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Abstract

In this thesis, we propose a new variant of pattern matching called permuted pattern

matching. A multi-set of strings over an alphabet Σ is called a multi-track string or

multi-track, denoted by T = {t1, . . . , tN}. The permuted pattern matching problem is

that given a multi-track text T = {t1, . . . , tN} of length n and a multi-track pattern

P = {p1, . . . , pM} of length m, outputs all positions i such that {p1, . . . , pM} ⊆ {t1[i :

i +m − 1], . . . , tN [i : i +m − 1]}, where tj[b : e] is a substring of tj that begins at b and

ends at e. The permuted pattern matching provides a new analysis of data represented as

multiple sequences, such that multi-sensor data, polyphonic music data and traffic data.

At first we address an exact version of permuted pattern matching problems. We

consider three settings of the problem with respect to whether the text and the pattern

are allowed to be preprocessed or not. For each setting, we propose efficient algorithms.

Next we tackle an approximate version of permuted pattern matchings. We consider

multi-track sequences of numbers, called multi-track numerical sequence or numerical

multi-track. Then, we define a distance D between such two multi-track numerical se-

quences. The approximate permuted pattern matching problem is that given a multi-track

text T = {t1, . . . , tN} of length n, a multi-track pattern P = {p1, . . . , pM} of length m, and

a criterion δ ≥ 0, outputs all positions i such that D(T[i : i+m−1],P) ≤ δ for 1 ≤ i ≤ n．

For this problem, we propose a new data structure that is based on hash functions. By

using our data structure, both of the exact and approximate permuted pattern matching

problems can be solved efficiently.
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Chapter 1

Introduction

1.1 Background

Time-series data are observed and stored in various areas; thus, it is necessary to analyze

these data, e.g., stock data, weather data, vehicle sensor data, network traffic data, music

data, and so on. We may obtain some benefits by studying these data, e.g., discovering

useful knowledge or predicting and detecting the characteristic patterns of future data.

However, the amount of data is continuing to increase; therefore, methods for the analysis

these data are required to realize a real-time property and efficiency.

Recently, it seems that time-series data stored as multiple sequences have increased,

and such data may provide advanced knowledge by considering the effect of the combina-

tion of sequences (see Figure 1.1). For example, the analysis of multi-sensor data enables

advanced event detection. Modern smartphones are equipped with multi-axis acceleration

sensors. By focusing on the combination of measurements from three sensors, the smart-

phone detects its state: stopping, moving, rolling, shaking, and so on. In contrast, it is

quite difficult to detect these states by analyzing only one sensor. Modern cars also have

many sensors to support drivers. By using sensor data, the cars provide useful functional-

ity to drivers, such as collision detection, parking support, and car navigation. Moreover,

the analysis of the action histories of users of various services is useful for identifying
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1.1 Background

Figure 1.1: Examples of multiple sequence data

the relationships among users or clustering users. For example, the sequences of posts of

users on micro-blog services such as Twitter and Facebook can be regarded as multiple

time-series data. We can reveal the relationships among users by focusing on the mentions

between users. Although the number of sequences in multi-sensor data of a smartphone

or car is at most a few dozen or hundreds, the number of users of the micro-blog services

can be greater than ten thousand. To analyze such a large set of sequences considering

the combination of sequences, scalable methods are required.

String processing is the most fundamental technique for data processing because all

data are electronically stored as binary strings on computers. Because numerical data can

be transformed into strings by various methods [18, 25, 35], string processing can be widely

applied to sequence data. Because of the large number of applications, string processing

has been studied for a long time [16, 24], including pattern matching, text indexing,

text compression, and so on. The efficiencies of the algorithms for string processing are

guaranteed theoretically.

The pattern matching problem is the most basic problem in string processing, where a
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1.1 Background

text string t and a pattern string p over an alphabet Σ are given to find the occurrences of

p in t; thus it has been studied by many researchers [1, 9, 31, 36, 43]．In addition to the

above standard pattern matching problem, there are some varieties of pattern matching

for industrial applications. For example, parameterized pattern matching [4, 41] focuses

on the structure of strings and is applied to software maintenance or genome analysis.

Two-dimensional pattern matching [2, 5, 8, 23] is used for image processing.

Our purpose is to develop a basic analysis technique for multiple time-series data that

is theoretically guaranteed to have a real-time property and scalability. We call multi-sets

of strings of the same length over Σ a multi-track string, such that T = {t1, t2, . . . , tN},

where ti ∈ Σn for 1 ≤ i ≤ N . In our study, we use the multi-track string as a model of

multiple time-series data. We aim to build an analysis method for multiple time-series

data by developing efficient algorithms for the multi-track string.

In this thesis, we particularly address the development of algorithms that solve the pat-

tern matching problem on the multi-track string because the pattern matching algorithm

is considered as to be the most fundamental tool, similar to standard string processing. In

such a problem, text and pattern are given as multiple strings that are different from the

standard pattern matching problem. The two-dimensional pattern matching problem also

considers multiple-string inputs. It regards a multiple-string input as a tuple of strings;

however, our problem is concerned with multi-sets of strings. This is a new formulation

of the pattern matching problem that has not been studied in previous works. We must

consider a permutation of strings to determine whether or not a pattern matches at a

specific position in the text because both of the text and pattern are both multi-sets

of strings. Thus, we call our problem the permuted pattern matching problem on the

multi-track string.

We also address how to perform pattern matching of multiple numerical sequences di-

rectly. We call such sequences multi-track numerical sequences in this study. Although we

mentioned that numerical data can be transformed into strings above, there are problems
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1.2 Previous work

associated with the cost of the transformation and the lack of information. Generally, the

matching of numerical sequences is performed approximately by using the proper similar-

ity or dissimilarity between sequences. In this dissertation, we define a distance between

multi-track numerical sequences. We propose the approximate permuted pattern matching

problem by using the distance, and try to develop algorithms for solving it efficiently.

1.2 Previous work

The string matching problem is that given a text string t of length n and a pattern

string p of length m, outputs all positions of occurrences of the pattern in the text.

KMP algorithm [31], BM algorithm [9], and AC algorithm [1] are well known as the

sequential search approaches. If preprocessing of the text is allowed, the problem can be

solved efficiently by building the indexing structures for the text. The classical indexing

structures for the text, suffix trees [43] and suffix arrays [36], require O(n) space and can

be built in O(n) time on a constant-size alphabet [22, 28, 32, 37, 38, 42]. By using suffix

trees and suffix arrays, all occurrences of a pattern can be reported in O(m + occ) and

O(m log n + occ) time, respectively, where occ is the total number of occurrences of the

pattern in the text. Ehrenfeucht et al. [21] proposed more space efficient indexing structure

called position heaps, which requires O(n) space but the number of nodes in the position

heaps is at most n + 1 although that of the suffix tree is at most 2n − 1. Kucherov [33]

showed an Ukkonen-like on-line O(n)-time algorithm for constructing position heaps. By

using position heaps, the occurrences of the pattern can be found in O(m2 + occ) time.

To improve its time bound to O(m + occ), Ehrenfeucht et al. [21] proposed O(n)-space

auxiliary structure, called the maximal-reach pointers (shortly MRPs).

4



1.3 Contributions

1.3 Contributions

The contribution of this paper is as follows: We define the permuted pattern matching

between multi-track strings which are multi-sets of strings, and propose the permuted

pattern matching problem. We consider three settings of the problem :

1. neither of the text and pattern are allowed to be preprocessed,

2. only the pattern can be preprocessed,

3. only the text can be preprocessed.

For each setting, we propose efficient algorithms:

1. we propose an algorithm by using the generalized suffix array that runs in O(nN)

time and space for integer alphabets,

2. we propose an algorithm by using AC-automaton that runs in O(nN log |Σ|) time

and O(mM +N) space for general alphabets,

3. we propose a new indexing structure multi-track suffix tree that enables us to solve

the permuted pattern matching problem in O(mN log |Σ| + occ) time and O(nN)

space when assuming N = M and general alphabets. We also propose a memory-

efficient structure contracted multi-track position heap, and show an algorithm that

runs in O(m2N2 log |Σ|+ occ) time and O(n) space by using it.

We also address an approximate version of permuted pattern matchings. We consider

multi-track sequences overR and define a distanceD between such two multi-track numer-

ical sequences. Then, the approximate permuted pattern matching problem is that given

a multi-track text T = {t1, . . . , tN} of length n, a multi-track pattern P = {p1, . . . , pM} of

length m, and a criterion δ ≥ 0, outputs all positions i such that D(T[i : i+m−1],P) ≤ δ

for 1 ≤ i ≤ n．For this problem, we propose a new data structure called a filtering

multi-set tree (shortly FILM tree) that each node represents a spectral Bloom filter. By
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1.4 Organization of the thesis

Table 1.1: Data structures for the permuted pattern matching
data structure space # of nodes construction search

GSA O(nN) O(nN) O(nN)
AC automaton O(mM) mM + 1 O(mM log |Σ|) O(nN log |Σ|)
MTST O(nN) 2n− 1 O(nN log |Σ|) O(mN log |Σ|+ occ)
MTPH O(nN) nN + 1 O(nN log |Σ|) O(m2N log |Σ|+ occ)
CMTPH O(n) n+ 1 O(nN log |Σ|) O(m2N2 log |Σ|+ occ)

FILM tree O(nω) 2⌈log2 n⌉+1 − 1 O(knN + nω) O(kmM + nω)

Table 1.2: Comparisons of algorithms using data structures for permuted-pattern match-
ings

Data structure
Permutation type

Constructed forString Numerical
sub full sub full

GSA ✓ ✓ text and pattern
AC automaton ✓ ✓ pattern
MTST ✓ text
MTPH ✓ text
CMTPH ✓ text
FILM tree ✓ ✓ ✓ ✓ text

using the FILM tree, both exact and approximate matching problems can be solved in

O(kmM + nω) time and space, where k is the number of hash functions for constructing

the spectral Bloom filter and ω is the size of the spectral Bloom filter. Note that, outputs

of search using the FILM tree can contain the false-positive errors.

At last, we demonstrate the performance of our approach experimentally.

The contributions of this paper is summarized in Table 1.1 and Table 1.2.

1.4 Organization of the thesis

The rest of this thesis is organized as follows.

In Chapter 2, we present some notations and results in previous works that we will

use in the paper.

In Chapter 3, we propose the multi-track string and the permuted pattern matching

6



1.4 Organization of the thesis

problem on multi-track strings. We also define the numerical version of the multi-track

and the Euclidean distance between two numerical multi-track sequences. Then, we show

the definition of the approximate permuted pattern matching problem.

In Chapter 4, we consider three settings of the exact permuted pattern matching. First

is that both of the multi-track text and pattern can not be preprocessed. We propose

an algorithm using the generalized suffix array for a text and a pattern, which runs in

O(nN) time for integer alphabets. Second is that it is allowed to preprocess the multi-

track pattern. For this setting, we propose an algorithm based on the Aho-Corasick

(AC) automaton, and show that it solves the problem in O(nN log |Σ|) time for general

alphabets. Third is that it is allowed to preprocess the multi-track text. We propose the

three indexing structures for the multi-track string, that are, the multi-track suffix tree,

the multi-track position heap and the contracted multi-track position heap. We show

that each structure can be constructed in O(nN log |Σ|) time for general alphabets and

the full-permuted pattern matching can be solved efficiently by using these structures.

In Chapter 5, we propose the filtering multi-set tree for the approximate permuted

pattern matching.

In Chapter 6, we show the results of the experiments for our algorithms.

7



Chapter 2

Preliminaries

2.1 Strings

Let Σ be a finite set of symbols, called an alphabet. An element of Σ∗ is called a string.

Let Σn be the set of strings of length n. For a string w = xyz, strings x, y, and z are

called prefix, substring, and suffix of w, respectively. |w| denotes the length of w, and

w[i] denotes the i-th symbol of w for 1 ≤ i ≤ |w|. Let x · y, briefly denote xy, be the

concatenation of strings x and y. Then, w = w[1]w[2] . . . w[|w|]. The substring of w that

begins at position i and ends at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|, i.e.,

w[i : j] = w[i] w[i + 1] · · · w[j]. Moreover, let w[: i] = w[1 : i] and w[i :] = w[i : |w|]

for 1 ≤ i ≤ |w|. The empty string is denoted by ε, that is, |ε| = 0. For convenience, let

w[i : j] = ε if i > j. For two strings x and y, we denote by x ≺ y if x is lexicographically

smaller than y, and by x ⪯ y if x ≺ y or x = y. For a set S, we denote the cardinality of

S by |S|. For a multi-set S, let #S(x) denote the multiplicity of element x ∈ S.

2.2 Tries

Definition 2.1 (Tries). A trie on Σ is a rooted tree that has the following two properties:

(1) each edge is labeled by a character c ∈ Σ, and (2) for each node u and a character

8



2.3 Sequence hash trees

c ∈ Σ, u has at most one edge that is labeled by c from u to a child of u.

Let T = (V,E) be a trie, where V and E are sets of nodes and edges, respectively. The

root node of T is denoted by root . Each edge e ∈ E is denoted by (u, c, v), where c ∈ Σ

is the label of e, and v is a child node of a node u. Note that, we assume that the time

required to find the child of a node on the child edge labeled by c ∈ Σ is O(log |Σ|) in this

paper. For any node v in T , the sets of ancestors and descendants of v are denoted by

Anc(v) and Des(v), respectively. For nodes u and v ∈ Des(u), the sequence of nodes and

edges from u to v is called the path from u to v and denoted by path(u, v). For any node

v, let a path path(root , v) be root , e1, v1, e2, v2, . . . , ed, v and let ei be labeled by ci ∈ Σ

for i = 1, 2, . . . , d. Then, we say that the string w = c1c2 . . . cd is represented in T , and

denote the node v by w and the string w by label(v). Thus, root = ε and label(root) = ε.

The number of edges d on path(root , v) is called the depth of v, denoted by depth(v).

2.3 Sequence hash trees

A sequence hash tree [14] is a trie for hashing a set of strings.

Definition 2.2 (Sequence hash trees [14]). Let W = {w1, w2, . . . , wk} be an ordered set

of strings, where wi ∈ Σ∗. For 1 ≤ i ≤ k, SHT i(W ) = (Vi, Ei) is a trie recursively defined

by (V0, E0) = ({root}, ∅), and

SHT i(W ) = (Vi−1 ∪ {qi}, Ei−1 ∪ {(qi[: |qi| − 1], c, qi)}),

where qi is the shortest prefix of wi satisfying qi /∈ Vi−1, and c = qi[|qi|]. SHT k(W ) is

called a sequence hash tree of W and denoted by SHT (W ).

For any i, SHT i(W ) is obtained by adding at most one node and one edge. Thus,

SHT (W ) = SHT k(W ) consumes O(k) space. SHT i(W ) is obtained by adding a node

9



2.4 Various queries on rooted trees

corresponding to wi into SHT i−1(W ). When the node corresponding to wi is added into

SHT i−1(W ), we say that wi is inserted to SHT i−1(W ).

2.4 Various queries on rooted trees

We show some results for the rooted tree T of n nodes and σ degree that are used in the

sequel of this thesis. We first describe the lowest common ancestor query problem that is

one of most fundamental problems on trees. For any two nodes u and v in T , the lowest

common ancestor LCA(u, v) is the ancestor of u and v and the farthest node from the

root. The following result is known:

Lemma 2.3 (Lowest common ancestor query [6, 40]). For any given two nodes u and v,

the lowest common ancestor LCA(u, v) of u and v in T can be answered in O(1) time,

after an O(n) time and space preprocessing of T .

We next explain about the nearest marked ancestor query. The semi-dynamic nearest

marked ancestor query problem is the on-line problem of satisfying the following queries

on a rooted tree T : (1) insert a leaf v into T ; (2) mark a node v in T ; (3) find the nearest

marked ancestor NMA(v) of a node v in T . It was shown that this problem can be solved

efficiently.

