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Abstract

We consider optimization problems using a probabilistic graphical model called Markov

Random Fields (MRFs). The MRF models are one of the most fundamental probabilistic

models in many fields including computer vision. It is used for inference of unknown

parameters in a wide range of problems, such as image restoration, super-resolution, stereo

matching, optical flow estimation, denoising, image segmentation, 3D reconstruction, and

object recognition.

Although MRFs are probabilistic models that are used to accurately predict unknown

values by using the prior that all the adjacent sites tend to be similar states, these com-

putational costs are relatively large. To overcome this problem, a number of sophisticated

algorithms have been proposed (e.g., graph cut and max-product algorithms). However,

most of these algorithms are employed for the MAP inference problem, which estimates

the state maximizing the joint probability; there exist a few algorithms for computing the

marginal distributions of MRFs. Despite the fact that the marginal inference problem is

nevertheless significant in many tasks such as parameter learning of Conditional Random

Fields (CRFs) and Maximum Posterior Marginal (MPM) inference, the applicability of

the existing methods for computing the marginal distribution is limited.

Based on the above discussions, we tackle this problem in three different directions.

The first one is improving the accuracy of the existing methods for marginal distribution

estimation by using the TAP (Thouless-Anderson-Palmer) equation, which was proposed

in the field of physics. Although it has been confirmed that the estimated accuracy of the

TAP is higher than that of Mean Field approximation widely used in computer vision, it

has a disadvantage that it is only applicable to a binary MRF. Therefore, we first generalize



the TAP equation and enable it to deal with a wider range of problems. Moreover,

we applied the generalized TAP equation to several vision problems, and illustrated its

effectiveness.

The second is a study for discretizing the variable space of a continuous MRF model

into a discrete one. Optimization algorithms developed for continuous variables are only

applicable to a limited number of problems, whereas those for discrete variables are ver-

satile. Thus, it is common to convert the continuous variables into discrete ones for the

problems that ideally should be solved in the continuous domain. In this study, we propose

novel algorithms for this continuous-discrete conversion: an extended Mean Field approx-

imation and an extended Belief Propagation. These algorithms can correctly handle the

variable space discretized in a non-uniform manner. By intentionally using such a non-

uniform discretization, a higher balance between computational efficiency and accuracy

of marginal distribution could be achieved.

The third study is efficiently solving the marginal inference problem of MRFs by trans-

forming the original MRF into a smaller and simpler one. The goal of this study is

to provide methods for solving the marginal inference problem more efficiently. Many

existing methods that transform MRFs are only applicable to the MAP estimation prob-

lem, and empirically transform an energy function to a simpler one. In contrast, our

method systematically derives transformed MRFs suited for the marginal inference prob-

lem. Using our formulation, we also propose three applications to transform MRFs: (1)

discretization of variable space, (2) grouping of discrete labels, and (3) coarse graining

of MRFs. The discretization of variable space transforms a MRF model, which has a

continous variable and is impossible to derive marginal distributions, into a simpler MRF

having a discrete variable. The grouping of discrete labels speeds up the computation of

a marginal inference problem by grouping multiple discrete labels in a site into one label.

The coarse graining of MRFs transforms graphs into smaller ones in such a way that a

number of connected sites are grouped into a single site. In the study, we also show how

some of these MRF transformations are combined in a coarse-to-fine manner, and how

our MRF transformation approach is also applied to Markov chain Monte Carlo methods.

Through several experiments, we confirmed the effectiveness of our formulation and the

aforementioned three applications.
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Chapter 1

Introduction

1.1 Background

We focus on optimization problems of a probabilistic model called Markov Random Field

(MRF). MRF is one of the most fundamental probabilistic models studied in the field

of computer vision, and is described as the probability distribution representing mutual

influences of random variables. Since Geman and Geman [24] first applied the MRF

model to the image reconstruction problem in Computer Vision (CV) as a seminal work,

MRFs have been widely used to solve all levels of vision systems. Most of MRF models

are employed for low-level vision, and include image restoration [24, 65], super resolution

[64, 84], stereo matching [77, 83], image segmentation [14, 66], noise reduction [50, 4]

and optical flow estimation [100, 95]. Some of popular applications of MRF models for

high-level vision are general image recognition [43] and 3D reconstruction [13].

Using MRF theory, we can naturally describe the joint distribution of random variables

defined by nodes of MRF models depending on problems we want solve, and efficiently

estimate its solution. MRF theory has at least three advantages compared with the other

approaches: i) convenience of modelling joint distributions, ii) accurate estimation, and

iii) a number of sophisticated algorithms.
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1.1. Background

Convenience of modelling joint distributions: Appropriate formulation of uncer-

tainty is beneficial in many cases. One of the advantages of MRF theory is that joint

distributions represented by MRFs are able to naturally describe a statistical property of

various vision problems. Suppose the noise reduction problem, in which we estimate a

original image from a noisy reference. The MRF theory is used to first construct the joint

distribution describing the statistical property behind the natural images (e.g., adjacent

pixels in a natural image tend to have the same value). The significant property is that

most of these correlations are associated with neighbouring pixels. MRFs are probabilistic

models suited for naturally representing these correlations, and utilize them to improve

the estimation accuracy.

Note that these correlations result from not only the noise reduction problem but also

many other vision problems. For example, an image segmentation problem, which splits

the input image into the foreground and the background regions, has a similar property

that neighbouring pixels tend to be at the same state. An image recognition problem

of estimating a semantic category (e.g., “car”, “human“, “road”, etc.) per pixel, also

assumes the validation of the same property, i.e., the adjacent pixels tend to be the same

category.

Accurate estimation In computer vision there also exist other methods that directly

compute the results without describing any statistical properties (e.g., bilateral filter [87]).

One of the reasons why many researchers have used the MRF theory is that it could achieve

a better estimation accuracy compared with the other existing methods. This is because

that they take complex interactions among random variables into account.

We explain the effect of such interactions using the binary segmentation problem. When

the probability that a certain pixel will have the “foreground” state is relatively high, the

probability of its neighbouring pixel denotes the same tendency. Thus, the neighbouring

pixels in MRF models interact each other, and its effect propagates over all the pixels.

This means that all the pixels in a MRF model will affect each other, and therefore MRF

theory can generate better estimation results than the other approaches.

2



1.2. Problem definition

A number of sophisticated algorithms: Although a MRF model succeeds to esti-

mate good results by taking such complex interactions into account, its computational

complexity is relatively larger than that of the conventional ones. Thus, a number of

sophisticated algorithms have been proposed in many fields such as physics, computer

science, and operations research.

Specifically, these are roughly classified into the following two categories: algorithms for

estimating MAP solution of MRF, and algorithms for computing marginal distributions

of MRF. We will provide the details of both of the inference algorithms in Sections 2.5.2

and 2.5.3.

Most of those are proposed for MAP solution; graph cut [9], sequential tree-reweighted

message passing [40], dual decomposition [41], fastPD [42], spectral relaxation [12], and

semidefinite programming relaxation [88] are these examples. Although the problems

for computing marginal distributions is important, there exist only a few algorithms to

estimate it; mean field approximation [32], belief propagation [98] and Gibbs sampling

[21] are representative examples. It should be noted that the estimation of the marginal

distributions is also called “marginal inference”.

1.2 Problem definition

While there exist a number of sophisticated algorithms developed for MAP estimation

problem, the number of algorithms employed for marginal inference problem is much

smaller. One reason can be considered the computational complexity of the marginal

inference, which is generally higher than that of the MAP inference. In particular, solving

the MAP estimation problem is known to be NP-complete [74, 37], whereas computing

the marginal inference problem of general MRFs is #P-complete. Therefore, early studies

in the field of MRF mainly focused on the MAP inference.

In contrast to the preceding argument, the marginal inference is nevertheless significant.

For example, many studies [49, 38, 43] use MPM (maximum posterior marginal) inference

to estimates the results of the marginal distributions of MRF, as an alternative to the

3



1.3. An overview of our studies

MAP inference. They also use marginal distributions to learn parameters of conditional

random fields (CRFs) [78], which are a kind of MRF models. In terms of generative models

including Boltzmann Machine (BM) [68, 18] and Latent Dirichlet Allocation (LDA) [8],

the marginal distributions are used for both learning of parameters and estimation.

1.2.1 Algorithms for computing marginal distributions

The algorithms proposed for the marginal inference problems are roughly classified into

sampling-based algorithms [53, 79, 21, 55] and variational ones [98, 26, 36, 17]. While

the sampling-based algorithms estimate true marginal distributions by generating a large

number of samples from MRFs, the variational algorithms approximately compute the

marginal distributions by iteratively updating marginal distributions by using equations

derived from the variational principle [36].

The sampling-based algorithms have two advantages; the first one is that they are

applicable a wide variety of MRF models such as a discrete MRF and a continuous

one; the second one is that the estimated marginal distributions will approach to the

true marginal distributions [55]. However, it is known that these computational cost are

very expensive. In contrast, the variational algorithms do not estimate true marginal

distributions in general, and they can apply only a few MRF models because they need

to analytically implement iterative equations depending on MRF models, whereas it has

a great advantage that their computations are much faster than those of sampling-based

algorithms. The variational algorithms are especially significant when we are to apply

MRFs into practical vision problems. Thus, in this thesis, we focus on the marginal

inference problem using variational algorithms.

1.3 An overview of our studies

Based on the above discussions, we tackle the challenging problem that expands the

applicability of the inference algorithms of the marginal distributions. We consider that

there exist at least three directions to deal with this challenge: i) improving the estimation

4



1.3. An overview of our studies

accuracy of the existing algorithms, ii) enabling the existing algorithms to apply a wide

variety of MRF models, and iii) solving existing problems more efficiently.

Chapter 2 Markov Random Fields and optimization methods: Before introduc-

ing the details of our studies, in Chapter 2 we describe the basis of the Markov Random

Fields and fundamental optimization methods used for them. Specifically, we first briefly

introduce a background of MRF theory, and then we describe the conditional indepen-

dence property and Hammersley-Clifford theorem, which are crucial to define MRFs. In

addition to that, we also explain several fundamental models and methods including Pair-

wise Markov Random Fields, Conditional Random Fields (CRFs), the MAP inference,

and the marginal inference. Finally, we introduce two algorithms to approximately esti-

mate the marginal distributions: mean field approximation and belief propagation. Based

on these models and algorithms, we simplify the discussion regarding the following three

studies.

Chapter 3 Generalization of TAP Equations and these applications: To im-

prove the computational accuracy of the marginal distributions, in Chapter 3 we generalize

a method called TAP equation, and use it for outperforming the mean field approxima-

tion, which is widely used in the field of computer science. Although the TAP equation

has its roots in physics and it has been confirmed that the estimated accuracy of TAP is

higher than that of MF, the applicability of the original TAP equation is limited, i.e., it

is only applicable to a binary MRF. To overcome this problem, we generalize the TAP

equation with Plefka expansion, and enable it to deal with wider range of problems includ-

ing multi-label MRFs and Boltzmann machines having softmax units. Through several

experiments, we confirmed its effectiveness.

Chapter 4 Discrete Inference of Markov Random Fields for non-uniformly

Discretized Variable Space: To enable the existing algorithms to implement contin-

uous MRF models, which are intractable to directly compute their marginal distributions,

in Chapter 4 we propose general algorithms that can correctly discretize the continuous

MRFs into the discrete ones. As these algorithms are extensions of existing inference al-
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1.3. An overview of our studies

gorithms such as mean field approximation and belief propagation, and these algorithmic

procedures are almost the same as the conventional algorithms, we can easily implement

our proposed algorithms with the existing libraries. Moreover, our algorithms can cor-

rectly handle the case where the variable space is discretized in a non-uniform manner.

Using such a non-uniform discretization, we can drastically reduce the computational

cost while maintaining the accuracy. Experimental results show the effectiveness of our

formulation.

Chapter 5 Transformation of Markov Random Fields for Marginal Distribu-

tion Estimation: To solve the existing problems more efficiently, in Chapter 5 we

propose a general formulation for efficiently solving marginal distributions of the MRF by

transforming original MRF model into a smaller, and simpler one. While many existing

methods that transform MRFs only focus on the MAP estimation problem and empiri-

cally transform the energy function, our method systematically derives transformed MRFs

suited for a marginal inference problem. In addition to proposing a general formulation,

we also apply it into the following three applications: (1) discretization of variable space,

(2) grouping of discrete labels, and (3) coarse graining of MRFs. It should be noted that

this formulation is also considered as an extended version of the previous study since its

applications include (1). Through several experiments, we confirmed the effectiveness of

our proposed method.

Chapter 6 Conclusion: Chapter 6 concludes this thesis with a summary. We also

discuss further developments of these studies, and the remaining questions as future work.
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Chapter 2

Markov random fields and

optimization methods

In this chapter, we discuss the MRF models, which are a type of graphical model, and

introduce several significant optimization methods for MRFs.

Graphical models are probabilistic models for which a graph represents conditional de-

pendencies between random variables [38, 55]. There exist two types of graphical models:

the Bayesian network and the Markov Random Field (also known as the undirected graph-

ical model). The Bayesian network represents conditional dependencies of a set of random

variables as a directed acyclic graph (DAG), whereas an MRF represents the dependencies

as an undirected graph.

In some domains, a DAG is inadequate to sufficiently represent the joint distribution

of a problem (consider the case where we want to solve the low-vision problem in which

pixels are described as random variables). Unlike DAG, the undirected graphical model

is a much more natural form for many vision problems because it does not require that

edge orientations be specified. In this chapter, we focus on MRF models, describe their

fundamental properties, and derive some significant inference algorithms for MRFs.
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2.1. Background of MRF theory

2.1 Background of MRF theory

2.1.1 Ising model and mean field approximation

The Markov Random Field has its roots in the Ising model, which simplifies the clas-

sical Heisenberg model and aims to illustrate the effect of ferromagnetism in statistical

mechanics. Even though the Ising model itself was first proposed by Wilhelm Lenz in

1920s [48], he was unable to analytically derive the expectation of the spins due to the

multi-body interaction terms included in a Hamiltonian function.

Ising solved this problem in 1925 by proposing a method called the Mean Field ap-

proximation that effectively computes the multi-body effect in the Ising model [28]. This

computational method aims to perform the calculation at a high speed by sacrificing its

estimation accuracy. Afterwards, it was extended to apply to a wide range of probabilistic

models including MRFs and directed graphical models. In computer science, the mean

field approximation is also called ”variational bayes”.

2.1.2 Equivalence between MRF model and Gibbs distribution

Although the joint distribution of the Ising model is given by the Gibbs distribution,

until the 1970s it was unclear that the original definition of MRFs, which was proposed

in the field of computer science, and the Gibbs distribution are essentially equivalent.

John Hammersley and Peter Clifford proved their equivalence in 1971 with a theorem

called the Hammersley-Clifford theorem. In addition, in 1974, Julian Besag gave another

rigorous proof of their equivalence[5]. As a result, many recent papers directly introduce

the Gibbs distribution as an MRF model. We include an extensive discussion of the Gibbs

distribution and the Hammersley-Clifford theorem in Sections 2.2 and 2.3, respectively.
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2.2. Conditional independence property

2.1.3 Application of MRF theory to computer vision

MRF theories have long been used in computer vision, a trend that dates back to early

work by Geman brothers [24] and Besag [6]. In initial studies regarding the application

of an MRF model to computer vision, several approximate techniques (e.g., mean field

approximation [58], simulated annealing, and iterated conditional modes (ICM)) were

used to estimate the solution of an MRF. Several sophisticated algorithms that efficiently

and accurately obtain solutions have been proposed in recent years (e.g., belief propagation

and graph cuts). Thus, many researchers tend to use these algorithms instead.

2.2 Conditional independence property

In order to introduce the MRF model, we must first describe the conditional independence

property used to define MRFs.

2.2.1 Preliminaries

Suppose we have a set of N random variables and set a X, where X = {X1, X2, . . . , XN}.
Let V = {1, 2, . . . , N} be the set of these indices. Each site i ∈ {1, . . . , N} has a variable

xi defined in space Xi. The space for all variables x = (x1, . . . , xN)> is expressed as

X =
⊗

iXi, where
⊗

is the Cartesian product.

The variables may be either continuous or discrete, i.e., the variable space X may be

either a continuous or discrete set. In order to handle both cases, in this paper, we will

use the symbol
∑

to represent not only a summation over discrete variables, but also an

integral over continuous variables. However, when the variables are clearly continuous,

we will use
∫

instead of
∑

.
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2.3. Hammersley-Clifford theorem

2.2.2 Pairwise Markov property

Here, we consider a certain pair of sites u and v, and assume that there is no relation

(i.e., they are independent) between them when we remove all the sites in V\{u, v}.
In this case, the two random variables Xu and Xv are conditionally independent given

rest(u, v) ≡ V\{u, v}, this is commonly written as

Xu ⊥⊥ Xv|Xrest(u,v). (2.1)

Eq. (2.1) is also called the pairwise Markov property for undirected graphical models.

We also assume that we know all the conditional properties of V . The Markov Random

Field is a probabilistic model representing these properties with an undirected graph.

In this MRF undirected graph, an edge exists iff the variables u and v are not condition-

ally independent given rest(u, v). That is, let G = (V , E) be the general undirected graph

satisfying all the conditional properties, then G satisfies Xu ⊥⊥ Xv|Xrest(u,v) iff {u, v} * E .

This means that in an MRF model the graph G represents the conditional relation between

i and j.

2.3 Hammersley-Clifford theorem

Although we are able to represent the conditional properties of all the random variables

through the undirected graph, we have yet to define the specific form of the joint distri-

bution satisfying all the given conditional properties.

Here we define the joint distribution of all the variables as q(x). In this problem, John

Hammersley and Peter Clifford gave necessary and sufficient conditions under which a

positive probability distribution can be represented as an MRF [5, 22, 55]:

Theorem 2.3.1. (Hammersley-Clifford) A positive distribution q(x) > 0 satisfies the

conditional independence properties of an undirected graph G if and only if q(x) can be
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2.3. Hammersley-Clifford theorem

represented as a product of factors, one per maximal clique, i.e.,

q(x) =
1

Z

∏
c∈CG

ψc(xc), (2.2)

where CG is the set of all the maximal cliques of G, xc is a subset of x that contains

variables in the clique c, ψc(xc) > 0 is a positive potential function or factor, and Z is

the normalization constant given by

Z =
∑
x

∏
c∈CG

ψc(xc). (2.3)

Note that Z is also called the partition function.

Although the proof of this theorem was not officially published, it can be seen in [39].

For convenience, instead of directly defining all the factors in Eq. (2.2), most studies

first introduce an indirect function called the energy function, and use it to represent

factors in an MRF model. In this representation, the factor ψc(xc) can be described as

the function fc(x) given by

ψc(xc) = exp

(
− 1

T
fc(xc)

)
, (2.4)

where T > 0 is a positive constant called temperature. Note that the inverse temperature

β = 1/T may be used to simplify the notation instead of using the temperature directly.

Using Eq. (2.4), Eq. (2.2) can be rewritten as

q(x) =
1

Z
exp (−βE(x)) , (2.5)

where E(x) is the energy function given by

E(x) =
∑
c∈CG

fc(xc). (2.6)

The probabilistic model expressed in Eq. (2.5) and Eq. (2.6) is generally called the Boltz-

mann distribution or Gibbs distribution.

Instead of directly modeling ψc(xc), many studies in computer vision first define the

energy function depending on the problem, and then construct their probabilistic model.
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2.4. Pairwise Markov random fields

The advantage of this approach is that it is easier for many researchers to represent the

joint distribution with energy representations than factor representations. For example,

in many vision problems the ψc function tends to be an exponential distribution. In such

a case we can easily reduce the model for ψc to a simpler one such as the L1 and L2

norms. An additional advantage is that MAP estimation problems (we will describe this

later) can be replaced by the minimization of the energy function, and therefore we can

naturally apply several algorithms for energy minimization problems, such as graph cut

[9], to this task.

2.4 Pairwise Markov random fields

As we discussed in Section 2.3, using the Hammersley-Clifford theorem, the joint distri-

bution of an MRF is determined by a set of factors indicating the maximal cliques of

the undirected graph. In many cases, we first assume the conditional properties of the

random variables, draw the undirected graph representing these dependencies, model the

potential functions depending on the problem, and construct the joint probability of the

MRF.

Even if decomposing the joint distribution of an MRF into the product of the factors of

the maximal cliques is successful, optimizing the joint distribution, including factors with

more than two variables, is generally intractable. Thus, most studies simplify the problem

by adding an additional assumption that all factors having more than two variables can

be decomposed into the product of subfactors having only one or two variables. Using

this assumption the energy function can be rewritten as

E(x) =
N∑
i=1

fi(xi) +
∑

(i,j)∈E

fij(xi, xj), (2.7)

where fi(xi) and fij(xi, xi) are called the unary term (or unary potential) and the pairwise

term, respectively. fi(xi) is generally used to represent the property of site i, and fij(xi, xj)

is used to determine the correlation between sites i and j. An MRF model whose energy

function consists of only unary terms and pairwise terms is called a pairwise Markov

Random Field or first-order Markov Random Field, whereas a MRF model whose energy
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2.5. CRFs and inference methods

function includes higher-order terms (terms having more than two variables) is called a

higher-order Markov Random Field.

2.5 CRFs and inference methods

In this section, we introduce Conditional Random Fields (CRFs), which have been fre-

quently used in CV, and describe two fundamental inference methods (MAP inference

and marginal inference). Most studies using probabilistic models consist of roughly three

parts: i) define a probabilistic model depending on the problems, ii) train the parameters

in the model with a large number of training samples, and iii) estimate the outputs from

the input features and trained parameters. CRFs are probabilistic models used for solving

such problems. The two inference methods (MAP inference and marginal inference), are

frequently used to achieve steps i) and ii).

