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Chapter 1

Introduction

Kostka numbers give the number of semistandard tableaux of given shape and weight,
and they play a fundamental role in representation theory of symmetric groups (see
[11]). Much work has been done on the problem of computing Kostka numbers, which
is known to be #P complete (see [10]).

Throughout this thesis, n will denote a positive integer. We write µ � n if µ is a
composition of n, that is, a sequence µ = (µ1, µ2, . . . , µk) of nonnegative integers such
that |µ| =

∑k
i=1 µi = n. In particular, if the sequence µ is non-increasing and µi > 0

for all 1 ≤ i ≤ k, then we write µ ` n and say that µ is a partition of n. We say that
k is the height of µ and denote it by h(µ). We denote by Dµ the Young diagram of
µ. More precisely,

Dµ = {(i, j) ∈ Z2 | 1 ≤ i ≤ k, 1 ≤ j ≤ µi}.

If λ = (λ1, λ2, . . . , λh) ` m ≤ n and Dλ ⊂ Dµ, then the skew shape µ/λ is obtained
by removing from Dµ all the boxes belonging to Dλ.

Let µ ` n and λ � n. A semistandard Young tableau (SSYT) of shape µ and
weight λ is a filling of the Young diagram Dµ with the numbers 1, 2, . . . , h(λ) in such
a way that

(i) i occupies λi boxes, for i = 1, 2, . . . , h(λ),

(ii) the numbers are strictly increasing down the columns and weakly increasing
along the rows.

We denote by STab(µ, λ) the set of all semistandard tableaux of shape µ and weight
λ.

In Chapter 2, we study the set, rather than the number, of semistandard tableaux
of given shape and weight. We do not assume the weight is a partition, rather, it is
an arbitrary composition.

For compositions a = (a1, a2, . . . , ah) and b = (b1, b2, . . . , bk) of n, we say a domi-
nates b, denoted aD b, if k ≥ h and

j∑
i=1

ai ≥
j∑
i=1

bi
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for j = 1, 2, . . . , h. The following is well known.

Theorem 1 ([5, p. 26, Exercise 2]). Let µ and λ be partitions of n. Then STab(µ, λ)
is nonempty if and only if µD λ.

Let λ(a) denote the partition of n associated with a composition a of n, that is,
the partition obtained from a by rearranging the parts of a in non-increasing order.
Then one can strengthen Theorem 1 using [2, Lemma 3.7.1], as follows:

Theorem 2 ([5, p. 50, Proposition 2]). Let µ and a be a partition and composition
of n, respectively. Then STab(µ, a) is nonempty if and only if µD λ(a).

This theorem is incorrectly stated in [2, Lemma 3.7.3], where µD λ(a) is replaced
by µ D a. For example, let µ = (5, 3) ` 8 and a = (2, 6) � 8. Then µ D a, but
STab(µ, a) = ∅.

In Chapter 2, we give explicit algorithms to produce an element of STab(µ, a),
thereby giving a direct proofs of Theorem 2. We also introduce a natural partial order
on STab(µ, a) and show that it has unique greatest and least elements, by showing that
the elements produced by two of the three algorithms have the respective property.
Although the proof of Theorem 2 using [2, Lemma 3.7.1] or [5, p. 50, Proposition
2] gives, in principle, a bijection between STab(µ, a) and STab(µ, λ(a)), it does not
give an efficient algorithm to describe an element of STab(µ, a) unless the permutation
required to transform a to λ(a) is a transposition. We show that, in our Proposition 20
below, a direct approach for proving Theorem 2 along the line of [2, Lemma 3.7.3]
can be justified, and we describe an algorithm to produce an element of STab(µ, a)
in this way.

In Chapter 3, we take an elementary approach to derive a generalization of Knuth’s
formula using Lassalle’s explicit formula. In particular, we give a formula for the
Kostka numbers of a shape µ ` n and weight (m, 1n−m) for m = 3, 4.

The Kostka numberK(µ, λ) is the number of semistandard Young tableaux (SSYT)
of shape µ and weight λ. In particular, if λ = (1n) then such a tableau is called a stan-
dard Young tableau (SYT) of shape µ, and for a skew shape µ/ν and weight (1n−m)
such a tableau is called a skew SYT of skew shape µ/ν, where ν ` m ≤ n. We denote
by fµ/ν the number of skew SYTs of skew shape µ/ν. Obviously, if λ = (m, 1n−m) ` n
and m ≤ µ1, then for all SSYTs of shape µ and weight λ, a box (1, j) ∈ Dµ is filled
by 1 for 1 ≤ j ≤ m, so K(µ, (m, 1n−m)) = fµ/(m). Naturally, if ν = ∅ then fµ is the
number of SYTs of shape µ. We can easily compute fµ using the hook formula (see
[4]). There is a recurrence formula for Kostka numbers (see [7] and [9]), but we have
no explicit formula for Kostka numbers.

For z ∈ C, the falling factorial is defined by [z]n = z(z− 1) · · · (z−n+ 1) = n!
(
z
n

)
,

and [z]0 = 1. Let µ = (µ1, µ2, . . . , µk) ` n and µ′ be the conjugate of µ. Knuth [6,
p.67, Exercise 19] shows:

fµ/(2) =
fµ

[n]2

(
k∑
i=1

(
µi
2

)
−
∑
j≥1

(
µ′j
2

)
+

(
n

2

))
. (1)
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In fact, we can also compute fµ/λ using [1, p.310], [3, Theorem] and [12, Corollary
7.16.3], but this requires evaluation of determinants and knowledge of Schur functions.
If we compute λ = (2) using [12, Corollary 7.16.3], then we get the following:

fµ/(2) =
fµ

[n]2

(
k∑
i=1

((
µi
2

)
− µi(i− 1)

)
+

(
n

2

))
. (2)

Since the following equation is well known (see [9, (1.6)], also see Proposition 34 for
a generalization):

k∑
i=1

µi(i− 1) =
∑
j≥1

(
µ′j
2

)
, (3)

we have (1). As previously stated, since K(µ, (m, 1n−m)) = fµ/(m), we know the
value of K(µ, (2, 1n−2)) from (1), so we are interested in the extent to which (1) can
be generalized to an arbitrary positive integer m. In fact, if λ = (3) then we get the
following using [12, Corollary 7.16.3]:

fµ/(3) =
fµ

[n]3

(
k∑
i=1

(
µi(i− 1) +

(
µi
2

))
+ (n− 2)

k∑
i=1

((
µi
2

)
− µi(i− 1)

))

+
fµ

[n]3

(
2

k∑
i=1

(
µi

(
i− 1

2

)
+

(
µi
3

))
− 2

k∑
i=1

(
µi
2

)
(i− 1) +

(
n

3

)
−
(
n

2

))
.

(4)

The proof of (4) using Lassalle’s explicit formula for characters will be given in Sec-
tion 3.3.

In Chapter 4, we will prove Vershik’s relations for the Kostka numbers. Given a
partition µ = (µ1, . . . , µk) ` n and a composition a = (a1, a2 . . . , ah) � n, we denote

by a(i) the composition of n− 1 defined by a
(i)
i = ai − 1, and a

(i)
j = aj otherwise.

For µ = (µ1, . . . , µk) ` n and γ ` n − 1, we write γ � µ if γi ≤ µi for all i with
1 ≤ i ≤ k, and define

C(µ, γ) = |{i | 1 ≤ i ≤ k, λ(µ(i)) = γ}|.

Vershik’s relations for the Kostka numbers is as follows:

Theorem 3 ([2, p.143, Theorem 3.6.13] and [14, Theorem 4]). For any λ ` n and
ρ ` n− 1, we have ∑

µ`n
µ�ρ

K(µ, λ) =
∑
γ`n−1
γ�λ

C(λ, γ)K(ρ, γ).

Theorem 3 can be proved using representation theory. As previously stated, since
K(µ, λ) = | STab(µ, λ)|, it is natural to expect a bijective proof of Theorem 3. In
fact, Vershik [14, Theorem 4] claims to give a bijection from

L =
⋃
µ`n
µ�ρ

STab(µ, λ)
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to
R =

⋃
1≤x≤h

STab(ρ, λ(x)),

where λ = (λ1, λ2, . . . , λh) ` n and ρ ` n − 1. In order to explain his proof, we
call a tableau in STab(µ, λ) a µ-tableau, and a tableau in STab(ρ, λ(x)) a ρ-tableau.
Since µ-tableaux have one more box than ρ-tableaux, Vershik [14, Theorem 4] claims
that removable of one box from µ-tableaux gives a bijection from L to R. Vershik
[14, Section 4] gives examples, each of which comes with a bijection. However, if
λ = (3, 3, 2) ` 8 and ρ = (4, 3) ` 7 then there is no bijection from L to R arising
from removable of one box. More precisely, we consider two tableaux in L as follows:

A =
1 1 1 3 3
2 2 2

, E =
1 1 1 3
2 2 2
3

.

The only ρ-tableau obtainable from A by removing one box is

Q =
1 1 1 3
2 2 2

.

Similarly, the only ρ-tableau obtainable from E by removing one box is Q.
In Chapter 4, we describe a bijection between R and L using tableau insertion

and reverse insertion algorithms (see [5] and [8]). We note that, in our bijection, λ is
allowed to be a composition which is not necessarily a partition.

This thesis is organized as follows. In Chapter 2, we introduce basic concepts
and define a partial order on STab(µ, a) in Section 2.1. We describe the procedure
of constructing the greatest and least elements of STab(µ, a) in Section 2.2 and 2.4,
respectively. In Section 2.3, we justify the proof of [2, Lemma 3.7.3] in Proposition 20,
using the ideas from Section 2.2.

In Chapter 3, we introduce basic concepts about binomial coefficients in Sec-
tion 3.1, and we prove that pl[C(µ)] can be written as a linear combination of q±r,t in

Section 3.2. We give an expression for fµ/(m) in terms of q±r,t for m ≤ 4 in Section 3.3.
We prove a generalization of (3) in Section 3.4.

In Chapter 4, we define a bumping route using the tableau insertion algorithm in
Section 4.1. Similarly, we define a reverse bumping route using the reverse insertion
algorithm in Section 4.2. Finally, in Section 4.3, we prove Theorem 3 by showing that
the tableau insertion algorithm gives a bijection.



Chapter 2

Three algorithms to construct
semistandard Young tableaux

2.1 A partial order on STab(µ, a)

For a composition a = (a1, a2, . . . , ah) � n, we define

a(i) = (a1, . . . , ai−1, ai − 1, ai+1, . . . , ah)

for each 1 ≤ i ≤ h. Set

a′ = (a1, a2, . . . , ah−1) � n− ah,

ã =

{
(a1, a2, . . . , ah − 1) if ah ≥ 2,

(a1, a2, . . . , ah−1) if ah = 1.

Then ã � n− 1. Let

q(a) = max{i | 1 ≤ i ≤ h, λ(a)i = ah}.

Then
λ(a)q(a) = ah > λ(a)q(a)+1. (1)

Set
λ̃(a) = λ(a)(q(a)) ` n− 1.