Lemma 2.4 (Nearest marked ancestor query [3, 44]). The semi-dynamic nearest marked

ancestor problem can be solved in the following time bounds after an O(n log σ) time and

O(n) space preprocessing of T : (1) inserting a leaf v in amortized O(1) time; (2) marking

a node v in worst-case O(1) time; (3) finding the nearest marked ancestor NMA(v) of a

node v in worst-case O(1) time.

In addition to above two queries, we will use the following query.

Lemma 2.5 (Level ancestor query [7]). For any given node v and an integer d ≥ 0, the

ancestor LevA(v , d) of v at depth d can be answered in O(1) time, after an O(n) time and

space preprocessing of T .

10
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2.5 Indexing structures for strings

In the sequel of this thesis, we will propose algorithms and data structures that are based

on indexing structures for standard strings. In front of our proposals, we describe such

data structures in this section.

Definition 2.6 (Suffix trees [43]). For a text string t of length n over an alphabet Σ, a

suffix tree ST (t) of t is a compacted trie for all suffixes of t.

From the definition, ST (t) has just n leaves and each leaf represents one suffix of t.

Since each internal node has at least two children, the number of nodes in ST (t) is at most

2n−1, and thus ST (t) requires O(n) space. It is known that ST (t) can be constructed in

linear time for the length of t: O(n) time for integer alphabets [22] and O(n log |Σ|) time

for general alphabets [37, 42]. By using ST (t), the pattern matching on t can be solved

in O(m log |Σ|+ occ) time, where m is the length of a pattern.

Definition 2.7 (Suffix arrays [36]). For a text string t of length n over an alphabet Σ, a

suffix array SA(t) of t is an array such that if SA(t)[i] = j then t[j :] is the i-th smallest

suffix in lexicographical order for 1 ≤ i, j ≤ n.

SA(t) provides an order of suffixes that are sorted lexicographically. Obviously, SA(t)

needs O(n) space. SA(t) can be also constructed in linear time: O(n) time for integer

alphabets [22, 28, 32, 38] and O(n log n) time for general alphabets [11, 34, 36]. By using

SA(t), the pattern matching on t is performed in O(m log n + occ) time with a binary

search on SA(t). This time bound can be improved by using a longest common prefix

(LCP) array defined as follows:

Definition 2.8 (LCP arrays). For a text string t of length n over an alphabet Σ, an LCP

array LCP(t) of t is an array such that LCP(t)[0] = −1 and LCP(t)[i] is the length of

the longest common prefix between t[SA[i− 1] :] and t[SA[i] :] for 1 < i ≤ n.

By using SA(t) and LCP(t), the pattern matching is done in O(m+ log n+ occ) time.

11



2.6 Spectral Bloom filter

Figure 2.1: Spectral Bloom filters SBFH(Q1) and SBFH(Q2) using H = {h1, h2} for
Q1 = {a, a, b, c, c} and Q2 = {a, b, b, b, c}, respectively.

Definition 2.9 (Position heaps [21, 33]). For a text string t of length n over an alphabet

Σ, let S be an ordered set t[1 :], t[2 :], . . . , t[n :]. A position heap PH (t) is a sequence hash

tree for S, i.e., SHT (S).

The position heap was recently proposed by Ehrenfeucht et al. [21]. It is a trie

structure and each node corresponds to each suffix. Thus, the position heap has just

n+1 nodes with assuming that the root node does not correspond to any suffix. Kucherov

proposed the on-line linear-time construction algorithm of the position heap [33] that is

based on Ukkonen’s suffix tree construction algorithm [42]. The naive pattern matching by

using PH (t) requires O(m2 log |Σ|+occ) time. Ehrenfeucht et al. proposed an O(n)-space

data structure maximal reach pointer, and developed an efficient O(m log |Σ|+ occ)-time

matching algorithm by using it.

2.6 Spectral Bloom filter

A spectral Bloom filter [15] is a data structure that estimates the multiplicity of an element

in a multi-set. The spectral Bloom filter for a multi-set Q is useful to answer the query

of whether R ⊆ Q for any given multi-set R.

Definition 2.10 (SBF [15]). Let H = {h1, h2, · · · , hk} be a set of k hash functions,

hi : U → {0, · · · , u − 1}, where the domain U is either Σ∗ or R∗. Let Q be a multi-set

12



2.6 Spectral Bloom filter

over U . A spectral Bloom filter SBFH(Q) for Q using H is an integer array of length ω,

defined by SBFH(Q) = (CQ[1],CQ[2], · · · ,CQ[ω]) such that

CQ[i] =
∑
h∈H

∑
q∈Q

Jh(q)(mod ω) + 1 = iK,
where JP K is 1 if the predicate P is true and 0 otherwise.

For example, Fig. 2.1 shows two SBFs using two hash functions. The multiplicity of

an element x ∈ U in Q can be estimated by minx that is given as following:

minx = min{CQ[h1(x)(mod ω) + 1],CQ[h2(x)(mod ω) + 1], . . . ,CQ[hk(x)(mod ω) + 1]}.

Note that there may be false positive error for the estimation by using minx because of

the collision between hash values.

For two SBFs, we define the following operations.

Definition 2.11. For two SBFs, SBFH(Q1) and SBFH(Q2) of the same size ω, we define

their addition and subtraction by

SBFH(Q1)⊕ SBFH(Q2) = (CQ1 [1]+CQ2 [1],CQ1 [2]+CQ2 [2], · · · ,CQ1 [ω]+CQ2 [ω]),

SBFH(Q1)⊖ SBFH(Q2) = (CQ1 [1]−CQ2 [1],CQ1 [2]−CQ2 [2], · · · ,CQ1 [ω]−CQ2 [ω]).

We can easily verify the following properties.

Property 2.1. For any two multi-sets Q and R,

(1) SBFH(Q)⊕ SBFH(R) = SBFH(Q ∪R),

(2) if R ⊆ Q, then min(SBFH(Q)⊖ SBFH(R)) ≥ 0.

We note that the converse of (2) in Property 2.1 does not always hold. For instance,

let us consider Q = {a, b}, R = {c} and H = {h1, h2} such that h1(a) = 1, h2(a) = 2,

13



2.6 Spectral Bloom filter

h1(b) = 3, h2(b) = 4, h1(c) = 1, h2(c) = 3. Then we have SBFH(Q) = (1, 1, 1, 1) and

SBFH(R) = (1, 0, 1, 0), which yield that min(SBFH(Q)⊖SBFH(R)) = 0, although R ̸⊆ Q.

Therefore, if we use the condition min(SBFH(Q)⊖SBFH(Q
′)) ≥ 0 to reply a subset query

Q′ ⊆ Q, we may encounter a false positive.

We now show the probability of the false positive error of SBFH(Q). We assume

that every hash function hj ∈ H outputs each value with equal probability, and Q con-

tains N elements. Let fx be the number of occurrences of x ∈ U in Q, and minx =

min{CQ[h1(x)(mod ω) + 1],CQ[h2(x)(mod ω) + 1], . . . ,CQ[hk(x)(mod ω) + 1]}. Then, fx ≤

minx holds.

First we show the probability that the estimation of the multiplicity of an element

x ∈ U in Q is incorrect. This is encountered when fx ̸= minx. It is shown in [15] that the

probability Ex of fx ̸= minx is same to that of the false positive error of the Bloom filter

and obtained as follows:

Ex ≃ (1− e−kN/ω)k. (2.1)

For k = ω
N
ln 2, the formula (2.1) is minimized as

Emin = 2−k ≃ 0.6185
ω
N .

For example, if we take ω = 8N , the probability that SBF replies a correct answer is 98%.

We next consider the probability Esbf that the estimation of R ⊆ Q by using SBFH(Q)

for given a multi-set R is incorrect. It may occur when fx ̸= minx holds for all x ∈ R.

Let R′ be a set such that x ∈ R′ for any x ∈ R and x /∈ R′ for any x /∈ R. Then, Esbf is

given as follows by using the formula (2.1):

Esbf =
∏

x∈R′
Ex
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2.7 Hash functions

2.7.1 Rolling hash

The rolling hash is a classical hash function found in Karp-Rabin string matching algo-

rithm [30].

Definition 2.12. A rolling hash hrh(w) for a string w of length l is

hrh(w) = w[1]al−1 + w[2]al−2 + · · ·+ w[l]a0 (mod q),

where a and q are positive integers.

In practice, it is strongly preferred that 1 < a < q and a, q are mutually prime numbers

to reduce hash collisions.

2.7.2 Locality sensitive hashing

The locality sensitive hashing (LSH) is a hashing algorithm for the nearest neighbor search

problem [10, 13, 17, 27]. The hash values of a hash function in a LSH family are in a

collision with high probability if input data are similar. Different LSH families can be

used for different distance functions. In this paper, we use the following hash function,

that is one of the standard LSH families for Euclidean metric space.

Definition 2.13. We define a locality sensitive hashing function hlsh : Rm → N by

hlsh(v) =

⌊
a · v + b

r

⌋
,

where each entry of a ∈ Rm is selected independently from a stable distribution, r is a

positive real number, and b is selected uniformly from the range (0, r].
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Chapter 3

Multi-tracks

As was mentioned in the introductory chapter, our pattern matching problem is defined

over a multi-set of strings. For ease of presentation, however, in what follows we assume

an arbitrary order of the strings in the multi-set and define a multi-track string as a tuple.

Then, we define the problems that we address in this thesis formally.

3.1 Multi-track strings

Let ΣN be the set of all N -tuples (a1, a2, . . . , aN) with ai ∈ Σ for 1 ≤ i ≤ N , called a

multi-track alphabet. An element of ΣN is called a multi-track character (mt-character),

and an element of Σ∗
N is called a multi-track string (or simply multi-track), where the con-

catenation between two multi-track strings is defined as (a1, a2, . . . , aN) · (b1, b2, . . . , bN) =

(a1b1, a2b2, . . . , aNbN). For a multi-track T = (t1, t2, . . . , tN) ∈ Σn
N , the i-th element ti

of T is called the i-th track, the length of multi-track T is denoted by |T|len = |t1| =

|t2| = · · · = |tN | = n, and the number of tracks in multi-track T or the track count of

T, is denoted by |T|num = N . Let Σ+
N be the set of all multi-tracks of length at least

1, and let EN = (ε, ε, . . . , ε) denotes the empty multi-track of track count N . Then,

Σ∗
N = Σ+

N ∪ {EN}. For a multi-track T = XYZ, multi-track X, Y, and Z are called

prefix, substring, and suffix of T, respectively. We call a prefix, substring and suffix of a
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3.1 Multi-track strings

multi-track by an mt-prefix, mt-substring and mt-suffix of the multi-track, respectively.

T[i] denotes the i-th mt-character of T for 1 ≤ i ≤ |T|len, i.e., T = T[1]T[2] . . .T[|T|len].

The mt-substring of T that begins at position i and ends at position j is denoted by

T[i : j] = (t1[i : j], t2[i : j], . . . , tN [i : j]) for 1 ≤ i ≤ j ≤ |T|len. Moreover, let

T[: i] = T[1 : i] and T[i :] = T[i : |T|len], respectively.

Definition 3.1 (Permuted multi-track). Let X = (x1, x2, . . . , xN) be a multi-track of track

count N . Let r = (r1, r2, . . . , rK) be a sub-permutation of (1, . . . , N), where 1 ≤ K ≤ N .

A permuted multi-track of X specified by r is a multi-track (xr1 , xr2 , . . . , xrK ), denoted

by either X⟨r1, r2, . . . , rK⟩ or X⟨r⟩. If K = N , r is called a full-permutation and X⟨r⟩ is

called a full-permuted multi-track of X.

Definition 3.2 (Permuted-match). For any multi-tracks X = (x1, x2, . . . , x|X|num) and

Y = (y1, y2, . . . , y|Y|num) with |X|len = |Y|len and |X|num ≤ |Y|num, we say that X permuted-

matches Y, denoted by X ▷◁

⊑ Y, if X = Y′ for some permuted multi-track Y′ of Y. In

particular, if |X|num = |Y|num, then we say that X full-permuted-matches Y, and denote it

by X ▷◁
= Y. Otherwise, i.e., if |X|num < |Y|num, then we say that X sub-permuted-matches

Y.

The problem we consider is formally defined as:

Problem 1 (Permuted pattern matching). Given multi-track text T = (t1, . . . , tN) where

|T|len = n, and multi-track pattern P = (p1, . . . , pM), where M ≤ N and |P|len = m ≤ n,

output all positions i that satisfy P ▷◁

⊑ T[i : i+m−1]. If |T|num = |P|num, then the problem

is called the full-permuted pattern matching problem. Otherwise, i.e., if |T|num > |P|num,

it is called the sub-permuted pattern matching problem.

To determine whether X ▷◁
= Y or not for two multi-tracks X and Y, we can use Sort(X)

and Sort(Y) defined as follows:

Definition 3.3. For a multi-track X = (x1, x2, . . . , xN), let SortIndex (X) = (r1, r2, . . . , rN)
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3.1 Multi-track strings

be a full-permutation such that xri ⪯ xrj for any 1 ≤ i ≤ j ≤ N . Sort(X) is defined as

X⟨SortIndex (X)⟩.

It holds that X ▷◁
= Y if and only if Sort(X) = Sort(Y). We show examples of permuted

matching in Example 1.

Example 1. Consider multi-tracks T = (t1, t2, t3) = (abab, abbb, abba), X = (x1, x2, x3) =

(abba, abab, abbb), and Y = (y1, y2) = (ba, ab). X ▷◁
= T holds because Sort(T) = Sort(X) =

(abab, abba, abbb), where SortIndex (T) = (1, 3, 2) and SortIndex (X) = (2, 1, 3). More-

over, Y
▷◁

⊑ T[3 : 4] holds because Sort(T[3 : 4]⟨(1, 3)⟩) = Sort(Y) = (ab, ba), where

SortIndex (T[3 : 4]⟨(1, 3)⟩) = (1, 2) and SortIndex (Y) = (2, 1).

All SortIndex (T[i :]) for 1 ≤ i ≤ n can be computed in O(nN) time since the following

lemma holds.

Lemma 3.4. Given a multi-track T = (t1, t2, . . . , tN) of length n, the permutations

SortIndex (T[i :]) for all (1 ≤ i ≤ n) can be computed in O(nN) time for an integer

alphabet, or in O(nN log |Σ|) time for a general alphabet.

Proof: We can determine the lexicographic order of all the nN suffixes t1[1 :],. . ., tN [1 :],

t1[2 :], . . ., tN [2 :], t1[n :], . . . , tN [n :] as follows: let s be a string t1$1t2$2 · · · tN$N , where

each $i is smaller than any c ∈ Σ and $N ≺ $N−1 ≺ . . . ≺ $2 ≺ $1. We construct a

suffix tree ST (s) or a suffix array SA(s). For integer alphabets, ST (s) (e.g., [22]) or

SA(s) (e.g., [29]) can be constructed in O(nN) time and space, and for general alphabets,

ST (s) (e.g., [42]) can be in O(nN log |Σ|) time and O(nN) space.

The permutation SortIndex (T[i :]) depends on the lexicographic order of suffixes s[i :

], s[(n + 1) + i :], s[2(n + 1) + i :], . . . , s[(N − 1)(n + 1) + i :]. This lexicographic order

corresponds to the order in which each suffix is encountered during a depth first traversal

of ST (s) or the simple linear scan of SA(s). Such traversal or scan require O(nN log |Σ|)

or O(nN) time, respectively. Since all suffixes of s must be encountered in the traversal
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or scan, the permutation SortIndex (T[i :]) for all i’s can be obtained by the one-time

traversal or scan. Thus the lemma holds.

