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Abstract

In this thesis, we discuss the adaptive pseudo-free group which is proposed as

a unified framework to treat cryptographic assumptions and schemes by Catalano,

Fiore and Warinschi. We investigate the adaptive pseudo-freeness of the RSA

group Z×
N with respect to several cryptographic assumptions.

First, we consider the flexibility of the notion of adaptive pseudo-free groups.

In the definition of Catalano-Fiore-Warinschi, the adaptive pseudo-free group

is somewhat restricted in a sense that the adaptive behavior of adversaries is

restricted by some specific parametric distribution. However, it remains open

whether or not the adaptive pseudo-free group with no such restriction, referred

to as the strongly-adaptive pseudo-free group, is feasible. For this question,

we give a negative circumstantial evidence. We show that the strong adaptive

pseudo-freeness of Z×
N cannot be proven from the strong RSA (SRSA, for short)

assumption via algebraic reductions, as long as the SRSA assumption holds. This

result indicates that it is reasonable to use parametric distributions to construct

a concrete adaptive pseudo-free group.

We next focus on the applicability of the existing parametric distributions.

Namely we consider the question whether or not the adaptive pseudo-freeness of

Z×
N can be shown from some assumptions other than the SRSA assumption, using

the parametric distribution of Catalano-Fiore-Warinschi. We show that it cannot

be proven from the RSA assumption via algebraic reductions, as long as the RSA

assumption holds. By employing this result, we also show that the security of

SRSA-based signature schemes may not be proven from the RSA assumption.

The second result implies that another parametric distribution is required

to show the adaptive pseudo-freeness of Z×
N under the RSA assumption. As the

third result, we propose such a parametric distribution. Namely, we show that

the adaptive pseudo-freeness of Z×
N can be proven from the RSA assumption by

using our new parametric distribution.
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Chapter 1

Introduction

1.1 Background

The public key cryptosystem was born as a concrete application of the com-

putational complexity theory, and has been one of the fundamental tools to com-

municate securely over a network. This enables one to omit key exchange and to

send secret information even over public channels in which several threats includ-

ing eavesdropping may exist. Moreover, there are many applications based on

public key cryptosystems such as digital signature schemes, identification proto-

cols, oblivious transfer protocols, secure multi-party protocols and so on. There-

fore, the public key cryptography has been significant in both theoretical and

practical senses.

The concept of public key cryptography was introduced by Diffie and Hell-

man [16] in 1976. In 1978, Rivest, Shamir and Adleman [39] proposed a public

key encryption which is referred to as the RSA scheme. They also proposed a

digital signature based on the scheme. Afterward, efficient and useful public key

encryptions were put forward [4, 8, 9, 15, 20].

The security of many public key cryptosystems depends on the computational

complexity of number-theoretic problems such as the integer factoring problem

and the discrete logarithm (DL, for short) problem. This means that the security

of a cryptosystem is compromised if the underlying number-theoretic problem

can be easily solved. On the other hand, the converse implication does not hold

in general. Hence the cryptosystems may be vulnerable even if these problems

are in fact hard to solve. Therefore, cryptographic schemes are required to be

secure as long as solving the number-theoretic problem is hard.

5



CHAPTER 1 INTRODUCTION 6

The provable security designates the case where the converse above also

holds. The security of the cryptographic schemes is usually proved by reduc-

tion methodology. A common security proof proceeds as follows. We put on

an assumption X that some computational problem ProblemX is hard to solve,

namely it cannot be solved by any probabilistic polynomial-time (PPT, for short)

algorithm with nonnegligible probability. Then we prove that there exists a

polynomial-time reduction from the problem ProblemX to the problem for break-

ing the scheme. Such a reduction shows that we can efficiently solve the hard

problem ProblemX by using an adversary, that is an attacker who is capable of

breaking the scheme, as a black-box oracle. However, this is impossible as long as

the hardness assumption on the problem ProblemX holds. Eventually, we have

proven that the scheme is secure under the hardness assumption X.

A hardness assumption that is usually employed in the security proofs is

called a cryptographic assumption. Among cryptographic assumptions, the typi-

cal ones are the RSA assumption, the strong RSA (SRSA, for short) assumption

[6, 19] and the DL assumption. Although they have different representation, an

essential property of these assumptions seems to be the same in a sense that it

is assumed hard to solve some specific equation over a group. In fact, the RSA

assumption states that it is hard to solve an equation for x of the form xe = y

over the RSA group Z×
N , where N is an RSA modulus, i.e. N = PQ, a product

of two distinct odd primes. The DL assumption asserts that an equation y = gx

cannot be solved for x in PPT over a multiplicative group Z×
P of a finite field FP .

By this observation, the questions arise: Can we construct a unified framework to

treat several cryptographic assumptions by using the essential property? More-

over, can we prove the security of generic cryptographic schemes by using such a

framework? If the questions are resolved affirmatively, the security of each cryp-

tographic scheme handled by the framework can be proven in a unified manner

with respect to a specific cryptographic assumption.

As a unified framework, the notion of pseudo-free group was proposed by Ho-

henberger [29] in 2003, and was formalized by Rivest [40]. The pseudo-freeness

is defined for computational groups. A group is computational if computational

operations such as the group law and sampling elements can be efficiently done.

Intuitively, a family {GN} of computational groups is pseudo-free if GN is indis-

tinguishable from free groups. Several cryptographic assumptions including the

RSA assumption, the DL assumption and the SRSA assumption hold on pseudo-
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free groups [40]. This fact indicates that the notion of pseudo-free group could

be a unified framework which can treat several cryptographic assumptions.

The indistinguishability of pseudo-free groups GN from free groups is de-

scribed by using equations over a free group. Namely, distinguishing is to find a

witness pair (λ, ψ) such that the equation λ has no solution over the free group,

but it has a solution ψ over GN . Such a pair (λ, ψ) witnesses that GN is not a

free group, since λ should have no solution if GN is a free group.

A crucial question was left by Rivest [40] to verify that the pseudo-free

group is not a vacuous notion. Namely, it was necessary for us to find a concrete

example of pseudo-free groups. In 2005, this question was affirmatively answered

by Micciancio [34]. It was shown that the RSA group Z×
N is pseudo-free under

the SRSA assumption when the RSA modulus N is a product of two distinct safe

primes, a prime P such that (P−1)/2 is also prime. This implies that the pseudo-

freeness is equivalent to the SRSA assumption over Z×
N of such moduli. Therefore,

the pseudo-freeness seems to be a feasible cryptographic assumption. Jhanwar

and Barua [31] showed the pseudo-freeness of Z×
N under the SRSA assumption,

but with a slightly different condition from Micciancio’s one. For an example

other than Z×
N , Anokhin [5] constructed a family of groups that is shown to be

pseudo-free under the integer factoring assumption.

Variants of pseudo-free groups have also been studied in order to cover an

assumption that is not known to be captured by the (original) pseudo-free groups.

Rivest proposed the variants called weak pseudo-free groups and pseudo-free

groups with generalized exponential expressions [40]. Hirano and Tanaka [26]

formalized these two notions and showed that several standard cryptographic

assumptions hold on the variants as well as on the original pseudo-free groups.

Hasegawa, Isobe, Shizuya and Tashiro [25] investigated the relationships among

pseudo-free groups and the two variants. They showed that the pseudo-freeness

with generalized exponential expressions is equivalent to the original pseudo-

freeness, and the pseudo-freeness implies the weak pseudo-freeness. They also

showed in [25] that the computational Diffie-Hellman assumption [40] holds on

pseudo-free groups in a slightly varied form.

As mentioned above, the notion of pseudo-free group is not a vacuous theory

and could be a unified framework. We next focus on the question whether or not

a cryptographic scheme can be directly constructed from the pseudo-freeness. If

such schemes can be obtained, one may be able to yield a new cryptographic
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scheme whose security is proven from a specific cryptographic assumption, only

by showing the pseudo-freeness from the specified assumption. In the ordinary

security proofs, adaptive adversaries which are allowed to obtain auxiliary infor-

mation are employed. For example, a chosen ciphertext attacker [38] against a

public key encryption can adaptively obtain a plaintext for a ciphertext which

is requested. However, such adversaries are not considered in the definition of

the pseudo-free group. Therefore, if we can extend the notion of the pseudo-

freeness so that it enables us to handle adaptive adversaries, we may construct

cryptographic schemes directly from pseudo-free groups.

Concerning this issue, Catalano, Fiore and Warinschi [13] introduced the

notion of adaptive pseudo-free groups in 2011. Their adaptive pseudo-freeness

means that any PPT adversary cannot find a new witness pair (λ∗, ψ∗) as in

the Rivest’s static setting even if the adversary is allowed to adaptively receive a

solution of an equation query. Here, the “adaptive” behavior of the adversary is

restricted in a way that the adversary is not allowed to arbitrarily choose equa-

tions to be solved. Instead, equations are chosen according to some specified

parametric distribution ϱ over the set of possible queries. The adversary queries

a parameter M for determining the distribution ϱ(M). Then, it receives a wit-

ness (λ, ψ) of the equation λ chosen according to the distribution ϱ(M) and the

corresponding solution ψ. Note that the adaptive pseudo-freeness includes the

original “static” pseudo-freeness as a special case where the adversary makes no

query.

In [13], they gave a class of specific parametric distributions with which

Z×
N is adaptive pseudo-free under the SRSA assumption. They also showed a

generic construction of secure signature schemes from the notion of adaptive

pseudo-free groups as the first direct cryptographic application. Intuitively, a

witness pair (λ, ψ) of an equation λ chosen according to a distribution ϱ(M)

and its solution ψ is a signature on a message M . The adaptive pseudo-freeness

implies that their signatures are strongly existentially unforgeable against the

chosen message attack (sEUF-CMA, for short). More specifically, in the security

proof of their signature schemes, the adversary against the signature schemes is

naturally regarded as an adversary breaking the adaptive pseudo-freeness. In

particular, they mentioned that the proof of the adaptive pseudo-freeness of Z×
N

is an abstraction for the security proofs of the SRSA-based signature schemes

[11, 14, 18, 22, 27, 49], namely the signatures whose security is proven from the
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SRSA assumption.

1.2 Summary of Results

As mentioned in the previous section, Catalano, Fiore and Warinschi [13]

unified several SRSA-based signature schemes in a sense that these are directly

obtained from the adaptive pseudo-freeness of Z×
N . This means that the notion

of adaptive pseudo-free groups is a candidate of the desirable framework from

which one can build a generic construction of cryptographic schemes. However,

the construction of signatures given in [13] is the only example of cryptographic

schemes from adaptive pseudo-free groups. In this thesis, we discuss flexibility

and applicability of the notion of the adaptive pseudo-free groups. Especially, we

investigate the adaptive pseudo-freeness of the RSA group Z×
N with respect to

several cryptographic assumptions.

First, we focus on the flexibility. The adaptive pseudo-freeness is defined

with respect to a parametric distribution that determines the form of equations

supplied to adaptive pseudo-free adversaries. In [13], they proposed the class of

appropriate parametric distributions ϱCFW to pick equations that matches ones

used in the SRSA-based signatures including [11, 14, 18, 22, 27, 49]. Therefore,

if one wants to construct a cryptographic scheme from the adaptive pseudo-free

group, he should set up a parametric distribution corresponding to the crypto-

graphic scheme. From this viewpoint, the adaptive pseudo-freeness with respect

to a parametric distribution which does not force the form of equations is ex-

pected to produce generic cryptographic schemes. Such an adaptive pseudo-free

group is already referred to as the strongly-adaptive pseudo-free group in [13].

However, it is not known whether or not the strong adaptive pseudo-freeness is

feasible. In particular, it remains open whether or not the RSA group Z×
N is

strongly-adaptive pseudo-free. For this question, we give the following negative

circumstantial evidence.

Theorem 3.4 (Chapter 3)

The strong adaptive pseudo-freeness of the RSA group Z×
N cannot be proven from

the SRSA assumption via algebraic reductions, as long as the SRSA assumption

holds.

In Theorem 3.4, a reduction algorithm R is restricted to being algebraic.

The notion of algebraic reductions is introduced by Paillier and Vergnaud [37].
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Informally, an algorithm is said to be algebraic with respect to a group G if the

algorithm performs only group operations for elements in G and its execution

can be easily traced. We note that employing algebraic algorithms is not of

exceedingly restricted setting, because most reductions concerning the pseudo-free

group [13, 31, 34], and ordinary security proofs (e.g. [11, 14, 37]) are performed on

algebraic algorithms. This notion is employed in order to give impossibility results

for constructing security proofs of several cryptographic schemes [1, 2, 21, 24, 43],

and investigate relationships among cryptographic assumptions [10, 45].

Theorem 3.4 means that the strong adaptive pseudo-freeness of the RSA

group Z×
N cannot be shown under the SRSA assumption, by employing only

current proof techniques which are frequently used in ordinary security proofs.

Since the SRSA assumption is one of the strongest assumption, this implies that

the strong adaptive pseudo-freeness for the RSA group Z×
N may be far from

feasibility.

By Theorem 3.4, restricting the form of equations by using some parametric

distribution is reasonable to make Z×
N be adaptive pseudo-free. Thus we next

consider the applicability of the existing parametric distributions. Namely we

discuss the question whether or not one can prove the adaptive pseudo-freeness

of the RSA group Z×
N with respect to a parametric distribution belonging to

the class of Catalano-Fiore-Warinschi [13] from some assumption other than the

SRSA assumption. If this question is positively resolved, a signature scheme

whose security is guaranteed by the employed assumption could be constructed

from the adaptive pseudo-freeness by using its parametric distribution. For this

question, we again give a negative circumstantial evidence.

Theorem 3.9 (Chapter 3)

The adaptive pseudo-freeness of Z×
N with respect to any parametric distribution

belonging to the class of Catalano-Fiore-Warinschi cannot be proven from the

RSA assumption via algebraic reductions, as long as the RSA assumption holds.

This result means that a new parametric distribution is required to prove

the adaptive pseudo-freeness of Z×
N from the RSA assumption.

As an application of Theorem 3.9, we show that the sEUF-CMA security of

the SRSA-based signature schemes proposed by [11, 14, 18, 22, 27, 49] may not be

proven from the RSA assumption. For the purpose of obtaining such an impos-

sibility result, we prove that the sEUF-CMA security of signatures yielded from

the generic construction given by Catalano-Fiore-Warinschi implies the adap-
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tive pseudo-freeness of Z×
N . Recall that the SRSA-based signatures given in

[11, 14, 18, 22, 27, 49] can be obtained from their construction. If the sEUF-

CMA security of each of these SRSA-based signatures is proven from the RSA

assumption via algebraic reductions, the adaptive pseudo-freeness of Z×
N is also

proven from the RSA assumption via algebraic reductions. It follows from The-

orem 3.9 that the RSA assumption does not hold. Thus, one can show that the

sEUF-CMA security of these SRSA-based signatures cannot be proven from the

RSA assumption via algebraic reductions, as long as the RSA assumption holds.

This indicates that the adaptive pseudo-free group is useful to discuss whether or

not the security of a cryptographic scheme is provable from a specific assumption.

By Theorem 3.9, the parametric distributions of Catalano-Fiore-Warinschi

cannot be applied to show the adaptive pseudo-freeness of Z×
N under the RSA

assumption. Therefore, in order to show the adaptive pseudo-freeness of Z×
N

under the RSA assumption, we need another parametric distribution. We finally

explore such a parametric distribution with which the adaptive pseudo-freeness

of the RSA group Z×
N can be proven from the RSA assumption. We give the

following affirmatively result for this question.

Theorem 4.9 (Chapter 4)

There exists a family
{
ϱK,c

}
of parametric distributions so that the adaptive

pseudo-freeness of the RSA group Z×
N with respect to the family

{
ϱK,c

}
can be

proven from the RSA assumption.

Our idea is to utilize the technique presented by Schäge and Schwenk [41].

In [41], they converted an SRSA-based signature scheme into an RSA-based sig-

nature scheme with involving the hash function introduced by Hohenberger and

Waters [30]. Their hash function is employed to construct our parametric distri-

butions.

Theorem 4.9 means that the adaptive pseudo-freeness of Z×
N is proven from

the RSA assumption by using our parametric distributions ϱK,c. Therefore, RSA-

based signature schemes could be constructed from the adaptive pseudo-freeness

by using our parametric distributions ϱK,c. It is also expected that the adap-

tive pseudo-freeness of Z×
N is proven with respect to an appropriate parametric

distribution corresponding to the applied cryptographic assumption.
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1.3 Organization

The rest of this thesis is organized as follows. We introduce notions and

notations that are used throughout the thesis in Chapter 2. In Chapter 3, we give

several impossibility results on the adaptive pseudo-freeness of the RSA group Z×
N .

More specifically, in Section 3.1, we show that the strong adaptive pseudo-freeness

of Z×
N cannot be proven from the SRSA assumption via algebraic reductions, as

long as the SRSA assumption holds. In Section 3.2, we show that the adaptive

pseudo-freeness of Z×
N with respect to any parametric distribution belonging to

the class of Catalano-Fiore-Warinschi cannot be proven from the RSA assumption

via algebraic reductions, as long as the RSA assumption holds. Moreover, we

also give the impossibility result on several SRSA-based signatures. Namely,

it is shown that SRSA-based signature schemes that can be obtained from the

generic construction given in [13] may not be proven from the RSA assumption.

In Chapter 4, we describe our parametric distributions ϱK,c, and prove that the

RSA group Z×
N is adaptive pseudo-free with the parametric distribution ϱK,c under

the RSA assumption. Conclusion is given in Chapter 5.



Chapter 2

Preliminaries

In this chapter, we describe notions and notations that are used through this

thesis.

2.1 Mathematical Notations

A prime P is safe if P = 2P ′ + 1 for some prime P ′. Let Nsafe
RSA be the set

of all RSA composites N = PQ such that P and Q are distinct safe primes, and

let Nsafe
RSA(k) be the set of all N = PQ ∈ Nsafe

RSA such that P and Q are distinct

primes of binary length k/2, and hence the binary length of N is k. We assume

that there are infinitely many safe primes. Although it is open whether or not

this assumption holds, this assumption is widely believed to hold [3]. For any

N ∈ N, we use ZN and Z×
N to denote the residue ring Z/NZ and its group of

units, respectively. QRN designates the group of quadratic residues mod N . Let

P denote the set of all primes, especially P<n indicates a subset of all primes P

such that P < n.

For any integers a ≤ b, let [a, b] ((a, b), resp.) be the set of all integers n such

that a ≤ n ≤ b (a < n < b, resp.). We denote by x ∈R D that the element x is

chosen at random from the finite set D according to some specific probabilistic

distribution. In particular, we write x ∈U D when a uniform distribution on D

is designated. By x := y, we mean that x is defined or substituted by y. For

any algorithm A, y ← A(x) indicates that the algorithm A outputs y on input

x. Note that when A is a probabilistic algorithm, y is distributed according to

the internal coin flips of A.
A function ν(k) is negligible if for any polynomial p, there exists a constant

13
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k0 such that ν(k) < 1/p(k) for any k ≥ k0. We denote by negl(k) any negligible

function in k. A function ν(k) that is not negligible is called nonnegligible. ν(k)

is overwhelming if for any polynomial p, there exists a constant k0 such that

ν(k) > 1 − 1/p(k) for any k ≥ k0. Let X and Y be probability distributions

over a finite set D. The statistical distance between X and Y is defined by

(1/2) ·
∑

a∈D |X(a)− Y (a)|. We write Supp(X) to denote the support of X.

Namely, Supp(X) is the set of all elements x ∈ D such that the probability that x

is selected according to X is strictly greater than 0. Let {XN}N∈N and {YN}N∈N
be two ensembles of probability distributions, where for each N ∈ N, XN and YN
are defined over a finite set DN . {XN} is said to be statistically close to {YN} if
the statistical distance between {XN} and {YN} is negligible in the binary length

of N . In particular, {XN} is almost uniform if {XN} is statistically close to the

ensemble of the uniform distributions over the domain DN . We say that {XN}
is polynomial-time samplable if there exists a probabilistic algorithm Samp such

that on input N , Samp outputs an element x ∈ DN that is distributed according

to XN , and it runs in polynomial-time in the binary length of N .

2.2 Pseudo-Free Groups

In this section, we describe notions and notations necessary for us to discuss

pseudo-free groups.

2.2.1 Computational Groups

Let {GN}N∈N be a family of finite groups indexed by an index set N =

∪k≥0 N (k), where N (k) denotes a set of all indices of polynomial length in k.

We assume that each group index N ∈ N (k) and each element of GN (with

N ∈ N (k)) are expressed as a word of polynomial length in k, respectively.

Then, {GN}N∈N is said to be a family of computational groups [40, 34] if the

following polynomial-time algorithms are provided:

Composition for any given elements a, b ∈ GN and a group index N ∈ N ,

compute ab ∈ GN .

Inversion for any given element a ∈ GN and a group index N ∈ N , compute

a−1 ∈ GN .
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Identity for any given group index N ∈ N , compute the identity element 1 ∈
GN .

Membership for any given word x and a group index N ∈ N , determine

whether or not x ∈ GN .

Identification for any given words x, y and a group index N ∈ N , determine

whether or not x = y in GN .

Sampling for any given group index N ∈ N , choose a single element g ∈ GN at

random, where the sampling is not necessarily uniform over GN .

Throughout this thesis, we assume that {GN}N∈N is abelian, that is GN is abelian

for any N ∈ N .

2.2.2 Free Abelian Groups

Let A = {a1, a2, . . . , am} be a nonempty set of distinct m symbols, which are

the generators of a free group. The identity of the free group is the empty string e.

For each a ∈ A, a−1 denotes the inverse of the symbol a. Note that for any a ∈ A,
the inverse a−1 does not belong to the set A. Let A−1 =

{
a−1
1 , a−1

2 , . . . , a−1
m

}
.

Then, A ∪ A−1 is said to be the set of symbols for the free group generated by

the set A. We denote by F(A) the free abelian group generated by the set A.

Since F(A) is now abelian, any element of F(A) is uniquely expressed by a word

of the form
∏m

i=1 a
si
i with some exponents s1, s2, . . . , sm ∈ Z.

2.2.3 Equations over Groups

We focus only on univariate equations over a free abelian group as in [13].

Let A be a set of m symbols, and let x denote a variable. An equation in x with

symbols in A is a pair λ = (w1, w2), where w1 is a word of the form xE with

some exponent E ∈ N, and w2 is a word over A of finite length. Since F(A) is
abelian, we may assume that w2 is expressed in a way that w2 =

∏m
i=1 a

si
i with

some exponents s1, s2, . . . , sm ∈ Z. Then we write the equation λ = (w1, w2) by

xE =
∏m

i=1 a
si
i . We express the equation λ : xE =

∏m
i=1 a

si
i with the tuple (E, s)

of exponents, where s = (s1, s2, . . . , sm). Equations that have solutions in F(A)
are trivial, others are nontrivial. The triviality of an equation xE =

∏m
i=1 a

si
i can

be easily verified by the following lemma.
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Lemma 2.1 ([40])

An equation xE =
∏m

i=1 a
si
i is trivial over F(A) if and only if E | si for any

1 ≤ i ≤ m.

Let G be any finite abelian group, and let α : A→ G be an assignment map

that interprets each symbol a ∈ A to a group element α(a) ∈ G. We write λα for

the equation λ : xE =
∏m

i=1 a
si
i interpreted overG via α, namely λα is the equation

xE =
∏m

i=1 α(ai)
si over G. ψ ∈ G is a solution for λα if ψE =

∏m
i=1 α(ai)

si holds

over G.

2.2.4 Pseudo-Freeness

We describe the notion of pseudo-free groups formalized by Rivest [40]. In-

tuitively, the pseudo-free group is a computational group family {GN} that is

indistinguishable from free groups. This distinguishability is formalized by using

a witness pair (λ∗, ψ∗) such that λ∗ is a nontrivial equation and ψ∗ is a solution

over GN of the interpreted equation λ∗α. Such a pair (λ∗, ψ∗) witnesses that GN is

not a free group, because λ∗α should have no solution if GN is indeed a free group.

