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Abstract

Distributed and dynamic traffic congestion controls without

requiring demand forecasting: Tradable network permits and its

implementation mechanisms

Kentaro Wada

Cities worldwide still face heavily traffic congestion due to urbanization and increasing travel

demand. To address the problem, there has been a great deal of research into transportation

management (TDM) schemes. A common characteristic of almost all the TDM schemes is

based on demand forecasting and requires detailed demand information. However, it is al-

most impossible for a road manager to obtain such private information due to an asymmetric

information between road managers and road users.

To resolve the asymmetric information problem, Akamatsu et al. (2006) and Akamatsu

(2007a,b) proposed a new TDM scheme—tradable network permits (TNP) scheme—and

proved its efficiency properties. In this thesis, we extend the theory of the TNP in two

important directions: (i) to develop a supply side control based on the TNP scheme; (ii) to

design implementation mechanisms for the TNP scheme in three different situations. The

common objective of the control and mechanisms is to achieve an efficient allocation of

network capacity without requiring demand forecasting. To accomplish this objective, we

employed an evolutionary approach to achieving an optimal supply level while acquiring

demand information sequentially. In the following, the results of this thesis are summarized.

Chapter 3 proposes a distributed signal control policy based on the TNP scheme. The

proposed signal control policy can determine the green time proportion of each intersection

by using only local information. An equilibrium traffic assignment under the proposed policy

coincides with a system optimal traffic flow pattern that minimizes the total transportation

cost in a network. Furthermore, we construct an evolutionary implementation method for

the proposed policy and prove that the day-to-day traffic flow dynamics under the scheme

converge to the system optimal traffic pattern.
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Chapter 4 proposes an implementation mechanism for trading markets of network per-

mits on general networks. Specifically, we make use of a hybrid mechanism that consistently

combines an auction mechanism with a path capacity control; these are repeated on a day-to-

day basis. The former phase involves selling bundles of permits, and the latter phase involves

adjustment of the number of bundles of permits, which corresponds to the path capacities.

We prove that the proposed mechanism has the following desirable properties: truthful bid-

ding is a dominant strategy for each user on each day, and the permit allocation pattern under

the mechanism converges to an approximate dynamic system optimal allocation pattern in

the sense that the achieved social surplus reaches its maximum value when the number of

users is large. Furthermore, we show that the proposed mechanism can be extended to obvi-

ate path enumeration by introducing a column generation procedure.

Chapter 5 also proposes an implementation mechanism for trading markets, considering

a more general situation where network permits for a specific day are sold in multiple period

markets. Under such circumstances, the road manager needs to allocate a bottleneck capacity

to these markets, as well as allocate permits to users. As a first step in implementing these

markets, we design a dynamic auction mechanism in which the number of permits for each

market is fixed. This mechanism can determine optimal permit allocation, along with the

actual sequence of time under a certain condition. It is proved that the truthful bidding is a

dominant strategy for each user, and that it guarantees that the market choice of the user is

optimal. We then derive an adjustment rule of the number of permits sold for each market

and demonstrated that combining the dynamic auction and the adjustment rule maximizes

the social surplus in a finite number of iterations.

Chapter 6 develops an evolutionary mechanism for a hybrid scheme of the TNP and

congestion pricing, considering multiple negative externalities (i.e., queuing congestion and

flow congestion). Specifically, we first describe a mechanism consisting of trading rules of

the permit markets and users’ behaviors expressed by a stochastic learning model. We then

derive a stochastic dynamics of the learning process from the mechanism. Finally, we show

that that the stochastic dynamics converges to an equilibrium state, and traffic flow pattern at

equilibrium is efficient in the sense that the social surplus is maximized.

Overall, this thesis contributes to the development of distributed traffic congestion con-

trols without requiring demand forecasting, and in particular provides further insights into

the market-based schemes of managing traffic congestion.
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Chapter 1

Introduction

1.1 Background

Traffic congestion remains a significant problem faced by cities worldwide. The Japanese

Ministry of Land, Infrastructure, Transport and Tourism estimated that the time loss due to

traffic congestion in Japan in 2006 was 3.5 billion person-hours1, with the Tokyo metropoli-

tan area accounting for about 25% of the total loss (Road Bureau, MLIT, 2007). Traffic

congestion also has negative side effects including waste of fuel, air pollution, greenhouse

gas emissions, and increasing traffic accidents (e.g., Parry, Walls, and Harrington, 2007).

Furthermore, traffic congestion could be more severe with continuously increasing vehicle

ownership and worldwide urbanization. Indeed, there are more than one billion vehicles

worldwide, and the number will increase primarily in South and East Asia, Eastern Europe,

and South America. Within the next 20 years, it is predicted that the number of vehicles will

reach two billion (Sperling and Gordon, 2009).

The traditional remedy to traffic congestion is to build new roads or to expand road

capacities. However, these are very costly. In addition, improvements to a congested traffic

network do not necessarily lead to a reduction in traffic congestion, which relates to a set

of known paradoxes in the transportation field. For example, the “Pigou-Knight-Downs

paradox” (Downs, 1962) states that expanding road capacity can induce new demand without

reducing traffic congestion; the “Braess paradox” (Braess, 1968) states that creating a new

road can raise total travel costs. One reason for these paradoxes is that new road capacities

elicit their own demand (induced demand); another reason is that each road user does not

1 The monetary equivalent of the time loss is about 11 trillion yen.
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recognize the real cost of a trip including the additional cost he or her impose on others,

which leads to socially inefficient choices of travel modes, paths, and departure times (Arnott

and Small, 1994). Therefore, we have to pay attention to establish control methods to manage

travel demand and encourage the efficient use of existing infrastructure.

Based on this motivation, there has been a great deal of research into transportation de-

mand management (TDM) schemes. TDM schemes can be roughly divided into two types:

price-based regulation and quantity-based regulation. The next section reviews past efforts

to develop both price-based and quantity-based TDM schemes.

1.2 Literature review

1.2.1 Price-based regulation

Congestion pricing is a representative scheme of the price-based approach, and was first

advocated by Pigou (1920) and Knight (1924). Standard congestion pricing (i.e., marginal

cost pricing) is theoretically desirable for reducing traffic congestion in a distributed manner:

if a road manager imposes the marginal cost of road use on road users, an optimal traffic flow

pattern for the system is achieved at Wardrop equilibrium (Wardrop, 1952). For decades,

various types of pricing schemes for both static and dynamic situations have been proposed;

see textbooks written by Button and Verhoef (1998), Yang and Huang (2005), and Small and

Verhoef (2007), and surveys written by Maruyama (2009), Tsekeris and Voß (2009), and

de Palma and Lindsey (2011), for references and comprehensive reviews. However, there

exist two major limitations to implement congestion pricing schemes2.

The first and most serious limitation is that the congestion pricing scheme requires de-

tailed demand forecasts/estimations to calculate optimal toll levels3; to obtain reliable fore-

casts, the road manager requires accurate demand information (e.g., the willingness to pay,

value of time, and desired arrival time). However, it is almost impossible for the road man-

ager to obtain such private information due to an asymmetric information between road man-

agers and road users. If the scheme is implemented with imperfect information, this may in-

evitably result in an economic loss. For instance, suppose that the road manager estimates a
2 Other limitations/complications of congestion pricing schemes have been described by de Palma and Lind-

sey (2011).
3 Some weakness of forecast-based schemes were deeply discussed in Daganzo (2007).
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demand function higher than the actual demand function; i.e., optimal congestion tolls based

on the incorrect demand function are higher than tolls based on the actual demand function.

As a result, although traffic congestion is reduced, there is an excessive occurrence of road

users choosing not to make trips (i.e., there are losses of consumer surplus arise) and the

social surplus may decrease to a level lower than that before the scheme was implemented.

The second limitation results from the necessity of imposing a time-varying (or dynamic)

congestion toll. Negative externalities of traffic congestion are created due to the temporal

concentration of travel demands as well as the spatial concentration, and thus dynamic pric-

ing schemes are important in mitigating these externalities effectively. As an example of

such schemes, dynamic congestion pricing models that explicitly consider queuing conges-

tion have been studied by several researchers (e.g., Vickrey, 1969; Arnott, de Palma, and

Lindsey, 1990, 1993; Mun, 1999; Kuwahara, 2007; Doan, Ukkusuri, and Han, 2011). How-

ever, these studies were limited to simple networks (e.g., a single bottleneck or parallel link)

even though they derived an optimal dynamic congestion toll. For more general networks

with a many-to-one (or one-to-many) origin-destination (OD), Carey and Srinivasan (1993)

and Nie (2011) showed a marginal cost analysis for a convex reformulation of the system op-

timal dynamic traffic assignment (SO-DTA) problem of the seminal works of Merchant and

Nemhauser (1978a,b). Ziliaskopoulos (2000) conducted the similar analysis of a SO-DTA

problem that is expressed by the cell transmission model (Daganzo, 1994). These models,

however, face the so-called holding-back problem, which is that vehicles are arbitrarily held

back on links although downstream capacity is available (Doan and Ukkusuri, 2012). Friesz,

Kwon, and Mookherjee (2007), Ban and Liu (2009), and Lin, Unnikrishnan, and Waller

(2011) formulated dynamic second-best toll pricing models for general networks as mathe-

matical programs with equilibrium constraints (MPEC) and developed solution algorithms

for the problems. However, convergence of these algorithms have not been well addressed:

there is no guarantee that an optimal solution is obtained by these methods. In conclusion,

no study established a theory of dynamic congestion pricing for general networks4.

The primary factors preventing extension of the theory are the intractabilities of ana-

lyzing the dynamic traffic equilibrium assignment for general networks (see, for example,

4 Simulation-based approaches that evaluate path marginal costs using traffic simulation or dynamic loading

models can be founded in Ghali and Smith (1995), Peeta and Mahmassani (1995), and Shen, Nie, and

Zhang (2007).
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Kuwahara and Akamatsu, 1993; Heydecker and Addison, 1996; Akamatsu, 2001; Peeta and

Ziliaskopoulos, 2001; Szeto and Wong, 2011). Alternatively, there is an approach that at-

tempts to model traffic dynamics in cities at an aggregate level (Daganzo, 2007; Geroliminis

and Daganzo, 2008). These papers proposed and tested a “macroscopic fundamental dia-

gram” that relates the number of vehicles in the area to the area’s average density. Following

this approach, Geroliminis and Levinson (2009) proposed a dynamic cordon pricing scheme.

Gonzales and Daganzo (2012) applied the scheme to the morning commute problem with

multiple transport modes. While the approach offers a remarkable method for managing

complex urban traffic systems, it does not resolve the first limitation described above: it has

to estimate demand information on heterogeneous commuters.

To overcome the problem of asymmetric information, Sandholm (2002, 2005, 2007) pro-

posed an evolutionary method to implement a scheme without a demand function. The

method leads traffic flow patterns to a system optimal state by exploiting a trial-and-error

toll adjustment procedure, which relies on the description of a static traffic assignment as a

potential game (Monderer and Shapley, 1996; Sandholm, 2001). More specifically, Sand-

holm (2002, 2005, 2007) demonstrated that evolutionary dynamics of traffic flows (i.e., day-

to-day dynamics determined by aggregating users’ route choice behavior) converges to an

equilibrium in a way that minimizes the total transportation cost in a network; i.e., the dy-

namics converges to the minimum point of a Beckmann-type potential function (Beckmann,

McGuire, and Winsten, 1955). In the field of transpiration science, Yang, Meng, and Lee

(2004) and Han and Yang (2009) also proposed a similar trial-and-error method5. However,

these methods cannot be applied to dynamic cases directly since dynamic traffic assignment

problems generally do not have potential functions. Moreover, even if the methods can be

extended to such cases, there remains a serious problem of economic losses due to queuing

congestion in disequilibrium states.

5 Yang, Xu, He, and Meng (2010) developed an iterative toll adjustment method for the case that both de-

mand and cost functions are unknown, which corresponds to the solution algorithm for a traffic equilibrium

problem with asymmetric link flow interactions formulated as a variational inequality.
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1.2.2 Quantity-based regulation

The second approach, quantity-based regulation, directly restricts the use of road usage by

assigning priority-service permits to road users using particular rules; e.g., license numbers

based rationing6 and advance highway bookings (e.g., Akahane and Kuwahara, 1996; Wong,

1997; Teodorović and Edara, 2005; Edara and Teodorović, 2008). Unlike the price-based

regulation, these schemes can achieve a quantitative policy target (e.g., an appropriate level

of congestion) without requiring detailed user information by issuing the number of permits

less than the target level. However, there may be cases in which road users cannot select their

desired choice (e.g., their desired route and arrival time) if the permits are assigned according

to unrefined rules (e.g., a simple “quota” scheme). Such an infringement on freedom of

choice necessarily causes economic losses.

To circumvent this problem, we need to add an appropriate mechanism in which each

user can choose his or her desired permit. A market-based quantitative scheme, which is

called the tradable permit scheme7, includes such a mechanism and has recently received

much attention in the transportation field as an alternative to traditional congestion pricing

(e.g., Goddard, 1997; Verhoef, Nijkamp, and Rietveld, 1997; Viegas, 2001). In this scheme,

each road user is free to choose permits through a trading market, which will lead to increase

the efficiency of quantity-based regulation8. Verhoef et al. (1997) discussed the possibilities

of using tradable permits in the various type of regulations of road transport externalities.

Viegas (2001) argued a tradable mobility rights scheme that can be used both for private

car driving in the tolled area and for riding public transport from the perspective of quality

and equity in urban mobility. Teodorović, Triantis, Edara, Zhao, and Mladenović (2008)

proposed an auction-based congestion pricing, in which drivers who want to enter downtown

have to participate a downtown time slot auction. While formulating an allocation problem of

the time slots, this study did not address how to set their prices, which is the core problem of

6 This is the most simplest scheme and has been applied worldwide (e.g., Athenes, Mexico City and Bei-

jing). For the scheme, Han, Yang, and Wang (2010) analyzed the price of anarchy (Roughgarden and

Tardos, 2004) for a general network.
7 For environmental protection, various tradable permit schemes were proposed and analyzed (e.g., Dales,

1968; Montgomery, 1972; Tietenberg, 1980).
8 Another line of researches on improving quantity-based regulations, Daganzo (1995) and later Daganzo

and Garcia (2000) demonstrated that a hybrid scheme of combining pricing and rationing has possibilities

of achieving Pareto-improvement.
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auction mechanisms. More recently, Yang and Wang (2011) proposed a tradable travel credit

scheme, and several extensions have been made by Wang and Yang (2012), Wang, Yang,

Zhu, and Li (2012), Nie (2012), Chen and Yang (2012), and Wu, Yin, Lawphongpanich, and

Yang (2012). Basically, under the scheme, the road manager initially distributes credits to all

eligible travelers and predetermined a link-specific charge. Credits are freely tradable among

credits holders. They then showed that, if the manager can appropriately set total number of

credits and link charges, a desirable traffic flow pattern is achieved. However, when to do

this, it is apparent that the manager requires detailed user information. As Nie (2012) puts it,

Suffice it to say here that the information that the government would need to

run a mobility credit market is as much as the information required to operate a

conventional pricing scheme. Therefore, the mobility credit market does not re-

duce the administrative burden of the government, unlike in the case of emission

control.

Thus, the main advantage of the scheme over the ordinary congestion pricing is to improve

equity and socially acceptability, rather than to resolve the two limitations described above.

Furthermore, although the above studies give on the possibilities and some useful insights

into tradable permit schemes for managing traffic congestion, no study exists to provide

time-dependent tradable permits for eliminating bottleneck congestion.

As one possible way to both to eliminate bottleneck congestion and to resolve the asym-

metric information problem, Akamatsu, Sato, and Nguyen (2006), and Akamatsu (2007a,b)

proposed a novel system of “tradable bottleneck permits” (we call a system of tradable bot-

tleneck permits for general networks “tradable network permits” system). Their proposed

scheme comprises two parts:

a) the road manager issues a right (bottleneck permit or network permits) that allows the

permit holder to pass through a bottleneck during a pre-specified time period,

b) a trading market is established for network permits that are differentiated on the basis

of a pre-specified time.

Under this scheme, the arrival flow rate at a bottleneck in any time period is, from definition

of the scheme, equal to the number of permits issued for that time period. This implies that

we can completely eliminate the occurrence of queuing congestion by setting the number of
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permits issued per unit time to be less than or equal to the bottleneck capacity. Since permit

prices are determined through the trading market, the asymmetric information problem is

also resolved.

As we have seen, it is expected that the tradable network permits scheme will be the

most efficient TDM scheme for using the limited resource of road capacity. Indeed, for a

single bottleneck, Akamatsu et al. (2006) showed that the proposed scheme has the following

desirable properties: (1) Pareto improvement for both the road manager and all users can be

achieved; (2) the equilibrium under the scheme achieves a dynamic system optimal traffic

assignment, i.e., the scheme can achieve the desirable state in a distributed manner; (3) the

“self-fininacing principle” holds for the equilibrium. Akamatsu (2007a,b) extended these

properties (2) and (3) to general networks.

However, there is still a potential for improvement of efficiency of the tradable network

permits scheme by incorporating not just demand side conditions but also supply side con-

ditions. This is analogous to the welfare theorem of microeconomic theory, i.e., an efficient

resource allocation can be obtained at a demand-supply equilibrium in competitive markets.

Another point to consider is the implementation issues of tradable network permits. In

particular, despite the main results of the scheme were built on the assumption that a compet-

itive equilibrium can be achieved in the trading markets, micro mechanisms that attains the

equilibrium have not been studied in depth. In other words, trading processes were treated

as a black-box9. Therefore, we have to address a question of what trading rules (of buying

or selling tradable permits) encourage competition and achieve the efficient equilibrium. For

a single bottleneck case, Wada and Akamatsu (2010) designed an auction mechanism for

implementing the tradable permit market. They then showed that (1) the network permit

allocation achieved by the mechanism is efficient and (2) the mechanisms is strategy-proof,

which means that a dominant strategy employed by each user is the truthful revelation of

the value of the permits. However, whether or not the desirable properties hold for more

spatially and temporally general situations is a problem yet to be studies.

9 This is true for other tradable permit schemes mentioned above.
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1.3 Purpose of the thesis

The purpose of this thesis is twofold: (i) to extend a theory of tradable network permits to

include supply side conditions and (ii) to design implementation mechanisms of tradable

network permits in three different situations. More specifically, it first explores properties of

a signal control policy based on tradable network permits. Next we design auction mecha-

nisms for implementing a hybrid scheme of tradable network permit markets according to

auction theory (Milgrom, 2004; Cramton, Shoham, and Steinberg, 2006). Finally, we de-

velops an evolutionary mechanism for implementing a hybrid scheme of tradable network

permits and congestion pricing.

Overall, this thesis contributes to the development of distributed traffic congestion con-

trols without requiring demand forecasting, and in particular provides further insights into

the market-based schemes of managing traffic congestion. The following subsection briefly

describes the results in this thesis.

1.3.1 Overview of the results in this thesis

A distributed signal control policy based on tradable network permits

Chapter 3 proposes a distributed signal control policy based on the tradable network per-

mits. Main idea of underlying the proposed policy is to exploit useful information on the

equilibrium permit prices provided by the trading markets. This enables us to appropriately

incorporate demand conditions into the signal control policy. Specifically, the proposed pol-

icy has two desirable characteristics. First, it can determine a green time proportion (i.e.,

capacity allocation) of each intersection by using only local information. Second, an equi-

librium traffic assignment under the proposed policy coincides with a system optimal traffic

flow pattern that minimizes the total transportation cost in a network. Moreover, we con-

struct an evolutionary implementation method for the proposed policy and prove that the

day-to-day traffic flow dynamics under the scheme converges to the system optimal traffic

pattern.



9

Auction mechanisms for implementing tradable network permit markets

In the following two chapters, Chapter 4 and Chapter 5, we design auction mechanisms for

implementing tradable network permit markets in general networks and in a dynamic setting,

respectively. In order to account for individual strategic behavior, we here conduct a game-

theoretic analysis of a dynamic traffic assignment with atomic users. Under this setting,

we need to establish mechanisms in which no user has incentive to manipulate the markets.

Furthermore, unlike the single bottleneck case treated in Wada and Akamatsu (2010), we

have to deal with more complex markets, including network structures and multiple period

markets. Nevertheless, we can resolve these complexities by relying on suitable adaptation

of the supply side control developed in Chapter 3.

Chapter 4 focuses on trading markets on general networks. Under the situation, a naive

formulation of a problem of finding a dynamic system optimal allocation of network permits

leads to a NP-hard problem due to the complex relationship between link and path. To avoid

such computational infeasibility, we develop a hybrid mechanism that consistently combines

an auction mechanism with a path capacity control, which are repeated on a day-to-day

basis. The former phase involves selling bundles of permits, and the latter phase involves

adjustment of the number of bundles of permits, which corresponds to the path capacities.

We prove that the proposed mechanism has two desirable properties: (1) truthful bidding is a

dominant strategy for each user on each day, and (2) the permit allocation pattern under the

mechanism converges to an approximate dynamic system optimal allocation pattern in the

sense that the achieved social surplus reaches its maximum value when the number of users

is large. Furthermore, we show that the proposed mechanism can be extended to obviate path

enumeration by introducing a column generation procedure.

Chapter 5 considers a more general situation where network permits for a specific day

are sold in multiple period markets. Under this situation, the road manager faces a problem

of how to allocate a bottleneck capacity to individual market as well as allocating permits

to users in each market. As a first step for implementing the markets, we design a dynamic

auction mechanism in which the number of permits for each market is fixed. This mechanism

can determine an optimal permits allocation with the actual sequence of time under a certain

condition. It is proved that the mechanism is strategy-proof, which also guarantees that the

market choice of the user is optimal. Then we derive an adjustment rule of the number of

permits sold for each market and demonstrate that combining the dynamic auction and the
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adjustment rule maximizes the social surplus in a finite number of iterations.

An evolutionary mechanism for a hybrid scheme of tradable network permits and con-

gestion pricing

Chapter 6 develops an evolutionary mechanism for a hybrid scheme of tradable network

permits and congestion pricing, considering multiple negative externalities (i.e., queuing

congestion and flow congestion). Specifically, we first describe a mechanism consisting of

trading rules of the permit markets and users’ behaviors expressed by a stochastic learning

model. We then derive a stochastic dynamics of the learning process from the mechanism.

Finally, we show that that the stochastic dynamics converges to an equilibrium state, and

traffic flow pattern at equilibrium is efficient in the sense that the social surplus is maximized.

1.4 Organization

This thesis is organized into a series of self-contained chapters. Before presenting results

in the thesis, Chapter 2 reviews a basic framework and properties of tradable network per-

mits. Chapter 3 extends the above theory to include supply side controls. In then investi-

gates implementation mechanisms of tradable network permits. Chapter 4 designs an auction

mechanism for implementing trading markets for general networks. Chapter 5 considers a

more general situation where network permits are sold in multiple period markets and con-

structs an implementation mechanism for these markets. Chapter 6 develops an evolutionary

mechanism for a hybrid scheme of tradable network permits and congestion pricing, consid-

ering multiple negative externalities (i.e., queuing congestion and flow congestion). Finally,

Chapter 7 presents the conclusions of this thesis and discusses some topics for future work.



Chapter 2

Tradable network permits: Basic

framework and its properties

This chapter reviews a basic framework and properties of the tradable network permits sys-

tem from Akamatsu (2007a,b). Section 2.1 outlines the framework of the tradable network

permits system. Section 2.2 provides a mathematical model that describes the equilibrium

under the tradable network permit system. Section 2.3 shows that the equilibrium coin-

cides with a dynamic system optimal assignment. Section 2.4 further shows other desirable

properties of tradable network permits: advantages over congestion pricing, self-financing

principle and Pareto improvement. Finally, Section 2.5 presents the recent development of

micro mechanisms for implementing tradable network permits.

2.1 A system of tradable network permits in transportation

networks

2.1.1 Networks

We consider dynamic traffic flows on a general network with multiple origin-destination

(OD) pairs (i.e., a transportation network with general topology). The network consists of a

set N of nodes, a set A of directed links, and a set W of OD pairs. The node set N includes

a subset O of origin nodes from which users start their trip, and a subset D of destination

nodes at which users terminate their trips. Each element of N (i.e., each node) is identified

by k, and each element of A (i.e., each link) is denoted by a pair (k, l) of the upstream node k

11
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and the downstream node l. The time interval [0,T] for which we assign the dynamic traffic

flow is fixed. We assume that the travel demand Qod that makes trips for the time interval

[0,T] is a given constant.

We also assume, without any loss of generality, that each link in a network consists of a

free flow segment and a single bottleneck segment. The travel time to pass through the free

flow segment of link (k, l) is a constant tkl (i.e., tkl is independent of time and flow). The

bottleneck of each link is represented by a point queue model with constant capacity μkl.

2.1.2 Network permits and trading markets

A road manager aims to restrain traffic congestion on the network and minimize the “social

transportation cost.” To achieve this, the manager regulates the traffic flow rates entering into

each bottleneck in the network by using “time-dependent network permits.” The network

permit is a right that allows the permit holder to pass through a pre-specified bottleneck at a

pre-specified time. In this study, we assume that the road manager can issue time-dependent

network permits for all bottlenecks (i.e., links) in the network. This implies that the traffic

flow entering into link (k, l) at time t consists of only users who have a “time t permit for link

(k, l),” and users without this permit cannot pass through this link at this time.

Throughout this study, we assume that the number of permits issued for each link for

each unit time is equal to or less than the traffic capacity of each link in the network. This

means that queuing congestion never occurs in the network under this permits-issue scheme.

This may be easily seen from this explanation of permits: the inflow rate of each link is equal

to (or less than) the number of permits issued, and hence the inflow rate cannot exceed the

traffic capacity of each link, which implies that queuing congestion at each link can never

occur.

For assigning the network permits to users, we can consider two representative schemes:

“market selling scheme” and “free distribution scheme” (Akamatsu et al., 2006). In the

market selling scheme, the road manager sells all the network permits to users in network

permits markets. All sales from selling the permits result in revenue for the road manager in

this scheme. In the free distribution scheme, the road manager distributes all the permits to

users for free according to methods that consider the equity among users, and permits can

then be traded freely among users in the network permits markets. Thus, all income transfers
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take place only among the users in this scheme.

We here explain only the former scheme (“market selling scheme”) that is exploited in

the following chapters. The permits issued for each link (bottleneck) are put on sale by

the road manager. There are as many markets for trading permits as there are links, and

each market is dedicated for trading the permits for each link. The permits for each link are

further distinguished by a specified time allowable to use the link. Under the network permits

system, each user who would like to use a path must have a set of permits corresponding to

a set of links included in the path before making a trip. To fulfill this requirement, each

user is assumed to purchase the needed set of permits in the trading markets. The price of

each permit is determined by an auction system, which implies that the price is adjusted so

as to clear the excess demand for each type of permit. We also assume that the markets are

perfectly competitive; that is, neither a monopoly nor oligopoly occurs (this assumption will

be relaxed in later chapters).

2.1.3 Dynamic travel costs in general networks

Each user makes a single trip (for the time interval [0,T]) from an origin o ∈ O (e.g., res-

idential zone) to a destination d ∈ D (e.g., central business district (CBD)) in the network.

The user chooses a destination arrival time and a path between the origin and the destination

so as to minimize his or her disutility (or “generalized transportation cost”). The transporta-

tion cost for a single trip of a network user consists of the following three types of costs: (a)

“schedule cost,” (b) “travel cost,” (c) “permit purchase cost.”

(a) The “schedule cost” for a user is the cost due to the difference between the user’s

desired arrival time and the actual arrival time t. The desired arrival time is assumed to be

the same for all users and is equal to t̂. The schedule cost is represented by the function sd(t)

of destination arrival time t, which is common to all users that have same destination.

(b) The “travel cost” is the monetary equivalent of the travel time needed for a trip from

the origin to the destination. The travel time of a path between the origin-destination pair

r ∈ Rod is defined as the sum of travel times of the links included in the path. Note that

the travel time of each link (k, l) is a constant tkl at equilibrium under the permits system, in

which no queuing occurs.

(c) The “permit purchase cost” is the total payment for purchasing a set of link permits



14

required for going through a path from the origin to the destination. To put it another way,

the permit purchase cost of a user is defined as the sum of permit prices of the links included

in the path used. Each link permit price pkl(t) varies depending on what path is taken and at

what time because the permits for each link are further differentiated by the specified time

and each permit is priced depending on the time and the link.