From Lemma 3.4, Problem 1 can be solved in O(nmN) time and O(nN) space by

storing all SortIndex (T[i :]) naively.

3.2 Numerical multi-track sequences

We say that a multi-track T = (t1, . . . , tN) is amulti-track numerical sequence or numerical

multi-track if each entry ti[j] is a numerical value in R. In this thesis, we address the

approximate matching problem for multi-track numerical sequences, which is defined in

a metric space with a distance function D for numerical multi-tracks as follows.

Problem 2 (Approximate permuted pattern matching problem). Given a numerical

multi-track text T, a numerical multi-track pattern P, and a criterion δ ≥ 0, output

all positions i that satisfy D(T[i : i + m − 1]⟨r⟩,P) ≤ δ, where r = (r1, r2, . . . , rK) is a

sub-permutation of (1, . . . , N). If M < N , then the problem is called the approximate

sub-permuted pattern matching problem, whereas if M = N , it is called the approximate

full-permuted pattern matching problem.

If D(T[i : i+m− 1]⟨r⟩,P) ≤ δ holds, we say T[i : i+m− 1]⟨r⟩ approximate permuted-

matches P. In Problem 2, we must specify the distance function D(X,Y) for numerical

multi-tracks in order to measure the similarity of X and Y. Several distance functions

have been proposed for numerical data in previous studies. For example, the dynamic

time warping (DTW) [39] is often used for time series data. In this thesis, we focus on a

metric based on the Euclidean distance.

Definition 3.5 (Euclidean distance). For two numerical tracks t1 and t2 of the same
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length n, the Euclidean distance d(t1, t2) between t1 and t2 is defined by

d(t1, t2) =

√√√√ n∑
i=1

(t1[i]− t2[i])2.

Next, we define the Euclidean distance for multi-track numerical sequences.

Definition 3.6 (Multi-track Euclidean distance). For two numerical multi-tracks X =

(x1, x2, · · · , xN) and Y = (y1, y2, · · · , yN) where the length of xi and yi is n, the multi-

track Euclidean distance is defined by

D(X,Y) =
N∑
j=1

d(xj, yj).

We show an example of the approximate permuted pattern matching in Example 2.

Example 2. Consider numerical multi-tracks T = (t1, t2, t3) = ((5 6 8 4), (3 5 6 8), (2 4 5 7))

and P = (p1, p2) = ((4 5 7), (5 6 8)). For T, P, and given the criterion δ = 2, P ap-

proximate permuted-matches T[1 : 3] and T[2 : 4] because D(T[1 : 3]⟨2, 1⟩,P) =
√
2 and

D(T[2 : 4]⟨r⟩,P) = 0 hold.

We present a naive algorithm for permuted pattern matching problems in Algorithm 1.

ΠN,M in Line 3 is the set of permutations r = (r1, r2, . . . , rM), where 1 ≤ ri ≤ N and

ri ̸= rj for 1 ≤ i, j ≤ j. Thus, |ΠN,M | = N !
(N−M)!

. This algorithm computes all of

the positions that P permuted- or approximate permuted-matches T[i : i + m − 1]⟨r⟩.

The computation in Line 4 of Algorithm 1 requires O(mM) time. This algorithm has

two loops, where the outside loop requires O(n) and the inside loop requires O( N !
(N−M)!

).

Thus, Algorithm 1 runs in O(nmM N !
(N−M)!

) time.

As a slightly more efficient approach, we note an algorithm that reduces the permuted

pattern matching problem to the minimum weight bipartite matching problem. For each

position i on multi-track text T, we consider a weighted bipartite graph Gi = (A ∪

B, A × B), where A = {1, . . . , N}, B = {1, . . . ,M}, and the weight of an edge (j, k) ∈
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Algorithm 1: Naive algorithm for permuted pattern matching problems

Input: multi-track text T, multi-track pattern P (and criterion δ)
Output: matching positions of P in T
n = |T|len; N = |T|num; m = |P|len; M = |P|num ;1

for i = 1 to n−m+ 1 do2

foreach r ∈ ΠN,M do3

if T[i : i+m− 1]⟨r⟩ and P (approximate) permuted-match then4

output position i;5

break6

end7

end8

end9

A × B is the distance d(tj[i : i + m − 1], pk[1 : m]). The minimum weight perfect

bipartite matching on Gi corresponds to the distance D(T[i : i+m−1]⟨r⟩,P) for the best

choice of the permutation r. Because the construction of Gi for each position i requires

O(mNM) time, and the minimum weighted bipartite matching for Gi can be found in

O(M(N +M)2) time by the minimum cost flow algorithm [12, 19], the total time of this

method is O(nM(mN + (N +M)2)).

In the following chapters, we will describe the algorithms for Problem 1 and Prob-

lem 2. In Chapter 4, we address Problem 1, that is, the exact permuted pattern matching

problem. We consider three settings of the problem as was mentioned in Chapter 1: (1)

no preprocessing, (2) preprocessing for a pattern, and (3) preprocessing for a text. In

Section 4.1 and Section 4.2, we show two algorithms that are for the settings of (1) and

(2) and based on the suffix array [36] and the Aho-Corasick automaton [1]. Next in Sec-

tion 4.3, we consider the setting (3). We propose three indexing structures that are based

on the suffix tree [43] and the position heap [21]. In Chapter 5, we address Problem 2,

that is, the approximate permuted pattern matching problem. We propose a flexible data

structure based on the spectral Bloom Filter [15] and show the matching algorithm by

using it.
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Chapter 4

Exact permuted pattern matching

algorithms

In this chapter, we show algorithms for exact full-/sub-permuted pattern matching prob-

lems. As mentioned in previous chapters, we consider three settings with respect to the

problem: (1) neither of a text and a pattern can be preprocessed, (2) a pattern is allowed

to be preprocessed, and (3) a text can be preprocessed. First we will propose an algorithm

for the setting (1) that is based on the suffix array [36] in Section 4.1. Given a multi-track

text and a multi-track pattern on an integer alphabet, the full-/sub-permuted pattern

matching can be performed in O(nN) time and space by using this algorithm. Next we

show an algorithm based on the AC automaton [1] for the setting (2) in Section 4.2. We

show that after preprocessing for the pattern on an general alphabet in O(mM log |Σ|), the

full-/sub-permuted pattern matching problem can be solved in O(nN log |Σ|). At last we

address the setting (3) in Section 4.3. For this problem setting, we propose three indexing

structures of multi-track strings. One of these structures, called a multi-track suffix tree,

is based on the suffix tree [43]. The other structures are based on the position heap [21],

called a multi-track position heap and a contracted multi-track position heap. The multi-

track suffix tree needs O(nN) space and can be constructed in O(nN log |Σ|) time. It
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enables to perform fast full-permuted pattern matching running in O(mN log |Σ| + occ)

time. On the other hand, the matching by using the contracted multi-track position heap

takes O(m2N2 log |Σ|+ occ) time. However it only needs O(n) space. We will show that

the contracted multi-track position heap can be build in O(nN log |Σ|) time through the

construction of the multi-track position heap.

4.1 Algorithm based on the generalized suffix array

We first describe an algorithm using the generalized suffix array for a text and a pattern

and the longest common extension (LCE). The LCE between two positions i, j respectively

in strings t and p, is max{k | t[i : i+ k− 1] = p[j : j + k− 1]}. Consider all strings in the

text and pattern multi-tracks, and preprocess them in linear time so that LCE queries

between arbitrary positions of arbitrary tracks can be answered in constant time (see

e.g. [26]). The preprocessing can be done in O(nN) time for integer alphabets. Notice

that we can determine the lexicographic order between the two strings t[i :] and p[j :] in

constant time as well, by comparing the characters t[i+ k] and p[j + k] which come after

the LCE. Next, we calculate SortIndex (T[1 :]), . . . , SortIndex (T[n :]), SortIndex (P). This

can be performed in O(nN) time with Lemma 3.4.

The generalized suffix array enables us to calculate both LCE and SortIndex (T[1 :

]), . . . , SortIndex (T[n :]), SortIndex (P). As an example, we show the generalized suffix

array for T = (ababaab$1, aaababa$2, babaaab$3) and P = (aba$4, baa$5, aba$6) in Fig-

ure 4.1 . $j is the special symbol that is lexicographically smaller than any symbol in

Σ. For any two positive integers j and k, if j ≤ k, then $j ⪯ $k. Let s be the string

that is concatenation of all tracks of T and P. For 1 ≤ i ≤ nN , s[i :] corresponds to

tj[k :] where j = i−1
n

+ 1 and k = (i − 1 mod n) + 1. For nN + 1 ≤ i ≤ nN + mM ,

s[i :] corresponds to pj[k :] where j = i−1−nN
m

+ 1 and k = (i − 1 − nN mod m) + 1.

Let SA and LCP be the suffix array and the longest common prefix array for s, respec-

tively. LCE queries between arbitrary positions of arbitrary tracks can be answered by
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3 24 $�a b a $	b a a $
a b a $� 0

4 28 $	b a a $
a b a $� 0

5 32 $
a b a $� 0

6 36 $� 0

7 15 a $�b a b a a a b $�a b a $	b a a $
a b a $� 0

8 27 a $	b a a $
a b a $� 1

9 31 a $
a b a $� 1

10 35 a $� 1

11 30 a a $
a b a $� 1

12 20 a a a b $�a b a $	b a a $
a b a $� 2

13 9 a a a b a b a $�b a b a a a b $�a b a $	b a a $
a b a $� 4

14 5 a a b $�a a a b a b a $�b a b a a a b $�a b a $	b a a $
a b a $� 2

15 21 a a b $�a b a $	b a a $
a b a $� 3

16 10 a a b a b a $�b a b a a a b $�a b a $	b a a $
a b a $� 3

17 6 a b $�a a a b a b a $�b a b a a a b $�a b a $	b a a $
a b a $� 1

18 22 a b $�a b a $	b a a $
a b a $� 2

19 13 a b a $�b a b a a a b $�a b a $	b a a $
a b a $� 2

20 25 a b a $	b a a $
a b a $� 3

21 33 a b a $� 3

22 18 a b a a a b $�a b a $	b a a $
a b a $� 3

23 3 a b a a b $�a a a b a b a $�b a b a a a b $�a b a $	b a a $
a b a 4

24 11 a b a b a $�b a b a a a b $�a b a $	b a a $
a b a $� 3

25 1 a b a b a a b $�a a a b a b a $�b a b a a a b $�a b a $	b a a $ 5

26 7 b $�a a a b a b a $�b a b a a a b $�a b a $	b a a $
a b a $� 0

27 23 b $�a b a $	b a a $
a b a $� 1

28 14 b a $�b a b a a a b $�a b a $	b a a $
a b a $� 1

29 26 b a $	b a a $
a b a $� 2

30 34 b a $� 2

31 29 b a a $
a b a $� 2

32 19 b a a a b $�a b a $	b a a $
a b a $� 3

33 4 b a a b $�a a a b a b a $�b a b a a a b $�a b a $	b a a $
a b a 3

34 12 b a b a $�b a b a a a b $�a b a $	b a a $
a b a $� 2

35 17 b a b a a a b $�a b a $	b a a $
a b a $� 4

36 2 b a b a a b $�a a a b a b a $�b a b a a a b $�a b a $	b a a $
a b a4We see  ! � 1: = 2,1,3
from  $.

The LCE between ��[5: ]
and �� is 1.

Figure 4.1: The generalized suffix array for all tracks of a text T =
(ababaab$1, aaababa$2, babaaab$3) and a pattern P = (aba$4, baa$5, aba$6).

24



4.2 Algorithm based on the AC automaton

Range Minimum Queries (RMQ) in LCP . For example in Figure 4.1, LCE between t1[5 :]

and p1 is 1, because positions 5 = SA[14] and 25 = SA[20] correspond to t1[5 :] and p1

respectively, and the minimum value in LCP for 14 ≤ i ≤ 20 is 1. The permutations

SortIndex (T[k :]) for any 1 ≤ k ≤ n or SortIndex (P) can be calculated by scanning SA.

Consider SortIndex (T[1 :]), for example. t1[3 :], t2[3 :], and t3[3 :] correspond to s[3 :],

s[11 :], and s[19 :], respectively. When we scan SA[i] in ascending order of i from i = 1,

we will encounter SA[13] = 9, SA[25] = 1, and SA[35] = 17 in this order. Because this

order is lexicographical order, we see SortIndex (T[1 :]) = (2, 1, 3) immediately.

Finally, for each position 1 ≤ i ≤ n−m+1 in the text, check whether or not P ▷◁

⊑ T[i :].

This check can be conducted in O(N + M) time for each position, by comparing each

text track T[i :] and pattern track P in the order of SortIndex (T[i :]) = (ri,1, . . . , ri,N) and

SortIndex (P) = (r1, . . . , rM) respectively, to see if there exists 1 ≤ j1 < · · · < jM ≤ N

such that tri,jk [i : i +m − 1] = prk for all k (1 ≤ k ≤ M). Each pair of text and pattern

tracks can be checked in constant time using an LCE query. Since the tracks are checked

in lexicographic order, the number of checks required is at most O(N +M) = O(N). The

total time for the algorithm is thus O(nN).

Theorem 4.1. Given multi-track text T = (t1, . . . , tN) where |T|len = n, and multi-track

pattern P = (p1, . . . , pM), where M ≤ N and |P|len = m ≤ n, the permuted matching

problem can be solved in O(nN) time and space, assuming an integer alphabet.

4.2 Algorithm based on the AC automaton

Second, we describe an algorithm based on the Aho-Corasick (AC) automaton [1]. The

AC automaton is a well known pattern matching automaton that can find occurrences

of multiple pattern strings in a given text string. The automaton is traversed with each

character T [k] (1 ≤ k ≤ |T |) of the text T , and if an accepting state is reached, it means

that position k is the end position of patterns that can be identified by the state. (We
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4.2 Algorithm based on the AC automaton
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Figure 4.2: The AC automaton of a multi-track P = (p1, p2, p3) = (aba, baa, aba). The
broken lines denote transitions of the failure function.

shall omit technical details of the traversal involving failure links in this paper, as they are

identical to the original work.) It is known that the AC automaton can be constructed in

time linear in the total length of the pattern strings [1, 20].

We solve the permuted matching problem as follows. First, construct the AC automa-

ton for the strings in the pattern multi-track P = (p1, . . . , pM). Let Q̂ = {qi1 , . . . , qiM}

denote the multi-set of accepting states corresponding to each track of the pattern. Next,

we traverse the automaton with each track of the text multi-track in a parallel manner.

Let Q = {qj1 , . . . , qjN} be the multi-set of states reached after traversing with T[k]. Then,

P ▷◁

⊑ T[k−|P|len+1 : k] if and only if all the M accepting states are included in Q, i.e., for

any q ∈ Q̂, #Q(q) ≥ #Q̂(q). This can be easily checked in O(N) time for each position.

Since the traversal of the AC automaton can be conducted in O(n log |Σ|) time for each

track, the total time required for the traversal is O(nN log |Σ|).

Theorem 4.2. A multi-track pattern P = (p1, . . . , pM), where |P|len = m, can be prepro-

cessed in O(mM log |Σ|)-time and O(mM) space so that the permuted matching problem

for any multi-track text T = (t1, . . . , tN) where N ≥ M and |T|len = n ≥ m, can be solved

in O(nN log |Σ|) time and O(N) working space.

Simple example of permuted matching using the AC automaton for P = (p1, p2, p3) =

(aba, baa, aba) is shown in Figure 4.2. For P, the multi-set of accepting states Q̂ =
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4.3 Indexing structures for multi-track strings

{qi1 , qi2 , qi3} is {q3, q6, q3}. The multiplicities are obtained as #Q̂(qi1) = 2,#Q̂(qi2) =

1,#Q̂(qi3) = 2. Given a multi-track text T = (t1, t2, t3) = (ababaab, aaababa, babaaab),

P
▷◁

⊑ T[3 : 5]. Because, the multi-set of states Q = {qj1 , qj2 , qj3} corresponding to t1, t2, t3

after traversing T[5] are {q3, q3, q6} and satisfy #Q(q) ≥ #Q̂(q) for any q ∈ Q̂.