Definition 2.2 (Pseudo-Free Group [40])

Let k be a security parameter, and let m = m(k) be a polynomial in k. A computa-

tional group family {GN} is (static) pseudo-free if there exists no PPT adversary

(algorithm) A such that for any set A of m symbols, A outputs a witness pair

(λ∗, ψ∗) with nonnegligible probability in k on an input pair (N,α) of a group

index N and an assignment map α : A→ GN , where the probability is taken over

the random choice of N ∈ N (k) and α(a) ∈ GN for each a ∈ A and the coin flips

of A.

We also define a variant of pseudo-freeness in a sense that an equation that

can be output from A is restricted. We suppose that for each k and m, a class

Ek,m of pairs (λ, r), where λ = (E, (s1, . . . , sm)) is an equation and r is any string,

is designated, and assume also that the membership for the class Ek,m can be

determined in polynomial-time in k.

Definition 2.3 (Pseudo-Free Group over a Family E = {Ek,m}k,m)
Let k be a security parameter, and let m = m(k) be a polynomial in k. For each

k and m, let Ek,m be a set of pairs (λ, r). Then, {GN} is static pseudo-free over

the family E = {Ek,m}k,m if there exists no PPT adversary A such that for any
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set A of m symbols, A outputs a tuple ((λ∗, r∗), ψ∗) satisfying that (λ∗, r∗) ∈ Ek,m
and (λ∗, ψ∗) is a witness pair, with nonnegligible probability in k on an input

pair (N,α) of a group index N and an assignment map α : A → GN , where the

probability is taken over the random choice of N ∈ N (k) and α(a) ∈ GN for each

a ∈ A and the coin flips of A.

2.3 Adaptive Pseudo-Free Groups

Catalano, Fiore and Warinschi [13] introduced the notion of adaptive pseudo-

freeness as a generalization of the Rivest’s (static) pseudo-freeness. Intuitively,

the adaptive pseudo-freeness means that any PPT adversary cannot output a

new witness pair (λ∗, ψ∗) as in the static case in nonnegligible probability, even if

he is allowed to adaptively receive a witness pair polynomially many times. The

adaptive pseudo-freeness is defined by the adaptive pseudo-free game between

two algorithms which are called the challenger and the adversary. The challenger

is an algorithm that gives the adversary an instance and replies a witness pair

when the adversary queries. The following two points are noted in [13].

Adaptive Behavior. The first is that, although the adversary is allowed the

adaptive oracle queries, the “adaptive” behavior is somewhat restricted in the

following way. We suppose that for each k and m, a class Ek,m of pairs (λ, r)

is designated, and we provide a family ϱk,m = {ϱk,m(M)} of probabilistic dis-

tributions ϱk,m(M) over Ek,m. The adversary queries an equation by sending a

parameter M to the challenger. The challenger determines the probabilistic dis-

tribution ϱk,m(M) by using the family ϱk,m and the parameter M . Then, the

challenger chooses a pair (λ, r) according to the distribution ϱk,m(M), and re-

turns the pair (λ, r) with the corresponding solution ψ for λα to the adversary.

Thus, the adversary does not have a perfect control over his queries.

Nontriviality in the Adaptive Setting. The second is the nontriviality of

the equation that the adversary outputs. In the original static setting by Rivest

[40], the nontriviality merely means that the equation has no solution over F(A).
However, the adaptive setting requires a more sophisticated condition on the

nontriviality. Intuitively, the nontriviality of the equation λ∗ (output by the

adversary) means that λ∗ is independent of the equations Λ =
{
λ(1), λ(2), . . . , λ(q)

}
queried to the challenger, namely λ∗ cannot be efficiently deduced from Λ.
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In [13], in order to formalize such an independence, they first considered a

general deducibility modulo equations as follows. Let F be a free abelian group,

and Λ be a binary relation over F . Then, Λ denotes the smallest equivalence

relation over F such that Λ ⊆ Λ and for all e ∈ N and w1, w2 ∈ F , (we
1, w

e
2) ∈ Λ

implies (w1, w2) ∈ Λ. This condition reflects the simple fact over a computational

group G that for any element w1, w2 ∈ G and any integer e that is coprime to

the order ord(G) of G, if we
1 = we

2 over the group G, then w1 = w2 follows.

By using the smallest congruence Λ, in [13], they formalized the nontriviality

with respect to the query set Λ as follows. Suppose that an adversary now at-

tempts to find a witness pair (λ∗, ψ∗). Then, the adversary is supposed to receive q

equations together with their corresponding solutions over GN . Namely, for each

1 ≤ t ≤ q, he receives an equation λ(t) : xEt =
∏m

i=1 a
st,i
i together with the solu-

tion ψt ∈ GN for the interpreted equation λ
(t)
α . We set Λ =

{
λ(1), . . . , λ(q)

}
and

Ψ = {ψ1, . . . , ψq}. By regarding ψ1, . . . ψq as new distinct symbols not contained

in A, we define a binary relation Λ over the free abelian group F = F(A ∪ Ψ)

by Λ =
{
(ψEt

t ,
∏m

i=1 a
st,i
i )

}q

t=1
. Then, an equation λ∗ (output by the adversary)

is trivial with respect to the queried equation set Λ if λ∗ has a solution over the

residue group F(A∪Ψ)/Λ. We note that when Λ = ∅, the triviality of equations

is exactly equivalent to that in the static case, thus the triviality is verified by

Lemma 2.1. For the triviality, the following proposition holds. Note that this

proposition holds when F(A) is abelian.

Proposition 2.4 ([13])

An equation λ∗ : xE
∗
=

∏m
i=1 a

s∗i
i is trivial with respect to an equation set Λ ={

λ(t) : xEt =
∏m

i=1 a
st,i
i

}q

t=1
if and only if there exist matrices

U =


U1

U2

...

Uq

 ∈ Zq and V =


V1
V2
...

Vm

 ∈ Zm

such that

E∗



s1,1 s2,1 . . . sq,1
s1,2 s2,2 . . . sq,2
...

...
...

s1,m s2,m . . . sq,m




1
E1

1
E2

0
. . .

0 1
Eq



U1

U2

...

Uq

+


V1
V2
...

Vm


 =


s∗1
s∗2
...

s∗m

 .
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Proposition 2.4 implies the following lemma.

Lemma 2.5

If an equation λ∗ : xE
∗
=

∏m
i=1 a

s∗i
i is nontrivial with respect to a set Λ ={

λ(t) : xEt =
∏m

i=1 a
st,i
i

}q

t=1
of equations, then for any index t ∈ [1, q], we have

(E∗, s∗1, s
∗
2, . . . , s

∗
m) ̸= (Et, st,1, st,2, . . . , st,m) .

Proof. Assume that there exists an index t∗ ∈ [1, q] such that

(E∗, s∗1, s
∗
2, . . . , s

∗
m) = (Et∗ , st∗,1, st∗,2, . . . , st∗,m) . (2.1)

Then, we set U =
[
U1 U2 . . . Uq

]T
∈ Zq as Ut∗ = 1 and Ut = 0 for any

t ∈ [1, q] \ {t∗}, and set V =
[
V1 V2 . . . Vm

]T
∈ Zm as Vi = 0 for any

i ∈ [1,m], respectively. By Eq. (2.1), we have

E∗



s1,1 s2,1 . . . sq,1
s1,2 s2,2 . . . sq,2
...

...
...

s1,m s2,m . . . sq,m




1
E1

1
E2

0
. . .

0 1
Eq



U1

U2

...

Uq

+


V1
V2
...

Vm




= E∗


s1,1 s2,1 . . . sq,1
s1,2 s2,2 . . . sq,2
...

...
...

s1,m s2,m . . . sq,m




1
E1

1
E2

0
. . .

0 1
Eq




0
...

1
...

0



= E∗


s1,1 s2,1 . . . sq,1
s1,2 s2,2 . . . sq,2
...

...
...

s1,m s2,m . . . sq,m




0
...
1

Et∗
...

0

 = E∗


st∗,1/Et∗

st∗,2/Et∗

...

st∗,m/Et∗

 = E∗


s∗1/E

∗

s∗2/E
∗

...

s∗m/E
∗

 =


s∗1
s∗2
...

s∗m

 .

It follows from Proposition 2.4 that λ∗ : xE
∗
=

∏m
i=1 a

s∗i
i is trivial with respect to

Λ =
{
λ(t) : xEt =

∏m
i=1 a

st,i
i

}q

t=1
.

Adaptive Pseudo-Free Game. The adaptive pseudo-free (APF, for short)

game is played by a challenger and an adversary A. Let k be a security pa-

rameter, and let A be a set of m = m(k) symbols. As before, we suppose that
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for each k and m, a class Ek,m of pairs (λ, r) of an equation λ and an auxiliary

string r is designated, and we provide a family ϱk,m = {ϱk,m(M)} of probabilistic
distributions ϱk,m(M) over Ek,m. Given k and A, the game proceeds as follows:

Setup. The challenger chooses a random group index N ∈U N (k). Then, it

specifies an assignment map α : A→ GN by independently choosing an element

α(a) ∈R GN at random according to the designated sampling algorithm for each

a ∈ A. The adversary A is given the game tuple (N,α, ϱk,m).

Equations queries. The adversary A is allowed to adaptively query to the chal-

lenger in the following manner: on t-th query, A chooses a parameter Mt for de-

termining a distribution ϱk,m(Mt), and hands it to the challenger. Then, the chal-

lenger chooses a pair (λ(t), rt) ∈ Ek,m of an equation λ(t) = (Et, st) and an auxiliary

string rt according to the distribution ϱk,m(Mt), and then returns the pair (λ(t), rt)

and a solution ψt ∈ GN of the interpreted equation λ
(t)
α : xEt =

∏m
i=1 α(ai)

st,i to

A.
Challenge. Eventually, the adversary A outputs a tuple ((λ∗, r∗), ψ∗) of an equa-

tion λ∗ = (E∗, s∗) and an auxiliary string r∗ with a solution ψ∗ of the interpreted

equation λ∗α over GN . The challenger outputs 1 if the following conditions hold,

or 0 otherwise:

(A) (λ∗, r∗) ∈ Ek,m;

(B) λ∗ is nontrivial with respect to Λ =
{
(λ(t), ψt)

}
t
, the set of queried equations

and corresponding solutions appeared in Equations queries phase; and

(C) ψ∗ is actually a solution of λ∗α.

An adversary A is said to win the APF game of the family G with respect to

the parametric distribution ϱ = {ϱk,m}k,m if the challenger outputs 1 in the game

between the challenger and the adversary A.

Definition 2.6 (Adaptive Pseudo-Free Groups with respect to ϱ [13])

Let k be a security parameter, let m be a polynomial in k, and let ϱ = {ϱk,m}k,m
be a parametric distribution. A family G = {GN}N∈N of computational groups

is adaptive pseudo-free with respect to ϱ, if there exists no PPT adversary A
such that for any set A of m symbols, A wins the APF game of the family G with

respect to ϱ in nonnegligible probability in k, where the probability is taken over

the random choices of the index N ∈U N (k), α(a) ∈R GN for each a ∈ A and
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each pair (λ(t), rt) ∈R Ek,m chosen in Equations queries phase, and the internal

coin flips of A.

We note that the static pseudo-freeness over the family E = {Ek,m}k,m is

exactly the same as the adaptive pseudo-freeness described here in which the

adversary makes no adaptive query.

2.4 Signature Schemes

A signature scheme S with a message spaceM consists of the following three

polynomial-time algorithm (KGen, Sign,Verify):

Key Generator KGen. KGen is a PPT algorithm such that on input 1k, KGen

generates a public key pk and a secret key sk.

Signing Algorithm Sign. Sign is a PPT algorithm such that on input (sk, pk,M)

of a secret key sk, a public key pk and a message M ∈ M, Sign issues a

signature σ on the message M .

Verification Algorithm Verify. Verify is a deterministic polynomial-time algo-

rithm such that on input (pk,M, σ) of a public key pk, a message M ∈M
and a signature σ, Verify outputs 1 if σ is a signature on the message M

under the public key pk, or 0 otherwise.

We now describe security notions of signature schemes. The existential

forgery game under the chosen message attack (EF-CMA game, for short) for

a signature scheme S = (KGen, Sign,Verify) is defined between a challenger and

an adversary A. Given a security parameter k, the game proceeds as follows:

Setup. The challenger generates a pair (pk, sk) of a public key and a secret key

by executing KGen(1k), and then submits the public key pk to the adversary A.
Signing oracle. When A (adaptively) queries a message Mt ∈ M, the challenger

issues a signature σt ← Sign(sk, pk,Mt), and then hands σt to A.
Challenge. When A outputs a pair (M∗, σ∗), the challenger outputs 1 if the

following conditions hold, or 0 otherwise:

(I) M∗ /∈ {Mt}t, the set of messages queried in Signing oracle phase; and

(II) Verify(pk,M∗, σ∗) = 1.
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An adversary A is said to win the EF-CMA game if the challenger outputs

1 in the EF-CMA game. Then, a signature scheme S is existentially unforgeable

against the chosen message attack (EUF-CMA, for short) if there exists no PPT

adversary A that wins the EF-CMA game with nonnegligible probability, where

the probability is taken over the coin flips of KGen, Sign and A. We refer an

EF-CMA game in which the condition (I) of the Challenge phase is replaced with

“(I’) (M∗, σ∗) /∈ {(Mt, σt)}t, the set of pairs of a message mt and a signature σt
appeared in Signing oracle phase” to a strongly EF-CMA (sEF-CMA, for short)

game. Moreover, a signature scheme S is strongly EUF-CMA (sEUF-CMA, for

short) if S is EUF-CMA even when the condition (I) is replaced with (I’). An

EF-CMA game in which an adversary A is not allowed to query in Signing oracle

phase is called a existential forgery game under the key only attack (EF-KOA

game, for short). A signature S is existentially unforgeable against the key only

attack (EUF-KOA, for short) if there exists no PPT adversary A that wins the

EF-KOA game with nonnegligible probability, where the probability is taken as

the same as the notion of EUF-CMA. Note that an EF-KOA challenger is not

required to verify the condition (I), because A does not query in Signing oracle

phase. The following proposition follows for the relationship among these security

notions.

Proposition 2.7

Let S be a signature scheme. If S is sEUF-CMA, then it is also EUF-CMA. If

S is EUF-CMA, then it is also EUF-KOA.

2.5 Hash Functions

A family H = {Hi : Di → Ri}i∈I of functions is said to be a family of hash

functions if the following algorithms (Gen, Samp,H) exist.

Parameter Generator Gen. Gen is a PPT algorithm such that on input 1k,

Gen generates a parameter i ∈ I such that the length of i is greater than

k, where for each parameter i, Di denotes the domain of the function Hi

and Ri denotes the range of the function Hi such that the number of the

elements in Di is strictly greater than that in Ri. We assume that any

element in Di and Ri is polynomial length in k for each i generated by

Gen(1k).
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Sampling Algorithm Samp. Samp is a PPT algorithm such that on a param-

eter i ∈ I, Samp outputs r ∈ Di chosen according to some specific distribu-

tion on Di.

Hash Algorithm H. H is a PPT algorithm such that on input (i, r) of a param-

eter i ∈ I and an element r ∈ Di, H outputs an element Hi(r) ∈ Ri.

We now describe security notions for hash functions. A pair (r, r′) ∈ D2 is

said to be a collision of a hash function H : D → R if it holds that r ̸= r′ but

H(r) = H(r′). A hash function H = {Hi : Di → Ri}i∈I is collision-resistant if

there exists no PPT adversary A such that

Pr

[
(r, r′) ∈ D2

i ∧ r ̸= r′ ∧Hi(r) = Hi(r
′) :

i← Gen(1k)

(r, r′)← A(1k, i)

]
is nonnegligible in k, where the probability is taken over the coin flips of Gen and

A.
A hash function H = {Hi : Di → Ri}i∈I is division-intractable if there exists

no PPT adversary A such that

Pr

 (r1, r2, . . . , rq, r
∗) ∈ Dq+1

i

∧∀t ∈ [1, q], r∗ ̸= rt
∧Hi(r

∗) |
∏q

t=1Hi(rt)

:
i← Gen(1k)

(r1, r2, . . . , rq, r
∗)← A(1k, i)


is nonnegligible in k, where q is a polynomial in k, and the probability is taken

over the coin flips of Gen and A.
For a relationship between the collision-resistant property and the division-

intractability, the following proposition holds.

Proposition 2.8 ([22])

Let H be a family of hash functions. H is collision-resistant provided that H is

division-intractable.

2.6 Algebraic Algorithms

The concept of algebraic algorithms was introduced by Paillier and Vergnaud

[37]. Intuitively, an algorithmR is algebraic with respect to a computational group

G if R performs only the group operation for the elements in G and the execution

ofR can be easily traced. In particular, on any input elements y1, . . . , yn ∈ G, any
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element g ∈ G produced in the execution ofR belongs to the subgroup ⟨y1, . . . , yn⟩
generated by the input elements, and moreover the expression g =

∏n
i=1 y

ci
i should

be easily retrieved.

We follow the formal definition given in [43]. An algorithm R is algebraic

for a computational group family {GN}N∈N , if the following algorithm Extract

is provided. Extract receives any tuple (N, y1, . . . , yn, aux, g, ω) as input, where

N ∈ N is a group index, y1, . . . , yn ∈ GN are elements that are given to R as

input, aux is any word given to R as an auxiliary input, g ∈ GN is a target

group element and ω denotes a random coin used in R. Then Extract finds a

tuple (c1, . . . , cn) of exponents such that g =
∏n

i=1 y
ci
i , provided that g is actually

produced in the execution of R on the input tuple (N, y1, . . . , yn, aux) with the

random coin ω. If there is no correct exponents (c1, . . . , cn), then Extract may

output any word. Extract is required to run in polynomial-time in the running

time of R. In particular, if R runs in polynomial-time in the security parameter

k, then Extract should run in polynomial-time in k.

We consider an algebraic algorithm R that has an access to an oracle A. In
the case where a target element g ∈ G is produced after R receives the answer

for the t-th query, Extract correctly retrieves exponents (c1, . . . , cn) for the given

target g if besides the input tuple (N, y1, . . . , yn, aux), Extract is also given all the

t correct answers for from the first query through t-th query. Note that if the

target element g ∈ GN is produced before the first query, it is not required to

provide any additional inputs to Extract as in [10].

2.7 Cryptographic Assumptions

Let ℓ = ℓ(k) be a polynomial in k, and let φ denote Euler’s function. A key

generator KGenRSA outputs a pair (N, e) ∈ Nsafe
RSA(ℓ) × Z×

φ(N) for each input 1k.

Definition 2.9 (RSA Assumption)

An adversary R is said to break RSA if R outputs an element z such that ze ≡
y (mod N) on a given RSA instance (N, e, y) of an RSA public key (N, e) ←
KGenRSA(1

k) and an element y ∈ QRN . The RSA assumption holds if there



CHAPTER 2 PRELIMINARIES 25

exists no PPT adversary R such that

Pr

ze ≡ y (mod N) :

(N, e)← KGenRSA(1
k),

y ∈U QRN ,

z ←R(N, e, y)


is nonnegligible in k, where the probability is taken over the coin flips of KGenRSA
and R, and the uniform random choice y from QRN .

An RSA modulus generator KGenSRSA outputs an RSA modulus N ∈ Nsafe
RSA(ℓ)

for each input 1k.

Definition 2.10 (Strong RSA Assumption)

An adversary R is said to break strong RSA (SRSA, for short) if R outputs a

pair (z, e) such that e > 1 and ze ≡ y (mod N) on a given SRSA instance (N, y)

of an RSA modulus N ← KGenSRSA(1
k) and an element y ∈ QRN . The SRSA

assumption holds if there exists no PPT adversary R such that

Pr

e > 1 ∧ ze ≡ y (mod N) :

N ← KGenSRSA(1
k),

y ∈U QRN ,

(z, e)←R(N, y)


is nonnegligible in k, where the probability is taken over the coin flips of KGenSRSA
and R, and the uniform random choice y from QRN .

We will employ the following lemmas.

Lemma 2.11 ([44])

Let N ∈ N with binary length k. Let e and E∗ be any integers of length at

most polynomial in k, and let z∗, y ∈ Z×
N such that (z∗)e ≡ yE

∗
(mod N). If

gcd(e, E∗) = 1, then the element z ∈ Z×
N such that ze ≡ y (mod N) can be

computed in polynomial-time in k on the input (N, e, E∗, z∗, y).

Lemma 2.12 ([34])

Let N ∈ Nsafe
RSA with binary length k. Let e and E∗ be any integers of length at most

polynomial in k, and let z∗ ∈ Z×
N and y ∈ QRN such that (z∗)e ≡ yE

∗
(mod N).

If e ∤ E∗, then an element z such that ze ≡ y (mod N) can be computed in

polynomial-time in k on the tuple (N, e, E∗, z∗, y).

We follow the two setting on the RSA assumption and the SRSA assumption.

The first is that an RSA modulus N is restricted to a product of two safe primes,
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as in [13, 14, 34, 41]. The second is that y is restricted to a quadratic residue mod

N . It should be noted that this is not an essential restriction. This is because

breaking RSA for y ∈ QRN leads to breaking RSA for an arbitrary y ∈ Z×
N in

the following way. Assume that we are given a PPT algorithm A for solving the

RSA problem for y ∈ QRN . Then, a given instance (N, e, y) with y ∈ Z×
N , one

can find an element z ∈ Z×
N with ze ≡ y (mod N) as follows:

(1) find an element z′ such that z′e ≡ y2 (mod N) by using A,

(2) find an element z such that ze ≡ y (mod N) by employing Lemma 2.11, and

then output z.

Note that y2 ∈ QRN , gcd(e, 2) = 1 (because φ(N) is even and gcd(e, φ(N)) = 1).

In a similar manner, one can show that breaking SRSA for y ∈ QRN leads to

breaking SRSA for an arbitrary y ∈ Z×
N [34].



Chapter 3

Impossibility Results on the Adaptive

Pseudo-Freeness of the RSA Group Z×N

In this chapter, we show several impossibility results on the adaptive pseudo-

freeness of the RSA group family
{
Z×

N

}
, where

{
Z×

N

}
stands for the RSA group

family
{
Z×

N

}
N∈N with N = Nsafe

RSA. This chapter is organized as follows. In

Section 3.1, we give a negative circumstantial evidence for the adaptive pseudo-

freeness of the RSA group family
{
Z×

N

}
in which the adaptive behavior of the

adversary is not restricted. In Section 3.2, we show that it cannot be proven that

the adaptive pseudo-freeness of the RSA group family
{
Z×

N

}
with respect to the

parametric distributions proposed in [13] from the RSA assumption via algebraic

reductions, as long as the RSA assumption holds. The concluding remarks for

this chapter is given in Section 3.3.

3.1 Impossibility of the Strong Adaptive Pseudo-Freeness

of Z×N

In this section, we give the following result. In a similar manner to Defini-

tion 2.6, we formally describe the strong adaptive pseudo-freeness in which the

adaptive behavior of the adversary is not restricted. Then, we show that the

strong adaptive pseudo-freeness for the family
{
Z×

N

}
of the RSA groups cannot

be proven from the SRSA assumption via algebraic reductions, as long as the

SRSA assumption holds.

Throughout this thesis, we assume that a group index N ∈ N (k) of a game

tuple is distributed as the same as an RSA modulus N generated by KGenRSA(1
k).

27
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We adopt any sampling algorithm for the family
{
Z×

N

}
which chooses an element

g almost uniformly at random over QRN . For example, Micciancio [34, Lemma 2]

showed that if a generator y of QRN is fixed, then such a sampling can be ef-

ficiently done by choosing an exponent d ∈U {0, 1, . . . , B − 1} with sufficiently

large B and then setting g := yd.

For the group QRN of quadratic residues with N ∈ Nsafe
RSA, the following

proposition holds.

Proposition 3.1 ([34])

Let N = PQ ∈ Nsafe
RSA and let y ∈ QRN . If y is not a generator of QRN , it holds

that y ≡ 1 (mod N) or gcd(y − 1, N) ∈ {P,Q}.

By this proposition, the solution z for an RSA instance (N, e, y) (a solution

(z, e) for an SRSA instance (N, y), resp.) can be found in polynomial-time pro-

vided that y is not a generator of QRN . Thus, we can assume without loss of

generality that y is a generator of QRN .