For a partition µ = (µ1, . . . , µk) ` n, we define

s(µ, a) = max{i | 1 ≤ i ≤ k, µi ≥ ah}.

Clearly,
µs(µ,a) ≥ ah > µs(µ,a)+1. (2)

For ρ = (ρ1, ρ2, . . . , ρh) ` m and µ = (µ1, µ2, . . . , µk) ` n, we write

ρ � µ

6
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if m ≤ n, h ≤ k and ρi ≤ µi for all i with 1 ≤ i ≤ h. For such ρ and µ, we say that
µ/ρ is a skew shape, and we denote Dµ \ Dρ by Dµ/ρ. We say that the skew shape
µ/ρ is totally disconnected if ρi ≥ µi+1 for all i with 1 ≤ i ≤ h. Set

B(µ, a) = {ρ ` n− ah | ρD λ(a′), ρ � µ, µ/ρ : totally disconnected}.

Lemma 4. For a composition a � n, λ(ã) = λ̃(a).

Proof. Immediate from the definition.

Lemma 5. Let p and q be positive integers. Let µ ` n and λ ` n satisfy µp > µp+1,
λq > λq+1 and µD λ. Then the following are equivalent.

(i) µ(p) D λ(q),

(ii) either p ≥ q, or p < q and
∑j

i=1 µi >
∑j

i=1 λi for all j with p ≤ j < q.

Proof. Observe

j∑
i=1

µ
(p)
i =

{∑j
i=1 µi if 1 ≤ j < p,∑j
i=1 µi − 1 otherwise,

j∑
i=1

λ
(q)
i =

{∑j
i=1 λi if 1 ≤ j < q,∑j
i=1 λi − 1 otherwise.

Thus

j∑
i=1

µ
(p)
i ≥

j∑
i=1

λ
(q)
i ⇐⇒


∑j

i=1 µi ≥
∑j

i=1 λi if 1 ≤ j < min{p, q},∑j
i=1 µi ≥

∑j
i=1 λi − 1 if q ≤ j < p,∑j

i=1 µi − 1 ≥
∑j

i=1 λi if p ≤ j < q,∑j
i=1 µi − 1 ≥

∑j
i=1 λi − 1 if max{p, q} ≤ j.

Since µD λ, we have

(i) ⇐⇒
j∑
i=1

µi − 1 ≥
j∑
i=1

λi if p ≤ j < q,

⇐⇒ (ii).

Definition 6. Let µ ` n and a � n with µ D λ(a). A box of coordinate (i, µi) is
removable for the pair (µ, a) if µi > µi+1 and µ(i) D λ(ã). We denote by R(µ, a) the
set of all i such that (i, µi) is removable for the pair (µ, a).

Lemma 7. Let µ ` n and a � n satisfy µD λ(a). Then s(µ, a) ∈ R(µ, a).
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Proof. Write p = s(µ, a), q = q(a), λ = λ(a). Then λq > λq+1 by (1) and µp > µp+1

by (2). Moreover, by Lemma 4, we have λ(ã) = λ̃(a) = λ(q). Thus, in view of
Lemma 5, it suffices to show

either p ≥ q, or p < q and

j∑
i=1

µi >

j∑
i=1

λi for all j with p ≤ j < q.

Suppose p < q and let p ≤ j < q. Let a = (a1, . . . , ah). If j + 1 ≤ i ≤ q, then
p < i ≤ q, so µi < ah ≤ λi. Thus

j∑
i=1

µi =

q∑
i=1

µi −
q∑

i=j+1

µi

≥
q∑
i=1

λi −
q∑

i=j+1

µi

>

q∑
i=1

λi −
q∑

i=j+1

λi

=

j∑
i=1

λi.

From Lemma 7, we find R(µ, a) 6= ∅. Set

l(µ, a) = minR(µ, a).

Lemma 8. Let µ ` n and a � n satisfy µD λ(a). Then l(µ, a) ≤ s(µ, a).

Proof. Immediate from Lemma 7.

Lemma 9. Let µ = (µ1, µ2, . . . , µk) ` n and a = (a1, a2, . . . , ah) � n. Let i be an
integer with 1 ≤ i ≤ k. If there exists a tableau T ∈ STab(µ, a) such that T (i, µi) = h,
then i ∈ R(µ, a).

Proof. Since T ∈ STab(µ, a) and T (i, µi) = h, we have (i + 1, µi) /∈ Dµ, so µi >
µi+1. Also, T̃ = T |Dµ\{(i,µi)} ∈ STab(µ(i), ã). By [2, Lemma 3.7.1], we obtain
STab(µ(i), λ(ã)) 6= ∅. Thus µ(i) D λ(ã) and i ∈ R(µ, a).

In fact, the converse of Lemma 9 is also true. We will prove it in Section 2.3.

Lemma 10. Let µ ` n and a = (a1, a2, . . . , ah) � n satisfy µ D λ(a). For T ∈
STab(µ, a), we have

l(µ, a) ≤ min{i | T (i, µi) = h} ≤ s(µ, a).

Proof. Write q = min{i | T (i, µi) = h}. By Lemma 9, we have l(µ, a) ≤ q. Since
ah = |{(i, j) ∈ Dµ | T (i, j) = h}| ≤ µq, we have q ≤ s(µ, a).
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We will show in Theorem 14, Lemma 18 and Theorem 26 that equality can be
achieved in both of the inequalities above. In Section 2.2, we give an algorithm to
construct T ∈ STab(µ, a) such that min{i | T (i, µi) = h} = s(µ, a). In Sections 2.3
and 2.4, we give an algorithm to construct T ∈ STab(µ, a) such that min{i | T (i, µi) =
h} = l(µ, a).

Finally, we define a partial order on STab(µ, a) and a partition ρ(µ, a) ` n − ah
as follows. We write µB λ to mean µD λ and µ 6= λ.

Definition 11. Let µ = (µ1, µ2, . . . , µk) ` n and a = (a1, a2, . . . , ah) � n satisfy
µD λ(a). For T , S ∈ STab(µ, a), let

τ (p) = (|{j | T (i, j) ≤ p}|)ki=1, (3)

σ(p) = (|{j | S(i, j) ≤ p}|)ki=1 (4)

for all p with 1 ≤ p ≤ h. We define that S ≤ T if, either T = S or, τ (h) = σ(h),
τ (h−1) = σ(h−1), . . . , τ (p+1) = σ(p+1), τ (p) B σ(p) for some 1 ≤ p ≤ h.

Since the relation D is a partial order, we see that (STab(µ, a),≤) is a partially
ordered set.

Alternatively the partial order ≤ on STab(µ, a) can be defined recursively as
follows: for T, S ∈ STab(µ, a), define τ and σ by

T−1({1, . . . , h− 1}) = Dτ , (5)

S−1({1, . . . , h− 1}) = Dσ, (6)

respectively. We define S ≤ T if, either τ B σ, or τ = σ and S|Dσ ≤ T |Dσ .

Definition 12. Let µ = (µ1, . . . , µk) ` n and a = (a1, . . . , ah) � n satisfy µ D λ(a).
Define ρ(µ, a) = (ρ1, . . . , ρk−1) ` n− ah by setting

ρi =


µi if 1 ≤ i < s,

µs − (ah − µs+1) if i = s,

µi+1 if s < i ≤ k − 1,

where s = s(µ, a).

2.2 The greatest element of STab(µ, a)

Lemma 13. Let µ = (µ1, . . . , µk) ` n and a = (a1, . . . , ah) � n satisfy µDλ(a). Then
ρ(µ, a) is the greatest element of B(µ, a).

Proof. Write ρ = ρ(µ, a) and s = s(µ, a). By (2), we have µs ≥ ah > µs+1. Thus
ρ ` n − ah and µs > ρs ≥ µs+1. So µi ≥ ρi ≥ µi+1 for all i with 1 ≤ i ≤ k. This
implies that ρ � µ and µ/ρ is totally disconnected.

Next, we show that ρ D λ(a′). Write λ(a) = (λ1, . . . , λh), λ
′ = (λ′1, . . . , λ

′
h−1) =

λ(a′) and q = q(a). Then λq = ah and

λ′ = (λ1, λ2, . . . , λq−1, λq+1, λq+2, . . . , λh) ` n− λq.
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Observe

j∑
i=1

ρi =

{∑j
i=1 µi if 1 ≤ j < s,∑j+1
i=1 µi − λq if s ≤ j ≤ k − 1

≥

{∑j
i=1 λi if 1 ≤ j < s,∑j+1
i=1 λi − λq if s ≤ j ≤ k − 1

(7)

since µD λ(a).
Case 1. q < s. By (7), we have

j∑
i=1

ρi ≥


∑j

i=1 λi if 1 ≤ j < q,∑q−1
i=1 λi +

∑j+1
i=q+1 λi + λq − λj+1 if q ≤ j < s,∑j+1

i=1 λi − λq if s ≤ j ≤ k − 1

≥


∑j

i=1 λi if 1 ≤ j < q,∑q−1
i=1 λi +

∑j+1
i=q+1 λi if q ≤ j < s,∑j+1

i=1 λi − λq if s ≤ j ≤ k − 1

=

j∑
i=1

λ′i.

Case 2. s ≤ q. By (7), we have

j∑
i=1

ρi ≥


∑j

i=1 λi if 1 ≤ j < s,∑j
i=1 λi + λj+1 − λq if s ≤ j < min{q, k},∑j+1
i=1 λi − λq if min{q, k} ≤ j ≤ k

≥

{∑j
i=1 λi if 1 ≤ j < min{q, k},∑j+1
i=1 λi − λq if q ≤ j ≤ k

≥
j∑
i=1

λ′i.

Thus we have ρ ∈ B(µ, a).
It remains to show that ρD τ for all τ ∈ B(µ, a). Let τ ∈ B(µ, a) with τ 6= ρ and

r = min{i | 1 ≤ i ≤ k, τi < µi}. (8)

Then
1 ≤ r ≤ s (9)

and
k∑
i=r

(µi − τi) = ah. (10)
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By the definition of B(µ, a), we have

µi ≥ τi ≥ µi+1 (11)

for all i with 1 ≤ i ≤ k.
If 1 ≤ j < s, then

j∑
i=1

ρi =

j∑
i=1

µi ≥
j∑
i=1

τi.

If s ≤ j ≤ k, then

j∑
i=1

ρi =

j+1∑
i=1

µi − ah

=

j+1∑
i=1

µi −
k∑
i=r

(µi − τi) (by (10))

=
r−1∑
i=1

µi +

j+1∑
i=r

µi −
k∑
i=r

µi +
k∑
i=r

τi (by (9))

=

j∑
i=1

τi +
k∑

i=j+1

τi −
k∑

i=j+2

µi (by (8))

=

j∑
i=1

τi +
k∑

i=j+1

(τi − µi+1)

≥
j∑
i=1

τi (by (11)).

Therefore, ρD τ .

Theorem 14. Given µ ` n and a = (a1, a2, . . . , ah) � n such that µD λ(a), define ρi

and ai inductively by setting ρ0 = µ, a0 = a, and for 1 ≤ i ≤ h,

ρi = ρ(ρi−1, ai−1) `
h−i∑
j=1

aj,

ai = (ai−1)′ �
h−i∑
j=1

aj.