4.3 Indexing structures for multi-track strings

4.3.1 Multi-track suffix trees

In this section, we present a new data structure called a multi-track suffix tree, as well

as an efficient algorithm for constructing it, with which we can solve the full-permuted

multi-track matching problem efficiently. Namely, we will show that we can construct

the multi-track suffix tree for any text multi-track T = (t1, . . . , tN) in O(nN log |Σ|)-time

and O(nN) space where |T|len = n. Using the multi-track suffix tree, we can conduct full

permuted matching for any multi-track pattern P = (p1, . . . , pN), where |P|len = m, in

O(mN log |Σ|+ occ) time.

The construction algorithm is based on Ukkonen’s suffix tree construction algorithm [42]

for a single string. The suffix tree ST (w) for a string w over Σ is a compacted trie of

all suffixes of w, Using the suffix tree of a text, we can find occurrences of patterns in

the text efficiently (see, e.g., [16, 24]). Ukkonen showed that ST (w) is constructed in

O(n log |Σ|) time.

We show the definition of the multi-track suffix tree (the mt-suffix tree, in short) in

following. For multi-track T = (t1, t2, . . . , tN) with |T|len = n and |T|num = N , we assume

that any track ti terminates with a special symbol $i, where each $i /∈ Σ is lexicographically

smaller than any character in Σ, and $1 ≺ $2 ≺ · · · ≺ $N . The mt-suffix tree of a multi-

track text T, denoted MTST (T), is a compacted trie of all sorted mt-suffixes of T, i.e.

Sort(T[1 :]), Sort(T[2 :]), . . . , Sort(T[n :]), that each edge is labeled by a mt-substring

of T. Fig 4.3 illustrates MTST (T) with T = (ababaab$1, aaababa$2, babaaab$3), where
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4.3 Indexing structures for multi-track strings

Figure 4.3: The multi-track suffix tree MTST (T) of a multi-track T = (ababaab$1,
aaababa$2, babaaab$3).

dot-lines denote the suffix links that we will describe later.

The following lemma shows a simple but important observation regarding multi-track

text T.

Lemma 4.3. For any multi-track strings X ∈ Σ+
N and Y,Z ∈ Σ∗

N , Sort(XY)[1 : |X|len] =

Sort(XZ)[1 : |X|len].

Proof: Let X = (x1, x2, . . . , xN) and Y = (y1, y2, . . . , yN). For any 1 ≤ i ̸= j ≤ N , we

consider the following two cases: (1) if xi ̸= xj: We assume w.l.o.g. that xi ≺ xj. Then

xiyi ≺ xjyj. (2) if xi = xj: We assume w.l.o.g. that yi ⪯ yj. Then although xiyi ⪯ xjyj,

we have xiyi[1 : |X|len] = xjyj[1 : |X|len]. In either case, the lexicographical order between

xiyi and xjyj depends only on the prefixes xi and xj. It is same for xizi and xjzj. Thus,

Sort(XY)[1 : |X|len] = Sort(X) = Sort(XZ)[1 : |X|len].

Due to the above lemma, for any mt-substring X of T, there is a path that spells out

Sort(X) in MTST (T). This also implies that a multi-track pattern P with |P|num = |T|num
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4.3 Indexing structures for multi-track strings

has an occurrence in T iff there is a path that spells out Sort(P) in MTST (T). More in

detail, we can solve the full-permuted matching as follows:

Theorem 4.4. Let T = (t1, . . . , tN) with |T|len = n. We can augment MTST (T) in

O(nN log |Σ|) time and O(nN) space so that the full-permuted matching problem for any

given multi-track pattern P = (p1, . . . , pN) with |P|len = m can be solved in O(mN log |Σ|+

occ) time.

Proof: First we compute Sort(P) in O(mN log |Σ|) time using a trie that represents all

tracks in P. We then traverse down MTST (T) from the root to search for a path that

corresponds to Sort(P). At each edge ofMTST (T), comparisons of mt-characters between

T and P can be done in O(N) time provided that SortIndex (T[1 :]), . . . , SortIndex (T[n :])

have been already computed by Lemma 3.4 in O(nN log |Σ|) time and O(nN) space.

Since the number of children of a node in MTST (T) is O(n), a straightforward search for

occurrences of P takes a total of O(mN log n+occ) time. However, we can reduce the cost

to O(mN log |Σ|+ occ) by the following preprocessing on T : In each node of MTST (T)

we maintain a trie that represents the first mt-characters of the labels of the node. Since

each mt-character in T is of length N , searching at each node can be done in O(N log |Σ|)

time. Since there are O(n) edges in MTST (T), these tries for all nodes occupy a total of

O(nN) space and can be constructed in a total of O(nN log |Σ|) time.

Clearly MTST (T) has n leaves and each internal node has more than one child node,

and hence the number of all nodes of MTST (T) is at most 2n − 1 and the number of

all edges is at most 2n − 2. Each edge of MTST (T) is labeled by S such that T[b :

e]⟨SortIndex (T[j :])⟩ = S, and the label is represented by a triple (b, e, j). Thus we can

represent MTST (T) in a total of O(nN) space. Note that representing edge labels using

the triples does not increase the asymptotic time complexity of the pattern matching

algorithm of Theorem 4.4.

We shall use the next lemma to show the correctness of our algorithm which constructs

MTST (T).

29



4.3 Indexing structures for multi-track strings

Lemma 4.5. Let AX be a substring of T with A ∈ ΣN and X ∈ Σ∗
N . There are paths that

spell out Sort(AX) and Sort(X) from the root of MTST (T).

Proof: Let Y ∈ Σ∗
N be a multi-track s.t. AXY is a suffix of T. Then there is a path spelling

out Sort(AXY) from the root of MTST (T). By Lemma 4.3, Sort(AX) = Sort(AXY)[1 :

ℓ(AX)], and therefore there is a path spelling out Sort(AX) from the root. Since XY is

also a suffix of T, paths spelling out Sort(XY) and Sort(X) from the root exist for the

same reasoning as above.

Now we propose an efficient O(nN log |Σ|)-time algorithm that constructs the mt-suffix

tree. The algorithm consists of two parts (a pseudo-code is shown in Algorithm 2). In

the first part, we compute the permutation for the sorted mt-suffixes of T of each length,

SortIndex (T[1 :]), . . . , SortIndex (T[n :]). In the second part, we construct the mt-suffix

tree by using the permutations above.

Assume that for a node v of MTST (T) and a mt-substring X of T, label(v) is a

mt-prefix of Sort(X). We represent Sort(X) by a reference pair (v, (b, e, j)) such that

Sort(X) = label(v)T[b : e]⟨SortIndex (T[j :])⟩. If v is the deepest node such that label(v)

is a prefix of Sort(X), then the pair (v, (b, e, j)) is said to be canonical.

We define the suffix link on the mt-suffix tree as follows:

Definition 4.6 (Multi-track suffix link). Let slink(root) = ⊥. For any non-root explicit

node v of MTST (T), if label(v) = Sort(AX) where A ∈ ΣN , X ∈ Σ∗
N and AX is a

mt-substring of T, then slink(v) = u, where label(u) = Sort(X).

We remark the suffix link of a node of MTST (T) may point to an implicit node:

Let AX be any substring of T with A ∈ ΣN and X ∈ Σ∗
N . If Sort(AX) is an explicit

node v of MTST (T), then there are at least two distinct non-empty multi-track strings

Y,Z ∈ Σ+
N for which there exist paths spelling out Sort(AXY) and Sort(AXZ) from the

root. It follows from Lemma 4.5 that there also exist paths from the root which spell

out Sort(XY) and Sort(XZ). However, Sort(XY)[: |X|len + 1] may or may not be equal
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4.3 Indexing structures for multi-track strings

Algorithm 2: Algorithm to construct multi-track suffix trees

Input: multi-track text T of length n and of track count N
compute SortIndex (T[i :]) for all 1 ≤ i ≤ n;1

create nodes root and ⊥, and an edge with label ΣN from ⊥ to root;2

slink(root) := ⊥;3

(v, (b, e, j)) := (root, (1, 0, 1)); oldu := root;4

foreach i = 1, · · · , n do5

while j ≤ n do6

if b ≤ e and T[i]⟨SortIndex (T[j :])⟩ = T[e+ 1]⟨SortIndex (T[b :])⟩ then7

(v, (b, e, j)) := canonize(v, (b, e+ 1, j));8

break;9

if b > e and there is a T[i]⟨SortIndex (T[j :])⟩-edge from v then10

(v, (b, e, j)) := canonize(v, (i, i, j));11

break;12

u := v;13

if b ≤ e then14

let (v, (p, q, h), z) be the T[b]⟨SortIndex (T[j :])⟩-edge from v;15

split the edge to two edges (v, (p, p+ e− b, h), u) and16

(u, (p+ e− b+ 1, q, h), z);
if oldu ̸= root then slink(oldu) := u;17

create a new edge (u, (i,∞, j), ℓ) with a new leaf ℓ;18

oldu := u;19

if slink(u) is defined then20

v := slink(u); j := j + 1 ;21

else (v, (b, e, j)) := canonize(slink(v), (b, e, j + 1));22

to Sort(XZ)[: |X|len + 1]. Thus, Sort(X), which is pointed to by slink(v), can be an

implicit node. Note that, Lemma 4.5 guarantees that there always exists a node pointed

by slink(v) for an explicit node v even though the node may be an implicit node. Still,

we can design an algorithm to construct MTST (T) for a given multi-track text T based

on the Ukkonen algorithm [42], using similar techniques to construction of parameterized

suffix trees [4].

In the initial phase, we create MTST (EN) that consists only of the root node, the

auxiliary node, and the edge and the suffix link between them (in Lines 2 and 3 of

Algorithm 2). In phase i ≥ 1, our algorithm updates MTST (T[1 : i− 1]) to MTST (T[1 :

i]). The update operation starts at a location in MTST (T[1 : i − 1]) called the active
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Algorithm 3: Function canonize

Input: reference pair (v, (b, e, j)) for mt-substring X = label(v) · T[b : e]⟨T[j :]⟩.
Output: canonical reference pair for mt-substring X.
if b > e then return (v, (b, e, j));1

find the T[b]⟨T[j :]⟩-edge (v, (p, q, h), u) from v;2

while q − p ≤ e− b do3

b := b+ q − p+ 1; v := u;4

if b ≤ e then find the T[b]⟨T[j :]⟩-edge (v, (p, q, h), u) from v;5

return (v, (b, e, j));6

point, which we shall refer to as AP. The second part basically follows Ukkonen’s suffix tree

construction algorithm, with a distinction that when we insert the jth suffix Sort(T[j :])

into the tree, then the ith mt-character T[i] is read with the permutation of the jth mt-

suffix, i.e., as T[i]⟨SortIndex (T[j :])⟩. The AP for the ith phase initially corresponds to

the longest mt-suffix Sort(T[j : i − 1]) of T[: i − 1] that matches at least two positions

1 ≤ k ̸= h ≤ i− 1 of T[1 : i− 1], that is, Sort(T[k : k+ i− j− 1]) = Sort(T[j : i− 1]) and

Sort(T[h : h+ i− j − 1]) = Sort(T[j : i− 1]). Then, we examine whether it is possible to

traverse down from the AP with T[i]⟨SortIndex (T[j :])⟩. The examination is conducted in

Line 7 when the AP is on an implicit node, and in Line 10 when the AP is on an explicit

node. If it turns out to be possible, then after the reference pair is canonized, we go to

the (i + 1)th phase. If it turns out to be impossible, then we create a new node if the

reference pair represents an implicit node (Line 14). Then a new leaf node representing

Sort(T[j :]) is inserted in Line 18, whose parent node is u. The AP is then moved using

the suffix link of u if it exists (in Line 21), and using the suffix link of the parent v of u

if the suffix link of u does not exist yet (in Line 22), and we go to the (j + 1)th step to

insert Sort(T[j+1 :]). If follows from the definition of the suffix link and from Lemma 4.5

that there always exists a path that spells out T[b : e]⟨SortIndex (T [j + 1 :])⟩ from node

slink(v) in Line 22.

Theorem 4.7. Given a multi-track T which |T|len = n and |T|num = N , Algorithm 2

constructs MTST (T) in O(nN log |Σ|) time and O(nN) space.
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Proof: The correctness follows from the above arguments.

Let us analyze the time complexity. In the first part of Algorithm 2 (in Line 1),

the permutations for all sorted mt-suffixes of T can be computed in O(nN) time due to

Lemma 3.4. Next, we consider the time complexity of the second part. The condition of

Line 7 can be checked in constant time using the permutations for sorted suffixes, and

that of Line 10 can be checked in O(N log |Σ|) time using the same way to Theorem 4.4.

At each step the function canonize is called at most once. A pseudo-code for canonize

is given in Algorithm 3. Using a similar analysis to the Ukkonen algorithm [42], the

amortized number of nodes that are visited at each call of canonize is constant. Since it

takes O(N log |Σ|) time to search a branching node (in Lines 2 and 5), the amortized cost

for canonizing a reference pair is O(N log |Σ|). We consider the number of steps in the

double loop. Both i and j are monotonically non-decreasing, and they satisfy 1 ≤ i and

j ≤ n. Therefore the total number of steps of the algorithm is O(n). Thus, the second

part of the Algorithm 2 takes O(nN log |Σ|) time, and hence the entire algorithm works

in a total of O(nN log |Σ|) time.

The permutations for each sorted mt-suffix require O(nN) space, and the tries for

searching branches of each node require a total of O(nN) space. Hence the overall space

complexity is O(nN).

4.3.2 Multi-track position heaps

In this section, we propose a new data structure, named multi-track position heap (shortly

MTPH), based on the position heap [21] for a single string. We will show a construc-

tion algorithm of MTPH for any multi-track T ∈ Σn
N in O(nN log |Σ|) time and O(nN)

space. The construction algorithm is based on Kucherov’s position heap construction

algorithm [33]. Using MTPH, the full-permuted pattern matching can be solved in

O(mN2 log |Σ|+ occ) time for P ∈ Σm
N .

We define a column concatenated string CST of a multi-track T = (t1, t2, . . . , tN) by
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Figure 4.4: The column concatenated strings si = CSSort(T[i:]) in the left, MTPH (T) in
the middle, and CMTPH (T) in the right for T = (aabbaabbaaabbaa, ababababbababba).
Maximal-reach pointers mrp(v) in MTPH and CMTPH are drawn as broken lines, where
they are omitted if mrp(v) = v for clarity. In indexing nodes, its associated positions
(either one or two) are written.

CST = t1[1]t2[1] . . . tN [1] t1[2]t2[2] . . . tN [2] . . . t1[n]t2[n] . . . tN [n].

For instance, for T = (abac, deba), we have CST = adbeabca.

Definition 4.8 (MTPH). Let T be a multi-track string of length n and track count N .

Let si,j = CSSort(T[i:j]) for 1 ≤ i ≤ j ≤ n, and si,n is denoted by si briefly. Let S =

{s1, s2, . . . , sn} be an ordered set of the strings. For 1 ≤ i ≤ n, MTPH i(T) = (Vi, Ei) is a

trie recursively defined by (V0, E0) = ({root}, ∅), and

Vi = Vi−1 ∪
∆i−1∪
j=0

{si[: |qi|+ j]},

Ei = Ei−1 ∪
∆i−1∪
j=0

{(si[: |qi|+ j − 1], si[|qi|+ j], si[: |qi|+ j])}),

where qi is the shortest prefix of si such that qi /∈ Vi−1 and qi ̸= ε, and ∆i = N − ((|qi| −

1) mod N). If no such qi exists, that is si ∈ Vi−1, then (Vi, Ei) = (Vi−1, Ei−1). MTPH n(T)

is called a multi-track position heap of T, and denoted by MTPH (T).