3.1.1 Strongly-Adaptive Pseudo-Free Groups

As explained in Section 2.3, Catalano, Fiore and Warinschi [13] introduced

the notion of the adaptive pseudo-freeness as a generalization of the Rivest’s

“static” pseudo-freeness in order to handle adaptive adversaries. In their setting,

the queried equations are chosen according to some specific parametric distribu-

tion. They also informally define in [13] the strong adaptive pseudo-freeness in

a way that there is no such restriction, namely the adversary is allowed to freely

choose his queries. We formally define the strong version of adaptive pseudo-

freeness by the strongly-adaptive pseudo-free (SAPF, for short) game.

The SAPF game between the challenger and the adversary is defined as

follows. Let G = {GN}N∈N be a computational group family and let A =

{a1, a2, . . . , am} be a set of m = m(k) symbols.

Setup. The challenger chooses a random group index N ∈U N (k) at random.

Then, it sets an assignment α : A → GN by independently choosing an element

α(a) ∈R GN at random according to the designated sampling algorithm. The

adversary A is given the game pair (N,α).

Equations queries. The adversary A is allowed to adaptively query to the chal-

lenger on equations, and to receive their solutions. For each t-th query, A
chooses an arbitrary equation λ(t) = (Et, st) and hands it to the challenger.
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The challenger returns a correct solution ψt ∈ GN for the interpreted equation

λ
(t)
α : xEt =

∏m
i=1 α(ai)

st,i to the adversary.

Challenge. The adversary outputs a witness pair (λ∗, ψ∗) of an equation λ∗ =

(E∗, s∗) and a solution ψ∗ of the interpreted equation λ∗α over GN . The challenger

outputs 1 if the following conditions hold, or 0 otherwise:

• λ∗ is nontrivial with respect to Λ, the set of queried equations and corre-

sponding solutions appeared in Equations queries phase; and

• ψ∗ is a correct solution for λ∗α.

An adversary A is said to win the strongly-adaptive pseudo-free (SAPF, for

short) game of the family G if the challenger outputs 1 in the game.

Definition 3.2 (Strongly-Adaptive Pseudo-Free Groups)

Let k be a security parameter, and let m be a polynomial in k. A family G =

{GN}N∈N of computational groups is strongly-adaptive pseudo-free, if there exists

no PPT adversary A such that for any set A of m symbols, A wins the SAPF

game of the family G in nonnegligible probability, where the probability is taken

over the random choices of the index N ∈U N (k), α(a) ∈R GN for each a ∈ A,
and the internal coin flips of A.

Remark 3.3

In the adaptive pseudo-free game given in Definition 2.6, the equation queries of

the adversary A is determined by some specific parametric distribution. On the

other hand, in the SAPF game, A can freely choose his queries. It is therefore

necessary to consider the situation where A queries an equation which has no

solution over GN . In this thesis, we assume that the challenger outputs the

special symbol ⊥ provided that a queried equation has no solution over GN .

3.1.2 Main Theorem

In this section, we show that the strong adaptive pseudo-freeness of the RSA

group family
{
Z×

N

}
cannot be shown from the SRSA assumption via algebraic

reductions, as long as the SRSA assumption holds.

Before stating the main result, we give a remark on the strong adaptive

pseudo-freeness of the RSA groups
{
Z×

N

}
. In Equations queries phase of the SAPF

game, the adversary is allowed to choose an equation query arbitrarily. However,

for Z×
N , this setting does not seem to work properly without care. For example,
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assume that the adversary A queries the equation (2, (2, 0, . . . , 0)), namely x2 =

a21, and receives a solution ψ ∈ Z×
N such that ψ ̸= ±α(a1). Then A can easily

factor N . Once N is factored, the adversary can easily find a witness pair (λ∗, ψ∗).

Therefore, Z×
N would not be strongly-adaptive pseudo-free in the strict sense. In

this section, we exclude such a situation. Instead, for any equation query λ :

xE =
∏m

i=1 a
si
i , the challenger is assumed to return a canonical solution ψ′ for the

interpreted equation λα, namely ψ′ is a solution for the interpreted equation λ′α
of the reduced equation λ′ : xE

′
=

∏m
i=1 α(ai)

s′i , where E ′ = E/ gcd(E, s1, . . . , sm)

and s′i = si/ gcd(E, s1, . . . , sm). For example, the challenger always returns the

canonical solution ψ = α(a1) on the query x2 = a21.

The Situation SRSA ≤ SAPFGZ×
N
. We describe the situation that the SRSA

assumption implies the strong adaptive pseudo-freeness of the RSA group family{
Z×

N

}
, and then we write SRSA ≤ SAPFGZ×

N
. We formalize this statement by the

following contrapositive setting similarly to [10, 37]: there exist a PPT algorithm

R and polynomials m and q such that for any SAPF adversary A making at

most q queries that wins the SAPF game of the family
{
Z×

N

}
in nonnegligible

probability, where A is assumed to be a set of m symbols, R breaks SRSA in

nonnegligible probability with a black-box access to the adversary A. We may

assume without loss of generality that q ≥ 2. Through the black-box access, R
would play the SAPF game with the adversary A in which R is placed at the

challenger’s position.

Given an SRSA instance (N, y), R follows Setup phase of the SAPF game,

namelyR chooses a game pair (N,α). Especially, the assignment map α is chosen

by selecting α(a) almost uniformly at random from QRN for each a ∈ A. We

assume as in [13, 34] that the index N of the game pair is always the same as

the modulus N of the given SRSA instance. Moving to Equations queries phase,

A makes equation queries λ = (E, s) at most q times. Since R is now playing

the role of the challenger, R replies the answer for each of the queries, but R
may fail to reply the correct answer because the reduction R is polynomial-time

bounded. Eventually, the game completes with A’s output: a “winning” witness

pair (λ∗, ψ∗) of the SAPF game, or “losing” symbol ⊥. After the game, R would

find a correct solution (z, e) for the given SRSA instance (N, y) with nonnegligible

probability ϵ0.

In this thesis, we force the reduction R to be algebraic with respect to the
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group QRN for any N ∈ N . Consequently, any element g ∈ QRN produced in

the execution of R is generated by the given element y and the expression g = yd

is easily retrieved by the extraction algorithm Extract, provided that g is actually

produced in the execution of R(N, y). In particular, for the assignment α and

each a ∈ A, α(a) is of the form α(a) = yd and the exponent d can be easily

retrieved.

We now ready to state our main theorem for the strong adaptive pseudo-

freeness of the RSA group family
{
Z×

N

}
.

Theorem 3.4

If SRSA ≤ SAPFGZ×
N
, then the SRSA assumption does not hold.

Proof. Assume that SRSA ≤ SAPFGZ×
N
. Then, there exist a PPT algorithm R

and polynomials m and q ≥ 2 such that R is algebraic with respect to QRN for

any N ∈ N , and R breaks SRSA in nonnegligible probability with a black-box

access to any PPT adversary A making at most q queries that wins the SAPF

game of the family
{
Z×

N

}
in nonnegligible probability. This means that for any

security parameter k, R breaks SRSA with at least nonnegligible probability ϵ0,

where an instance (N, y) is chosen as in Definition 2.10. Namely an RSA modulus

N is generated by KGenSRSA(1
k) and an element y is uniformly distributed over

QRN . As mentioned just before Section 3.1.1, we may assume without loss of

generality that y is a generator of QRN .

Construction of the Meta-Reduction M. We shall construct a PPT algo-

rithmM that breaks SRSA with no oracle access at least nonnegligible probabil-

ity. We shall provide for the reduction R a simulator SimA that plays a winning

SAPF adversary’s role to R. In other words, from the R’s viewpoint, SimA looks

like a “real” winning adversary, namely it actually wins the SAPF game with non-

negligible probability provided that the reduction R is supposed to be ideal as a

challenger in a sense that R always replies a correct answer to each query from

SimA. If SimA is set to the adversary’s position, then R would break SRSA via

playing the SAPF game with SimA. Thus, our meta-reductionM is constructed

by involving R and SimA.

For the algorithm SimA, we may assume without loss of generality that the

final output of SimA can be a correct solution (z, e) for the given SRSA instance

(N, y) if SimA fortunately finds it, instead of a witness pair (λ∗, ψ∗) of the SAPF
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game. This does not lower the success probability ϵ0 of the reduction R. Thus,

our simulator SimA is to be a PPT algorithm that on a given game pair (N,α)

with an auxiliary input (y, ω), where (N,α) is a game pair presented by R, y
is an element of a given SRSA instance (N, y) and ω is a random coin used by

R when R generates the assignment map α, responds one of the following items

(I)–(III):

(I) SimA finds a witness pair (λ∗, ψ∗) of a nontrivial equation λ∗ and a solution

ψ∗ for the interpreted equation λ∗α.

(II) In a fortunate case, SimA may find a solution (z, e) for the given SRSA

instance (N, y) in its execution. If SimA meets its fortunate case, then

SimA outputs the solution (z, e).

(III) SimA may abort with the output ⊥ in an unfortunate case.

We note that SimA is required only to come into either the case (I) or the case

(II) with nonnegligible probability and within q queries to R provided that R
is ideal as a challenger. By using SimA, the algorithm M is constructed as

in Fig. 3.1. If SimA is constructed in that way, R breaks SRSA with at least

nonnegligible probability ϵ0 and consequently the resulting algorithm M will

succeed in nonnegligible probability.

Construction of SimA. In order to construct the algorithm M, it suffices to

construct the simulator SimA. Since R is algebraic with respect to QRN for any

N , there exists a polynomial time algorithm Extract that on a tuple (N, y, g, ω),

where g is a target element in QRN that is produced in the execution of R on the

input (N, y) with the random coin ω, returns an exponent d such that g = yd. We

involve Extract in the construction of SimA. The algorithm SimA is depicted in

Fig. 3.2. On each game pair (N,α) given from R with the auxiliary input (y, ω),

• if α(ai) = 1 ∈ QRN for all i ∈ [1,m], then SimA outputs a correct witness

pair (λ∗, ψ∗) in the step (A-1) (the case (I)); or

• if α(ai0) ̸= 1 for some i0, then in the step (A-2), SimA attempts to find a

solution (z, e) of the SRSA instance (N, y) by interacting to the challenger

R:

– if SimA has found a solution (z, e) for SRSA, then SimA outputs the

solution (z, e) (the case (II)), or
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Input. an SRSA instance (N, y).

Output. a solution (z, e) of the given SRSA instance (N, y).

(M-1) M chooses a random coin ω, and then executes R on the instance (N, y)

with using ω.

(M-2) When R submits a game pair (N,α) to the adversary,M invokes SimA on

the tuple (N,α) with the auxiliary input (y, ω). Then R and SimA plays

the SAPF game.

(M-3) SimA outputs a response γ ∈ {(λ∗, ψ∗),⊥, (z, e)}, and halts.

(M-4) After receiving the response γ,M behaves as follows:

(M-4a) either γ = (λ∗, ψ∗) or γ = ⊥: M continues to simulate R, and
then halts with outputting the final output of R.

(M-4b) γ = (z, e): M halts with outputting (z, e).

Figure 3.1: Configuration ofM.

– otherwise, SimA outputs ⊥ (the case (III)).

Correctness of SimA. (A-1) We consider the case where α(ai) = 1 for all

i ∈ [1,m]. Note that the triviality of the equations in this case is equivalent to

the one in the static case, because SimA makes no query to the challenger R.
Namely, the triviality of the equation merely means that it has no solution over

the free group F(A). Therefore, the equation λ∗ = (2, (3, . . . , 3)) is nontrivial by

Lemma 2.1. Moreover, because α(ai) = 1 for all i ∈ [1,m], ψ = 1 ∈ Z×
N is a

solution for the interpreted equation λ∗α. Thus the output (λ∗, ψ∗) of SimA is a

correct witness pair. This is the case (I).

(A-2) We next consider the case where α(ai0) ̸= 1 for some i0 ∈ [1,m]. We

show that SimA outputs a solution (z, e) for the given SRSA instance (N, y)

by interacting to the challenger R or outputs ⊥. Since the assignment α is

generated before the game pair (N,α) is given to A, for each i ∈ [1,m], SimA

can retrieve an exponent di such that α(ai) = ydi by executing Extract on the

tuple (N, y, α(ai), ω). Note that the exponent di exists, because the element
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Input. the game pair (N,α) with the auxiliary input (y, ω), as in (M-2).

Output. one of the following:

(I) a pair (λ∗, ψ∗) of a nontrivial equation and its interpreted solution;

(II) a pair (z, e) such that ze ≡ y (mod N); or

(III) the special symbol ⊥.

(A-1) If α(ai) = 1 for all i ∈ [1,m], then set λ∗ := (2, (3, . . . , 3)) and ψ∗ := 1,

and then halt with outputting the tuple (λ∗, ψ∗).

(A-2) If α(ai0) ̸= 1 for some i0, then for each i ∈ [1,m], retrieve an expo-

nent di of the element α(ai) ∈ QRN such that α(ai) = ydi by executing

Extract(N, y, α(ai), ω).

(A-2a) Choose s1, . . . , sm ∈U ZN , and set D :=
∑m

i=1 disi.

If D = 0, then reset si0 := si0 + 1, and D :=
∑m

i=1 disi.

Set s := (s1, . . . , sm).

(A-2b) Set E1 := |D|+ 1 and E2 := |D|+ 2.

If yE1E2 ≡ 1 (mod N), then halt with outputting the pair (z, e) :=

(y, E1E2 + 1).

Else, proceed to (A-2c).

(A-2c) For each t ∈ {1, 2}, submit the equation λ(t) = (Et, s) to R, and
then receive a solution ψt from R.
If ψt0 is a correct solution for λ

(t0)
α for some t0 ∈ {1, 2}, then com-

pute a pair (z, e) such that ze ≡ y (mod N) by Lemma 2.12, and

then halt with outputting (z, e).

Else, halt with outputting ⊥.

Figure 3.2: Configuration of SimA
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α(ai) ∈ QRN is produced by the algebraic algorithm R, and hence it belongs

to the subgroup ⟨y⟩ generated by y ∈ QRN . Therefore, for any equation λ =

(E, (s1, . . . , sm)), the interpreted equation λα over Z×
N is expressed in a way that

xE =
∏m

i=1 α(ai)
si =

∏m
i=1

(
ydi

)si = y
∑m

i=1 disi . We say that an equation λ =

(E, (s1, . . . , sm)) is good if the interpreted equation λα : xE = yD, where D =∑m
i=1 disi, has a solution ψ ∈ ⟨y⟩ and E ∤ D. Note that if there is no solution of

λα in ⟨y⟩, R cannot find the solution of λα, although it has a solution in Z×
N . This

is because R is algebraic. If SimA queries a good equation λ to the challenger R
and succeeds to receive a correct solution ψ ∈ ⟨y⟩ for λα, then it has obtained

the tuple (N,E,D, ψ, y) such that E ∤ D and ψE ≡ yD (mod N). Therefore,

SimA can efficiently find a correct solution (z, e) for the SRSA instance (N, y) by

applying Lemma 2.12 to the tuple (N,E,D, ψ, y). This is the case (II).

We now show that one of the following events occurs:

(i) at least one of the equation queries λ(1) = (E1, s) and λ
(2) = (E2, s) gener-

ated in the steps (A-2a) and (A-2b) is a good equation; or

(ii) a correct solution (z, e) for the SRSA instance (N, y) is found.

It is easy to observe that the integer D =
∑m

i=1 disi generated in (A-2a) is not

zero. In the step (A-2b), SimA computes integers E1 = |D|+1 and E2 = |D|+2.

If yE1E2 ≡ 1 (mod N), then it is obvious that the pair (z, e) = (y, E1E2 + 1) is a

solution for the given SRSA instance (N, y). Otherwise, by the claims Claim 3.5

and Claim 3.6, it is shown that there exists an index t0 ∈ {1, 2} such that the

equation λ(t0) = (Et0 , s) is good, namely the interpreted equation λ
(t0)
α has a

solution over ⟨y⟩ and Et0 ∤ D, where s = (s1, . . . , sm) has been generated in

(A-2a). The proofs are give in Section 3.1.3.

Claim 3.5

Assume that yE1E2 ̸≡ 1 (mod N). Then, there exists an index t0 ∈ {1, 2} such

that the interpreted equation λ
(t0)
α : xEt0 = yD has a solution ψt0 ∈ ⟨y⟩ for the

equation λ(t0) = (Et0 , s).

Claim 3.6

The integers E1 and E2 found in (A-2b) satisfy E1 ∤ D and E2 ∤ D.

In the step (A-2c), for each t ∈ {1, 2}, SimA queries the equation λ(t) = (Et, s)

to the challenger R, and then receives the solution ψt over Z×
N of the interpreted

equation λ
(t)
α : xEt = yD.
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When ψt0 is a correct solution for λ
(t0)
α for some t0 ∈ {1, 2}, we have ψ

Et0
t0 ≡ yD

(mod N). Since Et0 ∤ D by Claim 3.6, SimA can find a solution for the given

SRSA instance (N, y) by applying Lemma 2.12 to the tuple (N,Et0 , D, ψt0 , y).

This is the case (II).

Otherwise, ψt is not a correct solution of λ
(t)
α for any t ∈ {1, 2}. By

Claim 3.5, this means that for some index t0 ∈ {1, 2}, R failed to find a so-

lution of λ
(t0)
α despite that λ

(t0)
α has a solution in the subgroup ⟨y⟩. This is the

unfortunate case, namely the case (III). Therefore, SimA halts with outputting

⊥.
It immediately follows from the construction that with the probability 1,

SimA outputs either a witness pair (λ∗, ψ∗) or a solution (z, e) for the given SRSA

instance (N, y), if R is ideal as a challenger, namely SimA can receive a correct

reply of the equation query λ(t) from R for each t ∈ {1, 2}.

The Success Probability ofM. Finally, we estimate the success probability

ofM. We denote by Pr[SuccM] and Pr[SuccR] the success probability ofM and

R, respectively. It is guaranteed that Pr[SuccR] ≥ ϵ0 by Correctness of SimA.

Unity designates the event that the assignment α : A→ Z×
N of the game pair

(N,α) satisfies that α(ai) = 1 for all i ∈ [1,m].

The event Unity happens. In this case, SimA outputs the witness pair (λ∗, ψ∗) of a

nontrivial equation and its corresponding solution, and thenM outputs the final

output of R at (M-4a). Therefore, we have

Pr [SuccM ∧ Unity] = Pr [SuccR ∧ Unity] . (3.1)

The event Unity does not happen. Let SolveEq denote the event that for some

index t0 ∈ {1, 2}, R correctly solves the interpreted equation λ
(t0)
α : xEt0 = yD of

the queried equation λ(t0) from SimA during playing the SAPF game.

If the event SolveEq happens,M outputs the pair (z, e) returned from SimA

at (M-4b). Since ze ≡ y (mod N) holds under the event SolveEq by the correct-

ness of SimA, we have Pr [SuccM | ¬Unity ∧ SolveEq] = 1. This implies that

Pr [SuccM ∧ (¬Unity ∧ SolveEq)]

= Pr [SuccM | ¬Unity ∧ SolveEq] Pr [¬Unity ∧ SolveEq]

= Pr [¬Unity ∧ SolveEq]

≥ Pr [SuccR ∧ (¬Unity ∧ SolveEq)] .

(3.2)
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If the event SolveEq does not happen, M outputs the final output of R in

(M-4a). Therefore, we have

Pr [SuccM ∧ (¬Unity ∧ ¬SolveEq)] =Pr [SuccR ∧ (¬Unity ∧ ¬SolveEq)] . (3.3)

Putting together Eqs. (3.1)–(3.3), we have

Pr [SuccM] = Pr [SuccM ∧ Unity] + Pr [SuccM ∧ ¬Unity]
= Pr [SuccM ∧ Unity] + Pr [SuccM ∧ (¬Unity ∧ SolveEq)]

+ Pr [SuccM ∧ (¬Unity ∧ ¬SolveEq)]
≥ Pr [SuccR ∧ Unity] + Pr [SuccR ∧ (¬Unity ∧ SolveEq)]

+ Pr [SuccR ∧ (¬Unity ∧ ¬SolveEq)]
= Pr [SuccR ∧ Unity] + Pr [SuccR ∧ ¬Unity]
= Pr [SuccR]

≥ ϵ0.

Thus,M breaks SRSA with probability at least ϵ0. Hence the SRSA assumption

does not hold.

3.1.3 Proofs of the Claims in Theorem 3.4

We now show the claims employed in Theorem 3.4.

Proof of Claim 3.5. Assume that yE1E2 ̸≡ 1 (mod N). Then, we now show that

one of E1 ∈ Z×
P ′Q′ and E2 ∈ Z×

P ′Q′ holds. We assume that E1, E2 /∈ Z×
P ′Q′ . Then,

we have gcd(E1, P
′Q′), gcd(E2, P

′Q′) ∈ {P ′, Q′, P ′Q′}. If either gcd(E1, P
′Q′) =

P ′Q′ or gcd(E2, P
′Q′) = P ′Q′ holds, then yE1E2 ≡ 1 (mod N) holds, since y ∈

QRN and the order ord(QRN) of QRN is P ′Q′. This is a contradiction. Otherwise,

we assume without loss of generality that gcd(E1, P
′Q′) = P ′ holds. Then, there

exists an integer b1 ∈ Z such that E1 = b1P
′. Moreover, we have E2 = E1+1 ̸≡ 0

(mod P ′), and hence P ′ ∤ E2. By the assumption, gcd(E2, P
′Q′) = Q′ holds.

Then, there exists an integer b2 ∈ Z such that E2 = b2Q
′. It follows that E1E2 =

b1b2P
′Q′. This implies that yE1E2 ≡ 1 (mod N). This is a contradiction. Thus,

one of E1 ∈ Z×
P ′Q′ and E2 ∈ Z×

P ′Q′ holds.

Let t0 ∈ {1, 2} be an index such that Et0 ∈ Z×
P ′Q′ . Since y ∈ QRN and

ord(QRN) = P ′Q′, the interpreted equation λ
(t0)
α : xEt0 = yD has a solution

yDE−1
t0 that belongs to the subgroup ⟨y⟩, where E−1

t0 denotes the inverse of Et0 in

Z×
P ′Q′ .



CHAPTER 3 IMPOSSIBILITY RESULTS ON APF OF Z×
N 38

Proof of Claim 3.6. It follows from D ̸= 0 and 0 < |D| < |D|+1 = E1 < E2 that

E1 ∤ D and E2 ∤ D.

3.2 Impossibility of the Adaptive Pseudo-Freeness of Z×N
under the RSA Assumption

Catalano, Fiore and Warinschi [13] presented a class DCFW of parametric dis-

tributions, and showed that the SRSA assumption implies the adaptive pseudo-

freeness of the RSA group family
{
Z×
N

}
with respect to any parametric distribu-

tion in DCFW.

In this section, we give the following result. We first define a family E =

{Ek,m} of classes Ek,m and a class D of parametric distributions. Then, we show

that the adaptive pseudo-freeness of
{
Z×

N

}
with respect to any parametric dis-

tribution ϱ ∈ D cannot be proven from the RSA assumption via algebraic re-

ductions, as long as the RSA assumption holds. Note that our class Ek,m is

sufficiently large so that it involves all pairs (λ, r) that can be obtained by fol-

lowing the CFW’s setting given in [13]. Moreover, our main theorem holds even

when an adversary is static, namely the adversary is restricted so that it makes

no query during the APF game. Thus, our result indicates that even the “static”

pseudo-freeness of
{
Z×

N

}
over E cannot be proven from the RSA assumption via

algebraic reductions, as long as the RSA assumption holds.

Consequently, we also show that several SRSA-based signature schemes that

are yielded from the construction proposed by Catalano-Fiore-Warinschi [13] can-

not be proven to be sEUF-CMA, and even EUF-KOA, from RSA assumption via

algebraic reductions, as long as the RSA assumption holds.