2.5.1 Conditional random fields

A conditional random field (CRF) is a type of MRF in which all potential functions are

conditioned by the input features, i.e,

q(x|y,Θ) =
1

Z(y,Θ)
exp (−βE(x|y,Θ)) (2.8)

E(x|y,Θ) =
∑
c∈CG

fc(xc|y, θc), (2.9)

where y contains the input features and θc is the parameter of the clique c. Unlike MRF,

a partition function in CRF has multiple arguments given by

Z(y,Θ) =
∑
x

exp (−βE(x|y,Θ)) . (2.10)

In order to simplify CRF training, the potential function fc(xc|y, θc) is usually described

by the following log-linear model:

fc(xc|y, θc) = θ>c Φ(xc,y), (2.11)
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2.5. CRFs and inference methods

where Φ(xc,y) is a feature vector derived from the inputs y and local outputs xc. Using

these representations, CRFs estimate the parameters Θ from a pair of training samples

{xn,yn}, and efficiently predict outputs y from unknown inputs x.

Estimating CRF parameters has both advantages and disadvantages [55]. One advan-

tage is that we can estimate these parameters based on data, meaning that the CRF

potential functions would be data-dependent. For example, we consider the binary seg-

mentation problem that predicts whether each pixel of an input image belongs to the

”foreground” or ”background”. With a large number of training samples, the CRF can

estimate the ”appropriate” parameters that represent correlation between two neighboring

sites.

A disadvantage is that training CRFs is very time-consuming because it requires a

huge number of training samples. Thus, early studies in computer vision do not use this

data-dependent approach, and empirically define the CRF parameters.

2.5.2 MAP inference

The MAP (Maximum A Posteriori) method estimates the most plausible output values

by finding a maximum of the given q(x|y,Θ), i.e.,

x∗MAP = arg max
x

q(x|y,Θ) = arg min
x

E(x|y,Θ). (2.12)

From Eq. (2.5), it is clear that the maximization of q(x) is equivalent to the minimization

of E(x). MAP inference is mainly used to estimate the outputs from input features.

Solving the MAP inference problem is known to be NP-complete [74, 37]. Thus, com-

puting the exact solution of an MAP problem is generally infeasible. However, in some

simple cases, we can obtain globally optimal solutions of the CRF by applying several

efficient minimization algorithms such as graph cuts [9]. Specifically, it is known that a

max-product algorithm [49, 55, 37] can compute the true MAP solution if the graph in

an MRF is a tree and has no loops. Note that the Viterbi algorithm [91] can be derived

as a special version of the max-product algorithm.
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2.5. CRFs and inference methods

2.5.3 Marginal inference

In contrast to MAP inference, the marginal inference method computes the marginal

distribution of a factor c by integrating q(x) with respect to all variables except for c. For

example, when c indicates a site i, the marginal distribution of the site i can be computed

by

qi(xi) =
∑
x\i

q(x|y,Θ)

=
∑
x1

· · ·
∑
xi−1

∑
xi+1

· · ·
∑
xN

q(x1, x2, . . . , xN |y,Θ). (2.13)

x\i references the variable x except for the element i, i.e., x\i ∈ X\Xi.

As with Eq. (2.13), when c has multiple sites, the marginal distribution can be computed

as

qc(xc) =
∑

x\c∈X\Xc

q(x|y,Θ) =
∑

x\c∈X\Xc

q(xc,x\c|y,Θ), (2.14)

where Xc is a subset of X , and given by Xc =
⊗

i∈cXi.

Although the marginal inference is mainly used to estimate parameters of CRFs (we

will show this in detail in Section 2.5.5), in some cases it is also used to estimate the most

plausible states, as in MAP inference. This estimation is called MPM (Maximal Posterior

Marginal) inference or marginal MAP inference [37].

The i’th element of the MPM solution x∗MPM is given by

x∗i = arg max
xi

qi(xi). (2.15)

Because solving an MPM inference problem for general MRFs is #P-complete, it is gen-

erally harder to solve than a MAP inference problem.

2.5.4 Relation between MAP solution and MPM solution

A significant property of the MPM solution is that x∗MPM of an MRF is equivalent to

x∗MAP as the limit of T → 0 if its energy function has a unique optimal solution. This
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property can be derived by Eq. (2.27). As the limit of T → 0 corresponds to β → ∞,

the second term of the free energy function can be discarded, i.e., F [p] → 〈E〉p. The

minima of F [p(x)] under this limit is clearly the probability that the function only takes

the minimum state in X . Hence, p∗MPM(x) converges

p∗MPM(x)→
N∏
i=1

δ(xi − xMAP
i ), (2.16)

where δ(x) and xMAP
i are the Dirac’s delta function and i’th element of the MAP solution

xMAP, respectively. Thus, from Eq. (2.16) the MPM solution corresponds to the MAP

solution as T → 0.

2.5.5 Training conditional random fields

In this section, we describe how to estimate parameters of CRFs using maximum likelihood

and MAP estimation.

As it is generally intractable to directly obtain the parameters of CRFs, gradient-based

methods (e.g., Stochastic Gradient Descent (SGD) [57], AdaGrad [15], and L-BFGS [51])

have been used to estimate these parameters. We first consider the case where the pa-

rameters are estimated using the maximum likelihood method. In this case the optimal

parameter Θ∗ is given by

Θ∗ = arg max
Θ

N∑
n=1

ln q(xn|yn,Θ)

= arg min
Θ

− 1

N

N∑
n=1

ln q(xn|yn,Θ) ≡ arg min
Θ

L(Θ). (2.17)

Note that for numerical reasons we minimize the scaled negative log-likelihood function

L(Θ) instead of maximizing the likelihood.

Differentiating L(Θ) with respect to θc, we have

∂L
∂θc

= β

{
1

N

N∑
n=1

∂fc(x
n
c |yn,Θ)

∂θc
− 1

N

N∑
n=1

∑
x

qc(xc|yn,Θ)
∂fc(xc|yn,Θ)

∂θc

}
, (2.18)
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where qc is a marginal distribution of the clique c. The first term on the right hand side

in Eq. (2.18) is called a data term, and the second term is called a model term. In order

to simplify the notation, we introduce the following distributions defined as

qdata(x,y) =
1

N

N∑
n=1

δ(x− xn)δ(y − yn) (2.19a)

qmodel(x,y) =
1

N

N∑
n=1

δ(y − yn)q(x|y,Θ). (2.19b)

Note that δ(x) denotes the Dirac’s delta function. Using Eqs. (2.19), Eq. (2.18) can be

rewritten as

∂L
∂Θ

= β

{〈
∂fc
∂Θ

〉
data

−
〈
∂fc
∂Θ

〉
model

}
, (2.20)

where 〈·〉 denotes the expectation of the internal function with respect to the specified

distribution. Eq. (2.20) indicates that the gradient of L(Θ) can be computed by taking

the difference of the expectations between the two distributions.

While the computation of the data term is relatively tractable, that of the model term

is time-consuming due to the marginal distribution with respect to c. Therefore, training

CRFs to efficiently compute the marginal distributions is a significant task.

An interesting property with regard to CRF training is that the CRF negative log-

likelihood function is a convex function with respect to Θ if it belongs to the log-linear

model (Eq. (2.11)). This means that a CRF with a log-linear model has a unique global

optimum parameter, and is guaranteed to converge [55].

2.5.6 Training CRFs with a regularization term

In order to avoid over-fitting, some studies add an extra regularization term to the objec-

tive function, i.e.,

L′(Θ) = L(Θ) + λ‖Θ‖2
2. (2.21)

From a probabilistic perspective, Eq. (2.21) corresponds to the MAP estimation of pa-

rameters for CRFs. Suppose that all the parameters in CRFs are random variables, and
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the joint distribution of x and Θ is described as follows:

q(x,Θ|y) = q(x|y,Θ)q(Θ). (2.22)

Here we assume that q(Θ) is a Gaussian distribution whose covariance matrix is a diagonal

matrix and all elements are identical. When estimating the most plausible parameters

using MAP estimation, the objective function is identical to Eq. (2.21). Because both

terms in Eq. (2.21) are convex, if the CRF is the log-linear model, Eq. (2.21) is also convex

function and has a unique optimal solution.

2.6 Variational principle

In this section we describe several algorithms for efficiently computing the marginal dis-

tributions of an MRF model.

2.6.1 Approximate estimation of marginal distributions

Analytically computing the marginal distribution qi(xi) from q(x) is generally intractable.

Even if the case where all the random variables in an MRF are binary, we have to evaluate

2N states with regard to q(x) in order to analytically compute the marginal distribution

of site i.

As a result, there exist two types of approaches for approximately computing marginal

distributions: the first is a sampling-based approach, and the second is a variational

inference approach. Sampling-based approaches, which are also known as Markov chain

Monte Carlo (MCMC) based approaches, estimate marginal distributions by generating a

number of samples from q(x). There are a large number of MCMC-based methods, such

as Metropolis-Hastings [53], Swendsen-Wang [79], and Gibbs Sampling [21]. Although it is

known that marginal distributions estimated by MCMC-based approaches asymptotically

tend towards the exact marginals by generating infinite samples, they also require a large

amount of computational time.
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2.6. Variational principle

In contrast, the variational inference method approximately computes marginal distri-

butions through iterative updates from an equation derived by a variational principle we

will describe later. Although these marginal distributions are estimated by variational in-

ference methods and are generally incorrect, the computational time costs are much less

then those of MCMC. In the variational inference methods, Mean Field approximation

(MF) and Belief Propagation (BP) are the most popular algorithms. Both methods utilize

iterative equations that generate approximate marginal distributions by minimizing the

free energy functional. In this paper we focus on the variational inference methods, and

derive the iterative functions.

2.6.2 Derivation of free energy

As it is generally infeasible to compute the marginal distributions with regard to q(x),

variational methods such as the Mean Field approximation and Belief Propagation first

introduce a new approximate distribution p(x) that can efficiently compute marginal

distributions. Then, the variational methods introduce the following functional called

Kullback-Leibler (KL) divergence, and compute the similarity between p(x) and q(x):

D[p‖q] =
∑
x

p(x) ln
p(x)

q(x)
. (2.23)

An interesting property of the KL divergence is that it is a non-negative functional and is

equivalent to zero if and only if p(x) = q(x) for all x ∈ X . Thus, the KL divergence can

be regarded as a type of distance functional and can be called the KL distance. Although

the KL divergence is also called KL distance, the KL distance is not strictly a distance

functional because it does not satisfy the symmetric property, i.e., D[p‖q] 6= D[q‖p].

Finally, the variational methods minimize the KL distance between p and q with respect

to p, this is regarded as the approximate distribution of q, i.e.,

p̂(x) = arg min
p
D[p‖q]. (2.24)
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2.7. Mean field approximation

The substitution of Eq. (2.5) into Eq. (2.23) yields

D[p‖q] =
1

T

∑
x

p(x)E(x)−

(
−
∑
x

p(x) ln

)
+ lnZ

= β 〈E〉p −H[p] + lnZ, (2.25)

where 〈E〉p =
∑

xE(x)p(x) is the expectation of the energy E(x) with respect to p(x),

and H[p] is the entropy of p(x). 〈E〉p is also called the mean energy with respect to p(x).

Because the third term of Eq. (2.25) is independent of p(x), the minimization of Eq. (2.25)

is strictly equivalent to the minimization of the following functional:

p∗(x) = arg min
p

F [p], (2.26)

where F [p] is given by

F [p] = β 〈E〉p −H[p]. (2.27)

We call the functional F [p] the free energy 1. Both MF and BP algorithms estimate the

marginal distributions of q(x) by minimizing the free energy, defined by Eq. (2.27).

Note that when the approximate distribution has no constraints, the minima of the free

energy is:

F [p∗] = − lnZ, (2.28)

and p∗ is given by p∗(x) = q(x). This equation can be used to derive the TAP equation,

which is described later.

2.7 Mean field approximation

In this section we describe the Mean Field (MF) approximation, which is the most basic

and popular algorithm in variational inference methods. The MF approximation stems

from the field of solid state physics. In solid state physics, a simple model called the

1For notational simplicity, we call Eq. (2.27) the free energy instead of 〈E〉p − TH[p], which is widely

used in the field of physics.
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2.7. Mean field approximation

Ising model was used as a simple representation of the multi-body system and has been

used to illustrate the effect of ferromagnetism in statistical mechanics. Although it is

generally unfeasible to use this model to analytically compute the behavior of a magnetic

body due to the existence of an interaction term (identical to the pairwise term in Eq.

(2.32)), the original MF was used to approximately compute the interactions by replacing

the interaction terms with a mean of the expectations. In information science, the MF

approximation can be regarded as one type of variational method that uses the variational

principle. The advantage of such an approach is that it can be used to derive the MF fixed-

point equations, not through using physical concepts (e.g., the thermodynamic limit), but

using only probability theory. Thus, in this section, we derive the MF algorithm with the

latter approach.

2.7.1 Mean field free energy

The MF first minimizes the free energy under the distribution that all the sites in p(x)

are independent. This means that p(x) is defined as

pMF(x) =
N∏
i=1

pi(xi). (2.29)

Although this assumption is generally incorrect, it allows us to efficiently compute its

marginal distributions. From Eq. (2.29), the i’th marginal distribution of pMF(x) is equiv-

alent to pi(xi).

We focus on pairwise MRF models in order to simplify the MF derivation. Substituting

Eq. (2.29) into F [p], we have

F [pMF] = β

N∑
i=1

∑
xi

pi(xi)fi(xi) + β
∑

(i,j)∈E

∑
xi

∑
xj

pi(xi)pj(xj)fij(xi, xj)

+
N∑
i=1

∑
xi

pi(xi) ln pi(xi). (2.30)

Note that the first and the second terms of Eq. (2.30) correspond to the mean energy

of F [p], and the third term corresponds to the entropy of H[p]. Eq. (2.30) describes the

Mean Field free energy.
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2.7. Mean field approximation

Next, we find a stationary point in F [pMF] from Eq. (2.30). To minimize Eq. (2.30)

under the constraint
∑

xi
pi(xi) = 1, we introduce the following Lagrange function JMF

by adding the Lagrange multiplier γi to Eq. (2.30):

JMF = F [pMF] +
N∑
i=1

γi

(
1−

∑
xi

pi(xi)

)
. (2.31)

Finally, we find the stationary point JMF using the Euler-Lagrange equation. As the above

functional does not include any derived functions (e.g., ∂pMF/∂x), the stationary point

can be derived by simply differentiating JMF with respect to pi(xi). Thus, differentiating

JMF and discarding γi from the relation
∑

xi
pi(xi) = 1, we have

pi(xi) ∝ exp

−β
fi(xi) +

∑
j∈Ni

∑
xj

pj(xj)fij(xi, xj)

 , (2.32)

where Ni is the set of the neighboring sites of site i. Therefore, we have found that the

stationary point F [pMF] can be derived by estimating a pi(xi) that satisfies Eq. (2.32).

2.7.2 Estimation of local minima

From Eq. (2.32), the stationary point of F [p] must satisfy non-linear fixed point equations

such as pMF(x) = G[pMF(x)]. The MF generally utilizes an iterative method to obtain a

set of solutions with regard to such fixed-point equations.

We describe this method in detail as follows. First, the MF initializes the current

distribution pi(xi) to some appropriate distribution. Then, pi is iteratively updated by the

fixed-point equation (Eq. (2.32)). It is well known that the MF iterations are guaranteed to

converge and the distributions pMF estimated by the MF are stationary points of F [pMF]

[36]. We show the algorithm in Alg.1. Note that we define Zi as the normalization

constant.

2.7.3 Mean field algorithm for binary segmentation

In this subsection, we derive a fixed-point equation for a binary MRF model in which all

the nodes take only binary states.
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2.7. Mean field approximation

Algorithm 1 The Mean-Field approximation algorithm for a pairwise MRF

1: for all i do

2: p0
i (xi)← exp [−βfi(xi)] /Zi

3: end for

4: for t = 1 to T do

5: for all i do

6: pti(xi)← exp
[
−β
(
fi(xi) +

∑
j∈Ni

∑
xj
pt−1
j (xj)fij(xi, xj)

)]
/Zi

7: end for

8: end for

Suppose xi ∈ {−1,+1} for all i and let E(x) be

E(x) = −
∑
i

hixi −
∑
i,j

Jijxixj, (2.33)

where Jij ∈ R and hi ∈ R are constant parameters, and we are to determine the bias

of site i and the interaction between sites i and j, respectively. For example, if Jij is a

positive constant, the pair of sites i and j tend to take the same state, and vice versa.

Using Eq. (2.33), we derive the fixed-point MF equation. We also define mi to be the

expectation of the site i:

mi = 〈xi〉pi = pi(+1)− pi(−1). (2.34)

In a binary MRF the marginal distribution pi(xi) can be rewritten with mi, that is

pi(xi = +1) =
1 +mi

2
(2.35a)

pi(xi = −1) =
1−mi

2
. (2.35b)

Substituting Eq. (2.35a) and Eq. (2.35b) into F [p], we have

F [m] =
∑
i

[
1 +mi

2
ln

(
1 +mi

2

)
+

1−mi

2
ln

(
1−mi

2

)]
−
∑
i

himi −
∑
i,j

Jijmimj. (2.36)

Differentiating Eq. (2.36) with respect to mi, we can write the fixed-point equation as

mi = tanh

[
β

(
hi +

∑
j∈Ni

Jijmj

)]
. (2.37)
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2.8. Belief propagation

2.8 Belief propagation

In this section, we describe Belief Propagation (BP), which is another algorithm for com-

puting marginal distributions. The BP method has its roots in both information science

and solid state physics. In information science, Pearl [62] first formulated a BP algo-

rithm that analytically computes the marginal distributions in a graphical model when

the factor graph is a tree. In solid state physics, Bethe proposed a similar algorithm,

called Bethe approximation [7], which aims to illustrate the effect of a magnetic body in

the Ising model. Currently, it is known that both algorithms are essentially the same,

and can be interpreted as finding a stationary point of Bethe free energy, which we will

describe later. Therefore, in this section, we derive the specific BP algorithm using the

variational principle [98, 36].

There exist two types of BP algorithms: the Sum-Product algorithm and the Max-

Product algorithm (a.k.a. Min-Sum algorithm) [55]. The Sum-Product is an algorithm

for computing marginal distributions, and can be derived through the variational principle,

whereas the Max-Product is an algorithm that estimates the MAP solution and can be

derived using the Sum-Product algorithm under the limit as T → 0. Thus, in this chapter

we will only derive the Sum-Product algorithm.

2.8.1 Bethe free energy

As with the MF algorithm, we minimize the variational free energy in Eq. (2.27) under

the constraint that an approximate distribution belongs to a certain class. In BP, the

approximate distribution p(x) is represented by

pBP(x) =

∏
ij pij(xi, xj)∏
i pi(xi)

zi−1
, (2.38)

where zi is the number of neighboring sites to site i, i.e., zi = |Ni|. In addition to Eq.

(2.38), in order to satisfy the condition
∑

x pBP(x) = 1, we add further constraints given
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2.8. Belief propagation

by ∑
xi

pi(xi) = 1 (2.39a)

∑
xi

∑
xj

pij(xi, xj) = 1 (2.39b)

∑
xj

pij(xi, xj) = pi(xi). (2.39c)

We minimize F [p] under the pBP(x) distribution. Substituting Eq. (2.38) into Eq. (2.27),

we have

F [PBP] = β
∑
i

∑
xi

pi(xi)fi(xi) + β
∑

(i,j)∈E

∑
xi

∑
xj

pij(xi, xj)fij(xi, xj)

−
∑
i

(zi − 1)
∑
xi

pi(xi) ln pi(xi) +
∑

(i,j)∈E

∑
xi

∑
xj

pij(xi, xj) ln pij(xi, xj). (2.40)

Note that the first and the second terms in Eq. (2.40) correspond to the mean energy

terms in F [p], and the third and the forth terms correspond to the entropy H[p]. The

expression in Eq. (2.40) is generally called Bethe free energy [7].

We now introduce f̂ij(xi, xj) and f̂i(xi) called local energy [98] to simplify the notation

in Eq. (2.40). Let f̂ij and f̂i be

f̂ij(xi, xj) = fij(xi, xj) + fi(xi) + fj(xj) (2.41a)

f̂i(xi) = fi(xi). (2.41b)

Utilizing Eq. (2.41a) and Eq. (2.41b), Eq. (2.40) can be rewritten as:

F [PBP] = −
∑
i

(zi − 1)
∑
xi

pi(xi)
(
βf̂i(xi) + ln pi(xi)

)
+
∑
i,j

∑
xi

∑
xj

pij(xi, xj)
(
βf̂ij(xi, xj) + ln pij(xi, xj)

)
. (2.42)

Next, we minimize F [PBP] using Eq. (2.42). Unlike the MF, which has only one type

of constraint, the BP has three different types of constraints. Hence, we introduce the
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Lagrange function defined as

JBP = F [PBP] +
∑
i

γi

(
1−

∑
xi

pi(xi)

)
+
∑

(i,j)∈E

γij

1−
∑
xi

∑
xj

pij(xi, xj)


+
∑

(i,j)∈E

∑
xj

λij(xj)

(
pj(xj)−

∑
xi

pij(xi, xj)

)

+
∑

(i,j)∈E

∑
xi

λji(xi)

pi(xi)−∑
xj

pij(xi, xj)

 , (2.43)

where γi, γij, and λij are Lagrange multipliers.