Figure 4.4 shows an example of MTPH (T) and column concatenated strings. Both
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the numbers of nodes and edges of MTPH i(T) increase at most N from MTPH i−1(T)

for each 1 ≤ i ≤ n. Thus, MTPH (T) consumes O(nN) space. If there exists qi, then

we associate the position i to the node si[: |qi|+∆i − 1], and call it an indexing node.

Otherwise, that is si ∈ Vi−1, we associate i to the node si. Therefore, each indexing node

stores either one or two positions. In case that an indexing node v stores two positions i

and j with i < j, we call that i is the primary position and j is the secondary position in

v.

We will show thatMTPH (T) can be constructed inO(nN) time by updatingMTPH (T[:

i − 1]) to MTPH (T[: i]) iteratively for i = 1, 2, . . . , n, similar to the online construction

algorithm for position heaps [33]. We remark that it is not trivial because si is not nec-

essarily a suffix of si−1 (see Figure 4.4, left). Let us focus on the differences between

MTPH (T[: i − 1]) and MTPH (T[: i]). For 1 ≤ j ≤ i, if j is a primary position in a

node v in MTPH (T[: i − 1]), j must be the primary position stored in the same node v

in MTPH (T[: i]). If j is a secondary position in MTPH (T[: i − 1]), there are two cases

in MTPH (T[: i]): (1) j becomes a primary position in a newly created node v′, or (2)

j remains the secondary position, but in another node v′. In any case, the node v′ is in

Des(v). Thus, we consider how to update the nodes storing two positions.

Let j (1 ≤ j < i) be any secondary position in a node v in MTPH (T[: i − 1]). If

the string sj,i is not represented in MTPH (T[: i − 1]) yet, then we create a new path

path(root , sj ,i) and reset the position j from v to a newly created node sj,i. Otherwise,

the position j must be a secondary in another existing node v′ in MTPH (T[: i]). Thus,

we should reset j from v to v′ = sj,i. These update process can be done by traversing the

nodes storing the secondary positions.

We will show that for any position b (1 ≤ b < i), if b is a secondary position then b+1

is also a secondary position, by a series of lemmas as follows.

Lemma 4.9. For two multi-tracks X = (x1, x2, . . . , xN) and Y = (y1, y2, . . . , yN), if

Sort(X) = Sort(Y) then Sort(X[2 :]) = Sort(Y[2 :]).
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Proof: Trivial.

Lemma 4.10. For any multi-trackW of length m, if CSSort(W) is represented in MTPH i(T),

then CSSort(W[2:]) is also represented in MTPH i(T) for any 1 ≤ i ≤ n.

Proof: Because CSSort(W) is represented in MTPH i(T), there are 1 ≤ j1 ≤ j2 ≤ . . . ≤

jm ≤ i such that Sort(T[jk : jk+k−1]) = Sort(W[: k]) for 1 ≤ k ≤ m, and they have been

inserted to MTPH in the order of k = 1, 2, . . . ,m. At the same time, Sort(T[jk + 1 : jk +

k−1]) for 1 ≤ k ≤ m have also been inserted in this order, because MTPH is constructed

by inserting suffixes in descending order with respect to the length. Lemma 4.9 leads

Sort(T[jk + 1 : jk + k]) = Sort(W[2 : k]). Thus, CSSort(T[jm+1:jm+m]) = CSSort(W)[2:] is

represented in MTPH i(T ).

Lemma 4.11. If b is a secondary position of a node v in MTPH i(T) for 1 ≤ b < i, then

b+ 1 is also a secondary position of another node in it.

Proof: Let b′ be the primary position of v. Then, b′ < b and sb = sb′ [: |sb|] hold.

From Lemma 4.10, sb+1 is represented in MTPH i(T). In addition, sb′+1[: |sb+1|] is also

represented. From Lemma 4.9, sb+1 = sb′+1[: |sb+1|] holds. Since b′ < b, b′ + 1 < b + 1.

Thus, b+ 1 is a secondary position of sb′+1.

Let b be the smallest position that is a secondary position in MTPH (T[: i− 1]) with

1 ≤ b ≤ i−1. By Lemma 4.11, all the secondary positions are written as b, b+1, . . . , i−1.

In addition, these positions are partitioned into two intervals. Let b′ be the smallest

position such that sb′,i is represented in MTPH (T[: i−1]). Then, sb′+1,i is also represented

in it by Lemma 4.10. Similarly, all sb′+2,i, . . . , si−1,i are represented in it, too. Therefore, all

the positions b, b+1, . . . , b′−1 in the first interval are primary positions in MTPH (T[: i]),

while all b′, b′+1, . . . , i−1 in the second interval are secondary positions in MTPH (T[: i]).

Summarizing the above discussion, to obtain MTPH (T[: i]), MTPH (T[: i− 1]) should be

updated as follows: (1) for b ≤ j < b′, build path(sj ,i−1 , sj ,i) and reset the position j from
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sj,i−1 to the new node sj,i as its primary position, and (2) for b′ ≤ j ≤ i, reset the position

j from sj,i−1 to the existing node sj,i as its secondary position. We refer the position b as

the active position, and the indexing node sb,i−1 as the active node, similarly to [33]. The

nodes storing positions b, b + 1, . . . , i − 1 can be traversed efficiently by using the suffix

pointers defined below.

Definition 4.12 (Multi-track suffix pointers). For any indexing node si,j in MTPH (T),

the multi-track suffix pointer of si,j is a pointer from si,j to the node si+1,j, and denoted

as mtsp(si,j) = si+1,j.

For every indexing node si,j in MTPH (T[: i]), the existence of mtsp(si,j) is guaranteed

by Lemma 4.10. In our algorithm, we will use a chain of N nodes ⊥1,⊥2, . . . ,⊥N , such

that each ⊥k (1 ≤ k ≤ N) is connected to ⊥k+1 by an edge labeled by all c ∈ Σ, regarding

that ⊥N+1= root , and mtsp(root) =⊥1. They play a role of sentinel nodes, similarly to

[42] and [33].

We now describe the construction algorithm of MTPH (T). First of all, we compute

SortIndex (T[i : n]) for all 1 ≤ i ≤ n in O(nN log |Σ|) time from Lemma 3.4. It determines

every si = CSSort(T[i:]). In each iteration, we do not need to keep all the secondary nodes to

update MTPH (T[: i− 1]), because these nodes can be visited through the suffix pointers

recursively from the active node. Thus, we only maintain the active position b and the

active node sb,i−1. If there is no secondary node in MTPH (T[: i− 1]), the active node is

root and the active position is i.

In i-th iteration, the algorithm checks whether there is path(sb,i−1 , sb,i) or not. If it

does not exist, the algorithm performs the modifications of Case (1) described above. After

the modification, the new indexing node sb,i is created as a descendant of sb,i−1. Then,

the active position and the active node are updated to b + 1 and mtsp(sb,i−1) = sb+1,i−1

respectively, and the algorithm performs the above process iteratively until the path is

found. The multi-track suffix pointer mtsp(sb,i) is built as mtsp(sb,i) = sb+1,i after the

next modification. When path(sb,i−1 , sb,i) is found, the algorithm updates the active node
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to sb,i and makes the suffix pointer from the last created indexing node to the new active

node if such a node exists. Hence, for any indexing node, suffix pointer of it is defined

indeed. To update MTPH (T[: i−1]) into MTPH (T[: i]), it is enough to perform only the

modifications of Case (1), because the modifications of Case (2) does not add any node

nor edge to MTPH. All the secondary positions will be determined after constructing

MTPH (T) by traversing nodes through the suffix pointers recursively from the active

node.

Algorithm 4 shows a pseudo-code of the construction algorithm, and the function to

find path(sb,i−1 , sb,i) at Line 27. Let us analyze the running time of Algorithm 4. Each

iteration of the while-loop from Line 9 takes O(nN log |Σ|) time over the whole run of

the algorithm, because at most N nodes and edges are visited or created in each iteration

and 1 ≤ b ≤ n. Each process in the rest of the for-loop from Line 6 takes at most O(N)

time, and the loop iterates exactly n times. Thus, the running time of Algorithm 4 is

O(nN) time.

Theorem 4.13. Algorithm 4 constructs MTPH (T) in O(nN log |Σ|) time and O(nN)

space.

We now consider to solve Problem 1 for a pattern P by using MTPH (T). Let w be the

longest prefix of CSSort(P) represented in MTPH (T). We can compute w in O(mN log |Σ|)

time by traversing path(root ,w). If w = CSSort(P), all the positions stored in the nodes of

the subtree rooted by w are the occurrences of the pattern P in T. We will deal with enu-

merating all these positions later. Before it, remark that we should also consider another

type of occurrences; let I be the set of positions stored in the nodes on path(root ,w).

These are also candidates for the occurrences. Because path(root ,w) contains at most m

indexing nodes, |I| = O(m). For each i ∈ I, we check whether P ▷◁
= T[i : i+m− 1] or not

by simply comparing CSSort(P) with si,i+m−1 = CSSort(T[i:i+m−1]), and report it if it does.

Both the computation of si,i+m−1 and the comparison are done in O(mN) time.

We now explain how to enumerate all the positions in the nodes of the subtree rooted
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Algorithm 4: MTPH construction algorithm

Input: T
Output: MTPH (T)
compute SortIndex (T[i : n]) for all 1 ≤ i ≤ n;1

create root and ⊥N ; create edge (⊥N , c, root) for each character c;2

for j = N − 1 downto 1 do3

create node ⊥j; create edge (⊥j, c,⊥j+1) for each character c;4

mtsp(root) =⊥1; activeNode = root ; b = 1;5

for i = 1 to n do6

lastNode = undefined;7

targetNode = find(activeNode, sb [depth(activeNode)+1 :]);8

while targetNode = undefined do9

u = activeNode;10

w = sb[depth(activeNode)+1 :];11

for j = 1 to N do12

if there is not an edge labeled by w[j] from u then13

create a node v and an edge (u,w[j], v) where14

label(v) = label(u) · w[j];
else15

Let v be a child of u connected by the edge (u,w[j], v);16

u = v;17

if lastNode ̸= undefined then mtsp(lastNode) = u;18

lastNode = u; Let lastNode store b;19

activeNode = mtsp(activeNode); b = b+ 1;20

targetNode = find(activeNode, sb [depth(activeNode)+1 :]);21

activeNode = targetNode;22

if lastNode ̸= undefined then mtsp(lastNode) = activeNode;23

if b ̸= n+ 1 then24

for b ≤ j ≤ n do25

Let activeNode store j ; activeNode = mtsp(activeNode);26

Function find(node,w)27

for j = 1 to N do28

if exist edge (node, w[j], v) then node = v;29

else return undefined;30

return node;31
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by w, in case that w = CSSort(P). Let αi be an indexing node that stores the position i in

MTPH (T). To obtain these positions efficiently in O(occ) time, we construct another tree

T consists only of indexing nodes αi’s in MTPH (T), where a node αi is a child of another

node αj in T if and only if αi ∈ Des(αj) and no other indexing node exists between αi

and αj in MTPH (T). Obviously, T can be built by depth-first-traversal of MTPH (T)

in O(nN log |Σ|) time, and by traversing the subtree of T rooted by the node w, we can

enumerate all matched positions in O(occ) time. Thus, we can determine all the positions

i such that P ▷◁
= T[i : i+m− 1] in O(m2N log |Σ|+ occ) time.

We now show that the matching by using MTPH can be accelerated by adding

maximal-reach pointers (shortly MRPs). MRPs are the auxiliary structures for stan-

dard position heaps proposed by Ehrenfeucht et al. [21]. We will extend it to MTPHs as

follows.

Definition 4.14 (MRPs for MTPHs). For an indexing node αi storing i in MTPH (T),

the maximal-reach pointer of αi is a pointer from αi to si[: ℓi], and denoted by mrp(αi) =

si[: ℓi], where si[: ℓi] is the longest prefix of si = CSSort(T[i:]) represented in MTPH (T).

We call a MTPH of T added the maximal-reach pointers an augmented multi-track

position heap (shortly AMTPH) of T, and denoted by AMTPH (T). Algorithm 5 is an

algorithm for adding MRPs to MTPH, that is based on Kucherov’s algorithm for standard

position heaps [33]. First of all, the algorithm preprocesses MTPH (T) so that for any

node v, it can obtain the depth of v in O(1) time, by assigning unique numbers to

the nodes by the depth first traversal. In i-th iteration between Line 2 and Line 8, it

adds a pointer mrp(αi) = si[: ℓi], where si[: ℓi] is determined as follows: beginning by

currNode = root , it goes down to a child si[: ℓ] of depth(currNode) ≤ ℓ ≤ |si| until either

currNode does not have a child si[: ℓ] or ℓ = |si| holds (Line 3 to Line 6). Then, mrp(αi) is

obtained as si[: ℓi] (Line 7). The next i+1-th iteration begins atmtsp(pointerNode), where

pointerNode is the deepest indexing node visited in the i-th iteration and computed in

Line 5. Note that, the process of Line 5 can be computed in constant time because whether
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Algorithm 5: Adding maximal reach pointers for MTPH

Input: T，and MTPH (T) with multi-track suffix pointers
currNode = root; pointerNode = root; ℓ = 1;1

for i = 1 to n do2

while currNode has an outgoing edge labeled by si[ℓ] and ℓ < |si| do3

currNode = si[: ℓ];4

if currNode is an indexing node then pointerNode = currNode;5

ℓ = ℓ+ 1;6

mrp(αi) = currNode; currNode = mtsp(pointerNode);7

pointerNode = currNode; ℓ = depth(currNode);8

currNode is an indexing node or not is determined by depth(currNode) mod N = 0 or

not.

Let us consider the time complexity of Algorithm 5. Each process of Line 1, Line 7

and Line 8 can be done in O(1) time, so that these processes take O(n) time in total.

Let us consider the number of executions of while-loop at Line 3. In each loop, si[ℓ]

corresponding to a letter in the text T is read. We assume si[ℓi] belongs to k-th column

of T for 1 ≤ k ≤ n. k does not decrease between i-th and (i + 1)-th iterations because

(i + 1)-th iteration begins at mtsp(si,k) = si+1,k. In addition, since |si[ℓi]| ≥ N , i ≤ k

holds. Thus, all letters in T are read at least one time in all iterations. On the other hand,

the letters corresponding to the labels on path(pointerNode, currNode) in i-th iteration

can be read redundantly in (i+ 1)-th iteration. However, the number of such labels does

not exceed N in each iteration. Therefore, the total number of executions of while-loop

does not exceed 2nN . As a result, the running time of Algorithm 5 is O(nN log |Σ|) time.

Now we present the full-permuted pattern matching algorithm by using AMTPH. In

the naive matching algorithm with MTPH described above, the cost of the comparison

of CSSort(P) with si,i+m−1 for i ∈ I can be reduced from O(mN) to O(1) by using the

MRPs and the lowest common ancestor queries mentioned in Lemma 2.5, if CSSort(P)

itself is represented in AMTPH (T). Whether CSSort(P) = si,i+m−1 or not is determined

by mrp(αi) ∈ Des(CSSort(P)). If LCA(mrp(αi),CSSort(P)) = CSSort(P), then mrp(αi) ∈
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Des(CSSort(P)) holds. By Lemma 2.5, the query LCA(mrp(αi),CSSort(P)) can be answered

in O(1) time after an O(nN) time and space preprocessing of AMTPH (T). Thus, the

comparison of CSSort(P) with si,i+m−1 can be done in O(1) time. Hence, the total time is

O(mN log |Σ| + occ) in this case, different from O(m2N log |Σ| + occ) time of the naive

algorithm. Remark that, unfortunately, this result does not improve the upper-bound of

the time complexity of the matching for the worst case. If CSSort(P) is not represented

in AMTPH (T), we must compute CSSort(P) = si,i+m−1, that takes O(mN) time. In this

case, all comparisons are done in O(m2N) time because |I| < m. By considering the

above two cases, the time bound of the matching is O(mN log |Σ|+ occ+m2N log |Σ|) =

O(m2N log |Σ|+ occ).