3.2.1 Main Theorem

Our class Ek,m is defined in the following manner. We fix any nonconstant

polynomials ℓmsg = ℓmsg(k), ℓexp = ℓexp(k) and ℓseed = ℓseed(k) such that ℓexp ≤
ℓ/2− 2, and any (single-valued) collision-resistant hash function H : {0, 1}ℓseed →[
0, 2ℓexp − 1

]
. For each k and m, let Ek,m be the set of all pairs (λ, r) of an

equation λ = (E, (s1, . . . , sm)) and a string r ∈ {0, 1}ℓseed such that E = H(r) ∈[
0, 2ℓexp − 1

]
, s1 = 1 and s2, . . . , sm ∈ Z.

In our main theorem, we focus on a class D of parametric distributions.

Any parametric distribution ϱ = {ϱk,m}k,m belonging to D satisfies the following
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conditions. For each k and m, ϱk,m = {ϱk,m(M)} is a family of probabilistic

distributions ϱk,m(M) over the set Ek,m such that for any given parameter M ∈
{0, 1}ℓmsg ,

• ϱk,m(M) is polynomial-time samplable;

• the description of ϱk,m(M) can be obtained in polynomial-time in k; and

• a string r is uniformly distributed over {0, 1}ℓseed .

Note that this requirement is immediately fulfilled also in the CFW’s setting.

Namely it holds that DCFW ⊆ D.

We employ the following lemma for the hash function H.

Lemma 3.7

If H : {0, 1}ℓseed →
[
0, 2ℓexp − 1

]
is a collision-resistant hash function, then for

any integer E ∈
[
0, 2ℓexp − 1

]
,

Pr
r∈U{0,1}ℓseed

[H(r) = E] = negl(k).

Proof. We show the lemma by the contraposition. Assume that there exists an

integer E0 ∈
[
0, 2ℓexp − 1

]
such that Prr∈U{0,1}ℓseed [H(r) = E0] is nonnegligible,

that is there exists a polynomial p in k such that

Pr
r∈U{0,1}ℓseed

[H(r) = E0] ≥
1

p(k)
,

for sufficiently large k. This implies that for the set H−1(E0) of all strings r ∈
{0, 1}ℓseed such that H(r) = E0,

Pr
r∈U{0,1}ℓseed

[H(r) = E0] = Pr
r∈U{0,1}ℓseed

[
r ∈ H−1(E0)

]
=

∑
x∈H−1(E0)

Pr
r∈U{0,1}ℓseed

[x = r]

=
∑

x∈H−1(E0)

1

2ℓseed

=
|H−1(E0)|

2ℓseed
.

Namely the density of H−1(E0) is at least 1/p(k) for sufficiently large k. The
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following inequality therefore holds.

Pr
r1,r2∈U{0,1}ℓseed

[H(r1) = H(r2)]

≥ Pr
r1,r2∈U{0,1}ℓseed

[H(r1) = E0 ∧H(r2) = E0]

= Pr
r1,r2∈U{0,1}ℓseed

[
r1, r2 ∈ H−1(E0)

]
= Pr

r1∈U{0,1}ℓseed

[
r1 ∈ H−1(E0)

]
· Pr
r2∈U{0,1}ℓseed

[
r2 ∈ H−1(E0)

]
=

(
|H−1(E0)|

2ℓseed

)2

≥ 1

p2(k)

(3.4)

On the other hand, since H is single-valued, we have

Pr [H(r1) = H(r2)]

= Pr [H(r1) = H(r2) ∧ r1 = r2] + Pr [H(r1) = H(r2) ∧ r1 ̸= r2]

= Pr [H(r1) = H(r2) | r1 = r2] Pr [r1 = r2]

+ Pr [H(r1) = H(r2) ∧ r1 ̸= r2]

= Pr [r1 = r2] + Pr [H(r1) = H(r2) ∧ r1 ̸= r2]

=
1

2ℓseed
+ Pr [H(r1) = H(r2) ∧ r1 ̸= r2] .

(3.5)

Putting together Eq. (3.4) and Eq. (3.5), we have

Pr [H(r1) = H(r2) ∧ r1 ̸= r2] ≥
1

p2(k)
− 1

2ℓseed
.

This means that a collision (r1, r2) can be found by merely choosing two strings

r1 and r2 uniformly and independently at random from {0, 1}ℓseed . Thus H is not

a collision-resistant hash function.

The Situation RSA ≤ APFGZ×
N ,ϱ. In a similar manner to SRSA ≤ SAPFGZ×

N

formalized in Section 3.1.2, we describe the situation that the RSA assumption

implies the adaptive pseudo-freeness of the RSA group family
{
Z×

N

}
with respect

to a parametric distribution ϱ = {ϱk,m}k,m, and then we write RSA ≤ APFGZ×
N ,ϱ to

denote such a situation. Namely this is formalized as follows: there exist a PPT

algorithm R and a polynomial m such that for any PPT adversary A that wins
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the APF game of the family
{
Z×

N

}
with respect to ϱ = {ϱk,m}k,m in nonnegligible

probability, R breaks RSA in nonnegligible probability with a black-box access

to such an adversary A. Through the black-box access, R would play the APF

game with the adversary A in which R is placed at the challenger’s position.

Let (N, e, y) be a given RSA instance. Following Setup phase of the APF

game, R sets a game tuple (N,α, ϱk,m). As in The Situation SRSA ≤ SAPFGZ×
N

of Section 3.1.2, we assume that R sets a game tuple (N,α, ϱk,m) in a way that

the index N is always the same as the modulus N of the given RSA instance.

Note that the assignment map α is chosen by selecting α(a) almost uniformly at

random from QRN for each a ∈ A. This is because we now adopt a sampling

algorithm of
{
Z×

N

}
such that an element is chosen almost uniformly at random

from QRN . Note also that when A is a static adversary, A does not move to

Equations queries phase. Eventually, the game completes with A’s output: a

“winning” witness ((λ∗, r∗), ψ∗) of the APF game, or “losing” symbol ⊥. After

the game, R would find a correct solution z for the given RSA instance (N, e, y)

with nonnegligible probability ϵ0.

We also force the reduction R to be algebraic with respect to the group QRN

for any N ∈ N . For the assignment α and each a ∈ A, α(a) is of the form

α(a) = yd and the exponent d can be retrieved in a similar manner to the situation

SRSA ≤ SAPFGZ×
N
, where y is an element of the given RSA instance.

We need an additional assumption for the key generator KGenRSA in Defi-

nition 2.9. We say that a pair (N, e) ← KGenRSA(1
k) is good if e is a prime in

Z×
φ(N) and e ≥ 2ℓexp . In our main theorem, KGenRSA is forced to generate a good

pair with probability at least 1/τGood for some polynomial τGood(k) for any suffi-

ciently large k. Note that this assumption for KGenRSA is not exceedingly strong.

For instance, if e is (almost) uniformly distributed over Z×
φ(N) with respect to

each specific modulus N , then our assumption holds as shown in the following

Lemma 3.8.

Lemma 3.8

Let ℓ and ℓexp be polynomials such that ℓexp ≤ ℓ/2 − 1. Let N ∈ Nsafe
RSA(ℓ). Then,

Pre∈UZ×
φ(N)

[
e ∈ P<φ(N) ∧ e ≥ 2ℓexp

]
> 1/ℓ− negl(k).

Proof. The prime number theorem [17, Theorem 8.1] states that π(n)/(n/ lnn)→
1 as n → ∞, where π(n) denotes the number of primes less than or equal to n.
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Thus, for any sufficiently large n, we have∣∣∣∣ π(n)n/ lnn
− 1

∣∣∣∣ < ϵ,

for ϵ = 1− ln 2 > 0. This implies that

n

log2 n
=
n ln 2

lnn
=

(1− ϵ)n
lnn

< π(n) <
(1 + ϵ)n

lnn
=

1 + ϵ

ln 2

n

log2 n
<

2n

log2 n
, (3.6)

for any sufficiently large n. Recall that ℓ and ℓexp are polynomials such that

ℓexp ≤ ℓ/2− 1. It follows from N = PQ ∈ Nsafe
RSA that φ(φ(N)) < φ(N). Because

the binary length of P and Q are ℓ/2, we have P and Q are in the interval(
2ℓ/2−1, 2ℓ/2

)
. This implies that 2ℓ−4 = (2ℓ/2−2)2 < (2ℓ/2−1−1)2 < (P−1)(Q−1) =

φ(N) < PQ < 2ℓ. Since the order of Z×
φ(N) is φ(φ(N)), e < φ(N) ≤ 2ℓ for any

e ∈ Z×
φ(N), and both φ(N) and 2ℓexp are not primes, we have

Pr
e∈UZ×

φ(N)

[
e ∈ P<φ(N) ∧ e ≥ 2ℓexp

]
=
π(φ(N)− 1)− π(2ℓexp − 1)

φ(φ(N))

=
π(φ(N))− π(2ℓexp)

φ(φ(N))

>
π(φ(N))− π(2ℓexp)

φ(N)

>
1

φ(N)

(
φ(N)

log2 φ(N)
− 2 · 2ℓexp

log2 2
ℓexp

)
=

1

log2 φ(N)
− 2ℓexp+1

φ(N)ℓexp

>
1

log2 2
ℓ
− 2ℓexp+1

2ℓ−4ℓexp

≥ 1

ℓ
− 2ℓ/2

2ℓ−4ℓexp

=
1

ℓ
− 1

2ℓ/2−4ℓexp
.

Thus, it holds that Pre∈UZ×
φ(N)

[
e ∈ P<φ(N) ∧ e ≥ 2ℓexp

]
> 1/ℓ− negl(k).

We now ready to state our theorem for the adaptive pseudo-freeness of
{
Z×

N

}
under the RSA assumption.
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Theorem 3.9

Assume that KGenRSA outputs a good public key (N, e) with probability 1/τGood
for sufficiently large k, where τGood is a polynomial in k. Let ϱ = {ϱk,m}k,m be

any parametric distribution in the class D. If RSA ≤ APFGZ×
N ,ϱ, then the RSA

assumption does not hold.

Proof. Assume that RSA ≤ APFGZ×
N ,ϱ. Then, there exist a PPT algorithm R and

a polynomial m such that R is algebraic with respect to QRN for any N ∈ N ,

and R breaks RSA in nonnegligible probability ϵ0 with a black-box access to

any PPT adversary A that wins the APF game of the family
{
Z×

N

}
with respect

to ϱ = {ϱk,m}k,m in nonnegligible probability. This means that for any security

parameter k, on a given RSA instance (N, e, y), R breaks RSA with at least

nonnegligible probability ϵ0, where the RSA public key (N, e) is generated by

KGenRSA(1
k) and the RSA ciphertext y is uniformly distributed over QRN .

Construction of Meta-ReductionM. We shall construct a PPT algorithm

that breaks RSA with no oracle access. We shall provide for the reduction R a

simulator SimA that plays the role of a winning APF adversary. In other words,

from the R’s viewpoint, SimA looks like an adversary that really wins the APF

game with nonnegligible probability. If SimA behaves as the adversary, then R
breaks RSA via playing the game with SimA. Thus, our meta-reduction M is

constructed by involving R and SimA. If such a SimA is provided, then M is

constructed as in Fig. 3.3. Let (N, e, y) be a given “target” RSA instance. Note

that N is a product of distinct safe primes P = 2P ′+1 and Q = 2Q′+1 for some

primes P ′ and Q′, e ∈ Z×
φ(N) and y ∈U QRN .

We note that SimA will be constructed so that from the R’s viewpoint, its

outcome ((λ∗, r∗), ψ∗) in the step (c) of (M-4) is indeed a winning witness tuple

on the game tuple (N,α, ϱk,m), and hence R outputs a correct solution z∗ with

nonnegligible probability in (M-5). We also note that one can construct SimA in

a way that it makes no query, namely SimA simulates a static adversary. Hence

M involves no simulation of the Equations queries phase.

By using the following claims, we estimate the probability Pr [SuccM] that

M outputs a correct solution z for the target RSA instance (N, e, y) in (M-6).

Note that the proofs of all claims described in this proof are given in Section 3.2.2.

Claim 3.10

M aborts in (M-2) with negligible probability in k.
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Input. an RSA instance (N, e, y).

Output. the solution z of the given RSA instance (N, e, y).

(M-1) M sets an integer E∗ := H(r∗) by choosing a string r∗ ∈U {0, 1}ℓseed .

(M-2) M aborts if E∗ ≤ 1, or proceeds to the following step otherwise.

(M-3) M chooses a random coin ω of R, and then executes R on the RSA

instance
(
N, e, yE

∗)
with ω.

(M-4) WhenR invokes an APF adversary on a game tuple (N,α, ϱk,m) of a group

index N , an assignment α : A→ Z×
N and the distribution family ϱk,m,M

operates as follows:

(a) M executes SimA on the game tuple (N,α, ϱk,m) with using the aux-

iliary tuple (e, y, r∗, ω);

(b) M receives from SimA a tuple ((λ∗, r∗), ψ∗) of a pair (λ∗, r∗) ∈ Ek,m
for a nontrivial equation λ∗ = (E∗, s∗) and a string r∗ with a solution

ψ∗ of the interpreted equation λ∗α; and

(c) M hands the tuple ((λ∗, r∗), ψ∗) to R as an adversary’s response.

(M-5) M receives a solution z∗ for the RSA instance (N, e, yE
∗
) from R.

(M-6) M finds a solution z for the target RSA instance (N, e, y) by using z∗ and

Lemma 2.11, and halts with outputting z.

Figure 3.3: Configuration ofM
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Claim 3.11

Assume that M does not abort in (M-2). For the target RSA instance (N, e, y)

and the natural number E∗ chosen in (M-1), yE
∗
is distributed uniformly at ran-

dom over QRN .

Claim 3.12

Assume that the given RSA public key (N, e) is good, and M does not abort in

(M-2). If R outputs a correct solution z∗ for the queried RSA instance (N, e, yE
∗
)

in (M-5),M correctly finds a solution z for the target RSA instance (N, e, y) in

(M-6).

By Claim 3.10, it is guaranteed that M aborts in negligible probabil-

ity. We therefore consider the case where M does not abort in (M-2). Then,

Claim 3.11 implies that the distribution of the RSA instance (N, e, yE
∗
) queried

byM in (M-3) is identical to that of the RSA instance (N, e, y) such that (N, e)←
KGenRSA(1

k) and y ∈U QRN . Further, for the game tuple (N,α, ϱk,m) submitted

from R, the simulator SimA returns a winning witness pair ((λ∗, r∗), ψ∗). There-

fore R would output a correct solution z∗ of the queried RSA instance (N, e, yE
∗
)

with at least nonnegligible probability ϵ0. It follows from Claim 3.12 that M
outputs a solution z for the target RSA instance (N, e, y) with probability at

least ϵ0 provided that the RSA public key (N, e) is good. Totally, the success

probability of M under the assumption of the good RSA public key (N, e) is

evaluated by

Pr [SuccM | (N, e) is good] ≥ ϵ0 − negl(k).

Since we now assume that for the polynomial τGood, KGenRSA outputs a good

public key (N, e) with probability 1/τGood for sufficiently large k, we have

Pr [SuccM] ≥ Pr [SuccM ∧ (N, e) is good]

= Pr [(N, e) is good] Pr [SuccM | (N, e) is good]

≥ 1

τGood
ϵ0 − negl(k).

Thus,M can break RSA with nonnegligible probability.

Construction of SimA. In order to construct the algorithm M, it suffices to

construct the simulator SimA. SinceR is algebraic with respect to QRN for anyN ,
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Input. the game tuple (N,α, ϱk,m) with the auxiliary tuple (e, y, r∗, ω), as in (a)

of the step (M-4).

Output. a tuple ((λ∗, r∗), ψ∗).

(A-1) Set E∗ := H(r∗), and then for each index i ∈ [1,m], retrieve an exponent

di of the element α(ai) ∈ QRN such that α(ai) =
(
yE

∗)di by executing

Extract(N, e, yE
∗
, α(ai), ω).

(A-2) Choose a random parameter M∗ ∈ {0, 1}ℓmsg , choose exponents s∗2, . . . , s
∗
m

according to the distribution ϱk,m(M
∗), and then set s∗ := (1, s∗2, . . . , s

∗
m).

(A-3) Set λ∗ := (E∗, s∗) and ψ∗ := y
∑m

i=1 dis
∗
i .

(A-4) Halt with outputting the tuple ((λ∗, r∗), ψ∗).

Figure 3.4: Configuration of SimA

there exists a polynomial-time algorithm Extract that on a tuple (N, e, yE
∗
, g, ω),

where g is a target element in QRN that is produced in the execution of R on

the input (N, e, yE
∗
) given fromM with the random coin ω, returns an exponent

d such that g =
(
yE

∗)d
. We involve Extract in the construction of SimA. The

algorithm SimA is constructed as in Fig 3.4.

We now show that SimA is a PPT simulator that wins the APF game with

probability 1 on each game tuple (N,α, ϱk,m) given from R. Since Extract is a

polynomial-time algorithm, SimA can be run in polynomial-time. For the tuple

((λ∗, r∗), ψ∗), the following claims hold.

Claim 3.13

The tuple (λ∗, r∗) is chosen according to the distribution ϱk,m(M
∗), and the equa-

tion λ∗ = (E∗, s∗) is nontrivial.

Claim 3.14

ψ∗ is a correct solution of the interpreted equation λ∗α.

Thus, SimA always wins the APF game of the RSA group family
{
Z×

N

}
with

respect to the parametric distribution ϱ whenR plays the role of a challenger.

Note that in (A-2) of the description for SimA, it suffices for the proof of

Theorem 3.9 itself that SimA chooses any random integers s∗2, . . . , s
∗
m. However, we
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have constructed SimA in a way that for any parameterM , the distribution of the

outcome (λ∗, r∗) from SimA is the same as the distribution ϱk,m(M). We require

such a property for the applications of Theorem 3.9 which will be presented in

Section 3.2.3. Moreover, we should note that in the proof of Theorem 3.9, SimA

has been constructed so that it is static. Due to this, we will be able to show

the impossibility results for KOA to the signature schemes, instead of CMA, in

Section 3.2.3.

3.2.2 Proofs of the Claims in Theorem 3.9

We now show the claims employed in Theorem 3.9.

Proof of Claim 3.10. It follows from Lemma 3.7 that for the collision-resistant

hash function H : {0, 1}ℓseed →
[
0, 2ℓexp − 1

]
,

Pr
r∗∈U{0,1}ℓseed

[E∗ = H(r∗) ≤ 1] = Pr
r∗∈U{0,1}ℓseed

[E∗ = 0 ∨ E∗ = 1]

= Pr
r∗∈U{0,1}ℓseed

[E∗ = 0] + Pr
r∗∈U{0,1}ℓseed

[E∗ = 1]

= negl(k).

Thus,M aborts in (M-2) with negligible probability.

Proof of Claim 3.11. We now assume that E∗ ∈ Z×
P ′Q′ . Then, we consider for

the given RSA modulus N , a map BN,E∗ that maps each element y ∈ QRN to

yE
∗
mod N ∈ QRN . It follows from E∗ ∈ Z×

P ′Q′ and ord (QRN) = P ′Q′ that

BN,E∗ is bijective. Since the element y is chosen uniformly at random from QRN ,

yE
∗
is uniformly distributed over QRN .

We now show that E∗ = H(r∗) ∈
[
0, 2ℓexp − 1

]
set in (M-1) is in Z×

P ′Q′ .

Since we assume thatM does not abort in (M-2), E∗ is in the set
(
1, 2ℓexp

)
. On

the other hand, for any N = PQ ∈ Nsafe
RSA(ℓ), it follows from P = 2P ′ + 1, Q =

2Q′ +1 ∈
(
2ℓ/2−1, 2ℓ

)
that both P ′ and Q′ are greater than 2ℓ/2−2− 1. Therefore,

we have 1 < E∗ ≤ 2ℓexp − 1 ≤ 2ℓ/2−2 − 1 < P ′ and 1 < E∗ < Q′ by the inequality

ℓexp ≤ ℓ/2 − 2. This implies that for the exponent E∗ chosen in (M-1) and the

primes P ′ and Q′, P ′ ∤ E∗ and Q′ ∤ E∗. Thus, we have E∗ ∈ Z×
P ′Q′ .

Proof of Claim 3.12. Assume that the given RSA public key (N, e) is good. Then,

e is a prime and e ≥ 2ℓexp . On the other hand, the assumption thatM does not

abort implies that E∗ > 1. It therefore follows from E∗ = H(r∗) < 2ℓexp that
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1 < E∗ < 2ℓexp ≤ e. Since e is prime, we have gcd(e, E∗) = 1. Thus, if R outputs

a correct solution z∗ for the queried RSA instance (N, e, yE
∗
),M correctly finds

a solution z for the target RSA instance (N, e, y) by Lemma 2.11.

Proof of Claim 3.13. Recall that the string r∗ and the exponent E∗ are chosen

in (M-1) so that r∗ ∈U {0, 1}ℓseed and E∗ = H(r∗) ∈
[
0, 2ℓexp − 1

]
. In (A-

2), s∗1, s
∗
2, . . . , s

∗
m are chosen according to the distribution ϱk,m(M

∗). Therefore,

the tuple (λ∗, r∗) is distributed over the set Ek,m according to the distribution

ϱk,m(M
∗).

We now show that the equation λ∗ is nontrivial. Since SimA makes no query,

the nontriviality is exactly equivalent to that in the case of the static pseudo-free

group. Hence, the nontriviality is determined by Lemma 2.1. Recall that the

exponent E∗ given to SimA is strictly greater than 1 and the integer s∗1 chosen in

(A-2) is 1, This implies that E∗ ∤ s∗1. It follows from Lemma 2.1 that the equation

λ∗ is nontrivial.

Proof of Claim 3.14. It follows from α(ai) = (yE
∗
)di for each i ∈ [1,m] and ψ∗ =

y
∑m

i=1 dis
∗
i that for the equation λ∗ = (E∗, (s∗1, s

∗
2, . . . , s

∗
m)), in Z×

N ,

(ψ∗)E
∗
=

(
y
∑m

i=1 dis
∗
i

)E∗

=
m∏
i=1

(
yE

∗di
)s∗i = m∏

i=1

α(ai)
s∗i .

ψ∗ is therefore a correct solution of the interpreted equation λ∗.

3.2.3 Impossibility for the SRSA-Based Signature Schemes

In this section, we give a negative circumstantial evidence that several SRSA-

based signature schemes cannot be proven to be sEUF-CMA, and even EUF-

KOA, from RSA assumption. We first describe a generic construction proposed by

Catalano-Fiore-Warinschi [13] of a secure signature scheme based on an adaptive

pseudo-free group. Next, we show that several SRSA-based signature schemes

that are yielded from their construction cannot be proven to be EUF-KOA from

RSA assumption via algebraic reductions, as long as the RSA assumption holds.

The Catalano-Fiore-Warinschi Signature Schemes. Catalano, Fiore and

Warinschi [13] proposed a generic construction of a signature scheme based on

an adaptive pseudo-free group with respect to a parametric distribution ϱ, and

formalized a classDSig of parametric distributions such that the signatures yielded
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from their construction by using the adaptive pseudo-free group with respect to

ϱ ∈ DSig is sEUF-CMA.

We now describe their generic construction of a signature scheme. Let E =

{Ek,m} be any family of sets for pairs (λ, r), and let ϱ = {ϱk,m} be any parametric

distribution. We require that for each security parameter k and each polynomial

m, ϱk,m = {ϱk,m(M)} is a family of probabilistic distributions ϱk,m(M) over the

set Ek,m such that for any parameter M ∈ {0, 1}ℓmsg ,

(i) ϱk,m(M) is polynomial-time samplable;

(ii) the description of ϱk,m(M) can be obtained in polynomial-time in k; and

(iii) the membership of the support Supp (ϱk,m(M)) of the distribution ϱk,m(M)

can be verified in polynomial-time in k.

Let G = {GN}N∈N be a computational group family. Then, the signature scheme

PFSigG,ϱ = (KGen, Sign,Verify) is constructed as in Fig. 3.5, where the message

spaceM of PFSigG,ϱ is {0, 1}
ℓmsg . Note that a public key (N,α, ϱk,m) generated by

KGen(1k,m) is chosen as in Setup phase of the APF game defined in Section 2.3,

and a pair (M,σ) of a messageM and a signature σ = (λ, r, ψ) is naturally viewed

as that of a queried parameter M and an answer (λ, r, ψ) chosen in Equations

queries phase.