Define a tableau T of shape µ and weight a by

T (p, q) = h− i if (p, q) ∈ Dρi/ρi+1 . (12)

Then T is the greatest element of STab(µ, a).
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Proof. We prove the assertion by induction on h. Suppose first h = 1. Then
STab(µ, a) consists of a single element T , so that the assertion trivially holds.

Next suppose h > 1. Assume that the assertion holds for h − 1. Set ν = ρ1

and b = a1. Since ρ1 ∈ B(µ, a) by Lemma 13, we have ν D λ(b). Define νi and bi

inductively by setting ν0 = ν, b0 = b, and for 1 ≤ i < h,

νi = ρ(νi−1, bi−1) `
h−1−i∑
j=1

bj,

bi = (bi−1)′ �
h−1−i∑
j=1

bj.

Define a tableau T ′ of shape ν and weight b by

T ′(p, q) = h− (i+ 1) if (p, q) ∈ Dνi/νi+1 .

By the inductive hypothesis,

T ′ ∈ STab(ν, b), (13)

T ′ ≥ S ′ for all S ′ ∈ STab(ν, b). (14)

It is easy to show that bi = ai+1 and νi = ρi+1 by induction on i, and the latter
implies T |Dν = T ′. Then by (13) and the fact that µ/ν is totally disconnected, we
obtain T ∈ STab(µ, a).

It remains to show that T ≥ S for all S ∈ STab(µ, a). Let S ∈ STab(µ, a). Define
a partition σ by (6). By Lemma 13, we have ν D σ. If ν B σ, then T ≥ S. If ν = σ,
then T |Dν = T ′ ≥ S|Dν by (14), hence T ≥ S.

From Theorem 14, we obtain a tableau T ∈ STab(µ, a).

Algorithm 1. Input: µ ` n and a � n such that µD λ(a).
Output: T ∈ STab(µ, a).
Initialization: ν := µ, b := a.
while h(b) > 1 do

T (i, j) := h(b) where (i, j) ∈ Dν/ρ(ν,b).
ν ← ρ(ν, b), b← b′.

end
T (1, j) := 1 where 1 ≤ j ≤ ν1.
Output T .

Example 15. Let µ = (4, 4, 1, 1) ` 10 and a = (1, 3, 2, 2, 2) � 10. Then a tableau
T ∈ STab(µ, a) is obtained via Algorithm 1.

ν b ρ(ν, b) T
(4, 4, 1, 1) (1, 3, 2, 2, 2) (4, 3, 1) T (2, 4) = T (4, 1) = 5
(4, 3, 1) (1, 3, 2, 2) (4, 2) T (2, 3) = T (3, 1) = 4
(4, 2) (1, 3, 2) (4) T (2, 1) = T (2, 2) = 3
(4) (1, 3) (1) T (1, 2) = T (1, 3) = T (1, 4) = 2
(1) (1) T (1, 1) = 1
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Thus

T =

1 2 2 2
3 3 4 5
4
5

is the greatest element of STab(µ, a).

2.3 Removable boxes

Throughout this section, let µ = (µ1, µ2, . . . , µk) ` n and a = (a1, a2, . . . , ah) � n.
Let λ = λ(a) = (λ1, λ2, . . . , λh), q = q(a) and l = l(µ, a). We assume µD λ.

Lemma 16. Assume ah ≥ 2. For i ∈ R(µ, a) with i ≤ s(µ(i), ã), we have ρ(µ(i), ã) ∈
B(µ, a).

Proof. Write ρ = ρ(µ(i), ã). Since i ∈ R(µ, a), we have µ(i)Dλ(ã). Then by Lemma 13,
ρ ∈ B(µ(i), ã). Since ah ≥ 2, this implies ρ D λ(ã′) = λ(a′). To prove ρ ∈ B(µ, a), it
remains to show that µ/ρ is totally disconnected. Since µ(i)/ρ is totally disconnected,

it is enough to show ρi−1 ≥ µi. Since i − 1 < s(µ(i), ã), we obtain ρi−1 = µ
(i)
i−1 =

µi−1 ≥ µi.

Lemma 17. Assume ah ≥ 2. Then r ≤ s(µ, a) if and only if r ≤ s(µ(r), ã).

Proof. Immediate from the definition.

Lemma 18. Define ρ ` n− ah by

ρ =

{
µ(l) if ah = 1,

ρ(µ(l), ã) if ah ≥ 2.

Then µ/ρ is totally disconnected, ρl < µl and ρD λ(a′).

Proof. If ah = 1, then ρ = µ(l) D λ(ã) = λ(a′), since l ∈ R(µ, a). Thus the assertion
holds.

Suppose ah ≥ 2. Then l ≤ s(µ(l), ã) by Lemma 8, Lemma 17, and hence ρ ∈
B(µ, a) by Lemma 16. Thus it remains to show that ρl < µl. This can be shown as
follows:

ρl =

{
µ
(l)
l − (ãh − µ(l)

l+1) if l = s(µ(l), ã),

µ
(l)
l if l < s(µ(l), ã)

≤ µ
(l)
l

< µl,

where the second inequality follows from the definition of s(µ(l), ã).

From Lemma 18, we obtain a tableau U ∈ STab(µ, a).



14

Algorithm 2. Input: µ = (µ1, µ2, . . . , µk) ` n and a = (a1, a2, . . . , ah) � n such
that µD λ(a).
Output: U ∈ STab(µ, a).
Initialization: ν := µ, b := a.
while h(b) > 1 do

l := l(ν, b).
if bh(b) = 1 then ρ := ν(l).
else

ρ := ρ(ν(l), b̃).
end if
U(i, j) := h(b) where (i, j) ∈ Dν/ρ.
ν ← ρ, b← b′.

end
U(1, j) := 1 where 1 ≤ j ≤ ν1.
Output U .

Example 19. Let µ = (4, 4, 1, 1) ` 10 and a = (1, 3, 2, 2, 2) � 10. Then a tableau
U ∈ STab(µ, a) is obtained via Algorithm 2.

ν b ρ U
(4, 4, 1, 1) (1, 3, 2, 2, 2) (4, 3, 1) U(2, 4) = U(4, 1) = 5
(4, 3, 1) (1, 3, 2, 2) (3, 3) U(1, 4) = U(3, 1) = 4
(3, 3) (1, 3, 2) (3, 1) U(2, 2) = U(2, 3) = 3
(3, 1) (1, 3) (1) U(1, 2) = U(1, 3) = U(2, 1) = 2
(1) (1) U(1, 1) = 1

Thus

U =

1 2 2 4
2 3 3 5
4
5

.

We note that the least element of STab(µ, a) is

S =

1 2 2 4
2 3 5 5
3
4

.

In Section 2.4, we will show that there exists a unique least element of STab(µ, a)
whenever µD λ(a), and give an algorithm to construct it.

Proposition 20. Let µ = (µ1, µ2, . . . , µk) ` n and a = (a1, a2, . . . , ah) � n, and
assume µ D λ(a). Let r be an integer with 1 ≤ r ≤ k. Then there exists a tableau
T ∈ STab(µ, a) such that T (r, µr) = h if and only if r ∈ R(µ, a).

Proof. The “only if” part has been proved in Lemma 9. We prove the “if” part
by induction on n. If n = 1 then it is obvious. Let r ∈ R(µ, a), s = s(µ, a) and
s′ = s(µ(r), ã).
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If ah ≥ 2 then define ρ ` n− ah by

ρ =

{
ρ(µ, a) if r > s′,

ρ(µ(r), ã) otherwise.
(15)

From Lemma 13 and 16, we have ρ ∈ B(µ, a), so

ρD λ(a′). (16)

If ah = 1, then define by ρ = µ(r). From the definition of R(µ, a), (16) holds in
this case also.

Since (16) implies R(ρ, λ(a′)) 6= ∅, the inductive hypothesis implies that there
exists a tableau T ′ ∈ STab(ρ, a′). Define a tableau T of shape µ and weight a by

T (i, j) =

{
T ′(i, j) if (i, j) ∈ Dρ,

h if (i, j) ∈ Dµ/ρ.

It remains to show that T (r, µr) = h. This will follow if we can show ρr < µr. If
ah = 1, then ρr = µr − 1 < µr. Suppose ah ≥ 2. If r > s′ then we have r > s′ ≥ s by
the definition of s′ and s. Since r ∈ R(µ, a), we have ρr = µr+1 < µr. If r ≤ s′, then

ρr =

{
µ
(r)
r − (ã− µ(r)

r+1) if r = s′,

µ
(r)
r if r < s′

≤ µ(r)
r

= µr − 1

< µr,

where the second inequality follows from the definition of s′.

Proposition 20 justifies the proof of [2, Lemma 3.7.3]. It also gives an alternative
proof of the “if” part of Theorem 2.

2.4 The least element of STab(µ, a)

Throughout this section, we let µ = (µ1, µ2, . . . , µk) ` n and a = (a1, a2, . . . , ah) � n.
We assume µDλ(a). For a sequence (i1, i2, . . . , ij) of positive integers, we abbreviate
the partition

(· · · ((µ(i1))(i2)) · · · )(ij)

of n− j, as µ(i1,i2,...,ij).

Lemma 21. We have

R(µ, a) = {i | l(µ, a) ≤ i ≤ k, µi > µi+1}.
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Proof. Write q = q(a), λ = λ(a) and l = l(µ, a). Then λq > λq+1 by (1). Let l ≤ i ≤ k
and µi > µi+1. From Lemma 5 and the definition of l, we have µ(i)Dµ(l)Dλ(q). Thus
i ∈ R(µ, a).

For each i with 1 ≤ i ≤ k, set

R(µ, a, i) = {r ∈ R(µ, a) | r ≥ i}.

From Lemma 21, we have k ∈ R(µ, a, i) for each i with 1 ≤ i ≤ k. Set

l(µ, a, i) = minR(µ, a, i).

Clearly, l(µ, a, 1) = l(µ, a).

Lemma 22. Let µ and µ′ be partitions of n. Suppose that i ∈ R(µ, a) and i′ ∈ R(µ′, a)
satisfy i ≤ i′, µi′ ≥ µ′i′ and µj = µ′j for all j with j > i′. Then

R(µ′(i
′), ã, i′) ⊆ R(µ(i), ã, i).

Proof. Let r ∈ R(µ′(i
′), ã, i′). Since i ≤ i′ ≤ r, we have

δi,r ≤ δi′,r, (17)

and
µ
′(i′)
r+1 = µ′r+1 = µr+1 = µ

(i)
r+1. (18)

Thus

µ(i)
r = µr − δi,r
≥ µ′r − δi,r
≥ µ′r − δi′,r (by (17))

= µ′(i
′)

r

> µ
′(i′)
r+1

= µ
(i)
r+1 (by (18)).