Theorem 4.15. Problem 1 can be solved in O(m2N log |Σ|+occ) time by using MTPH (T)

or AMTPH (T).

4.3.3 Contracted multi-track position heaps

We propose a more space-efficient version of MTPH, contracted multi-track position heap (shortly

CMTPH), by omitting non-indexing nodes of MTPH (see Figure 4.4, right). CMTPH

needs only O(n) space. Thus, CMTPH is very memory-efficient compared with the mt-

suffix tree and MTPH when the track count N is large. We will show that CMTPH can

be constructed in O(nN log |Σ|) time with going through the construction of MTPH.

The definition of CMTPH is as following:

Definition 4.16 (CMPTH). Let T be a multi-track string of length n and track count N .

Let S = {s1, s2, . . . , sn} be an ordered set of strings, where si = CSSort(T[i:]) for 1 ≤ i ≤ n.

A contracted multi-track position heap of T, denoted by CMTPH (T), is a sequence hash

tree of S, i.e., CMTPH (T) = SHT (S).

Since CMTPH (T) is a sequence hash tree for an ordered set of cardinality n, it has

n + 1 nodes and n edges, so that CMTPH (T) consumes only O(n) space. Given T,
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we can construct easily CMTPH (T) in O((nN + n2) log |Σ|) time as follows: compute

SortIndex (T[i :]) for 1 ≤ i ≤ n in O(nN log |Σ|) time, then insert all si = CSSort(T[i:]) to

the tree in order; each insertion can be done in O(n log |Σ|), so that O(n2 log |Σ|) in total.

We now show a more efficient construction algorithm for CMTPH (T), that runs in

O(nN) time. It re-assign the positions in the nodes in MTPH (T), and eliminates all

non-indexing nodes as follows. First let us noticed that in Figure 4.4, CMTPH (T) is a

subtree of MTPH (T) with the same root node, if we ignore the positions stored in the

nodes. It is shown by following lemmas.

Lemma 4.17. Let W = {w1, w2, . . . , wK} and W ′ = {w′
1, w

′
2, . . . , w

′
k} (k ≤ K) be ordered

sets of strings such that W ′ is a subset of W . Then SHT (W ′) is a subtree of SHT (W )

rooted by the root of SHT (W ).

Proof: Let v be the node that is added to SHT (W ′) when a string w ∈ W ′ is inserted

to SHT (W ′), and let d = depth(v). Then there exist 1 ≤ i1 < i2 < . . . < id−1 ≤ k such

that the strings w′
i1
, w′

i2
, . . ., w′

id−1
precede w in W ′, and w′

ij
[: j] = w[: j] holds for each

1 ≤ j ≤ d − 1. These strings also precede w in W , because W ′ is a subset of W . Thus,

w′
i1
, w′

i2
, . . . , w′

id−1
, and w are inserted to SHT (W ) in this order. When w′

ij
is inserted

to SHT (W ), the node w[: j] is added to SHT (W ) if w[: j] does not exist in SHT (W )

for 1 ≤ j ≤ d − 1. Therefore, when w is inserted to SHT (W ), w[: d − 1] has already

been represented in SHT (W ) and w[: d] is added to SHT (W ). As a result, any string

represented in SHT (W ′) is also represented in SHT (W ), so that the statement holds.

Lemma 4.18. For 1 ≤ i ≤ n, CMTPH i(T) is a subtree of MTPH i(T) rooted by the root

of MTPH i(T), if we ignore the positions stored in the nodes.

Proof: CMTPH i(T) is a sequence hash tree of S = {s1, s2, . . . , si}. On the other hand,

MTPH i(T) is equivalent to that of S ′ =
∪i

k=1

∪∆k

j=1 {sk} = {s1, . . . , s1︸ ︷︷ ︸
∆1

, s2, . . . , s2︸ ︷︷ ︸
∆2

, . . . , si, . . . , si︸ ︷︷ ︸
∆i

}.

Because S is a subset of S ′, the statement holds by Lemma 4.17.
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Lemma 4.18 implies that all nodes and edges in CMTPH (T) are included inMTPH (T).

Therefore, CMTPH (T) can be obtained by the following process. For each i = 1, 2, . . . , n,

we re-assign the position i stored in an indexing node αi to its ancestor node βi ∈ Anc(αi),

that does not store the primary position (i.e., βi may store the secondary position) and

the farthest from αi (i.e., nearest from the root). If there is no such a node, then αi keeps

storing i. After that, we eliminate all nodes that stores no position. Then, the remaining

tree is CMTPH (T).

To find βi efficiently, we use the two types of queries on a rooted tree, that are

the nearest marked ancestor query and the level ancestor query referred in Lemma 2.4

and Lemma 2.5, respectively. Each query can be answered in constant time after a

O(nN log |Σ|)-time preprocess of the tree.

We now show how to find βi from αi. We mark a node to indicate that the node stores

some positions in CMTPH (T). At the beginning, only the root of MTPH (T) is marked.

Because βi is the farthest unmarked ancestor of αi, it is the depth d + 1 ancestor of αi,

where d is the depth of the nearest marked ancestor u of αi. The ancestor u is obtained by

NMA(αi), and then βi by LevA(u, depth(u) + 1 ), both in O(1) time. If u ̸= αi, re-assign

the position i from αi to βi, and mark βi. Otherwise, i.e., u = αi, do nothing. Repeating it

for i = 1, 2, . . . , n, we get CMTPH (T) in O(n) time from MTPH (T). Because MTPH (T)

can be constructed in O(nN log |Σ|) time, we obtain the following result.

Theorem 4.19. Given a multi-track T of length n and track count N over ΣN , CMTPH (T)

can be constructed in O(nN log |Σ|) time and O(nN) space.

CMTPHs is useful for permuted pattern matching instead of MTPHs. Because any

node in CMTPH stores at least one position, the candidate positions for matching is

at most |I| = O(mN). Thus, the time complexity is O(m2N2 log |Σ| + occ). It can be

improved by using the maximal-reach pointers for CMTPH, denoted by cmrp(βi), in the

same way as MTPH. Because cmrp(βi) = NMA(mrp(αi)) holds for any i after marking

all βi’s, we get them in O(n) time. Thus we have the following results.
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Theorem 4.20. Given a multi-track T of length n and track count N over ΣN , CMTPH (T)

with the maximal-reach pointers for CMTPH (T) can be constructed in O(nN log |Σ|) time

and O(nN) space.

We call a CMTPH of T added the maximal-reach pointers an augmented contracted

multi-track position heap (shortly ACMTPH) of T, and denoted by ACMTPH (T). For

the permuted pattern matching, the maximal-reach pointers of CMTPH work similarly

to that of MTPH. Thus, it is not difficult to see that the following theorem holds.

Theorem 4.21. Problem 1 can be solved in O(m2N2 log |Σ|+occ) time by using CMTPH (T)

or ACMTPH (T).
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Chapter 5

Approximate permuted pattern

matching algorithm

In this chapter, we propose a new data structure filtering multi-set tree (FILM tree) for

solving permuted pattern matching problems in an efficient manner. The matching using

the FILM tree is based on the following proposition.

Proposition 5.1. For multi-tracks X = (x1, x2, . . . , x|X|num) and Y = (y1, y2, . . . , y|Y|num),

let X and Y be multi-sets X = {x1, x2, . . . , x|X|num} and Y = {y1, y2, . . . , y|Y|num}. X
▷◁

⊑ Y

if and only if X ⊆ Y .

Proposition 5.1 implies that we can determine whether P ▷◁

⊑ T[i : i+m−1] at position

i or not by checking {p1, . . . , pM} ⊆ {t1[i : i + m − 1], . . . , tN [i : i + m − 1]}. For

convenience, we treat a multi-track as a multi-set in the following. In order to verify

the multi-set inclusion relation efficiently, we use the spectral Bloom Filter (SBF) [15]

described in Section 2.6. Then, we provide a definition of the FILM tree in Section 5.1.
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Figure 5.1: Example of a FILM tree, using only one hash function (k = 1).

5.1 Filtering multi-set trees

Definition 5.2 (FILM tree). Let T be a multi-track of length |T|len = n, and m be

a positive integer. Let H = {h1, h2, · · · , hk} be a set of k hash functions hi : U →

{0, . . . , u− 1}, where the domain U is either Σm or Rm. A FILM tree FILMm(T) of size

m for T is a complete binary tree containing 2⌈log2 n⌉ leaves, where each node v represents

an SBF of size ω defined as follows. If v is an i-th leaf node with 1 ≤ i ≤ n − m + 1,

then v represents SBFH(T[i : i+m− 1]). If i > n−m+ 1, it represents an empty SBF,

that is (0, 0, · · · , 0). If v is an inner node, v represents the SBF sL ⊕ sR, where sL (reps.

sR) is the SBF represented by the left (resp. right) child of v. In the sequel, we identify

a node v with the SBF that v represents.

Fig. 5.1 shows a simple example of a FILM tree. The number of nodes of a FILMm(T)

is 2⌈log2 n⌉+1 − 1 = O(n) because the number of leaves is 2⌈log2 n⌉ and each inner node has

exactly two children. Each node represents an SBF so that it requires O(ω) space. Thus,

FILMm(T) needs O(nω) space. Algorithm 6 shows a construction algorithm for the FILM

tree, in which the tree structure is implemented as an array A in a standard way; the
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5.1 Filtering multi-set trees

Algorithm 6: FILM tree construction algorithm

Input: multi-track text T and an integer m
Output: FILMm(T)
n = |T|len; N = |T|num;1

height = ⌈log2 n⌉;2

leafNum = 2height;3

for i = 1 to n−m+ 1 do4

FILMm(T)[leafNum+ i− 1] = SBFH(T[i : i+m− 1])5

end;6

for j = 1 to height do7

beginNode = 2height−j;8

endNode = 2·beginNode− 1;9

for i = beginNode to endNode do10

FILMm(T)[i] = FILMm(T)[2i]⊕ FILMm(T)[2i+ 1]11

end12

end;13

output FILMm(T) as a FILM tree14

left (resp. right) child of a node A[i] is stored in A[2i] (resp. A[2i + 1]). Since H

is a set of k functions, it requires O(knN) time to compute SBFH(T[i : i+m− 1]) for

1 ≤ i ≤ n−m + 1 in Line 4 to Line 5. In addition, a calculation in Line 11 needs O(ω)

time and is executed 2⌈log2 n⌉ − 1 = O(n) times. Thus, Algorithm 6 runs in O(knN + nω)

time.

By using FILMm(T), we can efficiently solve both the full- and sub- permuted pattern

matching problems for a multi-track pattern P of length |P|len = m. Algorithm 7 shows

the matching algorithm. At Line 2, it computes a query filter QF = SBFH(P) for P using

the same setH of hash functions. All positions i satisfying P ▷◁

⊑ T[i : i+m−1] can be found

by a depth first search of the FILM tree, defined as the recursive function DFS in Line 4.

When the algorithm visits c-th node v in the search, if min(FILMm(T[c])⊖QF) ≥ 0 and

v is a leaf (Line 6 and 7), then the algorithm outputs c− leafNum + 1 as a candidate of

permuted-matching position. The time complexity of Algorithm 7 is O(kmN +nω) time,

because QF and submin are computed in O(kmN) and O(ω) time respectively and DFS

is executed at most 2⌈log2 n⌉+1 − 1 times.
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5.1 Filtering multi-set trees

Algorithm 7: Permuted pattern matching algorithm using FILMm(T) ( |T|len =
n )

Input: pattern P satisfying |P|len = m
Output: matching positions of P in T /* it may contains some false

positives */

leafNum = 2⌈log2 n⌉;1

QF = SBFH(P);2

DFS (1); /* start depth-first-search from the root node */3

Function DFS (c)4

submin = min(FILMm(T)[c]⊖QF);5

if submin ≥ 0 then6

if c ≥ leafNum then /* FILMm(T)[c] is a leaf node */7

output c− leafNum+ 18

else /* FILMm(T)[c] is an inner node */9

DFS (2c);10

DFS (2c+ 1)11

end12

end13

end14

The output of Algorithm 7 contains at least all positions i satisfying P ▷◁

⊑ T[i : i+m−1]

for 1 ≤ i ≤ n − m + 1. The correctness is shown as follows. Let cl = SBFH(Cl) and

cr = SBFH(Cr) be sibling leaves of the FILM tree computed from substrings Cl and

Cr of multi-track T. Assume that P permuted-matches Cl, that is P ⊆ Cl. Because

QF = SBFH(P), we have min(cl ⊖ QF) ≥ 0 by Property 2.1 (2). Let v be the parent

node of cl and cr. Then, v = SBFH(Cl ∪ Cr) from Property 2.1 (1) and the definition

of the FILM tree. Now, P ⊆ (Cl ∪ Cr) holds, thus min(v ⊖ QF) ≥ 0. Recursively,

min(u⊖QF) ≥ 0 holds for all ancestor nodes u of cl. Therefore, all positions i satisfying

P ▷◁

⊑ T[i : i + m − 1] can be found correctly by the depth first search of the FILM tree.

Remark that the output of this algorithm may contain some false positives with small

probability, as we have already mentioned in Section 2.6. Thus, to obtain the correct

matching positions, we have to verify whether P ▷◁

⊑ T[i : i +m− 1] holds or not for each

candidate position i, in a naive way.
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5.2 Selection of hash function

5.2 Selection of hash function

By selecting suitable hash functions for the SBF, FILM trees can be adopted to solve

various permuted pattern matching problems.

In exact permuted pattern matching for multi-track string, we need a hash function

for strings in order to consider a FILM tree for strings. We adopt a simple rolling hash

that was used in Karp-Rabin algorithm [30] described in Section 2.7.1. For a multi-track

string T = {t1, t2, . . . , tN}, we can calculate the hash value hrh(ti[j : j +m − 1]) in O(1)

time after calculating the value hrh(ti[j − 1 : j +m− 2]), because the following equation

holds for any position j in a text ti;

hrh(ti[j : j +m− 1]) = a · hrh(ti[j − 1 : j +m− 2]) + ti[j +m− 1] (mod q),

where a is a prime number and q is a positive integer.

In the approximate permuted pattern matching, if each Euclidean distance between

tracks of the text and the pattern is small, the multi-track Euclidean distance is small.

Based on this idea, we select the locality sensitive hashing (LSH) for the Euclidean dis-

tance. By using LSH functions hlsh, we can directly construct a FILM tree for numerical

data, without converting them into strings. During the construction, we need to prepare

some hash functions. The number of hash functions is determined by the expected col-

lision probability. The construction time of FILMtree depends on the number of hash

functions.
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Chapter 6

Experiments

We conducted computational experiments to evaluate our algorithms. Our experiments

are partitioned into four parts. In each part, we evaluate

• exact permuted pattern matching algorithms described in Section 4.1, Section 4.2

and Section 4.3.1,

• indexing structures for the full-permuted pattern matching described in Section 4.3.1,

Section 4.3.2 and Section 4.3.3,

• approximate permuted pattern matching algorithms, described in Chapter 5.

• search times of indexing structures and FILM tree for the exact full-permuted pat-

tern matching.