2.2 Equilibrium under the tradable network permits

For the settings above, it is assumed that an equilibrium traffic flow pattern is achieved. At

equilibrium, the following five conditions should hold. Here we describes the equilibrium

by using the arc-node formulation1.

1a) Flow conservation at each node:

Conservation of the dynamic traffic flow in a network is represented as the equality of inflow

and outflow at each node at each time point. To formalize this, let yo
kl(t) be the flow rate

arriving at link (k, l) at time t with respect to origin o, and zo
kl(t) be the flow rate departing

from link (k, l) at time t with respect to origin o. Then the flow conservation is represented

as

∑
l∈NO(k)

yo
kl(t) −

∑
l∈NI(k)

zo
lk(t) = −qod(t)δkd, ∀t ∈ [0,T], ∀o ∈ O, ∀k ∈ N (2.1)

where qod(t) is a OD flow rate for a OD pair (o, d) arriving at the destination d at time t, and

δkd is Kronecker’s delta (i.e., 1 if k = d, zero otherwise ); NO(k) is a set of downstream

nodes of the links incident from node k; NI(k) is a set of upstream nodes of the links incident

to node k.

1b) First-In-First-Out conditions on each link:

We assume that the dynamic traffic flow in our model should satisfy the First-In-First-Out

(FIFO) property on each link (i.e., we assume that passing can be neglected). As shown in

the literature (see, for example, Kuwahara and Akamatsu, 1993; Akamatsu and Kuwahara,

1 The path-based formulation can be found in Akamatsu (2007a,b)
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Figure 2.1 Equilibrium conditions for path choice

1994), the FIFO condition for each link can be written as

yo
kl(t) = zo

kl(t + tkl(t)) · (1 + dtkl(t)/dt), (2.2)

where tkl(t) is the travel time of link (k, l) for a user entering into the link at time t. Note

here that tkl(t) is a constant regardless of the arrival time when there is no queue. Hence, at

equilibrium under the permits system (i.e., when there is no queue in the network), the FIFO

condition (2.2) reduces to the following simpler representation:

yo
kl(t) = zo

kl(t + tkl) ∀t ∈ [0,T], ∀o ∈ O, ∀kl ∈ A (2.3)

2) Equilibrium conditions for path choice:

Consider a user arriving at node k at time t. If the user chooses link (k, l), the arrival time

at node l is t + tkl. Hence, at equilibrium, link (k, l) should be on the minimum path for a

user arriving at node l at time t + tkl if there exists a user entering into link (k, l) at time t.

Denoting πo
k(t) as the minimum path cost from the origin o to node k for a user arriving at

the node at time t, we can represent this condition as
⎧⎪⎪⎪⎨⎪⎪⎪⎩
πo

l (t + tkl) = ckl(t) + πo
k(t) i f yo

kl(t) > 0

πo
l (t + tkl) ≤ ckl(t) + πo

k(t) i f yo
kl(t) = 0

∀t ∈ [0,T], ∀o ∈ O, ∀kl ∈ A (2.4)

where ckl(t) is the transportation cost for a user who enters into link (k, l) at time t:

ckl(t) ≡ pkl(t) + αtkl (2.5)
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3) Flow conservation for OD flow rates and OD travel demand:

Each OD travel demand Qod have to be assigned to each time point in the interval [0,T]; that

is, the time-dependent OD flow rates should satisfy
∫ T

0
qod(u)du = Qod od ∈W (2.6)

4) Equilibrium conditions for destination arrival time choice:

At equilibrium, no one can improve his or her own generalized transportation cost by chang-

ing the destination arrival time unilaterally. It follows from the path choice equilibrium

condition in 2) that the generalized transportation cost for a user arriving at the estination d

at time t is sd(t) + πo
d. Therefore, the equilibrium condition for the user’s arrival time choice

can be expressed as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρod = πo

d(t) + sd(t) i f qod(t) > 0

ρod ≤ πo
d(t) + sd(t) i f qod(t) = 0

∀t ∈ [0,T], ∀od ∈W. (2.7)

5) Demand-supply equilibrium (market clearing) conditions in each link permit mar-

ket:

Since the trading markets are assumed to be perfectively competitive, the price pkl(t) of each

permit type adjusted to clear the excess demand for each type of permit. More precisely,

at equilibrium, if the price of a certain type of permit is positive, the quantities supplied

and the quantities demanded for the permit are equal; for the permit whose supply quantity

exceeds the quantity demanded, the price is zero. Note here that, for each link (k, l) and each

allowance time t, the demand of the time t permit of the link is equal to the inflow rate ykl(t).

On the other hand, the maximum supply (upper bound) of the time t permit of link (k, l) is

given by the link capacity μkl. Therefore, the demand-supply equilibrium condition for the

permits market is represented as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ykl(t) = μkl i f pkl(t) > 0

ykl(t) ≤ μkl i f pkl(t) = 0
∀t ∈ [0,T], ∀kl ∈ A (2.8)
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2.3 Efficiency of the equilibrium under tradable network

permits

In order to examine the efficiency of the equilibrium allocation patterns defined in (2.1)-(2.8),

consider the following optimization problem [P-M]:

min
(q,y)≥0

.
∑
o∈O

∑
d∈D

∫ T

0
qod(t)sd(t) + α

∑
(k,l)∈A

∫ T

0
ykl(t)tkldt (2.9)

subject to∫ T

0
qod(u)du = Qod ∀od ∈W (2.10)

ykl(t) =
∑
o∈O

yo
kl(t) ∀t ∈ [0,T], ∀kl ∈ A (2.11)

ykl(t) ≤ μkl ∀t ∈ [0,T],∀kl ∈ A (2.12)∑
l∈NO(k)

yo
kl(t) −

∑
l∈NI(k)

yo
lk(t − tkl) = −qod(t)δkd, ∀t ∈ [0,T], ∀k ∈ N, ∀o ∈ O (2.13)

This is the problem of finding a dynamic traffic flow pattern that minimizes the total gen-

eralized transportation cost in the network, subject to the physical constraints of flows rep-

resenting the network performance2. Specifically, the objective function is the generalized

transportation cost (the sum of schedule cost and travel time) expensed by all users in the

network. The first constraint (2.10) is conservation of the OD demand, the third constraint

(2.12) is the traffic capacity constraints on each link. The final constraint (2.13) is the conser-

vation of dynamic link flows at each node (2.1) combined with the FIFO condition on each

link (2.3).

Now the most important property that characterizes the equilibrium assignment can be

derived by the fact that [P-M] is an equivalent optimization problem to the equilibrium con-

ditions (2.1)–(2.8). That is,

Proposition 2.1 (Akamatsu, 2007a,b) For any networks with many-to many OD pairs in

which [P-M] has feasible solutions, the equilibrium assignment under the system of time-

dependent tradable link permits minimizes the “social transportation cost” defined by (2.9).

2 Note that “permit purchase costs” should not be counted as the “social cost” because they are just income

transfers between the users and the road manager.
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Proof This proposition can be proven by showing that a necessary and sufficient condition

for the optimality of the optimization problem [P-M] coincides with the equilibrium condi-

tions (2.1)–(2.8). See Akamatsu (2007a,b) for a complete proof.

The equilibrium generalized transportation cost ρ, the permit prices p, and the minimum

path cost π are given as the optimal Lagrange multipliers for constraints (2.10), (2.12), and

(2.13). Thus, the equilibrium prices/costs can be obtained as the solution of the dual problem

[D-M], of the problem [P-M]:

max
(ρ,π,p)≥0

.
∑
od∈W

ρodQod −
∑

(k,l)∈A

∫ T

0
pkl(t)μkldt (2.14)

subject to

ρod ≤ sd(t) + πo
d(t) ∀t ∈ [0,T], od ∈W (2.15)

πo
l (t + tkl) ≤ πo

k(t) + (αtkl + pkl(t)) ∀t ∈ [0,T], ∀kl ∈ A, o ∈ O (2.16)

It it obvious that the object function of this problem is the social transportation cost repre-

sented as [total generalized transportation cots]−[total permits payments].

2.4 Other desirable properties

This section briefly summarizes other desirable properties of tradable network permits: ad-

vantages over congestion pricing, self-financing principle, and Pareto improvement.

2.4.1 Advantages over congestion pricing

The equilibrium permit prices shown in Section 2.2 can be interpreted as the optimal dy-

namic toll levels for a congestion pricing scheme in which the road manager imposes a

time-dependent toll for each link in the network so as to eliminate queuing congestion (e.g.,

Yang and Meng, 1998). If the road manager can predict users’ behaviors (i.e., inflow rate

of each link ykl(t)) accurately and set an appropriate toll levels based on the condition (2.8)

(i.e., queuing congestion never occurs), the equilibrium traffic flow pattern that arises under

the congestion pricing scheme is coincides with one under the tradable network permits; it

can achieve the system optimal traffic flow pattern that minimizes the social transportation
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cost. In other words, the tradable network permits and the congestion pricing scheme are

equivalent under the case that the road manager has perfect information.

In contrast, in imperfect information cases, large differences can arise from the discrep-

ancy in the amount and accuracy of the information needed for the road manager to imple-

ment these schemes. Specifically, in the tradable network permits, the road manager needs

to know only the traffic capacity of each link. In the congestion pricing scheme, on the other

hand, the road manager is required to know accurate information on users’ behaviors (i.e.,

precise demands) in addition to the traffic capacity; it is almost impossible for the road man-

ager to obtain such private information. If the congestion pricing scheme is implemented

with imperfect information, toll levels based on the condition (2.8) may not be appropriate

(i.e., queuing congestion may occur), which does not minimize the social transportation cost

and cause an additional economic loss due to queuing congestion.

Considering the differences between the two schemes, the desirable transportation de-

mand management scheme must be found. In generalized terms, this becomes the problem

of comparing between “quantity-based regulation” and “price-based regulation.” According

to the standard theory in the field of economics (see, for example, Weitzman, 1974; Laffont,

1977), quantity-based regulation produces more efficient outcomes than price-based regula-

tion if a regulation authority has only imperfect information on the demand side conditions

(i.e., demand functions) while having perfect information on the supply side conditions (i.e.,

supply functions). For the our problem, we obtain a similar conclusion, although the under-

lying assumptions of our problem are different from those in conventional economic theory.

2.4.2 Self-financing principle

In order to improve social acceptability of the market selling scheme of the tradable network

permits, it may be necessary to use the revenue (or redistribute it to road users) in a socially

desirable way. As a representative scheme of the redistribution, Akamatsu et al. (2006)

considered the case in which the revenue is used for financing the capacity expansion for a

single bottleneck. Under a certain condition3, they proved the total equilibrium revenue of

tradable network permits is equal to the cost required for increasing the bottleneck capacity

to a socially optimal level, which has been well known as the “self-financing principle”

3 This condition is that the investment cost function is homogeneous of degree 1 with respect to link capac-

ities.
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(Mohring and Harwitz, 1962). Akamatsu (2007a,b) also extended this property to general

networks.

2.4.3 Pareto improvement

In a signal bottleneck, by introducing the tradable network permits, queuing congestion

can be eliminated completely, and a Pareto improvement can be achieved (Akamatsu et al.,

2006). More specifically, each user’s (equilibrium) generalized transportation cost does not

change with and without system because there is one-to-one correspondence between the

queuing delay (at equilibrium without the system) and the permit price (at equilibrium with

the system). As Newell (1987) puts it: “one could convert the worthless expense of queuing

into money.” From this property, in market selling scheme, it is easy to see that users’ utility

levels do not change because users pay a monetary that equals to queuing delay. On the other

hand, the total payments make the revenue of the road manager increasing. Therefore, we

conclude that the Pareto improvement can be achieved4. For a tandem bottleneck network,

Yodoshi and Akamatsu (2008) demonstrated that Pareto improvement can be achieved, if

revenue from the permits is redistributed to users. However, for networks with many bot-

tlenecks, the correspondences between equilibrium queuing delays and the permit prices are

not straightforward because the equilibrium model without the system has complex structure.

2.5 Implementation issues

Although the tradable network permits scheme has the theoretically-desirable properties

mentioned above, we should address two closely related problems to implement the scheme:

• the procedures for trading/purchasing network permits are cumbersome;

• no micro mechanisms that realize traffic/market equilibrium have been reported in

previous studies.

The former problem must be resolved for the scheme to be socially acceptable. As a way

to meet this requirement, Akamatsu (2007a) suggested (but not analyzed) a “multi-agent

4 From the similar discussion, we obtain the Pareto improving result in free distribution scheme of tradable

network permits (Akamatsu et al., 2006).
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Bottleneck  

General networks 

Agent software 

Trading 
markets 

Figure 2.2 Concept of a multi-agent system

system” (see Figure 2.2). In this system, vehicle-installed agent software chooses, on behalf

of the user, an optimal path and arrival/departure times based on the user’s preferences and

deals with procedures for purchasing network permits on an e-market. The system is required

to have three properties:

1. each agent can choose a path and an arrival time using local information (autonomy of

behavior);

2. the algorithm for the agent’s behavior is simple (briefness of agent behavior rules);

3. the whole system can converge to equilibrium (stability of aggregate dynamics).

The essential components that determine (theoretical) properties of such a system are (i) a

trading rule for the e-market and (ii) a path/arrival time choice rule for each agent; if these

rules are appropriately designed, the multi-agent system can achieve the dynamic system

optimal traffic assignment. In other words, these design problems provide micro mechanisms

with which to attaining traffic/market equilibrium, thus addressing the latter problem.

Kikuchi and Akamatsu (2008), and Wada, Akamatsu, and Kikuchi (2008) addressed the

latter issue (ii) for general networks, assuming that trading markets for network permits are

described by a tâtonnement process. Specifically, they first defined the micro behavior of

the agent (i.e., a kind of perturbed best response model) based on evolutionary game theory

(e.g., Vega-Redondo, 2003; Sandholm, 2010). They then derived day-to-day dynamics of
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aggregated traffic flows and permit prices, and proved that mean dynamics of the aggregate

variables (flows and prices) converge to a socially optimal state.

For a single bottleneck, Wada and Akamatsu (2010) constructed micro mechanisms con-

sists of both trading rules (auction protocol) and agents’ behavior model. More specifically,

they designed an auction mechanism based on the Vickrey-Clarke-Groves (VCG) mecha-

nism, which is a benchmark mechanism in auction theory (e.g., Milgrom, 2004; Cramton

et al., 2006). By analyzing a deterministic day-to-day traffic flow dynamics obtained from

the micro mechanisms, they proved that the dynamics converges to a socially optimal state.

Another line of research focuses on implementation issues under demand uncertainties.

Akamatsu et al. (2006) studied the case that users randomly arrive at a bottleneck (i.e., de-

mand uncertainty). In this case, queuing congestion may occur even if the number of permits

issued for the bottleneck is equal to its capacity. As a result, the road manager faces a trade-

off between total queuing delays and total schedule costs when issuing permits. For a single

bottleneck, Akamatsu et al. (2006) experimentally showed that if the number of permits is-

sued for the bottleneck is less than the capacity (about 80%), both mean and variance of

economic losses (i.e., queuing delays and schedule costs) are small. Nagae and Gai (2009)

considered a stochastic situation where users randomly cancel their trips and proposed a

refundable-tradable bottleneck permits (R-TBP) scheme. They first revealed that social op-

timal allocation can be realized if the road manager can determine the proper issue amount

of the R-TBP. They then developed an algorithm trial-and-error process by which optimal

allocation is achieved only by observable information.

2.6 Conclusion

This chapter reviewed a basic framework and several properties of the tradable network

permits scheme. The remarkable feature of this scheme is to achieve the most efficient

resource allocation without requiring detailed user information. Under the scheme, the road

manager only needs to issue network permits according to the bottleneck capacity; this is

contrast to the conventional TDM schemes mentioned in Chapter 1, where the manager bears

a great burden (e.g., demand forecasts, price settings). This feature is brought about through

the market institution, i.e., permits prices are created by users’ autonomous decision-making

in the trading markets. Thus, to strengthen the properties of the scheme, Chapter 4 and
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Chapter 5 construct micro mechanisms for attaining market equilibrium in more spatially

and temporally general situations than a single bottleneck case (Wada and Akamatsu, 2010).

This is not the only benefit from the market institution. Trading markets further provides

useful information on the equilibrium permit prices, which reflect demand conditions. This

suggests that there is every possibility of developing a non-forecast-based supply side control

using the information. On the basis, the next chapter explores a supply side control based on

the tradable network permits.





Chapter 3

Distributed signal control based on

tradable network permits

This chapter1 proposes a distributed signal control policy based on a tradable network per-

mits system taking into account a semi-dynamic traffic flow. Main idea of underlying the

proposed policy is to exploit useful information on the equilibrium permit prices provided

by the trading markets. This enables us to appropriately incorporate demand conditions into

the signal control policy. Specifically, this signal control policy can achieve a global opti-

mal traffic flow pattern by exploiting only local information: it can determine the green time

proportion of each intersection by using intersection information only. An equilibrium traf-

fic assignment under the proposed policy achieves a system optimal traffic flow pattern that

minimizes the total transportation cost in a network. Moreover, we construct an evolutionary

implementation method for the proposed policy and prove that the day-to-day traffic flow

dynamics under the scheme converges to the system optimal traffic assignment.

This chapter is organized as follows. Section 3.1 reviews existing studies on a framework

of combining signal control and traffic assignment. In Section 3.2, we describe the pre-

conditions used throughout the chapter and define a system optimal traffic flow pattern. In

Section 3.3, we show a framework that combines the tradable network permits system and

a novel signal control policy and its properties. In Section 3.4, we show an evolutionary

implementation method of the proposed control policy. Section 3.5 concludes the chapter.

1 This chapter is based on joint research with Takashi Akamatsu, presented in the 4th International Sympo-

sium on Dynamic Traffic Assignment (Wada and Akamatsu, 2012).
25
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3.1 Related works

A framework of combining signal control and traffic assignment was first introduced by

Allsop (1974) and a considerable amount of research into developing this framework (see

Cascetta, Gallo, and Montella, 2006; Ghatee and Hshemi, 2007, for references and a detailed

review) has been conducted. These studies are divided into two major categories, i.e., global

and local optimization approaches (Marcotte, 1983; Cantarella and Improta, 1991).

The former approaches aim to determine an optimal signal settings by solving a global

optimization of the signal setting problem (Gossp) that optimizes a global network perfor-

mance function. In general, the Gossp is formulated as a bi-level problem (or a mathematical

problems with equilibrium constraints), i.e., the upper level is a signal setting problem, and

the lower level is a traffic equilibrium assignment problem. Various solution methods for the

bi-level problem have been proposed by numerous authors, e.g., Marcotte (1983); Sheffi and

Powell (1983); Heydecker and Khoo (1990); Yang and Yangr (1995); Chiou (1999); Cipri-

ani and Fusco (2004) and Ghatee and Hshemi (2007). However, this global approach faces a

difficulty caused by the non-convexity of the Gossp. Since the Gossp may have many local

minima, there is no guarantee that the global optimal solution is obtained by those various

solution methods. For instance, Cascetta, Gallo, and Montella (1998) showed experimen-

tally that different methods might produce different solutions. In addition, this approach

requires knowledge of the entire network information (e.g., origin-destination information)

to solve the Gossp. Thus, the optimal signal setting is difficult to obtain using global solution

methods.

The latter approach consists of iteratively adjusting signal parameters based on a lo-

cal criterion. Representative classical signal control policies are the equisaturation policy

(Webster, 1958) and the delay-minimization policy 2 (Allsop, 1974; Gartner, 1974). The eq-

uisaturation policy sets a green time proportion so as to equalize the saturation level of all

directions at an intersection, and the delay-minimization policy updates the signal parame-

ters by solving a current total delay minimization problem. Since these policies determine

the signal parameters in terms of a short run objective for a current traffic flow pattern, long

run interactions between user behaviors and the signal control policy are not properly con-

sidered. As a result, equilibrium states consistent with the policies may be unstable, which

2 This policy is also called iterative optimization assignment (IOA).
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may lead to poor performance (Smith, 1979b; Dickson, 1981). Smith also pointed out that

policies induce inefficient user of network capacity.

To solve this problem, Smith (1979a, 1980, 1981) proposed a capacity-maximization pol-

icy P0, which takes into consideration the aforementioned long run iterations. In policy P0,

a stable equilibrium consistent with the policy is achieved by using only local information.

Smith, van Vuren, Heydecker, and van Vliet (1987) showed experimentally that this policy

is better than the above two policies in terms of total delay at high congestion levels. Fur-

thermore, in Smith and van Vuren (1993) and Smith and Mounce (2011), a day-to-day traffic

flow dynamics globally converges to a stable equilibrium when a responsive version of the

policy P0 is employed. However, the policy generally cannot achieve the global optimal

traffic flow pattern because it is one of the local optimization approaches.

As we have seen, a global optimization approach may not be promising way to establish

a robust signal control policy, which does not require detailed user information. Instead,

it will be more effective to develop local optimization approaches that can obtain a stable

equilibrium in a distributed manner. In that sense, our signal control policy is designed in

the spirit of policy P0. Note that the equilibrium states with these policies are different in

that the equilibrium traffic assignment under the proposed policy coincides with the optimal

one, although the equilibrium under the policy P0 does not3. Thus, the proposed policy is

the first one that can achieve a global optimal signal setting in a distributed manner, which is

guaranteed to be applicable to situations with asymmetric information.

3.2 System optimal traffic assignment in signal-controlled

networks

The objective of a signal control policy, which we propose in this chapter, is to eliminate

queuing congestion and to achieve a system optimal traffic flow pattern that minimizes the

total transportation cost. This section defines this objective. After describing a discrete-

time semi-dynamic traffic flow on a signal-controlled network, we then formulate a global

optimization of the signal setting problem (Gossp) that provides the system optimal traffic

flow pattern.

3 Ghali and Smith (1993) showed that combining the policy P0 and a marginal cost pricing scheme can

achieve the global optimal traffic flow pattern. However, when to implement this, the entire network

information is needed.
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3.2.1 Signal-controlled networks

We consider a discrete-time semi-dynamic traffic flow (e.g., Kikuchi and Akamatsu, 2007;

Nakayama, 2008) on general networks with multiple origin-destination (OD) pairs. The

semi-dynamic traffic assignment model assumes that steady state traffic equilibrium is real-

ized in each time period, and traffic states only change between time periods. More specif-

ically, in this model, a queue on a link that cannot exit the link is propagated to the next

time period, which affects the next traffic state. This model approximately represents a

continuous-time queue evolution.

The network consists of a set N of nodes and a set A of directed links. Each node repre-

sents each road section between signalized intersections; each link represents each direction

in a signalized intersection. The node set includes a subset O of origin nodes from which

users start their trip, and a subset D of destination nodes at which users terminate their trips.

A set of OD pairs is denoted by W. Each element of A (i.e., each link) is denoted by a pair

(k, l) of the upstream node k and the downstream node l. The time interval for which we

assign the semi-dynamic traffic flow is fixed, and each time period is denoted by t ∈ T. We

assume that each OD pair’s travel demand Qod in the time interval is a given constant.

We assume, without any loss of generality, that each link in a network consists of a free-

flow segment and single bottleneck segment (i.e., signalized intersection). The travel time

to pass through the free-flow segment of link (k, l) is a constant tkl (i.e., tkl is independent of

time and flow)4. The bottleneck of each link has a constant saturation flow rate μkl, and a

signal delay may occur.

Signal setting constraints

We also assume that all links are signal-controlled. A set of signalized intersections is de-

noted by J, and a set of green phases at an intersection j in a time period t is denoted by

Ej(t). A cycle time and a loss time of each intersection are given exogenously. Let ge, j(t) be

the green time proportion of phase e at intersection j in time period t. For each intersection

j in each time period t, the sum of the green time proportions and a loss time proportion lj

equals to 1:

4 The free-flow travel time includes the travel time to pass through a node (i.e., road section).
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Figure 3.1 Network representation of a signalized intersection

∑
e∈Ej(t)

ge, j(t) + lj = 1 ∀ j ∈ J, ∀t ∈ T. (3.1)

Each signalized intersection consists of multiple links (Figure 3.1), and each link belongs

to multiple green phases. A set of links of phase e at intersection j in time period t is denoted

by Ae, j(t). Then, the green time proportion Gkl(t) of link (k, l) is the sum of the green times

of the phases to which the link belongs, i.e.,

Gkl(t) =
∑

e:kl∈Ae, j(t)

ge, j(t) ∀kl ∈ A, ∀t ∈ T. (3.2)

As mentioned before, our objective is to eliminate queuing congestion and to minimize

the total transportation cost. Thus, in addition to above signal setting constraints, we here

consider capacity constraints, i.e., the inflow rate ykl(t) of each link cannot exceed the traffic

capacity Gkl(t)μkl of each link:

ykl(t) ≤ Gkl(t)μkl ∀kl ∈ A, ∀t ∈ T, (3.3)

Then over-saturated delay (i.e., queuing delay) at each link never occurs.
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Transportation costs in signal-controlled networks

Each user makes a single trip from an origin o ∈ O to a destination d ∈ D in the network. The

transportation cost for a single trip of a network consists of two types of cost: (a) “schedule

cost,” (b) “travel cost.” (a) The schedule cost for a user is the cost due to the difference

between the user’s desired arrival time period and the actual arrival time period t. The desired

arrival time is assumed to be the same for all users and is equal to t̂. The schedule cost is

represented by the function sd(t) of the arrival time t at destination d, which is common to

all users.

(b) The travel cost is the monetary equivalent of the travel time required for a trip from the

origin and the destination. The travel times are divided in two parts, the free-flow travel time

and the signal delay. The free-flow travel time of link (k, l) is a constant tkl. The signal delay

that arises at each intersection under the capacity constraints (3.3) is not a queuing delay (i.e.,

over-saturated delay) but the waiting time caused by the red phase of the intersection. Since

this under-saturated delay is often smaller than the time in queue, the change (or externality)

of the delay due to the flow and the green time is assumed to be negligible, i.e., the signal

delay of the link (k, l) is assumed to be a constant dkl.

3.2.2 Global optimization of signal setting problem

Under the setting, the total transportation cost is defined as the sum of all user costs. Thus,

we formulate a global optimization of signal setting problem [Gossp] to determine both the

system optimal traffic flow pattern and the optimal green time proportions:

TTC∗ ≡ min
(q,y,g)≥0

.
∑
t∈T

∑
o∈O

∑
d∈D

qod(t)sd(t) + α
∑
t∈T

∑
kl∈A

ykl(t)[tkl + dkl] (3.4)

subject to

∑
t∈T

qod(t) = Qod ∀od ∈W (3.5)

∑
l∈NO(k)

yo
kl(t) −

∑
l∈NI(k)

yo
lk(t) = −qod(t)δkd ∀k ∈ N, ∀o ∈ O, t ∈ T (3.6)

ykl(t) ≤ Gkl(t)μkl ∀kl ∈ A, ∀t ∈ T (3.7)∑
e∈Ej(t)

ge, j(t) + lj = 1 ∀ j ∈ J, ∀t ∈ T (3.8)
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where

ykl(t) =
∑
o∈O

yo
kl(t) ∀kl ∈ A, ∀t ∈ T (3.9)

Gkl(t) =
∑

e:kl∈Ae, j(t)

ge, j(t) ∀kl ∈ A, ∀t ∈ T, (3.10)

where qod(t) is the OD flow rate for a user arriving at the destination at time period t, and α

is a coefficient that converts travel time into the monetary equivalent.

This is the problem of finding a semi-dynamic traffic flow pattern (q∗,y∗) and green time

proportions g∗ that minimize the social transportation cost in the network5. Specifically, the

first term of the objective function is the total schedule cost expensed by all users, and the

second term is the monetary equivalent of the total travel time paid by all users. The first

constraint (3.5) is the conservation of the OD demand; the second constraint (3.6) is the

conservation of the semi-dynamic traffic flows at each node6. The next constraint (3.7) is the

traffic capacity constraints on each bottleneck. The final constraint (3.8) is the condition that

should be satisfied by the green time proportions.

We should note here that this problem does not incorporate users’ behaviors (i.e., desti-

nation arrival time choice, path choice). In addition, when to solve this problem, the entire

network information is needed. As shown later in Section 3.3, however, a framework that

combines the tradable network permits system and a distributed signal control policy can

achieve an equilibrium traffic assignment that coincides with the system optimal traffic flow

pattern.

