27281e-37 3.68829e-33
4 9086 9.49387 4.41654 198.306 | 1.20665e-35 B8.39449e-32
5 8287 9.79171 417256 188,524 | 1.29733e-33 6.71911e-30
8 8284 9.77676 3.27173 136.054 | 7902738e-24  3.42145e-20
7 723778 -8.2677 4.06068 125.222 | 8.86816e-23 3.2807%e-18
8 7544 11.4987 2.63586 111149 | 2.42347e-19  7.84457e-16
9 64595 11.3915 2.53275 106.279 | 1.62892e-18 4.68695e-15
10 5616 10.9753 212169 89.8353 8.93911e-16 2.31487e-12
n 3128 -10.8032 1.96501 B86.6558 | 2.97733e-15 7.00817e-12
12 7404 10.3553 151538 70.9102 8.7806e-13 | 1.89485e-09
13 2044 8.22085 1.76131 69.415  1.62853e-12 3.24403e-09
14 441454 -5.74481 257652 67.2324 | 2.79368e-12 5.16757e-09
15 346171 -10.0852 11798 64.2497 | 8.15642e-12  1.40812e-08
16 644961 472412 3.07997 621451 1.23823e-11 | 2.00407e-08
17 7838 -5.90267 2.04839 579216 | 1.09028e-10  1.66082e-07
46 rows

Figure 13.4: Filtering Rows
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Chapter 14

DEG.js : A web-based RNA-Seq Analysis
Tool

14.1 Introduction

Recent years, RNA-Seq is widely performed because of development of high throughput
sequencing technology. To make use of RNA-Seq, bioinformatics plays a large role. Since
RNA-Seq data is large and cannot interpret directly, it is hard to analyze without information
science background. Existing widely used open-source methods requires command line
operation. Some methods, such as RNASeqGUI [106], can analyze with graphical user
interface, but they still hard to install into a local machine. To make RNA-Seq analysis
easy without any complex operations, I developed DEG.js, a web-based RNA-Seq analysis
platform. Since I built on standard web platform, users can perform simple analysis without

downloading any software expect a modern browser.

14.2 Implementation

To make easy to use, client side software was implemented with JavaScript. Since recent
modern browsers, such as Google Chrome, Firefox or Internet Explorer 11, support File
API, a FASTQ file can be parsed with JavaScript on client browser. Server side software
was implemented with JavaScript and C++. Since counting and quantifying gene expression

require high calculation cost, these functions are implemented with C++. Other server side
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DEG]S for mouse

Condition A .¥ Condition B #

ERR036350_1.fastq ERR234088_1.fastq

File size: 272506474 bytes File size: 262063756 bytes
@ERR036350.1217 IL13_5283:1:1:1073:1022 length=76 @ERR234088.1 1 length=150
TCCTAATAAAATTGTTCTGCTTGTATATGAAATATTAATATCTACCAACAC CAAAAATGGACATTAGATCTTCTGGAATTAGAGTTGCAGTGAACTACTCAA
ATAGACTTCCTAAAATCGATATATT GCCTGGGTCCTTTGCAAGAGCAGTCAGTGCTCTTAACTAATGAGTCATCTC
+ERR036350.1217 IL13_5283:1:1:1073:1022 length=76 TCCATCCCCACCTTAACTCCTTTGATTGAGGGGTGGTATGGTGGTGTG

=] ; +ERR234088.1 1 length=150

HHHHA>HHH8G ?>?AHAH>B@HAHB IIIIITIIHIHIHIHHEGHIIIIIIIIT
@ERRO36350. 1218 IL13_5283:1:1:1175:1023 length=76 HITTTTIHITIIIHIITIIII1THIIHFGHITITTHIHI LTI THHI IH
ATAGAAAAACTGGAGTTTTCATGAGTTACAGTAACTCCCACAGTTATTAGC HGHIHHII EC?C<C
AAATTCAATACAACATCCTACGCAA @ERR234088.2 2 length=150
+ERR036350.1218 IL13_5283:1:1:1175:1023 length=76 ATTTGGATGGCTATGATCACCGGCGTGGTCACCTGGCTGGGCTTGTACATC

TGCCAGAAACTGAACATCTTTGCCCCCAARAGTCTGCCGCTCTCCAAGCTC
HDBHC<CDHGGHBHEF@?AF7@C=> CTCCTCCTGGCCCTCAGCTTCTGTGGCTTTGTGGTCTTCACCAACCTT
+ERR234088.2 2 length=150

274 ITHHI
HFGHHIHITHITHHGHHGHHI ?GFHI
GDFGFEGD>-DEG<D<>C>C>A>C>CE<CGCGG?->CA: : CE: CEE:C

Drop FASTQ Here!
or select file

Drop FASTQ Here!

or select file

Start Mapping P

Figure 14.1: FASTQ Selection

software, such as communicating with client or handing counting and quantifying software,

is implemented with JavaScript. To communicate a client and a server, I used socket.io.