6.1 Exact permuted pattern matching algorithms

We show the experimental results for the exact permuted pattern matching algorithms, by

using the generalized suffix array (GSA), the AC-automaton (ACAM) and the multi-track

suffix tree (MTST). We implemented these algorithms in C++ and used Linux Debian

wheezy with Intel c⃝ Xeon CPU E5-2609 2.40GHz and RAM 256GB throughout the ex-

periments. We focus on the preprocessing time (denote “build”), the search time (denote
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6.1 Exact permuted pattern matching algorithms

“search”), and the total time (denote “total”) of solving a permuted pattern matching.

The total time is a sum of the build time and the search time. Note that, the algorithm by

using GSA does not execute any preprocessing actually. However, this algorithm needs to

construct some data structures to perform the pattern matching, thus we show the time

required to do it as the build time. In each problem, we generated a text and a pattern

on a binary alphabet randomly. We got the average time of ten computations.

Table 6.1 presents the results for various text length n and fixed parameters N = 1000,

m = 10 and M = 1000, where m is the length of the multi-track pattern, N and M are

the number of tracks of the text and the pattern. 0.000 means that the time is less than

0.001 seconds. In Table 6.1, MTST achieves fastest searches for any n. By contrast, GSA

is too slowly compared with ACAM and MTST.

Table 6.2 shows the results for various N , with n = 100000, m = 10 and M = N . The

total times of ACAM for N ≤ 32 are less than that of MTST. Thus, ACAM is suitable

to be applied for the case that the track count of the multi-track text is small.

We next show the results with respect to the length of the multi-track pattern. Ta-

ble 6.3 represents the running times for various m and fixed n = 100000 and N = M =

1000. From Table 6.3, we can confirm that GSA and MTST are not influenced by the

length of the pattern m greatly. On the other hand, ACAM strongly depends on m. The

larger the size of the pattern is, the larger the size of the AC automaton. Thus, the build

time of ACAM increases. By contrast, the reason of the increase of the search time is

considered as the increase of calls of failure functions. The failure function are called

recursively when a state transition fails during a traversal of an AC automaton. If m is

large, the number of failures of state transitions is large and the search time also becomes

large. Thus, the results shown in Table 6.3 were obtained.

Table 6.4 show the results for M , where n = 100000, N = 1000 and m = 10. Note

that, we do not show the running times of MTST in Table 6.4 because MTST is a data

structure only for the full-permuted pattern matching. ACAM can be applied for the
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6.1 Exact permuted pattern matching algorithms

Table 6.1: Running times (sec) for n with N = 1000, m = 10, and M = 1000

GSA ACAM MTST
n build search total build search total build search total

10000 3.505 8.237 11.742 0.000 2.370 2.370 1.153 0.000 1.153

20000 8.900 17.853 26.753 0.000 4.802 4.802 2.502 0.000 2.502

30000 14.738 28.037 42.775 0.000 7.196 7.196 3.819 0.002 3.821

40000 21.210 38.805 60.015 0.002 9.700 9.702 5.403 0.000 5.403

50000 27.796 49.296 77.092 0.000 12.119 12.119 6.963 0.000 6.963

60000 34.696 60.482 95.178 0.000 14.538 14.538 9.479 0.001 9.480

70000 42.388 73.184 115.572 0.000 16.944 16.944 10.686 0.001 10.687

80000 49.755 84.058 133.813 0.000 19.302 19.302 13.255 0.000 13.255

90000 57.644 96.377 154.021 0.002 21.754 21.756 13.832 0.001 13.833

100000 65.790 107.321 173.111 0.003 24.390 24.393 15.125 0.002 15.127

Table 6.2: Running times (sec) for N with n = 100000, m = 10, and M = N

GSA ACAM MTST
N build search total build search total build search total

1 0.021 0.040 0.061 0.000 0.015 0.015 0.429 0.000 0.429

2 0.036 0.091 0.127 0.000 0.029 0.029 0.464 0.001 0.465

4 0.070 0.201 0.271 0.000 0.069 0.069 0.506 0.001 0.507

8 0.155 0.422 0.577 0.005 0.151 0.156 0.535 0.001 0.536

16 0.353 0.982 1.335 0.004 0.317 0.321 0.647 0.001 0.648

32 0.826 2.181 3.007 0.000 0.702 0.702 0.754 0.000 0.754

64 1.949 4.893 6.842 0.000 1.461 1.461 0.944 0.000 0.944

100 3.647 8.085 11.732 0.000 2.371 2.371 1.261 0.000 1.261

200 9.232 17.864 27.096 0.000 4.971 4.971 1.941 0.001 1.942

300 15.269 27.687 42.956 0.001 7.480 7.481 2.723 0.000 2.723

400 21.831 39.125 60.956 0.001 10.145 10.146 3.434 0.001 3.435

500 28.514 49.967 78.481 0.000 12.664 12.664 4.453 0.000 4.453

600 35.495 60.265 95.760 0.003 15.328 15.331 6.670 0.000 6.670

700 44.018 73.296 117.314 0.000 17.786 17.786 9.300 0.000 9.300

800 50.433 84.327 134.760 0.002 19.958 19.960 11.281 0.000 11.281

900 58.031 96.224 154.255 0.000 22.143 22.143 13.293 0.000 13.293

1000 65.784 106.951 172.735 0.002 24.400 24.402 15.177 0.002 15.179
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6.1 Exact permuted pattern matching algorithms

Table 6.3: Running times (sec) for m with n = 100000, N = 1000, and M = 1000

GSA ACAM MTST
m build search total build search total build search total

1 65.778 110.133 175.911 0.000 4.055 4.055 15.168 0.002 15.170

2 65.774 107.640 173.414 0.001 5.012 5.013 15.105 0.000 15.105

4 65.766 105.987 171.753 0.001 6.262 6.263 15.331 0.002 15.333

8 65.648 106.961 172.609 0.000 15.158 15.158 15.304 0.002 15.306

10 65.811 107.144 172.955 0.001 24.358 24.359 15.207 0.001 15.208

20 65.826 108.693 174.519 0.004 37.848 37.852 15.093 0.000 15.093

30 65.750 108.493 174.243 0.013 38.880 38.893 15.201 0.000 15.201

40 65.883 108.854 174.737 0.015 39.694 39.709 15.179 0.001 15.180

50 65.679 108.238 173.917 0.021 40.153 40.174 15.024 0.003 15.027

60 65.720 107.527 173.247 0.028 40.509 40.537 15.152 0.002 15.154

70 65.615 108.325 173.940 0.031 41.193 41.224 15.208 0.000 15.208

80 65.743 108.023 173.766 0.039 41.391 41.430 15.330 0.007 15.337

90 65.715 108.410 174.125 0.044 41.705 41.749 15.342 0.005 15.347

100 65.658 108.439 174.097 0.050 41.760 41.810 15.359 0.005 15.364

Table 6.4: Running times (sec) for M with n = 100000, N = 1000, and m = 10

GSA ACAM MTST
M build search total build search total build search total

1 65.744 69.612 135.356 0.000 5.329 5.329 - - -

2 65.763 93.372 159.135 0.000 6.717 6.717 - - -

4 65.733 101.742 167.475 0.000 8.071 8.071 - - -

8 65.741 104.066 169.807 0.000 9.402 9.402 - - -

16 65.756 104.793 170.549 0.000 11.474 11.474 - - -

32 65.729 105.207 170.936 0.000 13.908 13.908 - - -

64 65.753 105.637 171.390 0.000 16.341 16.341 - - -

100 65.740 105.580 171.320 0.000 17.907 17.907 - - -

200 65.786 106.601 172.387 0.002 20.545 20.547 - - -

300 65.716 107.581 173.297 0.000 21.586 21.586 - - -

400 65.635 107.732 173.367 0.000 22.836 22.836 - - -

500 65.792 105.810 171.602 0.001 23.225 23.226 - - -

600 65.802 107.544 173.346 0.001 23.692 23.693 - - -

700 65.653 107.260 172.913 0.000 24.027 24.027 - - -

800 65.808 107.356 173.164 0.000 24.438 24.438 - - -

900 65.797 107.492 173.289 0.001 24.450 24.451 - - -

1000 65.815 107.223 173.038 0.002 24.319 24.321 15.177 0.000 15.177
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sub-permuted pattern matching different from MTST and is faster than GSA for any M .

The search time of ACAM increases by M . This is because M accepting states of the

AC automaton are accessed to determine whether the pattern permuted-matches at a

position in the text or not.

6.2 Indexing structures

Next we show the experimental results of comparing the indexing structures for the multi-

track sting: the multi-track suffix tree (MTST), the multi-track position heap (MTPH),

the contracted multi-track position heap (CMTPH), the augmented multi-track position

heap (AMTPH), and the augmented contracted multi-track position heap (ACMTPH).

We implemented the matching algorithms by using these data structures in C++. We

used Linux Debian wheezy with Intel c⃝ Xeon CPU E5-2609 2.40GHz and RAM 256GB

throughout the experiments in this section.

In the experiment, we focus on the construction time (denote “build”), the search

time (denote “search”), and the required memory of each structure. We got the average

time of ten computations. In each computation, we generated a random text and a random

pattern on the binary alphabet, and embed the pattern in the text at 50 times with no

overlaps randomly. Note that, in this experiment, CMTPH was constructed in a naive

way: NMA(v) and LevA(v , d) for any node v need O(nN) time in our implementation,

so that the construction of CMTPH requires O(n2N log |Σ|) time.

First we show the experimental results for various n and fixed N = 1000, m = 10 and

M = 1000 in Table 6.5 and Table 6.6, where n and m are the length of the multi-track

text and the multi-track pattern, and N and M are the number of tracks of the text

and the pattern. As shown in Table 6.5, MTST achieves the fastest construction and

search for any n. The searches by using CMTPH and ACMTPH are faster than that

by using MTPH and AMTPH experimentally as shown in Table 6.5. Surprisingly, the

constructions of CMTPH and ACMTPH are also faster than that of MTPH and AMTPH
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Table 6.5: Running times (sec) for n with N = 1000, m = 10, and M = 1000

MTST MTPH AMTPH CMTPH ACMTPH
n build search build search build search build search build search

10000 1.134 0.001 4.948 0.811 6.567 0.798 5.104 0.377 6.083 0.366

20000 2.493 0.001 10.795 0.831 13.913 0.800 10.928 0.455 12.943 0.449

30000 3.854 0.001 16.455 0.816 21.387 0.797 16.366 0.577 19.492 0.566

40000 5.344 0.000 24.053 0.813 30.962 0.799 23.599 0.603 27.981 0.598

50000 6.923 0.000 30.192 0.833 38.627 0.800 29.360 0.599 34.677 0.592

60000 8.380 0.001 36.543 0.848 47.758 0.796 35.653 0.639 42.126 0.623

70000 10.100 0.000 46.817 0.870 59.068 0.801 43.879 0.659 51.895 0.641

80000 12.106 0.001 53.449 0.866 68.509 0.801 49.754 0.637 59.032 0.627

90000 13.280 0.000 61.568 0.865 78.881 0.802 57.235 0.708 67.564 0.684

100000 15.096 0.000 68.508 0.865 88.347 0.800 63.498 0.706 75.270 0.681

Table 6.6: Required memory (MBytes) for n with N = 1000, m = 10, and M = 1000

n MTST MTPH AMTPH CMTPH ACMTPH

10000 38.715 148.545 309.919 0.353 0.695

20000 77.465 274.185 565.385 0.706 1.408

30000 116.244 411.874 853.641 1.059 2.129

40000 155.046 563.900 1174.621 1.411 2.775

50000 193.857 726.204 1517.302 1.764 3.481

60000 232.678 897.812 1881.761 2.117 4.187

70000 271.503 1078.569 2223.475 2.470 4.897

80000 310.328 1266.892 2617.281 2.823 5.613

90000 349.153 1459.432 3019.903 3.176 6.328

100000 387.975 1659.675 3438.631 3.529 7.044

for n ≥ 30000. This is caused by constructing a tree that consists only of indexing nodes,

which is traversed to enumerate all matching positions in O(occ) time. Focusing on the

required space, CMTPH is most memory-efficient as shown in Table 6.6.

We next show the results for N = 1, 2, 4, · · · , 1000 with n = 100000, m = 10 and

M = N in Table 6.7 and Table 6.8. For small N , i.e., N ≤ 32, all methods except for

CMTPH achieve very fast search time as seen in Table 6.7. In addition, MTPH can be

constructed faster than any other structure for N = 1, 2, 4, 8, 16. From Table 6.8, we can

confirm that CMTPH and ACMTPH do not depend on the track count of the text N .

Table 6.9 and Table 6.10 show the results for m = 1, 2, 4, · · · , 100 with n = 100000,
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Table 6.7: Running times (sec) for N with n = 100000, m = 10, and M = N

MTST MTPH AMTPH CMTPH ACMTPH
N build search build search build search build search build search

1 0.427 0.001 0.117 0.000 0.167 0.001 0.171 0.000 0.236 0.000

2 0.451 0.000 0.165 0.000 0.260 0.000 0.234 0.004 0.342 0.000

4 0.505 0.001 0.262 0.000 0.426 0.000 0.351 0.004 0.495 0.000

8 0.582 0.000 0.376 0.000 0.638 0.000 0.492 0.004 0.704 0.000

16 0.685 0.000 0.641 0.000 1.083 0.001 0.773 0.005 1.076 0.001

32 0.816 0.000 1.107 0.001 1.778 0.001 1.264 0.004 1.731 0.001

64 1.038 0.000 2.271 0.005 3.522 0.003 2.321 0.011 3.088 0.008

100 1.382 0.001 3.951 0.011 5.934 0.011 3.734 0.017 4.795 0.011

200 2.068 0.000 9.454 0.037 13.487 0.036 8.262 0.045 10.184 0.050

300 2.792 0.000 16.560 0.082 22.675 0.073 14.745 0.102 17.616 0.074

400 3.523 0.000 22.834 0.141 31.279 0.127 20.797 0.180 24.776 0.123

500 4.565 0.000 29.896 0.219 40.457 0.200 26.898 0.270 31.933 0.196

600 6.968 0.000 39.723 0.324 52.022 0.290 36.212 0.326 42.622 0.271

700 9.504 0.000 47.482 0.423 62.622 0.400 43.019 0.404 51.111 0.355

800 11.235 0.001 53.952 0.554 70.167 0.509 49.496 0.501 58.948 0.459

900 13.456 0.003 61.448 0.701 79.211 0.647 56.540 0.603 67.293 0.560

1000 15.263 0.000 68.440 0.864 87.440 0.801 63.176 0.727 74.516 0.697

Table 6.8: Required memory (MBytes) for N with n = 100000, m = 10, and M = N

N MTST MTPH AMTPH CMTPH ACMTPH

1 11.062 3.147 7.051 3.528 7.051

2 9.439 5.368 11.543 3.528 7.051

4 8.914 9.107 19.454 3.528 7.052

8 9.414 14.773 31.602 3.529 7.052

16 12.555 31.551 66.150 3.529 7.052

32 18.173 50.389 106.206 3.529 7.048

64 30.042 117.482 244.640 3.529 7.048

100 43.848 206.041 432.287 3.529 7.048

200 82.282 447.861 929.875 3.529 7.047

300 120.654 664.794 1387.846 3.529 7.046

400 158.959 854.735 1790.100 3.529 7.045

500 197.212 1022.678 2148.040 3.529 7.044

600 235.419 1172.711 2420.431 3.529 7.044

700 273.588 1308.124 2703.568 3.529 7.044

800 311.736 1433.092 2964.866 3.529 7.044

900 349.862 1549.510 3208.285 3.529 7.043

1000 387.975 1659.675 3438.631 3.529 7.044
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Table 6.9: Running times (sec) for m with n = 100000, N = 1000, and M = 1000

MTST MTPH AMTPH CMTPH ACMTPH
m build search build search build search build search build search