5 This problem does not necessarily have a feasible solution due to the capacity constraint (3.7) on each

link. However, if the assignment time interval is large enough that we can make the OD flow rates smaller

than the maximum capacity of the underlying network, the problem [Gossp] always has feasible solutions.

Thus, throughout this chapter, we only deal with the case where the problem [Gossp] has feasible solutions.
6 In the semi-dynamic traffic assignment model, an inflow rate and an outflow rate of each link are different

when a queue exists. However, in the present case there is no need to distinguish between the in- and

outflow rates because a queue never occurs.
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3.3 Distributed signal control policy based on tradable net-

work permits

This section presents a framework that combines the tradable network permits system and

a signal control policy. In Subsection 3.3.1, we first describe behaviors of agents in our

framework. In Subsection 3.3.2, we show the equilibrium that takes place after introducing

the tradable network permits, and provide an optimization problem that is equivalent to the

equilibrium. From the problem, we can see that the problem [Gossp] includes users’ behav-

iors. In Subsection 3.3.3, we propose a signal control policy based on the tradable network

permits. In Subsection 3.3.4, we introduce the most important property that characterizes the

equilibrium assignment under the proposed signal control policy.

3.3.1 Behavoirs of agents

A road manager aims to restrain traffic congestion on the network and minimize the total

transportation cost. To achieve this, the manager regulates the traffic flow rates entering

each bottleneck (i.e., signalized intersection) in the network using time-dependent network

permits. We assume that the number of permits issued for each link for each time period is

equal to or less than the traffic capacity, which results in eliminating over-saturated delay at

each link. We also assume that trading markets are perfectly competitive. In addition, the

manager employs a signal control policy based on tradable network permits for controlling

green time proportions of each intersection. The precise definition of the signal control

policy is introduced in Subsection 3.3.3.

Each road user, on the other hand, chooses a destination arrival time and a path so as to

minimize own generalized transportation cost. Under the system of network permits each

user must purchase a set of permits corresponding to a set of links included in the user’s

chosen path. Thus, the generalized transpiration cost is the sum of the transportation cost

described above (i.e., schedule cost and travel cost) and the permit purchase cost that is

defined as the sum of permit prices of the links included in the path used.
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3.3.2 Equilibrium under the tradable network permits system

Let us now assume that a signal setting is fixed. At equilibrium, the following three condi-

tions should hold in addition to physical conditions of the traffic flows (3.5), (3.6), and (3.7)

(also see Chapter 2 for a detailed discussion).

1) Equilibrium conditions for path choice:

Consider a user arriving at node k at time period t. At equilibrium, no user can improve his

or her own cost by changing the path choice unilaterally (i.e., no user has the incentive to

deviate from his or her strategy). Hence, if there exists a user entering into link (k, l) at time

period t, link (k, l) should be on the minimum path for a user arriving at node l. Denoting

πo
k(t) as the minimum path cost from the origin o to node k for a user arriving at time period

t, we can represent this condition as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
πo

l (t) = α(tkl + dkl) + pkl(t) + πo
k(t) if yo

kl(t) > 0

πo
l (t) ≤ α(tkl + dkl) + pkl(t) + πo

k(t) if yo
kl(t) = 0

∀kl ∈ A, ∀o ∈ O, ∀t ∈ T, (3.11)

where pkl(t) is the permit price of link (k, l) at time period t.

2) Equilibrium conditions for destination arrival time choice:

At equilibrium, no one can improve his or her own generalized transportation cost by chang-

ing the destination arrival time unilaterally. It follows from the path choice equilibrium

condition above that the generalized transportation cost for a user arriving at the destination

d at time period t is sd(t) + πo
d(t), where sd(t) is the schedule cost for a user arriving at the

destination d at time period t. Therefore, the equilibrium condition for the user’s arrival time

choice can be expressed as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρod = πo

d(t) + sd(t) if qod(t) > 0

ρod ≤ πo
d(t) + sd(t) if qod(t) = 0

∀od ∈W, ∀t ∈ T, (3.12)

where ρod represents the minimum generalized transportation cost between the origin and

the destination.
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3) Demand-supply equilibrium conditions in each link permits market:

Since the trading markets are assumed to be perfectly competitive, the price pkl(t) of each

permit type is adjusted to clear the excess demand for each type of permit. As we shown in

Chapter 2, the demand-supply equilibrium condition for the permits market is represented as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ykl(t) = Gkl(t)μkl if pkl(t) > 0

ykl(t) ≤ Gkl(t)μkl if pkl(t) = 0
∀kl ∈ A, ∀t ∈ T. (3.13)

For a given a signal setting g, the equilibrium conditions under the tradable network per-

mits mentioned above, which determine the OD flow rates q, link inflow rates y, and permit

prices p, are equivalent to the following linear programming program [TAP-P] (Chapter 2):

min
(q,y)≥0

.
∑
t∈T

∑
o∈O

∑
d∈D

qod(t)sd(t) + α
∑
t∈T

∑
kl∈A

ykl(t)[tkl + dkl] (3.14)

subject to

∑
t∈T

qod(t) = Qod ∀od ∈W (3.15)

∑
l∈NO(k)

yo
kl(t) −

∑
l∈NI(k)

yo
lk(t) = −qod(t)δkd ∀k ∈ N, ∀o ∈ O, t ∈ T (3.16)

ykl(t) ≤ Gkl(t)μkl ∀kl ∈ A, ∀t ∈ T (3.17)

ykl(t) =
∑
o∈O

yo
kl(t) ∀kl ∈ A, ∀t ∈ T. (3.18)

This is the problem of finding the semi-dynamic traffic flow pattern that minimizes the total

generalized transportation cost in the network under the condition that the signal setting is

fixed. In other words, the problem [TAP-P] is a sub-problem of the problem [Gossp], which

does not involve the determination of the signal settings. Hence, we see that the problem

[Gossp] contains user behaviors under the tradable network permits system.

This problem further provides information on the equilibrium prices/costs as well as

the equilibrium flow patterns. Specifically, the optimal Lagrange multipliers for constraints

(3.15), (3.16), and (3.17) give the generalized transportation cost ρ, the minimum path cost

from the origin to each node π, and the link permit prices p, respectively. These Lagrange

multipliers (ρ,π,p) represent the equilibrium prices under the system of tradable permits

and are given as a solution of the dual problem, [TAP-D], of the problem [TAP-P]:
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max
(ρ,π,p)≥0

.
∑
od∈W

ρodQod −
∑
t∈T

∑
kl∈A

pkl(t)Gkl(t)μkl (3.19)

subject to

ρod ≤ sd(t) + πo
d(t) ∀od ∈W, ∀t ∈ T (3.20)

πo
l (t) ≤ πo

k + α(tkl + dkl) + pkl(t) ∀kl ∈ A, ∀o ∈ O, ∀t ∈ T. (3.21)

3.3.3 A distributed signal control policy

In the previous subsection, we described behaviors of agents (i.e., users) that use road ca-

pacities. Our signal control policy, on the other hand, is described as behaviors of agents

(i.e., suppliers) that supply road capacities. Each supplier is an owner of each intersection

in the network and chooses the green time proportion (i.e., capacity allocation) of the inter-

section so as to maximize his or her profit for given constant permit prices p. This profit

maximization problem at the intersection k is formulated as

max
g j≥0
.
∑
t∈T

∑
e∈Ej(t)

∑
kl∈Ae, j(t)

Gkl(t)pkl(t)μkl (3.22)

subject to

∑
e∈Ej(t)

ge, j(t) + lk = 1. ∀t ∈ T (3.23)

Gkl(t) =
∑

e:kl∈Ae, j(t)

ge, j(t) ∀kl ∈ Ae, j(t) ∀e ∈ Ej(t), ∀t ∈ T. (3.24)

Then the signal control policy is derived as a necessary and sufficient condition for the opti-

mality of the profit maximization problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ j(t) =

∑
kl∈Ae, j(t) pkl(t)μkl if ge, j(t) > 0

φ j(t) ≥ ∑
kl∈Ae, j(t) pkl(t)μkl if ge, j(t) = 0

∀e ∈ Ej(t), j ∈ J, ∀t ∈ T, (3.25)

where φ j(t) is the Lagrange multiplier corresponding to the constraint (3.23).

The proposed signal control policy can determine the green time proportion of the inter-

section by using information on permit prices and saturation flows of the intersection; it does
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not require knowledge of entire network information (e.g., origin-destination information).

More specifically, the policy (3.25) chooses the green time proportion of each intersection

such that

Less profitable phases receive no green time.

3.3.4 Efficiency of the equilibrium under the proposed signal control

policy

The most important result in this chapter can be derived by combining user behaviors and

the proposed signal control policy in the previous subsections. In particular, we obtain the

following proposition on the relationship between the global optimization of signal setting

problem [Gossp] and the equilibrium conditions (3.11), (3.12), and (3.13) consistent with

the propose policy (3.25).

Proposition 3.1 For any networks with many-to-many OD pairs in which the problem [Gossp]

has feasible solutions, the traffic equilibrium assignment under the tradable network permits

consistent with the proposed signal control policy minimizes the total travel cost defined by

(3.4).

Proof This proposition can be proved by showing that a necessary and sufficient condition

for the optimality of the optimization problem [Gossp] coincides with the equilibrium condi-

tions (3.11), (3.12), and (3.13) and the proposed signal control policy (3.25). See Appendix

3.A for a complete proof.

To understand the Proposition 3.1 intuitively, we present another interpretation of the

proposed control policy, i.e., the proposed policy preferentially allocates capacities to the

phases that reduce the social transportation cost more. This comes from the fact that the

Lagrange multiplier p (i.e., the permit prices) corresponding to the capacity constraint (3.7)

equals to the decrease in the value of the objective function (3.4) by augmenting 1 unit of

link capacity (Ahuja, Magnanti, and Orlin, 1993).

In addition, our signal control policy is similar to the simple type of policy P0 by Smith

(1987) in the sense that these policies can achieve a stable equilibrium in a distributed man-

ner. However, his setting allows intersections to over-saturate, and his policy P0 cannot

achieve the system optimal assignment even if the under-saturated delay is constant.
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3.4 Evolutionary implementation method for the proposed

signal control policy

To obtain the system optimal traffic flow pattern (q∗,y∗), the proposed signal control policy

requires the optimal permit price p∗, which may not be instantly available through tradable

permits markets. To resolve this difficulty, we construct an evolutionary (i.e., day-to-day)

implementation method for the proposed policy.

The scheme consists of two phases, a traffic equilibrium assignment phase and a signal

setting adjustment phase, which are repeated on a day-to-day basis. In the former phase, an

equilibrium traffic flow pattern under the tradable network permit arises under the condition

that green time proportions are fixed. In addition, the manager obtains the permit price

information. In the latter phase, green time proportions are adjusted by a modified version

of the proposed signal control policy.

This natural procedure corresponds to Benders decomposition algorithm (Benders, 1962;

Lasdon, 1970; Geoffrion and Graves, 1974) for the problem [Gossp] (see Appendix A for

a basic framework of the Benders decomposition). Hence, we first decomposes the prob-

lem [Gossp] into two problems, a master problem and a sub-problem. We then explain the

procedure of the implementation method. Finally, we prove that a day-to-day traffic flow

dynamics under the scheme converges to the system optimal traffic flow pattern.

3.4.1 Applying Benders decomposition principle to the Gossp

Let us decompose the problem [Gossp] into two problems based on Benders decomposition

principle:

TTC∗ = min
g≥0
.
∑
t∈T

∑
o∈O

∑
d∈D

qod(g(t))sd(t) + α
∑
t∈T

∑
kl∈A

ykl(g(t))[tkl + dkl] (3.26)

subject to

∑
e∈Ej(t)

ge, j(t) + lk = 1 ∀ j ∈ J, ∀t ∈ T (3.27)

Gkl(t) =
∑

e:kl∈Ae, j(t)

ge, j(t) ∀kl ∈ A, ∀t ∈ T (3.28)
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where q(g) and y(g) are obtained by

min
(q,y)≥0

.
∑
t∈T

∑
o∈O

∑
d∈D

qod(t)sd(t) + α
∑
t∈T

∑
kl∈A

ykl(t)[tkl + dkl] (3.29)

subject to∑
t∈T

qod(t) = Qod ∀od ∈W (3.30)

∑
l∈NO(k)

yo
kl(t) −

∑
l∈NI(k)

yo
lk(t) = −qod(t)δkd ∀k ∈ N, ∀o ∈ O, t ∈ T (3.31)

ykl(t) ≤ Gkl(t)μkl ∀kl ∈ A, ∀t ∈ T (3.32)

ykl(t) =
∑
o∈O

yo
kl(t) ∀kl ∈ A, ∀t ∈ T, (3.33)

where (q(g), y(g)) is an optimal solution of the lower level problem for a parameter g.

The upper level problem (master problem) determines the optimal signal setting so as to

minimize the total transportation cost; the lower level problem (sub-problem) is the same

as the problem [TAP-P] shown in Subsection 3.3.2, which represents the traffic equilibrium

assignment under the tradable network permits.

To understand that the master problem corresponds to our signal control policy, we need

to show the relationship between the master problem and the permit prices. Then we recall

the problem [TAP-D] which is the dual problem of the problem [TAP-P]:

TTC(g) ≡ max
(ρ,π,p)≥0

.
∑
od∈W

ρodQod −
∑
t∈T

∑
kl∈A

pkl(t)Gkl(t)μkl (3.34)

subject to

ρod ≤ sd(t) + πo
d(t) ∀od ∈W, ∀t ∈ T (3.35)

πo
l (t) ≤ πo

k + α(tkl + dkl) + pkl(t) ∀kl ∈ A, ∀o ∈ O, ∀t ∈ T. (3.36)

From the duality theorem, the optimal value of the objective function of [TAP-D] coincides

with the optimal value of the objective function of [TAP-P], i.e.,

TTC(g) =
∑
od∈W

ρod(g)Qod −
∑
t∈T

∑
kl∈A

pkl(g(t))Gkl(t)μkl (3.37)

=
∑
t∈T

∑
o∈O

∑
d∈D

qod(g(t))sd(t) + α
∑
t∈T

∑
kl∈A

ykl(g(t))[tkl + dkl],
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where (ρ(g),p(g)) is an optimal solution of the [TAP-D] for a parameter g, i.e., it is an

extreme point of the convex feasible region Ω that consists of the constraints (3.35) and

(3.36). By using the optimal value function (5.40), we can transform the master problem

into the following problem:

min
g≥0
.TTC(g) =

∑
od∈W

ρod(g)Qod −
∑
t∈T

∑
kl∈A

pkl(g(t))Gkl(t)μkl (3.38)

= min
g≥0
.

⎡⎢⎢⎢⎢⎢⎣ max
(ρ(s),p(s))∈V(Ω)

.

⎛⎜⎜⎜⎜⎜⎝
∑
od∈W

ρ(s)
od Qod −

∑
t∈T

∑
kl∈A

p(s)
kl (t)Gkl(t)μkl

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ (3.39)

subject to Eq. (3.27) and Eq. (3.28).

where V(Ω) is all (a finite set of) extreme points of the convex feasible regionΩ. In the prob-

lem (3.39), the coefficients of the green time proportions are permit prices, i.e., it indicates

that green time proportions are determined based on permit prices.

Problem (3.39) is equivalent to the original problem [Gossp] if all extreme points are

known. However, it is difficult to obtain the extreme points in advance because a number

of extreme points is generally too large. Hence, we consider a relaxation problem of (3.39)

that has a subset of extreme points in V(Ω) and produce an lower bound on the optimal

objective value of the problem (3.39) (or the problem [Gossp]). This relaxed problem is

called the restricted master problem. We then employ an iterative approach by adding an

extreme point to the restricted master problem to improve the lower bound. Note that an

extreme point is generated by solving the problem [TAP-D] for a fixed signal setting g.

3.4.2 Procedure of the evolutionary implementation method

The evolutionary implementation method for the proposed signal control policy corresponds

to solving the above two problems iteratively. Hence, the day-to-day procedure of the scheme

can be summarized in the following steps:

Step 0 : Initial setting. Set s = 1. Determine the initial green time proportions g(1). Start

with a set of extreme points V(1)(Ω) = {∅} and a lower bound θ(1) = 0.

Step 1 : Traffic equilibrium assignment phase. For a fixed signal setting g(s), the consistent

equilibrium (q(s), y(s),p(s)) arises under the tradable network permits system, which is

shown in Subsection 3.3.2. The equilibrium generalized transportation cost ρ(s) is also
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determined. If the total transportation cost TTC(g(s)) equals the lower bound θ(s), then

stop. Otherwise go to Step 2.

Step 2 : Signal setting adjustment phase. Add an extreme point to the set: V(s+1)(Ω) ≡
{V(s)(Ω)∪ (ρ(s),p(s))}, and produce the signal setting g(s+1) by a modified version of the

proposed signal control policy and update the lower bound θ(s+1). Let s = s + 1. Go to

Step 1.

At Step 1, through the trading markets, the equilibrium permit allocation pattern and

permit prices are determined, which leads to the equilibrium traffic flow pattern shown in

Subsection 3.3.2. As an example of concrete mechanisms for the trading markets, we may

utilize the auction mechanism constructed in Chapter 4. In this mechanism, the net utility,

which corresponds to the generalized transpiration cost ρ(s), can be obtained through a proxy-

ascending auction.

At Step 2, the road manager considers all extreme points information (ρ(s),p(s)) for the

current day and past days and adjusts the green time proportion of each intersection. This

corresponds to solving the following linear programming problem that is equivalent to the

restricted master problem:

min
g,θ≥0
.θ (3.40)

subject to

θ ≥
∑
od∈W

ρ(s)
od Qod −

∑
t∈T

∑
kl∈A

p(s)
kl (t)Gkl(t)μkl ∀(ρ(s),p(s)) ∈ V(s+1)(Ω), (3.41)

Eq. (3.27) and Eq. (3.28).

The optimal value of the objective function is the lower bound θ(s+1) on the optimal value

of the problem (3.39). A modified signal control policy is derived as the necessary and

sufficient optimality condition of the problem:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ =

∑
od∈W ρ

(s)
od Qod −∑

t∈T
∑

kl∈A p(s)
kl (t)Gkl(t)μkl if η(s) > 0

θ ≥ ∑
od∈W ρ

(s)
od Qod −∑

t∈T
∑

kl∈A p(s)
kl (t)Gkl(t)μkl if η(s) = 0

{(ρ(1),p(1)), . . . , (ρ(s),p(s))} ∈ V(s+1)(Ω) (3.42)⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 =

∑
s η

(s) if θ > 0

1 ≥ ∑
s η

(s) if θ = 0
(3.43)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ j(t) =

∑
s η

(s) ∑
kl∈Ae, j(t) p(s)

kl (t)μkl if ge, j(t) > 0

φ j(t) ≥ ∑
s η

(s) ∑
kl∈Ae, j(t) p(s)

kl (t)μkl if ge, j(t) = 0
∀e ∈ Ej(t), j ∈ J, ∀t ∈ T, (3.44)

where η(s) is the Lagrange multiplier for the constraint (3.41). The modified version of the

proposed signal control policy (i.e., (3.42), (3.43), and (3.44)) is not a complete distributed

policy but is described as behaviors of a central agent and the local agents.

The central agent coordinates the local agents to improve the lower bound. Specifically,

the central agent determines the weight parameter η(s) for each day so as to maximize the

lower bound based on the conditions (3.42) and (3.43). If the condition (3.42) of day s is

bounded, all weight 1 is allocated to the parameter of day s, i.e., η(s) = 1. Note that we

assume that the lower bound is θ > 0 (i.e.,
∑

s η
(s) = 1) because the lower bound becomes

positive within a few iterations from the starting point θ(1) = 0.

After allocating the weight to the parameter of day s by the central agent, the local agents

determine the green time proportion of each intersection based on the permit prices on day

s. Thus, the behavior of each local agent described as the condition (3.44) coincides with the

proposed signal control policy described in Subsection 3.3.3: Less profitable phases receive

no green time.

3.4.3 Convergence of the evolutionary implementation method

In the implementation method, the optimal solution of the original problem [Gossp] is achieved

when the lower bound θ(s) coincides with the transportation cost TTC(g(s)). This is because

the traffic flow pattern (q(s),y(s)) is a feasible solution of the original problem and is not

equal to the lower bound, except for the optimal solution. On the other hand, as we showed

in Subsection 3.4.1, the restricted master problem coincides with the problem [Gossp] when
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all extreme points are known, which implies that the restricted master problem is sure to pro-

duce the optimal signal setting by the time all extreme points are generated. Furthermore, a

new extreme point is always generated in each Step 1 before the procedure terminates. These

statements suggest the following convergence result of the day-to-day traffic flow dynamics

under the implementation method.

Proposition 3.2 For any networks with many-to-many OD pairs in which the problem [TAP-

P] has feasible solutions, the day-to-day traffic flow dynamics under the implementation

method globally converges to the optimal traffic flow pattern in a finite number of steps.

Proof See Appendix 3.B for the proof.

3.5 Conclusions

In this chapter, we proposed a distributed signal control policy based on a tradable network

permits system. The main feature of the proposed policy is the determination of a green

time proportion for each intersection by exploiting only local information. We proved that

the equilibrium traffic assignment under the tradable network permits consistent with the

proposed signal control policy coincides with the system optimal traffic flow pattern that

minimizes the total transportation cost. Finally, we constructed an evolutionary implemen-

tation method for the proposed policy and proved that the day-to-day traffic flow dynamics

under the scheme converges to the system optimal traffic assignment.

We showed the implementation method of the proposed signal control policy (supply

side conditions). However, we should note here that (demand side) traffic equilibrium under

the tradable network permits system is assumed to be achieved. Therefore, the next chapter

constructs an implementation mechanism that can attain the equilibrium.

While this chapter only dealt with the green time proportion as a signal control param-

eter, an interesting direction for future research is the problem that includes other control

parameters (e.g., number of phases, cycle length, and offsets) for the determination of a de-

tailed signal setting within each time period. Since queuing congestion is eliminated under

our framework, we can easily deal with detailed signal settings.
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Appendix 3.A Proof of Proposition 1

We will show that a necessary and sufficient condition for the optimality of the optimization

problem [Gossp] coincides with the equilibrium conditions (3.11), (3.12), and (3.13), and

the proposed signal control policy (3.25). To derive the optimality conditions, we first define

the Lagrangean function L for the problem [Gossp]:

L ≡ TTC +
∑
od∈W

ρod

⎧⎪⎪⎨⎪⎪⎩Qod −
∑
t∈T

qod(t)

⎫⎪⎪⎬⎪⎪⎭ (3.45)

+
∑
t∈T

∑
o∈O

∑
k∈N

πo
k(t)

⎧⎪⎪⎨⎪⎪⎩qod(t)δkd +
∑

l∈NO(k)

yo
kl(t) −

∑
l∈NI(k)

yo
lk(t)

⎫⎪⎪⎬⎪⎪⎭

+
∑
t∈T

∑
kl∈A

pkl(t)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
o∈O

yo
kl(t) −

∑
e:kl∈Ae, j(t)

ge, j(t)μkl

⎫⎪⎪⎪⎬⎪⎪⎪⎭ +
∑
t∈T

∑
j∈J

φ j(t)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

e∈Ej(t)

ge, j(t) + lk − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where the TTC is the objective function of [Gossp] defined in (3.4); the variables {ykl(t)} are

eliminated by substituting the constraint (3.9) into the objective function and the constraint

(3.7); the variables {Gkl(t)} are also eliminated by substituting the constraint (3.10) into the

constraint (3.8); and ρ, π, p, and φ are Lagrange multipliers corresponding to the constraint

(3.5), (3.6), (3.7), and (3.8), respectively. Then, the necessary and sufficient conditions for

the optimality of [Gossp] are given by the following Kuhn-Tucker conditions:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂L/∂q∗od(t) = 0 if q∗od(t) > 0

∂L/∂q∗od(t) ≥ 0 if q∗od(t) = 0
∀od ∈W, ∀t ∈ T (3.46)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂L/∂yo∗

kl (t) = 0 if yo∗
kl (t) > 0

∂L/∂yo∗
kl (t) ≥ 0 if yo∗

kl (t) = 0
∀kl ∈ A, ∀o ∈ O, ∀t ∈ T (3.47)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂L/∂g∗e, j(t) = 0 if g∗e, j(t) > 0

∂L/∂g∗e, j(t) ≥ 0 if g∗e, j(t) = 0
∀e ∈ Ej(t), ∀ j ∈ J, ∀t ∈ T (3.48)

∂L/∂ρ∗od = 0 ∀od ∈W (3.49)

∂L/∂πo∗
k (t) = 0 ∀k ∈ N, ∀o ∈ O, ∀t ∈ T (3.50)⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂L/∂p∗kl(t) = 0 if p∗kl(t) > 0

∂L/∂p∗kl(t) ≤ 0 if p∗kl(t) = 0
∀kl ∈ A, ∀t ∈ T. (3.51)
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It can be easily seen that conditions (3.49), (3.50), and (3.51) reduce to the physical

conditions (3.15), (3.16), and the demand-supply equilibrium condition (3.13), respectively.

To examine conditions (3.46), (3.47), and (3.48), we calculate the partial derivatives of the

Lagrangean function:

∂L/∂q∗od(t) = sd(t) + πo
d(t) − ρod (3.52)

∂L/∂yo∗
kl (t) = α(tkl + dkl) + pkl(t) + πo

k(t) − πo
l (t) (3.53)

∂L/∂g∗e, j(t) =
∑

kl∈Ae, j(t)

pkl(t)μkl − φ j(t) (3.54)

Substituting (3.52) into (3.46), we have the same form of conditions as in equilibrium condi-

tion (3.12); similarly, we see that (3.47) and (3.48) reduce to the equilibrium condition (3.11)

and the proposed signal control policy (3.25), respectively. Thus, the Lagrange multipliers

ρ∗, π∗, p∗, and φ∗ in the optimality conditions (3.46)–(3.51) coincide with the equilibrium

permit prices, the equilibrium minimum path costs, equilibrium generalized transportation

costs in equilibrium conditions (3.11)–(3.13), and the Lagrange multiplier corresponding to

the constraint (3.23); the optimal flow patterns (q∗,y∗) and the optimal signal setting g∗ also

coincide with the equilibrium consistent with the proposed signal control policy.

Appendix 3.B Proof of Proposition 2

We will show that a new extreme point is always generated in every Step 1 until the conver-

gence criterion is satisfied. We denote the green time proportions on day s by g(s), the lower

bound by θ(s), and the extreme point of the day by (ρ,p) ∈ V(s)(Ω) bounded by condition

(3.42). Then

θ(s) =
∑
od∈W

ρodQod −
∑
t∈T

∑
kl∈A

pkl(t)G
(s)
kl (t)μkl (3.55)

holds. In contrast, for another point (ρ′,p′) in the set V(s)(Ω),

∑
od∈W

ρodQod −
∑
t∈T

∑
kl∈A

pkl(t)G
(s)
kl (t)μkl ≥

∑
od∈W

ρ′odQod −
∑
t∈T

∑
kl∈A

p′kl(t)G
(s)
kl (t)μkl (3.56)

is satisfied by condition (3.42). From the duality theorem, the optimal value of the objective

function of [TAP-P] coincides with the optimal value of the objective function of [TAP-D]
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for the parameter g(s), that is,

TTC(g(s)) =
∑
od∈W

ρ(s)
od Qod −

∑
t∈T

∑
kl∈A

p(s)
kl (t)G(s)

kl (t)μkl (3.57)

=
∑
t∈T

∑
o∈O

∑
d∈D

q(s)
od sd(t) + α

∑
t∈T

∑
kl∈A

y(s)
kl (t)[tkl + dkl]

where (ρ(s),p(s),q(s),y(s)) is the optimal solution of [TAP-P] and [TAP-D], which represents

the equilibrium state under the signal setting g(s). In addition, since (q(s),y(s)) is a feasible

solution of the original problem [Gossp],

∑
t∈T

∑
o∈O

∑
d∈D

q(s)
od sd(t) + α

∑
t∈T

∑
kl∈A

y(s)
kl (t)[tkl + dkl] ≥ TTC∗ (3.58)

holds. TTC∗ represents the optimal value of the objective function of the problem [Gossp].

From the above discussion, the following relationship is satisfied:

∑
od∈W

ρ(s)
od Qod −

∑
t∈T

∑
kl∈A

p(s)
kl (t)G(s)

kl (t)μkl (3.59)

=
∑
t∈T

∑
o∈O

∑
d∈D

q(s)
od sd(t) + α

∑
t∈T

∑
kl∈A

y(s)
kl (t)[tkl + dkl]

≥ TTC∗

≥ θ(s)

=
∑
od∈W

ρodQod −
∑
t∈T

∑
kl∈A

pkl(t)G
(s)
kl (t)μkl.