14.3 Result

DEG.js is easy to use. When a user opened DEG.js with a browser, FASTQ selector is opened
(shown in Figure 14.1). When the user selects FASTQ files and clicks “Start Mapping”,
DEG.js starts mapping fragments and visualizing result. As shown in Figure 14.2, a result

page is refreshing in real-time. The user can stop mapping and download a result at any time.

14.4 Conclusion

I developed easy to use RNA-Seq analysis tool, DEG.js. DEG.js do not require a user to
install any software to use. Since any difficult handing, such as command line operation or
downloading correct files, is not required to use DEG.js, any users who have basic computer

skills can perform simple RNA-Seq analysis easily.
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DEG]S for mouse

ERR036350_1.fastq ERR234088_1.fastq

Cancel Mappi Export Mapping as json M

Which genes are you interested in?
Gene

Entrez Gene ID or Symbol
Add a gene
DEG result

Export up-regulated DEG result as CSV Export down-regulated DEG result as CSV

Scatter Plot

.

Rn28s1 28S ribosomal RNA

Gene Info

logFC -2.2524473860427525
Expression in condition A 6009.927904503014
Expression in condition B 1261.2902406609498
Up-regulated genes

Thbs1 (logFC: 9.31)
Ptx3 (logFC: 9.02)
Serpine1 (logFC: 8.97)
Acan (logFC: 7.82)
Pappa2 (logFC: 7.74)
Cemip (logFC: 7.72)
Hmox1 (logFC: 7.63)
Syt13 (logFC: 7.53)
Fmod (logFC: 7.49)
Fn1 (logFC: 7.18)
Fbin2 (logFC: 6.72)
Grem?2 (logFC: 6.62)
Medag (logFC: 6.57)

Col5a2 (logFC: 6.48)

Ptgs2 (logFC: 6.39)

Figure 14.2: A result page of DEG.js
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Conclusion

In this thesis, I focused fast meta-analysis method for RNA-Seq. The number of RNA-Seq
data that are deposited in public database is quickly increasing because of spreading of high
throughput sequencing technology. Although reanalyzing these a lot of RNA-Seq data is
promising approach, few studies focused in meta-analysis of RNA-Seq. I resolve bottleneck
problems to perform RNA-Seq meta-analysis and apply to gene function prediction using

gene coexpression.

A most large problem of RNA-Seq meta-analysis is high calculation cost to estimate gene
expression level from raw RNA-Seq data. To calculate gene expression level fast, I used
two approaches: using only N-grams that are unique to each gene for mapping and skipping
uninformative N-grams for mapping. Proposed method outperformed previous methods in
both speed and accuracy. Proposed method is 300 times faster than previous alignment based

methods and twice faster than a fastest previous alignment free method.

I applied proposed method to gene coexpression. Previously, gene coexpression was
calculated from microarray-based gene expression. With proposed RNA-Seq quantification
method, I succeeded to calculate RNA-Seq based gene coexpression in realistic time. When
I applied RNA-Seq based gene coexpression to gene function prediction, RNA-Seq based
coexpression shows better result than microarray based method in human and mouse. Since
the number of samples plays a major role in quality of gene coexpression, prediction per-
formances of RNA-Seq based gene coexpression in other species will be expected to exceed

performances of microarray based gene coexpression in the future.
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I also compared gene coexpression between species and predicted gene modules. As a
result, I succeeded to predict more accurate functional gene modules by using coexpression
conservation than single species coexpression.

Here, I resolved bottleneck of RNA-Seq based meta-analysis and performed meta-analysis
in several species. Performance of RNA-Seq based coexpression in gene function prediction
was better than that of microarray based coexpression. By introducing coexpression con-
servation, performance in functional gene module prediction was improved. In conclusion,
my method enabled RNA-Seq based meta-analysis and allowed data-driven research using

RNA-Seq data.
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Appendix A

Supplementary Figures for Matataki

A.1 Mapping result detail of SRR1639212

The experiment accession for SRR1639212 is SRX750225, and the study accession for
SRR1639212 is SRP048993. The study abstract is “Stem cell differentiation timecourse, six
time points through induction from induced pluripotency (day0) towards beating cardiomy-
ocytes, mature at day14. Accompanying study investigates careful differentiation protocols.”.
Figure A.1 shows a distribution of FPKM and mapping rates of Matataki when parameters

were varied. Figure A.2, A.3, A.4 and A.5 show comparison with eXpress results.

A.2 Mapping result detail of ERR266335

The experiment accession for ERR266335 is ERX182652, and the study accession for
ERR266335 is ERP002045. The study title is “Transcriptional and epigenetic profiling
of the progression of hESCs to beta cells”. Figure A.6 shows a distribution of FPKM and
mapping rates of Matataki when parameters were varied. Figure A.7, A.8, A.9 and A.10

show comparison with eXpress results.

A.3 Mapping result detail of SRR1013361

The experiment accession for SRR1013361 is SRX365386, and the study accession for
SRR1013361 is SRP031478. The study title is “Altered Epigenetic Regulation of Homeobox
Genes in Human Oral Squamous Cell Carcinoma Cells”. Figure A.11 shows a distribution
of FPKM and mapping rates of Matataki when parameters were varied. Figure A.12, A.13,

A.14 and A.15 show comparison with eXpress results.
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