For the security of the signature depicted in Fig. 3.5, Catalano, Fiore and

Warinschi [13] defined a class DSig of parametric distributions ϱSig =
{
ϱSigk,m

}
so

that for any k, m and M , the form of a pair (λ, r) chosen according to ϱSigk,m(M)

is restricted to being in a set ESigk,m of pairs (λ, r) of an equation and a string. We

now describe their set ESigk,m of specific pairs (λ, r). In a similar fashion to our

class D defined in Section 3.2.1, we fix any nonconstant polynomial ℓmsg, ℓexp and

ℓseed, and any division-intractable hash function H : {0, 1}ℓseed →
[
0, 2ℓexp − 1

]
.

For each k and m, let ESigk,m be the set of all pairs (λ, r) of an equation λ =

(E, (s1, . . . , sm)) and a string r ∈ {0, 1}ℓseed such that E = H(r), s1 = 1 and si ∈
[0, E − 1] for each i ∈ [2,m]. Then, DSig is a class of all parametric distributions

ϱSig =
{
ϱSigk,m

}
k,m

such that for each security parameter k and each polynomial

m, ϱSigk,m =
{
ϱSigk,m(M)

}
is a family of probabilistic distributions ϱSigk,m(M) over

ESigk,m satisfying the conditions (i), (ii) and (iii). We also require the additional
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Key Generator KGen. On input (1k,m), KGen works as follows:

(1) choose a random group index N ∈U N (k) together with finding the

order ord(GN) of the group GN ;

(2) specify an assignment α : A→ GN at random according to the desig-

nated sampling algorithm for each a ∈ A; and

(3) output a public key pk := (N,α, ϱk,m) and a secret key sk := ord(GN).

Signing Algorithm Sign. On input (sk, pk,M), Sign issues a signature σ on

the message M in the following way:

(1) choose (λ, r) ∈ Ek,m according to the distribution ϱk,m(M);

(2) find a solution ψ ∈ GN of the interpreted equation λα by using sk =

ord(GN); and

(3) output a signature σ = (λ, r, ψ) on the message M .

Verification Algorithm Verify On input (pk,M, σ), Verify outputs 1 if (λ, r) ∈
Supp (ϱk,m(M)) and ψ is actually a solution of λα, or 0 otherwise.

Figure 3.5: Construction of PFSigG,ϱ

assumption: for any PPT adversary A, any k and any m,

Pr


M1 ̸=M2

∧(λ, r) ∈ Supp
(
ϱSigk,m(M1)

)
∧(λ, r) ∈ Supp

(
ϱSigk,m(M2)

) :
(M1,M2, (λ, r))

← A
(
ϱSigk,m

)
 = negl(k),

where the probability is taken over the coin flips of A. This means that one

cannot find a signature σ for two distinct messages. Catalano, Fiore and Warin-

schi showed in [13, Theorem 1] that for any parametric distribution ϱSig ∈ DSig,

PFSigG,ϱSig is sEUF-CMA provided that G is adaptive pseudo-free with respect to

ϱSig.

We now show the converse direction of Theorem 1 in [13]. Namely, G is

adaptive pseudo-free with respect to ϱSig ∈ DSig if PFSigG,ϱSig is sEUF-CMA. Note

that the converse direction is proven for a larger class than DSig. We consider any

parametric distribution ϱ = {ϱk,m} such that it satisfies the conditions (i), (ii)
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Input. a public key (N,α, ϱk,m) of PFSigG,ϱ.

Output. a tuple (M∗, σ∗), where σ∗ = (λ∗, r∗, ψ∗).

(R-1) R invokes the APF adversary A on input (N,α, ϱk,m).

(R-2) When t-th parameter Mt ∈ {0, 1}ℓmsg is submitted from A, R hands Mt to

the signing oracle. Note that the parameter Mt is regarded as a message.

Then, R receives a signature σt =
(
λ(t), rt, ψt

)
on the message Mt, and

returns the tuple
(
(λ(t), rt), ψt

)
to A.

(R-3) Eventually, A outputs a tuple (M∗, ((λ∗, r∗), ψ∗)). Then, R sets σ∗ :=

(λ∗, r∗, ψ∗), and outputs (M∗, σ∗).

Figure 3.6: Configuration of an sEF-CMA adversary R

and (iii) explained above, but for any k, m andM , the form of a pair (λ, r) chosen

according to ϱk,m(M) is not restricted. Here, we need the following modification

of the APF game: a portion (λ∗, r∗) of an outcome ((λ∗, r∗), ψ∗) by an APF

adversary A is chosen according to the distribution ϱk,m(M
∗) for some parameter

M∗ ∈ {0, 1}ℓmsg . Moreover, A outputs the parameter M∗ together with the tuple

((λ∗, r∗), ψ∗).

Lemma 3.15

Let ϱ be any parametric distribution satisfying the conditions (i), (ii) and (iii),

and let G = {GN}N∈N be any computational group family. If PFSigG,ϱ is sEUF-

CMA, then G is adaptive pseudo-free with respect to ϱ.

Proof. Assume that G = {GN}N∈N is not adaptive pseudo-free with respect to

ϱ. Then, there exist a PPT adversary A and polynomials m and q such that A
wins the APF game with respect to ϱ with nonnegligible probability ϵ, and A
makes q queries in Equations queries phase of the APF game. We shall construct

a PPT adversary R that wins sEF-CMA game of PFSigG,ϱ with nonnegligible

probability. In our construction, R plays the APF game with A in which R plays

the role of an APF challenger. The adversary R is constructed as in Fig. 3.6.

We now show the correctness of R. Let (N,α, ϱk,m) be a public key gen-

erated by KGen(1k,m). In particular, the assignment α : A → GN is speci-

fied by selecting α(a) ∈ GN according to the designated sampling algorithm for
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each a ∈ A. This implies that the public key (N,α, ϱk,m) coincides with the

game tuple of the APF game. Moreover, for each t-th query Mt, the signa-

ture σt =
(
λ(t), rt, ψt

)
on Mt given by the signing oracle satisfies that the pair

(λ(t), rt) is distributed according to the distribution ϱk,m(Mt), and ψt ∈ GN is

a solution for the interpreted equation λ
(t)
α . This implies that such a signature

σt =
(
λ(t), rt, ψt

)
on Mt can be translated into an answer for the queried pa-

rameter Mt from A in Equations queries phase of the APF game. Therefore, R
actually simulates the role of the APF challenger. Thus, the APF adversary A
outputs the following tuple (M∗, ((λ∗, r∗), ψ∗)) with nonnegligible probability ϵ.

For such a tuple (M∗, ((λ∗, r∗), ψ∗)), it holds that (A) (λ∗, r∗) ∈ Ek,m, (B) λ is

nontrivial with respect to the equation set
{
λ(1), λ(2), . . . , λ(q)

}
, and (C) ψ∗ is a

solution for the interpreted equation λ∗α of λ∗. In particular, we have that (A’)

(λ∗, r∗) ∈ Supp (ϱk,m(M
∗)), because we have modified the APF game as men-

tioned above. It follows from the following claim that R wins the sEF-CMA

game of PFSigG,ϱ with probability at least ϵ.

Claim 3.16

Assume that the tuple (M∗, ((λ∗, r∗), ψ∗)) satisfies the conditions (A’), (B) and

(C). Then, it holds that for the pair (M∗, σ∗), (M∗, σ∗) /∈ {(Mt, σt)}qt=1 and

Verify(pk,M∗, σ∗) = 1, where σ∗ = (λ∗, r∗, ψ∗).

Proof. We first show that the condition (B) implies that (M∗, σ∗) /∈ {(Mt, σt)}qt=1,

namely for any t ∈ [1, q], we have

(M∗, ((E∗, s∗1, s
∗
2, . . . , s

∗
m) , r

∗, ψ∗)) ̸= (Mt, ((Et, st,1, st,2, . . . , st,m) , rt, ψt)) . (3.7)

It follows from (B) and Lemma 2.5 that for any t ∈ [1, q],

(E∗, s∗1, s
∗
2, . . . , s

∗
m) ̸= (Et, st,1, st,2, . . . , st,m) .

Hence, Eq. (3.7) holds for any t ∈ [1, q]. Thus, we have (M∗, σ∗) /∈ {(Mt, σt)}qt=1.

We next show that Verify(pk,M∗, σ∗) = 1. the condition (A’) implies that

(λ∗, r∗) ∈ Supp (ϱk,m(M
∗)). It follows from the condition (C) that ψ∗ is a solution

for λ∗α. These imply that Verify(pk,M∗, σ∗) = 1.

Thus PFSigG,ϱ is not sEUF-CMA.

It should be noted that in Lemma 3.15, if the winning APF adversary A of

G with respect to ϱ is static, then R depicted in Fig 3.6 can be regarded as a
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winning EF-KOA adversary of the signature PFSigG,ϱ. This is because A, and
hence R, makes no query in (R-2). Thus, it holds that G is adaptive pseudo-free

with respect to ϱ against a static adversary provided that PFSigG,ϱ is EUF-KOA.

Results on the SRSA-Based Signatures. We give an impossibility result on

several SRSA-based signatures. We focus on the Camenisch-Lysyanskaya (CL,

for short) signature [11], the Cramer-Shoup (CS, for short) signature [14], the

Fischlin signature [18], the Gennaro-Halevi-Rabin (GHR, for short) signature [22],

the Hofheinz-Kiltz (HK, for short) signature [27], and the Zhu signature [48, 49].

In order to prove the impossibility result, we apply Theorem 3.9 and Lemma 3.15

to the RSA group family
{
Z×

N

}
with a parametric distribution ϱ belonging to

our class D, and show that PFSigZ×
N ,ϱ may not be proven to be sEUF-CMA, and

even EUF-KOA. Note that Theorem 3.9 holds even when the modification of the

APF game described just before Lemma 3.15 is required on SimA as follows: in

(A-4), SimA outputs the parameterM∗ chosen in (A-2) together with the witness

((λ∗, r∗), ψ∗). By this modification of SimA, the following lemma holds.

Lemma 3.17

Let ϱ = {ϱk,m} be a parametric distribution such that ϱ ∈ D and for any k, m

and M , the membership of Supp (ϱk,m(M)) can be verified in polynomial-time in

k. Assume that the RSA key generator KGenRSA outputs a good public key (N, e)

with probability 1/τGood for sufficiently large k, where τGood is a polynomial in k.

If PFSigZ×
N ,ϱ can be proven to be sEUF-CMA (EUF-KOA, resp.) from the RSA

assumption via algebraic reductions, then the RSA assumption does not hold.

Proof. Assume that PFSigZ×
N ,ϱ is proven to be sEUF-CMA from the RSA assump-

tion via algebraic reductions. It follows from Lemma 3.15 that RSA ≤ APFGZ×
N ,ϱ.

Since ϱ ∈ D, Theorem 3.9 implies that the RSA assumption does not hold. Recall

that Theorem 3.9 holds even when an APF adversary is static. Thus, it holds

that if PFSigZ×
N ,ϱ can be proven to be EUF-KOA from the RSA assumption via

algebraic reductions, then the RSA assumption does not hold.

By employing Lemma 3.17, we give an impossibility result on the SRSA-

based signatures. Catalano, Fiore and Warinschi [13] constructed a paramet-

ric distribution ϱCL =
{
ϱCLk,m

}
k,m

(ϱCS, ϱFis, ϱGHR, ϱHK and ϱZhu, resp.) so that

PFSigZ×
N ,ϱCL coincides with the CL (CS, Fischlin, GHR, HK and Zhu, resp.)

scheme. We now describe the parametric distributions ϱCL, ϱCS, ϱFis, ϱGHR, ϱHK
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and ϱZhu, respectively. Let HPRIMES : {0, 1}ℓseed →
(
2ℓexp−1, 2ℓexp

)
be a division-

intractable prime-valued hash function, and let H ′ be an (ℓexp − 1)-bit collision-

resistant hash function. Let M ∈ {0, 1}ℓmsg denote a parameter. Then, all of the

parametric distributions are depicted from Fig. 3.7 to Fig. 3.12.

It follows from Proposition 2.8 that ϱCL, ϱFis, ϱHK, ϱZhu ∈ D. This is be-

cause a pair (λ, r) chosen according to each of these parametric distributions

satisfies that r is uniformly distributed over {0, 1}ℓseed , E is computed by us-

ing the division-intractable (and then collision-resistant) hash function HPRIMES,

s1 = 1 and s2, . . . , sm ∈ Z. Therefore, one can apply Lemma 3.17 to PFSigZ×
N ,ϱCL ,

PFSigZ×
N ,ϱFis , PFSigZ×

N ,ϱHK , PFSigZ×
N ,ϱZhu , namely the CL signature, the Fischlin sig-

nature, the HK signature, the Zhu signature, respectively. Note that Lemma 3.17

can be also applied to PFSigZ×
N ,ϱCS (the CS signature) by the following modification

for SimA. SimA chooses an element R∗ ∈U QRN in (A-2) to select s2 according

to the distribution ϱCSk,m,(N,u2,E′)(M
∗), and then it outputs R∗ together with the

witness (M∗, ((λ∗, r∗), ψ∗)) in (A-4).

Corollary 3.18

Assume that ℓexp ≤ ℓ/2 − 2. Assume also that KGenRSA outputs a good public

key (N, e) with probability 1/τGood for sufficiently large k. The CL scheme, the

CS scheme, the Fischlin scheme, the HK scheme and the Zhu scheme cannot be

proven to be EUF-KOA under the RSA assumption via algebraic reductions, as

long as the RSA assumption holds.

The parametric distribution ϱGHR does not belong to D. This is because

for the parametric distribution ϱGHR, the exponent E is set as E := H(M) for

a given parameter M , and M may not be uniformly distributed over {0, 1}ℓseed .
However, one can show that the adaptive pseudo-freeness of

{
Z×

N

}
with respect

to ϱGHR cannot be proven under the RSA assumption, as in Theorem 3.9. The

proof is almost the same as that of Theorem 3.9 except that the simulator SimA

sets M∗ := r∗ in (A-2) instead of randomly choosing M∗. Thus, the following

corollary holds in a similar manner to Corollary 3.18.

Corollary 3.19

Assume that ℓseed = ℓmsg and ℓexp ≤ ℓ/2−2. Assume also that KGenRSA outputs a

good public key (N, e) with probability 1/τGood for sufficiently large k. The GHR

scheme cannot be proven to be EUF-KOA under the RSA assumption via algebraic

reductions, as long as the RSA assumption holds.
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Let ℓmsg + 2 ≤ ℓexp, and let ℓparm be a polynomial in k.

Key Generator KGen. On input 1k, KGen works as follows:

(1) choose an RSA modulus N = PQ ∈ Nsafe
RSA(ℓ), and then choose elements

u1, u2, u3 ∈U QRN ; and

(2) output a public key pk = (N, u1, u2, u3) and a secret key (P,Q).

Signing Algorithm Sign. On input (sk, pk,M), Sign issues a signature σ on

the message M in the following way:

(1) choose a random ℓexp-bit prime E and a random (ℓ+ℓmsg+ℓparm)-bit integer

s, and then find an element ψ so that ψE = u1u
s
2u

M
3 ; and

(2) output a signature σ = (E, s, ψ).

Verification Algorithm Verify. On input (pk,M, σ), Verify outputs 1 if E ∈(
2ℓexp−1, 2ℓexp

)
, and ψE = u1u

s
2u

M
3 , or 0 otherwise.

For each k and m, ϱCLk,m(M) outputs a tuple ((E, s), r) by the following rules:

(1) choose r ∈U {0, 1}ℓseed , and then set E := HPRIMES(r); and

(2) for the vector s = (s1, s2, . . . , sm), set s1 := 1, s2 ∈U [0, 2ℓ+ℓmsg+ℓparm − 1],

s3 :=M and si := 0 for each i ∈ [4,m].

Figure 3.7: Camenisch-Lysyanskaya Signature Scheme [11] and ϱCL [13]
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Let ℓexp ≤ ℓ/2− 1.

Key Generator KGen. On input 1k, KGen works as follows:

(1) choose an RSA modulus N = PQ ∈ Nsafe
RSA(ℓ), elements u1, u2 ∈U QRN and

then a random ℓexp-bit prime E ′; and

(2) output a public key pk = (N, u1, u2, E
′) and a secret key (P,Q).

Signing Algorithm Sign. On input (sk, pk,M), Sign issues a signature σ on

the message M in the following way:

(1) choose an element R ∈U QRN and a random ℓexp-bit prime E so that

E ̸= E ′;

(2) compute an element c := RE′
/u

H′(M)
2 , and then find an element ψ so that

ψE = u1u
H′(c)
2 ; and

(3) output a signature σ = (R,E, ψ).

Verification Algorithm Verify. On input (pk,M, σ), Verify outputs 1 if E is an

ℓexp-bit odd integer different from E ′ and it holds that c = RE′
/u

H′(M)
2 and

ψE = u1u
H′(c)
2 , or 0 otherwise.

For each k, m, an index N ∈ N (k), an element u2 ∈ GN , and a prime E ′ ∈(
2ℓexp−1, 2ℓexp

)
, ϱCSk,m,(N,u2,E′)(M) outputs a tuple ((E, s), (r,R)) by the following

rules:

(1) choose r ∈U {0, 1}ℓseed , and then set E := HPRIMES(r);

(2) for the vector s = (s1, s2, . . . , sm),

(2-1) set s1 := 1 and si := 0 for each i ∈ [3,m]; and

(2-2) choose R ∈R GN , compute c := RE′
/u

H′(M)
2 , and set s2 := H ′(c).

It should be noted that to determine a family ϱCSk,m,(N,u2,E′) of probability distributions,

we need a group index N ∈ N (k), a group element u2 ∈ GN and a prime E′ besides

k and m. For the APF game with respect to ϱCS, we assume that in Setup phase,

the game tuple (N,α, ϱCSk,m,(N,u2,E′)) is determined as follows: the challenger chooses

a group index N and an assignment α as the same as Definition 2.6, then specifies a

family ϱCSk,m,(N,u2,E′) by setting u2 := α(a2) and choosing a prime E′ ∈R
(
2ℓexp−1, 2ℓexp

)
.

Figure 3.8: Cramer-Shoup Signature Scheme [14] and ϱCS [13]
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Key Generator KGen. On input 1k, KGen works as follows:

(1) choose an RSA modulus N = PQ ∈ Nsafe
RSA(ℓ), and then choose elements

u1, u2, u3 ∈U QRN ; and

(2) output a public key pk = (N, u1, u2, u3) and a secret key (P,Q).

Signing Algorithm Sign. On input (sk, pk,M), Sign issues a signature σ on

the message M in the following way:

(1) choose a random ℓexp-bit prime E, and a random (ℓexp − 1)-bit integer s;

(2) find an element ψ so that ψE = u1u
s
2u

s⊕H′(M)
3 , where ⊕ denotes the bitwise

XOR operator; and

(3) output a signature σ = (E, s, ψ).

Verification Algorithm Verify. On input (pk,M, σ), Verify outputs 1 if E is an

ℓexp-bit odd integer, s is an (ℓexp − 1)-bit value, and ψE = u1u
s
2u

s⊕H′(M)
3 , or

0 otherwise.

For each k and m, ϱFisk,m(M) outputs a tuple ((E, s), r) by the following rules:

(1) choose r ∈U {0, 1}ℓseed , and then set E := HPRIMES(r); and

(2) for the vector s = (s1, s2, . . . , sm), set s1 := 1, s2 ∈U [0, 2ℓexp−1 − 1], s3 :=

s2 ⊕H ′(M), and si := 0 for each i ∈ [4,m].

Figure 3.9: Fischlin Signature Scheme [18] and ϱFis [13]
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Key Generator KGen. On input 1k, KGen works as follows:

(1) choose an RSA modulus N = PQ ∈ Nsafe
RSA(ℓ), and then choose an element

u ∈U QRN ; and

(2) output a public key pk = (N, u) and a secret key (P,Q).

Signing Algorithm Sign. On input (sk, pk,M), Sign issues a signature σ on

the message M in the following way:

(1) set E := HDI(M), where HDI is a division-intractable hash function;

(2) find an element ψ so that ψE = u; and

(3) output a signature σ = (E,ψ).

Verification Algorithm Verify. On input (pk,M, σ), Verify outputs 1 if E =

HDI(M), and ψE = u, or 0 otherwise.

For each k and m, ϱGHRk,m (M) outputs a tuple ((E, s),M) by the following rules:

(1) set E := HDI(M); and

(2) for the vector s = (s1, s2, . . . , sm), set s1 := 1 and si := 0 for each i ∈ [2,m].

Figure 3.10: Gennaro-Halevi-Rabin Signature Scheme [22] and ϱGHR [13]
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Let ℓexp = ℓ/2− 3 and ℓmsg = m− 1.

Key Generator KGen. On input 1k, KGen works as follows:

(1) choose an RSA modulus N = PQ ∈ Nsafe
RSA(ℓ), and then choose elements

u0, u1, . . . , uℓmsg ∈U QRN ; and

(2) output a public key pk = (N, u0, u1, . . . , uℓmsg) and a secret key (P,Q).

Signing Algorithm Sign. On input (sk, pk,M), Sign issues a signature σ on

the message M in the following way:

(1) choose a random ℓexp-bit prime E, and then find an element ψ so that

ψE = u0
∏ℓmsg

i=1 u
Mi
i , where Mi ∈ {0, 1} denotes the i-th bit of M ; and

(2) output a signature σ = (E,ψ).

Verification Algorithm Verify. On input (pk,M, σ), Verify outputs 1 if E is an

ℓexp-bit odd integer, and ψE = u0
∏ℓmsg

i=1 u
Mi
i , or 0 otherwise.

For each k and m, ϱHK
k,m(M) outputs a tuple ((E, s), r) by the following rules:

(1) choose r ∈U {0, 1}ℓseed , and then set E := HPRIMES(r); and

(2) for the vector s = (s1, s2, . . . , sm), set s1 := 1 and si := Mi−1 for each

i ∈ [2,m].

Figure 3.11: Hofheinz-Kiltz Signature Scheme [27] and ϱHK [13]

Zhu Signature scheme is basically the same as the CL Signature scheme described

in Fig. 3.7 except that an integer s chosen by Sign is of binary length ℓexp − 1.

For each k and m, ϱZhuk,m(M) outputs a tuple ((E, s), r) by the following rules:

(1) choose r ∈U {0, 1}ℓseed , and then set E := HPRIMES(r); and

(2) for the vector s = (s1, s2, . . . , sm), set s1 := 1, s2 ∈U [0, 2ℓexp−1 − 1], s3 := M

and si := 0 for each i ∈ [4,m].

Figure 3.12: Zhu Signature Scheme [48, 49] and ϱZhu [13]
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3.3 Concluding Remarks

In this chapter, we have shown two impossibility results on the adaptive

pseudo-freeness of the RSA group family
{
Z×

N

}
. First, we have given a negative

circumstantial evidence for the question whether or not
{
Z×

N

}
is strongly-adaptive

pseudo-free. More precisely, we have shown that the RSA group family
{
Z×

N

}
cannot be proven to be strongly-adaptive pseudo-free from the SRSA assumption

via algebraic reductions, as long as the SRSA assumption holds. In other words,

the strong adaptive pseudo-freeness of
{
Z×

N

}
cannot be shown under the SRSA

assumption, by employing only current proof techniques which are frequently used

in ordinary security proofs. Since the SRSA assumption is one of the strongest

assumption, this implies that the strong adaptive pseudo-freeness of
{
Z×

N

}
may

be far from feasibility. Hence it is reasonable to use parametric distributions to

construct a concrete adaptive pseudo-free group.

As the second result, we have again given a negative circumstantial evidence

for the question whether or not the adaptive pseudo-freeness of
{
Z×

N

}
can be

proven from some assumption other than the SRSA assumption, by using the

parametric distributions proposed in [13]. Namely, we have shown that it cannot

be proven from the RSA assumption via algebraic reductions, as long as the

RSA assumption holds. Moreover, Theorem 3.9 holds even when an adversary is

static, namely the adversary is restricted so that it makes no query during the

APF game. Thus, our result indicates that even the “static” pseudo-freeness of{
Z×

N

}
over our class E of equations cannot be proven from the RSA assumption

via algebraic reductions, as long as the RSA assumption holds.