Hence, (ρ(s),p(s)) � (ρ,p) is achieved when θ(s) < TTC(g(s)), i.e., a new extreme point is

generated until the convergence criterion is satisfied. Since the number of extreme points is

finite, we can conclude that the day-to-day traffic flow dynamics converges to the optimal

traffic flow pattern in a finite number of steps.





Chapter 4

A hybrid implementation mechanism of

tradable network permits system which

obviates path enumeration

This chapter1 designs an auction mechanism for implementing the tradable network permit

markets on general networks. An important factor that affects the success of such a mar-

ket mechanism is incentive of an individual market participant. More specifically, it is well

known that a well-designed market mechanism will encourage a competition and increase

efficiency, and otherwise the poor efficiency may arise due to participants’ strategic manip-

ulations (e.g., McMillan, 2002). Hence, we have to design trading rules in which no partic-

ipant has incentive to manipulate the markets with careful consideration of the possibilities

of the manipulations.

To accomplish this, the present chapter conducts a game-theoretic analysis of a dynamic

traffic assignment with atomic users, while the previous chapters consider continuous flows.

A difficulty of treating atomic users on general networks is that a naive formulation of a

dynamic system optimal allocation of network permits leads to a NP-hard problem owing

to the complex relationship between link and path. As a result, it is almost impossible to

apply the Vickrey-Clarke-Groves (VCG) mechanism, which is a benchmark in auction theory

(Milgrom, 2004; Cramton et al., 2006).

1 This chapter is based on joint research with Takashi Akamatsu, is accepted in the 20th International Sym-

posium on Transportation and Traffic Theory (Wada and Akamatsu, 2013). A preliminary version pub-

lished in Journal of Japan Society of Civil Engineers, Ser. D3 (Infrastructure Planning and Management)

(Wada and Akamatsu, 2011).
47
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To avoid such computational infeasibility, we develop a hybrid implementation mecha-

nism that consistently combines an auction mechanism with a path capacity control, which

are repeated on a day-to-day basis. The former phase involves selling of bundles of permits

corresponding to the paths, and the latter phase involves adjustment of the number of bun-

dles, which corresponds to the path capacity. We prove that the proposed mechanism has

two desirable properties: (1) truthful bidding is a dominant strategy for each user on each

day, and (2) the permit allocation pattern under the mechanism converges to an approxi-

mate dynamic system optimal allocation pattern in the sense that the achieved social surplus

reaches its maximum value when the number of users is large. Furthermore, we show that the

proposed mechanism can be extended to obviate path enumeration by introducing a column

generation procedure.

This chapter is organized as follows. Section 4.1 discusses related works. Section 4.2

describes pre-conditions used through the chapter. Section 4.3 defines a dynamic system op-

timal allocation of network permits and discusses the impossibility of employing the VCG

mechanism. Section 4.4 presents ideas of a novel auction mechanism that is readily imple-

mentable for general networks. Section 4.5 shows details of the proposed mechanism and

clarify its properties. Section 4.6 constructs an extended mechanism which obviates path

enumeration. Section 4.7 demonstrates convergence properties of the proposed mechanism

by a numerical example. Section 4.8 concludes the chapter.

4.1 Related works

this chapter is mainly concerned with dynamic traffic assignments (DTA), some types of

transportation demand management (TDM) schemes (i.e., dynamic congestion pricing schemes

and tradable permits schemes) and combinatorial auctions. The first two areas provide an an-

alytical framework for modeling and managing traffic congestion in transportation networks,

whereas the third area provides a foundation for constructing an auction mechanism to im-

plement trading markets. In particular, auctions for bundled items with network structure are

relevant to our study.
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Dynamic traffic assignment models

Due to the successful incorporation of queuing phenomena into transportation network anal-

ysis, there has been much research into DTA models (e.g., Vickrey, 1969; Kuwahara and

Akamatsu, 1993; Cascetta, 2001). For instance, departure time choice models have been

developed by Smith (1984b), Daganzo (1985), Newell (1987), and Iryo and Yoshii (2007),

while dynamic user equilibrium (DUE) models have been developed by Kuwahara and Aka-

matsu (1993), Smith (1993), Heydecker and Addison (1996), Akamatsu (2001), and Iryo

(2011) and many others (see Peeta and Ziliaskopoulos, 2001; Szeto and Wong, 2011, for

comprehensive reviews). These studies analyzed the properties of user equilibrium and dis-

cussed the effectiveness of dynamic congestion pricing as shown in the next subsection.

However, few studies have discussed the asymmetric information problem and the effective-

ness of quantity-based regulation for eliminating queues.

Dynamic congestion pricing schemes

Dynamic congestion pricing is a natural extension of the static congestion pricing and is

a benchmark TDM scheme to eliminate queuing congestion. Despite its importance, most

studies have been limited to simple networks (e.g., a single bottleneck) because analyzing

DTA models for more general networks is usually intractable (e.g., Arnott et al., 1990, 1993;

Kuwahara, 2007; Doan et al., 2011). However, there have been some attempts to overcome

this difficulty. For example, Ziliaskopoulos (2000) and Nie (2011) studied dynamic marginal

cost analyses for system optimal DTA problems with many-to-one (or one-two many) OD

pairs; Yang and Meng (1998) derived an optimal toll based on a time-space network for gen-

eral networks; Friesz et al. (2007) formulated a dynamic second-best toll pricing problem for

general networks as mathematical programs with equilibrium constraints and developed a so-

lution algorithm, but they did not address theoretical questions (e.g., algorithm convergence).

In effect, no study has established a theory of dynamic congestion pricing for general net-

works in which queues arise. Furthermore, implementations of the abovementioned schemes

unsurprisingly face the difficulty associated with asymmetric information.

To address the asymmetric information problem, some studies have developed evolu-

tionary (trial-and-error) implementation methods for congestion pricing in static settings

(Sandholm, 2002, 2007; Yang et al., 2004; Han and Yang, 2009). These methods set toll



50

levels based on realized traffic flow patterns. The studies then demonstrated that an appro-

priate adjustment process of route choice (e.g., Smith, 1984a) converges to an equilibrium

that minimizes the total transportation cost in the network2. This result relies on the fact

that there is an equivalent optimization problem (or a Beckmann-type potential function) for

a static user equilibrium. However, the properties of static and dynamic congestion pric-

ing are different since the mechanisms of flow and queuing congestion are totally different.

The DUE model cannot also be reduced to an optimization problem in general. Thus, it is

not easy to generalize the methods to dynamic settings. Further, the methods need to set

a discriminatory toll to achieve an optimal state when users have heterogeneous costs (e.g.,

value of time), but information on such heterogeneities cannot be gathered by these methods,

which means that this approach is not a panacea for the problem even in static settings.

Tradable permits schemes for managing traffic congestion

A tradable permits scheme that combines a quantity-based regulation and a market institution

has been studied for environmental protection (Montgomery, 1972; Tietenberg, 1980). The

capabilities and applicability of this scheme have been increasing, because the emergence

of the Internet enables a new market to be established inexpensively. For managing traffic

congestion, a few researchers have studied such a scheme as an alternative to congestion

pricing. Verhoef et al. (1997) discussed the possibilities of using tradable permits in the

various types of regulations for road transport externalities; e.g., vehicle ownership permits,

tradable parking permits, and tradable permits in the regulation of road usage. Teodorović

et al. (2008) proposed an auction-based congestion pricing, for which drivers who want

to enter a downtown area have to participate a downtown time slot auction. Although it

formulated the allocation problem for the time slots, their study did not address how to set

their prices, which is the core problem of auction mechanisms. Moreover, the existing studies

provide some useful insights into tradable permit schemes for managing traffic congestion,

but none describes time-dependent tradable permits for eliminating bottleneck congestion.

In addition, it is worth mentioning the tradable travel credit scheme proposed by Yang

2 Yang et al. (2004) and Han and Yang (2009) did not explicitly consider an adjustment process unlike

Sandholm (2002, 2007). Instead, they assumed that user equilibrium traffic flow patterns are realized for

any given temporal link toll patterns, which may imply that it takes a time to obtain each equilibrium by

the adjustment process.
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and Wang (2011), which is superficially similar to but fundamentally different from the trad-

able network permits scheme3. Basically, under the tradable travel credit scheme, the road

manager initially distributes credits to all eligible travelers and predetermines a link-specific

credit charge. Credits are freely tradable among the credit holders in a market. Yang and

Wang (2011) showed that, if the manager can appropriately set the total number of credits

and the link-specific credit charges, a desirable traffic flow pattern is achieved. However, it is

apparent that this scheme requires detailed demand information unlike the tradable network

permits4. Further, it is fair to say that this scheme is not be a quantity-based regulation for

managing congestion but rather a redistribution scheme for income. Indeed, the main advan-

tage of this scheme over the standard congestion pricing is the improvement in equity and

social acceptability, not a direct reduction in traffic congestion.

Auction mechanisms for networked items

Since the pioneering work of Rassenti et al. (1982), who proposed airport time slot auctions,

there has been a considerable amount of work on combinatorial auctions (e.g., de Vries

and Vohra, 2003; Cramton et al., 2006), which allow bids on combinations of items and

thus enhance the economic efficiency when bidders have preferences for sets of items (e.g.,

spectrum rights, airport time slots, railroad segments, and paths in networks). The most cel-

ebrated such auction is the VCG mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973).

This mechanism is strategy-proof and can achieve allocative efficiency. However, to main-

tain these properties, it requires the auctioneer to solve complex combinatorial optimization

problems to determine the allocation and prices (Vickrey payments). Therefore, the VCG

mechanism is computationally intractable in many circumstances, including ours (see Sec-

tion 4.3).

In this regard, several authors have showed that such a intractability can be avoided un-

der some restricted circumstances in which combinations of items have network structures.

3 Similar schemes of the tradable travel credit were also discussed in Viegas (2001) and Verhoef et al.

(1997).
4 Nie (2012) pointed out this fact in the context of comparison with tradable permits for emission control:

“Suffice it to say here that the information that the government would need to run a mobility credit market

is as much as the information required to operate a conventional pricing scheme. Therefore, the mobility

credit market does not reduce the administrative burden of the government, unlike in the case of emission

control.”
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Bikhchandani et al. (2002) demonstrated that the VCG outcome can be computed by solving

two linear programs in the case that a winner determination problem reduces to a spanning

tree problem or a shortest path problem5. Nisan and Ronen (2001) derived the Vickrey pay-

ments for a shortest path problem, and Hershberger and Suri (2001) developed an efficient

algorithm to compute those payments. However, the auctions cannot be implemented for

trading markets because these are reverse auctions that cannot handle multiple buyers (i.e.,

users).

The studies on bandwidth auctions for communication networks are also related to our

study in the sense that they also focus on an allocation problem for a network capacity

that is a limited resource (e.g., Koutsopoulos and Iosifidis, 2010). The studies consider the

case in which each bidder (e.g., provider) purchases a quantity of bandwidth over a path in

a network. Lazar and Semret (1999) proposed the “progressive second price auction” for

allocating a divisible quantity of bandwidth over a certain path. Dramitinos et al. (2007)

proposed a multi-unit Dutch auction, which allocates an indivisible quantity of bandwidth

over a certain path. Both of these auction mechanisms can induce truth-telling. However, in

contrast to the mechanism that is proposed in this chapter, neither takes into account the route

choice problem of the bidders (i.e., each bidder is interested in a single fixed path). From the

above discussion, we conclude that there is no network auction mechanism that enables us

to assign network capacities (i.e., network permits) to multiple users who choose a route in

a network, and thus, the proposed mechanism is a major contribution of this chapter.

4.2 Model

4.2.1 Networks

In this chapter, we consider discrete-time dynamic traffic flows on a general network. The

network consists of a set N of nodes and a set A of directed links. The node set N includes

a subset O of origin nodes from which users start their trips, and a subset D of destination

nodes at which users terminate their trips. A set of origin-destination (OD) pairs is denoted

by W. Each element of A (i.e., each link) is identified by a sequential natural number a.

The time interval [0, I] for which we assign the dynamic traffic flow is fixed. We assume

5 Bikhchandani et al. (2002) also dealt with more general cases.
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that each OD pair’s potential travel demand Qod in the time interval [0, I] is a given constant.

The time interval [0, I] is discretized into small intervals of length Δt: each time point is

represented by t = mΔt, where m = 0, 1, 2, . . . ,M. Each time interval [t, t + Δt] is denoted

by t ∈ T and we call this interval time period t.

We also assume, without any loss of generality, that each link in a network consists of

a free-flow segment and a single bottleneck segment. The travel time to pass through the

free-flow segment of link a is a constant ta. We then assume that travel time ta is represented

by a natural multiplier of Δt (i.e., an integer na satisfies ta = naΔt). The bottleneck of each

link is represented by a point queue model with constant capacity μa = vehicles/time interval

Δt.

4.2.2 Road network manager and users

A road manager aims to restrain traffic congestion in the network and maximize the social

surplus. To achieve this, the manager regulates the traffic flow rates entering each bottleneck

in the network using time-dependent network permits. The precise definition and setup of

the network permit system are described in Subsection 4.2.3.

Within the time interval [0, I], each atomic user i ∈ Nod (i.e., |Nod| = Qod) makes at

most a single trip in the network from an origin (e.g., residential zone) to a destination (e.g.,

the central business district). This means that all users do not necessarily make trips, which

corresponds to the conventional traffic assignments with elastic demand (see also Subsection

4.5.1). The user chooses a destination arrival time period and a path between the origin and

destination so as to maximize his or her utility. Under the system of network permits, each

user must purchase a bundle of permits corresponding to a set of links included in the user’s

chosen path. This implies that choosing a destination arrival time period and a path directly

corresponds to purchasing time-dependent network permits in the trading markets.

4.2.3 Network permits and trading markets

In this chapter, we assume that the manager can issue time-dependent network permits for

all bottlenecks (i.e., links) in the network. We also assume that the number of permits issued

for each link in each time period is equal to or less than the traffic capacity of each link in

the network. This means that queuing congestion never occurs in the network under this
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permit-issue scheme.

The permits issued for each link (bottleneck) are put on sale by the road manager. Each

user who would like to use a path must purchase a bundle of permits corresponding to a set of

links included in the user’s preferred path. In the trading markets, prices and the allocation of

time-dependent permits are determined through an auction mechanism. The detailed trading

rules are given in Section 4.5.

It must be admitted that the procedures for trading network permits seem unrealistic at

first glance, but implementation of these would become feasible with futuristic vehicles in

which an agent software is installed to manage driving, navigation and safety. From this

perspective, the mechanism proposed in this chapter can be viewed as the protocol of a

multi-agent system in which the agent software executes the procedures for trading network

permits on behalf of users.

4.2.4 Dynamic travel costs and user utility in general networks

The transportation cost for a single trip made by a network user consists of “schedule cost”

and “travel cost.” The schedule cost for user i is the cost due to the difference between the

user’s desired arrival time period ti and the actual arrival time period t. The schedule cost

is represented by a function si(t, ti) of both destination arrival time and desired arrival time.

The travel cost is the monetary equivalent of the travel time for a trip from the origin to the

destination. The travel times differ among the paths. The travel time of a path between the

OD pair is defined as the sum of travel times of the links included in the path. Note that the

travel time of each link a is a constant ta under the permit system since there is no queuing.

Hence, the travel time Tr for path r ∈ Rod between the OD pair is also constant:

Tr =
∑
a∈A

taδa,r(o,d), (4.1)

where δa,r(o,d) is a typical element of the path-link incidence matrix for the node pair (o, d); it

is 1 if link a is on path r connecting the OD pair (o, d) and zero otherwise.

We suppose that each user has a private valuation vi,r(t) for each path r and each des-

tination arrival time period t. This valuation vi,r(t) represents a nonnegative value of trip

between OD pair along path r in time period t. For example, to show a correspondence with
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conventional traffic assignments, we can specify the valuation as

vi,r(t) ≡ wi − (si(t, ti) + αiTr) , (4.2)

where wi is a parameter, which is interpreted as the trip utility (or willingness-to-pay) be-

tween the OD pair, and αi is a coefficient that converts travel time into a monetary equivalent.

Each user is assumed to have a quasi-linear utility function (we use the term “payoff”

interchangeably with “utility”). Specifically, each user’s utility ui,r(t) for path r in time period

t is represented as the difference between private valuation and the “permit purchase cost

Pr(t)” determined in an auction:

ui,r(t) ≡ vi,r(t) − Pr(t). (4.3)

The permit purchase cost is the total payment for purchasing the bundle of link permits

required for traveling along a path and arriving at the destination in a certain time period.

4.3 Dynamic system optimal allocation of network permits

The objective of an auction mechanism, such as that designed in this chapter, is to achieve

a network permit allocation pattern that maximizes a social surplus (i.e., dynamic system

optimal allocation). The social surplus is defined as the sum of user’s valuations. This

excludes user payments to the road manager to purchase permits because these payments are

simply income transfers between the users and the road manager. Thus, we formulate an

optimization problem [DSO] of providing the dynamic system optimal allocation of network

permits:

max
(f,y)
. SS(f) ≡

∑
od∈W

∑
i∈Nod

∑
t∈T

∑
r∈Rod

vi,r(t) fi,r(t) (4.4)

subject to
∑
t∈T

∑
r∈Rod

fi,r(t) ≤ 1 ∀i ∈ Nod, ∀od ∈W (4.5)

∑
od∈W

∑
i∈Nod

yi,a(t) ≤ μa ∀a ∈ A, ∀t ∈ T (4.6)

yi,a(t) =
∑
r∈Rod

fi,r(t + Ta,r)δa,r(o,d) ∀a ∈ A, ∀t ∈ T, ∀i ∈ Nod ∀od ∈W (4.7)

fi,r(t), yi,a(t) ∈ {0, 1} ∀a ∈ A, ∀r ∈ Rod, ∀t ∈ T, ∀i ∈ Nod, ∀od ∈W, (4.8)
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where fi,r(t) denotes the allocation of a bundle of permits to user i and yi,a(t) denotes the

allocation of a network permit to user i. Specifically, fi,r(t) is 1 if user i is allocated a bundle

of permits for a set of links required to travel along path r and to arrive in time period t and

is zero otherwise. Hence, yi,a(t) is 1 if user i is allocated a network permit for link a in time

period t and is zero otherwise.

The combinatorial optimization problem of finding an efficient network permit allocation

pattern (f∗,y∗), subject to the physical constraints on flows representing the network perfor-

mance. The first constraint (4.5) is the condition that each user makes at most one trip in the

interval [0, I]. The second constraint (4.6) is the capacity constraint on each link. The third

constraint (4.7) expresses the flow conservation between link flows and path flows for each

user; that is, the link flow yi,a(t) entering into link a in time period t is the sum of the flows

on all paths going through that link and arriving at the destination at time t+ Ta,r. The travel

time required for arriving at the destination from the upstream node k (of the link a) through

path r (containing link a) is given by:

Ta,r =
∑
a′∈A

ta′δa′,r(k,d), (4.9)

where δa′,r(k,d) is a typical element of the path-link incidence matrix for node pair (k, d).

Although the road manager seeks to solve the problem [DSO] to achieve the system op-

timal permit allocation pattern, solving the problem directly poses two major difficulties: (i)

the objective function of the problem includes users’ private valuations, and (ii) the problem

is NP-hard (i.e., no polynomial-time algorithm exists for it). The first difficulty comes from

the obvious fact that the manager cannot accurately obtain such private information. The

second difficulty comes from the fact that the problem [DSO] is an integer multicommodity

flow problem.

One possible way to address these difficulties might be to apply conventional combi-

natorial auctions to this problem. For example, the VCG mechanism can overcome the first

difficulty, at least in principle, because it gives users an incentive (Vickrey payment) to report

their valuations truthfully (i.e., strategy-proofness). However, the VCG mechanism cannot

overcome the second difficulty because the above mentioned problem [DSO] must be solved

exactly to determine the optimal permit allocation and to compute the Vickrey payments (i.e.,

it is computationally infeasible). One natural approach to handling the problem is to seek a

sub-optimal solution instead of the optimal solution. However, the VCG mechanism allow-
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ing nonoptimal allocations is not strategy-proof, as each user has an incentive to bid false

valuations to increase one’s own utility (Nisan and Ronen, 2007). Therefore, it is difficult to

apply the VCG mechanism directly to the trading markets.

4.4 Day-to-day auction mechanism: an auction mechanism

with day-to-day capacity control

In this section, we propose a novel auction mechanism including a day-to-day capacity con-

trol, which is readily implementable for general networks. We call this mechanism the day-

to-day auction mechanism. To avoid computational infeasibility such as that in the case of

the VCG mechanism, the proposed mechanism employs an evolutionary approach. Although

the evolutionary approach cannot be employed for the one-shot auctions that are typically

treated in auction theory, it can be utilized for a tradable network permits scheme in which

the auction is opened to morning commuters each day.

Before describing the proposed mechanism, we introduce some modifications of the

model. In the proposed mechanism, we consider time-dependent permit allocation patterns

and their day-to-day dynamics. We then denote the day by s ∈ S. Suppose that each user

behaves myopically and makes one’s own choice so as to maximize the following utility

defined for each day s:

u(s)
i,r (t) ≡ vi,r(t) − P(s)

r (t). (4.10)

This implies that the user considers only his or her allocation of the bundles and payment on

each day, so the user’s true valuations are constant for all days.

4.4.1 Reformulation of the DSO problem with path capacities and the

Benders decomposition principle

The day-to-day auction mechanism is based on the idea of reformulating the problem [DSO]

by introducing non-individual variables and then applying the Benders decomposition prin-

ciple (see Appendix A for a basic framework) to obtain two problems, a master problem

and a sub-problem. We then solve these problems on day-to-day basis. Further, in order to
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obtain an efficient permit allocation with imperfect information about users, the mechanism

also exploits an auction mechanism to solve the sub-problem.

We let Fr(t),Ya(t) ∈ Z+ denote a non-individual path variable and a non-individual link

variable, respectively. By using these variables, the problem [DSO] with non-individual

variables is formulated as

max
(f,F,Y)

. SS(f,F) ≡
∑
od∈W

∑
i∈Nod

∑
t∈T

∑
r∈Rod

vi,r(t) fi,r(t) (4.11)

subject to
∑
t∈T

∑
r∈Rod

fi,r(t) ≤ 1 ∀i ∈ Nod, ∀od ∈W (4.12)

∑
i∈Nod

fi,r(t) ≤ Fr(t) ∀r ∈ Rod, ∀t ∈ T, ∀od ∈W (4.13)

Ya(t) ≤ μa ∀a ∈ A, ∀t ∈ T (4.14)

Ya(t) =
∑
od∈W

∑
r∈Rod

Fr(t + Ta,r)δa,r(o,d) ∀a ∈ A, ∀t ∈ T (4.15)

fi,r(t) ∈ {0, 1}, Fr(t),Ya(t) ∈ Z+ ∀a ∈ A, ∀r ∈ Rod, ∀t ∈ T, ∀i ∈ Nod, ∀od ∈W. (4.16)

Each non-individual path variable Fr(t) in Eq.(4.13) is interpreted as a path capacity that

is the number of bundles of permits sold for the path. Constraint (4.12) is the condition

that each user makes at most one trip. Constraint (4.13) is the path capacity constraint on

each path. Constraints (4.14) and (4.15) are the conditions that the path capacity satisfies

constraints stemming from link capacities.

This problem includes two types of variables, individual variables f and non-individual

variables (F,Y), and is naturally becomes a bi-level problem based on Benders decomposi-

tion principle:

max
(F,Y)
.
∑
od∈W

∑
i∈Nod

∑
t∈T

∑
r∈Rod

vi,r(t) fi,r(F(t)) (4.17)

subject to Eq. (4.14), Eq. (4.15), and Fr(t),Ya(t) ∈ Z+,

where f(F) is an optimal solution of the following problem for a parameter F:

max
f≥0
.
∑
od∈W

∑
i∈Nod

∑
t∈T

∑
r∈Rod

vi,r(t) fi,r(t) (4.18)

subject to Eq. (4.12) and Eq. (4.13),
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The upper level problem (master problem) determines the optimal path capacity that max-

imizes the social surplus. The lower level problem (sub-problem) determines the efficient

allocation of bundles of permits under the condition that each path capacity is fixed. Note

that the sub-problem reduces to independent sub-problems in terms of OD pairs because

path capacities differ among OD pairs. Furthermore, the sub-problem (4.18) is the Hitchcock

transportation problem and so a linear relaxation of the sub-problem satisfies total unimod-

ularity (e.g., Papadimitriou and Steiglitz (1982)). Thus, we can obtain an integer solution by

solving a linear relaxation of the sub-problem because the path capacities are integer valued.

To demonstrate a clear relationship between the master problem and the sub-problem,

we consider the following dual problem of the sub-problem:

Z(F) ≡ min
(π,P)≥0

.
∑
od∈W

∑
i∈Nod

πi +
∑
od∈W

∑
t∈T

∑
r∈Rod

Fr(t)Pr(t) (4.19)

subject to

πi ≥ vi,r(t) − Pr(t) ∀r ∈ Rod, ∀t ∈ T, ∀i ∈ Nod, ∀od ∈W (4.20)

where (π,P) are Lagrange multipliers for constraints (4.12) and (4.13). As shown in 4.5.1,

these Lagrange multipliers equal to the user payoffs and competitive equilibrium bundle

prices that are realized in an auction as shown in Subsection (we call these variables demand

information). From the duality theorem, the optimal value of the objective function (4.19)

coincides with the optimal value of the objective function (4.18); that is,

Z(F) =
∑
od∈W

∑
i∈Nod

πi(F) +
∑
od∈W

∑
t∈T

∑
r∈Rod

Fr(t)Pr(F(t)) =
∑
od∈W

∑
i∈Nod

∑
t∈T

∑
r∈Rod

vi,r(t) fi,r(F(t)),

(4.21)

where (π(F),P(F)) is an optimal solution of the dual problem (4.19) for a parameter F.

Hence, (π(F),P(F)) is an extreme point of the convex feasible region ΩSD that consists of

the constraints (4.20) and non-negative constraints. By using the function (4.21), we can

transform the master problem into the following problem:

max
(F,Y)
. Z(F) =

∑
od∈W

∑
i∈Nod

πi(F) +
∑
od∈W

∑
t∈T

∑
r∈Rod

Fr(t)Pr(F(t)) (4.22)

= max
(F,Y)
.

⎡⎢⎢⎢⎢⎢⎣ min
(π(s),P(s))∈V

.
∑
od∈W

∑
i∈Nod

π(s)
i +

∑
od∈W

∑
t∈T

∑
r∈Rod

Fr(t)P
(s)
r (t)

⎤⎥⎥⎥⎥⎥⎦ (4.23)

subject to Eq. (4.14), Eq. (4.15), and Fr(t),Ya(t) ∈ Z+,
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where V is the finite set of all extreme points of the convex feasible region ΩSD. From this

formulation, we see that path capacities are adjusted on the basis of the demand information.

Moreover, this problem is equivalent to the following problem:

max
θ≥0, (F,Y)

. θ (4.24)

subject to Eq. (4.14), Eq. (4.15), Fr(t),Ya(t) ∈ Z+,

θ ≤
∑
od∈W

∑
i∈Nod

π(s)
i +

∑
od∈W

∑
t∈T

∑
r∈Rod

Fr(t)P
(s)
r (t) ∀(π(s),P(s)) ∈ V (4.25)

Problem (4.24) is equivalent to the problem [DSO] (with non-individual variables) if all

extreme points are known. However, it is difficult to obtain the extreme points in advance

because the number of extreme points is generally too large. Hence, we consider a relax-

ation problem (4.24) that has a subset of the extreme points in V and produces an upper

bound on the optimal objective value of the problem [DSO]. This relaxed problem is called

the restricted master problem [RMP]. We then employ an iterative approach by adding an

extreme point to the problem [RMP] to improve the upper bound. Note that an extreme point

is generated by solving the problem (4.19) for fixed path capacities F.

The procedure of the proposed mechanism corresponds to solving the above two prob-

lems, iteratively. One of the greatest differences between the Benders decomposition and

the proposed mechanism is whether or not coefficient parameters vi (i.e., truthful valuations

of each user) are initially given. As mentioned in Section 4.3, the manager cannot observe

such private information. Nevertheless, the proposed mechanism can obtain the demand

information by exploiting an auction mechanism for solving the sub-problem.