It remains show that µ(i,r) D λ(˜̃a). If 1 ≤ q < r, then

q∑
j=1

µ
(i,r)
j =

q∑
j=1

µ
(i)
j ≥

q∑
j=1

λ(ã)j ≥
q∑
j=1

λ(˜̃a)j,

since i ∈ R(µ, a). If r ≤ q, then i′ ≤ q, and hence
∑

j>q µj =
∑

j>q µ
′
j. Thus

q∑
j=1

µ
(i,r)
j =

q∑
j=1

µj − 2

=

q∑
j=1

µ′j − 2
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=

q∑
j=1

µ
′(i′,r)
j

≥
q∑
j=1

λ(˜̃a)j,

by r ∈ R(µ′(i
′), ã).

Lemma 23. Assume ah ≥ 2, r ∈ R(µ, a), and r ≤ s(µ, a). Then s(µ, a) ≤ s(µ(r), ã)
In particular, R(µ(r), ã, r) 6= ∅ and l(µ(r), ã, r) ≤ s(µ(r), ã).

Proof. Since ah ≥ 2, we have

ãh = ah − 1

≤ ah − δr,s(µ,a)
≤ µs(µ,a) − δr,s(µ,a)
= µ

(r)
s(µ,a).

Thus s(µ(r), ã) ≥ s(µ, a) ≥ r, and hence s(µ(r), ã) ∈ R(µ(r), ã, r) by Lemma 7.

Notation 24. Let r ∈ R(µ, a) and suppose r ≤ s(µ, a). Define ai, li and µi induc-
tively by setting a0 = a, l0 = r, µ0 = µ and for 0 ≤ i < n,

ai+1 = ãi � n− i− 1,

li+1 =

{
l(µi, ai, 1) if i ∈ A,
l(µi, ai, li) otherwise,

µi+1 = (µi)(li+1) ` n− i− 1,

where A = {ah, ah + ah−1, . . . , ah + · · ·+ a2}.
In order to check li+1 and µi+1 are well-defined, we show

µi D λ(ai) (0 ≤ i < n), (19)

R(µi, ai, li) 6= ∅ (0 ≤ i < n, i /∈ A), (20)

li+1 ≤ s(µi, ai) (0 ≤ i < n). (21)

Indeed, (19)–(20) guarantee that li+1 is defined as an element of R(µi, ai), even when
i /∈ A, so µi+1 is also defined.

We prove (19)–(21) by induction on i. If i = 0 then, as µDλ(a), (19) holds. Also,
(20) holds since r ∈ R(µ, a, r). Since 0 /∈ A, we have l1 = l(µ, a, l0) = r ≤ s(µ, a).
Thus (21) holds for i = 0 as well.

Assume (19)–(21) hold for some i ∈ {0, 1, . . . , n− 2}. Since li+1 ∈ R(µi, ai), (19)
holds for i+ 1.

If i + 1 /∈ A, then aih(ai) ≥ 2. Also li+1 ≤ s(µi, ai) by induction. Lemma 23 then

implies R(µi+1, ai+1, li+1) 6= ∅ and li+2 ≤ s(µi+1, ai+1), so (20)–(21) hold for i + 1 as
well.
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If i + 1 ∈ A, then li+2 = l(µi+1, ai+1, 1) = minR(µi+1, ai+1) ≤ s(µi+1, ai+1) by
Lemma 7. Thus (21) holds for i+ 1 as well.

Clearly, µi = µ(l1,...,li).

Lemma 25. Let T ∈ STab(µ, a). With reference to Notation 24, suppose T−1(h) =
{(t1, t′1), (t2, t′2), . . . , (tah , t′ah)} and r ≤ t1 ≤ t2 ≤ · · · ≤ tah. Then li ≤ ti for 1 ≤ i ≤
ah. In particular, µ(t1,...,tah ) D µah.

Proof. We prove the assertion by induction on i. If i = 1, then l1 = r ≤ t1.
Assume l1 ≤ t1, . . . , li ≤ ti hold for some i with 1 ≤ i < ah. We aim to show

li+1 ≤ ti+1 by deriving
R(µ(t1,...,ti), ai, ti) ⊆ R(µi, ai, li) (22)

from Lemma 22. In order to do so, we need to verify the hypotheses of Lemma 22. By
the definition of li, we have li ∈ R(µi−1, ai−1). Since the restriction of T to Dµ(t1,...,ti−1)

is an element of STab(µ(t1,...,ti−1), ai−1), Lemma 9 implies ti ∈ R(µ(t1,...,ti−1), ai−1), and
our inductive hypothesis shows li ≤ ti. Similarly, we have

ti+1 ∈ R(µ(t1,...,ti), ai, ti). (23)

Since lp ≤ tp ≤ ti for 1 ≤ p ≤ i− 1 by our inductive hypothesis,

µi−1ti
= µ

(l1,...,li−1)
ti

= µti − |{p | 1 ≤ p ≤ i− 1, lp = ti}|
≥ µti − |{p | 1 ≤ p ≤ i− 1, tp = ti}|

= µ
(t1,...,ti−1)
ti .

Finally, for j > ti, we have µi−1j = µ
(l1,...,li−1)
j = µj = µ

(t1,...,ti−1)
j , since lp ≤ tp ≤ ti for

1 ≤ p ≤ i − 1. Therefore, we have verified all the hypotheses of Lemma 22, and we
obtain (22).

Now

li+1 = l(µi, ai, li)

= minR(µi, ai, li)

≤ minR(µ(t1,...,ti), ai, ti) (by (22))

≤ ti+1 (by (23)).

Theorem 26. Let µ = (µ1, µ2, . . . , µk) ` n and a = (a1, a2, . . . , ah) � n, and suppose
µ D λ(a). Let r ∈ R(µ, a) and suppose r ≤ s(µ, a). Define ai, li and µi as in
Notation 24. Define a tableau S of shape µ and weight a by

S(li+1, µ
i
li+1

) = t,

where 0 ≤ i < n and
∑t−1

j=1 aj < n− i ≤
∑t

j=1 aj. Then S is the least element of the
subposet

{T ∈ STab(µ, a) | min{i | T (i, µi) = h} ≥ r} (24)

In particular, if r = l(µ, a), then S is the least element of STab(µ, a).
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Proof. Note that the tableau S is well-defined. Indeed, by the definition of µi, we
have

Dµi = Dµi+1 ∪ {(li+1, µ
i
li+1

)}. (25)

So Dµ = {(li+1, µ
i
li+1

) | 0 ≤ i < n}.
Next, we prove the statement by induction on n. If n = 1 then µ = a = (1), so it

is obvious.
Assume that the statement holds for n − 1. We apply Notation 24 with r, µ, a

replaced by l2, ν = µ1, b = a1, respectively. This is admissible since l2 ∈ R(µ1, a1) =
R(ν, b) and l2 ≤ s(µ1, a1) = s(ν, b) by (21). Define bi, l′i and νi inductively by setting
b0 = b, l′0 = l2, ν

0 = ν and for 0 ≤ i < n− 1,

bi+1 = b̃i � n− i− 2,

l′i+1 =

{
l(νi, bi, 1) if i ∈ B,
l(νi, bi, l′i) otherwise,

νi+1 = (νi)(l
′
i+1) ` n− i− 2,

where

B =

{
{bh−1, bh−1 + bh−2, . . . , bh−1 + · · ·+ b2} if ah = 1,

{bh, bh + bh−1, . . . , bh + · · ·+ b2} otherwise,

b =

{
(b1, . . . , bh−1) if ah = 1,

(b1, . . . , bh) otherwise.

Define a tableau S̃ of shape ν and weight b by

S̃(l′i+1, ν
i
l′i+1

) = t,

where
∑t−1

j=1 bj < n − 1 − i ≤
∑t

j=1 bj. By the inductive hypothesis, S̃ is the least
element of the set

{T̃ ∈ STab(ν, b) | min{i | T̃ (i, νi) = h(b)} ≥ l2}. (26)

It is easy to see that bi = ai+1 for 0 ≤ i < n. We show that

l′i = li+1 and νi = µi+1 (1 ≤ i < n) (27)

by induction on i. Since 0 /∈ B, we have

l′1 = l(ν0, b0, l′0)

= l(µ1, a1, l2)

=

{
l(µ1, a1, l(µ1, a1, 1)) if 1 ∈ A,

l(µ1, a1, l(µ1, a1, l1)) otherwise
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=

{
l(µ1, a1, 1) if 1 ∈ A,

l(µ1, a1, l1) otherwise

= l2. (28)

Then ν1 = (ν0)(l
′
1) = (µ1)(l2) = µ2.

Assume i ≥ 2 and l′i−1 = li and νi−1 = µi. Since i− 1 ∈ B if and only if i ∈ A, we
have

l′i =

{
l(νi−1, bi−1, 1) if i− 1 ∈ B,
l(νi−1, bi−1, l′i−1) otherwise

=

{
l(µi, ai, 1) if i ∈ A,
l(µi, ai, li) otherwise

= li+1.

Then νi = (νi−1)(l
′
i) = (µi)(li+1) = µi+1.

Next we show
S|Dν = S̃. (29)

First, since b = a1, we obtain

j∑
i=1

bi =

{∑j
i=1 ai if j < h,∑h
i=1 ai − 1 if j = h.

Suppose that
∑t−1

j=1 bj < n− 1− i ≤
∑t

j=1 bj. Then

t−1∑
j=1

aj < n− (i+ 1) ≤
t∑

j=1

aj,

so S̃(l′i+1, ν
i
l′i+1

) = t = S(li+2, µ
i+1
li+2

). Thus, we have proved (29).

Next we show S ∈ STab(µ, a). If l1 = 1 then this is clear, since S̃ ∈ STab(ν, b).
Suppose l1 ≥ 2. Since (l1 − 1, µl1) ∈ Dν , there exists an i ∈ {1, 2, . . . , n − 1} such
that (l1 − 1, µl1) = (li+1, µ

i
li+1

). Since l1 ≤ l2 ≤ · · · ≤ lah , we have

i+ 1 > ah = n−
h−1∑
j=1

aj = n−
h−1∑
j=1

bj,

and hence

n− 1− (i− 1) ≤
h−1∑
j=1

bj.

This implies
S̃(l′i, ν

i−1
l′i

) ≤ h− 1. (30)
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Now

S(l1 − 1, µl1) = S(li+1, µ
i
li+1

)

= S̃(l′i, ν
i−1
l′i

) (by (27), (29))

< h (by (30))

= S(l1, µl1).

Since S̃ ∈ STab(ν, b), this implies S ∈ STab(µ, a).
It remains to show that S ≤ T for all T in the set (24). Define partitions τ and

σ by (5) and (6), respectively.
Suppose first that min{i | T (i, µi) = h} > l1. Write T−1(h) = {(t1, t′1), . . . , (tah , t′ah)}

with l1 < t1 ≤ t2 ≤ · · · ≤ tah . Then Lemma 25 implies τ = µ(t1,...,tah )Dµah = σ. Since
l1 < t1, we have τ B σ. Thus S ≤ T .