As a consequence of Theorem 3.9 and Lemma 3.15, it follows that the SRSA-

based signature schemes proposed by [11, 14, 18, 22, 27, 49] may not be proven to

be EUF-KOA from the RSA assumption via algebraic reductions, as long as the

RSA assumption holds. This impossibility result on the SRSA-based signatures

indicates that the adaptive pseudo-free group is useful to discuss whether or not

the security of cryptographic schemes is provable from a specific assumption.



Chapter 4

The RSA Group Z×N Is Adaptive

Pseudo-Free under the RSA

Assumption

In this chapter, we develop a new parametric distribution and show that the RSA

group family
{
Z×

N

}
is adaptive pseudo-free with the parametric distribution un-

der the RSA assumption. In Section 4.1, we define a slightly different variant

of the adaptive pseudo-free group which is used throughout this chapter. We

describe technical lemmas in Section 4.2. Our parametric distribution is given in

Section 4.3, and we show in Section 4.4 that the RSA group family
{
Z×

N

}
is adap-

tive pseudo-free under the RSA assumption by using our parametric distribution.

In Section 4.5, we give a concluding remarks for this chapter.

4.1 Adaptive Pseudo-Free Groups with respect to a Fam-

ily of Parametric Distributions

We employ another definition of the adaptive pseudo-free group which is

slightly different from the original definition described in Definition 2.6.

Let k be a security parameter, let A be a set ofm = m(k) symbols and let I =

∪k≥0I(k) be an index set. We assume that each index ξ ∈ I(k) is of polynomial

length in k. We suppose that for each k, m and each index ξ ∈ I(k), a class

Eξk,m of a pair (λ, r) is designated, and we provide a family ϱξk,m =
{
ϱξk,m(M)

}
of

probabilistic distributions ϱξk,m(M) over Eξk,m. We also assume that the description

ϱξk,m can be easily obtained by k, m and ξ.

61
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Setup. The challenger chooses a random group index N ∈U N (k). Then, it

specifies an assignment α : A → GN by independently choosing an element

α(a) ∈R GN at random according to the designated sampling algorithm for each

a ∈ A. Moreover, the challenger specifies a distribution family ϱξk,m by choosing

an index ξ ∈U I(k). The adversary is given the game tuple
(
N,α, ϱξk,m

)
.

Equations queries. For each t-th query, A chooses a parameter Mt and hands it

to the challenger. The challenger chooses a pair (λ(t), rt) of an equation λ(t) =

(Et, st) and a string rt according to the distribution ϱξk,m(Mt). Then it returns

the pair (λ(t), rt) and a solution ψt ∈ GN for the interpreted equation λ
(t)
α : xEt =∏m

i=1 α(ai)
st,i to A.

Challenge. Eventually, the adversary A outputs a tuple ((λ∗, r∗), ψ∗) of an equa-

tion λ∗ = (E∗, s∗) and a string r∗ together with a solution ψ∗ of the interpreted

equation λ∗α over GN . The challenger outputs 1 if the following conditions hold,

or 0 otherwise:

• (λ∗, r∗) ∈ Eξk,m;

• λ∗ is nontrivial with respect to Λ, the set of queried equations and corre-

sponding solutions appeared in Equations queries phase; and

• ψ∗ is actually a solution of λ∗α.

An adversary A is said to win the adaptive pseudo-free game of the group

family G with respect to the family
{
ϱξ
}
ξ∈I of the parametric distributions ϱξ ={

ϱξk,m

}
if the challenger outputs 1 in the game between the challenger and the

adversary A.

Definition 4.1 (Adaptive Pseudo-Free Groups w.r.t.
{
ϱξ
}
ξ∈I)

Let k be a security parameter, let q and m be polynomials in k, and let
{
ϱξ
}
ξ∈I

be a family of parametric distributions ϱξ. A family G = {GN}N∈N of groups is

(m, q, ϵ)-adaptive pseudo-free with respect to the family
{
ϱξ
}
ξ∈I of the parametric

distributions, if for any PPT adversary A that makes at most q = q(k) queries,

and any set A of m = m(k) symbols, the probability that A wins the adaptive

pseudo-free game of the group family G with respect to
{
ϱξ
}
ξ∈I is at most ϵ = ϵ(k),

where the probability is taken over the random choices of the index N ∈U N (k),

α(a) ∈R GN for each a ∈ A, ξ ∈U I(k) and the equation (λ(t), rt) ∈R Eξk,m for

each 1 ≤ t ≤ q, and the internal coin flips of A.

We note that Definition 4.1 can be viewed as a generalization of the original
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definition in Definition 2.6. Definition 4.1 involves a family
{
ϱξ
}
ξ∈I of para-

metric distributions, whereas the original definition involves a single parametric

distribution.

4.2 Technical Lemmas

We use a series of lemmas in this chapter. Lemma 4.3 is trivial.

Lemma 4.2

Let {n1(k)}k∈N and {n2(k)}k∈N be two sequences of natural numbers. Assume

that n2/n1 is negligible in k. If z ∈U Zn1, then the distribution of z mod n2 is

statistically close to the uniform distribution over Zn2.

Proof. Since n1 > n2, let n1 = bn2 + c, where 0 ≤ c < n2. For any a ∈ Zn2 ,

let P1(a) := Prz∈UZn1
[z ≡ a (mod n2)] and P2(a) := Prz∈UZn2

[z ≡ a (mod n2)].

Then we have P1(a) = (b+1)/n1 if 0 ≤ a < c, or P1(a) = b/n1 if c ≤ a < n2, and

P2(a) = 1/n2. It follows from 0 ≤ c < n2 that

1

2

∑
a∈Zn2

|P1(a)− P2(a)| =
c

2

∣∣∣∣b+ 1

n1

− 1

n2

∣∣∣∣+ n2 − c
2

∣∣∣∣ bn1

− 1

n2

∣∣∣∣
=
c

2

∣∣∣∣bn2 + n2 − n1

n1n2

∣∣∣∣+ n2 − c
2

∣∣∣∣bn2 − n1

n1n2

∣∣∣∣
=
c

2

∣∣∣∣−c+ n2

n1n2

∣∣∣∣+ n2 − c
2

∣∣∣∣ −cn1n2

∣∣∣∣
=
c

2

(
n2 − c
n1n2

)
+
n2 − c

2

(
c

n1n2

)
=
c(n2 − c)
n1n2

<
n2

n1

.

By the assumption that n2/n1 is negligible in k, if z ∈U Zn1 , then the distribution

of z mod n2 is statistically close to the uniform distribution over Zn2 .

Lemma 4.3

Let C and n be any natural numbers. Let ADDC,n map each element x ∈ Zn to

(x + C) mod n ∈ Zn, and let MULC,n map each element x ∈ Zn to Cx mod n ∈
Zn. Then, ADDC,n is bijective, and MULC,n is bijective provided that C ∈ Z×

n .
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4.3 Our Parametric Distribution ϱK,c

In this section, we propose a new parametric distribution ϱK,c. Our construc-

tion of ϱK,c involves a hash function HK,c that is similar to the one introduced by

Hohenberger and Waters [30]. Their hash function has been employed in many

RSA-based schemes in the standard model [12, 30, 28, 33, 36, 41, 42, 46, 47].

The Construction of a Hash Function HK,c. In order to introduce our

parametric distribution ϱK,c, we establish a hash function HK,c. Let k be a

security parameter. In order to establish HK,c, we define a keyed pseudo-random

function.

Definition 4.4 (Keyed Pseudo-Random Function [32])

Let K := ∪k≥0K(k) denote a key space, and let ℓdom and ℓrange be polynomials

in k. We say that F : K × {0, 1}ℓdom → {0, 1}ℓrange is a keyed pseudo-random

function with the key space K if there exists no PPT adversary D such that∣∣∣∣∣ Pr
K∈UK(k)

[
DFK(·)(1k) = 1

]
− Pr

fk∈UFℓdom,ℓrange
k

[
Dfk(·)(1k) = 1

]∣∣∣∣∣ ,
is nonnegligible in k, where FK(·) := F (K, ·) and for each k, F ℓdom,ℓrange

k denotes

a set of all functions mapping each ℓdom(k)-bits string to an ℓrange(k)-bits string.

The probability is taken over the random choice of a key K ∈U K(k), that of

fk ∈U F ℓdom,ℓrange
k and coin flips of D.

Let N ∈ Nsafe
RSA(ℓ) be an RSA composite with length ℓ = ℓ(k), and let ℓF :=

ℓ− 1. Let F : K×{0, 1}∗ → {0, 1}ℓF be a keyed pseudo-random polynomial-time

computable function with a key space K, where the length of any key K ∈ K(k)
is a polynomial in k. In particular, we require that FK(r) is almost uniformly

distributed over {0, 1}ℓF with K ∈U K(k) for any given string r of polynomial

length in k. For any K ∈ K and any c ∈ {0, 1}ℓF , we define a function hK,c :

{0, 1}∗ → P<2ℓ by

hK,c(r) := nextprime(FK(r)⊕ c),

where FK(·) := F (K, ·), the function nextprime : {0, 1}ℓF → P<2ℓ maps each string

x ∈ {0, 1}ℓF (regarded as a binary representation of a natural number x̃) to the

smallest odd prime P ∈ P<2ℓ that is equal to or greater than x̃, and ⊕ denotes
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the bitwise XOR operator. The function nextprime is computed in PPT with

negligible error probability [35]. Hence we assume that one can always correctly

compute nextprime and hK,c throughout this thesis.

Note that for any P ∈ P<2ℓ , nextprime is efficiently invertible in the sense that

a preimage of nextprime is computable in polynomial-time in the binary length of

P .

For any string r ∈ {0, 1}∗ of length ℓ, we write r = r1r2 · · · rℓ, where ri ∈
{0, 1} is the i-th bit of r. For each j ∈ [1, ℓ], the j-prefix of r is the string

r(j) = r1r2 · · · rj consisting of the leading j bits of r. The 0-prefix r(0) of r is the

empty string. Let ℓH be a polynomial in k. For each K ∈ K and c ∈ {0, 1}ℓF , we
define a function HK,c : {0, 1}ℓH → Z by

HK,c(r) :=

ℓH∏
j=1

hK,c(r
(j)). (4.1)

For any fixed key K and string c, HK,c(r) ̸= HK,c(r
′) implies that r ̸= r′ for

any r, r′ ∈ {0, 1}ℓH , because HK,c is single-valued. For any c ∈ {0, 1}ℓF , hK,c

is collision-resistant with K ∈U K(k), because FK is a pseudo-random func-

tion [30, 41]. Therefore, one can observe that for any c ∈ {0, 1}ℓH , HK,c is

also collision-resistant with K ∈U K(k) as follows. Assume that HK,c is not

collision-resistant, namely distinct strings r, r′ ∈ {0, 1}ℓH satisfying HK,c(r) =

HK,c(r
′) can be efficiently found. Since hK,c(r) = hK,c(r

(ℓH)) is a prime factor of

HK,c(r) = HK,c(r
′) and HK,c(r

′) =
∏ℓH

j=1 hK,c(r
′(j)) is a prime factorization, we

have hK,c(r) = hK,c(r
′(j)) for some 1 ≤ j ≤ ℓH and such an index j can be found

in polynomial-time because hK,c is polynomial-time computable. If j < ℓH , then

we have r ̸= r′(j) because their lengths are different. If j = ℓH , then we have

r ̸= r′ = r′(ℓH). In either case, one can find a collision of hK,c in polynomial-time.

However, this is impossible because hK,c is collision-resistant.

Remark 4.5

Catalano, Fiore and Warinschi [13] used the notion of the division intractabil-

ity in order to extract an answer for the SRSA instance (N, y) by employing

Lemma 2.12. However, it seems to be hard to straightforwardly apply their way

to the case of the RSA problem. The difficulty of breaking RSA rather than

SRSA is that the exponent e of the final output ze ≡ y (mod N) is forced by

the given instance (N, e, y). Our strategy of breaking RSA for a given instance

(N, e, y) is to employ the hash function HK,c in a similar fashion to [41]. Namely,
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we embed the given RSA exponent e into a prime factor of HK,c by choosing

appropriate strings r and c so that e = hK,c(r). When e is actually a prime, this

embedding can be done in polynomial-time as nextprime, and hence also hK,c, is

polynomial-time invertible. We follow only the case where e is a sufficiently large

prime. We will explain that this is enough for our purpose in Remark 4.7 later.

A Parametric Distribution ϱK,c. We fix any polynomials ℓexp1 = ℓexp1(k),

ℓexp2 = ℓexp2(k) and ℓdiff = ℓdiff(k) such that ℓexp1+1 ≤ ℓ/2, ℓdiff is not a constant

and ℓexp1 = ℓexp2 + ℓdiff . For each k, m, K ∈ K and c ∈ {0, 1}ℓF , we denote by

EK,c
k,m the set of all pairs (λ, r) of an equation λ = (E, (s1, . . . , sm)) and a string

r ∈ {0, 1}ℓH such that E = HK,c(r), s1 = 1, s2 ∈ Iexp1 :=
[
0, 2ℓexp1 − 1

]
, and

s3, . . . , sm ∈ Iexp2 :=
[
0, 2ℓexp2 − 1

]
.

Our parametric distribution ϱK,c
k,m is described in the following manner. For

each k, m, K and c, ϱK,c
k,m is a family ϱK,c

k,m =
{
ϱK,c
k,m(M)

}
of probabilistic distribu-

tions ϱK,c
k,m(M) over the set EK,c

k,m such that for any given parameter M ,

• ϱK,c
k,m(M) is polynomial-time samplable;

• the description of ϱK,c
k,m(M) can be obtained in polynomial-time in k;

• r is uniformly distributed over {0, 1}ℓH ; and

• s2 is uniformly distributed over Iexp1.

4.4 Main Theorem

In this section, we show that the RSA group Z×
N is adaptive pseudo-free

with our parametric distribution ϱK,c under the RSA assumption, rather than

the SRSA assumption.

As in [13, 34] and in Chapter 3, we adopt any sampling algorithm for the fam-

ily
{
Z×

N

}
N∈N which chooses an element g ∈ QRN almost uniformly at random.

We also assume that the challenger of the adaptive pseudo-free game chooses an

indexN ∈ N (k) according to the same distribution ofN chosen from KGenRSA(1
k)

for each security parameter k. In this section, we use the following specified ver-

sion of the RSA assumption.

Definition 4.6 (ϵRSA-RSA assumption)
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The ϵRSA-RSA assumption holds if for any PPT adversary R,

Pr

ze ≡ y (mod N) :

(N, e)← KGenRSA(1
k),

y ∈U QRN ,

z ←R(N, e, y)

 ≤ ϵRSA,

where the probability is taken over the coin flips of KGenRSA and R, and the

uniform random choice y from QRN .

Remark 4.7

We need an additional assumption for the key generator KGenRSA in Definition 4.6.

We say that a pair (N, e) ← KGenRSA(1
k) is good if e is a prime in Z×

φ(N) and

2ℓexp1 ≤ e < 2ℓF . In our main theorem, KGenRSA is forced to generate a good pair

with probability at least 1/τGood for some polynomial τGood(k) for any sufficiently

large k. Then, the ϵRSA-RSA assumption for such a key generator is referred to as

an (ϵRSA, τGood)-RSA assumption. Note that this assumption for KGenRSA is not

exceedingly strong. For instance, if e is (almost) uniformly distributed over Z×
φ(N)

with respect to each specific modulus N , then our assumption holds as shown in

the following Lemma 4.8 in a similar manner to Lemma 3.8.

Lemma 4.8

Let ℓ, ℓF and ℓexp1 be polynomials defined as above. Let N ∈ Nsafe
RSA(ℓ). Then,

Pre∈UZ×
φ(N)

[
e ∈ P<φ(N) ∧ 2ℓexp1 ≤ e < 2ℓF

]
> 1/(2ℓ)− negl(k).

Proof. As described in Eq. (3.6), it holds that for the number π(n) of primes less

than or equal to n,

n

log2 n
< π(n) <

2n

log2 n
,

for any sufficiently large n. Recall that ℓ, ℓF and ℓexp1 are the polynomials such

that ℓF = ℓ − 1 and ℓexp1 + 1 ≤ ℓ/2. It follows from N = PQ ∈ Nsafe
RSA that

φ(φ(N)) < φ(N). Because the binary length of P and Q are ℓ/2, we have P

and Q are in the interval
[
2ℓ/2−1, 2ℓ/2 − 1

]
. This implies that 2ℓ−4 = (2ℓ/2−2)2 <

(2ℓ/2−1 − 1)2 < (P − 1)(Q− 1) = φ(N) < PQ < 2ℓ.

We now assume that φ(N) ≤ 2ℓF . Since the order of Z×
φ(N) is φ(φ(N)),

e < φ(N) ≤ 2ℓF for any e ∈ Z×
φ(N), and both φ(N) and 2ℓexp1 are not primes, we
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have

Pr
e∈UZ×

φ(N)

[
e ∈ P<φ(N) ∧ 2ℓexp1 ≤ e < 2ℓF

]
= Pr

e∈UZ×
φ(N)

[
e ∈ P<φ(N) ∧ 2ℓexp1 ≤ e < φ(N)

]
=
π(φ(N)− 1)− π(2ℓexp1 − 1)

φ(φ(N))

=
π(φ(N))− π(2ℓexp1)

φ(φ(N))

>
π(φ(N))− π(2ℓexp1)

φ(N)

>
1

φ(N)

(
φ(N)

log2 φ(N)
− 2 · 2ℓexp1

log2 2
ℓexp1

)
=

1

log2 φ(N)
− 2ℓexp1+1

φ(N)ℓexp1

>
1

log2 2
ℓ
− 2ℓexp1+1

2ℓ−4ℓexp1

≥ 1

ℓ
− 2ℓ/2

2ℓ−4ℓexp1

=
1

ℓ
− 1

2ℓ/2−4ℓexp1

>
1

2ℓ
− 1

2ℓ/2−4ℓexp1
.

(4.2)

On the other hand, we assume that φ(N) > 2ℓF . In a similar manner to
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Eq. (4.2), we have

Pr
e∈UZ×

φ(N)

[
e ∈ P<φ(N) ∧ 2ℓexp1 ≤ e < 2ℓF

]
=
π(2ℓF − 1)− π(2ℓexp1 − 1)

φ(φ(N))

=
π(2ℓF )− π(2ℓexp1)

φ(φ(N))

>
π(2ℓF )− π(2ℓexp1)

N

>
1

N

(
2ℓF

log2 2
ℓF
− 2 · 2ℓexp1

log2 2
ℓexp1

)
=

1

N

(
2ℓF

ℓF
− 2ℓexp1+1

ℓexp1

)
>

1

2ℓ

(
2ℓF

ℓF
− 2ℓexp1+1

ℓexp1

)
≥ 1

2ℓ

(
2ℓ−1

ℓ− 1
− 2ℓ/2

ℓexp1

)
=

1

2(ℓ− 1)
− 1

2ℓ/2ℓexp1

>
1

2ℓ
− 1

2ℓ/2ℓexp1
.

Thus, it holds that Pre∈UZ×
φ(N)

[
e ∈ P<φ(N) ∧ 2ℓexp1 ≤ e < 2ℓF

]
> 1/(2ℓ) −

negl(k).

We are now ready to state our main theorem.

Theorem 4.9

Let k be a security parameter, and let m and q be polynomials in k. The RSA as-

sumption implies the adaptive pseudo-freeness of
{
Z×

N

}
with respect to the family{

ϱK,c
}
K,c

of parametric distributions.

More specifically, assume that the (ϵRSA, τGood)-RSA assumption holds. If

there exists a PPT adversary A that breaks (m, q, ϵ)-adaptive pseudo-freeness of{
Z×

N

}
of the RSA groups with respect to the family

{
ϱK,c

}
K,c

of the parametric
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distributions, then it must hold that

ϵ <
9

2
mqℓHτGoodϵRSA + negl(k).

Proof. Let A be the supposed PPT adversary. Namely, A wins the adaptive

pseudo-free game for the family
{
Z×
N

}
with respect to the family

{
ϱK,c

}
K,c

of

the parametric distributions with probability greater than ϵ = ϵ(k) for infinitely

many k, where A makes at most q = q(k) queries and a symbol set A is of size

m = m(k). In more detail, on input (N,α, ϱK,c
k,m) of a group index N ∈ N (k),

an assignment α : A → Z×
N and a distribution family ϱK,c

k,m, A outputs a tuple

((λ∗, r∗), ψ∗) of a pair (λ∗, r∗) ∈ EK,c
k,m of an equation λ∗ = (E∗, s∗) and a string

r∗ together with a solution ψ∗ of the interpreted equation λ∗α over Z×
N , with

probability greater than ϵ, where λ∗ is nontrivial with respect to the set Λ of q

previously queried equations, and s∗ = (s∗1, . . . , s
∗
m).

We construct a PPT algorithm R that breaks RSA with probability greater

than 2ϵ/(9mqℓHτGood) − negl(k). In our construction, R plays the adaptive

pseudo-free game with the adversaryA in whichR plays the role of the challenger.

Throughout the proof, we use the following notations. t denotes the index of

the A’s queries in the game, then 1 ≤ t ≤ q. For each t, let
(
(λ(t), rt), ψt

)
denote

the answer to the adversary A determined by ϱK,c
k,m(Mt) on the A’s t-th query Mt.

Namely, the t-th query is the pair (λ(t), rt) of the equation λ(t) : xEt =
∏m

i=1 a
st,i
i ,

where st = (st,1, . . . , st,m), and the string rt ∈ {0, 1}ℓH satisfying HK,c(rt) = Et.

ψt ∈ Z×
N is a solution for the interpreted equation λ

(t)
α .

For each t, let jt be the length of the longest common prefix of rt and r∗.

Let j∗ = max1≤t≤q jt, and let t∗ be any fixed index such that j∗ = jt∗ . Then the

j∗-prefix r∗(j
∗) of r∗ is the same as the j∗-prefix r

(j∗)
t∗ of rt∗ . By the maximality

of j∗, r∗(j
∗+1) is not a prefix of any rt. For example, if r∗ = 101001, r1 = 101111

and r2 = 111001, then j1 = 3 and j2 = 1, and hence j∗ = 3 and t∗ = 1.

We may assume without loss of generality that HK,c(r) ∈ Z×
P ′Q′ for any

r ∈ {0, 1}ℓH , where P ′ and Q′ are distinct primes such that P = 2P ′ + 1 and

Q = 2Q′ + 1 for an RSA composite N = PQ ∈ Nsafe
RSA. This is because N is easily

factored if HK,c(r) /∈ Z×
P ′Q′ as follows. Assume that HK,c(r) =

∏ℓH
j=1 hK,c(r

(j)) /∈
Z×

P ′Q′ . Since hK,c is prime-valued, we have hK,c(r
(j0)) ∈ {P ′, Q′} for some 1 ≤

j0 ≤ ℓH . Moreover, such an index j0 can be found in polynomial-time. Therefore,

P ′ or Q′ is revealed, and hence N = PQ is factored.

Our algorithmR aims to output the value z ∈ Z×
N such that ze ≡ y (mod N)
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on any given RSA instance (N, e, y), where (N, e)← KGenRSA(1
k) and y ∈U QRN .

Since we are now under the (ϵRSA, τGood)-RSA assumption, the pair (N, e) is good

with probability at least 1/τGood. Hence, we hereafter assume that (N, e) is a

good pair. As mentioned just before Section 3.1.1, we may assume without loss

of generality that the RSA ciphertext y is a generator of QRN . Thus, the RSA

instance (N, e, y) given to R always satisfies that N ∈ Nsafe
RSA, (N, e) is good and

y is a generator of QRN .

For the nontrivial equation λ∗ = (E∗, s∗) with respect to Λ, Lemma 2.5

implies that (E∗, (s∗1, . . . , s
∗
m)) /∈ {(Et, (st,1, . . . , st,m))}qt=1. At the beginning, R

therefore guesses uniformly at random the following three types of the adversary’s

output exponent E∗ and s∗:

Type I: E∗ ̸= Et for any 1 ≤ t ≤ q.