Next, we apply the Euler-Lagrange equation and obtain the stationary points pij(xi, xj)

and pi(xi). Differentiating JBP with respect to pij(xi, xj) and pi(xi), we have

ln pij(xi, xj) = −βf̂ij(xi, xj) + λij(xj) + λji(xi) + γij − 1 (2.44a)

(zi − 1)(ln pi(xi) + 1) = −β(zi − 1)f̂i(xi) +
∑
i∈Ni

λji(xi) + γi. (2.44b)

We redefine the Lagrange multiplier λji using the following function mkj:

λij(xj) = ln
∏

k∈Nj\i

mkj(xj). (2.45)

mkj is called the message. The substitution of Eq. (2.45) into Eq. (2.44a) and Eq. (2.44b)

yields

pij(xi, xj) ∝ ψij(xi, xj)φi(xi)φj(xj)
∏

k∈Ni\j

mki(xi)
∏
l∈Nj\i

mlj(xj) (2.46a)

pi(xi) ∝ φi(xi)
∏
k∈Ni

mki(xi), (2.46b)

Finally, from Eq. (2.46a) and Eq. (2.46b) we have

mij(xj) ∝
∑
xi

φi(xi)ψij(xi, xj)
∏

k∈Ni\j

mki(xi), (2.47)

where expressions φi(xi) = −T ln fi(xi) and ψij(xi, xj) = −T ln fij(xi, xj) denote the

factors of site i and edge ij, respectively.
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Algorithm 2 The Belief Propagation algorithm for a pairwise MRFs

1: for all mij do

2: m0
ij(xj)← 1

3: end for

4: for t = 0 to T − 1 do

5: for all mt
ij do

6: mt+1
ij (xj)←

∑
xi
φi(xi)ψij(xi, xj)

∏
k∈Ni\jm

t
ki(xi)

7: end for

8: end for

9: for all i do

10: pi(xi)←
(
φi(xi)

∏
k∈Ni

mT
ki(xi)

)
/Zi

11: end for

The BP algorithm first initializes all messages mij to appropriate values. In many

cases all messages are initialized to 1 (uniform distribution). The algorithm then updates

the messages and evaluates Eq. (2.47), this is repeated until convergence. Finally, the

marginal distributions are estimated using Eq. (2.46b). We show the specifics of this

algorithm in Alg.2. In the algorithm, we set Zi to the normalization constant of site i.

One significant property of BP is that, in the case where the graph of an MRF is a tree,

the BP algorithm can compute the exact marginal distributions. This also means that

the approximate distribution pBP will converge to the original distribution q.

2.8.2 Loopy belief propagation

In general, approximate marginal distributions estimated by BP are not exact wherever

the graph contains loops. Moreover, in some cases the BP algorithm does fail to converge

or the approximate marginals oscillate between several states. However, it is empirically

known that the marginals estimated by Alg.2 are close to the exact marginals of q. These

BP methods for estimating marginals of an MRF with cycles are called Loopy Belief

Propagation (LBP) [56]. The LBP algorithm is identical to Alg.2.

It is interesting to compare the naive MF and LBP algorithms. There are advantages to
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2.8. Belief propagation

the LBP method. First, the results from LBP will converge to the exact marginals when

the graphical model is a tree. Second, it has been experimentally confirmed that the LBP

algorithm is more accurate than the MF. However, the disadvantage of the LBP is that

it can handle fewer distributions than the MF algorithm. In fact, LBP can handle only

Gaussian and discrete distributions, whereas the MF algorithm is not limited to these

distributions. Moreover, the MF can give a lower bound to the partition function, which

is especially useful when it is being used to learn graphical models. This method is called

the variational Bayes method.
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Chapter 3

Generalization of TAP equations and

their applications

This chapter discusses the Mean Field approximation and a TAP equation that theo-

retically extend the MF equation. In the field of solid-state physics, it has been well

recognized that the TAP equation developed by Thouless, Anderson, and Palmer yields

more accurate estimates than the MF approximation. In the field of machine learning

and the related fields, the TAP equation has not been so popular, although there are a

few studies showing its effectiveness. This unpopularity can be explained to some extent

by the limitation of the conventional TAP equation that it is applicable only to binary

MRFs.

In this chapter, we first evaluate whether the conventional TAP equation is applicable

to several problems in the field of Computer Vision. Next, we generalize the conventional

TAP equation to be able to deal with more general MRF models, leading to a general-

purpose expression of the second-order TAP equation. Using this result, we also derive

specific forms of the second-order TAP equation for multi-label MRFs and Boltzmann

machines having softmax units. Several experimental results show the effectiveness of our

approach.
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3.1 Introduction

This chapter focuses on the estimation of marginal distributions by the TAP equation.

Attention has been paid to the same problem of estimating marginal distributions for

MRFs in a different research field, the field of solid-state physics. One of the important

achievements in the field is the TAP (Thouless-Anderson-Palmer) equation [86] 1. The

TAP equation can be regarded as an improvement of the MF approximation. (MF is

the simplest and the least accurate; for example, MF is faster but usually less accurate

than BP [55].) The TAP equation was originally developed for the purpose of exactly

solving the Sherrington-Kirkpatrick (SK) model [72]. In the study, a solution is obtained

by replacing variables in the energy function with their mean values and then taking the

limit N(the number of particles)→∞. Later, Plefka showed [63] that the TAP equation

can be derived by a different approach based on a free energy, which is now referred to as

the Plefka expansion.

The objective function derived by the Plefka expansion, which is called the TAP free

energy, has the form of a Taylor series expansion with respect to the parameter called

inverse temperature. While the derivation of the TAP free energy differs from that of the

free energy associated with MF, the TAP free energy up to the first order term coincides

with the MF free energy. Thus, the TAP equation can be regarded as an improvement

of MF, where the inclusion of higher order terms is expected to contribute to improve

accuracy of the estimates of the marginal distributions.

Following the above developments in solid-state physics, the TAP equations and their

applications were actively studied in the field of machine learning from 90’s to the begin-

ning of 00’s [30, 99, 25, 47, 82, 32, 29, 94]. Despite the fact that it was reported in the

literatures that the TAP equations are indeed effective for Boltzmann machines (a class

of MRFs), there have been few studies of the TAP equations and their applications since

then; an only exception to the authors’ knowledge is [97].

We consider that this is mainly because of the limitation of the original TAP equations

1It should be noted that Morita previously derived the same version of the TAP equation [54], however,

it is generally considered that Thouless, Anderson, and Palmer first derived the TAP equation.
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that they can deal with only binary-label MRFs, i.e. those having binary site variables.

They are not directly applicable to MRFs having more general types of variables such

as discrete multi-label variables, which are more popular in the application fields such

as computer vision and natural language processing. Furthermore, as the derivation of

the TAP equation for binary-label MRFs is by itself complicated, its generalization to

be able to deal with arbitrary MRFs such as multi-label MRFs appears to be even more

difficult. Although there are a few studies [32, 82] implying that the original TAP equation

is extensible to arbitrary graphical models from the viewpoint of information geometry,

these studies focus only on binary graphical models such as sigmoid belief networks and

do not actually show an expression of the TAP equation that is applicable to them.

Meanwhile, from the beginning of 00’s to date, an increasing number of papers dealing

with applications of MRFs have been published, where more general types of MRFs

including binary-level MRFs were considered. For example, the introduction of multi-

label MRFs enables multi-class classification rather than binary-class classification [66],

such as visual recognition of object categories [43]. For the Boltzmann machines, Gaussian

units and softmax units that can handle continuous values and discrete multi-labels,

respectively, contributing to widen the application area of the Boltzmann machines [44,

69, 16, 75]. However, despite such developments and applications of more general MRFs,

the classical MF has been used to estimate their marginal distributions, as was done in

90’s.

With these past trends in mind, this study sheds light again on the TAP equation, where

the goal is to confirm whether the conventional TAP equation is also applicable to several

Computer Vision problems such as binary segmentation problem, and generalize it to be

able to deal with a wider range of problems. In particular, we derive a general-purpose

expression of the second-order TAP equation that could deal with any arbitrary MRFs.

As examples, we also derive two specific second-order TAP equations that can be applied

to the multi-label MRFs and the Boltzmann Machines having softmax units.

This chapter is organized as follows. In Section 3.2 we derive the generalized TAP

equation. Section 3.3 shows the three TAP equations for binary-label MRFs, multi-label

MRFs, and Boltzmann machines having softmax units. Section 3.4 discusses the advan-
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tages of the TAP equation. Section 3.5 presents several experimental results. Section 3.6

concludes this chapter.

3.2 Generalization of the TAP equation

We derive the TAP equation that can be applied to a wider class of MRFs. There

exists several approaches for deriving the conventional TAP equation: the Cavity method

[71, 31], the Plefka method [63, 94], Parisi and Potter’s method [61], and methodology

using information geometry [82, 32, 2]. In this section, we use the Plefka method and

Georges’ derivation [25] for generalizing the conventional TAP equation.

3.2.1 Revisiting the conventional TAP equation for binary-label

MRFs

We now summarize Plefka’s original derivation of the TAP equation for binary-label MRFs

[63, 60].

As described in Section 2.7, the approach of the MF approximation first chooses the

approximate distribution p of Eq. (2.29) and then calculates the marginal distributions by

making it close to the true distribution q. Plefka’s method also searches for an approximate

distribution p that is maximally close to the true distribution q by minimizing the free

energy. It differs from MF in that Plefka’s method does not assume a specific class of

approximate distributions p’s like Eq. (2.29). Moreover, instead of directly solving the

minimization with respect to p, Plefka’s method considers a constrained minimization

problem of the free energy by introducing a constraint with respect to the marginal

distributions to estimate.

The original TAP equation can deal with only binary-label MRFs. Then let xi be

the binary variable of the i-th site here: xi ∈ {−1,+1}. In this case, the marginal

distribution pi(xi) of the site is simply represented by mi = 〈xi〉pi(xi), where 〈·〉p denotes

the expectation with respect to p. Thus, the problem is to estimate the expectation mi
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for each site.

Plefka’s method starts with introducing a constraint with respect to the approximate

distribution p(x) as

〈xi〉p = mi for all i ∈ {1, . . . , N}. (3.1)

This means that the expectation of xi with respect to p(x) coincides with mi. (Note that

mi is unknown and to be determined later.) We then consider the minimization of Eq.

(2.27) over p(x) under this constraint. Using Lagrange multipliers λi’s, this minimization

can be rewritten as

G(m) = max
λ

min
p

(
β 〈E〉p −H[p] +

∑
i

λi(mi − 〈xi〉p)

)
(3.2)

= max
λ

min
p

〈βE(x)−
∑
i

λixi

〉
p

− S[p] +
∑
i

λimi

 . (3.3)

Note that G(m), a function of m = [m1, . . . ,mN ], is the minimizer to F [p].

We denote the two terms in the parenthesis of Eq. (3.3) by F ′[p] = 〈βE(x)−
∑

i λixi〉p−
H[p]. The distribution p∗ minimizing F ′[p] is given by p∗(x) ∝ exp(−βE(x) +

∑
i λixi).

Thus, using the fact that the minimum of F [p] is represented by − lnZ, Eq. (3.2) reduces

to

G(m) = max
λ

∑
i

λimi − ln

[∑
x

exp

(
−βE(x) +

∑
i

λixi

)]
. (3.4)

This is referred to as the TAP free energy.

As no arbitrary p is chosen unlike the MF approximation, this approach could yield

more accurate marginal distributions. In fact, if G(m) can be rigorously minimized, the

solution m∗ = arg minmG(m) should be equal to the true expectations (i.e., the true

marginal distributions).

However, it is mathematically intractable to rigorously minimize G(m) of Eq. (3.4)

because of the multiple integrals in the second term. To cope with this difficulty, Plefka’s

method approximates G(m) by its Taylor series expansion at β = 0 and minimizes the
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approximated function. This makes sense since G(m) and its derivatives can analytically

be calculated at β = 0. The Taylor series expansion, or the Plefka expansion, is as follows:

G(m) = G0(m) + βG1(m) +
β2

2
G2(m) + · · · where Gn(m) =

∂nG

∂βn

∣∣∣∣
β=0

. (3.5)

The analytic expressions of a few lowest-order terms are given in [63]. An interesting

fact is that the approximation up to the first order term (called the first-order TAP free

energy) coincides with the MF free energy. We will show this property later.

3.2.2 Transformation of the free energy

Now we consider deriving the TAP equation for more general classes of MRFs. In the

case of binary labels, the marginal distribution of xi is efficiently represented by the

expectation mi, as mentioned above. As this does not apply to the case where the sites

have multi-labels or continuous values, we need to revise the formulation.

Our approach here is to generalize Eq. (3.1) as follows:

pi(xi) = p̂i(xi) for all i ∈ {1, . . . , N}. (3.6)

This constrains the marginal distribution pi(xi) of each site so that it should be equal to a

certain distribution p̂i(xi). By using this constraint instead of Eq. (3.1), the minimization

of G(m) should (at least formally) be able to be converted to the minimization of a

functional G[p̂1, . . . , p̂N ] of the distributions p̂i(xi)’s.

Using Lagrange multipliers λi(xi)’s, the minimization of free energy can be rewritten as

G[p̂1, . . . , p̂N ] = max
λ

min
P

(
β 〈E〉P −H[P ] +

∑
i

λi(xi)(p̂i(xi)− pi(xi))

)
(3.7)

= max
λ

min
P

(〈
βE(x)−

∑
i

λi(xi)

〉
P

−H[P ] +
∑
i

∑
xi

λi(xi)p̂i(xi)

)
.

(3.8)
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We denote the two terms in the parenthesis of Eq. (3.8) by F ′[P ] = 〈βE(x)−
∑

i λi(xi)〉P−
H[P ]. As with the original derivation of the TAP equation, the distribution p∗ minimizing

F ′[p] is given by

qβ(x) ∝ exp

(
−βE(x) +

∑
i

λi(xi)

)
. (3.9)

Thus, using the fact that the minimum of F [p] is − lnZ (see Eq. (2.28)), Eq. (3.8) reduces

to

G[p̂] = max
λ

∑
i

∑
xi

λi(xi)p̂i(xi)− ln

[∑
x

exp

(
βE(x) +

∑
i

λi(xi)

)]
, (3.10)

where p̂(x) is defined as

p̂(x) =
∏
i

p̂i(xi). (3.11)

Note that p̂(x) is merely the product of p̂i(xi)’s and is introduced for making the notation

simpler. Thus, it does not represent the joint distribution of the MRF. Using Eq. (3.11),

we will denote G[p̂1, . . . , p̂N ] by G[p̂].

As it is mathematically intractable to rigorously minimize Eq. (3.10), we approximate

G[p̂] by its Taylor series expansion at β = 0 and minimize the approximated function. The

As with the original version of the TAP equation, The Taylor series expansion is given

by Eq. (3.5). Each term in Eq. (3.5) is calculated by (1) obtaining the stationary point

of the Lagrange multiplier λi(xi) under the condition of β → 0 and then (2) calculating

Gn by using the obtained λi(xi).

3.2.3 Formula for deriving the TAP free energy

The derivation of Gn[p̂]’s requires several formula, which will be derived in what follows.
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Notation of expectations

To simplify the notation, we employ the following braket notation for representing expec-

tations. First, we denote an expectation of O(x) with respect to p̂i(xi) by

〈O〉i ≡
∑
xi

p̂i(xi)O(x). (3.12)

We also denote an expectation of O(x) with respect to p̂i(xi) and p̂j(xj) by

〈O〉ij ≡
∑
xi

∑
xj

p̂i(xi)p̂j(xj)O(x). (3.13)

Next, we define 〈·〉 to be an expectation with respect to P̂ (x) =
∏

i p̂(xi), i.e.,

〈O〉 ≡
∑
x

(∏
i

p̂i(xi)

)
O(x). (3.14)

For example, 〈fij〉 represents the expectation of fij(xi, xj) with respect to p̂(x).

〈fij〉 = 〈fij〉ij =
∑
xi,xj

p̂i(xi)p̂j(xj)fij(xi, xj) (3.15)

G[P̂ ] in the limit of β → 0 (0th-order TAP free energy)

We first derive G[P̂ ] in the limit of β → 0, which is the 0th-order TAP free energy. Using

the fact that E(x) vanishes as β → 0, Eq. (3.8) reduces to

lim
β→0

G[P̂ ] =
∑
i

∑
xi

λi(xi)p̂i(xi)− ln

[∑
xi

exp

(∑
i

λi(xi)

)]

=
∑
i

∑
xi

λi(xi)p̂i(xi)−
∑
i

ln

[∑
xi

exp (λi(xi))

]
. (3.16)

From the Euler-Lagrange equation, we have the following equation for λi(xi):

p̂i(xi) =
exp (λi(xi))∑
xi

exp (λi(xi))
. (3.17)

Although the stationary point of λi(xi) is given in the form of λi(xi) = ln p̂i + C, where

C is an arbitrary constant, C does not affect the minimization of G[p̂]. Hence, we select

the fixed point of λi(xi) to be ln p̂i(xi), resulting in that Eq. (3.16) is given by

lim
β→0

G[p̂] =
∑
i

∑
xi

p̂i(xi) ln p̂i(xi) = −H[p̂]. (3.18)
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3.2. Generalization of the TAP equation

Eq. (3.18) means that the 0th TAP free energy is equivalent to the entropy of the distri-

bution p̂(x).

Defining 〈·〉β and Uβ(x)

We denote the expectation of a function O(x) with respect to the distribution Qβ(x)

introduced in Eq. (3.9) by 〈O〉β:

〈O〉β ≡
∑
x

qβ(x)O(x). (3.19)

As β → 0, the fixed point of λi(xi) tends to ln p̂i(xi). Hence, as β → 0, 〈O〉β coincides

with the expectation of the distribution p̂, namely,

lim
β→0
〈O〉β = 〈O〉0 = 〈O〉 =

∑
x

(∏
i

p̂i(xi)

)
O(x). (3.20)

Next, we also derive a new equation with respect to ∂ 〈O〉β /∂β we will use later.

Differentiating 〈O〉β with respect to β, we have

∂ 〈O〉β
∂β

=

〈
∂O
∂β

〉
β

+

〈
O(x)

(
−E(x) +

∑
i

∂λi
∂β

)〉
β

− 〈O〉β

〈
−E(x) +

∑
i

∂λi
∂β

〉
β

.

(3.21)

For the brevity, we introduce a new function Uβ(x):

Uβ(x) ≡ E − 〈E〉β −
∑
i

(
∂λi
∂β
−
〈
∂λi
∂β

〉
β

)
. (3.22)

Using Eq. (3.22), Eq. (3.21) can be rewritten as the following simpler form:

∂ 〈O〉β
∂β

=

〈
∂O
∂β

〉
β

− 〈OUβ〉β + 〈O〉β 〈Uβ〉β . (3.23)

As 〈Uβ〉β is clearly equivalent to zero by definition, Eq. (3.23) turns to

∂ 〈O〉β
∂β

=

〈
∂O
∂β

〉
β

− 〈OUβ〉β . (3.24)
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3.2. Generalization of the TAP equation

Uβ(x) in the condition of β → 0

Next, we examine the behaviour of Uβ(x) of Eq. (3.22) in the limit of β → 0. Using Eq.

(3.10), ∂λi/∂β can be represented as

∂λi(xi)

∂β
=

∂2G[p̂]

∂p̂i(xi)∂β
. (3.25)

Here, assuming that G[p̂] is a smooth function with respect to β as well as p̂i(xi), ∂λi/∂β

as β → 0 is written as

∂λi(xi)

∂β

∣∣∣∣
β=0

=
∂ 〈E〉
∂p̂i(xi)

= fi(xi) +
∑
j∈Ni

∑
xi

p̂j(xj)fij(xi, xj)

= fi +
∑
j∈Ni

〈fij〉j . (3.26)

Substituting Eq. (3.26) into Eq. (3.22), we have

lim
β→0

Uβ =
∑
i

fi +
∑
i,j

fij −
∑
i

〈fi〉 −
∑
i,j

〈fij〉

−
∑
i

(
fi +

∑
j∈Ni

〈fij〉j − 〈fi〉 −
∑
j∈Ni

〈〈fij〉j〉i

)
=
∑
i,j

fij −
∑
i,j

〈fij〉 −
∑
i,j

〈fij〉j −
∑
i,j

〈fij〉i + 2
∑
i,j

〈〈fij〉j〉i

=
∑
i,j

fij −
∑
i,j

〈fij〉j −
∑
i,j

〈fij〉i +
∑
i,j

〈fij〉 . (3.27)

As for the derivation of Eq. (3.27), we used the symmetric nature of the pairwise term

(i.e., fij(xi, xj) = fji(xj, xi)) as∑
i

∑
j∈Ni

fij(xi, xj) = 2
∑
i,j

fij(xi, xj).

Thus, U0(x) can be represented using Uij(xi, xj) by

U0 =
∑
i,j

Uij(xi, xj) =
∑
i,j

(
fij − 〈fij〉j − 〈fij〉i + 〈fij〉

)
. (3.28)
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3.2. Generalization of the TAP equation

3.2.4 The derivation of the 1st-order TAP free energy

Using the above equations, we derive the 1st-order TAP free energy. Differentiating G[P̂ ]

in Eq. (3.10) with respect to β, we have

∂G[P̂ ]

∂β
=
∑
i

〈
∂λi
∂β

〉
0

+ β 〈E〉β −
∑
i

〈
∂λi
∂β

〉
β

. (3.29)

As β → 0, the first term and the third term of Eq. (3.29) are cancelled out. Making use

of the fact that the 0th-order TAP free energy is equal to −S[P̂ ], the 1st-order TAP free

energy can be represented by

G[p̂] ≈ −H[p̂] + β 〈E〉p̂ . (3.30)

Eq. (3.30) is equivalent to the MF free energy.