Next suppose that min{i | T (i, µi) = h} = l1. Set T̃ = T |Dν and observe T̃ ∈
STab(ν, b). Set m = min{i | T̃ (i, νi) = h(b)}. By Lemma 9, we have m ∈ R(ν, b),
so m ≥ l(ν, b). If ah = 1, then l2 = l(ν, b), so m ≥ l2. If ah ≥ 2, then h(b) = h, so
m ≥ l1. Thus m ≥ l(ν, b, l1) = l2. Therefore, T̃ belong to the set (26). This implies
S̃ ≤ T̃ , and hence either τ B σ, or τ = σ and S̃|Dσ ≤ T̃ |Dσ . Since S̃|Dσ = S|Dσ and
T̃ |Dτ = T |Dτ , the recursive definition of the partial order implies S ≤ T .

Algorithm 3. Input: µ = (µ1, µ2, . . . , µk) ` n and a = (a1, a2, . . . , ah) � n such
that µD λ(a).
Output: S ∈ STab(µ, a).
Initialization: ν := µ, b := a, m := n and l′ := 1.
while m > 1 do

h := h(b) and l := l(ν, b, l′).
S(l, νl) := h.
if bh = 1, then l′ ← 1.
else l′ ← l.

ν ← ν(l), b← b̃ and m← m− 1.
end
S(1, 1) := 1.
Output S.

Example 27. Let µ = (4, 4, 1, 1) ` 10 and a = (1, 3, 2, 2, 2) � 10. Then a tableau
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S ∈ STab(µ, a) is obtained via Algorithm 3.

ν b m l′ h l S
(4, 4, 1, 1) (1, 3, 2, 2, 2) 10 1 5 2 S(2, 4) = 5
(4, 3, 1, 1) (1, 3, 2, 2, 1) 9 2 5 2 S(2, 3) = 5
(4, 2, 1, 1) (1, 3, 2, 2) 8 1 4 1 S(1, 4) = 4
(3, 2, 1, 1) (1, 3, 2, 1) 7 1 4 4 S(4, 1) = 4
(3, 2, 1) (1, 3, 2) 6 1 3 2 S(2, 2) = 3
(3, 1, 1) (1, 3, 1) 5 2 3 3 S(3, 1) = 3
(3, 1) (1, 3) 4 1 2 1 S(1, 3) = 2
(2, 1) (1, 2) 3 1 2 1 S(1, 2) = 2
(1, 1) (1, 1) 2 1 2 2 S(2, 1) = 2
(1) (1) 1 1 S(1, 1) = 1

Thus

S =

1 2 2 4
2 3 5 5
3
4

and S is the least element of STab(µ, a).

Remark 28. Let a and b be compositions of n with λ(a) = λ(b). Then there exists
a bijection from STab(µ, a) to STab(µ, b) using [2, Lemma 3.7.1], but they are not
isomorphic as partially ordered sets. For example, let µ = (4, 4, 1, 1) ` 10, a =
(1, 3, 2, 2, 2) � 10 and b = (1, 2, 2, 2, 3) � 10. Then (STab(µ, b),≤) is a totally ordered
set, while (STab(µ, a),≤) contains two incomparable tableaux:

T =

1 2 2 3
2 4 4 5
3
5

,

S =

1 2 2 4
2 3 3 5
4
5

.

Indeed, define τ (p) and σ(p) by (3) and (4), respectively. Then τ (3) = (4, 1, 1) and
σ(3) = (3, 3) are incomparable. Thus (STab(µ, a),≤) is not totally ordered, hence it
is not isomorphic to (STab(µ, b),≤).



Chapter 3

Generalization of Knuth’s formula
for the number of skew tableaux

3.1 Binomial coefficients

Throughout this section, h, l, r and t be nonnegative integers. We denote by S(n, k)
the Stirling numbers of the second kind. First of all, we define

C(r, t) = t!S(r + 1, t+ 1).

Then

C(r, t) = t!S(r + 1, t+ 1)

= t!(S(r, t) + (t+ 1)S(r, t+ 1))

= tC(r − 1, t− 1) + (t+ 1)C(r − 1, t), (1)

since S(r + 1, t+ 1) = S(r, t) + (t+ 1)S(r, t+ 1).
Set

ϕl(h, r, t) =

(
l

h

)
C(h, r)C(l − h, t). (2)

Clearly,

ϕl(h, r, t) =

(
l

l − h

)
C(l − h, t)C(h, r)

= ϕl(l − h, t, r). (3)

We define

Rl(t) =
t∑
i=1

il.

Lemma 29. We have

Rl+1(t) = (t+ 1)Rl(t)−
t∑
i=1

Rl(i).

23
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Proof. We have

(t+ 1)Rl(t) = (t+ 1)
t∑
i=1

il

=
t∑
i=1

il+1 +
t∑
i=1

i∑
j=1

jl

= Rl+1(t) +
t∑
i=1

Rl(i).

Lemma 30. We have

Rl(t) =
l∑

i=0

C(l, i)
(

t

i+ 1

)
.

Proof. Setting n = q = 0 in [2, Proposition 5.1.2]. We have

l∑
k=0

(
k

m

)
=

(
l + 1

m+ 1

)
. (4)

We prove the statement by induction on l. If l = 0, then the statement holds
since C(0, 0) = 1. Assume that the statement holds for l − 1. Then

Rl(t) = (t+ 1)Rl−1(t)−
t∑

j=1

Rl−1(j) (by Lemma 29)

= (t+ 1)
l−1∑
i=0

C(l − 1, i)

(
t

i+ 1

)
−

t∑
j=1

l−1∑
i=0

C(l − 1, i)

(
j

i+ 1

)

=
l−1∑
i=0

(i+ 2)C(l − 1, i)

(
t+ 1

i+ 2

)
−

l−1∑
i=0

C(l − 1, i)

(
t+ 1

i+ 2

)
(by (4))

=
l−1∑
i=0

(i+ 1)C(l − 1, i)

(
t+ 1

i+ 2

)

=
l−1∑
i=0

(i+ 1)C(l − 1, i)

(
t

i+ 2

)
+

l−1∑
i=0

(i+ 1)C(l − 1, i)

(
t

i+ 1

)

=
l∑

i=1

iC(l − 1, i− 1)

(
t

i+ 1

)
+

l−1∑
i=0

(i+ 1)C(l − 1, i)

(
t

i+ 1

)

=
l∑

i=0

(iC(l − 1, i− 1) + (i+ 1)C(l − 1, i))

(
t

i+ 1

)

=
l∑

i=0

C(l, i)
(

t

i+ 1

)
(by (1)).
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Lemma 31. For z ∈ C, we have

zl =
l∑

i=0

C(l, i)
(
z − 1

i

)
.

Proof. From [2, p.211, (4.65)], we have

zl =
l∑

i=0

S(l, i)[z]i,

so

zl =
l∑

i=0

S(l, i)[z]i

=
l∑

i=0

S(l, i)z[z − 1]i−1

=
l∑

i=0

S(l, i)[z − 1]i−1(z − i+ i)

=
l∑

i=0

S(l, i)[z − 1]i +
l∑

i=1

iS(l, i)[z − 1]i−1

=
l∑

i=0

S(l, i)[z − 1]i +
l−1∑
i=0

(i+ 1)S(l, i+ 1)[z − 1]i

=
l∑

i=0

(S(l, i) + (i+ 1)S(l, i+ 1)) [z − 1]i

=
l∑

i=0

S(l + 1, i+ 1)[z − 1]i

=
l∑

i=0

i!S(l + 1, i+ 1)

(
z − 1

i

)

=
l∑

i=0

C(l, i)
(
z − 1

i

)
.

3.2 pl[C(µ)] and q±r,t

Let l be a nonnegative integer. Let C(µ) = {j − i | (i, j) ∈ Dµ} be the multiset of
contents of the partition µ, and

pl[C(µ)] =
∑

(i,j)∈Dµ

(j − i)l
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be the lth power sum symmetric function evaluated at the contents of µ.
Let µ = (µ1, µ2, . . . , µk) ` n, and let r, t be nonnegative integers. We define

q±r,t =
k∑
i=1

((
µi

r + 1

)(
i− 1

t

)
±
(

µi
t+ 1

)(
i− 1

r

))
. (5)

Observe that if r = t then
q−r,r = 0, (6)

and

q+r,t = q+t,r, (7)

q−r,t = −q−t,r. (8)

Proposition 32. Let µ = (µ1, µ2, . . . , µk) ` n and l be a nonnegative integer. Then

p2l+1[C(µ)] =
l∑

h=0

h∑
r=0

2l+1−h∑
t=0

(−1)hϕ2l+1(h, r, t)q
−
t,r,

p2l[C(µ)] =
l−1∑
h=0

h∑
r=0

2l−h∑
t=0

(−1)hϕ2l(h, r, t)q
+
r,t +

1

2
(−1)l

l∑
r=0

l∑
t=0

ϕ2l(l, r, t)q
+
r,t.

Proof. By the definition of pl[C(µ)], we get the following:

pl[C(µ)] =
k∑
i=1

µi∑
j=1

(j − i)l

=
k∑
i=1

µi∑
j=1

l∑
h=0

(−1)l−h
(
l

h

)
jhil−h

=
k∑
i=1

l∑
h=0

(−1)l−h
(
l

h

)
il−hRh(µi)

=
k∑
i=1

l∑
h=0

h∑
r=0

l−h∑
t=0

(−1)l−h
(
l

h

)
C(h, r)C(l − h, t)

(
µi

r + 1

)(
i− 1

t

)

=
k∑
i=1

l∑
h=0

h∑
r=0

l−h∑
t=0

(−1)l−hϕl(h, r, t)

(
µi

r + 1

)(
i− 1

t

)
(by (2)),

where the fourth equality follows from Lemma 30 and Lemma 31. Thus

p2l+1[C(µ)] =
k∑
i=1

2l+1∑
h=0

h∑
r=0

2l+1−h∑
t=0

(−1)2l+1−hϕ2l+1(h, r, t)

(
µi

r + 1

)(
i− 1

t

)

=
k∑
i=1

l∑
h=0

h∑
r=0

2l+1−h∑
t=0

(−1)2l+1−hϕ2l+1(h, r, t)

(
µi

r + 1

)(
i− 1

t

)
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+
k∑
i=1

2l+1∑
h=l+1

h∑
r=0

2l+1−h∑
t=0

(−1)2l+1−hϕ2l+1(h, r, t)

(
µi

r + 1

)(
i− 1

t

)

=
k∑
i=1

l∑
h=0

h∑
r=0

2l+1−h∑
t=0

(−1)h−1ϕ2l+1(h, r, t)

(
µi

r + 1

)(
i− 1

t

)

+
k∑
i=1

l∑
h=0

h∑
r=0

2l+1−h∑
t=0

(−1)hϕ2l+1(h, r, t)

(
µi
t+ 1

)(
i− 1

r

)

=
l∑

h=0

h∑
r=0

2l+1−h∑
t=0

(−1)hϕ2l+1(h, r, t)

·

{
k∑
i=1

(
µi
t+ 1

)(
i− 1

r

)
−

k∑
i=1

(
µi

r + 1

)(
i− 1

t

)}

=
l∑

h=0

h∑
r=0

2l+1−h∑
t=0

(−1)hϕ2l+1(h, r, t)q
−
t,r,

where the third equality can be shown as follows:

2l+1∑
h=l+1

h∑
r=0

2l+1−h∑
t=0

(−1)2l+1−hϕ2l+1(h, r, t)

(
µi

r + 1

)(
i− 1

t

)

=
l∑

h=0

2l+1−h∑
r=0

h∑
t=0

(−1)hϕ2l+1(2l + 1− h, r, t)
(

µi
r + 1

)(
i− 1

t

)

=
l∑

h=0

2l+1−h∑
r=0

h∑
t=0

(−1)hϕ2l+1(h, t, r)

(
µi

r + 1

)(
i− 1

t

)
(by (3))

=
l∑

h=0

h∑
r=0

2l+1−h∑
t=0

(−1)hϕ2l+1(h, r, t)

(
µi
t+ 1

)(
i− 1

r

)
.