Type II: There exists an index 1 ≤ t ≤ q such that E∗ = Et and s
∗
2 ̸= st,2.

Type III: The remaining case. Namely, there exists an index 1 ≤ t ≤ q such that

E∗ = Et. Moreover, for any index 1 ≤ t ≤ q satisfying that E∗ = Et, s
∗
2 = st,2

holds.

Whenever R has noticed that his guess is wrong, then R aborts.

Type I. In this type, E∗ ̸= Et for any t. In Setup phase, R determines a

distribution family ϱK,c
k,m and a random assignment α : A → Z×

N , where A =

{a1, . . . , am}. For selecting the distribution family ϱK,c
k,m, K is randomly chosen

from the key space K(k), and c ∈ {0, 1}ℓF is chosen so that hK,c(r
∗(j∗+1)) = e

holds for the given RSA exponent e. However, R does not know the string r∗

and the index j∗ before A outputs r∗ in Challenge phase, and hence R does not

know the string r∗(j
∗+1) at this time. Therefore, R guesses an index t∗ ∈ [1, q] at

random and the length j∗ ∈ [0, ℓH − 1] at random, and R computes the string c

by using these guessed values.

Remark 4.10

R guesses the length j∗ in the interval [0, ℓH − 1], because j∗ < ℓH as follows.

Since we are now in Type I, we have E∗ ̸= Et for any t. Since E∗ and Et will

be given by E∗ = HK,c(r
∗) and Et = HK,c(rt), we have r∗ ̸= rt. Thus, we have

j∗ < ℓH .

We now describe the algorithm R when Type I is guessed. Assume that an

RSA instance (N, e, y) is given.



CHAPTER 4 Z×
N IS APF UNDER THE RSA ASSUMPTION 72

Reduction Algorithm R for Type I.

Setup. (I-1) R chooses random strings r1, r2, . . . , rq ∈U {0, 1}ℓH .
(I-2)R chooses a random index t∗ ∈U [1, q] and chooses a length j∗ ∈U [0, ℓH − 1].

R now determines a distribution family ϱK,c
k,m and an assignment α : A→ Z×

N

in the following way.

(I-3) R chooses a key K ∈U K(k), and then sets c := FK(r
∗(j∗+1))⊕ e.

Note that if j∗ and t∗ are correctly guessed, r∗(j
∗+1) is the (j∗+1)-bits string

that is obtained by appending the complement of rt∗ ’s (j
∗ + 1)-th bit to the tail

of the j∗-prefix r
(j∗)
t∗ of rt∗ . Note also that since (N, e) is assumed to be good, and

hence e is a prime less than 2ℓF , the prime e can be viewed as an ℓF -bit string.

Moreover, it holds that

hK,c(r
∗(j∗+1)) = nextprime(FK(r

∗(j∗+1))⊕ c)
= nextprime(FK(r

∗(j∗+1))⊕ (FK(r
∗(j∗+1))⊕ e))

= nextprime(e)

= e.

(4.3)

(I-4) For each 1 ≤ t ≤ q, let Et = HK,c(rt).

(I-5) R fixes an assignment α : A→ Z×
N in a way that:

• Choose z1, z2, . . . , zm ∈U ZN2 ;

• Let C =
∏q

t=1Et; and

• Set α(ai) := yCzi mod N for each 1 ≤ i ≤ m.

We will show that each α(ai) is distributed almost uniformly at random in QRN

later in the description of Game 2. Finally,R submits the indexN , the assignment

α and the tuple (K, c) to the adversary A.
Equations queries. When the t-th parameter Mt ∈ {0, 1}ℓ is queried from the

adversary A, “the challenger” R should reply the tuple
(
(λ(t), rt), ψt

)
to A, where

λ(t) = (Et, st).

(I-6) R generates st and ψt by using E1, . . . , Eq generated in (I-4) as follows:

• Choose st,2 ∈ Iexp1 and st,3, . . . , st,m ∈ Iexp2, according to the distribution

ϱK,c
k,m(Mt);

• Set µt := C(z1 +
∑m

i=2 zist,i); and
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• Set ψt := yµt/Et mod N . Note that µt/Et can be easily computed although

the order ord(QRN) of QRN is unknown, because R can efficiently compute

each Et.

R replies the tuple ((Et, st, rt), ψt) to A. Noting that st,1 = 1, we have

m∏
i=1

α(ai)
st,i =

m∏
i=1

(
yCzi

)st,i
= yµt . (4.4)

Then ψt is a valid solution for the equation λ
(t)
α .

Challenge. Eventually, A outputs a tuple ((λ∗, r∗), ψ∗), where λ∗ = (E∗, s∗). R
checks whether or not his guess is correct.

(I-7) If E∗ = Et for some t, then this is not the case for Type I, and hence

R’s guess is wrong. Then R aborts. Assume that R correctly guesses Type I.

Then, R next verifies whether or not j∗ and t∗ are correctly guessed, namely

j∗ = max1≤t≤q jt and r
∗(j∗) = r

(j∗)
t∗ hold. If the guess is wrong, then R aborts.

Suppose that all guesses are correct. R tries to extract z such that ze ≡
y (mod N) as follows. For the case where A succeeds, we have the following

equation:

ψ∗E∗
=

m∏
i=1

α(ai)
s∗i = yµ

∗
, (4.5)

where µ∗ = C(z1 +
∑m

i=2 zis
∗
i ). Furthermore, we have

E∗ = HK,c(r
∗) =

ℓH∏
j=1

hK,c(r
∗(j)). (4.6)

Since the guess of j∗ and t∗ is correct, we have hK,c(r
∗(j∗+1)) = e. Then it follows

from Eqs. (4.5) and (4.6) that (
ψ∗C∗

)e

= yµ
∗
, (4.7)

where C∗ =
∏ℓH

j=1,j ̸=j∗+1 hK,c(r
∗(j)) = E∗/e.

(I-8) If gcd(e, µ∗) ̸= 1, then R aborts.

(I-9) Otherwise (namely, gcd(e, µ∗) = 1), then R obtains z such that ze ≡ y

(mod N) by Eq. (4.7) and Lemma 2.11.
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Analysis of Type I. We analyze the success probability ϵRSA of Reduction

Algorithm R for Type I by the standard hybrid argument. In the following series

of games, we adopt the behavior (I-1), (I-2), . . ., (I-9) of R so that the first game

Game 0 is the ordinary adaptive pseudo-free game and the final game Compute

RSA coincides with Reduction Algorithm R for Type I that we have just described.

For each 0 ≤ i ≤ 5, let Pr[Succi] be the probability that the adversary A wins

Game i.

Game 0. This game is the ordinary adaptive pseudo-free game. NamelyR invokes

A with a random index N ′ ∈ N (k) (N ′ = PQ with two safe primes P = 2P ′ + 1

and Q = 2Q′ + 1), a random assignment α′, and a key K ∈U K(k) and a string

c ∈U {0, 1}ℓF for the distribution family ϱK,c
k,m. By the assumption, we have

Pr[Succ0] > ϵ. (4.8)

Note that the randomly chosen modulus N ′ ∈ N (k) will be used until Game 5

instead of the given RSA modulus N .

Game 1. This game proceeds in the same way as Game 0 with the exception that

R executes (I-1), (I-2) and (I-3) in Setup phase. Namely R chooses the random

strings rt for each 1 ≤ t ≤ q, and guesses the indices t∗ and j∗. Then, R chooses

a random exponent e′ ∈ Z×
φ(N ′) so that (N ′, e′) is good instead of the given RSA

exponent e, and sets c := FK(r
∗(j∗+1))⊕ e′. (Note that c was randomly chosen in

Game 0.)

The key K and the assignment α′ are chosen as in Game 0. We now show

that the string c chosen in this game is almost uniformly distributed over {0, 1}ℓF .
We define a bijection ⊕e′ that maps r ∈ {0, 1}ℓF to r⊕ e′ ∈ {0, 1}ℓF . Since FK(r)

is assumed to be almost uniformly distributed over {0, 1}ℓF with K ∈U K(k)
for any string r, the string c = FK(r

∗(j∗+1)) ⊕ e′ = ⊕e′(FK(r
∗(j∗+1))) is almost

uniformly distributed over {0, 1}ℓF . Therefore,

Pr[Succ1] ≥ Pr[Succ0]− negl(k). (4.9)

Game 2. This game proceeds in the same way as Game 1 with the exception

that R also executes (I-4) and (I-5) in Setup phase. Namely, R computes each

Et = HK,c(rt), where rt’s are random strings as chosen in Game 1, and chooses a

generator y′ of QRN ′ uniformly at random instead of the given RSA ciphertext y.

Then R fixes the assignment α as in (I-5), and submits the assignment α instead

of the random assignment α′ (constructed in Game 0).



CHAPTER 4 Z×
N IS APF UNDER THE RSA ASSUMPTION 75

It follows from Lemma 4.2 that the distribution of each zi mod P ′Q′ is almost

uniform over ZP ′Q′ , because (P ′Q′)/N ′2 < 1/N ′ is negligible in k. Since y′ is a

generator of QRN ′ , y′ is of order P ′Q′ and y′C is of order P ′Q′/ gcd(C,P ′Q′),

respectively. Since each Et = HK,c(rt) can be assumed to be in Z×
P ′Q′ , we have

C =
∏q

t=1Et ∈ Z×
P ′Q′ . Hence, y′C is also a generator of QRN ′ . Therefore, each

α(ai) = (y′C)zi is distributed almost uniformly at random over QRN ′ . Thus, we

have

Pr[Succ2] ≥ Pr[Succ1]− negl(k). (4.10)

Game 3. This game proceeds in the same way as Game 2 with the exception thatR
also executes (I-6) in Equations queries phase. In this game, for each t-th queried

parameter Mt from A, R chooses st,2 ∈ Iexp1 and st,3, . . . , st,m ∈ Iexp2, according
to the distribution ϱK,c

k,m(Mt), and then computes µt = C(z1+
∑m

i=2 zist,i) by using

C as computed in Game 2, and computes ψt = y′µt/Et mod N ′.

For each t-th parameter Mt, R can correctly reply the solution ψt for the

interpreted equation λ
(t)
α to A by Eq. (4.4). Then we have

Pr[Succ3] = Pr[Succ2]. (4.11)

Game 4. This game proceeds in the same way as Game 3 with the exception that

R also executes (I-7) in Challenge phase. In this game, as in (I-7), R aborts if

R’s guess is wrong, namely E∗ = Et for some t, j∗ ̸= max1≤t≤q jt or r
∗(j∗) ̸= r

(j∗)
t∗ .

The probability that R correctly guesses Type I is 1/3, since R guesses the

type of the adversary’s output uniformly at random out of Type I–III. Since t∗

is chosen uniformly at random from the set [1, q], and j∗ is chosen uniformly at

random from the set [0, ℓH − 1], respectively, the success probability of R’s guess
for j∗ and t∗ is 1/(qℓH). Therefore, we have

Pr[Succ4] ≥
1

3qℓH
Pr[Succ3]. (4.12)

Game 5. This game proceeds in the same way as Game 4 with the exception that

R also executes (I-8) in Challenge phase. Namely R aborts if gcd(e′, µ∗) ̸= 1,

where µ∗ = C(z1 +
∑m

i=2 zis
∗
i ).

We first show that e′ ∤ C with overwhelming probability. Since we have

j∗ = max1≤t≤q jt (the correct guess), it holds that r∗(j
∗+1) ̸= r

(j∗+1)
t for any

1 ≤ t ≤ q. Note that for any r ∈ {0, 1}ℓH and any 1 ≤ j ≤ ℓH with j ̸=
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j∗ + 1, we have r∗(j
∗+1) ̸= r(j), because these are of different length. Hence,

r∗(j
∗+1) ̸= r

(j)
t for each 1 ≤ t ≤ q and each 1 ≤ j ≤ ℓH . Therefore it follows that

e′ = hK,c(r
∗(j∗+1)) ∤

∏q
t=1

∏ℓH
j=1 hK,c(r

(j)
t ) = C with overwhelming probability,

since hK,c is a collision-resistant prime-valued function.

We then estimate the probability that e′ | (z1 +
∑m

i=2 zis
∗
i ) for any fixed

A’s output s∗. By Lemma 4.3, ADDµ∗′,N ′2 is bijective, where µ∗′ =
∑m

i=2 zis
∗
i .

Note that s∗ is independent of z1, because A does not know z1. It follows from

z1 ∈U ZN ′2 that z1 +
∑m

i=2 zis
∗
i mod N ′2 = ADDµ∗′,N ′2(z1) is also distributed

uniformly at random over ZN ′2 . Since 3/N ′2 is negligible in k, the distribution

of z1 +
∑m

i=2 zis
∗
i mod 3 is almost uniform over Z3 by Lemma 4.2. Therefore, we

have

Pr
z1∈UZN′2

[
z1 +

m∑
i=2

zis
∗
i ≡ 0 (mod e′)

]
≤ Pr

z1∈UZN′2

[
z1 +

m∑
i=2

zis
∗
i ≡ 0 (mod 3)

]
=

1

3
+ negl(k),

since e′ is a prime greater than 3. Note that A always wins Game 5 whenever A
wins Game 4, provided that gcd(e′, µ∗) = 1. Therefore, the probability that A
wins this game is

Pr[Succ5] ≥
2

3
Pr[Succ4]− negl(k). (4.13)

Compute RSA. This is the final game in which the challenger coincides with Re-

duction Algorithm R for Type I. Namely, this game proceeds in the same way

as Game 5, with the exception that R uses the input tuple (N, e, y) instead of

(N ′, e′, y′), and executes (I-9) in Challenge phase. Therefore, R computes z such

that ze ≡ y (mod N) if gcd(e, µ∗) = 1 as checked in Game 5.

Since R obtains z such that ze ≡ y (mod N) by Lemma 2.11 provided that

A wins Game 5, we have

ϵRSA ≥ Pr[Succ5]. (4.14)

Putting together Eqs. (4.8)–(4.14), we have

ϵRSA >
2

9qℓH
ϵ− negl(k). (4.15)
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Type II. In this case, there exists an index 1 ≤ t ≤ q such that E∗ = Et and

s∗2 ̸= st,2. Since HK,c is collision-resistant, we have r∗ = rt with overwhelming

probability.

In the proof of Type II, let 1 ≤ t∗ ≤ q be any fixed index such that r∗ = rt∗

and s∗2 ̸= st∗,2, and let j∗ = max1≤t≤q,t ̸=t∗ jt. (Note that these definitions are

slightly different from in Type I.)

In a similar fashion to Type I, for the adaptive pseudo-free game with the

adversary A, R plays the role of the challenger. In Setup phase, R determines

a distribution family ϱK,c
k,m and a random assignment α : A → Z×

N . For selecting

the distribution family ϱK,c
k,m, K is randomly chosen from the key space K(k), and

c ∈ {0, 1}ℓF is chosen so that hK,c(r
∗(j∗+1)) = e holds for the given RSA exponent

e. However, R does not know the string r∗ and the index j∗ beforeA outputs r∗ in

Challenge phase. R therefore guesses an index t∗ ∈ [1, q] at random, and finds the

length j∗ by finding the length jt of the longest common prefix of rt and r
∗ with

using rt∗ for each 1 ≤ t ≤ q with t ̸= t∗. Then, R computes c := FK(r
∗(j∗+1))⊕ e

by using these values t∗ and j∗. In a similar manner to Eq. (4.3), it holds that

hK,c(r
∗(j∗+1)) = e for the resulting c.

Remark 4.11

If there exists an index t′ (1 ≤ t′ ≤ q and t′ ̸= t∗) such that rt′ = r∗, then we

have j∗ = max1≤t≤q,t ̸=t∗ jt = ℓH . However, (ℓH + 1)-prefix of r∗ does not defined,

namely c cannot be determined to be hK,c(r
∗(j∗+1)) = e. Therefore, if R finds

such an index t′, R aborts. Thus j∗ is in [0, ℓH − 1].

We now describe the algorithm R when Type II is guessed. Assume that an

RSA instance (N, e, y) is given.

Reduction Algorithm R for Type II.

Setup. (II-1) R chooses random strings r1, r2, . . . , rq ∈U {0, 1}ℓH .
(II-2) R guesses an index t∗ ∈U [1, q] such that r∗ = rt∗ and s∗2 ̸= st∗,2.

(II-3) If there exists an index 1 ≤ t ≤ q such that t ̸= t∗ and rt = rt∗ , then

R aborts. (See Remark 4.11.) Otherwise, R finds the longest length j∗ =

max1≤t≤q,t ̸=t∗ jt by using rt∗ .

R now determines a distribution family ϱK,c
k,m and an assignment α : A→ Z×

N

in the following way.

(II-4) R chooses a key K ∈U K(k), and then sets c := FK(r
∗(j∗+1))⊕ e as in (I-3)
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of Type I.

(II-5) For each 1 ≤ t ≤ q, let Et = HK,c(rt).

(II-6) R fixes the assignment α : A→ Z×
N as follows:

• Choose z1, z2, . . . , zm ∈U ZN2 , and β ∈U Iexp1;

• Let C =
∏q

t=1Et, and Ct∗ =
∏q

t=1,t̸=t∗ Et = C/Et∗ ; and

• Set α(a1) := yCz1 · yβCt∗ mod N , α(a2) := yCz2 · y−Ct∗ mod N , and α(ai) :=

yCzi mod N for each 3 ≤ i ≤ m.

We will show that each α(ai) is distributed almost uniformly at random in QRN

later in the description of Game 3. Finally,R submits the indexN , the assignment

α and the tuple (K, c) to the adversary A.
Equations queries. (II-7) When the t-th parameterMt ∈ {0, 1}ℓ is queried from the

adversary A, “the challenger” R generates the tuple ((Et, st, rt), ψt) as follows:

• R chooses st,2 ∈ Iexp1 and st,3, . . . , st,m ∈ Iexp2, according to the distribution
ϱK,c
k,m(Mt);

• If t ̸= t∗, then R computes ψt as follows:

ψt = yνt/Et mod N,

where νt = C(z1 +
∑m

i=2 zist,i) + Ct∗(β − st,2).

• Otherwise (i.e. t = t∗), R sets st,2 := β, and R computes ψt as follows:

ψt = yνt/Et mod N,

where νt = C(z1 +
∑m

i=2 zist,i).

Note that νt/Et can be easily computed although the order ord(QRN) of QRN

is unknown as in (I-6) of Type I. Then R replies the tuple ((Et, st, rt), ψt) to A.
Noting that st,1 = 1, we have

m∏
i=1

α(ai)
st,i = (yβCt∗ )st,1(y−Ct∗ )st,2

m∏
i=1

(yCzi)st,i = yνt , (4.16)

in either case of t ̸= t∗ and t = t∗. Then, ψt is a valid solution for the interpreted

equation λ
(t)
α : xEt =

∏m
i=1 α(ai)

st,i .

Challenge. Eventually, A outputs a tuple ((E∗, s∗, r∗), ψ∗). R checks whether or

not his guess is correct.
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(II-8) If there exists no index 1 ≤ t0 ≤ q such that E∗ = Et0 and s∗2 ̸= st0,2, then

this is not the case for Type II, and hence R’s guess is wrong. Then R aborts.

Assume that R correctly guesses Type II. Then, R next verifies whether or not

t∗ is correctly guessed, namely r∗ = rt∗ and s∗2 ̸= st∗,2 hold. If the guess is wrong,

then R aborts.

Suppose that all guesses are correct. R tries to extract z such that ze ≡
y (mod N) as follows. For the case where A succeeds, we have the following

equation:

ψ∗E∗
= α(a1)α(a2)

s∗2

m∏
i=3

α(ai)
s∗i

= (yCz1 · yβCt∗ )(yCz2 · y−Ct∗ )s
∗
2

m∏
i=3

(yCzi)s
∗
i

= yν
∗
,

(4.17)

where ν∗ = C(z1 +
∑m

i=2 zis
∗
i ) + Ct∗(β − s∗2). Since the guess of t∗ is correct, it

follows from e = hK,c(r
(j∗+1)
t∗ ) |

∏ℓH
j=1 hK,c(r

(j)
t∗ ) = Et∗ = E∗, Et∗ |

∏q
t=1Et = C

and Eq. (4.17) that (
ψ∗E∗/e · yν∗′

)e

= yCt∗ (β−s∗2), (4.18)

where ν∗′ = −(C/e)(z1 +
∑m

i=2 zis
∗
i ).

(II-9) If gcd(e, Ct∗(β − s∗2)) ̸= 1, then R aborts.

(II-10) Otherwise (namely, gcd(e, Ct∗(β − s∗2)) = 1), then R obtains z such that

ze ≡ y (mod N) by Eq. (4.18) and Lemma 2.11.

Analysis of Type II. We analyze the success probability ϵRSA of Reduction

Algorithm R for Type II. In the following series of games, as in the case of Type I,

we adopt the behavior (II-1), (II-2), . . . , (II-10) of R so that the first game Game

0 is the ordinary adaptive pseudo-free game, and the final game Compute RSA

coincides with Reduction Algorithm R for Type II that we have just described.

For each 0 ≤ i ≤ 6, let Pr[Succi] be the probability that the adversary A wins

Game i.

Game 0. This game is the same as Game 0 of Type I.

Pr[Succ0] > ϵ. (4.19)
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Note that the randomly chosen index N ′ ∈ N (k) will be used until Game 6.

Game 1. This game proceeds in the same way as Game 0 with the exception

that R executes (II-1), (II-2) and (II-3) in Setup phase. Namely R chooses the

random strings rt for each 1 ≤ t ≤ q, and guesses the index t∗ such that r∗ = rt∗

and s∗2 ̸= st∗,2. Then, R aborts in Setup phase if there exists an index 1 ≤ t ≤ q

such that t ̸= t∗ and rt = rt∗ .

Since the random index N , the assignment α′ and the tuple (K, c) of the

distribution family ϱK,c
k,m are the same as Game 0. Moreover, the probability that

R aborts in (II-3) is at most q ·
(
1/2ℓH

)
. Therefore, we have

Pr[Succ1] ≥ Pr[Succ0]−
q

2ℓH
. (4.20)

Game 2. This game proceeds in the same way as Game 1 with the exception

that R also executes (II-4) in Setup phase. In this game, R chooses a random

exponent e′ ∈ Z×
φ(N ′) so that (N ′, e′) is good instead of the given RSA exponent

e, and sets c := FK(r
∗(j∗+1))⊕ e′.

In the similar fashion to Game 1 for Type I, we have

Pr[Succ2] ≥ Pr[Succ1]− negl(k). (4.21)

Game 3. This game proceeds in the same way as Game 2 with the exception that

R also executes (II-5) and (II-6) in Setup phase. In this game, R computes each

Et = HK,c(rt), where rt’s are random strings as chosen in Game 1, and R chooses

a generator y′ of QRN ′ uniformly at random instead of the given RSA instance

y. Then R fixes the assignment α as in (II-6).

Similarly to Game 2 of Type I, each y′Czi is distributed almost uniformly at

random over QRN ′ . MULy′βCt∗ ,N ′ and MULy′−Ct∗ ,N ′ are bijective by Lemma 4.3,

because y′βCt∗ , y′−Ct∗ ∈ QRN ′ . As in Game 2 of Type I, we may assume that

C ∈ Z×
P ′Q′ , and hence y′Cz1 and y′Cz2 are almost uniformly distributed over QRN ′ .

Therefore, it looks that both α(a1) = y′Cz1 · y′βCt∗ = MULy′βCt∗ ,N ′(y′
Cz1) and

α(a2) = y′Cz2 · y′−Ct∗ = MULy′−Ct∗ ,N ′(y′
Cz2) are distributed almost uniformly

at random over QRN ′ . Therefore, each α(ai) is distributed almost uniformly at

random over QRN ′ . Thus, we have

Pr[Succ3] ≥ Pr[Succ2]− negl(k). (4.22)

Game 4. This game proceeds in the same way as Game 3 with the exception thatR
also executes (II-7) in Equations queries phase. In this game, for each t-th queried



CHAPTER 4 Z×
N IS APF UNDER THE RSA ASSUMPTION 81

parameter Mt from A, R chooses st,2 ∈ Iexp1 and st,3, . . . , st,m ∈ Iexp2, according
to the distribution ϱK,c

k,m(Mt). Then, when t ̸= t∗, R computes ψt = y′νt/Et mod N ′

for νt = C(z1 +
∑m

i=2 zist,i) + Ct∗(β − st,2). Otherwise, R sets st,2 := β, and

computes ψt = y′νt/Et mod N ′ for νt = C(z1 +
∑m

i=2 zist,i). R finally replies the

equation λ(t) = (Et, st), the corresponding answer ψt, and the random string rt
as chosen in Game 1.