3.2.5 The derivation of the 2nd-order TAP free energy

In a similar manner to the 1st-order TAP free energy, we can derive the 2nd-order TAP

free energy. Evaluating the second derivative of G[p̂] in Eq. (3.10) with respect to β, we

have

∂2G[p̂]

∂β2
=
∑
i

{〈
∂2λi
∂β2

〉
0

−
〈
∂2λi
∂β2

〉
β

+

〈
∂λi
∂β

Uβ

〉
β

}
− 〈EUβ〉β . (3.31)

Taking the limit of the third term in Eq. (3.31) with β → 0, we have〈
∂λi
∂β

Uβ

〉
β

→

〈
(fi +

∑
j∈Ni

〈fij〉j)(fij − 〈fij〉i − 〈fij〉j + 〈fij〉ij)

〉
. (3.32)

The calculation of Eq. (3.32) needs some efforts. After tedious calculations, we reach the

following expressions:

〈fi(fij − 〈fij〉i − 〈fij〉j + 〈fij〉ij)〉

= 〈fi 〈fij〉j〉i − 〈fi〉i 〈fij〉ij − 〈fi 〈fij〉j〉i + 〈fi〉i 〈fij〉ij = 0

〈〈fij〉j fij〉ij − 〈〈fij〉j 〈fij〉i〉ij − 〈〈fij〉
2
j〉ij + 〈〈fij〉j 〈fij〉ij〉ij

= 〈〈fij〉2j〉i − 〈fij〉
2
ij − 〈〈fij〉

2
j〉i + 〈fij〉2ij = 0.
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3.2. Generalization of the TAP equation

Thus, as β → 0, the third term of Eq. (3.31) tends to〈
∂λi
∂β

Uβ

〉
β

→ 0.

We find that the first and the second term of Eq. (3.31) are cancelled out, and the third

term approaches to 0 as β → 0. Hence, ∂2G[p̂]/∂β2 is equivalent to

∂2G

∂β2

∣∣∣∣
β=0

= −〈EU0〉 = −〈U2
0 〉 (3.33)

in the limit of β → 0. Finally, using Eq. (3.28), 〈U2
0 〉 reduces to

〈U2
0 〉 =

∑
(i,j)∈E

∑
(k,l)∈E

〈UijUkl〉 . (3.34)

In order to calculate Eq. (3.34), we divide
∑

i,j

∑
k,l 〈UijUkl〉 of Eq. (3.34) into the following

three cases:

The case where i 6= j 6= k 6= l

Using the fact that Uij and Ukl are independent of each other and 〈Uij〉 = 0, it turns

to

〈UijUkl〉 = 〈Uij〉 〈Ukl〉 = 0. (3.35)

The case where (i, j) = (k, l)

After some calculations,
〈
U2
ij

〉
satisfies

〈UijUij〉 =

〈(
fij − 〈fij〉j − 〈fij〉i + 〈fij〉

)2
〉

= 〈f 2
ij〉+ 〈〈fij〉2i 〉j + 〈〈fij〉2j〉i + 〈fij〉2

− 2 〈fij 〈fij〉j〉ij − 2 〈fij 〈fij〉i〉ij

= 〈f 2
ij〉 − 〈〈fij〉

2
i 〉j − 〈〈fij〉

2
j〉i + 〈fij〉2 . (3.36)

The case where i = k and j 6= l

The calculation of 〈UijUkl〉 reveals that all the terms in 〈UijUil〉 are cancelled out,

and thus we have

〈UijUil〉 =
〈(
fij − 〈fij〉j − 〈fij〉i + 〈fij〉

)(
fil − 〈fil〉l − 〈fil〉i + 〈fil〉

)〉
= 〈fijfil〉 − 〈fij 〈fil〉l〉 − 〈〈fij〉j fil〉+ 〈〈fij〉j 〈fil〉l〉

= 〈fijfil〉 − 〈fijfil〉 − 〈fijfil〉+ 〈fijfil〉 = 0. (3.37)
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3.2. Generalization of the TAP equation

Substituting Eqs. (3.35)-(3.37) into Eq. (3.35), it is rewritten as〈
U2

0

〉
=
∑

(i,j)∈E

〈
U2
ij

〉
=
∑

(i,j)∈E

(
〈f 2
ij〉 − 〈〈fij〉

2
i 〉j − 〈〈fij〉

2
j〉i + 〈fij〉2

)
. (3.38)

Therefore, using Eq. (3.33) and Eq. (3.38), we finally have the 2nd-order TAP free energy

as follows:

G[p̂] ≈ −H[p̂] + β 〈E〉p̂ −
β2

2
〈U2

0 〉p̂

= −H[p̂] + β 〈E〉p̂ −
β2

2

∑
(i,j)∈E

〈U2
ij〉p̂ . (3.39)

We refer to Eq. (3.39) as the 2nd-order TAP free energy.

3.2.6 The derivation of the 2nd-order TAP equation

Using Eq. (3.39), we derive the 2nd-order TAP equation for p̂i(xi). The derivation of the

TAP equation is similar to that of MF. In order to minimize G[p̂] subject to the constraint∑
xi
p̂i(xi) = 1, we add the Lagrange multiplier ηi and transform the minimization of G[p̂]

into

G[p̂] +
∑
i

ηi(1−
∑
xi

p̂i(xi)). (3.40)

Differentiating Eq. (3.40) with respect to p̂i(xi) and equating the derivative to zero, we

have the following fixed point equation:

p̂i(xi) ∝ exp

[
− fi(xi)−

∑
j∈Ni

∑
xj

p̂j(xj)fij(xi, xj)

+
1

2

∑
j∈Ni

(∑
xj

p̂j(xj)f
2
ij(xi, xj)−

(∑
xj

p̂j(xj)fij(xi, xj)

)2

− 2

(∑
xj

p̂j(xj)

(∑
x′i

p̂i(x
′
i)fij(x

′
i, xj)

)(
fij(xi, xj)−

∑
x′j

p̂j(x
′
j)fij(xi, x

′
j)

)))]
. (3.41)

where we set β = 1 for the conciseness. We refer to Eq. (3.41) as the 2nd-order TAP

equation. This is a general-purpose expression of the second-order TAP equation that can

be applied to a general class of MRFs.
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3.2. Generalization of the TAP equation

Using this new equation, estimates of the marginal distributions are computed in an

iterative manner similar to MF. Starting with some initial estimates of the marginal

distributions, it iteratively updates p̂i(xi)’s according to Eq. (3.41) until convergence.

The p̂i(xi)’s after convergence give estimates of the marginal distributions, which can be

used for inferences or learning with the MRF.

3.2.7 The derivation of the 3rd-order TAP free energy

As with the 2nd-order TAP free energy, the 3rd-order TAP free energy can also be derived

in the same manner. Firstly, differentiating Eq. (3.10) with respect to β three times, we

have the following equation:

∂3G[p̂]

∂β3
=
∑
i

{〈
∂3λi
∂β3

〉
0

−
〈
∂3λi
∂β3

〉
β

+ 2

〈
∂2λi
∂β2

Uβ

〉
β

−
〈
∂λi
∂β

U2
β

〉
β

+

〈
∂λi
∂β

∂Uβ
∂β

〉
β

}
−
〈
E
∂Uβ
∂β

〉
β

+
〈
EU2

β

〉
β
. (3.42)

Performing the same computation in Section 3.2.6, we found that the first and the second

terms in Eq. (3.42) are canceled out, and from the third term to the sixth term are

converged to zero in the limit of β → 0. Therefore, Eq. (3.42) converges to

∂2G

∂β2

∣∣∣∣
β=0

=
〈
EU2

0

〉
0

=
〈
U3

0

〉
=
∑
i,j

〈
U3
ij

〉
+ 6

∑
i,j,k

〈UijUjkUki〉 , (3.43)

where (i, j, k) represents all possible triples of neighbour sites in a graph such that

{(i, j), (j, k), (k, i)} ∈ E3 and i 6= j 6= k. Hence, the 3rd-order TAP free energy can

be represented by

G[p̂] ≈ −H[p̂] + 〈E〉p̂ −
β2

2
〈U2

0 〉p̂ +
β3

6
〈U3

0 〉p̂

= −H[p̂] + 〈E〉p̂ −
β2

2

∑
i,j

〈U2
ij〉p̂

+
β3

6

∑
i,j

〈U3
ij〉p̂ + β3

∑
i,j,k

〈UijUjkUki〉p̂ . (3.44)
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3.3. The TAP equations for several specific MRFs

3.3 The TAP equations for several specific MRFs

In this section, we show three example applications of the derived TAP equation (3.41).

One is the application to binary MRF having binary-label variables; second is that to

the discrete MRFs having multi-label variables; and the other is that to the Boltzmann

machines having softmax units.

3.3.1 Binary MRFs

The class of MRFs in which each site has a binary variable has been considered in many

application areas. When we want to estimate the marginal distributions, the first choice

has been the MF approximation or BP. As we have extended the TAP equation to be

able to deal with multi-labels, the extended one (Eq. (3.41)) will be yet another choice.

A remarkable property of the TAP equation is that it tends to be as fast as MF and

can be more accurate than MF. Thus, its advantage to BP is that it could be faster

and as accurate as or hopefully even more accurate than BP. The computation of the

TAP equation, which is to update the marginal distribution of a site using those of its

neighboring sites, is about equivalent in terms of computational cost to the computation

of a single message in (loopy) BP. Therefore, the method of the TAP equation will be

faster than BP by approximately a multiple equal to the number of the neighboring sites.

The computation of Eq. (3.41) in the binary-label MRFs is relatively simple because it

only includes an additional term made by the 2nd-order TAP equation to the original MF

equation (Eq. (2.37)). Specifically, suppose that the binary MRF model with the energy

function of Eq. (2.33) and xi ∈ {−1,+1}. Substituting Eq. (2.33) into the 3rd-order TAP
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3.3. The TAP equations for several specific MRFs

free energy, we have

G[m] =
∑
i

[
1 +mi

2
ln

(
1 +mi

2

)
+

1−mi

2
ln

(
1−mi

2

)]
− β

∑
i

himi − β
∑
i,j

Jijmimj −
β2

2

∑
i,j

J2
ij(1−m2

i )(1−m2
j)

− 2β3

3

∑
i,j

J3
ijmimj(1−m2

i )(1−m2
j)

− β3
∑
i,j,k

JijJjkJki(1−m2
i )(1−m2

j)(1−m2
k). (3.45)

Note that this TAP free energy computed by the generalized TAP free energy is exactly

the same as the original TAP free energy, which is targeted only to the binary MRFs. As

Eq. (3.45) is also considered as the extended version of the MF free energy (Eq. (2.36)),

we differentiate G[m] with respect to mi, and get the similar fixed-point equation defined

as

mi = tanh

[
βhi + β

∑
j∈Ni

Jijmj − β2
∑
j∈Ni

J2
ijmi(1−m2

j)

+
2β3

3

∑
j∈Ni

J3
ij(1− 3m2

i )mj(1−m2
j)

− 2β3
∑

(j,k)∈N 2
i

JijJjkJkimi(1−m2
j)(1−m2

k)

]
, (3.46)

where (j, k) ∈ N 2
i represents all possible pairs of neighbouring sites of site i. We call

Eq. (3.46) the TAP equation for the binary-label MRFs. Since it has the form of self-

consistency equations, updating m according to this equation constitutes an iterative

algorithm similar to naive MF.

The order of the terms on the right hand side of Eq. (3.46) directly corresponds to the

Taylor series expansion of G, which theoretically implies that more accurate solution will

be obtained by using higher-order terms. It is an interesting coincidence that the naive

MF equation is equivalent to the first-order TAP equation.

Since the above method is based on the Taylor series expansion with small β, it will

be theoretically effective only when β is small (i.e., T is large). However, β appears

only in the form of βE in G, and thus it does not make sense to discuss the choice of β
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3.3. The TAP equations for several specific MRFs

independently of the design of E. Therefore, the effects of the approximation with small

β can only be investigated through experiments.

The overall algorithm is the same as Alg.1 except that the variable mi is updated using

Eq. (3.46) instead of Eq. (2.37).

3.3.2 Discrete MRFs

As with the binary MRFs, the class of MRFs in which each site has a discrete variable

(or multi-label) plays an important role in many application areas. Using Eq. (3.41), we

also derive the TAP equations for multi-label MRFs.

The computation of Eq. (3.41) in the case of multi-label MRFs tends to be complicated.

When all the pairwise terms in the energy function (Eq. (2.7)) are given by the Potts

model, its computation is simple and thus its cost tends to be small. We consider here a

class of MRFs in which the pairwise term is given by

fij(xi, xj) = Jij(xi)δ(xi − xj), (3.47)

where δ(x) is Kronecker’s delta function. When representing this pairwise term as a

matrix, it becomes a square matrix whose diagonal components are Jij(x)’s and non-

diagonal components are all zero. The substitution of Eq. (3.47) into Eq. (3.41) yields

p̂i(xi) ∝ exp

[
− fi(xi)−

∑
j∈Ni

p̂j(xi)Jij(xi)

+
1

2

∑
j∈Ni

p̂j(xi)Jij(xi)
{

(1− pj(xi))Jij(xi) + 2(〈Jij〉 − pi(xi)Jij(xi))
}]
, (3.48)

where 〈Jij〉 =
∑

x p̂i(x)p̂j(x)Jij(x).

3.3.3 Boltzmann machines having softmax units

The introduction of softmax units to the Boltzmann machines (BMs) has widened the

range of applications of the BMs, as they can deal with not only binary labels but multiple
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labels [69, 44]. We show here how the derived TAP equation can be applied to the inference

of marginal distributions of the BMs.

Suppose a BM that has D visible units, P hidden units, and L softmax units that

represent L labels. We denote each of them by v ∈ {0, 1}D, h ∈ {0, 1}P , and y ∈
{1, . . . , L}C , respectively. We assume here for the BM that there only exist connections

between visible–hidden units, hidden–hidden units, and hidden–softmax units. Then, the

energy function of the BM is represented as

E(x,h,y; θ) = −
∑
i,j

xiWijhj −
1

2

∑
j 6=j′

hjJjj′hj′ −
∑
j,k

∑
l

hjV
l
jky

l
k, (3.49)

where θ = {W,J,V} represents the parameters of the BM, i.e., the weights of the con-

nections. We neglect the bias terms for the sake of brevity.

To perform learning of or inference by BMs, it is necessary to compute the marginal

distribution of each unit with respect to their joint distribution or conditional distribution

[68, 55]. For example, unsupervised learning from only a set of input data (x’s) requires

the computation of p(h,y|x; θ)), the marginal distributions of the conditional probability

with respect to an input. Similarly, supervised learning using a set of pairs of the input

x and the output y requires the computation of the conditional distribution p(h|x,y; θ)

for the learning and p(h,y|x; θ) for the inference using the learned model. To compute

these marginal distributions, the MF approximation has been the most widely used so

far [68]. It is possible to use the derived TAP equation instead of MF, by which we can

expect some improvement in estimation accuracy of these marginal distributions without

sacrificing computational efficiency.

This is done as follows. We first consider the problem of estimating the marginal

distributions with respect to the conditional distribution p(v,h|y; θ). Letting p(hj = 1|x)
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be µj and pk(yk = l|x) be µlk, Eq. (3.41) can be rewritten using Eq. (3.49) as

µj ← σ

(∑
i

Wijxi +
∑
j′\j

Jj′jµj′ +
1

2
(1− 2µj)

∑
j′\j

J2
j′jµj′(1− µj′)

+
∑
k

〈Vjk〉l +
1

2
(1− 2µj)

∑
k

(〈V 2
jk〉l − 〈Vjk〉

2
l )

)
(3.50)

µlk ∝ exp

(∑
j

V l
jkµj +

1

2

∑
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where 〈Vjk〉l and 〈V 2
jk〉l are represented as

〈Vjk〉l =
∑
l

V l
jkµ

l
k, 〈V 2

jk〉l =
∑
l

(V l
jk)

2µlk. (3.52)

The third and fifth terms of Eq. (3.50) correspond to the newly added terms of the second

TAP equation (Eq. (3.41)). The third term originates from the connections between the

hidden units, and the fifth term originates from those between hidden units and softmax

ones. The former is equivalent to the term that was already derived in [94], as the hidden

units of our BM are the same binary units as [94]. The latter (the fifth term) has not

shown before and novel, as the TAP equation has not been applied to softmax units.

It is possible to deal with p(h|x,y; θ) in the same way as p(x,h|y; θ). Some calculation

yields an equation that is the same as Eq. (3.50) but the third term.

3.4 Advantages of TAP equation

This section discusses several real and potential advantages of the TAP equation to LBP.

LBP iterates message passing between neighboring sites until convergence; at each itera-

tion, the following two steps are performed alternately and independently at each site:

(a) the addition of messages from the neighboring sites and the data term of the site

(b) the computation of messages to be sent to the neighboring sites.
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3.4.1 More flexible choice of MRF models

The TAP equations are more flexible than LBP in the choice of MRF models, especially of

the representation of the marginal distribution pi(xi). LBP can handle only the Gaussian

distribution in the continuous domain, whereas the distribution functions that the TAP

equation can deal with are not limited to the Gaussian distribution. The limitation

of LBP stems from the fact that in step (b), LBP marginalizes over the variables of the

neighboring sites; it is required that the marginalized distribution should be represented by

the same function. Although there are methods based on particle filtering to overcome this

limitation [76, 27], there will emerge other issues such as large computational complexity

and difficulty with maintaining accuracy. There is no such requirement in the TAP

equation, and they could deal with all sorts of continuous parametric distribution functions

besides discrete representations. However, it is necessary to derive a different algorithm

for each assumed parametric function; moreover, it is another issue whether or not the

derived algorithm will be convergent.

3.4.2 Faster computation

Even in the discrete domain, as far as the computational complexity per iteration is

concerned, the TAP equation are faster than at least a naive implementation of LBP. In

each iteration, the TAP equations merely updates the state of the site by referring to the

states of its neighboring sites. Its computational complexity is roughly comparable to

the computation of a single message in step (b) of LBP. Thus, LBP will be several times

(i.e., the number of edges per site) slower than MF and TAP. Moreover, LBP needs to

access all the neighboring sites to compute a single message, and thus the number of total

memory accesses is by the same factor larger than MF and TAP. When implementing on

parallel systems such as GPU, the gap could become larger, since overall speed tends to

be constrained by the number of memory accesses in these systems.

Of course, smaller computational complexity per iteration does not mean smaller over-

all computational cost. The other equally important factor is the number of iterations

needed until convergence. This basically depends on each problem and datum, and can
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be investigated only by experiments. According to our experiments, the TAP equations

are basically comparable to LBP in this repsect.

It should be noted that there are variants of LBP algorithms that perform step (b)

efficiently based on distance transform [19, 1]. To be specific, the naive implementation of

step (b) has computational complexity of O(n2) where n is the number of labels, while the

efficient algorithms perform this in O(n), although they can be used for a particular class

of energy. A similar efficient method is not known for MF and TAP. Thus, the efficient

LBP algorithms will be faster than our current implementations of the TAP equations,

especially when n is large. Note, however, that this will not be a problem if n is small.

3.4.3 Accuracy

As is described above, MF computes the marginal distribution at each site in an approx-

imate sense, so does LBP. Thus, our concern is with the accuracy of the approximations.

As mentioned above, MF is based on the assumption of the independence of each site,

i.e., Eq. (2.29). LBP is based on a supposedly more accurate assumption such that the

marginal distribution of a site is represented by Eq. (2.38). Thus, LBP is considered to

be more accurate than the naive MF equations to the extent of the difference between

Eqs.(2.29) and (2.38).

Although its derivation is considerably different, the method of the TAP equation can

be regarded as improving the accuracy of the naive MF equation. Thus, which prevails

between the above difference of naive MF from LBP and the improvement by the TAP

equation. This generally has to be investigated by experiments. According to our ex-

periments shown in Sec. 3.5, the 3rd-order TAP method generally yields more accurate

results than LBP.
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3.5 Experimental results

In order to examine the effectiveness of the derived TAP equation, we conducted three

experiments: the first is binary segmentation problem with a binary MRF; the second

is stereo matching problem with a discrete MRF; and the third is parameter learning

problem with a Boltzmann Machine having softmax units. For LBP, we used the naive

implementation of the sum-product algorithm.

In the three experiments, Intel Core i7 2.67GHz CPU and nVidia GeForce GTX480 GPU

were used. MSVC is used for implementations on the CPU; /fp:fast option is specified to

maximize the performance of floating point arithmetic and further the code is parallelized

using OpenMP. CUDA is used for implementations on the GPU.

3.5.1 Binary segmentation problem (interactive segmentation)

Following the same procedure as GrabCut [67], we use brushes to roughly specify the fore-

ground and the background pixels of an image, as shown in Fig. 3.1, from which their color

models are learned. We used the functions calcNWeights() and constructGCGraph()

from OpenCV2.3 to generate the energy function, where the parameters were set as γ = 50

and λ = 450. Defining the variable xi to indicate whether the pixel i is foreground or

background, each method estimates the marginal distribution of q(x) at each pixel. The

parameter T was empirically chosen as T = 80. For target images, we used an image from

[59] and four images from the dataset of [52].