Similarly, we have

p2l[C(µ)] =
l−1∑
h=0

h∑
r=0

2l−h∑
t=0

(−1)hϕ2l(h, r, t)q
+
r,t

+
k∑
i=1

l∑
r=0

l∑
t=0

(−1)lϕ2l(l, r, t)

(
µi

r + 1

)(
i− 1

t

)

=
l−1∑
h=0

h∑
r=0

2l−h∑
t=0

(−1)hϕ2l(h, r, t)q
+
r,t +

1

2
(−1)l

l∑
r=0

l∑
t=0

ϕ2l(l, r, t)q
+
r,t,

where the second equality can be shown as follows:

k∑
i=1

l∑
r=0

l∑
t=0

(−1)lϕ2l(l, r, t)

(
µi

r + 1

)(
i− 1

t

)
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=
1

2
(−1)l

k∑
i=1

l∑
r=0

l∑
t=0

ϕ2l(l, r, t)

(
µi

r + 1

)(
i− 1

t

)

+
1

2
(−1)l

k∑
i=1

l∑
r=0

l∑
t=0

ϕ2l(l, r, t)

(
µi
t+ 1

)(
i− 1

r

)

=
1

2
(−1)l

l∑
r=0

l∑
t=0

ϕ2l(l, r, t)q
+
r,t.

By Proposition 32, we have

p0[C(µ)] =
1

2
q+0,0 = n,

p1[C(µ)] = q−0,0 + q−1,0

= q−1,0, (by (6))

p2[C(µ)] = 2q+0,1 + 2q+0,2 − q+1,0 − q+1,1
= q+0,1 + 2q+0,2 − q+1,1, (by (7))

p3[C(µ)] = −2q−1,0 + 6q−2,0 + 6q−3,0 − 3q−0,1 − 9q−1,1 − 6q−2,1

= q−1,0 + 6q−2,0 + 6q−3,0 − 6q−2,1 (by (6) and (8)). (9)

3.3 Main results

Let µ, λ ` n. We denote by χµ(λ) the value of the character of the Specht module
Sµ evaluated at a permutation π belonging to the conjugacy class of type λ. From
[2, Example 5.3.3], we have

χµ(2, 1n−2) =
fµ

[n]2
2p1[C(µ)],

χµ(3, 1n−3) =
fµ

[n]3
3

(
p2[C(µ)]−

(
n

2

))
,

χµ(4, 1n−4) =
fµ

[n]4
4 (p3[C(µ)]− (2n− 3)p1[C(µ)]) ,

χµ(5, 1n−5) =
fµ

[n]5
5

(
p4[C(µ)]− (3n− 10)p2[C(µ)]− 2p1[C(µ)]2 + 5

(
n

3

)
− 3

(
n

2

))
,

χµ(6, 1n−6) =
fµ

[n]6
6 (p5[C(µ)] + (25− 4n)p3[C(µ)] + 2(3n− 4)(n− 5)p1[C(µ)])

− fµ

[n]6
36p1[C(µ)]p2[C(µ)]. (10)

Remark 33. In [2, Example 5.3.3], the coefficient of d3(λ) (in this paper, we denote
by p3[C(µ)]) in the character value χ̂λ6,1n−6 is 24(7− n). Since cλ6 and cλ7 are incorrect



29

in [2, p.251], the value of the character χ̂λ6,1n−6 is also incorrect. In fact, the coefficient

of d3(λ) in the character value χ̂λ6,1n−6 is 6(25− 4n), as given in (10).

We obtain [2, Example 5.3.8]:

χµ(2, 2, 1n−4) =
fµ

[n]4
4

(
p1[C(µ)]2 − 3p2[C(µ)] + 2

(
n

2

))
. (11)

In general, for µ ` n and λ ` m ≤ n, the character χµ(λ, 1n−m) can be expressed
as a polynomial of cµr (t) using Lassalle’s explicit formula [2, Theorem 5.3.11].

For any i ≥ 1, mi(µ) = |{j | µj = i}| is the multiplicity of i in µ. Set

zµ =
∏
i≥1

imi(µ)mi(µ)!.

Let µ ` n and λ ` m ≤ n. From [13, Theorem 3.1], we have

fµ/λ =
∑
ν`m

z−1ν χµ(ν, 1n−m)χλ(ν).

If λ = (m), then

fµ/(m) =
∑
ν`m

z−1ν χµ(ν, 1n−m)χ(m)(ν)

=
∑
ν`m

z−1ν χµ(ν, 1n−m). (12)

We already proved that pl[C(µ)] can be expressed as a linear combination of q±r,t
(Proposition 32), so the character value χµ(λ, 1n−m) can be written as a polynomial
in q±r,t using Lassalle’s explicit formula [2, Theorem 5.3.11]. We compute χµ(m, 1n−m)
for 2 ≤ m ≤ 4 and χµ(2, 2, 1n−4) using (9), (10) and (11).

χµ(2, 1n−2) =
fµ

[n]2
2p1[C(µ)]

=
fµ

[n]2
2q−1,0,

χµ(3, 1n−3) =
fµ

[n]3
3

(
p2[C(µ)]−

(
n

2

))
=

fµ

[n]3
3

(
q+0,1 + 2q+0,2 − q+1,1 −

(
n

2

))
,

χµ(4, 1n−4) =
fµ

[n]4
4 (p3[C(µ)]− (2n− 3)p1[C(µ)])

=
fµ

[n]4
4
(
(4− 2n)q−1,0 + 6q−2,0 + 6q−3,0 − 6q−2,1

)
,

χµ(2, 2, 1n−4) =
fµ

[n]4
4

(
p1[C(µ)]2 − 3p2[C(µ)] + 2

(
n

2

))



30

=
fµ

[n]4
4

(
(q−1,0)

2 − 3q+0,1 − 6q+0,2 + 3q+1,1 + 2

(
n

2

))
. (13)

Substituting (13) into (12), we find

fµ/(2) =
1

z(2)
χµ(2, 1n−2) +

1

z(1,1)
χµ(1n)

=
1

2

fµ

[n]2
· 2q−1,0 +

1

2
fµ

=
fµ

[n]2

(
q−1,0 +

(
n

2

))
, (14)

fµ/(3) =
1

z(3)
χµ(3, 1n−3) +

1

z(2,1)
χµ(2, 1n−2) +

1

z(1,1,1)
χµ(1n)

=
1

3

fµ

[n]3
· 3
(
q+0,1 + 2q+0,2 − q+1,1 −

(
n

2

))
+

1

2

fµ

[n]2
· 2q−1,0 +

1

6
fµ

=
fµ

[n]3

(
q+0,1 + 2q+0,2 − q+1,1 + (n− 2)q−1,0 +

(
n

3

)
−
(
n

2

))
, (15)

and

fµ/(4) =
1

z(4)
χµ(4, 1n−4) +

1

z(3,1)
χµ(3, 1n−3) +

1

z(2,2)
χµ(2, 2, 1n−4)

+
1

z(2,1,1)
χµ(2, 1n−2) +

1

z(1,1,1,1)
χµ(1n)

=
1

4

fµ

[n]4
· 4
(
(4− 2n)q−1,0 + 6q−2,0 + 6q−3,0 − 6q−2,1

)
+

1

3

fµ

[n]3
· 3
(
q+0,1 + 2q+0,2 − q+1,1 −

(
n

2

))
+

1

8

fµ

[n]4
· 4
(

(q−1,0)
2 − 3q+0,1 − 6q+0,2 + 3q+1,1 + 2

(
n

2

))
+

1

4

fµ

[n]2
· 2q−1,0 +

1

24
fµ

=
fµ

[n]4

(
1

2
(n− 2)(n− 7)q−1,0 + 6q−2,0 + 6q−3,0 − 6q−2,1 +

1

2
(q−1,0)

2

)
+

fµ

[n]4

(
(n− 9

2
)q+0,1 + (2n− 9)q+0,2 − (n− 9

2
)q+1,1

)
+

fµ

[n]4

((
n

4

)
− 3

(
n

3

)
+ 2

(
n

2

))
.

We get (2) and (4) by substituting (5) into (14) and (15), respectively.
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3.4 A generalization of a polynomial identity for a

partition and its conjugate

Proposition 34. Let µ be a partition of an integer. Then µ′ is the conjugate of µ if
and only if

k∑
i=1

(
µi
t+ 1

)(
i− 1

r

)
=
∑
j≥1

(
µ′j
r + 1

)(
j − 1

t

)
.

for all nonnegative integers r and t.

Proof. First, we show the “only if” part. Then∑
j≥1

(
µ′j
r + 1

)(
j − 1

t

)
=
∑
j≥t+1

∑
J⊆{1,2,...,µ1},
|J |=t+1,
max J=j

|{I | I × J ⊆ Dµ, |I| = r + 1}|

=
k∑

i=r+1

∑
I⊆{1,2,...,k},
|I|=r+1,
max I=i

|{J | I × J ⊆ Dµ, |J | = t+ 1}|

=
k∑

i=r+1

∑
I⊆{1,2,...,k},
|I|=r+1,
max I=i

|{J | max J ≤ µi, |J | = t+ 1}|

=
k∑

i=r+1

∑
I⊆{1,2,...,k},
|I|=r+1,
max I=i

|{J | J ⊆ {1, 2, . . . , µi}, |J | = t+ 1}|

=
k∑

i=r+1

∑
I⊆{1,2,...,k},
|I|=r+1,
max I=i

(
µi
t+ 1

)

=
k∑

i=r+1

(
µi
t+ 1

)(
i− 1

r

)
.

Next, let λ be the conjugate of µ. Set h(λ) = h. Then

h∑
j=1

(
λj
r + 1

)(
j − 1

t

)
=

k∑
i=1

(
µi
t+ 1

)(
i− 1

r

)
=
∑
j≥1

(
µ′j
r + 1

)(
j − 1

t

)
. (16)

Setting h(µ′) = l and r = 0 in (16), we have

h∑
j=1

λj

(
j − 1

t

)
=

l∑
i=1

µ′i

(
i− 1

t

)
. (17)
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Suppose h > l and set t = h − 1 in (17), then λh = 0. Similarly, suppose h < l and
set t = l − 1 in (17). Then µ′l = 0, and both cases are contradictions. Thus h = l.

We show that λh−i = µ′h−i for all i with 0 ≤ i ≤ h− 1 by induction on i. If i = 0,
setting t = h− 1 in (17), then λh = µ′h.