4.4.2 Interpretation as an auction mechanism with day-to-day capacity

control

The day-to-day auction mechanism comprises an auction phase and a path capacity adjust-

ment phase; the two phases are repeated on a day-to-day basis (Fig.4.1). In the auction phase

corresponding to the sub-problem, the manager sells bundles of permits to the users through

an ascending auction under the condition that each capacity is fixed. In addition, the bundle

prices are determined during the ascending auction so as to maximize each user’s payoff. In

the path capacity adjustment phase corresponding to the restricted master problem, the man-

ager adjust each path capacity to an appropriate level by considering the demand information
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Figure 4.1 Procedure of the proposed mechanism

that was determined in the previous auction phases. Hence, the procedure of the day-to-day

auction mechanism can be summarized as follows (more details of the mechanism and its

properties can be found in Section 4.5):

Step 0: Set s = 1. Determine the initial path capacities F(1). Start with a set of extreme

points V(1) = {∅} and a convergence criterion θ(1) = ∞.

Step 1: Auction phase (Subsection 4.5.1). For fixed path capacities F(s), the manager sells

bundles of permits through an ascending auction. The user payoffs and the bundle

prices (π(s),P(s)) are also determined. If the social surplus SS(s) achieved in the as-

cending auction is equal to or greater than the convergence criterion θ(s) that is defined

in Subsection 4.5.2, then stop. Otherwise go to Step 2.

Step 2: Path capacity adjustment phase (Subsection 4.5.2). Add an extreme point to the

set; i.e., V(s+1) ≡ {V(s) ∪ (π(s),P(s))}. Produce the path capacities F(s+1) by solving the

problem [RMP] and update the convergence criterion θ(s+1). Let s = s + 1. Go to Step

1.

Note that stop in Step 1 means that optimal path capacities are obtained. Therefore,

once the above procedure stops, the manager no longer adjusts the path capacities and sells

bundles through the auction with the same optimal path capacities each day.
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4.4.3 Comparisons of the proposed mechanism and iterative combina-

torial auctions

Our approach presented in this chapter is related to iterative combinatorial auctions (e.g.,

Parkes and Ungar, 2000a; de Vries, Schummer, and Vohra, 2007) that implement the VCG

outcome (i.e., allocation and prices) in the sense that the original social surplus maximization

problems (winner determination problem) are reformulated by adding new variables and con-

straints. Indeed, the problem [DSO] (with aggregate flows) corresponds to the formulation

(P2) presented in Bikhchandani et al. (2002). However, the objectives of the reformulations

are different. Our objective is to decompose the original problem to more simple and small

problems. On the other hand, their main objective is to characterize the competitive equi-

librium based on LP and to develop iterative auctions (e.g., ascending auctions) using LP

algorithms. More specifically, they first focus on a strong (or extended) formulation for the

original problem that has integral property, i.e., the linear relaxation of the strong formula-

tion characterizes competitive equilibrium (see Bikhchandani and Ostroy, 2002). Then, the

linear relaxation problem is solved by using a dual-based algorithm (i.e., primal-dual algo-

rithm and subgradient algorithm), which is interpreted as (within-day) auction mechanisms

(e.g., Parkes and Ungar, 2000a; de Vries, Schummer, and Vohra, 2007).

The iterative combinatorial auctions may overcome the problem of the VCG mechanism

discussed in Section 4.3 (and Appendix B). Specifically, these auctions can obtain the VCG

outcome by solving only one linear program. Also, these auctions do not require bidders

to report bids for possible combination of all items, which enables bidders to participate in

auctions without revealing private information more than necessary.

However, it may be difficult or undesirable to apply the iterative combinatorial auctions

to our situation directly, while we employ a similar (non-combinatorial) auction to imple-

ment the sub-problem. First, a strong formulation of the winner determination problem has

an exponential of number of variables if the number of bidders or items is large like our

situation. Second, in general, these auctions need to set a bidder-specific price to achieve the

efficient allocation. Employing such a price necessarily causes unfairness among road users.

In contrast, in the proposed mechanism, the sub-problem (winner determination prob-

lem) is just the transportation problem not a combinatorial optimization problem. The size

of the winner determination problem is also small because the sub-problem reduces to the
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independent sub-problems in terms of OD pairs. Furthermore, the proposed mechanism

achieves an efficient allocation for a fixed path capacity by setting a bundle-specific price.

From the above discussion, we conclude that our proposed mechanism will be more suitable

for controlling transportation networks.

4.5 Details of proposed mechanism and its properties

This section presents the details and properties of each phase of the day-to-day auction mech-

anism. Subsection 4.5.1 gives a detailed explanation of the auction phase. Subsection 4.5.2

gives the detailed path capacity adjustment rule. Subsection 4.5.3 analyzes the proposed

overall mechanism combining two phases and proves that the day-to-day dynamics of the

network allocation pattern converges to the dynamic system optimal allocation when the

number of users is large.

4.5.1 Auction phase

Let F(s) be the path capacities as determined in the path capacity adjustment phase on day

s − 1. Then, the sub-problem for each OD pair is given by the following linear program:

SS(s)
od ≡ max

f(s)≥0
.
∑
i∈Nod

∑
t∈T

∑
r∈Rod

vi,r(t) f (s)
i,r (t) (4.26)

subject to Eq. (4.12) and Eq. (4.13)

The necessary and sufficient optimality conditions of the problem are given by the following

Kuhn-Tucker conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩
π(s)

i = vi,r(t) − P(s)
r (t) if f (s)

i,r (t) = 1

π(s)
i ≥ vi,r(t) − P(s)

r (t) if f (s)
i,r (t) = 0

∀r ∈ Rod, ∀t ∈ T,∀i ∈ Nod (4.27)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

i∈Nod
f (s)
i,r (t) = F(s)

r (t) if P(s)
r (t) > 0

∑
i∈Nod

f (s)
i,r (t) ≤ F(s)

r (t) if P(s)
r (t) = 0

∀r ∈ Rod, ∀t ∈ T (4.28)

π(s)
i ,P

(s)
r (t) ≥ 0 ∀r ∈ Rod, ∀t ∈ T, ∀i ∈ Nod, ∀od ∈W. (4.29)

Note that the allocation variables f(s) are integer because each sub-problem (4.26) satisfies

total unimodularlity. The solution (f(s),π(s),P(s)) consists of a competitive equilibrium allo-

cation, the payoffs and the prices, respectively. In the competitive equilibrium, each user
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acquires the bundle of permits that maximizes his or her utility (i.e., (4.27)) for the given set

of competitive equilibrium prices that satisfy the market clearing condition (4.28). Further,

all users who acquire bundles have nonnegative payoffs (i.e., the user’s willingness-to-pay is

greater than the price), which is consistent with conventional traffic assignments with elastic

demand.

The concept of the competitive equilibrium for indivisible items is a natural extension

of the classical economic concept but for divisible items. Here the necessary and suffi-

cient condition for the existence of this competitive equilibrium is that the optimal solution

to the linear relaxation problem of the sub-problem is integer (Bikhchandani and Mamer,

1997). In addition, it has been shown that the competitive equilibrium, if it exists, is efficient

(Bikhchandani and Ostroy, 2002). This can be summarized as follows:

Lenmma 4.1 In the tradable network permit markets on day s, there always exists a com-

petitive equilibrium that provides an efficient network permit allocation pattern for a fixed

path capacity.

Proof See Bikhchandani and Mamer (1997) and Bikhchandani and Ostroy (2002).

Note that the set of competitive equilibrium prices discussed above is not necessarily

strategy-proof. However, Leonard (1983) showed that minimal competitive equilibrium

prices such that the payment for each user is equal to the decrease in the value of the social

surplus by adding the user to the auction are equivalent to Vickrey payments that produce

the strategy-proofness. In addition, Leonard (1983) formulated the problem of finding the

minimal competitive equilibrium prices:

min
(π(s),P(s))≥0

.
∑
t∈T

∑
r∈Rod

F(s)
r (t)P(s)

r (t) (4.30)

subject to Eq. (4.20),∑
i∈Nod

π(s)
i +

∑
t∈T

∑
r∈Rod

F(s)
r (t)P(s)

r (t) = SS(s)
od . (4.31)

The problem minimizes equilibrium competitive prices (or maximizes user payoffs) subject

to the condition that the solution of this problem also solves the dual of the sub-problem.

From the above discussions, we find that the sub-problem can be solved through the

VCG mechanism in a computationally efficient manner: the allocation problem (4.26) is
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merely the transportation problem and Vickrey payments are computed by solving only one

linear program (4.30). However, there remains the problem of complication of the bidding

rule: each user has to submit sealed bids reporting the value of all bundles of permits. This

bidding rule is also undesirable in terms of the privacy, as users are required to reveal more

of their private information than is necessary.

Ascending proxy auction

The proposed mechanism employs an ascending auction to resolve the problems of sealed

bid auctions and to produce outcomes (i.e., allocation and prices of bundles of permits) in an

informationally efficient manner. More specifically, we employ the (exact) ascending auction

proposed by Demange, Gale, and Sotomayor (1986) (we call this the DGS auction). In this

auction, users report only the “names” of bundles of permits in which they are interested. The

procedure of the DGS auction corresponds to solving the sub-problem using a primal-dual

algorithm, which is described as follows (see also Bikhchandani et al., 2002, and Appendix

C):

Step 0: Initialization. Set P(s) = 0 for all bundles.

Step 1: Bidding phase. Each user reports “names” of the bundles that maximize one’s own

payoff under the current prices P(s), i.e., a demand set Di(P(s)) ≡ arg maxr,t[vi,r(t) −
P(s)

r (t)]. If each user can be allocated a bundle from his or her demand set, then stop

because P(s) are equilibrium prices. Otherwise go to Step 2.

Step 2: Price adjustment phase. The manager chooses a minimal overdemanded set M(P(s))

and raises the prices of the bundles in that set (i.e., P(s)
r (t) = P(s)

r (t) + 1, ∀(r, t) ∈
M(P(s))). Go to Step 1.

Here, an overdemanded set is a set of bundles for which the number of users demanding

only bundles in that set exceeds the number of bundles sold in the auction, and the minimal

overdemanded set is an overdemanded set of bundles with no proper overdemanded subset.

In the DGS auction, the prices of the bundles converge to the minimal competitive equi-

librium prices if each user reports the demand set truthfully (i.e., a myopic best response

strategy) because the minimal overdemanded set is chosen in Step 2. Hence, the outcome of
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the DGS auction is equal to the VCG outcome. Further, the truthful reporting of the demand

set constitutes a Nash equilibrium for each user in each Step 3.

In a practical implementation of the DGS algorithm, it is hard for each user to report

the demand set in each bidding phase, i.e., the transaction cost is too large. We therefore

introduce a proxy agent system to support the bidding of users. Proxy systems are popular

and have been installed in many Internet auctions (e.g., eBay and Yahoo). Under such a

system, each user reports valuations to a proxy agent for some bundles that interest the user.

Then, the proxy agent bids in the auction on the basis of the information received from the

user. This system not only reduces the transaction cost of the bidding phase but also prevents

strategic behaviors (e.g., a non-myopic best response strategy) in each bidding phase.

Let us now introduce the proxy agent system proposed by Parkes and Ungar (2000b) into

the DGS auction. Step 0 and Step 1 are then modified as follows:

Step 0’: Before starting the auction, each user reports information of valuations for some

bundles to one’s own proxy agent. Set P(s) = 0 for all bundles.

Step 1’: Based on the information received and the current prices, each proxy agent submits

each user demand set Di(P(s)). If each user can be allocated a bundle from one’s own

demand set, then stop because the P(s) are equilibrium prices. Otherwise go to Step 2.

In Step 1’, the user needs to update information if the proxy agent does not have enough

information to submit the demand set. Since the proxy DGS auction restricts user strategies

(in each bidding phase) to a myopic best response strategy, the dominant strategy is truthful

reporting of the valuations to the proxy agent. From what has been discussed above and

Lemma 4.1, we obtain the following proposition:

Proposition 4.1 The network permit allocation pattern achieved under the proxy DGS auc-

tion for implementing the tradable network permit markets on day s is efficient, and the

prices of bundles of permits converge to the minimal competitive equilibrium prices. The

dominant strategy for each user is truth reporting of the valuations of bundles to the proxy

agent.

Proof See Demange et al. (1986) and Parkes and Ungar (2000b).
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4.5.2 Path capacity adjustment phase

In the path capacity adjustment phase, the road manager first generates the demand informa-

tion (i.e., payoffs and prices). The prices P(s) can be obtained directly in the auction phase for

all OD pairs. The payoffs π(s), however, are computed indirectly. In the proxy DGS auction,

since each user reports his or her true valuations for interesting bundles to the proxy agent,

the manager can obtain his or her winning valuation v∗i,r(t). Then, the manager calculates a

total payoff Π(s) from the duality theorem:

Π(s) ≡
∑
od∈W

∑
i∈Nod

π(s)
i =

∑
od∈W

∑
i∈Nod

v∗i,r(t) −
∑
od∈W

∑
t∈T

∑
r∈Rod

F(s)
r (t)P(s)

r (t). (4.32)

Note that the manager needs to know only the total payoff to adjust path capacities.

After generating the demand information, the manager considers all demand information

for the current day and past days, V(s+1) ≡ {V(s) ∪ (Π(s),P(s))}, and adjusts each path capacity

by solving the restricted master problem [RMP]. However, this is computationally intensive

because the problem [RMP] (i.e., the problem (4.24)) is a large integer programming (IP)

problem with one continuous variable. To avoid this, we solve the linear relaxation of the

problem [RMP] and obtain an integer solution by rounding off the fractional solution. Such

a strategy was suggested by McDaniel and Devine (1977) and has successfully used in var-

ious problems (e.g., Cordeau, Soumis, and Desrosiers, 2000). This strategy is suitable for

our situation because non-individual variables (path capacities) in the problem [RMP] are

control variables of the road manager and can be treated as continuous variables, although

the individual variables (allocation of network permits) cannot be treated as continuous. In

addition, we should note here that the relaxation of integrality constraints does not affect

the convex feasible region ΩSD of the dual sub-problem and that an extreme point can be

generated from any integer solution. Thus, the problem with continuous variables (F̃, Ỹ) that

the road manager needs to solve is given as

max
θ≥0, (F̃(s+1),Ỹ(s+1))≥0

. θ (4.33)
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subject to

θ ≤ Π(s) +
∑
od∈W

∑
t∈T

∑
r∈Rod

F̃(s+1)
r (t)P(s)

r (t) (Π(s),P(s)) ∈ V(s+1) (4.34)

Ỹ(s+1)
a (t) ≤ μa ∀a ∈ A, ∀t ∈ T (4.35)

Ỹ(s+1)
a (t) =

∑
od∈W

∑
r∈Rod

F̃(s+1)
r (t + Ta,r)δa,r(o,d) ∀a ∈ A, ∀t ∈ T. (4.36)

The optimal objective value is an upper bound on the maximum social surplus SS∗ of the

problem [DSO], which is weaker than an upper bound that is produced with the integer

programming problem [RMP].

From the optimality conditions of the problem, a path capacity adjustment rule can be

derived as
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

a∈A pa(t − Ta,r)δa,r(o,d) = Pr(t) if F̃(s+1)
r (t) > 0

∑
a∈A pa(t − Ta,r)δa,r(o,d) ≥ Pr(t) if F̃(s+1)

r (t) = 0
∀r ∈ Rod, ∀t ∈ T, ∀od ∈W, (4.37)

where the P are the (convex combinations of) bundle prices that produce the weak upper

bound (i.e., the constraint (??) is bounded), and p is the Lagrange multiplier for the constraint

(4.35). This Lagrange multiplier is interpreted as a permit price for each link that satisfies

the following (market clearing) condition:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X̃(s+1)

a (t) = μa if pa(t) > 0

X̃(s+1)
a (t) ≤ μa if pa(t) = 0

∀a ∈ A, ∀t ∈ T. (4.38)

If the path capacity is positive in the path capacity adjustment rule (4.37), the bundle price

estimated for the path by means of link permit prices and is equal to the bundle price deter-

mined in the auction phase. For a path whose the estimated price exceeds the realized price,

the path capacity is zero. This means that no path capacities are allocated to the worthless

paths. The integer path capacities F(s+1) on day s + 1 can be obtained by rounding-off all

continuous path capacities; i.e., F(s+1)
r (t) = �F̃(s+1)

r (t).

Stabilizing strategy for Benders decomposition

Although the problem (4.33) is easy to solve, there remains one issue relevant to the conver-

gence rate of the Benders decomposition; i.e., path capacities usually oscillate, which results



69

in slow convergence (Magnanti and Wong, 1981). To accelerate and stabilize the Benders

decomposition, we add “boxstep constraints” (Marsten, Hogan, and Blankenship, 1975) to

the above problem (4.33):

F̃(s)
r (t) − ε ≤ F̃(s+1)

r (t) ≤ F̃(s)
r (t) + ε ∀r ∈ Rod, ∀t ∈ T, ∀od ∈W, (4.39)

where ε is a boxstep parameter. At each step, the solution F̃(s+1) to the master problem is

constrained to lie within a box centered on the previous solution F̃(s) and so the oscillation

is dramatically reduced. Note that the problem including the boxstep constraints does not

necessarily produce an upper bound on the maximum social surplus SS∗. Thus, we solve the

problem (4.33) to obtain the upper bound θ.

4.5.3 Convergence of the day-to-day auction mechanism

We now establish the convergence result of the day-to-day auction mechanism on the basis

of the Benders decomposition technique. The standard Benders decomposition algorithm

converges to an optimal solution when the strong upper bound obtained by the problem

[RMP] is equal to the optimal objective value of the sub-problem (i.e., the social surplus

achieved in the auction phase). However, the weak upper bound θ obtained with the proposed

mechanism will exceed the maximum value of the social surplus SS∗ even if all the extreme

points are generated, and thus we cannot use θ as the convergence criterion.

To resolve this problem, we introduce a new convergence criterion θ:

θ ≡ min
(Π(s),P(s))∈V(s+1)

. Π(s) +
∑
t∈I

∑
r∈R

F(s+1)
r (t)P(s)

r (t), (4.40)

and an update rule of the criterion is

θ(s+1) = min
{
θ(s), θ

}
. (4.41)

The criterion θ optimizes (i.e., minimizes) the objective function of the problem [RMP] only

with respect to extreme points (Π(s),P(s)) given at the integer path capacities F(s+1), which

results in good convergence properties as shown in the proof of the proposition below. This

criterion θ is equal to or less than the strong upper bound since it does not maximize the

objective function of the problem [RMP] with respect to the path capacities. Therefore, we
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Figure 4.2
Relationship between the convergence criterion, the weak upper bound, the

achieved social surplus, and the maximum value of the social surplus

conclude that the permit allocation under the proposed mechanism converges to an approxi-

mate dynamic system optimal state when the achieved social surplus SS(s+1) (=
∑

od SS(s+1)
od )

in the auction phase is equal or more than the convergence criterion θ(s+1).

Fig.4.2 shows the relationship between the convergence criterion θ(s), the weak upper

bound θ
(s)

, the achieved social surplus SS(s), and the maximum social surplus SS∗. The

horizontal axis represents the social surplus (or its upper bound) and dotted lines represent

the ranges in which the variables can exist. The achieved social surplus SS(s) can exist in the

range [0,SS∗]. The convergence criterion and the weak upper bound take minimum values

θ∗ and θ
∗

when we have all the extreme points.

By using the convergence criterion θ(s), we obtain the value of the social surplus in a

range that is represented by the solid arrow in Fig.4.2. The ratio SS(s)/SS∗ between the

achieved social surplus and the maximum value of the social surplus is confined within in

the range

θ∗

SS∗
≤ SS(s)

SS∗
≤ 1. (4.42)

Assuming that the ratio between the total number of users Q (=
∑

od |Nod|) and the total

link capacity
∑

t
∑

a μa is held constant, the range (4.42) converges to zero (i.e., the left-hand

side of Eq.(4.42) converges to 1) when the number of users is sufficiently large. This is

because the effect of rounding off the continuous path capacities is negligible in that case. In

addition, a new extreme point is generated in each auction phase when the achieved social

surplus does not satisfy the convergence criterion, so the proposed mechanism can converge

in a finite number of steps. Therefore, the following proposition holds.
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Proposition 4.2 Assume that the ratio between the number of users and total link capacity

is constant. Then, the day-to-day auction mechanism converges in a finite number of steps,

and the value of the social surplus achieved by the mechanism reaches its maximum value

when the number of users is large.

Proof See 4.A for the proof.

4.6 An extended mechanism which obviates path enumer-

ation

The day-to-day auction mechanism presented in the previous sections assumes that the road

manager can enumerate all the paths that users may choose. However, it is not necessarily

evident how the manager should do so for large-scale networks. To obviate path enumeration,

we construct an extended mechanism by introducing a path generation phase into the day-

to-day auction mechanism. This consists of applying a column generation procedure to the

system optimal allocation problem [DSO]. In the extended mechanism, users generate paths

successively, and hence path enumeration is obviated for the manager.

A column generation for a network flow problem considers a problem that has only a

subset of the paths of the original problem (i.e., a restricted master problem) and paths are

generated as needed (Ahuja, Magnanti, and Orlin, 1993). Hence, by considering only a

subset of the (dynamic) paths of the problem [DSO], a restricted master problem [C-RMP]

is formulated as

max
(f,y)
.
∑
od∈W

∑
i∈Nod

∑
t∈T

∑
r∈Rod(t)

vi,r(t) fi,r(t) (4.43)

subject to

∑
t∈T

∑
r∈Rod(t)

fi,r(t) ≤ 1 ∀i ∈ Nod, ∀od ∈W (4.44)

∑
od∈W

∑
i∈Nod

yi,a(t) ≤ μa ∀a ∈ A, ∀t ∈ T (4.45)

yi,a(t) =
∑
t∈T

∑
r∈Rod(t)

fi,r(t + Ta,r)δa,r(o,d) ∀a ∈ A, ∀t ∈ T, ∀i ∈ Nod ∀od ∈W (4.46)

fi,r(t), yi,a(t) ∈ {0, 1} ∀a ∈ A, ∀r ∈ Rod(t), ∀t ∈ T ∀i ∈ Nod, ∀od ∈W, (4.47)
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where Rod(t) is a subset of paths in destination arrival time period t. Since the problem [C-

RMP] and the problem [DSO] have the same optimization problem except for the number

of paths, we can solve the problem [C-RMP] through the day-to-day auction mechanism

presented in the previous sections.

A new path is generated by solving a column generation sub-problem corresponding to

the pricing step of the simplex algorithm (for the liner relaxation of the problem [C-RMP]).

In the standard column generation for a multicommodity flow problem, the sub-problem is

given as a shortest path problem for each commodity (Ahuja et al., 1993). Thus, by following

the standard theory, our sub-problem is formulated as the following all-or-nothing problem

for each user:

π∗i ≡ max
fi≥0
.
∑
t∈T

∑
r∈Rod

⎡⎢⎢⎢⎢⎣vi,r(t) −
∑
a∈A

p̂a(t − Ta,r)δa,r(o,d)

⎤⎥⎥⎥⎥⎦ fi,r(t) (4.48)

subject to
∑
t∈T

∑
r∈Rod

fi,r(t) ≤ 1, (4.49)

where p̂a(t) is an optimal Lagrange multiplier for the link capacity constraint (4.45) of the lin-

ear relaxation of the restricted master problem [C-RMP], which is interpreted as an optimal

link permit price. These link permit prices are obtained at the final path capacity adjustment

phase of the day-to-day auction mechanism (see Subsection 4.5.2).

The column generation sub-problem yields a path that maximizes each user payoff for

given constant link permit prices p̂. The path is generated if a maximum payoff exceeds

the current payoff achieved in the final auction phase of the day-to-day auction mechanism.

Specifically, the path is generated if the optimal value of the objective function π∗i exceeds

an optimal Lagrange multiplier π̂i for the constraint (4.44); i.e., λi ≡ π∗i − π̂i > 0. To

improve his or her payoff, the user requests that the manager sells the bundle for the path in

the auction phase. The road manager receives the requests of all users and adds the paths

to the set Rod(t) (if the path do not exists in the set). Then the restricted master problem

[C-RMP] is again solved through the day-to-day auction mechanism.

The steps in the extended mechanism mentioned above can be summarized as follows:

Step 0: Initial setting. Set τ = 1. Determine the initial path set R(1)
od (t) for each OD pair at

each destination arrival time period.

Step 1: Day-to-day auction phase. For fixed path set R(τ)
od (t), the restricted master problem

[C-RMP] is solved through the day-to-day auction mechanism (see Section 4.4 and
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4.5). The optimal link permit prices p̂(τ) are determined at the final path capacity

adjustment phase and are announced by the road manager.

Step 2: Path generation phase. Each user finds a path by solving the column generation

sub-problem and requests the manager to add the path if the maximum payoff π∗i ex-

ceeds the current payoff π̂(τ). If all requested paths exist in path set R(τ)
od (t), then stop.

Otherwise, the road manager creates a new path set R(τ+1)
od (t) by adding requested paths

to the set R(τ)
od (t). Let τ = τ + 1. Go to Step 1.

The paths are efficiently generated in Step 2 because the numerous number users generate

paths simultaneously. However, the road manager employs a path-adding rule that allows

each user to purchase not only paths generated by himself but also those generated by other

users of the same OD pair6, which promotes path generation. The extended mechanism is

guaranteed to converge because the number of paths is finite. Furthermore, when the number

of users is large, the allocation of network permits achieved under the extended mechanism

converges to the optimal one (i.e., the optimal solution of the problem [DSO]) since the gap

between the problem [DSO] and the linear relaxation converges to zero (Proposition 4.2).

4.7 Numerical example

We finally show a numerical example to demonstrate the convergence properties of the pro-

posed mechanism in a realistic network. The network that we employ is the Sioux Falls

network (LeBlanc et al., 1975) which has 24 nodes and 76 links (Fig.4.3). The physical

conditions of each link (i.e., free-flow travel time, capacity), which is based on Han (2003),

are summarized in Table 4.1 in 4.B. The network has 528 OD pairs, which was used by

(LeBlanc et al., 1975), and the number of users for each OD pair is a quarter of the number

provided in Dr. Hillel Bar-Gera’s website (http://www.bgu.ac.il/˜bargera/tntp/); i.e., the total

number of users is 90150. We set time interval for each time period to Δt = 3 (minute) and

the number of time periods to |T| = 40. The desired arrival time period for each user is set

randomly and the distribution of the desired arrival time periods is shown in Fig.4.4. Under

6 If we employ the standard column generation procedure, subsets of the paths differ among users because

the column generation sub-problem (4.48) is formulated for each user. However, in the auction phase, it

will be more natural that the same set of paths are sold for all users of the same OD pair.
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Figure 4.3 Sioux Falls network

this distribution, the network is congested (i.e., almost links have positive permit prices) dur-

ing peak periods. As the initial path set for each OD pair, we simply choose some shortest

paths. A box step parameter ε = 5 is chosen. An optimal social surplus is calculated by

10,000 iterations of the proposed mechanism for a sufficiently accurate determination of the

maximum one.

Fig.4.5 illustrates the convergence process of the proposed mechanism until the relative

error between the achieved social surplus SS(s) and the optimal social surplus is reduced

below 0.05%. The horizontal axis represents the number of days, s, and the vertical axis

represents the ratio between the achieved social surplus SS(s) on each day and the optimal

social surplus. The vertical lines (at day 59, 110, 164, 232, . . . ) show days at which a day-

to-day auction phase (or mechanism) terminated. On such a day, the path generation phase

starts. Note that the path set is fixed in each day-to-day auction phase.

By using Fig.4.5, we explain the convergence properties of the first day-to-day auction

phase from day 1 to day 59. In this phase, the achieved social surplus SS(s) (the solid black

curve) increases as path capacities are adjusted on a day-to-day basis. Conversely, the up-

per bound of the maximum social surplus θ
(s)

(the gray curve) for a fixed path set and the
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Figure 4.4 Distribution of the desired arrival time

Figure 4.5 Convergence process of the proposed mechanism
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Figure 4.6 Number of paths in each day-to-day auction phase

convergence criterion θ(s) (the black dotted curve) that are obtained in the path capacity

adjustment phase decrease monotonically. Eventually, these three values converge to the al-

most the same value. This means that the allocation of network permits achieved under the

day-to-day auction phase converges to the approximate dynamic system optimal allocation

for a fixed path set.