In the original GrabCut, optimization is iteratively performed a few times, while the

Gaussian mixture models (GMMs) of the foreground and background pixels are updated

at each iteration. When the same procedure is carried out in our case, MF, TAP, and

LBP yielded almost identical results; they are too close to find a significant difference in

terms of accuracy. (The results are also almost the same as those of GC, when each pixel

is classified as foreground and background by thresholding with p = 0.5.) Therefore, we

carry out the optimization only once while fixing the energy initially determined by manual

brushes. For the purpose of evaluating the accuracy of the estimation of the marginal
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Original Specified labels Gibbs sampling (0.0%)

Naive MF (13.0%) 2nd-order TAP (12.0%) 3rd-order TAP (6.1%) LBP (10.6%)

Figure 3.1: Results of interactive segmentation for an image Bird. The numbers in the

parenthesis are the residual errors after convergence of each method. The methods are

ordered from inaccurate to accurate: MF, 2nd-order TAP, LBP, and 3rd-order TAP.

distributions, we also estimate them by Gibbs sampling [38] and use the estimates as

the ground truths. In this computation, a sufficient number (= 20000) of samples are

generated and used per pixel.

Fig. 3.1 shows the results for the image Bird from [59]. The size of the images is 640×480

pixels. The brightness of each pixel represents the probability that the pixel belongs to

the foreground; white is 1.0 and black is 0.0. Comparing the results of the MF and two

TAP methods with the ground truth obtained by Gibbs sampling, it is observed that

the errors tend to decrease in the order of MF, 2nd-order TAP, and 3rd-order TAP. This

is more clearly seen in Fig. 3.2 which shows how the errors decrease with the number

of iterations. This improvement in accuracy is considered to be due to the effect of the

higher-order terms of the TAP equations. Moreover, it is observed from Fig. 3.2 that LBP

has smaller errors than 2nd-order TAP, but has larger errors than 3rd-order TAP. This

can be visually confirmed in Fig. 3.1.

Table 3.1 shows the computational time of 100 iterations for each method. It is seen

from this table that as compared with LBP, the three MF methods are 3-5 times faster

on CPU and 6-10 times faster on GPU. This increase in speed is due to the fact that

at each iteration, LBP needs to compute messages in eight directions, one of which is
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Figure 3.2: Errors per pixel for interactive segmentation vs. the number of iterations.

Table 3.1: Computational time for 100 iterations of each method.

CPU[ms] GPU[ms] CPU/GPU

Mean Field Approximation 730.0 16.8 43.5

TAP equation (2nd) 782.12 17.6 44.4

TAP equation (3rd) 1344.45 26.3 51.1

Loopy Belief Propagation 4253.01 163.61 26.0

computationally comparable to a single iteration of the MF and the TAP methods. It

should also be noted that comparing CPU and GPU implementations, the speed ratios

are 40-50 for MF and TAP, whereas that for LBP is only 26.0. This is attributable to the

fact that LBP requires more memory accesses than MF and TAP.

Figures 3.3 and 3.4 show the results for Flower, Horse, Starfish, and Tiger from the

dataset of [52]. Figure 3.5 presents the residual errors after convergence for each method.

It can be seen that the same observation as above holds true for these images; the result

is more accurate in the order of MF, 2nd-order TAP, LBP, and 3rd-order TAP.
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Figure 3.3: Input images and specified labels for interactive segmentation (Horse, Flower,

Starfish and Tiger).

3.5.2 Stereo matching

As an example of discrete MRFs, we choose the problem of matching a pair of stereo

images, which is widely studied in the field of computer vision. We compare the proposed

TAP equation with the MF approximation and the loopy BP (LBP) (or equivalently, the

Sum-Product algorithm). In the experiment we measured the computational time of these

compared methods. All of them are implemented on a PC with Intel Core i7 2.67GHz;

the code is parallelized by using OpenMP.

In the experiment, we considered a 4-neighbour grid MRF, for which we generated

the energy by using the Middlebury MRF library [81]. We set |L| = 16, λ = 90, and

truncated = 1, which means that the pairwise term belongs to a class of the Potts model.

We empirically set the temperature T = 50. To evaluate the accuracies, we also estimate

the marginal distributions by using the Gibbs sampling [38] with a sufficient number (=

20000) of samples; assuming them to be the true ones, we compare them with those

estimated by the above methods.
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Figure 3.4: Results for the four images (Horse, Flower, Starfish, and Tiger).
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Figure 3.5: Residual errors per pixel for the four images

Fig. 3.6 shows one of the experimental results, which is for Tsukuba in the Middlebury

dataset [81]. These images show the value of the label xi at each pixel which maximizes

the estimated marginal distribution of the pixel. The number in the parenthesis below

each image is the errors of the estimated marginal distributions (or, the difference from

the Gibbs sampling). Fig. 3.7 also shows how the errors of tsukuba decrease with the

number of iterations. It is observed that the errors decrease in the order of MF, 2nd-order

TAP, and LBP. Thus, 2nd-order TAP is more accurate than MF as intended but less

accurate than BP in this case. The computational times of MF, 2nd-order TAP, and LBP

are 1.94, 2.75, and 6.95 seconds, respectively.

3.5.3 Boltzmann machines

To examine how the derived TAP equation improves accuracy of estimating the marginal

distributions for BMs, we conducted two experiments with Deep Boltzmann Machines

(DBMs). One is supervised learning of a DBM using the MNIST dataset, and the other

is unsupervised learning of a DBM using the NORB dataset.
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Original image Gibbs sampling (0.0) MF (0.105)

2nd-order TAP (0.098) LBP (0.083)

Figure 3.6: The result of stereo matching. The numbers in the parenthesis are the esti-

mation errors of the marginal distributions, evaluated by the difference from the Gibbs

sampling.

MNIST: supervised learning

In the experiment, we consider a 3-layer DBM consisting of two hidden layers and one

softmax layer. The first and the second layers consist of 500 and 1000 binary units,

respectively. The third layer is a softmax unit that can take one of 10 discrete values,

which corresponds to the ten digit categories. We normalized the pixel brightness of the

MNIST images in the range of [0, 1] and used mini-batches of 100 images for training the

DBM.

We performed learning of the DBM in the following way. We first determined the

weights between the visible and the first hidden layers by treating them as a RBM. We

then calculate the conditional distribution of the units in the first hidden layer when an

input image is set to the visible layers. We then determined the weights between the

first and second hidden layers and those between the second hidden layer and third (i.e.

output) layers, where the above conditional distributions are fed to the first hidden layer

and the labels of their inputs are fed to the third layer. Using the weights thus determined,
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Figure 3.7: Errors per pixel for interactive segmentation of tsukuba vs. the number of

iterations.

we construct the entire DBM. The resulting DBM achieves 94.92% accuracy for the entire

test data.

For the DBM thus obtained, we estimate the marginal distributions p(h,y|v; θ) of the

hidden units h (of the first and second hidden layers) using the MF approximation and the

derived 2nd-order TAP equation. To measure their accuracies, we compare the estimates

with those obtained by a Gibbs sampler with a sufficient number (10,000) of particles,

as in the above experiment of stereo matching. We performed the estimation by the

Gibbs sampler for 100 times and calculated their mean and variance. Table 3.2 shows the

accuracies of the estimated marginal distributions for each layer; the “error” columns show

the average differences from the mean of the estimates by the Gibbs sampler over a set

of 100 randomly chosen images; the “error± σ̂” columns indicate their range considering

the variance of the Gibbs sampling. It is observed that the TAP equation significantly

outperforms MF, which confirms the effectiveness of the derived TAP equation.
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Table 3.2: Accuracy of the marginal distributions with respect to the MF and the 2nd-

order TAP. The numbers in the table represent the error of the estimated marginal dis-

tributions of p(h|v; θ). σ̂ is the measurement error from the Gibbs sampler. To simplify

the notation, all the numbers are multiplied by 100.

Layer1 (500 units) Layer2 (1000 units) Layer3 (1 unit)

MNIST error error ±σ̂ error error ±σ̂ error error ±σ̂

MF 2.368 2.361, 2.375 1.420 1.414, 1.427 1.489 1.468, 1.510

TAP2 1.756 1.749, 1.763 1.091 1.084, 1.097 1.049 1.020, 1.078

Layer1 (4096 units) Layer2 (4096 units) Layer3 (4096 units )

NORB error error ±σ̂ error error ±σ̂ error error ±σ̂

MF 1.029 1.027, 1.030 1.389 1.386, 1.391 1.500 1.498, 1.502

TAP2 0.992 0.991, 0.994 1.272 1.269, 1.274 1.448 1.446, 1.450

NORB: unsupervised learning

We also conducted an experiment of unsupervised learning of a DBM using the NORB

dataset [45].

In the experiment, we downsized the problem by downsampling the images from 96×96

to 48 × 48 pixels. As in [90], we multiplied a scalar to each image so that the averaged

pixel values are the same for all the images. Following [16], we then normalized the images

so that each pixel has zero mean and unit variance over the entire dataset.

In the experiment, we consider a DBM consisting of one visible and three hidden layers.

Each of the three hidden layers has 4096 binary units. For the visible layer, we chose a

set of Gaussian units having the variance parameter σi = 1. For the learning of the DBM,

we employed the greedy pre-training procedure proposed by [70]. To be specific, following

the approach of [70] we train the three RBMs and construct a DBM by concatenating

them. We divided the dataset into mini-batches of 100 images and used them for the

learning.
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As with the experiment of MNIST, we measured accuracy of the marginal distributions

of p(h|v; θ) by using the MF approximation and the 2nd-order TAP equation. The true

marginal distributions were computed by a Gibbs sampler with 10,000 particles. To

evaluate their accuracies, we performed the estimation for 100 times and computed their

means and variances. The results are shown in Table 3.2. As with MNIST, it is observed

that the 2nd-order TAP equation significantly outperforms the MF approximation, which

confirms the effectiveness of the TAP equation applied to unsupervised learning of DBMs.

3.6 Summary

In many applications with MRFs, it is necessary to estimate the marginal distributions

of their sites. To do this, the classical MF approximation has been used for years in the

field of machine learning and the related fields. The TAP equation, which was developed

in the field of solid state physics and has been known to do improve the accuracy of the

MF approximation, has not been so popular in other fields. This may be because of the

limitation of the original TAP equation that it is applicable only to binary MRFs and not

to more general MRFs.

To eliminate this limitation, we first generalize the conventional TAP equation and

derive a general-purpose expression of the second-order TAP equation that can be applied

to more general MRFs. As examples of its application, we then derive the specific TAP

equations for binary-label MRFs, multi-label MRFs, and for BMs having softmax units.

We show the results of several experiments with discrete multi-label MRFs for stereo

matching and with DBMs for supervised learning and unsupervised learning using the

MNIST and NORB datasets. They demonstrate the effectiveness of our approach.

59



Chapter 4

Discrete inference of Markov random

fields for non-uniformly discretized

variable space

The optimization algorithms for continuous variables are only applicable to a limited

number of problems, whereas those for discrete variables are versatile. Thus, it is quite

common to convert the continuous variables into discrete ones for the problems that

ideally should be solved in the continuous domain, such as stereo matching and optical

flow estimation.

In this chapter, we show a novel formulation for this continuous-discrete conversion.

The key idea is to estimate the marginal distributions in the continuous domain by ap-

proximating them with mixtures of rectangular distributions. Based on this formulation,

we derive a Mean Field (MF) algorithm and a Belief Propagation (BP) algorithm. These

algorithms can correctly handle the case where the variable space is discretized in a

non-uniform manner. By intentionally using such a non-uniform discretization, a higher

balance between computational efficiency and accuracy of marginal distribution estimates

could be achieved. We present a method for actually doing this, which dynamically dis-

cretizes the variable space in a coarse-to-fine manner in the course of the computation.

Experimental results show the effectiveness of our approach.

60



4.1. Introduction

4.1 Introduction

As we have noted in Chapter 2, There are basically two methods for inference using

MRF models, MAP (Maximum A Posteriori) inference and MPM (Maximum Posterior

Marginal) inference. Both are built upon the Boltzmann distribution q(x) ∝ exp (−E(x)).

MAP directly obtains the maximizer to q(x) and uses it as an estimate of x. MPM first

computes the marginal distribution of each variable xi; it then obtains its maximizer and

uses it as the estimate of xi [85, 35, 49].

As we have mentioned before, we consider the estimation of marginal distributions.

Although MAP is in general computationally easier to perform and thus MPM is unlikely

to be the first choice when both can be used, there is no other choice when the marginal

distributions themselves are necessary, e.g., learning the parameters in CRF (Conditional

Random Field) models [43, 68].

The computation of the marginal distributions is differently formulated depending on

whether the variable xi is continuous or discrete. There are two practical algorithms, the

Belief Propagation (BP) and the Mean Field (MF) algorithms. Both iteratively estimate

the marginal distributions by repeatedly exchanging information, or messages, among

the neighboring sites. In the case of continuous variables, the marginal distributions are

represented by some parametric distribution function and its parameters are iteratively

updated at each site. In the case of discrete variables, the marginal distributions are

represented as discrete distributions, and they are iteratively updated at each site.

The former formulation for continuous variables can be used only for a small class of

problems, as there are only a few choices for the parametric function representing the

marginal distributions. In fact, for the BP algorithm, the Gaussian function is practically

an only choice. (This limitation comes from the constraint that in the message updating

step, the distributions before and after the update should be represented by the same

parametric function.) For the MF algorithm, this limitation is somewhat relaxed but it

is in general difficult to derive an iterative algorithm having good convergence property.

On the other hand, the formulation for discrete variables is free from such a limita-
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tion, and it can be used for a wide range of problem. Thus, it is used not only for the

problems originally defined in discrete domain (e.g., multi-label image segmentation) but

also for those originally defined in continuous domain. In the latter case, the continuous

variables are discretized into discrete ones. For example, in stereo matching and optical

flow estimation, the site variable is disparity and a flow vector, respectively, which are

both continuous; they are discretized and the energy function is then defined based on

the resulting discrete variables.

In this chapter, we present a novel formulation for this continuous-discrete conversion

(i.e., that the problems that should ideally be dealt with in continuous domain are solved

by discretization of the variables). In the conventional formulation, the variables are first

discretized and the energy of Eq. (2.7) is then defined based on those discrete variables.

Then, the marginal distributions defined in the discrete domain are estimated using the

discrete MF or BP algorithm. On the other hand, our formulation starts with the energy

defined in the continuous domain. To make its minimization feasible, we “discretize” the

marginal distribution of each site, or more rigorously, approximate the marginal distri-

bution with a discrete distribution. We then search for the marginal distributions that

minimize the energy in the space of the approximating discrete distributions.

For the approximating distribution, we choose a mixture of rectangular distributions

in this study. The center of each rectangular distribution corresponds to a discrete value

in the conventional formulation, and its height is the parameter to be determined in the

minimization. Based on this formulation, we derive the MF and BP algorithms.

In our formulation, the rectangular functions in the mixture are allowed to have arbi-

trary locations and sizes (as long as any two of them are not overlapped in the variable

space), which provides a core practical value of our formulation. In fact, when they are

placed on a regular grid and have the same size, the new MF and BP algorithms coincide

with the conventional ones, whereas otherwise the two are different. To be specific, the

updating terms in the new MF and BP algorithms have additional terms as compared with

conventional ones; these additional terms are regarded as compensating the non-uniform

distribution of rectangular functions. Note that the conventional MF and BP algorithms

are independent of how the continuous variables are discretized; as the energy is defined
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after the discretization, differences in the discretization simply change the meaning of the

energy.

This flexibility with our formulation enables the followings:

• One can discretize the variable space in a non-uniform manner (e.g., sampled densely

in some region and sparsely in others) to improve the estimation accuracy of the

marginal distributions without increasing the computational cost.

• One can deal with the case where the variable space is non-Euclidean and is difficult

to uniformly discretize, e.g., spherical surface.

The former could be particularly effective for the variable space of two or higher dimen-

sions. For effective non-uniform discretization, some prior knowledge could be used if it

is available.

In this chapter, taking one step further, we present a method that performs this non-

uniform discretization dynamically in the course of the optimization. Our method employs

a coarse-to-fine strategy; starting with coarsely divided blocks of the variable space, it

recursively divides the block of the largest mixture weight into subblocks. (Each block is

the support of a rectangular function in the mixture distribution.) This block subdivision

also requires dividing the current marginal distribution estimates as well as the messages.

We also describe how to do this.

This chapter is organized as follows. In Section 4.2, we derive the new MF and BP algo-

rithms that can deal with non-uniformly discretized variable space. Section 4.3 presents a

method that dynamically discretizes the variable space in a coarse-to-fine manner, which

are to be used with the new MF or BP algorithm. Section 4.4 shows the results of the ex-

periments conducted to examine the effectiveness of our approach. Section 4.5 concludes

this chapter.
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4.2 Algorithms for a non-uniformly discretized vari-

able space

In this section we derive the new MF and BP algorithms that can deal with non-uniformly

discretized variable space.

4.2.1 Derivation of a new MF algorithm

The central issue of the variational approach is the choice of the class of the approximating

distributions (p’s). As we have noted in Section 2.6, The MF algorithm is derived by

choosing the following class of p’s:

q(x) ≡
∏
i

qi(xi). (4.1)

This means that the variable of each site is independent of that of any other site. This is

in general too restrictive an assumption to accurately approximate the true distribution,

whereas it can significantly simplify computation. Substituting Eq. (4.1) into Eq. (2.27),

Eq. (2.27) reduces to

F [p] =
∑
i

∫
pi(xi)fi(xi)dxi

+
∑

(i,j)∈E

∫∫
pi(xi)pj(xj)fij(xi, xj)dxidxj +

∑
i

∫
pi(xi) ln pi(xi)dxi, (4.2)

where E indicates the set of edges in the graph. Note that the first and second terms

correspond to 〈E〉p and the third term to H[p] of Eq. (2.27), respectively.

We wish to find q that minimizes Eq. (4.2) under the constraint of∫
pi(xi)dxi = 1 for all i. (4.3)

By introducing a Lagrange multiplier for this constraint and solving the Euler-Lagrange

equation, we have the following fixed point equation for the unknown pi(xi) (i = 1, . . . , N):

pi(xi) ∝ exp

[
−

(
fi(xi) +

∑
j∈Ni

∫
fij(xi, xj)pj(xj)dxi

)]
, (4.4)
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where Ni is the neighboring site of i-th site. The MF algorithm iteratively updates the

estimate of p′is by using this equation; the substitution of the current estimates to the

right hand side gives an updated estimate on the left hand side. The distributions p′is

after convergence directly give the estimates of the marginal distributions of q.

The above derivation is valid for both cases of continuous and discrete variables, and

from here, different formulations are necessary for the two cases.

When xi is a discrete variable, pi(xi) is naturally a discrete distribution. Letting

[x1, . . . , xS] be the discrete values that xi can take, we denote their probabilities by

[p1
i , . . . , p

S
i ]. Then, Eq. (4.2) reduces to

F [p] =
∑
i

∑
s

psifi(x
s) +

∑
(i,j)∈E

∑
s,t

psip
t
jfij(x

s, xt) +
∑
i

∑
s

psi ln psi . (4.5)

The fixed point equation (4.4) is such that Eq. (4.2) is minimized under the constraint∫
pi(xi)dxi = 1. In the discrete case, the constraint becomes

∑
s p

s
i = 1 (for any i); under

this constraint, Eq. (4.4) turns to

psi ∝ exp

[
−

(
fi(x

s) +
∑
j∈Ni

S∑
t=1

fij(x
s, xt)ptj

)]
, (4.6)

which gives the updating rule for the probabilities [p1
i , . . . , p

S
i ] (i = 1, . . . , N).

When xi is a continuous variable, we are to represent pi(xi) by some parametric function

such as a Gaussian distribution; Eq. (4.4) will then give an updating equation for the

parameters. Note however that this is possible only for parametric functions such that

the right hand side of Eq. (4.4) yields the same parametric function.

Now we present our formulation for discretizing a continuous problem. We wish to make

feasible the computation for a problem originally defined in the continuous domain by

discretizing the variable space. To do this, sticking to the above continuous formulation,

we represent pi(xi) by a mixture of Si rectangular distributions as

pi(xi) ≡
Si∑
s=1

αsih
s
i (xi) i = 1, . . . , N (4.7)

where αsi is the mixing coefficient to be determined in the minimization; hsi is a rectangular

function fixed during the minimization, which is defined as follows. Let X be the variable
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space and d be its dimensionality. Also let X s
i be a d-dimensional hyperrectangle (i.e.,

the Cartesian product of intervals) such that X s
i

⋂
X t
i = ∅. Then, hsi (xi) is defined to be

hsi (xi) =

1/Vsi if x ∈ X s
i

0 otherwise,
(4.8)

where Vsi is the volume of X s
i ; thus

∫
hsi (xi)dxi = 1.

Note that the rectangular functions hsi (xi)’s may have non-uniform locations and sizes.

Thus, one may distribute h1
i (xi), . . . , h

Si
i (xi) in the variable space X densely (or sparsely)

for particular portions of X depending on their importance. Note also that their distri-

bution in X is allowed to be different for each site, so is even Si. Thus, one may, for

example, increase or decrease Si for particular sites (e.g., an image region) depending on

their importance.

Next we derive the updating equation for αsi ’s similar to Eq. (4.4). Unlike the earlier

cases, it cannot be obtained by directly substituting Eq. (4.7) into Eq. (4.4), because of

the above generality of our mixtures. (The right hand side of Eq. (4.4) cannot generally

be represented by the mixture of the (i-th) site.