For each t-th parameter Mt, R can correctly reply the solution ψt for the

interpreted equation λ
(t)
α to A by Eq. (4.16). Recall that for the distribution

ϱK,c
k,m(Mt∗), st∗,2 = β is chosen uniformly at random from Iexp1. Thus, we have

Pr[Succ4] = Pr[Succ3]. (4.23)

Game 5. This game proceeds in the same way as Game 4 with the exception that

R also executes (II-8) in Challenge phase. In this game, as in (II-8), R aborts if

there exists no index 1 ≤ t ≤ q such that E∗ = Et and s
∗
2 ̸= st,2. R also aborts if

r∗ ̸= rt∗ or s∗2 = st∗,2.

As in Game 4 of Type I, the success probability that R correctly guesses

Type II is 1/3. Since t∗ is chosen uniformly at random from the set [1, q], the

probability that E∗ = Et∗ and s∗2 ̸= st∗,2 is 1/q. If E∗ = Et∗ , then r
∗ = rt∗ with

overwhelming probability, because HK,c is collision-resistant. Therefore, we have

Pr[Succ5] ≥
1

3q
Pr[Succ4]− negl(k). (4.24)

Game 6. This game proceeds in the same way as Game 5 with the exception that

R also executes (II-9) in Challenge phase. R aborts if gcd(e′, Ct∗(β − s∗2)) ̸= 1.

We first show that e′ ∤ Ct∗ with overwhelming probability as in Game 5 for

Type I. Since j∗ = max1≤t≤q,t ̸=t∗ jt (the correct guess), for any 1 ≤ t ≤ q with

t ̸= t∗, we have that r∗(j
∗+1) ̸= r

(j∗+1)
t . Note that for any r ∈ {0, 1}ℓH and

any 1 ≤ j ≤ ℓH with j ̸= j∗ + 1, we have that r∗(j
∗+1) ̸= r(j) because these

are of different length. Hence we have r∗(j
∗+1) ̸= r

(j)
t for each 1 ≤ t ≤ q with

t ̸= t∗ and each 1 ≤ j ≤ ℓH . Therefore it follows that e′ = hK,c(r
∗(j∗+1)) ∤∏q

t=1,t̸=t∗
∏ℓH

j=1 hK,c(r
(j)
t ) = Ct∗ with overwhelming probability, since hK,c is a

collision-resistant prime-valued function.

We show that e′ ∤ (β − s∗2) for any fixed A’s output s∗2. Note that (N ′, e′)

is good. Since β = st∗,2 ̸= s∗2 in Type II, β, st∗,2 ∈ Iexp1 and e′ ≥ 2ℓexp1 , we have

0 < |β − s∗2| < 2ℓexp1 ≤ e′. Therefore, we have e′ ∤ (β − s∗2). Thus, the probability
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that A wins this game is

Pr[Succ6] ≥ Pr[Succ5]− negl(k). (4.25)

Compute RSA. This is the final game in which the challenger coincides with Re-

duction Algorithm R for Type II. Namely, this game proceeds in the same way

as Game 6, with the exception that R uses the input tuple (N, e, y) instead of

(N ′, e′, y′), and executes (II-10) in Challenge phase. Therefore, R computes z

such that ze ≡ y (mod N) if gcd(e, Ct∗(β − s∗2)) = 1 as checked in Game 6.

Since R obtains z such that ze ≡ y (mod N) by Lemma 2.11 provided that

A wins Game 6, we have

ϵRSA ≥ Pr[Succ6]. (4.26)

Putting together Eqs. (4.19)–(4.26), we have

ϵRSA >
1

3q
ϵ− negl(k). (4.27)

Type III. In this type, there exists an index 1 ≤ t ≤ q such that E∗ = Et.

Moreover, for any such index t, s∗2 = st,2 holds. The idea for this type is almost

the same as that for Type II. As in Type II, R guesses an index 1 ≤ t∗ ≤ q

such that r∗ = rt∗ . Recall that r∗ = rt∗ with overwhelming probability provided

that E∗ = Et∗ . However, since s
∗
2 = st∗,2 in this type, an unfortunate event may

happen in Game 6 of Type II, that is e | Ct∗(β−s∗2), with nonnegligible probability.

In order to avoid this problem, we employ Lemma 2.5. It implies that for a

nontrivial equation λ∗ : xE
∗
=

∏m
i=1 a

s∗i
i with respect to the queried equation set

Λ =
{
λ(t)

}q

t=1
from the adversary A, it is guaranteed that (E∗, s∗1, s

∗
2, . . . , s

∗
m) ̸=

(Et∗ , st∗,1, st∗,2, . . . , st∗,m). Since we have E∗ = Et∗ , s
∗
1 = st∗,1 = 1 and s∗2 = st∗,2,

there exists an index i∗ ∈ [3,m] such that s∗i∗ ̸= st∗,i∗ . Therefore, R guesses an

index t∗ ∈ [1, q] such that r∗ = rt∗ together with an index i∗ ∈ [3,m] such that

s∗i∗ ̸= st∗,i∗ .

We now describe the algorithm R when Type III is guessed. Assume that an

RSA instance (N, e, y) is given.

Reduction Algorithm R for Type III.

Setup. (III-1) R chooses random strings r1, r2, . . . , rq ∈U {0, 1}ℓH .
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(III-2) R guesses an index t∗ ∈U [1, q] such that r∗ = rt∗ , and guesses an index

i∗ ∈U [3,m] such that s∗i∗ ̸= st∗,i∗ .

(III-3) If there exists an index 1 ≤ t ≤ q such that t ̸= t∗ and rt = rt∗ , then R
aborts. Otherwise, R finds the longest length j∗ = max1≤t≤q,t ̸=t∗ jt.

R now determines a distribution family ϱK,c
k,m and an assignment α : A→ Z×

N

in the following way.

(III-4) R chooses a key K ∈U K(k), and then sets c := FK(r
∗(j∗+1))⊕e as in (I-3)

of Type I.

(III-5) For each 1 ≤ t ≤ q, let Et = HK,c(rt).

(III-6) R fixes the assignment α : A→ Z×
N as follows:

• Choose z1, z2, . . . , zm ∈U ZN2 , and β ∈U ZB, where B = 2ℓexp1 + 2ℓexp2 − 1;

• Let C =
∏q

t=1Et, and Ct∗ =
∏q

t=1,t̸=t∗ Et = C/Et∗ ; and

• Set α(a1) := yCz1 · yβCt∗ mod N , α(a2) := yCz2 · y−Ct∗ mod N , α(ai∗) :=

yCzi∗ · y−Ct∗ mod N and α(ai) := yCzi mod N for each 3 ≤ i ≤ m with

i ̸= i∗.

We will show that each α(ai) is distributed almost uniformly at random in QRN

later in the description of Game 3. Finally,R submits the indexN , the assignment

α and the tuple (K, c) to the adversary A.
Equations queries. (III-7) When the t-th parameter Mt ∈ {0, 1}ℓ is queried from

the adversaryA, “the challenger”R generates the tuple ((Et, st, rt), ψt) as follows:

• R chooses st,2 ∈ Iexp1 and st,3, . . . , st,m ∈ Iexp2, according to the distribution
ϱK,c
k,m(Mt);

• If t ̸= t∗, then R computes ψt as follows:

ψt = yνt/Et mod N,

where νt = C(z1 +
∑m

i=2 zist,i) + Ct∗(β − st,2 − st,i∗).

• Otherwise (i.e. t = t∗), R aborts if β − st,i∗ /∈ Iexp1. If β − st,i∗ ∈ Iexp1,
then sets st,2 := β − st,i∗ , and R computes ψt as follows:

ψt = yνt/Et mod N,

where νt = C(z1 +
∑m

i=2 zist,i).
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Then R replies the tuple ((Et, st, rt), ψt) to A. Noting that st,1 = 1, we have

m∏
i=1

α(ai)
st,i = (yβCt∗ )st,1(y−Ct∗ )st,2(y−Ct∗ )st,i∗

m∏
i=1

(yCzi)st,i = yνt , (4.28)

in either case of t = t∗ and t ̸= t∗. Then, ψt is a valid solution for the interpreted

equation λ
(t)
α : xEt =

∏m
i=1 α(ai)

st,i .

Challenge. Eventually, A outputs a tuple ((E∗, s∗, r∗), ψ∗). R checks whether or

not his guess is correct.

(III-8) If there exists no index 1 ≤ t0 ≤ q such that E∗ = Et0 , or there exists an

index 1 ≤ t0 ≤ q such that E∗ = Et0 and s∗2 ̸= st0,2, then this is not the case for

Type III, and hence R’s guess is wrong. Then R aborts. Assume that R correctly

guesses Type III. Then, R next verifies whether or not both t∗ and i∗ are correctly

guessed, namely r∗ = rt∗ and s∗i∗ ̸= st∗,i∗ hold. If the guess is incorrect, then R
aborts.

Suppose that all guesses are correct. R tries to extract z such that ze ≡
y (mod N) as follows. For the case where A succeeds, we have the following

equation:

ψ∗E∗
= yν

∗
, (4.29)

where ν∗ = C(z1 +
∑m

i=2 zis
∗
i ) +Ct∗(β− s∗2− s∗i∗). Since the guess of t∗ is correct,

it follows from e = hK,c(r
(j∗+1)
t∗ ) |

∏ℓH
j=1 hK,c(r

(j)
t∗ ) = Et∗ = E∗, Et∗ |

∏q
t=1Et = C

and Eq. (4.29) that (
ψ∗E∗/e · yν∗′

)e

= yCt∗ (β−s∗2−s∗
i∗ ), (4.30)

where ν∗′ = −(C/e)(z1 +
∑m

i=2 zis
∗
i ).

(III-9) If gcd(e, Ct∗(β − s∗2 − s∗i∗)) ̸= 1, then R aborts.

(III-10) Otherwise (namely, gcd(e, Ct∗(β − s∗2− s∗i∗)) = 1), then R obtains z such

that ze ≡ y (mod N) by Eq. (4.30) and Lemma 2.11.

Analysis of Type III. We analyze the success probability ϵRSA of Reduction

Algorithm R for Type III. In the following series of games, as in the case of the

previous types, we adopt the behavior (III-1), (III-2), . . . , (III-10) of R so that

the first game Game 0 is the ordinary adaptive pseudo-free game, and the final
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game Compute RSA coincides with Reduction Algorithm R for Type III that we

have just described. For each 0 ≤ i ≤ 6, let Pr[Succi] be the probability that the

adversary A wins Game i. Game 0 and Game 2 of this type are the same as those

of Type II, respectively. Game 1 is almost the same as that of Type II with the

exception that R also guesses i∗ ∈U [3,m]. Nevertheless, Pr[Succ1] is the same as

that of Type II, because the guess of i∗ does not cause the abortion in (III-3).

Game 3. This game proceeds in the same way as Game 2 with the exception that

R also executes (III-5) and (III-6) in Setup phase. In this game, R computes each

Et = HK,c(rt), where rt’s are random strings as chosen in Game 1, and chooses a

generator y′ of QRN ′ uniformly at random instead of the given RSA instance y.

Then R fixes the assignment α as in (III-6).

Similarly to Game 2 of Type II, each y′Czi , α(a1) = y′Cz1 · y′βCt∗ and α(a2) =

y′Cz2 ·y′−Ct∗ are distributed almost uniformly at random over QRN ′ , respectively.

α(ai∗) = y′Czi∗ · y′−Ct∗ mod N ′ is also distributed almost uniformly at random

over QRN ′ . Therefore, each α(ai) is distributed almost uniformly at random over

QRN ′ . We have

Pr[Succ3] ≥ Pr[Succ2]− negl(k). (4.31)

Game 4. This game proceeds in the same way as Game 3 with the exception that

R also executes (III-7) in Equations queries phase. In this game, for each t-th

parameter Mt queried from A, R chooses st,2 ∈ Iexp1 and st,3, . . . , st,m ∈ Iexp2,
according to the distribution ϱK,c

k,m(Mt). Then, when t ̸= t∗, R sets νt := C(z1 +∑m
i=2 zist,i) + Ct∗(β − st,2 − st,i∗). Otherwise, R aborts if β − st,i∗ /∈ Iexp1, or R

sets st,2 := β − st,i∗ and νt := C(z1 +
∑m

i=2 zist,i) otherwise. R computes ψt =

y′νt/Et mod N ′, and then replies the equation λ(t) = (Et, st), the corresponding

answer ψt, and the random string rt as chosen in Game 1.

For each t-th parameter Mt, R can correctly reply the solution ψt for the

interpreted equation λ
(t)
α to A by Eq. (4.28) unless R aborts at (III-7).

We estimate the probability that R aborts. For any fixed st∗,i∗ ∈ Iexp2, there
are 2ℓexp1 values β ∈ ZB, where B = 2ℓexp1 + 2ℓexp2 − 1, such that 0 ≤ β − st∗,i∗ ≤
2ℓexp1 − 1, namely β − st∗,i∗ ∈ Iexp1. (Note that we have st∗,i∗ ≤ 2ℓexp2 − 1 and

hence st∗,i∗ + 2ℓexp1 − 1 < B.) Since ℓexp1 = ℓexp2 + ℓdiff , for any st∗,i∗ ∈ Iexp2, we
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have

Pr [R aborts] = Pr
β∈UZB

[st∗,2 = β − st∗,i∗ /∈ Iexp1]

= 1− 2ℓexp1

B

=
2ℓexp2 − 1

2ℓexp1 + 2ℓexp2 − 1

<
2ℓexp2

2ℓexp1 + 2ℓexp2 − 1

=
1

2ℓdiff + 1− 2−ℓexp2

< 2−ℓdiff

= negl(k).

We show that for any fixed st∗,i∗ ∈ Iexp2, the distribution of the random

variable st∗,2 = β − st∗,i∗ , where β ∈U ZB, is statistically close to the distribu-

tion of s2 ∈R EK,c
k,m (namely s2 ∈U Iexp1) over the interval I = [−st∗,i∗ , (B −

1) − st∗,i∗ ]. Note that I ⊇ Iexp1. For any a ∈ I, we denote by P1(a) :=

Prβ∈UZB
[β − st∗,i∗ = a] and P2(a) := Prs2∈UIexp1 [s2 = a]. Then, we have P1(a) =

1/B, and P2(a) = 1/2ℓexp1 if a ∈ Iexp1 and P2(a) = 0 otherwise. Therefore, the

statistical distance between st∗,2 and s2 over I is

1

2

∑
a∈I

|P1(a)− P2(a)| =
2ℓexp1

2

∣∣∣∣ 1B − 1

2ℓexp1

∣∣∣∣+ B − 2ℓexp1

2

∣∣∣∣ 1B − 0

∣∣∣∣
= 1− 2ℓexp1

B

< 2−ℓdiff

= negl(k).

Thus we have

Pr[Succ4] ≥ Pr[Succ3]− negl(k). (4.32)

Game 5. This game proceeds in the same way as Game 4 with the exception that

R also executes (III-8) in Challenge phase. In this game, as in (III-8), R aborts

if there exists no index 1 ≤ t0 ≤ q such that E∗ = Et0 or there exists an index

1 ≤ t0 ≤ q such that E∗ = Et0 and s∗2 ̸= st,2. Moreover, R aborts if r∗ ̸= rt∗ or

s∗i∗ = st∗,i∗ .



CHAPTER 4 Z×
N IS APF UNDER THE RSA ASSUMPTION 87

As in Game 4 of Type I, the probability that R correctly guesses Type III is

1/3. Since t∗ is chosen uniformly at random from the set [1, q], the probability

that E∗ = Et∗ is 1/q. If E∗ = Et∗ , then r
∗ = rt∗ with overwhelming probability,

because HK,c is collision-resistant. Since i∗ is chosen uniformly at random from

the set [3,m], the probability of s∗i∗ ̸= st∗,i∗ is at least 1/m. Therefore, we have

Pr[Succ5] ≥
1

3qm
Pr[Succ4]− negl(k). (4.33)

Game 6. This game proceeds in the same way as Game 5 with the exception that

R also executes (III-9) in Challenge phase. Namely R aborts if gcd(e′, Ct∗(β −
s∗2 − s∗i∗)) ̸= 1.

In a similar manner to Game 6 of Type II, we have e′ ∤ Ct∗ with overwhelming

probability.

We show that e′ ∤ (β − s∗2 − s∗i∗) for any fixed A’s output s∗2. It follows from
β = st∗,2 + st∗,i∗ and s∗2 = st∗,2 in this type that β − s∗2 − s∗i∗ = st∗,i∗ − s∗i∗ . Note

that (N ′, e′) is good. Since s∗i∗ ̸= st∗,i∗ (the correct guess), st∗,i∗ , s
∗
i∗ ∈ Iexp2 and

e′ ≥ 2ℓexp1 , this implies that 0 < |st∗,i∗ − s∗i∗ | = |β − s∗2 − s∗i∗ | < 2ℓexp2 ≤ 2ℓexp1 ≤ e′.

Therefore, we have e′ ∤ (β − s∗2 − s∗i∗). Thus, the probability that A wins this

game is

Pr[Succ6] ≥ Pr[Succ5]− negl(k). (4.34)

Compute RSA. This is the final game whose challenger coincides with Reduction

Algorithm R for Type III. Namely, this game proceeds in the same way as Game

6, with the exception that R uses the input tuple (N, e, y) instead of (N ′, e′, y′),

and executes (III-10) in Challenge phase. Therefore, R computes z such that

ze ≡ y (mod N) if gcd(e, Ct∗(β − s∗2 − s∗i∗)) = 1 as checked in Game 6.

Since R obtains z such that ze ≡ y (mod N) by Lemma 2.11 provided that

A wins Game 6, we have

ϵRSA ≥ Pr[Succ6]. (4.35)

Putting together Eqs. (4.19)–(4.21) and (4.31)–(4.35), we have

ϵRSA >
1

3qm
ϵ− negl(k). (4.36)
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The Success Probability of R. For each type, the distribution ofR’s outputs
is statistically close to the distribution of the outputs from the challenger of

the ordinary adaptive pseudo-free game. Namely the distribution of the tuple

(N,α, (K, c)) submitted from R is statistically close to that submitted from the

challenger of the ordinary game. Moreover, for any parameter Mt queried from

A, the distribution of the tuple (Et, st, rt) replied from R is statistically close to

the distribution ϱK,c
k,m(Mt). Therefore, the PPT adversary A cannot distinguish

the type chosen by the algorithm R. It therefore follows from Eq. (4.15) for Type

I, Eq. (4.27) for Type II and Eq. (4.36) for Type III that

ϵRSA >
2

9mqℓH
ϵ− negl(k)

holds for any Type I–III, provided that (N, e) is good: this lower bound can be

obtained by simply taking the trivial common lower bound for the bounds given

in Eqs. (4.15), (4.27) and (4.36).

Recall that, as we are under the (ϵRSA, τGood)-RSA assumption, (N, e) is a

good pair with probability at least 1/τGood. Therefore, the probability that R
extracts z ∈ Z×

N such that ze ≡ y (mod N) is

ϵRSA >
1

τGood

(
2

9mqℓH
ϵ− negl(k)

)
≥ 2

9mqℓHτGood
ϵ− negl(k).

This implies that

ϵ <
9

2
mqℓHτGoodϵRSA + negl(k).

This completes the proof.

4.5 Concluding Remarks

In this chapter, we have proposed a new class of parametric distributions for

adaptive pseudo-free groups, and have shown that the RSA group family
{
Z×

N

}
is adaptive pseudo-free with respect to

{
ϱK,c

}
K,c

under the RSA assumption

provided that N is a product of two distinct safe primes. Therefore, RSA-based

signature schemes could be constructed from the adaptive pseudo-freeness by
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using our family
{
ϱK,c

}
K,c

of parametric distributions. It is also expected that

the adaptive pseudo-freeness of
{
Z×

N

}
is proven for an appropriate parametric

distribution corresponding to the applied cryptographic assumption.



Chapter 5

Conclusion

In this thesis, we have discussed the flexibility of the notion of the adaptive

pseudo-free groups, and the applicability of the existing parametric distributions.

Especially, we have studied the property of the adaptive pseudo-freeness of the

RSA group Z×
N with respect to several cryptographic assumptions.

In Chapter 3, we have shown two impossibility results on the adaptive

pseudo-freeness of the RSA group Z×
N . First, we have given a negative circumstan-

tial evidence for the question whether or not Z×
N is strongly-adaptive pseudo-free.

More precisely, we have shown that the RSA group Z×
N cannot be proven to be

strongly-adaptive pseudo-free from the strong RSA (SRSA, for short) assumption

via algebraic reductions, as long as the SRSA assumption holds. In other words,

the strong adaptive pseudo-freeness of Z×
N cannot be shown under the SRSA as-

sumption, by employing only current proof techniques which are frequently used

in ordinary security proofs. Since the SRSA assumption is one of the strongest

assumption, this implies that the strong adaptive pseudo-freeness for the RSA

group Z×
N may be far from feasibility. Hence it is reasonable to use parametric

distributions to construct a concrete adaptive pseudo-free group.

As the second result of Chapter 3, we have again given a negative circum-

stantial evidence for the question whether or not the adaptive pseudo-freeness

of Z×
N can be proven from some assumption other than the SRSA assumption,

by using the parametric distributions of Catalano-Fiore-Warinschi [13]. Namely,

we have shown that it cannot be proven from the RSA assumption via algebraic

reductions, as long as the RSA assumption holds.

As an application of the second result, we have shown that the strongly

existential unforgeability of the SRSA-based signature schemes proposed by [11,

90
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14, 18, 22, 27, 49] against the chosen message attack cannot be proven from

the RSA assumption via algebraic reductions, as long as the RSA assumption

holds. In particular, we have also shown that even existential unforgeability of

these signatures against the key only attack may not be proven from the RSA

assumption. These impossibility results on the SRSA-based signatures indicates

that the adaptive pseudo-free group is useful to discuss whether or not the security

of a cryptographic scheme is provable from a specific assumption.

Our second result means that another parametric distribution is required to

prove the adaptive pseudo-freeness of Z×
N from the RSA assumption. In Chap-

ter 4, we have developed the new parametric distributions ϱK,c as the third result.

Namely, we have shown that the adaptive pseudo-freeness of Z×
N can be proven

from the RSA assumption by using our parametric distributions ϱK,c. Therefore,

RSA-based signature schemes could be constructed from the adaptive pseudo-

freeness via the parametric distributions ϱK,c. It is also expected that the adap-

tive pseudo-freeness of Z×
N is proven with respect to an appropriate parametric

distribution corresponding to the applied cryptographic assumption.

We now describe several questions that emerged in this thesis and are left

unresolved. The first one is whether or not a cryptographic scheme other than

signature schemes can be constructed from the adaptive pseudo-freeness. If such

a scheme can be obtained, one may be able to yield a new cryptographic scheme

only by showing the adaptive pseudo-freeness of specific groups.

The second one is to explore a parametric distribution such that the adaptive

pseudo-freeness of Z×
N with respect to the parametric distribution can be proven

from some assumption other than the SRSA assumption and the RSA assumption.

If such a parametric distribution is constructed, cryptographic schemes whose

security is proven from the employed assumption can be yielded from the adaptive

pseudo-freeness by using the constructed parametric distribution.

Finally, the third one is whether or not there exists an example of the adap-

tive pseudo-free group other than the RSA group Z×
N . This question have been

already considered by Catalano, Fiore and Warinschi [13]. If this question is

resolved affirmatively, new cryptographic schemes will be obtained over such a

group through the adaptive pseudo-freeness.
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