After the first day-to-day auction phase terminates (at day 59), the first path generation

phase starts. In the path generation phase, each user requests a path to improve his or her

payoff based on the current permit prices and payoff realized in the previous day-to-day

auction phase. The achieved social surplus increases drastically in the second day-to-day

auction phase. This is because a large number of paths is generated in the first path generation

phase (see Fig.4.6). We also see from Fig.4.6 that the number of paths generated in each

subsequent phase decreases, and then the achieved social surplus reaches close to the optimal

value with a small number of iterations of the path generation phase.

4.8 Conclusion

To implement trading markets for the network permits, we proposed an auction mechanism

for general networks. We first discussed the impossibility of applying the VCG mechanism to
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the trading markets due to NP-hardness. To avoid such computational infeasibility, we con-

structed a day-to-day auction mechanism that is readily implementable for general networks.

We then proved that the proposed mechanism is strategy-proof and the network allocation

pattern under the mechanism converges to an approximation of the socially optimal state in

the sense that the achieved social surplus reaches its maximum value when the number of

users is large. Furthermore, we showed that the proposed mechanism can be extended to

mitigate path enumeration by introducing a column generation procedure, and demonstrated

its convergence property in a realistic network.

While this chapter focused on managing road transportation networks, the mechanism

proposed seems applicable in principle to the management of other transportation networks

(e.g., railway and freight networks). For example, freight networks are used by many users

who choose routes and departure times so as to maximize their utility as is the case for

road transportation networks. In contrast, the behaviors of network managers totally differ;

i.e., while a road manager aims to maximize the social surplus, a freight network manager

(i.e., a freight company) aims to maximize his or her profit. Nevertheless, managing other

transportation networks using the proposed mechanism seems a fruitful topic for future work.

Appendix 4.A Proof of the Proposition 4.2

We first show that a new extreme point is generated in every auction phase until the conver-

gence criterion is satisfied. We denote the path capacities at day s by F(s) and the convergence

criterion by θ(s). From the Eq.(4.40), the following holds:

θ(s) ≤ Π(s) +
∑
od∈W

∑
t∈I

∑
r∈R

F(s)
r (t)P(s)

r (t) ∀(Π(s),P(s)) ∈ V(s) (4.50)

holds. From the duality theorem, the optimal value of the objective function of the sub-

problem at day s (i.e., the value of the social surplus achieved by the ascending proxy auc-

tion), SS(s)
od , coincides with the optimal value of the objective function of its dual problem,

that is

SS(s) =
∑
od∈W

SS(s)
od =

∑
od∈W

∑
i∈Nod

∑
t∈T

∑
r∈Rod

vi,r(t) f s∗
i,r(t) = Π

s∗ +
∑
od∈W

∑
t∈T

∑
r∈Rod

F(s)
r (t)Ps∗

r (t), (4.51)

where (fs∗,Πs∗,Ps∗) is the optimal solution of the sub-problem and its dual problem. We here

consider the case that the convergence criterion is not satisfied (i.e., SS(s) < θ(s)). Then, the
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following relationships are hold:
∑
od∈W

∑
i∈Nod

πs∗
i +

∑
od∈W

∑
t∈T

∑
r∈Rod

F(s)
r (t)Ps∗

r (t) = SS(s)

< θ(s) ≤ Π(s) +
∑
od∈W

∑
t∈I

∑
r∈R

F(s)
r (t)P(s)

r (t) (∀(Π(s),P(s)) ∈ V(s)).

(4.52)

Hence, (Πs∗,Ps∗) � (Π(s),P(s)) ∈ V(s) is obtained; i.e., a new extreme point is generated.

Since the number of extreme points is finite, we can conclude that the proposed mechanism

converges in a finite number of steps.

Next, we show that the ratio θ∗/SS∗ in the left-hand side of Eq.(4.42) converges to 1 when

the number of users is large (assuming that the ratio between the number of uses and the total

link capacity is held constant). In order to show this, we prove that a ratio θ∗/θ
∗

that is less

than θ∗/SS∗ converges to 1. We denote the extreme point that minimizes the problem (4.40)

by (Π,P) ∈ V, and we denote the extreme point that produces the weak upper bound θ
∗

by

(Π,P) ∈ V. Then the gap between θ
∗

and θ∗ is investigated with the following equations:

θ
∗ − θ∗ =

⎛⎜⎜⎜⎜⎜⎝Π+
∑
od∈W

∑
t∈I

∑
r∈R

F̃(s+1)
r (t)Pr(t)

⎞⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎝Π+

∑
od∈W

∑
t∈I

∑
r∈R

Fr(t)Pr(t)

⎞⎟⎟⎟⎟⎟⎠ (4.53)

≤
⎛⎜⎜⎜⎜⎜⎝Π +

∑
od∈W

∑
t∈I

∑
r∈R

F̃(s+1)
r (t)Pr(t)

⎞⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎝Π+

∑
od∈W

∑
t∈I

∑
r∈R

Fr(t)Pr(t)

⎞⎟⎟⎟⎟⎟⎠ (4.54)

<

⎛⎜⎜⎜⎜⎜⎝
∑
od∈W

∑
t∈I

∑
r∈R

Pr(t)

⎞⎟⎟⎟⎟⎟⎠ = (the number of paths) × (average price). (4.55)

The second line represents the fact that the extreme points of minimizing (4.40) and (4.33)

are different. The third line follows because the maximum rounded value of each path ca-

pacity is 1.

Alternatively, θ
∗

can be estimated as follows:

θ
∗ ≥ SS∗ =

∑
od∈W

∑
i∈Nod

v∗i,r(t) = (the number of users) × (average winning valuation) (4.56)

where v∗i,r(t) is the winning valuation when the social surplus is maximized. By using the

above equations, the relative error between θ
∗

and θ∗ is obtained as follows:

θ
∗ − θ∗
θ
∗ <

(the number of paths) × (average price)
(the number of users) × (average winning valuation)

<
(the number of paths)
(the number of users)

.

(4.57)
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Since the bundle prices obtained by the ascending proxy auction never exceed the truthful

valuation of each user, the final inequality holds. When the number of users is large (i.e.,

Q → ∞) with the ratio between the number of users and the total link capacity held con-

stant, the relative error converges to zero because the number of paths is constant. Thus, the

following equations hold:

lim
Q→∞

θ∗

θ
∗ = 1 ⇒ lim

Q→∞
θ∗

SS∗
= 1 (4.58)

Hence, we can conclude that the range (4.42) converges to zero when the number of users is

large.
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Appendix 4.B Network and OD data

Table 4.1 Physical conditions of links in Sioux Falls network

Link Free-flow Capacity Link Free-flow Capacity

(upstream, travel time [vehicles (upstream, travel time [vehicles

downstream) [min] /min] downstream) [min] /min]

(1, 2) and (2, 1) 9 65 (11, 12) and (12, 11) 3 60

(1, 3) and (3, 1) 3 55 (11, 14) and (14, 11) 6 50

(2, 6) and (6, 2) 3 60 (12, 13) and (13, 12) 9 65

(3, 4) and (4, 3) 3 60 (13, 24) and (24, 13) 3 60

(3, 12) and (12, 3) 6 60 (14, 15) and (15, 14) 3 50

(4, 5) and (5, 4) 3 50 (14, 23) and (23, 14) 3 40

(4, 11) and (11, 4) 6 55 (15, 19) and (19, 15) 3 40

(5, 6) and (6, 5) 3 50 (15, 22) and (22, 15) 3 45

(5, 9) and (9, 5) 3 50 (16, 17) and (17, 16) 3 45

(6, 8) and (8, 6) 3 45 (16, 18) and (18, 16) 3 55

(7, 8) and (8, 7) 3 40 (17, 19) and (19, 17) 3 45

(7, 18) and (18, 7) 3 50 (18, 20) and (20, 18) 12 55

(8, 9) and (9, 8) 3 45 (19, 20) and (20, 19) 6 50

(8, 16) and (16, 8) 3 45 (20, 21) and (21, 20) 3 40

(9, 10) and (10, 9) 3 45 (20, 22) and (22, 20) 6 45

(10, 11) and (11, 10) 3 50 (21, 22) and (22, 21) 3 50

(10, 15) and (15, 10) 6 45 (21, 24) and (24, 21) 3 50

(10, 16) and (16, 10) 3 40 (22, 23) and (23, 22) 3 40

(10, 17) and (17, 10) 3 45 (23, 24) and (24, 23) 3 40



Chapter 5

A trading mechanism for network

permits with multiple purchase

opportunities

Chapter 4 constructed micro mechanism for implementing trading markets in more spatially

general situations than the single bottleneck case (Wada and Akamatsu, 2010). This chapter1

considers more temporally general situations where network permits for a specific day (a trip

day) are sold in multiple period markets (e.g., future markets and spot markets).

The main difference between this chapter and the previous chapters lies in the fact that

here we explicitly consider when road users would participate in trading markets or when

the markets would end. On the other hand, previous chapter implicitly assumed that all of

the users would gather in the markets on the day before making trips. This assumption is

reasonable for recurrent trips (e.g., a daily commute) because the users’ valuations for the

permits can be regarded as constants over time. In contrast, for non-recurrent trips, the users’

valuations will depend on when they purchase the permits. A typical example is the case in

which a person has multiple travel plans that depend on the purchase periods. The value of

the permit generally reflects not the utility of the trip itself but that of the activity associated

with the trip, i.e., the users’ valuations of the permits change over time. Thus, providing

multiple purchase opportunities can be expected to achieve more efficient resource allocation

1 This chapter is based on joint research with Pengfei Wang, Takashi Akamatsu, and Takeshi Nagae (Wada,

Wang, Akamatsu, and Nagae, 2012). A preliminary version presented in Infrastructure Planning Confer-

ence, Japan Society of Civil Engineering, 2010 (Wang, Akamatsu, and Wada, 2010).
81
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than a single period market.

Under multiple period markets, each road user can be free to choose a purchase period

and a network permit for a pre-specified time within the trip day (i.e., a destination arrival

time). On the other hand, the road manager has to allocate a bottleneck capacity to these mar-

kets as well as allocating to users. As a first step for implementing such markets, we design

a dynamic auction mechanism in which the number of permits sold for each market is fixed.

This mechanism can determine an efficient permits allocation along with the time sequence

if each user bids “net valuations” (valuations minus the option value of deferring purchase)

truthfully. It is proved that truthful revelation of net valuations is a dominant strategy for

each user, which also guarantees that the market choice of the user is optimal. Then we de-

rive an adjustment rule of the number of permits sold for each market and demonstrate that

combining the dynamic auction and the adjustment rule maximizes the social surplus in a fi-

nite number of iterations. Finally, we numerically demonstrate that the proposed mechanism

works effectively for a dynamic population case under a certain condition.

This chapter is organized as follows. Section 5.1 discusses related works. Section 5.2

outlines the tradable network permits scheme with multiple purchase opportunities. Section

5.3 formulates a system optimal network permits allocation problem. We also present the

design framework for a mechanism to implement the scheme by decomposing this problem.

Section 5.4 designs a dynamic auction mechanism. Section 5.5 derives an adjustment rule

of the number of permits for each market and clarify the properties of the whole mechanism.

Section 5.6 investigates the validity of the proposed mechanism for a dynamic population

case by numerical experiments. Section 5.7 concludes the chapter.

5.1 Related works

The scheme considered in this chapter corresponds to introducing a reservation system to

the conventional tradable network permits scheme. Reservation systems have been widely

studied in the field of revenue management for many years (see Talluri and van Ryzin, 2004;

Chiang, Chen, and Xu, 2007, for comprehensive reviews of the literature). Moreover, in

the transportation field, much research has been performed on the theory and practice of

reservation systems (e.g., airline seat reservations). Furthermore, the several researchers

have examined reservation systems for better use of road infrastructure (e.g., Akahane and
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Kuwahara, 1996; Wong, 1997). Almost all of the above studies have aimed at maximizing

revenue or social surplus by market segmentation and discriminatory pricing. However, as

previously stated, it is difficult to determine an optimal price because there is an asymmetric

information between suppliers (road managers) and buyers (road users).

One of the approaches to resolve the asymmetric information problem is to employ auc-

tion mechanisms. Recently, in the field of mechanism design/auction theory, much effort has

been put into extending the theory to dynamic settings (Parkes, 2007; Bergemann and Said,

2011; Vohra, 2012). These studies can be classified into two groups: online mechanisms

and dynamic mechanisms. The former considers a situation where the population of agents

varies over time, but their private information is constant. Parkes and Singh (2004) proposed

an online VCG mechanism that generalizes the static VCG mechanism to a dynamic pop-

ulation setting and showed that this mechanism achieves the efficient resource allocation.

The latter type is related to our study in the sense that these mechanism consider a situa-

tion where the population of agents is fixed but their private information changes over time.

Bergemann and Välimäki (2010) also generalized the static VCG mechanism to a dynamic

setting (dynamic pivot mechanism)2. They then proved that the mechanism achieves the ef-

ficient resource allocation and satisfies the ex post inventive compatibility. However, this

mechanism cannot be directly applied to our problem because, in our setting, each buyer

wishes to purchase at most one permit within multiple period markets unlike the setting in

Bergemann and Välimäki (2010). Moreover, they did not consider the adjustment problem

that arises when supplying items for each period. In the field of revenue management, the

studies of dynamic auction mechanisms have been performed as an alternative to traditional

reservation systems (Vulcano, Van Ryzin, and Maglaras, 2002; Chiang, Chen, and Xu, 2007).

Vulcano et al. (2002) proposed a dynamic auction mechanism that determines both the items

allocation and the item supply for each period. In this mechanism, the item supply is con-

trolled by setting a threshold: if a bid is less than the threshold, the seller does not accept it.

However, this is a revenue maximization mechanism that will not maximize a social surplus.

From the above discussion, we conclude that a trading mechanism that combines a dynamic

auction and an adjustment rule is a major contribution of this chapter.

2 Cavallo, Parkes, and Singh (2006) proposed a mechanism similar to the dynamic pivot mechanism.
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Figure 5.1 Single bottleneck network

5.2 Model

5.2.1 Networks

In this chapter, we consider discrete time dynamic traffic flows on a single bottleneck net-

work where an origin (e.g., residential zones) is connected to a destination (Figure 5.1). All

of the road users must pass through a bottleneck to make trips. This bottleneck is represented

by a point queue model with constant capacity μ. The time interval to which we assign the

dynamic flow is large enough and is divided into small intervals. Each time interval is de-

noted by t ∈ T. In addition to the aforementioned within-day traffic assignment, this chapter

considers users’ dynamic decision-making during the periods leading up to a trip day: the

problem here involves the determination of when the user decides to take a trip (i.e., an op-

timal stopping problem). We assume that there are only two periods for users to make a

decision, the prior day m = 0 and the trip day m = 1.

5.2.2 Agents

The road manager aims to alleviate traffic congestion in the network and maximize the social

surplus. To achieve this, the manager regulates the traffic flow rates entering each bottleneck

in the network using time-dependent network permits. The precise definition and setup of

the network permit system with multiple purchase opportunities are described in Subsection

5.2.3.

Each atomic user i ∈ N makes, at most, a trip on day m = 1 from the origin to the

destination in the network. The user chooses a destination arrival time on the trip day during

the decision-making period to maximize his utility. A detailed definition of utility is given

in Subsection 5.2.4. Under the system of tradable network permits, each user must purchase
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a permits corresponding to the user’s chosen destination arrival time through two period

trading markets.

5.2.3 Tradable network permits with multiple purchase opportunities

We assume that the number of permits issued for the bottleneck in each time is equal to or

less than the bottleneck capacity μ. Under this setting, the arrival flow rate at a bottleneck

at any time, based on the definition of the scheme, is equal to the number of permits. This

implies that we can completely eliminate the occurrence of queuing congestion.

In this chapter, we consider the case in which network permits for the trip day are sold

both in the trading market on day m = 0 and in the trading market on day m = 1 (hereafter,

we refer to these as the future market and the spot market respectively). Therefore, the road

manager needs to determine the number of permits sold for each market μm
t out of the total

number of issued permits μ; that is

μ1
t + μ

0
t ≤ μ ∀t ∈ T. (5.1)

The permits are put on sale by the road manager. In the trading markets, the prices and the

allocation of time-dependent permits are determined through an auction mechanism. Note

that we assume that there is no resale and cancellation of the permits. The detailed trading

rules are given in Section 5.4.

5.2.4 User valuation and utility

We suppose that each user i has a valuation vm
i,t of destination arrival time t on the trip day;

this valuation depends on the purchase period m. As an example of this type of situation,

a person can have multiple activity plans that depend on purchase periods: a person will

conduct a meeting with a business partner, if he schedules a trip in advance (i.e., m = 0);

otherwise, he meets with another partner3. In this case, the valuation vm
i,t represents the utility

of the activity corresponding to purchase period m. We should note that the valuations of

each user are private information that cannot be observed by the road manager (or other

users).

3 Another example is a situation where people needs to make a reservation in advance to carry out an

activity.
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Each user is assumed to have quasi-linear utility um
i,t. Hence, the utility of each user who

purchases a permit for destination arrival time t in market m is given by

um
i,t ≡ vm

i,t − pm
t , (5.2)

where pm
t is the permit purchase cost that determined in an auction.

5.3 System optimal allocation of network permits

In this section, we define the system optimal allocation of network permits to be achieved by

a mechanism. Then, by decomposing this problem, we present the design framework for a

mechanism to implement the scheme.

5.3.1 System optimal allocation problem

The objective of the mechanism proposed in this chapter is to maximize a social surplus.

The social surplus is given as the sum of the users’ valuations in every period because the

users’ valuations in each period are equal to the utility value obtained on the trip day. Thus,

we formulate an optimization problem [SO] to determines the system optimal allocation of

network permits:

SS := max
y0,y1,z0,μ0,μ1

∑
i∈N

∑
t∈T

v0
i,ty

0
i,t +

∑
i∈N

∑
t∈T

v1
i,ty

1
i,t (5.3)

subject to

μ0
t + μ

1
t ≤ μ ∀t ∈ T (5.4)∑

i∈N
ym

i,t ≤ μm
t ∀t ∈ T, ∀m ∈ {0, 1} (5.5)

1 −
∑
t∈T

y0
i,t = z0

i ∀i ∈ N (5.6)

∑
t∈T

y1
i,t ≤ z0

i ∀i ∈ N (5.7)

ym
i,t, z

m
i ∈ {0, 1} ∀i ∈ N , ∀t ∈ T, ∀m ∈ {0, 1} (5.8)

μm
t ≥ 0 ∀t ∈ T, ∀m ∈ {0, 1}. (5.9)
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where ym
i,t is 1 if a network permit corresponding to destination arrival time t in market m is

allocated to user i and zero otherwise. A discrete variable z0
i represents whether or not user i

has an option to purchase network permits at the end of period m = 0.

The problem [SO] finds an efficient permit allocation ym := (ym
i,t)∀i,t; the optimal pur-

chase timing for each user z0 := (z0
i )∀i; and the optimal number of permits to sell in each

period market μm := (μm
t )∀t. More specifically, the first and second terms of the objective

function (5.3) represent the social surplus obtained in the future market and the spot mar-

ket respectively. The first constraint (5.4) is the condition that the total number of permits

sold in these markets does not exceed the bottleneck capacity. The second constraint (5.5)

is the capacity (not the bottleneck capacity) constraint for each market. The third and fourth

constraints (5.6), (5.7) result in the unit-demand condition: each user purchases at most one

permit. Constraints (5.8) and (5.9) are the 0–1 integer constraint and nonnegative constraint,

respectively.

As is apparent from the above constraint conditions, the problem [SO] is a linear mixed-

integer problem. Although the mixed-integer problems are difficult to solve in general, we

obtain an optimal integral solution by solving a linear relaxation of the problem [SO] if

the bottleneck capacity μ is integer-valued. This is because the constraint matrices satisfy

totally unimodularity (see Appendix 5.A for the proof). Therefore, ym
i,t ≥ 0 and z0

i ≥ 0

replace constraints (5.8), assuming that the bottleneck capacity is given as an integer.

5.3.2 Decomposition of the system optimal allocation problem

The problem [SO] optimizes three types of unknown variables, ym, z0, and μm, in a simul-

taneous manner. However, such a simultaneous optimization is difficult unless the manager

accurately obtains users’ private information (v0,v1). Hence, we decompose the problem

into the following two problems by applying the Benders decomposition principle to the

problem [SO]:

1. Sub-problem: a problem that determines the allocation of permits, ym (and z0) ,

2. Master problem: a problem that adjusts the number of permits sold in each market,

μm.
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Sub-problem: Network permits allocation problem

Suppose that the number of permits sold in each period market is fixed. Then a network

permits allocation problem [SOsub-P] that maximizes the social surplus is formulated as

max
y0,y1,z0≥0

∑
i∈N

∑
t∈T

v0
i,ty

0
i,t +

∑
i∈N

∑
t∈T

v1
i,ty

1
i,t (5.10)

subject to Eq.(5.5), Eq. (5.6), and Eq.(5.7).

This sub-problem [SOsub-P] has two meanings. First, it is obvious that its optimal solution

is equal to that of the problem [SO] if the number of permits for each market is given ap-

propriately. Second, the sub-problem [SOsub-P] is equivalent to an optimization problem for

a market equilibrium in which each user both chooses both a destination arrival time and a

purchase period.

To show the second point more precisely, we consider the Kuhn-Tucker conditions for

the sub-problem [SOsub-P]:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

i∈N ym
i,t = μ

m
t if pm

t > 0
∑

i∈N ym
i,t ≤ μm

t if pm
t = 0

∀t ∈ T,∀m ∈ {0, 1} (5.11)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vm

i,t − pm
t = π

m
i if ym

i,t = 1

vm
i,t − pm

t ≤ πm
i if ym

i,t = 0
∀i ∈ N , ∀t ∈ T, ∀m ∈ {0, 1} (5.12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π1

i = π
0
i if z0

i = 1

π1
i ≤ π0

i if z0
i = 0

∀i ∈ N (5.13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

t∈T y1
i,t − z0

i = 0 if π1
i > 0

∑
t∈T y1

i,t − z0
i ≤ 0 if π1

i = 0
∀i ∈ N (5.14)

+ equality constraint (5.6)

where pm := (pm
t )∀t and πm := (πm

i )∀i are the optimal Lagerange multipliers for constraints

(5.5) and (5.7) respectively. The optimality conditions, (5.11)–(5.14), can be interpreted

as the market equilibrium by regarding the Lagrange multipliers pm and πm as equilibrium

permit prices and option values in market m. Specifically, Eq.(5.11) represents the market-

clearing condition, and Eqs.(5.12)–(5.14) are interpreted as the user choice equilibrium (i.e.,

arrival time and purchase period) conditions when permit prices are given. Hence, the fol-

lowing proposition holds:
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Proposition 5.1 Assume that the number of permits sold in each period market is fixed. We

also assume that the trading markets are perfectly competitive. Then, the equilibrium permits

allocation pattern that is realized under the tradable network permits with multiple purchase

opportunities that maximizes the social surplus defined by (5.10).

Proof We first confirm the demand-supply equilibrium condition for each destination ar-

rival time in each period corresponding to the optimality condition (5.11). This correspon-

dence is clear if the Lagerange multipliers (p0,p1) are regarded as permit prices (i.e., com-

petitive equilibrium prices) in the future market and the spot market, respectively.

We then show that the user choice equilibrium conditions are equivalent to the optimality

conditions (5.12)–(5.14). For given permit prices, each user determines a destination arrival

time and a purchase period so as to maximize his/her utility:

max
m∈{0,1,2}

max
t∈T
. {vm

i,t − pm
t } ∀i ∈ N . (5.15)

For convenience, we use m = 2 to show people that do not purchase any permits; their

payoff is zero. At this time, the Lagrange multipliers π0
i and π1

i can be viewed as optimal

value functions of the problem (5.15) in period m ∈ {0, 1}:

πm
i := max

τ≥m
max

t∈T
. {vτi,t − pτt } ∀m = {0, 1}, ∀i ∈ N . (5.16)

By applying the DP (dynamic programming) principle, we obtain the optimal decision-

making at the beginning of each market. More specifically, the optimal choice pair (m∗, k∗)

can be obtained by “backward induction.”

We first solve the following choice problem (i.e., Hamilton-Jacobi-Bellman equation) in

period m = 1 (i.e., the trip day):

π1
i = max

{
max

t∈T

{
v1

i,t − p1
t

}
, π2

i

}
, (5.17)

where π2
i = 0. By using the optimal choice function (5.17), the optimal choice in period

m = 0 is given by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxt∈T

{
v0

i,t − p0
t

}
≥ π1

i

⇔ purchase: z0
i = 0 and y0

i,t > 0, ∃t ∈ T

maxt∈T

{
v0

i,t − p0
t

}
< π1

i

⇔ non-purchase: z0
i = 1 and y0

i,t = 0, ∀t ∈ T.

(5.18)
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Then, we have the choice problem in period m = 0:

π0
i = max

{
max

t∈T

{
v0

i,t − p0
t

}
, π1

i

}
. (5.19)

Let us now confirm the equivalence between the user choice equilibrium conditions

(5.17) and (5.19) and the optimality conditions (5.12)–(5.14). The equilibrium condition

(5.17) in period m = 1 can be rewritten as

π1
i ≥ π2

i (5.20)

π1
i ≥ max

t∈T
{v1

i,t − p1
t }. (5.21)

We see that Eq.(5.21) corresponds to the optimality (5.12); Eq.(5.20) corresponds to the

optimality condition (5.14). In the same way, the equilibrium condition (5.19) in period

m = 0 corresponds to the optimality conditions (5.12), (5.13). The above discussion shows

that both the equilibrium conditions and the optimality conditions have the exactly the same

form. Therefore, equilibrium permits allocation pattern is equal to that obtained by solving

the sub-problem [SOsub-P].

Proposition 5.1 states that the optimal solution of the problem [SOsub-P] can be achieved

as a result of distributed behavior of users. However, in order to hold this proposition, It

is necessary to assume that users do not play strategic behaviors that affect prices (e.g.,

perfectly competitive markets). For example, we suppose that a user manipulates a permit

price. This strategic behavior may decrease other users’ utility, which results in a failure to

achieve the system optimal state. Hence, we have to design a mechanism in which each user

has no incentive to exhibit a strategic behavior.

Master problem: Adjustment of the number of permits sold for each period market

The problem of adjusting the number of permits sold for each market is obtained as a Benders

master problem. Thus, the problem is formulated by exploiting a dual problem of the sub-

problem [SOsub-P] (the derivation of this problem is shown in Appendix 5.B):

max
μ0,μ1≥0

.
∑
t∈T

μ0
t p0(μt) +

∑
t∈T

μ1
t p1(μt) + π0(μ) (5.22)
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Figure 5.2 Procedures for the proposed mechanism

subject to Eq.(5.4)，

(p(μ), π0(μ))

= arg min
p,π≥0

∑
t∈T

μ0
t p0

t +
∑
t∈T

μ1
t p1

t + π
0 (5.23)

subject to

πm
i ≥ vm

i,t − pm
t ∀i ∈ N , ∀t ∈ T, ∀m ∈ {0, 1} (5.24)

π0
i ≥ π1

i ∀i ∈ N (5.25)

where π0(μ) :=
∑
i∈N
π0

i (μ), π0 :=
∑
i∈N
π0

i .

where Eqs.(5.23)–(5.25) is the dual problem [SOsub-D] of the sub-problem [SOsub-P], and

(p(μ), π0(μ)) is the optimal solution of the dual problem for a parameter μ; that is, it is

an extreme point of the convex feasible region Ω that consists of the constraints (5.24) and

(5.25). By using the extreme points, the master problem is finally represented as

max
μ0,μ1≥0

⎡⎢⎢⎢⎢⎣ min
(p(s),π0(s))∈V(Ω)

∑
t∈T

μ0
t p0

t (s) +
∑
t∈T

μ1
t p1

t (s) + π0(s)

⎤⎥⎥⎥⎥⎦ (5.26)

subject to Eq.(5.4).

The master problem is equivalent to the problem [SO] if all of the extreme points are known.

Because it is difficult to obtain the extreme points in advance, we employ an evolutionary

approach of generating an extreme point (or solving the sub-problem).
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5.3.3 Design framework of a mechanism for implementing the tradable

network permits with multiple purchase opportunities

From the above discussion, in order to implement the scheme, it is necessary to design a

mechanism for solving the master problem and the sub-problem iteratively (Figure 5.2).