Thus, we trace back to the free energy of Eq. (4.2). By substituting Eq. (4.7) into 〈E〉p
in Eq. (4.2) and introducing new notations, it reduces to

〈E〉p =
∑
i

∫
pi(xi)fi(xi)dxi +

∑
(i,j)∈E

∫∫
pi(xi)pj(xj)fij(xi, xj)dxidxj

=
∑
i

∑
s

αsi

∫
fi(xi)h

s
i (xi)dxi +

∑
(i,j)∈E

∑
s,t

αsiα
t
j

∫∫
fij(xi, xj)h

s
i (xi)h

t
j(xj)dxidxj

=
∑
i

∑
s

αsif
s
i +

∑
(i,j)∈E

∑
s,t

αsiα
t
jf

st
ij , (4.9)

where f si and f stij are respectively defined by

f si =

∫
fi(xi)h

s
i (xi)dxi, (4.10)

f stij =

∫∫
fij(xi, xj)h

s
i (xi)h

t
j(xj)dxidxj, (4.11)

which are the expectations of the data term and the smoothness term with respect to

hsi (xi) and htj(xj).
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As with the mean energy, we compute the entropy in the free energy. Although the

calculation of the entropy of a mixture density is in general intractable, owing to the

introduced constraint X s
i ∩ X t

i = ∅, we can reduce H[p] in Eq. (4.2) as follows:

H[p] = −
∑
i

∑
s

αsi

∫
hsi (xi) ln

(∑
s′

αs
′

i h
s′

i (xi)

)
dxi

= −
∑
i

∑
s

αsi

∫
hsi (xi) ln (αsih

s
i (xi)) dxi

= −
∑
i

∑
s

αsi lnαsi −
∑
i

∑
s

αsi

∫
hsi (xi) lnhsi (xi)dxi

= −
∑
i

∑
s

αsi lnαsi +
∑
i

∑
s

αsiB
s
i , (4.12)

where Bs
i is defined by

Bs
i ≡ −

∫
hsi (xi) lnhsi (xi)dxi. (4.13)

Using Eqs.(4.9) and (4.12), Eq.(4.2) is rewritten as

F [α] =
∑
i

∑
s

αsi (f
s
i −Bs

i ) +
∑

(i,j)∈E

∑
s,t

αsiα
t
jf

st
ij +

∑
i

∑
s

αsi lnαsi . (4.14)

An updating equation for αsi ’s can be directly derived from the similarity between Eq.

(4.14) and Eq. (4.5). If we equate the pairs αsi ↔ psi , (f si −Bs
i )↔ fi(x

s) (not f si ↔ fi(x
s)),

and f stij ↔ fij(x
s, xt), the two free energies coincide with each other. Moreover, we have

the same constraint for αsi ’s as the one for psi ’s under which Eq. (4.6) is derived from

Eq. (4.5). It is
∑

s α
s
i = 1, which is obtained from

∫
pi(xi)dxi = 1 and

∫
hsi (xi)dxi = 1.

Therefore, the fixed point equation for Eq. (4.5) gives the one for αsi as

αsi ∝ exp

−
(f si −Bs

i ) +
∑
j∈Ni

Sj∑
t=1

f stij α
t
j

 . (4.15)

For this derivation, we need also to assume that Si = S for any i. However, it is clear

that the same equation can be derived for the case where Si differs for each i.

The updating equation (4.15) has a similar form to Eq. (4.6). Under the natural cor-

respondences αsi ↔ psi , f
s
i ↔ fi(x

s), and f stij ↔ fij(x
s, xt), the only difference is the

presence of Bs
i . If h1

i (xi), · · · , h
Si
i (xi) have the same size in X , then Bs

i becomes constant
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for any s. If so, it is invalidated in Eq. (4.15) and the above MF algorithm coincides

with the conventional one. Therefore, Bs
i can be regarded as a compensating term for the

“non-uniformity” of the discretization of the variable space X .

4.2.2 Derivation of a new BP algorithm

For Belief Propagation, the following class of approximating distributions p’s is considered.

p(x) =

∏
ij pij(xi, xj)∏
i pi(xi)

zi−1
, (4.16)

where zi is the number of neighboring sites of the i-th site; pi(xi) and pij(xi, xj) satisfy∫
pi(xi)dxi = 1 (4.17a)∫∫

pij(xi, xj)dxidxj = 1 (4.17b)∫
pij(xi, xj)dxi = pj(xj). (4.17c)

This distribution class has more generality than that for MF (Eq. (4.1)), and thus the

marginal distributions estimated by BP tend to be more accurate than MF.

Similarly to the MF algorithm, substituting Eq. (4.16) into Eq. (2.27), we have

F [p] =
∑
i

∫
pi(xi)fi(xi)dxi +

∑
(i,j)∈E

∫∫
pij(xi, xj)fij(xi, xj)dxidxj

−
∑
i

(zi − 1)

∫
pi(xi) ln pi(xi)dxi +

∑
(i,j)∈E

∫∫
pij(xi, xj) ln pij(xi, xj)dxidxj. (4.18)

In the conventional discrete formulation, the BP algorithm is derived as follows. We de-

note the discrete values that xi takes by [x1, . . . , xS] and their probabilities by [p1
i , . . . , p

S
i ]

(i.e., psi ≡ p(xi = xs)). We also define pstij ≡ pij(xi = xs, xj = xt)). Rewriting Eq. (4.18)

with the newly defined variables, we have

F [p] =
∑
i

∑
s

psifi(x
s) +

∑
(i,j)∈E

∑
s,t

pstijfij(x
s, xt)

−
∑
i

(zi − 1)
∑
s

psi ln psi +
∑

(i,j)∈E

∑
s,t

pstij ln pstij , (4.19)
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where p contain all psi ’s and pstij ’s. The constraints on pi(xi) and pij(xi, xj) reduce to∑
s

psi = 1 (4.20a)∑
s,t

pstij = 1 (4.20b)

∑
s

pstij = ptj. (4.20c)

By minimizing F [p] under these constraints , we have the discrete BP algorithm that

iteratively updates the messages mt
ij according to

mt
ij ←

∑
s

φsiψ
st
ij

∏
k∈Ni\j

ms
ki, (4.21a)

where

φsi = exp [−fi(xs)] , (4.21b)

ψstij = exp
[
−fij(xs, xt)

]
. (4.21c)

In our formulation, we use the same mixture of rectangular distributions for representing

pi(xi) and pij(xi, xj). To be specific, we represent pi(xi) and pij(xi, xj) as

pi(xi) =

Si∑
s=1

αsih
s
i (xi), (4.22a)

pij(xi, xj) =

Si∑
s=1

Sj∑
t=1

αstijh
s
i (xi)h

t
j(xj). (4.22b)

By substituting these into Eqs.(4.17), from
∫
hsi (xi)dxi = 1 we have∑

s

αsi = 1 (4.23a)∑
s,t

αstij = 1, (4.23b)

∑
s

αstij = αtj. (4.23c)

These coincide with Eqs.(4.20).
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By substituting Eqs.(4.22) into 〈E〉q in Eq. (4.18), we have

〈E〉P =
∑
i

∑
s

αsi

∫
fi(xi)h

s
i (xi)dxi

+
∑

(i,j)∈E

∑
s,t

αstij

∫∫
fij(xi, xj)h

s
i (xi)h

t
j(xj)dxidxj

=
∑
i

∑
s

αsif
s
i +

∑
(i,j)∈E

∑
s,t

αstijf
st
ij . (4.24)

To derive the entropy H[q], we calculate the entropies of qi and qij, respectively. Using

Eq.(4.22a), the (negative) entropy of qi is written as∫
pi(xi) ln pi(xi)dxi =

∑
s

αsi lnαsi −
∑
s

αsiB
s
i , (4.25)

Similarly, Using Eq.(4.22b), that of qij is written as

pij(xi, xj) ln pij(xi, xj)dxidxj

=
∑
s,t

αstij

∫∫
hsi (xi)h

t
j(xj) ln

(∑
s′,t′

αs
′t′

ij h
s′

i (xi)h
t′

j (xj)

)
dxidxj

=
∑
s,t

αstij

∫∫
hsi (xi)h

t
j(xj) ln

(
αstijh

s
i (xi)h

t
j(xj)

)
dxidxj

=
∑
s,t

αstij lnαstij −
∑
s,t

αstij(B
s
i +Bt

j). (4.26)

Using these, the entire entropy H[q] is given as

H[α] =
∑
i

(zi − 1)
∑
s

αsi lnαsi −
∑
i

(zi − 1)
∑
s

αsiB
s
i

−
∑

(i,j)∈E

∑
s,t

αijst lnαijst +
∑

(i,j)∈E

∑
s,t

αstij(B
s
i +Bt

j). (4.27)

Then, using Eq. (4.24) and Eq. (4.27), F [q] is rewritten as

FBP[α] =
∑
i

∑
s

αsi (f
s
i + (zi − 1)Bs

i ) +
∑

(i,j)∈E

∑
s,t

αstij(f
st
ij −Bs

i −Bt
j)

−
∑
i

(zi − 1)
∑
s

αsi lnαsi +
∑

(i,j)∈E

∑
s,t

αstij lnαstij . (4.28)
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Comparing this with Eq. (4.19), it is seen that the former coincides with the latter if

we equate the following four pairs: αsi ↔ psi , α
st
ij ↔ pstij , f

s
i + (zi − 1)Bs

i ↔ fi(x
s), and

f stij −Bs
i −Bt

j ↔ fij(x
s, xt). Moreover, we have the same constraints for αsi and αstij as those

for psi and pstij given in Eqs.(4.20), under which the message updating rule of Eqs.(4.21)

are derived from Eq. (4.19). Therefore, by performing the above four substitution on

Eqs.(4.21) , we have the new message updating rule for our formulation, which is given

by (the same as Eq.(4.21a))

mt
ij ←

∑
s

φsiψ
st
ij

∏
k∈Ni\j

ms
ki, (4.29a)

where φsi and ψstij are differently calculated as

φsi = exp [−(f si + (zi − 1)Bs
i )] , (4.29b)

ψstij = exp
[
−(f stij −Bs

i −Bt
j)
]
. (4.29c)

From these, the mixture weights are computed as

αsi ∝ φsi
∏
k∈Ni

ms
ki. (4.30)

As mentioned earlier, if h1
i (xi), · · · , h

Si
i (xi) have the same size in X , then Bs

i becomes

constant. If so, all the terms associated with Bs
i are invalidated in the above updating

equations and then the above BP algorithm coincides with the conventional one. There-

fore, similarly to MF, Bs
i can be regarded as a compensating factor for the non-uniformity

of the discretization.

4.3 Dynamic discretization of the variable space

4.3.1 Usefulness of non-uniform discretization

The new MF and BP algorithms can deal with non-uniformly discretized variable space.

By densely discretizing important portion of the space and sparsely discretizing the rest

and then using these algorithms, we will be able to achieve higher balance between com-

putational efficiency and accuracy of marginal distribution estimates. When the variable
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space is of two or higher dimensions, this effect will be significant; it is particularly so for

the BP algorithms, in which computational cost is mainly determined by the number of

labels. (When the dimensionality of the variable space is D and the number of labels is

L, the computational cost of BP is proportional to L2D.)

The next question is how to obtain such an effective discretization of the variable space.

If we have a prior knowledge about where is more important in the variable space, it will

be possible to use it to obtain a good discretization. For the case where no such knowledge

is available, we present a method for dynamically discretizing the variable space to have

an effective discretization.

4.3.2 Coarse-to-fine block subdivision

We assume here that behind the estimation of the marginal distribution, there is a motiva-

tion to accurately know its shape around its maximum, e.g., to determine the position of

its maximum as accurately as possible. Then, this will be made possible by more densely

discretizing the space around the maximum of the marginal distribution.

As it is in general impossible to know the maximum of the marginal distribution be-

forehand, we consider dynamically dividing the variable space, as shown in Fig. 4.1. We

start with initial coarse discretization of the variable space, that is, the variable space is

divided into a small number of blocks. The rectangular function whose support is each

block composes the mixture distribution approximating the true marginal distribution.

For this discretization, the MF or BP algorithm is run for a certain iterations. Then, for

each site (i), identifying the block (s) whose mixture weight αsi is the largest, we divide

this block into a number of subblocks. (Multiple blocks with the largest weights may be

divided simultaneously.) Then, integrating these new blocks with the blocks that are not

divided, we consider a new mixture of rectangular functions whose supports are given by

them. We repeatedly perform these three procedures for a desired number of iterations:

updating the mixture weights for the current discretization by our MF or BP algorithm,

identifying the block(s) with the largest weight(s), and dividing them into subblocks to

obtain a new discretization.
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Figure 4.1: Dynamic discretization of the variable space. Each block indicates the support

of a rectangular distribution composing the mixture approximating the true marginal

distribution.The block having the largest weight is divided into subblocks.

4.3.3 Dividing a rectangular distribution

The subdivision of a block means dividing the corresponding rectangular distribution into

multiple rectangular distributions, as shown in Fig. 4.1. Thus, the mixture of rectangular

distributions after the subdivision has a different representation from the one before it.

Corresponding to this representation change, we need to update αsi ’s in MF and mt
ij’s in

BP. The principle of updating these parameters is that the mixtures before and after the

subdivision should be the same distribution regardless of their difference in representa-

tion. Based on this principle, these parameters before the subdivision are processed and

transferred to those after the subdivision. Different procedures are necessary for MF and

BP.

The procedure for MF is as follows. Suppose that a rectangular distribution is divided

into K rectangular distributions of an identical size. Following the above principle, the

mixture weights of the new distributions are given by the weight of the original distribution

divided by K. This ensures that the mixtures before and after the subdivision have the

same shape. Suppose, for example, that the s-th block of the i-th site is divided into
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two blocks. Denoting Si pre-division weights by [α1
i , . . . , α

s−1
i , αsi , α

s+1
i , . . . , αSi

i ], the new

weights are of Si + 1 long and is given by [α1
i , . . . , α

s−1
i , αsi/2, α

s
i/2, α

s+1
i , . . . , αSi

i ].

The procedure for BP is as follows. Suppose that we want to perform the subdivision

at the i-th site. To do this, we first compute αsi ’s based on Eq. (4.30) by using all the

messages passed to this site, i.e., {ms
ki | k ∈ Ni}. Using these weights, we then perform

the block subdivision of the variable space as described above. In the case of MF, the

mixture weights [α1
i , . . . , α

Si
i ] are manipulated so as to reflect the subdivision. We apply

the same manipulation to [m1
ki, . . . ,m

Si
ki ] for each k ∈ Ni.

4.4 Experimental results

To examine the effectiveness of the proposed methods, we conducted several experiments.

4.4.1 Effect of non-uniform discretization on marginal distribu-

tion estimates

To compare the behaviours of the conventional and proposed algorithms when the variable

space is non-uniformly discretized, we consider a simple Gaussian MRF for which the exact

marginal distributions can be analytically obtained. To be specific, we consider a MRF

model defined on a 5× 5 grid graph that has the following energy:

E(x) =
∑
i

x2
i +

∑
(i,j)∈E

(xi − xj)2. (4.31)

Clearly, its marginal distributions are Gaussian distributions having zero mean.

For this MRF model, we divide the variable space in an asymmetric way with respect

to the origin x = 0 of the space. To be specific, considering only the range of [−2, 2], we

discretize its negative part [−2, 0] into 64 blocks and the positive one [0, 2] into 16 blocks.

Thus, the continuous MRF is converted into a discrete MRF with 80 labels in total.

Then we apply the conventional MF and BP algorithms and the proposed MF and BP

algorithms to this discrete MRF. Figs. 4.2 and 4.3 show the results of the MF and BP
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Figure 4.2: The results of the conventional and proposed MF algorithms. The red dots

indicate the marginal distribution estimate by the conventional MF; the blue histogram

indicates those by the proposed MF; the continuous red curve indicates the exact marginal

distribution.

algorithms, respectively. They show the estimates of the marginal distribution at the

site in the upper-left corner of the 5 × 5 grid graph. The estimates by the conventional

algorithms are shown by red dots; those by the proposed algorithms are shown by blue

histograms; the exact marginal distributions are shown by a continuous red curve. In the

conventional algorithms, a marginal distribution is represented as a discrete distribution,

i.e., [p1
i , . . . , p

S
i ]. In the plots, to enable direct comparison with distributions in the con-

tinuous domain, its scale (i.e., the heights of the red dots) is appropriately adjusted. In

the proposed algorithms, the marginal distributions are represented as the mixtures of

rectangular distributions, which are shown in the plots.

It is seen from Figs.4.2 and 4.3 that the estimated marginal distributions by the con-

ventional MF and BP algorithms both have bias; their means deviate from the true mean

(i.e., x = 0) toward the side of x < 0. This is because of the asymmetric discretization;

the energy tends to have a lower value when the marginal distribution estimates are in

the side of denser discretization. On the other hand, the proposed MF and BP algorithms

both yield more accurate estimates. The result of MF still has a bias but it is much smaller

than the conventional one. The result of BP is even more accurate. Although there ap-

pears to exist small bias in the variances of the marginal distribution estimates, this is a

fundamental limitation of these algorithms; even in the case of symmetric discretization,
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Figure 4.3: The results of the conventional and proposed BP algorithms. Legends are the

same as Fig. 4.2.

the MF and BP algorithms cannot estimate the exact value of the variance.

4.4.2 Stereo matching

We applied the proposed dynamic discretization method to stereo matching and examined

its effectiveness. To generate an energy function, we used the Middlebury MRF library

[81]. We set |L| = 128, λ = 2, smoothmax=20, and truncated = 2. We multiply the

values of the data and smoothness terms given by the library by 1/10, as otherwise, the

marginal distributions will have very sharp peaks, which is not fit for the purpose of this

experiment.

The dynamic discretization method is applied to the data as follows. Initially dividing

the variable space into eight blocks of an identical width, we iterate the following three

steps for eight times: performing the MF or BP algorithm, identifying the block of the

largest weight, and dividing the block into two blocks. At each of the eight iterations, the

MF or BP update is iterated for 100 times. In the experiment, we set the lower bound

of the block size to be 1 for ease of implementation. Thus, if the block with the largest

weight has reached this lower bound, we divide the one with the second largest weight. If

it has reached the bound, then we divide the next largest one, and so on.

The above recursive subdivision increases the number of blocks from initial eight to
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Blocks=8 10 12 14 16 Fixed&uniform(16)

Figure 4.4: Results for Aloe of the MF algorithm with the dynamic discretization. Upper

row: Disparity maps. Lower row: The mixture of rectangular densities approximating

the marginal density at the site of the image pixel (100, 100).

sixteen (= 8 + 8). Figs.4.4 and 4.5 show the initial, intermediate, and final results when

the number of blocks is 8, 10, 12, 14, and 16, for the Aloe dataset (641× 555 pixels). For

the sake of comparison, each figure also shows the result obtained with a fixed, uniform

discretization; it is obtained by our MF or BP algorithm after 1000 iterations, when the

variable space of the range [0, 128] is divided into 16 blocks.

For both results, it is seen that the mixture distribution depicts the marginal distribu-

tion in a finer way with the increasing number of blocks. Note that the horizontal axes

correspond to a portion of the full range [0, 128]. (The block sizes in the case of eight and

sixteen block divisions are 128/8 = 16 and 128/16 = 8, respectively.) As compared with

the mixture distributions of the fixed discretization, those of the dynamic discretization

draw much finer details not only at the same number of blocks (i.e., 16) but even at the

smaller number of blocks. As a result, the maxima of the marginal distributions can be

determined much more accurately, and thus the dynamic discretization yields smoother

disparity maps. Clearly, suffering from the insufficient number of divisions, the disparity

maps for the fixed discretization are not smooth.

We show here additional results of stereo matching obtained by the proposed method.

Choosing three images from the Middlebury MRF library, Cloth1, Rocks1, and Flowerpots,

we applied the proposed method to them in a similar manner to Aloe shown in Figs.4.4 and

4.5. Fig. 4.6 shows their input images (including Aloe) along with their ground truths; the

results obtained by the MAP inference (the α-expansion algorithm [81]) are also shown
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Blocks=8 10 12 14 16 Fixed&uniform(16)

Figure 4.5: Results for Aloe of the BP algorithm with the dynamic discretization. Upper

row: Disparity maps. Lower row: The mixture of rectangular densities approximating

the marginal density at the site of the image pixel (100, 100).

for comparison with our results.

Figs.4.7–4.12 show the results formatted in the same way as Aloe in our main paper.

Similar to Aloe, it is seen that the mixture densities depict the marginal densities in a

finer way with the increasing number of blocks; as compared with the results of the fixed

discretization, those of the dynamic discretization draw much finer details even for smaller

number of blocks. It is seen from the estimated disparity maps that those of the dynamic

discretization tend to be smoother than the fixed discretization, which well agrees with

the observation on the estimated marginal densities.

4.5 Summary

We have described a novel formulation of continuous-discrete conversion for the inference

of marginal distributions based on MRF models. In the formulation, the marginal dis-

tributions are estimated in the continuous domain by approximating them with mixtures

of rectangular distributions. Based on this formulation, we have derived the MF and

BP algorithms, which can correctly deal with the non-uniform discretizaion of variable

space. We have also shown the method for dynamically discretizing the variable space in

a coarse-to-fine manner in the course of the computation. This enables to improve the

accuracy of marginal distribution estimates without sacrificing computational efficiency.

We have shown several experimental results proving the effectiveness of our approach.
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Figure 4.6: Four datasets used in our experiments: Aloe, Cloth1, Rocks1, and Flowerpots.