Assume that the assertion holds for some i ∈ {0, 1, . . . , h− 2}. Let t = h− (i+ 2)
in (17). By the inductive hypothesis, we have

h∑
j=h−i

λj

(
j − 1

h− i− 2

)
=

h∑
j=h−i

µ′j

(
j − 1

h− i− 2

)
.

Therefore, λh−i−1 = µ′h−i−1 since
(
j−1
h−i−2

)
= 0 for all j with 1 ≤ j ≤ h − j − 2. Thus

λ = µ′ and µ′ is the conjugate of µ.

From Proposition 34, we have

q±r,t =
k∑
i=1

(
µi

r + 1

)(
i− 1

t

)
±
∑
j≥1

(
µ′j
r + 1

)(
j − 1

t

)
. (18)

By substituting (18) into (14) and (15), we get (1) and

fµ/(3) =
fµ

[n]3

(
q+0,1 + 2q+0,2 − q+1,1 + (n− 2)q−1,0 +

(
n

3

)
−
(
n

2

))
=

fµ

[n]3

(
q+1,0 + 2q+2,0 − q+1,1 + (n− 2)q−1,0 +

(
n

3

)
−
(
n

2

))
(by (7))

=
fµ

[n]3

((
k∑
i=1

(
µi
2

)
+
∑
j≥1

(
µ′j
2

))
+ 2

(
k∑
i=1

(
µi
3

)
+
∑
j≥1

(
µ′j
3

)))

− fµ

[n]3

(
k∑
i=1

(
µi
2

)
(i− 1) +

∑
j≥1

(
µ′j
2

)
(j − 1)

)

+
fµ

[n]3

(
(n− 2)

(
k∑
i=1

(
µi
2

)
−
∑
j≥1

(
µ′j
2

))
+

(
n

3

)
−
(
n

2

))
,

respectively.



Chapter 4

A bijective proof of Vershik’s
relations for the Kostka numbers

4.1 Insertion

Throughout this chapter, λ � n. For a positive integer i, we define λi � n + 1 as
follows:

λij =

{
λj + 1 if j = i,

λj otherwise.

In this section, we let µ ` n and T ∈ STab(µ, λ). We also let x be a positive
integer.

Definition 35. The bumping route of (T, x) is defined as the sequence
−→
R (T, x) =

(j1, j2, . . .) with integer entries defined as follows: first,
−→
R (T, x) = 0 if {q | T (1, q) >

x} = ∅. Otherwise, j1 = min{q | T (1, q) > x} and for p ≥ 2,

jp =

{
0 if jp−1 = 0 or T (p, µp) ≤ T (p− 1, jp−1),

min{q | T (p, q) > T (p− 1, jp−1)} otherwise.

If jp = 0 for p > l then we write
−→
R (T, x) = (j1, j2, . . . , jl). We denote by l(

−→
R (T, x))

the length of
−→
R (T, x), that is, l(

−→
R (T, x)) = max{l | jl 6= 0}. Note that if

−→
R (T, x) = 0,

then we define l(
−→
R (T, x)) = 0.

By previous definition, clearly, we have

T (1, j1 − 1) ≤ x < T (1, j1), (1)

T (p, jp − 1) ≤ T (p− 1, jp−1) < T (p, jp) (2 ≤ p ≤ l), (2)

T (l + 1, µl+1) ≤ T (l, jl), (3)

whenever T (·, ·) is defined. Moreover, we get jp ≥ jp+1 for all positive integers p.
Indeed, we may assume p < l. Then we have T (p+ 1, jp) > T (p, jp). Thus

jp ≥ min{q | T (p+ 1, q) > T (p, jp)}

33
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= jp+1.

For the remainder of this section, we let
−→
R (T, x) = (j1, j2, . . . , jl), where l =

l(
−→
R (T, x)).

Lemma 36. We have µl+1 < jl. In particular, µl+1 ` n+ 1.

Proof. If l = 0, then it is obvious. Suppose l ≥ 1. Then by (3) we have (l+1, jl) /∈ Dµ.
Since (l, jl) ∈ Dµ, we have µl+1 < jl. In particular, µl+1 < µl.

Definition 37. We define a insertion or bumping tableau Tx of shape µl+1 and weight
λx as follows: if l = 0, then define Tx by

Tx(p, q) =

{
T (p, q) if (p, q) ∈ Dµ,

x if (p, q) = (1, µ1 + 1).
(4)

Otherwise, define Tx by

Tx(p, q) =


x if (p, q) = (1, j1),

T (p− 1, jp−1) if q = jp, 2 ≤ p ≤ l,

T (l, jl) if (p, q) = (l + 1, µl+1 + 1),

T (p, q) otherwise.

(5)

Lemma 38. We have Tx(p, jp) < T (p, jp) for all p with 1 ≤ p ≤ l.

Proof. We have

Tx(p, jp) =

{
x if p = 1,

T (p− 1, jp−1) if 2 ≤ p ≤ l
(by (5))

< T (p, jp) (by (1) and (2)).

Lemma 39. We have Tx ∈ STab(µl+1, λx).

Proof. By Lemma 36, we have µl+1 ` n + 1. To show that Tx is a semistandard
tableau, it suffices to prove

Tx(p, jp − 1) ≤ Tx(p, jp) ≤ Tx(p, jp + 1),

Tx(l + 1, µl+1) ≤ Tx(l + 1, µl+1 + 1),

Tx(p− 1, jp) < Tx(p, jp) < Tx(p+ 1, jp),

Tx(l, µl+1 + 1) < Tx(l + 1, µl+1 + 1), (6)

whenever Tx(·, ·) is defined.
For all p with 1 ≤ p ≤ l, we have

Tx(p, jp − 1) = T (p, jp − 1)
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≤

{
x if p = 1,

T (p− 1, jp−1) if 2 ≤ p ≤ l
(by (1) and (2))

= Tx(p, jp)

< T (p, jp) (by Lemma 38)

≤ T (p, jp + 1)

= Tx(p, jp + 1).

Also,

Tx(l + 1, µl+1) = T (l + 1, µl+1)

≤

{
x if

−→
R (T, x) = 0,

T (l, jl) otherwise
(by (3))

= Tx(l + 1, µl+1 + 1) (by (4) and (5)).

For all p with 2 ≤ p ≤ l, we have

Tx(p− 1, jp) =


x if p = 2, j1 = j2,

T (1, j2) if p = 2, j1 > j2,

T (p− 2, jp−2) if 3 ≤ p ≤ l, jp−1 = jp,

T (p− 1, jp) if 3 ≤ p ≤ l, jp−1 > jp

<

{
T (1, j1) if p = 2,

T (p− 1, jp−1) if 3 ≤ p ≤ l
(by (1) and (2))

= Tx(p, jp) (by (5)).

For all p with 1 ≤ p ≤ l, we have

Tx(p, jp) < T (p, jp) (by Lemma 38)

≤

{
T (p, jp) if jp = jp+1,

T (p+ 1, jp) if jp > jp+1

= Tx(p+ 1, jp) (by (5)).

Finally, we have µl+1 < jl by Lemma 36, so

Tx(l, µl+1 + 1) =

{
T (l − 1, jl−1) if µl+1 + 1 = jl,

T (l, µl+1 + 1) if µl+1 + 1 < jl

< T (l, jl) (by (2))

= Tx(l + 1, µl+1 + 1) (by (5)).

Thus we proved (6).
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4.2 Reverse insertion

In this section, let ρ ` n − 1 and let l be a nonnegative integer such that ρl+1 ` n.
We also let S ∈ STab(ρl+1, λ).

Definition 40. The reverse bumping route of (S, l) is defined as the sequence
←−
R (S, l) =

(j′1, j
′
2, . . . , j

′
l) with integer entries defined as follows: first,

←−
R (S, l) = 0 if l = 0. Oth-

erwise, j′l = max{q | S(l, q) < S(l + 1, ρl+1 + 1)} and

j′p = max{q | S(p, q) < S(p+ 1, j′p+1)}

for all p with 1 ≤ p < l.

By previous definition, clearly, we have

S(p, j′p) < S(p+ 1, j′p+1) ≤ S(p, j′p + 1) (1 ≤ p < l), (7)

S(l, j′l) < S(l + 1, ρl+1 + 1) ≤ S(l, j′l + 1). (8)

Moreover, we get j′p ≥ j′p+1 for all p with 1 ≤ p < l. Indeed, since S(p, j′p+1) <
S(p+ 1, j′p+1), we have

j′p = max{q | S(p, q) < S(p+ 1, j′p+1)}
≥ j′p+1.

For the remainder of this section, we let
←−
R (S, l) = (j′1, j

′
2, . . . , j

′
l).

Definition 41. We define

x(S, l) =

{
S(1, ρ1 + 1) if l = 0,

S(1, j′1) otherwise.

We define a reverse insertion or reverse bumping tableau Sl of shape ρ and weight
λ(x(S,l)) as follows: if l = 0, then define Sl = S|Dρ . Otherwise, define Sl by

Sl(p, q) =


S(p+ 1, j′p+1) if q = j′p, 1 ≤ p < l,

S(l + 1, ρl+1 + 1) if (p, q) = (l, j′l),

S(p, q) otherwise.

(9)

Lemma 42. We have S(p, j′p) < Sl(p, j′p) for all p with 1 ≤ p ≤ l.

Proof. We have

S(p, j′p) <

{
S(p+ 1, j′p+1) if 1 ≤ p < l,

S(l + 1, ρl+1 + 1) if p = l
(by (7) and (8))

= Sl(p, j′p) (by (9)).
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Lemma 43. Let x = x(S, l). Then

(i) Sl ∈ STab(ρ, λ(x)),

(ii)
−→
R (Sl, x) =

←−
R (S, l),

(iii) (Sl)x = S.

Proof. (i) If l = 0 then Sl = S|Dρ and x = S(1, ρ1+1), so Sl ∈ STab(ρ, λ(x)). Suppose
l ≥ 1. By Definition 41, Sl is a tableau of shape ρ and weight λ(x). It suffices to prove
that

Sl(p, j′p − 1) ≤ Sl(p, j′p) ≤ Sl(p, j′p + 1),

Sl(p− 1, j′p) < Sl(p, j′p) < Sl(p+ 1, j′p), (10)

whenever Sl(·, ·) is defined.
For all p with 1 ≤ p ≤ l, we have

Sl(p, j′p − 1) = S(p, j′p − 1)

≤ S(p, j′p)

< Sl(p, j′p) (by Lemma 42)

=

{
S(p+ 1, j′p+1) if 1 ≤ p < l,

S(l + 1, ρl+1 + 1) if p = l
(by (9))

≤

{
S(p, j′p + 1) if 1 ≤ p < l,

S(l, j′l + 1) if p = l
(by (7) and (8))

= Sl(p, j′p + 1) (by (9)).

For 2 ≤ p ≤ l, we have

Sl(p− 1, j′p) =

{
S(p− 1, j′p) if j′p−1 > j′p,

S(p, j′p) if j′p−1 = j′p
(by (9))

≤ S(p, j′p)

< Sl(p, j′p) (by Lemma 42).