More specifically, we have to design

1. a dynamic auction mechanism to implement the dynamic user choice equilibrium,

2. an adjustment rule for the number of permits sold in each market to converge to the

optimal one by using the extreme points.

We call the former the “auction phase” and the latter the “adjustment phase,” whereas one

iteration of both phases is a “stage.” Each stage is denoted by s. In addition, we assume that

each user behaves myopically and makes his/her choice so as to maximize the utility defined

at each stage s (i.e., a myopic best response strategy). In the following two sections, we

concretely design mechanisms and clarify the desired properties.

5.4 Auction phase

Assuming that the number of permits sold in each period market (μ0(s),μ1(s)) is fixed, we

showed that the sub-problem [SOsub] is equivalent to the market and the user choice equilib-

rium state (Proposition 5.1). However, the problem simultaneously determines the permits

allocation variables of both the future market and the spot market: it cannot represent an

actual sequence of the multiple period markets; the network permits allocation in the future

market is determined before that in the spot market. Hence, we first show that the prob-

lem [SOsub] can be decomposed to be consistent with the actual sequence of the markets (or

time) under a certain condition. By doing this, we can apply a standard incentive-compatible

multi-item auction to each market. Moreover, in this auction, the optimal market choice of

each user is guaranteed.
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5.4.1 Time decomposition of multiple period markets

Let us rewrite the objective function of the dual sub-problem [SOsub-D]:

∑
t∈T

μ0
t (s)p0

t +
∑
i∈N

(π0
i − π1

i ) +
∑
t∈T

μ1
t (s)p1

t +
∑
i∈N
π1

i . (5.27)

By using this equation, we can transform the problem [SOsub-D] into the following equivalent

bi-level problem:

[SOsub-D0]

min
p0≥0,π0

∑
t∈T

μ0
t (s)p0

t +
∑
i∈N

(π0
i − π1

i ) (5.28)

subject to

π0
i ≥ v0

i,t − p0
t ∀i ∈ N , ∀t ∈ T (5.29)

π0
i ≥ π1

i ∀i ∈ N (5.30)

[SOsub-D1]

min
p1,π1≥0

∑
t∈T

μ1
t (s)p1

t +
∑
i∈N
π1

i (5.31)

subject to

π1
i ≥ v1

i,t − p1
t ∀i ∈ N , ∀t ∈ T. (5.32)

The upper level problem [SOsub-D0] represents the permits allocation problem in the future

market; the lower level problem [SOsub-D1] represents the permits allocation problem in the

spot market. From this bi-level problem, we see the following two facts: (i) the spot market

can be treated as independent of the future market; (ii) the future market also can be treated

independently if the option values π1
i are given. In other words, if each user can know his/her

own option value in the spot market, the multiple period markets can be decomposed to be

consistent with time sequence. From now on, we discuss the auction mechanism, assuming

the condition holds.



94

Let us introduce a new variable v̂0
i,t := v0

i,t − π1
i ; it represents the“net valuation” (i.e.,

a truthful valuation minus the option value). Then, the problem [SOsub-D0] is equal to the

following problem with a new unknown variable π̂0
i := π0

i − π1
i :

min
p0,π̂0≥0

∑
t∈T

μ0
t (s)p0

t +
∑
i∈N
π̂0

i (5.33)

subject to

π̂0
i ≥ v̂0

i,t − p0
t ∀i ∈ N , ∀t ∈ T. (5.34)

This problem has the same form as the problem [SOsub-D1] that is described by using v̂1
i,t :=

v1
i,t，π̂

1
i := π1

i . Finally, an independent assignment problem for each period market is given

as the primal problem [SOsub-Pm] of the dual problem (5.33):

max
ym≥0

∑
i∈N

∑
t∈T

v̂m
i,ty

m
i,t (5.35)

subject to

∑
i∈N

ym
i,t ≤ μm

t (s) ∀t ∈ T (5.36)

∑
t∈T

ym
i,t ≤ 1 ∀i ∈ N . (5.37)

where the constraint (5.37) is the unit-demand condition. From the above discussion, we

find that the sub-problem [SOsub-D] can be solved to be consistent with time sequence if

each user reports net valuations truthfully in the future market.

5.4.2 Auction mechanism for multiple period markets

Because the problem [SOsub-Pm] is the standard assignment problem, we can apply the vari-

ous incentive compatible auction mechanisms to it (e.g., the VCG mechanism). Now, let us

employ the proxy DGS auction (shown in Chapter 4 and Appendix C) for implementing the

multiple period markets. Then, the following proposition holds:

Proposition 5.2 Assume that the number of permits sold in each period market is fixed. We

also assume that each user knows his/her own option value realized in the spot market. Then,

the proxy DGS auction mechanism for each period market is strategy-proof and achieves an

efficient network permits allocation.
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Proof Each market can be treated independently when each user knows his/her own option

value realized in the spot market. Therefore, each market is strategy-proof from Demange

et al. (1986) and Parkes and Ungar (2000b). The allocation of the network permits of each

market is the optimal solution of the decomposed sub-problem [SOsub-Pm]. On the other

hand, the (undecomposed) sub-problem [SOsub-P] maximizes the social surplus under the

condition that the number of permits sold for each market is fixed. Because the undecom-

posed sub-problem [SOsub-P] and the decomposed sub-problems [SOsub-Pm] are equivalent,

the network permits allocation achieved by the DGS auction also maximizes the social sur-

plus.

Furthermore, we reveal that the user’s market choice is optimal by using the Proposition

5.2. Because the future market is strategy-proof, each user’s allocation of permits is given

by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v̂0

i,t − p0
t = π̂i

0 if y0
i,t = 1

v̂0
i,t − p0

t ≤ π̂i
0 if y0

i,t = 0
∀i ∈ N . (5.38)

Thus, for all users,

π̂i
0 = max

{
max

t∈T

{
v̂0

i,t − p0
t

}
, 0

}

⇔ π0
i − π1

i = max
{
max

t∈T

{
v0

i,t − π1
i − p0

t

}
, 0

}
(5.39)

⇔ π0
i = max

{
max

t∈T

{
v0

i,t − p0
t

}
, π1

i

}

holds. This equation is equal to the optimal market choice condition in period m = 0 (i.e.,

Eq.(5.19)). That is, truthful reporting of the net valuations in the future market simultane-

ously means choosing a purchase period so as to maximize the utility of each user.

Proposition 5.3 Assume that each user knows his/her own option value realized in the spot

market. Then, the market choices of all of the users that participate in the multiple period

markets are optimal.
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5.5 Adjustment phase of the number of permits sold for

each period market

5.5.1 Adjustment rule

In the adjustment phase, the road manager generates a new extreme point (p(s), π0(s)) from

the information obtained in the multiple period markets, and then determines the number

of permits sold in each period market in the next stage. The prices (p0,p1) can be obtained

directly in the auction phase for each period market. The total payoffπ0(s), on the other hand,

is computed in an indirect way. In the proxy DGS auction, because each user reports true

(net) valuations to the proxy agent about the permits that they are interested in, the manager

can obtain his/her winning valuations v̂m∗
i,t∗ through the agent. By using this information, the

manager calculates the total payoff from the duality theorem (see Appendix 5.C for more

details):

π0(s) =
∑
i∈N

v̂m∗
i,t∗ −

∑
t∈T

μ0
t (s)p0

t −
∑
t∈T

μ1
t (s)p1

t . (5.40)

Note here that the extreme point (p(s), π0(s)) consists of aggregate information.

After generating the extreme point, the road manager considers the set of extreme points

until stage s:

V′(Ω) :=
{
(p(1), π0(1)), . . . , (p(s), π0(s))

}
⊆ V(Ω) .

Then, the road manager adjusts the number of permits sold in each period market by solving

the following optimization problem:

max
μ0,μ1≥0

⎡⎢⎢⎢⎢⎣ min
(p(s),π0(s))∈V′(Ω)

∑
t∈T

μ0
t p0

t (s) +
∑
t∈T

μ1
t p1

t (s) + π0(s)

⎤⎥⎥⎥⎥⎦ (5.41)

subject to Eq.(5.4).

The solution to this problem is the number of permits sold in the each market at the next

stage, μ(s + 1). Unlike the master problem (5.26), this problem (5.41) uses a subset of the

extreme points V′(Ω) ⊆ V(Ω), which produce an upper bound on the optimal value of the

problem [SO]. Moreover, the problem can be reduced to the following linear program:

max
θ,μ0,μ1≥0

θ (5.42)
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subject to　 Eq.(5.4)

θ ≤
∑
t∈T

μ0
t p0

t (s) +
∑
t∈T

μ1
t p1

t (s) + π0(s) ∀(p(s), π0(s)) ∈ V′(Ω). (5.43)

Thus, the problem can be solved in a very efficient way.

5.5.2 Convergence of whole mechanism

The whole mechanism combining the dynamic auction and adjustment rule corresponds to

the Benders decomposition algorithm. The algorithm terminates (i.e., converges to an op-

timal solution) when the upper bound θ is equal to the optimal objective value of the sub

problem (i.e., the social surplus achieved in the auction phase); otherwise, a new adjustment

phase begins. Furthermore, a new extreme point is always generated in the auction phase

before the procedure terminates, and the set of extreme points is finite. Hence, we have the

following convergence result for the whole mechanism.

Proposition 5.4 The proposed mechanism combining the dynamic auction and adjustment

rule achieves the optimal permits allocation pattern in a finite number of iterations.

Proof Because the decomposed sub-problem [SOsub-Dm] is bounded (from below), an ex-

treme point always generated at every stage. Therefore, the proposed mechanism corre-

sponds to the Benders decomposition algorithm excluding the step for the case where ex-

treme rays are generated. For a complete proof see, for example, Lasdon (1970).

5.6 Numerical experiments

In the preceding section of this chapter, we described the design of the implementation mech-

anism for multiple period markets with a fixed population (i.e., the same users participate in

the markets at every stage s). Nevertheless, concerning the adjustment rule without requiring

individual information, the mechanism may work effectively for a dynamic population case

in which markets participants change over stage but the valuation distribution of the markets

participants is fixed. This section examines the validity of the above conjecture by numerical

experiments.
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Case (i) Case (ii)

Figure 5.3 Desired arrival time distributions

5.6.1 Fixed population case

Before discussing the dynamic population case, we show numerical examples for the fixed

population case for clarifying convergence properties (e.g., the speed of convergence) of the

proposed mechanism. In the numerical examples, the two cases with different population

sizes are considered: (i) 250 users with 60 arrival times and (ii) 500 users with 60 arrival

times. The bottleneck capacity μ is 5 vehicles/unit time for the case (i); that is 10 vehi-

cles/unit time for the case (ii). The valuation distribution of the population is given by the

following equation:

vm
i,t = wi −max{α(tm

i − t), β(t − tm
i )} (5.44)

where wi represents the trip utility of user i, which is randomly generated from a normal

distribution. The second term of the equation represents a linear schedule delay function

with identical values for the positive earliness rate α and lateness rate β; tm
i is the desired

arrival time of user i in period m, which is randomly generated from the desired arrival time

distribution shown in Figure 5.3. Under these setting, each user’s valuations changes over

period depend on his/her desired arrival time.
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Table 5.1 Number of iterations required to converge (100 samples)

Case (i)
[iterations]

Average (100%) 7.18

Average (99%) 4.00

Maximum sample (100%) 18

Minimum sample (100%) 4

Case (ii)
[iterations]

Average (100%) 11.70

Average (99%) 6.00

Maximum sample (100%) 22

Minimum sample (100%) 6

Table 5.1 summarizes the convergence results of 100 samples for each case4. According

to this table, we find that the social surplus achieved through the auction phase rapidly con-

verges to (close to) the maximum value. Only a small number of iterations are required to

achieve 99% of the maximum social surplus, whereas about twice as many are required to

reach 100%. To show this more intuitively, the convergence process of the worst case (i.e.,

the maximum sample for case (ii)) is presented in Figure 5.4. The horizontal axis shows

the number of iterations s, and the vertical axis shows the ratio between the achieved social

surplus at each stage and the maximum value. Also in this case, the social surplus reaches

99% of the maximum value at six iterations; however, the final convergence is very slow (this

phenomenon is well known as the tailing-off effect, Lübbecke and Desrosiers, 2005). Note

that the effect would be insignificant because the achieved social surplus is high enough.

Thus, we conclude that the convergence speed of the proposed mechanism would be fast.

5.6.2 Dynamic population case

We next consider the dynamic population case in which markets participants change between

stages but the valuation distribution of the participants is fixed. To estimate the convergence

properties, we first show the probability distribution of the maximum social surplus for each

case (5000 samples). As indicated in Figure 5.5, the distributions of both cases follow the

4 To stabilize the convergence process, we here add the box constrains (Martsen, 1975):

μm
t (s) − γ ≤ μm

t (s + 1) ≤ μm
t (s) + γ (5.45)

to the master problem. γ, γ are the boxstep parameters.
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Figure 5.4 Example of convergence process of the proposed mechanism (worst case)

Case (i) Case (ii)

Figure 5.5 Distributions of the maximum social surplus (5000 samples)
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Case (i) Case (ii)

Figure 5.6 Distributions of the achieved social surplus at 20 iterations (1000 samples)

normal distributions (the red lines represent their corresponding normal distributions).

We next show the results of a Monte Carlo simulation of the proposed mechanism. For

each case, we generated 1000 sample paths where each user’s valuations were randomly

chosen from the Eq.(5.44) at each stage s. From the observation in the previous subsection,

we set the number of iterations of each sample path at 20. Figure 5.6 depicts the probability

distribution of the achieved social surplus at the final stage s = 20 for each case. Each

blue line represents the normal distribution corresponding to the distribution of the achieved

social surplus. From this figure, we can observe that the mean of the achieved social surplus

is smaller than that of the maximum social surplus, which means that perfect efficiency is not

always obtained. This is because the number of permits sold for each market is optimized by

using information available until the current stage and may not be optimal for a new users

valuations pattern that arises at the next stage. Nevertheless, the mean of the achieved social

surplus reaches 99% of that of the maximum social surplus. It is also worth mentioning

that the standard deviation of the achieved social surplus tends to be smaller than that of

the maximum social surplus; the lower three sigma levels of both distributions are almost

the same. The reason for this is not clear, but the social surplus that consists of a users

valuations pattern corresponding to the lower three sigma level may be maximized under

any (or many) permit issue pattern. Finally, Figure 5.7 shows that the mean (and three sigma
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Case (i) Case (ii)

Figure 5.7 Mean of the achieved social surplus at each iteration (1000 samples)

level) of the achieved social surplus at each iteration. The process of the mean value shows

the same tendency as in the case of fixed population. Furthermore, the three sigma levels of

the achieved social surplus are almost within that of the maximum social surplus.

From the above discussion, it can be concluded that the proposed mechanism works

effectively for the dynamic population case if the valuation distribution of the population

does not change. More specifically, the achieved social surplus rapidly converges to close to

the maximum value (about 99%), and its standard deviation is small compared to that of the

maximum social surplus.

5.7 Conclusion

This chapter considered a situation where network permits for a specific day are sold in mul-

tiple period markets and designed a trading mechanism of these markets. We first showed

that the system optimal permits allocation for a fixed permit issue pattern is equivalent to the

user equilibrium in perfectly competitive markets. This enabled us to decompose the system

optimal allocation problem into two sub-problems. We then constructed the mechanism for

implementing each sub-problem independently, and proved that the proposed mechanisms

have the following desirable properties: (1) the dynamic auction for multiple period markets

is strategy-proof and guarantees that the market choice of each user is optimal when each user
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knows his/her own option value realized in the market on the trip day; (2) the whole mech-

anism combining the dynamic auction and the adjustment rule achieves the optimal permits

allocation pattern in a finite number of iterations. Finally, we numerically demonstrated that

the proposed mechanism works effectively for a dynamic population case.

While it was assumed that each user knows his/her own option value realized in the

market on the trip day, the thought behind this assumption is that the user has a prediction

formation mechanism based on some learning dynamics. However, it is not obvious what

kind of learning dynamics would be suitable. For example, in the field of the evolutionary

and learning game theory (e.g., Fudenberg and Levine, 1998; Young, 2004), various learn-

ing dynamics were proposed. Therefore, it is necessary to clarify which learning processes

encourage an accurate and efficient prediction.

Another important expansion of our model would be to consider the users’ dynamic

decision-making under uncertainty. Because the proposed mechanism considers important

aspects of dynamic allocation problems (i.e., the users’ dynamic decision-making and irre-

versibility of resource allocation), it seems applicable under uncertainty. Thus, generalizing

the proposed mechanism to handle uncertainty situations is an important topic for future

work.

Appendix 5.A Proof of totally unimodularity of problem

[SO]

A totally unimodular (TU) matrix is defined as follows.

Definition 5.1 An integer matrix A is totally unimodular if any subdeterminant of A is 0 or

±1.

Then, if a constraint matrix A is a TU matrix, the following theorem holds:

Theorem 5.1 Let A be totally unimodular. Then, for any integer vector b, extreme points of

the following polyhedron:

{x : Ax ≤ b, x ≥ 0}

are integers.
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Therefore, a bounded linear program in which the constraint matrix is a TU matrix always

produces integer solutions. Well-known problems that have such a constraint matrix are

weighted mating problems and network flow problems (e.g., the maximum flow problem,

the minimum cost flow problem).

Because the problem [SO] is different from the typical problems, we prove that the con-

straint matrix of the problem is a TU matrix by using the following sufficient condition

(Heller and Tompkins, 1956):

Theorem 5.2 (Heller and Tompkins, 1956) Let A be a 0, ±1 matrix with at most two nonzero

entries per column. Then, A is totally unimodular if there is a partition of rows such that

1. if two nonzero entries in a column have the same sign, then the rows are partitioned

into disjoint sets T1,T2;

2. if the nonzero entries in a column have opposite sign, then the rows are in the same set

(i.e., T1 or T2).

Let us confirm that the constraint matrices of the problem [SO] satisfy the sufficient

condition. We first transpose the unknown variables of the constraints to the left-hand side

and partition the constraints as follows:

T1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈N ym

i,t − μm
t ≤ 0 ∀t ∈ T, ∀m ∈ {0, 1}

μ0
t + μ

1
t ≤ μ ∀t ∈ T

1 −∑
t∈T y0

i,t − z0
i = 0 ∀i ∈ N

z0
i −

∑
t∈T y1

i,t ≤ 0 ∀i ∈ N
T2 = ∅

We let A be the coefficient matrices of the left-hand side. Then, every entry of A is 0 or

±1, and A has two nonzero entries. In addition, two nonzero entries in every column have

opposite signs. Then all of the rows are in T1; the set T2 is empty. Thus, the constraint matrix

of the problem [SO] is totally unimodular.
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Appendix 5.B Derivation of master problem

We first decompose the problem [SO] into the following bi-level problem:

max
μ0,μ1≥0

.
∑
i∈N

∑
t∈T

v0
i,ty

0
i,t(μ) +

∑
i∈N

∑
t∈T

v1
i,ty

1
i,t(μ) (5.46)

subject to Eq.(5.4)，

(y0(μ),y1(μ))

= arg max
y0,y1,z0≥0

∑
i∈N

∑
t∈T

v0
i,ty

0
i,t +

∑
i∈N

∑
t∈T

v1
i,ty

1
i,t

subject to Eq.(5.5), Eq.(5.6), Eq.(5.7).

where (y0(μ),y1(μ)) is an optimal solution of the sub problem for a parameter μ.

From the duality theorem, the optimality value of the objective function of the primal

problem [SOsub-P] coincides with that of the dual problem [SOsub-D]:

Z(μ) :=
∑
i∈N

∑
t∈T

v0
i,ty

0
i,t(μ) +

∑
i∈N

∑
t∈T

v1
i,ty

1
i,t(μ)

=
∑
t∈T

μ0
t p0(μt) +

∑
t∈T

μ1
t p1(μt) + π0(μ). (5.47)

where p(μ), π0(μ) is the optimal solution of the dual problem (5.23) for a parameter μ. By

using the optimality value function (5.47), the objective function (5.46) is transformed into

the function (5.22). Finally, we can obtain the lower level problem of the problem (5.22)

by replacing the lower level problem (i.e., problem sub-problem [SOsub-P]) of the problem

(5.46) with the dual sub-problem [SOsub-D].

Appendix 5.C Derivation of equation (5.40)

We here derive the total payoff π0(s) by exploiting information, permit prices (p0∗,p1∗) and

wining valuations (or bids) (v̂m∗
i,t∗)∀i, which are obtained in the auction phase at each stage s.

Note that a single asterisk (∗) indicates the optimal value of each variable at each stage (i.e.,

the value achieved through the auction mechanism).

The social surplus achieved by the auction mechanism is represented as
∑

m∈{0,1}

∑
i∈N

∑
t∈T

v̂m
i,ty

m∗
i,t =

∑
i∈N

∑
t∈T

v̂m∗
i,t∗ . (5.48)
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From the duality theorem, the optimal value of the objective value of the decomposed sub

problem [SOsub-Pm] coincides with that of the dual problem [SOsub-Dm]:

∑
i∈N

∑
t∈T

v̂m
i,ty

m∗
i,t =

∑
i∈N
π̂m∗

i +
∑
t∈T

μm
t (s)pm∗

t . (5.49)

By substituting this equation into Eq.(5.48), we have

∑
i∈N

v̂m∗
i,t∗ =

∑
i∈N
π̂0∗

i +
∑
i∈N
π̂1∗

i +
∑
t∈T

μ0
t (s)p0∗

t +
∑
t∈T

μ1
t (s)p1∗

t . (5.50)

We here recall the definitions π̂0
i := π0

i − π1
i , π̂

1
i := π1

i . Then Eq.(5.50) reduces to the Eq.

(5.40):

∑
i∈N

v̂m∗
i,t∗ = π

0(s) +
∑
t∈T

μ0
t (s)p0∗

t +
∑
t∈T

μ1
t (s)p1∗

t .



Chapter 6

Stochastic convergence of a hybrid

scheme of tradable network permits and

congestion pricing

Until Chapter 5, we studied the tradable network permits scheme in several situations, con-

sidering only queuing congestion. In contrast, this chapter1 deals with two types of conges-

tion: queuing congestion and flow congestion. Queuing congestion is a negative externality

of a queue, while flow congestion is a negative externality of the speed decrease arising from

an increase in traffic density. Unfortunately, it is difficult to eliminate both congestions by us-

ing only tradable network permits scheme, since the mechanisms of two types of congestion

are totally different.

To address the problem, we here examine a hybrid scheme of the tradable network per-

mits and congestion pricing. This scheme can simultaneously eliminate both queuing con-

gestion and flow congestion, and does not require detailed user information. Also, Wada and

Akamatsu (2010) constructed an evolutionary mechanism of the scheme and demonstrated

that traffic flow dynamics arising from the mechanism converge to a system optimal state in

the sense that social surplus is maximized.

The above results were obtained in a deterministic situation: agents were assumed to de-

terministically adjust their behavior in response to the current traffic state. However, agents’

1 This chapter is based on joint research with Takashi Akamatsu and Takeshi Nagae, presented in the 15th

International Conference of Hong Kong Society for Transportation Studies (Wada, Akamatsu, and Nagae,

2010).
107
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behavior in practice is stochastic (i.e., they sometimes make sub-optimal choices), and is

based on not only the current state of traffic but also experiences of previous trips (i.e., agents

learn traffic flow patterns on a day-to-day basis). As such, in the current chapter we dispense

with a deterministic model, and instead employ a stochastic learning model. We then show

that the evolutionary mechanism of our hybrid scheme can operate robustly in stochastic

environments. Specifically, we demonstrate that the stochastic dynamics of the learning pro-

cess converge to an equilibrium state, and that a traffic flow pattern at equilibrium is efficient

in the sense that social surplus is maximized.

In Section 6.1, we describe the preconditions used in the model. In Section 6.2, we de-

fine a system optimal state. Section 6.3 presents the framework of the scheme and the user

learning model. In Section 6.4, we describe an auction mechanism of the trading markets.

Section 6.5 analyzes a stochastic dynamics of the learning process arising from the mecha-

nism. We then demonstrate that the dynamics converges to a system optimal state. Section

6.6 presents our conclusions about the model.

6.1 Model

6.1.1 Networks

This chapter considers a simple road network involving two residential zones and a central

business district (CBD), which represents a road system where an urban area is connected

with a suburban area (Figure 6.1). Each user commutes from a residential zone to the CBD.

This is a basic network in which both queuing congestion and flow congestion exist and

interact with each other via users.

We assume that the upstream link has a bottleneck with constant capacity μ (point queue

model). In the urban street network, a speed-flow relationship is assumed: the delay of the

downstream link means a space-average delay arising in the urban street network. The travel

time of the downstream link is given by a strict monotonic function c(x) : ∂c(x)/∂x > 0

where x is the traffic flow per unit of time. We consider time-dependent traffic flow patterns

within-day and day-to-day traffic flow dynamics. We then distinguish the day s ∈ S from the

time t ∈ T within day s.
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Figure 6.1 Network setting

6.1.2 Agents

The road manager aims to restrain traffic congestion, and to maximize social surplus. To this

end, the manager imposes “time-dependent congestion tolls” on users in the downstream

link. The manager also regulates the traffic flow entering the upstream link using “time-

dependent network permits”.

Each user makes a single trip from his or her residential zone to the CBD. The user

chooses a destination arrival time based on his or her prediction of traffic flow pattern (i.e.,

users learn traffic flow patterns). Specifically, a downstream user j ∈ N chooses a destination

arrival time to maximize his or her predicted utility. On the other hand, an upstream user

i ∈ M must purchase a network permit to pass through the upstream bottleneck. This

implies that the choice of destination arrival time directly corresponds to purchasing a time-

dependent network permit on the trading markets.

Aggregating users’ behaviors determines the traffic flow xt at each time t. The upstream

travel demand QM and the downstream travel demand QN (i.e., trips per day) are given

constants.

6.1.3 Transportation demand management schemes

The tradable network permits scheme eliminate queuing congestion, but cannot eliminate

flow congestion. We consider a hybrid scheme that combines the tradable network permits

with congestion pricing.
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Tradable network permits

We assume that the number of permits issued in each unit of time is equal to the traffic

capacity of the bottleneck. From the definition of the time-dependent network permits, the

inflow rate of the bottleneck is equal to the number of permits issued: hence the inflow rate

cannot exceed the traffic capacity, which entails that queuing congestion never occur.

The permits issued for the bottleneck are put on sale by the road manger in a trading

market. Each user who would like to pass through the bottleneck must purchase the permit

corresponding to user’s preferred destination arrival time. In the trading markets, permit

prices and the permits allocation are determined through an auction mechanism.

Flow-based congestion pricing

The flow-based congestion pricing (FBCP) scheme relies on the notion of an evolutionary

congestion pricing scheme, as proposed by Sandholm (2002). Specifically, a congestion toll

λt(xt(s)) that is imposed on users arriving in the CBD at time t on day s is given by

λt(xt(s)) = αxt(s)
∂c(xt(s))
∂xt(s)

∀t ∈ T, (6.1)

where α is a coefficient that converts travel time to a monetary equivalent, assumed to be the

same for all users. In the FBCP scheme the manager sets toll levels based on observed traffic

flow alone.

6.1.4 Travel costs and user utility

The transportation cost for a single trip made in the network under the proposed scheme

consists of the following costs. The schedule cost is the cost due to the difference between

the desired arrival time t̂ and the actual arrival time t, which is given by a convex function

st. To outline the essential aspects of the theory, the desired arrival time is assumed to be the

same for all users and is equal to t̂. The travel cost on the downstream link is the monetary

equivalent of the travel time c(xt). The congestion toll λ is defined in (6.1). The network

permit prices p are determined by an auction mechanism.