Upper row: Input left images. Middle row: Ground truths. Lower row: Disparity maps

estimated by the α-expansion algorithm.
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Figure 4.7: Results for Cloth1 of the MF algorithm with the dynamic discretization. Upper

row: Disparity maps. Lower row: The mixture of rectangular densities approximating

the marginal density at the site of the image pixel (100, 100).
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Figure 4.8: Results for Cloth1 of the BP algorithm with the dynamic discretization. Upper

row: Disparity maps. Lower row: The mixture of rectangular densities approximating

the marginal density at the site of the image pixel (100, 100).
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Figure 4.9: Results for Rocks1 of the MF algorithm with the dynamic discretization. Up-

per row: Disparity maps. Lower row: The mixture of rectangular densities approximating

the marginal density at the site of the image pixel (100, 100).
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Figure 4.10: Results for Rocks1 of the BP algorithm with the dynamic discretization. Up-

per row: Disparity maps. Lower row: The mixture of rectangular densities approximating

the marginal density at the site of the image pixel (100, 100).
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Figure 4.11: Results for Flowerpots of the MF algorithm with the dynamic discretiza-

tion. Upper row: Disparity maps. Lower row: The mixture of rectangular densities

approximating the marginal density at the site of the image pixel (100, 100).

45 50 55 60 65 70 75
0.00

0.02

0.04

0.06

45 50 55 60 65 70 75
0.00

0.05

0.10

0.15

0.20

45 50 55 60 65 70 75
0.0

0.1

0.2

0.3

45 50 55 60 65 70 75
0.0

0.1

0.2

0.3

45 50 55 60 65 70 75
0.0

0.1

0.2

0.3

45 50 55 60 65 70 75
0.00
0.02
0.04
0.06
0.08
0.10

Blocks=8 10 12 14 16 Fixed&uniform(16)

Figure 4.12: Results for Flowerpots of the BP algorithm with the dynamic discretization.

Upper row: Disparity maps. Lower row: The mixture of rectangular densities approxi-

mating the marginal density at the site of the image pixel (100, 100).
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Chapter 5

Transformation of Markov random

fields for marginal distribution

estimation

This chapter presents a generic method for transforming MRFs for the marginal inference

problem. Its major application is to downsize MRFs to speed up the computation. Unlike

the MAP inference, there are only classical algorithms for the marginal inference problem

such as BP etc. that require large computational cost. Although downsizing MRFs should

directly reduce the computational cost, there is no systematic way of doing this, since it is

unclear how to obtain the MRF energy for the downsized MRFs and also how to translate

the estimates of their marginal distributions to those of the original MRFs.

The proposed method resolves these issues by a novel probabilistic formulation of MRF

transformation. The key idea is to represent the joint distribution of an MRF with that

of the transformed one, in which the variables of the latter are treated as latent variables.

We also show that the proposed method can be applied to discretization of variable space

of continuous MRFs and can be used with Markov chain Monte Carlo methods. The

experimental results demonstrate the effectiveness of the proposed method.
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5.1 Introduction

Markov Random Fields (MRFs) have been used for a wide range of problems in com-

puter vision, such as optical flow estimation [19, 95, 93], image restoration [65], bundle

adjustment [13, 80], object segmentation [34, 43] etc. There are two types of inference

problems for MRFs. One is the MAP (Maximum a Posteriori) inference and the other is

the marginal inference problem. In this study we consider the latter, which is to estimate

the marginal distributions of MRF variables.

As for the MAP inference problem, there exists many sophisticated algorithms such

as sequential tree-reweighted message passing (TRW-S) [40] and FastPD [42]. On the

other hand, there are only classical methods for the marginal inference problem, such

as mean field (MF) approximation and belief propagation (BP), which usually require a

large computational cost. The marginal inference problem is nevertheless important, as it

needs to be solved for MPM (maximum posterior marginal) inference [49, 38, 43], learning

parameters of conditional random fields (CRFs) [78], and Boltzmann machines [68, 18].

The goal of this study is to provide methods for solving the marginal inference problem

more efficiently. As for the MAP inference, a mainstream approach to reduce computa-

tional cost is to transform an MRF into a smaller, simpler one. The energy function of

the MRF is transformed accordingly and is minimized to find the MAP solution. This

approach has been successful in practice, resulting in a number of efficient algorithms.

However, the same approach cannot be directly used for the marginal inference problem.

In this problem, we are interested in the probabilistic structure (given by the Boltzmann

distribution) of the MRF, which needs to be preserved as much as possible before and

after transforming the MRF. Otherwise, there is no guarantee that the estimates of the

marginal distributions obtained for the transformed MRF well approximate those of the

original MRF. Furthermore, it is even unclear how the estimates of the marginal distribu-

tions of the transformed MRF can be translated to those of the original MRF. Suppose

an image segmentation problem for example. How can we obtain pixel-level marginal

distributions from the estimates of the marginal distributions at superpixels? Note that

these are not the case with the MAP inference, as it is basically point estimation that can
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be performed using the energy function alone.

To deal with these difficulties, we propose a novel generic method for transforming

MRFs. The key idea is to use the variables of the transformed MRF as latent variables

and then represent the joint distribution of the target MRF with them. To be specific, the

representation consists of a conditional distribution of the original variables conditioned

on the latent variables and their joint distribution. The former conditional distribution

is determined by the selected MRF transformation. This formulation enables the direct

computation of the energy function of the transformed MRF, which we call the aug-

mented energy; this new energy gives the joint distribution of the transformed MRF as its

Boltzmann distribution. Then, the marginal distributions of the transformed MRF are

estimated from this joint distribution using any regular algorithm such as BP etc. Finally,

the marginal distributions of the original MRF are directly calculated from them. This

method is based on the variational principle and has a firm theoretical foundation.

This chapter is organized as follows. Section 5.2 briefly summarizes the related work of

our study. After that, we present our generic method for MRF transformations in Section

5.3. We then show three practical applications of the proposed method in Section 5.4,

which are i) discretizing variable space of continuous MRFs, ii) grouping discrete labels of

MRFs to reduce the number of labels, and iii) coarse graining of MRFs by grouping mul-

tiple sites. In Section 5.5, we show how some of these MRF transformations are combined

to perform coarse-to-fine inference, and also how our MRF transformation approach is

applied to Markov chain Monte Carlo methods. Section 5.6 presents experimental results

of our proposed method. Section 5.7 concludes this chapter.

5.2 Related work

5.2.1 Discretization of continuous MRF

Continuous MRFs whose site variables are continuous have only a limited applicability,

as the marginal distributions of their variables need to be represented by a limited set

of pdfs (e.g., Gaussian distribution). As there is no such limitation for discrete MRFs,
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it is quite common to formulate problems in discrete domain, even if they are more

natural to formulate in continuous domain. However, as is pointed out in Chapter 4,

a naive discretization of variable space can cause a problem; the estimates can have

errors, when the discretization is non-uniform. They extend MF and BP algorithms to

be able to properly deal with this. In the present study, we reformulate the discretization

as MRF transformation. This enables to deal with a wider class of algorithms, which

contains practically any algorithm derived by the variational-principle such as TRW and

generalized BP, and also higher-order MRFs [65, 34], both of which cannot be dealt with

by their approach.

5.2.2 Grouping of discrete labels

The number of labels in discrete MRFs directly affects computational cost. For example,

in the case of second-order MRFs, the complexity of BP per one iteration is proportional

to O(KL2), where K is the number of neighboring sites and L is the number of labels.

Thus, if we can reduce the number of labels, so does the computational cost. The problem

is how we can reduce them while minimizing the loss of accuracy. As far as the MAP

inference is concerned, there exist some related studies. Veksler [89] and Wang et al.

[92] both proposed heuristic algorithms for reducing the search space of variables for the

problem of stereo matching. Yang et. al. [96] also proposed a sophisticated BP algorithm

that makes the computational cost independent of L by selecting a few labels having small

data cost. However, to the authors’ knowledge, there is no study of reducing the number of

labels for the marginal inference problem. The above methods cannot be directly applied

to the marginal inference problem.

5.2.3 Coarse-graining of MRFs

As computational cost also depends on the number of sites and edges between them, it

is also effective to apply coarse-graining to MRFs, i.e., transforming their graphs into

smaller ones in such a way that a number of connected sites are grouped into a single

site [23] . As with the label grouping mentioned above, existing studies are limited for
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the MAP inference. They are targeted at specific problems such as stereo matching

[19, 46, 96] and object segmentation [33]. Although Conejo et. al. [11] proposed a

general method for speeding-up MRF optimization by using the coarse-graining and the

label pruning methods, their method is only targeted at the MAP inference. As for the

marginal inference problem, the only study the authors are aware of is that of Ferriera

et al. [20], which considers only Gaussian MRFs, though. There are a few difficulties

with using coarse-graining of MRFs for the marginal inference problem. One is how the

marginal distributions of the original MRF can be obtained from the estimates of those

of a coarse MRF. Another is how the joint distribution (or the energy function) of the

coarse MRF can be obtained.

5.3 General-purpose method for transformation of

MRFs

This section presents a general-purpose method for transforming MRFs. Its applications

to specific problems will be presented in Section 5.4.

Note that for brevity, we focus on pairwise MRFs described in Section 2.4. It is however

that our method is applicable to any graphical models including directed models.

5.3.1 Minimization of free energy

As we have mentioned in Section 2.6, a variety of algorithms for the estimation of marginal

distribution, such as MF, BP, and TRW, can be derived by the same procedure, in which a

free energy is minimized based on the variational principle. For consistency, we summarize

Section 2.6 by using another notation.

We suppose that the probability distribution of a MRF G is given by

q0(x) =
1

Z0

∏
c∈C

φc(xc), (5.1)
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where Z0 is a normalization constant called a partition function, φc is the function of the

factor c, and xc is the site variables included in c. Letting fc(xc) be the negative logarithm

of φc(xc), i.e., fc(xc) = − lnφc(xc), we may rewrite p0 into

q0(x) =
1

Z0

exp(−E0(x)), (5.2)

E0(x) =
∑
c∈C

fc(xc). (5.3)

As it is generally intractable to directly compute the marginal distributions of the site

variables using p0 defined as above, an arbitrary distribution q0(x) is introduced that

approximates p0(x), using which the marginal distributions are approximately computed.

The distribution q0(x) has a certain degree of freedom, within which we search for q0(x)

the best approximating p0(x). This is done by minimizing the KL distance between the

two:

D[p0‖q0] =
∑
x

p0(x) ln
p0(x)

q0(x)
. (5.4)

The substitution of Eq. (5.2) into Eq. (5.4) yields

D[p0‖q0] = 〈E0(x)〉p0 −H[p0] + lnZ0, (5.5)

where 〈E0(x)〉p0 =
∑

xE0(x)p0(x) is the expectation of the energy E0(x) with respect to

p0(x), and H[p0] = −
∑

x p0(x) ln p0(x) is the entropy of p0(x). As the third term of Eq.

(5.5) is independent of p0(x), the minimization of Eq. (5.5) is equivalent to that of the

following free energy:

F [p0] = 〈E0(x)〉p0 −H[p0]. (5.6)

Many algorithms including MF, BP, and TRW are derived by minimizing this free energy

for some selected class of p0. For example, the generalized BP algorithm is derived when

p0 is chosen as

p0(x) =

∏
c∈C pc(xc)∏
i pi(xi)

zi−1
, (5.7)

where zi is the number of factors that include the i-th site.

87



5.3. General-purpose method for transformation of MRFs

5.3.2 MRF transformation

We now present our method for transforming MRFs. As we have described in Section 2.6,

A variety of algorithms for the estimation of marginal distribution, such as MF, BP, and

TRW, can be derived by the same procedure, in which a free energy is minimized based

on the variational principle.

It is often the case that depending on the structure of MRFs, the algorithms of MF, BP

etc. are impossible to derive, or the derived ones are computationally costly. To cope with

such difficulties, we consider transforming the MRF and its associated objective function

F [p0] into another one, for which the resulting minimization is easier to perform.

Toward this end, introducing a new variable z1, we consider an approximate distribution

p0(x) defined in the form of

p0(x) =
∑
z1

p0,1(x|z1)p1(z1), (5.8)

where p0,1(x|z1) is a conditional distribution that we arbitrarily choose for our purpose

and p1(z1) is a unknown distribution that we are to determine. By using Eq. (5.8) we wish

to transform the optimization of p0(x) into that of p1(z1) that will be easier to perform.

For example, it is often effective to use z1 having a lower-dimensionality than x, or to use

discrete z1 when x is continuous. An obvious issue is how to choose p0,1(x|z1). We choose

it differently for different purposes, which will be described in the subsequent sections.

Using Eq. (5.8), the free energy of p0 given in Eq. (5.6) is rewritten as follows:

F [p0] = 〈E1(z1)〉p1 −H[p1] + 〈S1(x)〉p0(x) , (5.9)

where E1(z1) and S1(x) are defined as follows:

E1(z1) =
∑
x

p0,1(x|z1) {E0(x) + ln p0,1(x|z1)} , (5.10)

S1(x) = −
∑
z

p0,1(z1|x) ln p0,1(z1|x). (5.11)

In the above, we used p0,1(z1|x) = p0,1(x|z1)p1(z1)/p0(x). The right hand side of Eq. (5.9)

has a similar form to a free energy (defined as in Eq. (5.6) for p0) except for the third
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term. To be specific, if we neglect the third term, we may think of Eq. (5.9) as the free

energy of p1(z1) for the MRF whose energy is given by Eq. (5.10).

The third term of Eq. (5.9) does vanish when a condition is met as follows.

Lemma 5.3.1. (Erasure of S1) Let δ(z1) be the delta function. It holds that S1(x) = 0 if

there exists a unique mapping function ζ1 : X 7→ Z1 that satisfies

p0,1(z1|x) = δ(ζ1(x)− z1), (5.12)

for any x ∈ X and for any distribution p1(z1).

Proof. we rewrite Eq. (5.6) by using Eq. (5.8). The first term of Eq. (5.6) is rewritten as

〈E0(x)〉p0 =
∑
z1

p1(z1)
∑
x

p0,1(x|z1)E0(x) =

〈∑
x

p0,1(x|z1)E0(x)

〉
p1

. (5.13)

To rewrite the second term of Eq. (5.6), we use p0,1(z1|x) = p0,1(x|z1)p1(z1)/p0(x), which

can be rewritten as

ln p0(x) = ln p(z1) + ln p0,1(x|z1)− ln p0,1(z1|x). (5.14)

Note that this equation holds true for any z1 ∈ Z1, where Z1 is an appropriately defined

variable space of z1. Using Eq. (5.14), we can rewrite H[p0] in Eq. (5.6) as

H[p0] = −
∑
z1

p1(z1) ln p1(z1)−
∑
z1

p1(z1)
∑
x

p(x|z1) ln p(x|z1)

+
∑
x

p0(x0)
∑
z1

p0,1(z1|x) ln p0,1(z1|x). (5.15)

The substitution of Eq. (5.13) and Eq. (5.15) into Eq. (5.6) yields

F [p0] =

〈∑
x

p0,1(x|z1)(E0(x) + ln p0,1(x|z1))

〉
p1

+
∑
z1

p1(z1) ln p1(z1) +

〈∑
z1

p0,1(z1|x) ln p0,1(z1|x)

〉
p0

. (5.16)

The second term of the right hand side is the entropy of p1, which we write as H[p1].

Defining E1(z1) and S1(x) as Eq. (5.10) and Eq. (5.11), respectively, we can rewrite F [p0]

as

F [p0] = 〈E1(z1)〉p1 −H[p1] + 〈S1(x)〉p0 . (5.17)
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Lemma 3.1 states that the third term vanishes when the condition given in Lemma 3.1 is

met. This is self-evident from Eq. (5.11).

Thus, under the condition of this lemma, we can regard Eq. (5.9) as the free energy of

the MRF model with a new energy E1(z1). As this energy includes the original energy

E0(x) as well as additional terms as in Eq. (5.10), we call this the augmented energy. The

results are summarized as follows:

Theorem 5.3.2. (MRF transformation) Suppose a MRF specified by the distribution

q0(x). When its approximation p0(x) is specified by Eq. (5.8) with p0,1(x|z1) satisfying

the condition of Lemma 5.3.1, the variational solution to the marginal inference problem

with this MRF (which searches for p0(x) that minimizes D[p0‖q0]) reduces to that with

the MRF specified by q1(z1) defined as

q1(z1) =
1

Z1

exp(−E1(z1)), (5.18)

where E1(z1) is the augmented energy defined by Eq. (5.10).

When the marginal inference problem with a MRF is intractable or computationally

costly (even with the variational approach), we may transform the MRF into another

one using the above method. As the transformed MRF is a regular MRF, many existing

algorithms including MF, BP, and TRW can be used for its marginal inference. The

outline of the proposed method is summarized as follows.

1. Choose p0,1(x|z) that implements the target transformation of the MRF.

2. Compute the augmented energy E1(z1) as in Eq. (5.10).

3. Compute the marginal distributions for the transformed MRF (having E1(z1) as the

energy) by using a selected algorithm (e.g., BP, TRW, etc.).

The marginal distributions of p0(x) may sometimes be necessary. In that case, they are

to be computed from those of p1(z1). Although there is no automatic method, it will be

easy to do so in some cases, as will be shown in the next section.
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Grouping
Figure 5.1: Top: Discretization of variable space. Bottom: Grouping of discrete labels.

fi(xi) is the unary term in the site i. X s
i is the support of a label and is a set of labels to

be grouped into a label.

5.4 Applications

This section shows how the above method for MRF transformation can be applied to real

problems. We consider three problems, the discretization of variable space, the grouping

of discrete labels, and the coarse graining of MRFs.

5.4.1 Discretization of variable space

As described earlier, the discrete formulation of MRFs has a wider applicability than the

continuous formulation. Thus, it is a common approach to discretize the variable space

of a continuous problem and then apply some algorithm designed for discrete variables.
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However, as was pointed out in Chapter 4, if the discretization is non-uniform, the regular

algorithms that do not consider the non-uniformity could yield inaccurate results. The

method presented in the last section can derive algorithms that better handle such non-

uniformity.

To do so, the method transforms the target MRF in the following way. Suppose an MRF

having N sites with continuous variables x = [x1, . . . , xN ]. We define z1 = [z1, . . . , zN ],

where zi is the discrete variable of the i-th site that takes one of Si discrete values, i.e.,

zi ∈ Zi ≡ {1, · · · , Si}. We then choose p0,1(x|z1) of Eq. (5.8) as

p0,1(x|z1) =
N∏
i=1

pi(xi|zi), (5.19)

where p(xi|zi) is a rectangular density such that the position of the rectangle varies de-

pending on zi. To be specific, when zi takes a discrete value s ∈ Zi, it is given as

pi(xi|zi = s) ≡ hsi (xi), (5.20)

where hsi (xi) is defined to be

hsi (xi) =

1/Vsi if xi ∈ X s
i

0 otherwise,
(5.21)

where X s
i is the support of hsi (xi) in X and Vsi is its volume; see Fig. 5.1.

By choosing X s
i appropriately, the requirement of the proposed method is met.

Proposition 5.4.1. If X s
i ∩ X t

i = ∅ for any s 6= t, then p0,1(x|z1) of Eq. (5.19) satisfies

the condition of Lemma 5.3.1.

The augmented energy E1(z1) is calculated in a straightforward manner. Let X (zc) =⊗
i∈cX

zi
i and V(zc) be the volume of X (zc). (Recall c is a factor of the graph.) From

Eqs.(5.10), (5.19), and (5.20), E1(z1) is calculated as follows:

E1(z1) =
∑
c∈C

gc(zc)−
N∑
i=1

lnVzii , (5.22)
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where gc(zc) is given by

gc(zc) =
1

V(zc)

∑
xc∈X (zc)

fc(xc). (5.23)

Note that the first term in the augmented energy is the regular energy of discrete MRFs.

The second term is the additional term that accounts for the non-uniform discretization.

In fact, when the discretization is uniform, X zi
i ’s will have the same shape and thus Vzii ’s

will be constant for different zi’s. Then we may neglect the term − lnVzii , resulting in the

regular energy. If the discretization is non-uniform, we need to consider the second term.

We can use any discrete algorithm for the marginal inference of the transformed MRF.

We have only to replace the regular energy with the augmented energy derived as above.

5.4.2 Grouping of discrete labels

A similar method to the above one for dividing continuous variable space Xi into a dis-

crete set of X s
i ’s can be used to dividing discrete variable space, by which we can reduce

the number of labels. To be specific, we divide the discrete variable space Xi into several

subsets X s
i ⊂ Xi such that X s

i

⋂
X t
i = ∅; see Fig. 5.1. This grouping of the labels is rep-

resented by making a few modifications to the above continuous-discrete transformation.

We replace hsi (xi) of Eq. (5.21) with

hsi (xi) =

1/|X s
i | if xi ∈ X s

i

0 otherwise,
(5.24)

where |X zi
i | is the number of elements in X zi

i . Then the augmented energy will be

E1(z1) =
∑
c∈C

gc(zc)−
N∑
i=1

ln |X zi
i |, (5.25)

where gc(zc) is equivalent to the one in Eq. (5.23) except that V(zc) is replaced with

|X (zc)|.
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As with the above continuous-discrete transformation, the additional term − ln |X zi
i |

compensates for the non-uniformity of the grouping of labels. Its effect will be large when

each group X zi
i contains a different number of labels.

5.4.3 Coarse graining of MRFs

The proposed method can also be applied to coarse graining of MRFs. After downsizing

the graph of an MRF, it is then required to transform the energy E0(x) accordingly.