If l = 1, then ρ2 + 1 ≤ j′1 since S(1, ρ2 + 1) < S(2, ρ2 + 1), so (2, ρ2 + 1) /∈ Dρ.
Suppose l ≥ 2. For 1 ≤ p < l, we have

Sl(p, j′p) = S(p+ 1, j′p+1)

<


S(p+ 1, j′p) if j′p > j′p+1, 1 ≤ p ≤ l − 2,

S(p+ 2, j′p+2) if j′p = j′p+1, 1 ≤ p ≤ l − 2,

S(l, j′l−1) if j′p > j′p+1, p = l − 1,

S(l + 1, ρl+1 + 1) if j′p = j′p+1, p = l − 1

(by (7) and (8))

= Sl(p+ 1, j′p).
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Thus we proved (10).

(ii) Let
−→
R (Sl, x) = (j1, . . . , jl′) where l′ = l(

−→
R (Sl, x)). If l = 0 then x = x(S, l) =

S(1, ρ1 + 1) and Sl = S|Dρ . Since Sl ∈ STab(ρ, λ(x)), we have Sl(1, q) = S(1, q) ≤ x

for all q with 1 ≤ q ≤ ρ1, so {q | Sl(1, q) > x} = ∅. Thus
−→
R (Sl, x) = 0.

Suppose l ≥ 1. Note that, for all p with 1 ≤ p ≤ l, we have

Sl(p, j′p − 1) = S(p, j′p − 1) ≤ S(p, j′p). (11)

We prove jp = j′p by induction on p. If p = 1 then

j1 = min{q | Sl(1, q) > x}
= min{q | Sl(1, q) > S(1, j′1)}
= j′1 (by Lemma 42 and (11)).

Assume jp−1 = j′p−1 for some 2 ≤ p ≤ l. Then

jp = min{q | Sl(p, q) > Sl(p− 1, jp−1)}
= min{q | Sl(p, q) > Sl(p− 1, j′p−1)}
= min{q | Sl(p, q) > S(p, j′p)} (by (9))

= j′p (by Lemma 42 and (11)).

Since

Sl(l + 1, ρl+1) = S(l + 1, ρl+1) (by (9))

≤ S(l + 1, ρl+1 + 1)

= Sl(l, j′l) (by (9))

= Sl(l, jl),

we have jp = 0 for p > l, so l′ = l.

(iii) By (ii), we have
−→
R (Sl, x) =

←−
R (S, l). Then (Sl)x ∈ STab(ρl+1, λ) by (i) and

Lemma 39. Suppose first l = 0. For (p, q) ∈ Dρ1 , we have

(Sl)x(p, q) =

{
Sl(p, q) if (p, q) ∈ Dρ,

x if (p, q) = (1, ρ1 + 1)

=

{
S(p, q) if (p, q) ∈ Dρ,

S(1, ρ1 + 1) if (p, q) = (1, ρ1 + 1)

= S(p, q).

Suppose l ≥ 1. For (p, q) ∈ Dρl+1 , we have

(Sl)x(p, q) =


x if (p, q) = (1, j1),

Sl(p− 1, jp−1) if q = jp, 2 ≤ p ≤ l,

Sl(l, jl) if (p, q) = (l + 1, ρl+1 + 1),

Sl(p, q) otherwise
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=


x if (p, q) = (1, j′1),

Sl(p− 1, j′p−1) if q = j′p, 2 ≤ p ≤ l,

Sl(l, j′l) if (p, q) = (l + 1, ρl+1 + 1),

Sl(p, q) otherwise

= S(p, q).

4.3 Vershik’s relations for the Kostka numbers

Lemma 44. Let µ ` n, λ � n and T ∈ STab(µ, λ). Let x be a positive integer and

l = l(
−→
R (T, x)). Then

(i)
←−
R (Tx, l) =

−→
R (T, x).

(ii) (Tx)
l = T .

Proof. If l = 0, then (i) clearly holds, and (Tx)
l = Tx|Dµ = T . Suppose l ≥ 1 and let

←−
R (Tx, l) = (j′1, . . . , j

′
l) and

−→
R (T, x) = (j1, . . . , jl).

(i) Note that, for all p with 1 ≤ p ≤ l, we have

Tx(p, jp + 1) = T (p, jp + 1) ≥ T (p, jp). (12)

We prove j′p = jp by induction on l − p. If p = l then

j′l = max{q | Tx(l, q) < Tx(l + 1, µl+1 + 1)}
= max{q | Tx(l, q) < T (l, jl)} (by (5))

= jl (by Lemma 38 and (12)).

Assume j′p+1 = jp+1 for some 1 ≤ p < l. Then

j′p = max{q | Tx(p, q) < Tx(p+ 1, j′p+1)}
= max{q | Tx(p, q) < Tx(p+ 1, jp+1)}
= max{q | Tx(p, q) < T (p, jp)} (by (5))

= jp (by Lemma 38 and (12)).

(ii) By (i), we have
←−
R (Tx, l) =

−→
R (T, x). Then x(Tx, l) = Tx(1, j

′
1) = Tx(1, j1) = x,

so (Tx)
l ∈ STab(µ, λ) by Lemma 43 (i). For (p, q) ∈ Dµ, we have

(Tx)
l(p, q) =


Tx(p+ 1, j′p+1) if q = j′p, 1 ≤ p < l,

Tx(l + 1, µl+1 + 1) if (p, q) = (l, j′l),

Tx(p, q) otherwise

(by (9))
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=


Tx(p+ 1, jp+1) if q = jp, 1 ≤ p < l,

Tx(l + 1, µl+1 + 1) if (p, q) = (l, jl),

Tx(p, q) otherwise

= T (p, q).

Before proving the main result, for λ � n, we let

Supp(λ) = {i | λi > 0}.

Theorem 45. Let λ � n and ρ ` n− 1. Then the map⋃
x∈Supp(λ) STab(ρ, λ(x)) →

⋃
µ`n
µ�ρ

STab(µ, λ)

T 7→ Tx

is a bijection.

Proof. The map is well-defined by Lemma 39. Suppose S ∈ STab(µ, λ) for some
µ ` n with µ � ρ. Then µ = ρl+1 for some l. Set x = x(S, l). By Lemma 43,
Sl ∈ STab(ρ, λ(x)) and (Sl)x = S, so the map is a surjection.

Let T ∈ STab(ρ, λ(x)) and S ∈ STab(ρ, λ(x
′)). Suppose Tx = Sx′ ∈ STab(µ, λ) for

some µ ` n with µ � ρ. Then µ = ρl+1 for some l, so l = l(
−→
R (T, x)) = l(

−→
R (S, x′)).

By Lemma 44, we have T = (Tx)
l = (Sx′)

l = S, so the map is an injection.

Remark 46. Let µ ` n and let X be a set of positive integers. Define

W(X,n) = {λ � n | λi ≥ 0, Supp(λ) ⊆ X},

STabX(µ) =
⋃

λ∈W(X,n)

STab(µ, λ).

For ρ ` n− 1, the map

STabX(ρ)×X →
⋃
µ`n
µ�ρ

STabX(µ)

(T, x) 7→ Tx
(13)

is a bijection (see [8, p.399, 10.60]). This follows from Theorem 45. Indeed, collecting
the bijections of Theorem 45 for all λ ∈ W(X,n), we obtain a bijection⋃

λ∈W(X,n)

⋃
x∈Supp(λ) STab(ρ, λ(x))× {x} →

⋃
λ∈W(X,n)

⋃
µ`n
µ�ρ

STab(µ, λ)

(T, x) 7→ Tx
. (14)

Then the codomain of the bijection (14) equals that of (13), while⋃
λ∈W(X,n)

⋃
x∈Supp(λ)

STab(ρ, λ(x))× {x} =
⋃

ν∈W(X,n−1)

STab(ρ, ν)×X

= STabX(ρ)×X.
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Corollary 47 (Vershik’s relations for the Kostka numbers). For λ = (λ1, λ2, . . . , λh) `
n and ρ ` n− 1, we have∑

µ`n
µ�ρ

K(µ, λ) =
∑
γ`n−1
γ�λ

C(λ, γ)K(ρ, γ).

Proof.∑
µ`n
µ�ρ

K(µ, λ) =
∑
µ`n
µ�ρ

| STab(µ, λ)|

=
∑

1≤x≤h

| STab(ρ, λ(x))| (by Theorem 45)

=
∑
γ`n−1
γ�λ

∑
1≤x≤h

λ(λ(x))=γ

| STab(ρ, λ(x))|

=
∑
γ`n−1
γ�λ

∑
1≤x≤h

λ(λ(x))=γ

| STab(ρ, γ)| (by [2, Lemma 3.7.1])

=
∑
γ`n−1
γ�λ

|{x | 1 ≤ x ≤ h, λ(λ(x)) = γ}|| STab(ρ, γ)|

=
∑
γ`n−1
γ�λ

C(λ, γ)K(ρ, γ).

Now, we compare Vershik’s bijection with ours using [14, Example 1].

Example 48 ([14, Example 1]). Let λ = (3, 2, 1) ` 6 and ρ = (4, 1) ` 5. Then

µ-tableaux : A =
1 1 1 2 2
3

, B =
1 1 1 2 3
2

, C =
1 1 1 2
2 3

,

D =
1 1 1 3
2 2

, E =
1 1 1 2
2
3

;

ρ-tableaux : L =
1 1 2 2
3

, M =
1 1 2 3
2

, N =
1 1 1 2
3

,

P =
1 1 1 3
2

, Q =
1 1 1 2
2

.

We remove one box from the first row in A and B, one box from the second row in
C and D, and one box (3, 1) in E in order to obtain ρ-tableaux. Then we have a
bijection as follows:

A↔ L; B ↔M ; C ↔ N ; D ↔ P ; E ↔ Q.
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The bijection given by Theorem 45 is:

L↔ L1 = E; M ↔M1 = D;

N ↔ N2 = A; P ↔ P2 = C;

Q↔ Q3 = B.

Finally, we give an example, for which there is no bijection arising from removable
of one box.

Example 49. Let λ = (3, 3, 2) ` 8 and ρ = (4, 3) ` 7. Then

µ-tableaux : A =
1 1 1 3 3
2 2 2

, B =
1 1 1 2 3
2 2 3

, C =
1 1 1 2 2
2 3 3

,

D =
1 1 1 2
2 2 3 3

, E =
1 1 1 3
2 2 2
3

, F =
1 1 1 2
2 2 3
3

;

ρ-tableaux : L =
1 1 2 3
2 2 3

, M =
1 1 2 2
2 3 3

, N =
1 1 1 3
2 2 3

,

P =
1 1 1 2
2 3 3

, Q =
1 1 1 3
2 2 2

, R =
1 1 1 2
2 2 3

.

As mentioned in the Introduction, µ-tableaux A and E result in ρ-tableau Q, so there
is no bijection between µ-tableaux and ρ-tableaux arising from removable of one box.
The bijection given by Theorem 45 is:

L↔ L1 = E; M ↔M1 = F ;

N ↔ N2 = D; P ↔ P2 = C;

Q↔ Q3 = A; R↔ R3 = B.
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