1 15.042 0.002 68.424 0.084 87.664 0.079 63.171 0.345 74.632 0.125

2 15.115 0.000 68.408 0.167 88.300 0.159 63.128 0.455 75.384 0.428

4 15.045 0.000 67.988 0.336 87.889 0.319 62.903 0.550 74.815 0.515

8 15.306 0.000 67.968 0.686 87.115 0.643 62.777 0.645 74.403 0.630

10 14.918 0.000 69.972 0.863 88.927 0.798 63.371 0.707 74.265 0.676

20 15.430 0.001 68.371 2.014 87.712 1.707 63.730 1.089 75.400 1.090

30 15.199 0.001 68.343 3.058 87.697 2.611 64.172 1.500 75.525 1.458

40 15.379 0.000 68.032 3.939 87.446 3.567 63.517 1.897 75.913 1.910

50 15.135 0.002 68.050 5.126 87.595 4.599 64.628 2.195 76.464 2.092

60 15.057 0.002 68.318 5.136 87.403 4.808 64.874 2.839 77.306 2.917

70 15.071 0.003 69.378 5.307 89.270 5.087 64.852 3.170 78.134 3.033

80 15.157 0.002 68.155 5.521 87.784 5.386 65.556 3.539 79.019 3.575

90 15.124 0.004 67.967 5.637 87.608 5.489 65.442 3.733 78.884 3.754

100 15.328 0.006 68.052 5.664 87.606 5.573 65.870 4.174 79.389 4.255

Table 6.10: Required memory (MBytes) form with n = 100000, N = 1000, andM = 1000

m MTST MTPH AMTPH CMTPH ACMTPH

1 387.980 1655.200 3429.273 3.529 7.043

2 387.980 1655.327 3429.539 3.529 7.044

4 387.977 1655.738 3430.398 3.529 7.044

8 387.976 1658.308 3435.773 3.529 7.044

10 387.975 1659.675 3438.631 3.529 7.044

20 387.970 1664.982 3449.727 3.529 7.044

30 387.961 1669.730 3459.654 3.529 7.044

40 387.956 1675.368 3471.443 3.529 7.044

50 387.950 1680.374 3481.911 3.529 7.044

60 387.943 1685.683 3493.011 3.529 7.044

70 387.936 1691.718 3505.629 3.529 7.044

80 387.928 1696.643 3515.928 3.529 7.044

90 387.925 1702.988 3529.195 3.529 7.044

100 387.920 1708.673 3541.082 3.529 7.043
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6.3 Approximate permuted pattern matching algorithms

N = 1000 and M = 1000. As expected, the construction times of all methods do not

change greatly and the search times increase by the length of the pattern. (see Table 6.9).

As shown in Table 6.10, the required spaces do not increase greatly.

6.3 Approximate permuted pattern matching algo-

rithms

We performed three sets of experiments. In the first two of them, we assessed the con-

struction time and search time of our algorithm on random data. In the third one, we

performed experiments on real-world data. Throughout the experiments, we used a Linux

machine with a 2.4GHz Intel c⃝ Xeon CPU EE5-2609 and 256GB RAM, running Debian

7.0. In the experiments on random data, we used the following basic parameter values:

the length of a text |T|len = 100000, the number of tracks of a text |T|num = 1000, the

length of a pattern |P|len = 300, the alphabet size of a multi-track string text |Σ| = 26,

the number of hash functions k = 1 and the size of a SBF used in a FILM tree ω = 10000.

In the experiments, we compared our algorithms using the FILM tree with a multi-

track suffix tree (MTST). However, MTST can be applied only to multi-track strings.

Thus, we prepared numerical data for the FILM tree and string data for MTST converted

from the numerical data in the following manner; the value range of numerical data is

divided into equal |Σ| parts, and each divided part is assigned to a distinct character.

Note that the construction time of MTST excludes the time of this conversion.

A naive implementation of SBF in Algorithm 6 and Algorithm 7 would be an integer

array. Instead of it, we used an associative array in the experiments, because SBFs are

very sparse, that means most elements are 0’s, especially if they are near to the leaves.

By storing only non-zero elements in the associative array, we can greatly reduce the

memory requirement of SBFs. Moreover, the operations u⊕v and u⊖v can be computed

efficiently, that depends only on the number of non-zero elements, but not the size ω.
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6.3 Approximate permuted pattern matching algorithms

6.3.1 Construction time on random data

The first set of our experiments assesses the construction time of FILM trees on random

data. We varied the values of |T|len, |T|num and ω, and compared the construction time of

FILM trees using rolling hash (RH) and LSH with that of multi-track suffix trees (MT-

STs). In this experiment, we used random numerical data for FILMLSH and the string

data converted from the numerical data for FILMRH and MTST.

Fig. 6.1 shows the results. In this figure, the y-axes represent the construction

times (seconds), and they are on logarithmic scales in Fig. 6.1(b) and Fig. 6.1(c). The

x-axes represent the length |T|len of the multi-track text, the number |T|num of tracks, and

the size ω of SBF in FILM tree in Fig. 6.1(a), Fig. 6.1(b) and Fig. 6.1(c), respectively. In

all experiments, MTST was the fastest among them, and FILM trees were much slower

than MTST. The construction time of FILM tree depended on |T|len and ω.

6.3.2 Search time on random data

The experiments in the second set concern with the search time on random data. The

search using the FILM tree depends on the size ω of SBF, and the height of the FILM

tree that reflects the length |T|len of text. On the other hand, the search using MTST

depends on the length |P|len of pattern. Thus, we compared the search time of FILMLSH,

FILMRH and MTST for various values of |T|len, |P|len and ω.

Fig. 6.2 shows the results. The y-axes represent the search times (seconds) on log-

arithmic scales. The x-axis in Fig. 6.2(a) represents the length |T|len of the multi-track

text. The matching algorithm using the FILM tree needs to search from the root node to

leaf nodes in order to identify the matching positions. The search time depends on the

height of the FILM tree, which is O(log2 n) with respect to the text length n = |T|len.

The result shows that we can ignore this influence from a practical viewpoint. The x-

axis in Fig. 6.2(b) represents the length |P|len of the pattern. Concerning with MTST,

as we expected, the search time increases as the pattern P becomes longer, because we
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6.3 Approximate permuted pattern matching algorithms

have to traverse a path of length |P|len in MTST. If we implement SBF in the FILM tree

with a normal array, the search time does not depend on the length of the pattern in

principle. However, we had confirmed in a preliminary experiment that the search time

of this implementation was very slow and required large memory, compared to MTST.

Thus, we decided to use associative arrays for SBFs. In consequence, the search time of

FILM tree is faster than that of MTST, although it mildly depends on the pattern length

|P|len. The x-axis in Fig. 6.2(c) represents the size ω of SBF. If we use normal arrays for

SBFs, the search using FILM tree would slow down as ω increases. However, thanks to

the associative array implementation, we obtained much faster search, that is practically

independent of ω.

All results in these experiments show that our proposed method using FILM tree

outperforms MTST on search time in any cases.

6.3.3 Construction time and search time on traffic data

The third set is the experiments for real-world data. We used some traffic data comprised

of car speed measurements at 702 monitoring points on Tokyo Metropolitan Expressway

in Japan. We regarded a time series of them as a multi-track numerical text T with

|T|num = 702. At each monitoring point, the average speed of the cars were recorded at

every 5 minutes for one year, so that the length |T|len was 105120.

As typical applications on the traffic data, we are interested in various subjects; for

instance, detecting traffic jams, finding some common patterns in them, and extracting

some relations among them, with respect to the time, week, and month, and so on. In the

most of all these processing, pattern matching is indispensable as a fundamental operation.

Therefore, we evaluated the real performance of our proposed method on these data for

pattern matching. We examined four lengths of patterns, |P|len = m = 288 (one day

record), 144 (12 hours), 72 (6 hours), and 36 (3 hours), and each pattern was randomly

cut out from the text |T|len. As is the previous subsection, we fixed |Σ| = 26 and k = 1,
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6.4 Comparison of search times of indexing structures and FILM tree

and varied the size ω of SBF.

Fig. 6.3(a) shows the construction time, and Fig. 6.3(b) shows the search time, both in

logarithmic scales. We observe that the tendency of the performance is similar to the one

for the random data; although construction of FILM tree is slower than that of MTST,

searching using FILM tree is much faster in most situations, and the choice of the size

ω does not affect the running time very much. We conclude that our proposed method

provides an efficient way to support pattern matching on multi-tracks of this amount of

numerical data.

6.4 Comparison of search times of indexing struc-

tures and FILM tree

We show the experimental results for comparison indexing structures, the multi-track

suffix tree (MTST), the multi-track position heap (MTPH), and the contracted multi-

track position heap (CMTPH), with FILM tree (FILM) for the full-permuted pattern

matching on multi-track strings in this section. To evaluate the performance of FILM

tree for the non-probabilistic search, we also implemented an algorithm by using FILM

tree that includes the verification of output positions of the search (FILMexact). We

implemented each algorithm in C++ and used Linux Debian wheezy with Intel c⃝ Xeon

CPU E5-2609 2.40GHz and RAM 256GB throughout the experiments in this section.

We only focus on the search time of each data structure in this section. We computed

the average time of ten runs that used a random text and a random pattern on the binary

alphabet. The pattern was embed in the text at 50 times with no overlaps randomly.

Note that, a implementation of SBF in FILM tree was an integer array different from an

associative array in Section 6.3.

Table 6.11, Table 6.12, and Table 6.13 shows the search times for various n and fixed

N = 1000, m = 10 and M = 1000, for various N with n = 100000, m = 10 and M = N ,
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6.4 Comparison of search times of indexing structures and FILM tree

Table 6.11: Search times (sec) for n with N = 1000, m = 10, and M = 1000

n MTST MTPH CMTPH FILM FILMexact

10000 0.000 0.817 0.374 0.010 0.038

20000 0.000 0.834 0.454 0.019 0.046

30000 0.001 0.827 0.574 0.030 0.056

40000 0.000 0.819 0.604 0.039 0.066

50000 0.000 0.857 0.601 0.047 0.073

60000 0.001 0.864 0.640 0.059 0.085

70000 0.000 0.879 0.658 0.067 0.094

80000 0.000 0.890 0.640 0.074 0.102

90000 0.001 0.871 0.716 0.078 0.109

100000 0.001 0.879 0.715 0.098 0.122

and for various m with n = 100000, N = 1000 and M = 1000, respectively. MTST

achieves the fastest search almost for any parameter. On the other hand, FILM gives the

second fastest search. The search speed of FILM can easily be accelerated by adopting

an implementation of SBF as an associative array as shown in Section 6.3. In addition,

FILM also has the merit that it can be applied for the sub-permuted pattern matching.

As shown in the results of FILMexact, the performance of the search by using FILM

tree is good compared with that of MTPH and CMTPH even if the search includes the

verification of output positions. However, it is expected that if occurrences of the pattern

in the text increase, the search speed of FILMexact may be worse because the verification

cost becomes larger.
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6.4 Comparison of search times of indexing structures and FILM tree

Table 6.12: Search times (sec) for N with n = 100000, m = 10, and M = N

N MTST MTPH CMTPH FILM FILMexact

1 0.001 0.000 0.001 0.007 0.009

2 0.001 0.000 0.002 0.003 0.003

4 0.000 0.000 0.004 0.004 0.001

8 0.000 0.000 0.005 0.004 0.006

16 0.000 0.000 0.004 0.004 0.004

32 0.000 0.001 0.006 0.010 0.009

64 0.000 0.006 0.009 0.012 0.016

100 0.000 0.010 0.014 0.017 0.016

200 0.000 0.033 0.043 0.027 0.031

300 0.000 0.087 0.100 0.034 0.043

400 0.000 0.144 0.186 0.046 0.057

500 0.000 0.220 0.270 0.057 0.067

600 0.001 0.321 0.326 0.061 0.079

700 0.000 0.437 0.395 0.071 0.088

800 0.000 0.563 0.508 0.077 0.098

900 0.000 0.724 0.607 0.084 0.109

1000 0.003 0.890 0.715 0.094 0.123

Table 6.13: Search times (sec) for m with n = 100000, N = 1000, and M = 1000

m MTST MTPH CMTPH FILM FILMexact

1 0.000 0.087 0.343 0.218 0.719

2 0.001 0.168 0.460 0.305 0.317

4 0.000 0.339 0.548 0.319 0.334

8 0.001 0.695 0.649 0.205 0.231

10 0.001 0.891 0.720 0.095 0.122

20 0.001 2.062 1.094 0.060 0.104

30 0.000 3.068 1.497 0.058 0.115

40 0.002 3.960 1.917 0.061 0.140

50 0.002 5.561 2.310 0.061 0.160

60 0.005 5.131 2.837 0.058 0.197

70 0.002 5.319 3.149 0.060 0.184

80 0.002 5.517 3.505 0.061 0.202

90 0.007 5.650 3.728 0.059 0.247

100 0.006 5.698 4.210 0.059 0.233
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Chapter 7

Conclusion

We introduced a new form of string pattern matching called the permuted pattern match-

ing on multi-track strings. We showed that the permuted pattern matching problem on

multi-track strings can be solved in O(nN log |Σ|) time and O(mM +N) space using the

AC-automaton. Furthermore, by using constant time longest common extension queries

after linear time pre-processing, we can solve the problem in O(nN) time and space for

integer alphabets. However, these solutions do not allow a linear pre-processing of the

text multi-tracks so that pattern matching cannot be performed in worst case linear time

with respect to the pattern length plus output size, as do various string indices (e.g., suffix

trees, suffix arrays) for normal string pattern matching.

For this problem, we proposed a new indexing structure called multi-track suffix

trees (mt-suffix tree). Given the mt-suffix tree for a text multi-track, we can solve the full-

permuted-matching (i.e., M = N) problem for any pattern multi-track in O(mN log |Σ|+

occ) time, where occ is the number of positions of the text where the pattern permuted-

matches. We also developed an algorithm for constructing the mt-suffix tree, based on the

Ukkonen algorithm [42], running in O(nN log |Σ|) time and O(nN) space. For constant

size alphabets, the proposed algorithm performs in optimal linear time in the total size

of the input texts.

We also proposed two new indexing structures, MTPH and CMTPH, for multi-track
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strings, that are memory-efficient compared with the mt-suffix tree; MTPH and CMTPH

need O(nN) and O(n) space, respectively. We showed an O(nN log |Σ|)-time construction

algorithms of MTPH and CMTPH, and proposed MRPs for both of them. By using

these data structures, the permuted pattern matching problem can be solved efficiently:

O(m2N log |Σ|+ occ) time by MTPH, and O(m2N2 log |Σ|+ occ) time by CMTPH.

The problem of developing a text index that can be used for solving sub-permuted

pattern matching (i.e., M < N) in O(mM log |Σ|+ occ) time is an open problem. Boyer-

Moore type algorithms for permuted-matching may also be of interest for further research.

To construct CMPTH directly in O(nN) time without constructing MTPH is also our

future work.

In addition to above results for the exact permuted pattern matching, we proposed a

data structure FILM tree that also can be applied to the approximate permuted pattern

matching problem. We considered some examples to demonstrate the effectiveness of

this approach, such as full/sub-permuted pattern matching problems on string multi-

tracks and full/sub-permuted approximate pattern matching problems on numerical multi-

tracks, as well as providing their algorithms. FILM tree requires O(nω) space, where n

and ω are the lengths of the multi-track text and the size of SBF, respectively. We

performed a comparison with the mt-suffix tree for the full-permuted pattern matching

problem and demonstrated that FILM tree can search patterns faster than the mt-suffix

tree.

FILM tree is a simple and powerful data structure for permuted pattern matching

problems, but it is only suitable for fixed length patterns. Thus, we need to consider the

development of a version for variable length patterns in our future research.
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