Our method provides a systematic way for this transformation, which was missing in the

literature.

Our method assumes that it is already determined how to modify the graph. Suppose

that N sites of the graph are grouped into K blocks (K < N). Each block becomes a

single site of the new graph. Let C(k) be the set of the sites grouped into the k-th block

(k = 1, . . . , K), such that C(k) 6= ∅ for any k and also C(k)∩C(k′) = ∅ for any k 6= k′. We

then consider a new variable zk for each block k, which shares the same variable space as

xi; thus, if xi is discrete, so is zi.

We choose p0,1(x|z1) of Eq. (5.8) as

p0,1(x|z1) =
M∏
k=1

pk(xk|zk), (5.26)

where xk indicates a vector containing all the site variables of the k-th block, and further

choose q(xk|zk) as

pk(xk|zk) =
∏
i∈C(k)

δ(xi − zk), (5.27)

where δ(x) is Dirac’s delta function if the site xi is continuous and is Kronecker’s delta

function if xi is discrete. Although there are other possibilities, the above choice of

p0,1(x|z) is natural, as it enforces that the sites of the original MRF belonging to each

group will have the same value as the corresponding site of the coarse grained MRF. It

also satisfies the requirement of the proposed method.

Proposition 5.4.2. The conditional distribution p0,1(x|z1) defined by Eqs.(5.26) and

(5.27) satisfies the condition of Lemma 5.3.1.
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The augmented energy E1(z1) can be calculated as above, but unlike earlier MRF

transformations, the results will vary depending on the structure of MRFs. For lack of

space, we show here only the derivation for second-order MRFs. The energy E0(x) of a

second-order MRF is given as

E0(x) =
∑
i

fi(xi) +
∑

(i,j)∈E

f(xi, xj), (5.28)

where fi(xi) and fij(xi, xj) are the unary and the pairwise terms, respectively; E is the

set of edges in G. Using Eq. (5.10) and Eqs. (5.26) - (5.28), E1(z1) is calculated as

E1(z1) =
∑
k

( ∑
i∈C(k)

fi(zk) +
∑

(i,j)∈In(k)

fij(zk, zk)

)
+

∑
(k,l)∈EEx

∑
(i,j)∈Ex(k,l)

fij(zk, zl), (5.29)

where In(k) indicates the set of the edges contained in the k-th block (i.e., the edges

between any pair of the sites in the k-th block); EEx is the set of pairs of any neigh-

boring blocks; Ex(k, l) indicates the set of the edges crossing the boundary between the

neighboring (k-th and l-th) blocks.

For notational simplicity, we rewrite Eq. (5.29) as

E1(z1) =
∑
k

gk(zk) +
∑

(k,l)∈EEx

gkl(zk, zl), (5.30)

where

gk(zk) =
∑
i∈C(k)

fi(zk) +
∑

(i,j)∈In(k)

fij(zk, zk), (5.31a)

gkl(zk, zl) =
∑

(i,j)∈Ex(k,l)

fij(zk, zl). (5.31b)

The second term of (5.31a) expresses the interaction occurring within each block, and

constitutes the unary term of the augmented energy. The term gkl(zk, zl) of (5.31b)

expresses the interaction between the blocks and serves as the pairwise term.

These are illustrated in Fig. 5.2. As in the earlier MRF transformations, we may use any

algorithm for the transformed, coarse grained MRF. One can use the derived augmented

energy as if it is a regular energy of a regular MRF.
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gk(hk)

gkl(hk, hl)

Ex(k, l)

In(k)

Figure 5.2: Illustration of coarse graining of an MRF graph and how the interactions

between the sites in the original graph are transformed to unary and pairwise terms of

the coarse-grained MRF.

Although it is omitted here, higher-order MRFs can be treated in a similar way, and

the results are similar, too. For any energy term having only the site variables contained

in a single block, it reduces to the form of (5.31a). For any term having site variables

split to different blocks, it will reduce to the form of (5.31b).

5.5 Other applications

5.5.1 Coarse-to-fine inference

We have shown how the proposed method is used to transform MRFs for different pur-

poses. Although it is not explicitly mentioned so, the discussion so far mostly considers

MRF transformations in the direction of downsizing them. This is the case with the

grouping of discrete labels and the MRF coarse graining. However, the proposed method

can be used to upsizing MRFs, i.e., transforming MRFs into those having more sites or

more labels. This is useful when we employ the coarse-to-fine strategy for the inference
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with large-size MRFs.

Such coarse-to-fine inference can be implemented as follows. For a given MRF, we first

transform it into a smaller one by one (or a combination) of the above techniques and

perform the marginal inference with the transformed MRF. We then consider another

transformation of the original MRF that has an intermediate size between the first and

the original MRFs. Let the approximate distributions for the first and second MRFs be

p(x) =
∑

z1
p0,1(x|z1)p1(z1) and p′(x) =

∑
z2
p0,2(x|z2)p2(z2), respectively. By appropri-

ately designing the second transformation such that the space of p′(x) include that of p(x),

there always exists p2(z2) such that p(x) = p′(x). Therefore, we can transfer the result

obtained with the first MRF (i.e., p1(z1)) to the second MRF, which gives an estimate of

p2(z2). Using this as an initial value, we perform the marginal inference with the second

MRF, which is expected to yield more accurate estimate of q0(x) due to the increased

degrees of freedom. We may iterate this process until we reach the original MRF.

As good initial values are given at each step, the inference in this coarse-to-fine manner

is expected to reduce the total computational cost as compared with performing the

marginal inference with the original MRF once. The proposed method provides a smooth

connection between two MRFs in consecutive steps. Thus, it is also possible to employ

the coarse graining and the label grouping at the same time at each step.

5.5.2 Markov chain Monte Carlo (MCMC)

As mentioned above, the proposed method can be used with any algorithm derived from

the variational principle, such as MF, BP, TRW etc. The method can also be used with

MCMC-based algorithms such as Gibbs Sampling and Slice Sampling. It is similarly

expected to reduce computational cost by downsizing MRFs.

MCMC-based methods estimate marginal distributions by generating a lot of samples

from the target distribution p0(x). From the viewpoint of the variational principle, it is

equivalent to defining the approximate density p0(x) as

p0(x) =
1

M

∑
m

δ(x− xm), (5.32)
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where M is the number of samples, xm is the sample from the distribution p0(x), and δ

is the delta function. It is easy to calculate (the estimate of) the marginal distribution of

xi from p0(x), which is merely the histogram of the generated samples, i.e., (
∑

m δ(xi −
xmi ))/M .

An advantage of using MCMC methods for marginal inference is that the estimates

can be more accurate than those of MF, BP etc., provided that we can generate a large

number of samples. However, this prohibitively increases computational cost in most

cases, which is the reason why MF, BP etc. are preferred. The computational cost of

MCMC methods depend on the size of the MRF, rigorously, the number of sites and

either the dimensionality of the variable space in continuous cases or the number of

labels in discrete cases. Therefore, it is attractive to downsize the MRF and reduce the

computational cost by the proposed method.

To do so, we transform the target MRF with p0(x) into a smaller one with p1(z1) by

one or a combination of the individual methods described in Section 4. We then apply

a regular MCMC method to the transformed MRF, generating samples z1
1 , . . . , z

M
1 from

p1(z1). (Note that this is expected to be computationally less costly than sampling p0(x).)

The approximate distribution of p0(x) is given from these samples as

p′0(x) =
1

M

∑
m

∑
z1

p0,1(x|z1)δ(z1 − zm1 ) =
1

M

∑
m

p0,1(x|zm1 ). (5.33)

It differs from the original p0(x) of Eq. (5.32) in that it consists of a set of distributions

p0,1(x|zm) not of samples xm. It is nevertheless still easy to calculate the marginal densities

of x using p′0(x).

A caveat is that unlike p0(x), p′0(x) will never coincide with the true density p0(x) even

if we generate an infinite number of samples from p1(z1). Our experiments show that

this might not be a serious issue in reality, although this is not a rigorous proof. Even

when it is really a problem, the above approach will still be useful when used with the

coarse-to-fine strategy, in which starting with a small-size MRF, we gradually increase

the MRF size until reaching the original MRF. In that case, Eq. (5.33) gives a smooth

connection in the transition from an MRF to another.
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5.6 Experimental results

5.6.1 Discretization of variable space

If the variable space of a MRF is discretized in a uniform manner and nevertheless an

ordinary algorithms is naively used for it, the results will be inaccurate. We have already

pointed out in Chapter 4, in which only MF and BP are considered. The proposed method

can handle any algorithm derived from the variational principle as well as methods of

MCMC, yielding their extensions that can properly deal with non-uniform discretization.

To demonstrate these, we show here the results for TRW and Gibbs sampling. We used

OpenGM [3] for their implementation.

For the sake of comparison, we use the same experimental setting as Section 4.4. That

is, we consider a simple Gaussian MRF of a 5 × 5 grid graph with pairwise 4-neighbor

connections:

E(x) =
∑
i

x2
i +

∑
(i,j)∈E

(xi − xj)2. (5.34)

For this MRF, we divide the variable space in an asymmetric way that the negative and

positive parts in the range [−2 : 2] are discretized by 64 and 16 points, respectively, as

shown in Figs. 5.3 and 5.4. We then applied the ordinary and extended versions of TRW

and Gibbs sampling to this MRF. For Gibbs sampling, we generated 107 samples, from

which we calculate marginal distributions either naively (by Eq. (5.22) without the second

term) or by our method. We set the burn-in period to 1000 steps.

Figures 5.3 and 5.4 shows the results. They are the estimates of the marginal distri-

bution of the site at the upper-left corner of the 5 × 5 graph. The white dots are the

results of the naive TRW and Gibbs sampling, whereas the blue histograms are those

of their extended counterparts that are obtained by the proposed method. Note that

the former are purely discrete distributions and we adjusted the vertical scale properly

for comparison. The red curves are the exact distributions. (As it is a Gaussian MRF,

its marginal distributions can be computed analytically in the continuous domain.) It is

observed that while the distributions estimated by the naive methods have some biases,

those of the extended methods do not. Although they are less significant, the variances
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Figure 5.3: Result for non-uniformly discretized variable space with regard to Tree-

reweighted Belief Progation (TRW). The marginal distribution of the site at the upper-left

corner of a 5× 5 grid is estimated by the naive and extended versions of TRW. See text

for details.

are more accurate for the extended methods, too.

5.6.2 Downsizing CRFs

We next examine how the proposed method works for downsizing a discrete CRF. As an

example problem, we chose a CRF-based formulation of semantic labeling. To be specific,

we consider its learning step for determining CRF parameters, to which we applied coarse

graining and label grouping. Owing to its theoretical foundation, the proposed method

is expected to minimize inaccuracy caused by the downsizing. Therefore we evaluated

computational efficiency as well as estimation accuracy. We used the MSRC-21 dataset

[73] for the experiments. It consists of images of 320× 213 pixels, each of which is given

one of 21 discrete object labels. We used the ”accurate ground truth” introduced by [43]

for the evaluation of results.

We consider a grid CRF whose energy is given by

E(x|I; θ) =
∑
i

fi(xi|I) +
∑

(i,j)∈E

∑
s,t

θstδ(xi − s)δ(xj − t), (5.35)

where I is the input image; xi is the variable of the i-th site taking one of the 21 labels;

fi(xi|I) is the unary term; and θst is the parameter representing the interaction between
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Figure 5.4: Result for non-uniformly discretized variable space with regard to Gibbs

sampling. The marginal distribution of the site at the upper-left corner of a 5× 5 grid is

estimated by the naive and extended versions of Gibbs sampling. See text for details.

the label s and t. In the learning step, θst is determined from the training data consisting of

the pairs of an image and its true label. This is performed by maximizing the likelihood

calculated from the (estimates of) marginal distributions at the sites. Note that it is

equivalent to determine θ = {θst} by minimizing the negative log likelihood:

J (θ) =
1

M

M∑
m=1

ln p(xm|Im; θ). (5.36)

Their estimation requires to use BP or similar methods, which is the bottleneck in the

entire process of learning. This can be resolved or mitigated by downsizing the MRF.

We used the (stochastic) gradient descent method for the minimization. The gradient

of J (θ) is given as

∂J
∂θst

=
1

M

∑
m

∑
(i,j)∈E

δ(xmi − s)δ(xmj − t)−
1

M

∑
m

∑
(i,j)∈E

pij(s, t|Im; θ), (5.37)

where pij(xi, xj|Im; θ) is the marginal distribution between the i-th and j-th sites.

grouping of discrete labels

We used the following two methods for the downsizing. The first is grouping the discrete

labels, where we reduced the number of labels to K for each pixel. (We fixed it throughout
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the learning.) To be specific, we selected K − 1 labels having the smallest values of the

unary terms and grouped the other labels into one label. Note that the selection was

performed independently at each pixel and thus the resulting grouping may be different

for different pixels.

We describe the computation of original marginal distributions. Let p1
ij(zi, zj|Im; θ)

be the marginal distribution of the transformed CRF, which is estimated by using the

augmented energy of Eq. (5.22), and let p0
ij(xi, xj|Im; θ) be the marginal distribution of

the original energy function. Using Eqs.(5.19), (5.21), and (5.22), these two are related

as

p0
ij(xi, xj|Im; θ) =

1

|X u
i ||X v

j |
p1
ij(u, v|Im; θ), (5.38)

where u and v on the right hand side are the labels (indeces) of the supports X u
i and X v

j

within which xi and xj lie, respectively; that is, xi ∈ X u
i and xj ∈ X v

j .

Coarse graining of MRFs

The second is coarse graining of the MRF, where we downsized the original grid MRF by

grouping the pixels in b × b square blocks into a single superpixel. Note that in spite of

the downsizing, we do estimate the marginal distributions of the original MRF. They are

used to calculate the likelihood, which is to be minimized.

As with grouping of discrete labels, using Eqs.(5.26), (5.29), and (5.30), we can express

p0
ij with p1

ij. If (i, j) ∈ In(k), p0
ij can be expressed as

p0
ij(xi, xj|Im; θ) = δ(xi − xj)p1

k(xi|Im; θ), (5.39)

where p1
k(xi|Im; θ) is the marginal distribution of the i-th site estimated from p1(z1). If

(i, j) ∈ Ex(k, l), p0
ij is expressed as

p0
ij(xi, xj|Im; θ) = p1

k,l(xi, xj|Im; θ), (5.40)

where p1
k,l(xi, xj) is the marginal distribution estimated from p1(z1). Thus, we can regard

p1
k,l as p0

ij in this case.
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Table 5.1: Quantitative results on the MSRC-21 dataset.

time [h] speedup disparity accuracy

full MRF 9.5 - 0.0 81.6

2 labels 0.89 10.6× 0.01235 77.8

3 labels 0.95 10.0× 0.00526 80.7

4 labels 1.0 9.2× 0.00496 81.3

5 labels 1.1 9.0× 0.00473 81.3

4× 4 grid 0.66 14.4× 0.215 81.5

3× 3 grid 1.1 8.5× 0.236 81.6

2× 2 grid 2.5 3.9× 0.237 81.7

Settings

We divided the MSRC-21 dataset into 276, 59, and 256 images for training, validation,

and test, which is the same as [43, 73]. We used BP [56] with the damping factor 0.5 and

50 iteration counts for estimating marginal distributions for each MRF. We multiplied

the unary term of [43] by 1/10 to stabilize the computation. We employ the stochastic

gradient descent (SGD) method for minimizing the negative log likelihood to determine

θst’s. We set the learning rate to 1.5×10−5, the batch size to 8, and the number of epochs

to 5. In the testing step, we used the α-expansion [10] to obtain the MAP estimates for

the MRF, which was used to measure the accuracy of the learned parameters. We used

OpenGM [3] for the implementation on a PC with Intel Core i7-2600 having eight CPU

cores clocked at 3.40GHz.

Experimental results

Table 5.1 shows quantitative results. The “disparity” column shows the mean differences

of the parameter θst between the full MRF and its downsized versions. The “accuracy”

column shows the percentage of correctly labeled pixels. The rows of “L labels” show the

results of different label grouping, and those of “b× b grid” show the results of differently

coarse-grained MRFs. It is observed that both methods for downsizing achieve significant
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image ground truth full MRF

2 labels 4 labels 4 × 4 grid

Figure 5.5: Qualitative results on the MRRC-21 dataset.

speed ups at a small expense of inaccuracy. An exception is two-label grouping, which

shows considerably lower accuracy. This indicates that the reduction from 21 to only two

labels is excessive. An interesting remark is that the label grouping yields much smaller

disparity than the coarse graining, and nevertheless their labeling accuracy are almost the

same or the latter is even slightly better. An implication of this is that label grouping is

more “accurate” in the sense that it is more close to the results of full MRFs. However,

there is no guarantee that full MRFs are better at learning better parameters. The coarse

grained MRFs could avoid local maxima.

Figure 5.5 shows a qualitative comparison of the results. It is observed that the two-

label grouping yields very inaccurate labeling and the four-label grouping and the 4 × 4

coarse graining both yield similar results to the original MRF. We have checked that this

is the case with the other images.
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5.7 Summary

We have described a novel generic formulation for transforming MRF into a smaller, sim-

pler one. As applications of our proposed formulation, we have derived the three methods:

(1) the discretization of variable space, (2) the grouping of discrete labels, and (3) coarse

graining of MRFs. We have also described that these MRF transformations are combined

to perform coarse-to-fine inference, and can be used with MCMC methods. Through

several experiments, we have confirmed the effectiveness of the proposed method.
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Chapter 6

Conclusions

We tackled the problem of optimization algorithms for Markov Random Fields. MRF

is one of the most fundamental probabilistic model in the field of computer vision, and

have been used to solve many problems such as image restoration, super resolution, stereo

matching, and optical flow estimation. In MRFs, these inference algorithms are roughly

classified into the two groups: the MAP inference and the marginal inference. In this the-

sis, we focused on the latter. Although there exists a number of sophisticated algorithms

for the MAP inference, there are only classical methods for the marginal inference.

We conducted three studies to deal with this problem. Firstly, we described the basis

of MRFs and introduced the two inference algorithms for marginal distribution, such as

mean field approximation (MF) and belief propagation (BP). As our three studies use

these algorithms, we also introduced the variational principle, which is a basis of MF and

BP, and derived them.

The first study is for improving the accuracy of the MF approximation with the TAP

equation, which was developed in the field of solid state physics. Despite many stud-

ies revealed that the TAP equation outperform the MF, it has not been so popular in

other fields. This may be because of the limitation of the original TAP equation that is

applicable only to binary MRFs and not to more general MRFs.

To eliminate this limitation, we first generalize the conventional TAP equation and
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derive a general-purpose expression of the second-order TAP equation that can be ap-

plied to more general MRFs. As examples of its application, we then derive the specific

TAP equations for binary-label MRFs, multi-label MRFs, and for Boltzmann Machines

having softmax units. We show the results of several experiments with discrete multi-

label MRFs for stereo matching and with DBMs for supervised learning and unsupervised

learning using the MNIST and NORB datasets. They demonstrate the effectiveness of

our approach.

The second study is for continuous-discrete conversion for the inference of marginal dis-

tribution. Specifically, we have proposed a novel formulation for handling such discretiza-

tion in non-uniform manner. Based on this formulation, we have derived the MF and

BP algorithms, which can correctly deal with the non-uniform discretization of variable

space. In addition to this, we have also shown the method for dynamically discretizaing

the variable space in a coarse-to-fine manner in the course of the computation. It enables

to improve the accuracy of the marginal distribution without sacrificing computational

efficiency. Through several experiments, we have confirmed the effectiveness of our ap-

proach.

The third study is for reducing a computational cost of marginal distribution by trans-

forming a MRF into a smaller, simpler one. The key idea is to use the variables of the

transformed MRF as latent variables and then represent the joint distribution of the

target MRF with them. Using this representation, we derived the transformed MRF

which is easy to compute their marginal distributions. As applications of our formula-

tion, we proposed the three practical applications, which are discretizing variable space

of continuous MRFs, grouping discrete labels of MRFs to reduce the number of labels,

and coarse graining of MRFs by grouping multiple sites. We also showed how some

of these transformations are combined to perform coarse-to-fine inference, and how our

MRF transformation approach is applied to Markov chain Monte Carlo methods. The

experimental results demonstrated the effectiveness of our formulation.
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6.1 Future work

For future work, we will tackle following the remaining tasks.

Generalization of TAP equation and their applications Our generalized TAP

equation can be extended to handle a wider range of probabilistic models such as Gaussian

distribution and directed graphical models. We will derive the TAP equations for dealing

with these models, and confirmed their effectiveness. Moreover, the variational bound of

the first-order TAP equation (i.e., the mean field approximation) is well-studied, whereas

the higher-order TAP equation is not studied well. We will confirm this bound and its

convergence property from a viewpoint of the variational principle.

Discrete inference of Markov random fields for non-uniformly discretized vari-

able space Currently we have performed the experiments with regard to our method

with limited problems such as stereo matching. In order to claim that our method is appli-

cable to a wide range of problems, we will perform additional experiments with problems

using continuous variables, such as Structure from Motion and image reconstruction.

Transformation of Markov random fields for marginal distribution estimation

As with the transformation of MRFs, we will perform further experiments to confirm

that our formulation is useful for several practical applications. We consider that the

transformation regarding the grouping of discrete variables is especially useful in many

problems, since many applications such as semantic segmentation regard all the variables

as discrete ones. Currently there exists the problem that the number of labels in discrete

MRFs needs to be a small due to the computational cost. We will overcome this problem

by our proposed formulation, and demonstrate its effectiveness.
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