A utility that is perceived by each user varies from user to user: each user’s utility in-

cludes “private information” (e.g., willingness to pay) that is unobservable to other users

(we call this information “private utility”). More specifically, each upstream user i ∈ M has
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stochastic private utility wi
t, while each downstream user j ∈ N has the stochastic private

utility wj
t. The private utilities represent users’ bias toward a destination arrival time. The

utilities are assumed to follow i.i.d. Gumbel distributions. We can thus define each user’s

(net) utility as

πi
t(xt, pt) = wi

t − ht(xt) − pt (6.2)

π j
t(xt) = wj

t − ht(xt) (6.3)

where ht(xt) ≡ αc(xt) + st + λt(xt) (6.4)

6.2 System optimal traffic assignment

The hybrid scheme aims to achieve a traffic flow pattern that maximizes a social surplus. To

represent a social surplus, we define the users’ utility (not net utility) by

ui
t(xt) ≡ wi

t − [αc(xt) + st] (6.5)

uj
t(xt) ≡ wj

t − [αc(xt) + st] (6.6)

Note here that this utility does not include user payments to the road manager (the congestion

toll and the network permit purchase cost) because the payments are simply income transfers

between the users and the road manager. We then formulate an optimization problem [SO]

of providing the system optimal traffic assignment:

max
y≥0
.SS(yi,y j) ≡

∑
t∈T

∑
i∈M

ui
t(xt)yi

t +
∑
t∈T

∑
j∈N

uj
t(xt)yj

t (6.7)

subject to

∑
t∈T

yi
t = 1 ∀i ∈ M (6.8)

∑
i∈M

yi
t ≤ μ ∀t ∈ T (6.9)

∑
t∈T

yj
t = 1 ∀ j ∈ N (6.10)

xt =
∑
i∈M

yi
t +

∑
j∈N

yj
t ∀t ∈ T (6.11)

where yt is a variable that represents the assignment of each user.
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Figure 6.2 Framework of the proposed scheme

This problem is to find individual user assignments y∗ that maximize the social surplus,

subject to the physical constraints of flows representing the performance of the network. The

(aggregate) optimal traffic flow pattern x∗ is obtained by aggregating the individual assign-

ments. It is, however, almost impossible for the manager to directly obtain solutions of [SO],

because the problem includes private utilities wi
t,w

j
t. To achieve the system optimal traffic

assignment, we construct an evolutionary mechanism for the proposed scheme.

6.3 Framework of the hybrid scheme and users’ behavior

models

6.3.1 Framework of the hybrid scheme

A framework of the hybrid scheme is shown in Figure 6.2. This represents the relationship

between the evolutionary mechanism and traffic flow patterns arising from the mechanism.

The mechanism of the hybrid scheme consists of the trading rules of the trading markets and

a choice model of users’ arrival time (i.e., the SFP model), in which users’ behaviors are

determined by a series of processes. On the other hand, aggregating users’ behaviors derives

a traffic flow pattern.

To intuitively see how the scheme work under the framework, let us to explain the micro
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mechanism using a time-line from day s to day s+1. Firstly, the users’ trips on day s generate

the traffic flow pattern x(s). The road manager then imposes congestion tolls on users based

on the observed traffic flow pattern x(s). After this, each user chooses a destination arrival

time on day s+1 with considering information on traffic flow patterns {x(1), . . . , x(s)} realized

until the current day. More precisely, each upstream user chooses a arrival time through

trading permits in the trading markets, while each downstream user chooses arrival time

with the stochastic fictitious play (shown in the next subsection). Each user then makes a trip

on day s + 1: the traffic flow pattern x(s + 1) is generated.

6.3.2 Users’ behavior models

Learning process

Users are assumed to predict a traffic flow pattern for the day on which they travel (we call

this “prediction”) based information on traffic flow patterns {x(1), . . . , x(s)} realized until

the current day; each user chooses an arrival time to maximize a “predicted utility”. The

prediction for the day s + 1 is defined by the time average of traffic flow patterns:

x(s) =
1
s

s∑
s=1

x(s) (6.12)

where x(s) =
∑
i∈M

yi(s) +
∑
j∈N

y j(s).

Behaviors of upstream users

After making a trip on day s, an upstream user purchases a network permit of day s + 1

through an auction mechanism. In the auction, each user plays a myopic bidding strategy

based on their prediction: truthful valuations that each user has are given by

vi
t(xt(s)) = wi

t(s) − ht(xt(s)). (6.13)

User i’s predicted payoff (or net utility) from permit at time t is also given by

πi
t(s) = vi

t(xt(s)) − pt(s) = wi
t(s) −

(
ht(xt(s)) + pt(s)

)
. (6.14)

From the properties of the trading markets shown in the next section, the assignment of

the user is determined so as to maximize their predicted payoff: the probability that user i is
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assigned time t (i.e., yi
t(s + 1) = 1) is given by

Bi
t(xt(s), pt(s)) = Pr

(
t = arg max

t∈T
πi

t(s)
)

=
exp[−ηi(ht(xt(s)) + pt(s))]∑

t∈T exp[−ηi(ht(xt(s)) + pt(s))]
, (6.15)

where ηi is a variance parameter for the stochastic utility wi
t.

Behaviors of downstream users

We describe the downstream users’ behavior using a stochastic fictitious play (SFP) model,

as proposed by Fudenberg and Kreps (1993). According to the SFP model, users have

predictions (or beliefs) about how their opponents will behave; these predictions are deter-

mined by the time average of past play. Users make their choices after the predicted payoffs

have been subjected to random shocks. In our model, opponents’ behavior is aggregated as

a traffic flow pattern: their predictions are given by Eq. (6.12). Therefore, downstream user

j’s predicted payoff is given by

π j
t(s) = wj

t(t) − ht(xt(s)). (6.16)

After realizing the stochastic utility wj
t, the user maximizes their predicted payoff: the user

chooses an arrival time t (i.e., yj
t(s + 1) = 1) with probability

Bj
t(xt(s)) = Pr

(
t = arg max

t∈T
π j

t(s)
)

=
exp[−η jht(xt(s))]∑

t∈T exp[−η jht(xt(s))]
, (6.17)

where η j is a variance parameter for the stochastic utility wj
t.

6.4 Auction mechanism for implementing trading markets

Like the previous chapters, the trading markets are implemented by the proxy DGS auction

(see also Appendix C). Since the auction is strategy-proof (i.e., no user has an incentive to

manipulate the markets), users bid their valuations vi
t(xt(s)) defined in (6.13) truthfully. Also,

the auction mechanism achieves allocative efficiency, i.e., the allocation of network permits
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on day s + 1 is determined as an optimal solution of the following assignment problem:

max
yi(s+1)≥0

.
∑
t∈T

∑
i∈M

vi
t(xt(s))yi

t(s + 1) (6.18)

subject to

∑
t∈T

yi
t(s + 1) = 1 ∀i ∈ M (6.19)

∑
i∈M

yi
t(s + 1) ≤ μ ∀t ∈ T (6.20)

Permit prices p(s) are equivalent to the Lagrange multiplier for the constraints (6.20) and

satisfy the market clearing conditions:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

i∈M yi
t(s + 1) = μ if pt(s) > 0

∑
i∈M yi

t(s + 1) ≤ μ if pt(s) = 0
∀t ∈ T. (6.21)

6.5 Stochastic convergence of day-to-day traffic flow dy-

namics

Until Section 6.4, considering individual users, we developed a evolutionary mechanism for

implementing the hybrid scheme; the mechanism supports users’ behaviors y. Note here

that the users’ behaviors are not equal to the system optimal user assignments y∗ shown in

Section 6.2 because each user’s predicted utility (or payoff) πt(s) depends on the prediction

x about traffic flow pattern.

This section analyzes the stochastic dynamics of the prediction. The dynamics depend

on changes of the traffic flow pattern x, generated by aggregating users’ behaviors y. Sub-

section 6.5.1 defines the stochastic process and derives the mean dynamics of the process. In

Subsection 6.5.2, we show properties of the mean dynamics. We then prove that the original

stochastic process converges to the system optimal traffic flow pattern by using stochastic

approximation theory (Subsection 6.5.3). Here, when the prediction converges, the traffic

flow pattern is equal to it (i.e., x = x∗). Thus, the system optimal user assignments y∗ are

achieved though the evolutionary mechanism.
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6.5.1 Stochastic dynamics of the prediction of traffic flow pattern

As shown in Subsection 6.3.2, each user’s behavior on the day s+1 is determined by referring

only to the prediction on day s. Let us describe the changes of the prediction between day

s and day s + 1. From the definition of the prediction (6.12), the stochastic dynamics of the

prediction are given by

x(s + 1) =
1

s + 1

(
x + x(s + 1)

)
. (6.22)

A traffic flow pattern x(s + 1) realized on day s + 1 with probability

Pr

⎛⎜⎜⎜⎜⎜⎜⎝x(s + 1) =
∑
i∈M

yi(s + 1) +
∑
j∈N

y j(s + 1) | x(s) = x

⎞⎟⎟⎟⎟⎟⎟⎠
=

∏
i∈M

∏
t:yi

t(s+1)=1

Bi
t(x(s),p(t))

∏
j∈N

∏
t:yj

t(s+1)=1

Bj
t(x(s)). (6.23)

We can then compute expected changes of x(s) by using Eq. (6.23):

E
(
x(s + 1) − x(s) | x(s) = x

)
=

1
s + 1

[
E
(
x(s + 1) | x(s) = x

)
− x

]

=
1

t + 1

⎡⎢⎢⎢⎢⎢⎢⎣
(∑

i∈M
Bi(x(s),p(t)) +

∑
j∈N

B j(x(s))
)
− x

⎤⎥⎥⎥⎥⎥⎥⎦ (6.24)

where Bi = (Bi
t(·, ·))t∈T, B j = (Bj

t(·))t∈T. To determine the long-run behavior of the expected

changes, allow day s to approach its limiting value (i.e., s → ∞). Then, expected changes

of the prediction are transformed into the following ordinary differential equation (or mean

dynamics):

dxt

ds
=

⎡⎢⎢⎢⎢⎢⎢⎣
∑
i∈M

Bi
t(x,p) +

∑
j∈N

Bj
t(x)

⎤⎥⎥⎥⎥⎥⎥⎦ − xt ∀t ∈ T. (6.25)

6.5.2 Properties of the mean dynamics of the prediction

Rest points of the mean dynamics (6.25) satisfy dx/ds = 0. Therefore, the following condi-

tions should be satisfied at the rest points:

x∗t =
∑
i∈M

Bi
t(x
∗,p∗) +

∑
j∈N

Bj
t(x
∗) ∀t ∈ T (6.26)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p∗t > 0 if

∑
i∈M Bi

t(x
∗,p∗) = μ

p∗t = 0 if
∑

i∈M Bi
t(x
∗,p∗) ≤ μ

∀t ∈ T. (6.27)
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For the rest points of the mean dynamics, we can obtain the following proposition:

Proposition 6.1 The rest point of the mean dynamics of the prediction is equal to the system

optimal traffic flow pattern x∗ defined in Section 6.2.

Proof See Appendix 6.A for the proof.

Proposition 6.1 can be directly obtained by reformulating [SO] with a deterministic per-

turbation function (see Hofbauer and Sandholm (2002) more detailed discussion of this func-

tion):

max
y∈Ω
.SS(yi,y j) = −

∑
i∈M

∑
t∈T

[αct(xt) + st]yi
t +

∑
i∈M

Hi(yi)

−
∑
j∈N

∑
t∈T

[αct(xt) + st]yj
t +

∑
j∈N

Hj(y j)

= −
∑
t∈T

∫ xt

0
ht(ω)dω +

∑
i∈M

Hi(yi) +
∑
j∈N

Hj(y j), (6.28)

where Ω is the feasible region that satisfies (6.8)–(6.10) and the deterministic perturbation

functions are given by the following entropy functions:

Hi(yi) = − 1
ηi

∑
t∈T

yi
t ln yi

t, Hj(y j) = − 1
η j

∑
t∈T

yj
t ln yj

t.

Since the objective function of the problem is strictly concave, we find that the system op-

timal traffic assignment is unique: this means that the rest point of the mean dynamics is

unique. The above problem is also used to describe the stability of the mean dynamics.

To ensure that the mean dynamics dx/ds globally converge to the rest point, we consider

a continuous and differentiable function SSL(x) given by

SSL(x) ≡ −
∑
t∈T

∫ xt

0
ht(ω)dω +

∑
i∈M

Hi(yi) +
∑
j∈N

Hj(y j) − SS(yi∗,y j∗). (6.29)

Theorem 6.1 The function SSL(x) is a strict Lyapunov function for the mean dynamics.

Proof See Appendix 6.B for the proof.

Therefore, the following proposition is satisfied for the mean dynamics of the prediction:

Proposition 6.2 Under the hybrid scheme, the mean dynamics of the prediction globally

converge to the system optimal state.

Proof This proposition follows from Proposition 6.1, Theorem 6.1, and Lyapunov stability

theory.
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6.5.3 Convergence of the stochastic dynamics of the prediction

Proposition 6.2 states that the mean dynamics of the prediction globally converge to the

system optimal state. However, the original stochastic process (6.22) of the prediction jumps

past the optimal state with positive probability. Thus, we use stochastic approximate theory

to relate the behavior of the stochastic process to the rest point of the mean dynamics. We

then obtain the following proposition:

Proposition 6.3 The stochastic process of the prediction converges to the system optimal

state with probability 1.

Proof Proposition 6.1 and Proposition 6.2 state that the mean dynamics globally converge

to the rest point and the rest point is equal to the system optimal state. On the other hand,

Theorem 3.3 of Benaı̈m and Hirsch (1999) and Proposition 5.3 of Benaı̈m (1999) imply

that the stochastic process of the prediction converges to a set of the rest points of the mean

dynamics. Since the rest point is unique in our model, we conclude that the stochastic process

converges to the system optimal state.

From the Proposition 6.3, the stochastic process of the prediction converges to the system

optimal state x∗, which leads to that the system optimal user assignments y∗ are achieved

through the evolutionary mechanism.

6.5.4 Numerical Example

Finally, we show a numerical example to illustrates the convergence process of the day-to-

day dynamics of the traffic flow pattern with prediction.

Let the downstream travel time be given as the following BPR type function:

c(xi) = c0{1 + a(xi/μ̃)b} (6.30)

where c0 represents free flow travel time and a, b, and μ̃ are parameters of the function. We

here set a = 2 and b = 5. The schedule cost function is given by

st = max{e(t̂ − t), l(t − t̂)} (6.31)

with identical values for the positive earliness rate e = 25 (yen/min) and lateness rate l = 45

(yen/min); t̂ is the desired arrival time. The coefficient that converts travel time to a manetary

equivalent is given by α = 30 (yen/min).
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Table 6.1 Physical parameters on the road network

Parameter values

The number of the upstream users (M) 2500 vheicles

The number of the downstream users (N) 5000 vheicles

Bottleneck capacity (μ) 50 vheicle/min

BPR parameter (μ̃) 500

Free flow time on the downstream link (c0) 15 min

We consider a morning commute; all users have the same desired time t̂ = 8 : 00. We set

logit parameters ηi = 0.01, η j = 0.01. Physical parameters on the road network are shown in

Table 6.1. We also set time interval Δt = 1 (minitue) and S = 150.

Numerical results are shown in Figure 6.3 and Figure 6.4. Figure 6.3 illustrates a sample

path of the stochastic process of the aggregate traffic flow pattern per 10 minutes. This pro-

cess is obtained by aggregating each user behavior. On the other hand, Fig. 6.4 shows the

day-to-day dynamics of the total transportation cost2; the red line represents the total trans-

portation cost at the socially optimal state (i.e., minimum value of the social transportation

cost) and the blue line does the total transportation cost on each day. From these figure, we

see that stochastic process of the traffic flow pattern eventually reaches a steady state near

the system optimal state that minimizes the total transportation cost.

6.6 Conclusion

Wada and Akamatsu (2010) proposed a hybrid scheme combining tradable network permits

and congestion pricing, and demonstrated its efficiency in a deterministic situation. The

present study developed an evolutionary mechanism for implementing the hybrid scheme in

a stochastic environment, and showed that the mechanism operates robustly with stochastic

user behavior. Specifically, we first described an auction mechanism for the trading markets

and modeled users’ behavior using stochastic learning model (i.e., stochastic fictitious play).

We then derive a stochastic dynamics about traffic flow pattern. Finally, we established

2 Note that the social surplus is maximized when the total transportation cost is minimized in our model.



120

Figure 6.3 Dynamics of the aggregate predictions per 10 minutes

Figure 6.4 Dynamics of the total transportation cost
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the following convergence result for the dynamics by relying on stochastic approximation

theory. That is, the dynamics converges to a system optimal state in the sense that the social

surplus is maximized with probability 1.

Appendix 6.A Proof of the Proposition 6.1

We first consider the Kuhn-Tucker conditions for the system optimal traffic assignment prob-

lem [SO]:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

yi∗
t > 0 if πi∗ = wi

t − h(x∗t) − p∗t

yi∗
t = 0 if πi∗ ≥ wi

t − h(x∗t) − p∗t
∀i ∈ M (6.32)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yj∗

t > 0 if π j∗ = wj
t − h(x∗t)

yj∗
t = 0 if π j∗ ≥ wj

t − h(x∗t)
∀ j ∈ N (6.33)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p∗t > 0 if

∑
i∈M yi∗

t = μ

p∗t = 0 if
∑

i∈M yi∗
t ≤ μ

∀t ∈ T (6.34)

+ Equality constraints (6.8) and (6.9). (6.35)

where πi, π j, and pt are Lagrange multipliers for the constraints (6.8), (6.9), and (6.10);

these are interpreted as the upstream user’s net utility, downstream user’s net utility, and

permit price, respectively.

Eq. (6.32) represents that each upstream user chooses the arrival time that maximizes his

or her (net) utility. Therefore, the probability that the user chooses arrival time t is given as

Pr .
[
t = arg max

t∈T
.{wi

t − h(x∗t) − p∗t}
]
= Bi

t(x
∗,p∗). (6.36)

Similarly, from the Eq. (6.33), the probability that each downstream user chooses arrival

time t is given as

Pr .
[
t = arg max

t∈T
.{wj

t − h(x∗t)}
]
= Bj

t(x
∗). (6.37)

By using these two equation, we have

x∗t =
∑
i∈M

Bi
t(x
∗,p∗) +

∑
j∈N

Bj
t(x
∗), (6.38)
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and Eq. (6.34) is rewritten as the following condition:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p∗t > 0 if
∑

i∈M Bi
t(x
∗,p∗) = μ

p∗t = 0 if
∑

i∈M Bi
t(x
∗,p∗) ≤ μ

∀t ∈ T. (6.39)

It can be easily seen that conditions (6.38) and (6.39) are equivalent to (6.26) and (6.27).

Appendix 6.B Proof of the Theorem 6.1

We show that the function SSL(x) is a strict Lyapunov function for the mean dynamics (6.25).

First, we easily see that SSL(x) ≤ 0 with equality if and only if x = x∗ (i.e., y = y∗) (negative

definite). Next, we show that the following condition:

d
ds

SSL(x) = ∇SSL(x) · dx
ds
> 0 (6.40)

is satisfied when x � x∗ (i.e., y � y∗).

To obtain this, we consider the following problem [P]:

max
y∈Ω
.ŜSL(x) = −h(x) · x +

∑
i∈M

Hi(yi) +
∑
j∈N

Hj(y j) (6.41)

where x =
∑
i∈M

yi +
∑
j∈N

y j

The objective function of the problem is the partial linearization of the Lyapunov function,

i.e., h(x) is given. Note here that we omit SS(yi∗,y j∗) of the Lyapunov function for simplicity.

Call this optimal solution x′.

We next define a feasible solution x(κ) of the problem [P] (or the original problem [SO]):

x(κ) ≡ x + κd = x + κ(x′ − x), (6.42)

where d is a direction vector and κ is a step size. If the step size is too small, the change of

the value of the Lypunov function is given as

ΔSSL =
∂SSL(x(κ))
∂κ

. (6.43)

Here, the only difference between SSL(x(κ)) and ŜSL(x(κ)) is the first terms of them. There-

fore, (6.43) can be evaluated as the change of the value of ŜSL(x(κ)):

ΔSSL =
∂SSL(x(κ))
∂κ

=
∂ŜSL(x(κ))
∂κ

. (6.44)
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Meanwhile, since ŜSL(x(κ)) is concave,

ŜSL(x(κ)) ≥ (1 − κ)ŜSL(x) + κŜSL(x′). (6.45)

Also, since x′ is the optimal solution of the problem [P], ŜSL(x′) > ŜSL(x). Thus, for any

κ ∈ (0, 1), the following inequality holds:

ŜSL(x(κ)) > ŜSL(x). (6.46)

Further, when κ→ 0+, this equation means

∂ŜSL(x(κ))
∂κ

> 0. (6.47)

From the above discussion, by replacing κ with s, we can conclude that

∂SSL(x(s))
∂s

> 0 (6.48)

when x � x∗ (i.e., y � yi).





Chapter 7

Conclusion

In this thesis, we have extended a theory of the tradable network permits scheme in two im-

portant directions: (i) to develop a supply side control based on the scheme and (ii) to design

implementation mechanisms for the scheme in three different situations. The common objec-

tive of the control and mechanisms is to achieve an efficient allocation of network capacity

without requiring demand forecasting. To accomplish this objective, we employed an evolu-

tionary approach to achieving an optimal supply level while acquiring demand information

sequentially. In the following, the results of this thesis are summarized.

Chapter 3 proposed a distributed signal control policy based on the tradable network

permits, while considering a semi-dynamic traffic flow on general networks. The proposed

signal control policy has two desirable properties. First, it can determine the green time

proportion (i.e., capacity allocation) of each intersection by using only the information per-

mit prices of the intersection; it requires no knowledge of the entire network information

(e.g., origin-destination information). Second, an equilibrium traffic assignment under the

proposed policy coincides with a system optimal traffic flow pattern that minimizes the total

transportation cost in a network. Moreover, we constructed an evolutionary implementation

method for the proposed policy and proved that the day-to-day traffic flow dynamics under

the scheme converge to the system optimal traffic pattern.

Chapter 4 proposed an implementation mechanism for trading markets of network per-

mits on general networks. Although a naive formulation of the problem of finding a dynamic

system optimal allocation of network permits leads to a NP-hard problem, we avoided such

computational infeasibility by employing an evolutionary approach. Specifically, we made

use of a hybrid mechanism that consistently combines an auction mechanism with a path
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capacity control; these are repeated on a day-to-day basis. The former phase involves sell-

ing bundles of permits, and the latter phase involves adjustment of the number of bundles

of permits, which corresponds to the path capacities. We proved that the proposed mecha-

nism has the following desirable properties: (i) truthful bidding is a dominant strategy for

each user on each day and (ii) the permit allocation pattern under the mechanism converges

to an approximate dynamic system optimal allocation pattern in the sense that the achieved

social surplus reaches its maximum value when the number of users is large. Furthermore,

we showed that the proposed mechanism could be extended to obviate path enumeration by

introducing a column generation procedure.

Chapter 5 considered a more general situation where network permits for a specific day

are sold in multiple period markets. The multiple period markets not only provide a degree

of freedom in the purchase of permits but also allow for more efficient resource allocation

than a single period market, especially when users’ valuations of the permits change over

time. Under such circumstances, the road manager needs to allocate a bottleneck capacity

to these markets, as well as allocate permits to users. As a first step in implementing these

markets, we designed a dynamic auction mechanism in which the number of permits for each

market is fixed. This mechanism can determine optimal permit allocation, along with the

actual sequence of time if each user truthfully bids “net valuations” (i.e., valuations minus

the option value of deferring purchase). It was proved that the truthful revelation of net

valuations is a dominant strategy for each user, and that it guarantees that the market choice

of the user is optimal. We then derived an adjustment rule of the number of permits sold

for each market and demonstrated that combining the dynamic auction and the adjustment

rule maximizes the social surplus in a finite number of iterations. Finally, we numerically

showed that the proposed mechanism works effectively for a dynamic population case where

markets participants change over time.

Chapter 6 developed an evolutionary mechanism for a hybrid scheme of the TNP and

congestion pricing, considering multiple negative externalities (i.e., queuing congestion and

flow congestion). Specifically, we first described a mechanism consisting of trading rules

of the permit markets and users’ behaviors expressed by a stochastic learning model. We

then derived a stochastic dynamics of the learning process from the mechanism. Finally, we

showed that that the stochastic dynamics converges to an equilibrium state, and traffic flow

pattern at equilibrium is efficient in the sense that the social surplus is maximized.
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This thesis is the first step towards implementing tradable network permits scheme.

Therefore, there are several challenges left for future research; the following are but two

of them.

1. Investigating robustness of the proposed mechanisms. All the implementation mecha-

nisms proposed in this thesis (except Chapter 6) are contingent on the assumption that

users behave myopically every day. To investigate the robustness of the mechanisms,

a more complete analysis must take into account the day-to-day strategic/learning be-

haviors of users. In addressing this subject, a full game-theory analysis of individual

strategic behaviors might be intractable in our situation, given that the number of users

is large. Instead, it would be useful to incorporate the mechanisms with the aggregate

dynamics of learning behaviors like Chapter 6. Additionally, analyzing the mecha-

nisms under a stochastic environment is an important topic that should be addressed in

future research.

2. Tradable network permits scheme in the second best situations. Throughout this study,

we considered the first-best situation, in which the road manager can issue network

permits for all links. However, in practice, this condition does not always hold, as a

road network has a limited number of bottlenecks. Therefore, further investigation of

the tradable network permits scheme in second-best situations is needed in order to

determine which links should be controlled. To address this issue, we need to connect

the tradable network permits scheme to a dynamic traffic assignment (DTA) prob-

lem; this is not a trivial problem, because we would face difficulties by virtue of the

non-convexity of the DTA problem. Nevertheless, since there is every possibility of

extending the scheme’s range of application, further exploration on this issue would

be a challenging but worthwhile topic for future research.





Appendix A

Benders decomposition

Benders decomposition has been known as an effective approach for mathematical programs

including several types of variables (e.g., mixed integer problems). This approach partitions

the variables of a problem into two subsets and updates those variables in each subset alter-

nately. Therefore, we can exploit special structures (e.g., network structures) of each type of

variables to solve the overall problem.

Consider a mixed integer problem with two types of variables, x and y:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

maxx,y c · x + d · y
s.t. Ax + By ≤ b

x ≥ 0, y ∈ Y,
(A.1)

where x is a m-vector of continuous variables, y is a n-vector of discrete variables, and Y is

a subset of the integer points in n dimensions. The matrices A and B and vectors c, d, and b

have dimensions compatible with those of x and y.

By fixing variables y, we here formulate a linear program with respect to x:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

SP(y) ≡ maxx c · x + d · y
s.t. Ax ≤ b − By

x ≥ 0.

(A.2)

We call this “sub-problem.” The dual problem of the sub-problem is also formulated as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

DSP(y) ≡ minu u · (b − By) + d · y
s.t. uA ≥ c

u ≥ 0,

(A.3)
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where u are dual variables, and we let S denote the feasible region of u: S = {u | uA ≥
c, u ≥ 0}. It should be noted that the the feasible region S is independent of variables y. If

S = φ, from the duality theorem, the primal sub-problem (A.2) (and the original problem) is

unbounded or infeasible. On the other hand, if S � φ, S is a convex polyhedron. Thus, there

are a finite number of extreme points, written up
i , i = 1, . . . , np, and if S is unbounded, there

are a finite number of extreme rays, written ul
j, j = 1, . . . , nl. Note here that, for a extreme

ray ul
j, if

ul
j · (b − By) < 0, (A.4)

the dual sub-problem (A.3) is unbounded, i.e., (A.2) (and the original problem) is infeasible.

Therefore, y must satisfy

ul
j · (b − By) ≥ 0 ∀ j = 1, . . . , nl. (A.5)

Conversely, if this condition is satisfied, an optimal solution of the dual sub-problem (A.3)

is obtained as one of the extreme points.

From the above discussion, if those extreme points and rays are known, the original

problem (A.1) can be reformulated as
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

maxy

{
minup

i
up

i · (b − By) + d · y
}

s.t. ul
j · (b − By) ≥ 0 ∀ j = 1, . . . , nl

y ∈ Y.
(A.6)

But this problem is equivalent to the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max . θ

s.t. up
i · (b − By) + d · y ≥ θ ∀i = 1, . . . , np

ul
j · (b − By) ≥ 0 ∀ j = 1, . . . , nl

y ∈ Y.

(A.7)

This problem is called the “master problem.” Denoting y∗ is an optimal solution of this

problem. There exists an optimal solution x∗ for fixed y = y∗. Then a pair (x∗,y∗) is an

optimal solution of the original problem (A.1).

While we see that the original problem is reduced to the problem (A.7), it is difficult to

solve this problem directly. This is because a number of extreme points and rays is generally
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too large and cannot be known in advance. However, only a small number of the constraints

will be biding at an optimal solution. Hence, we adopt an iterative procedure of generating

a new constraint successively. More specifically, we first consider a relaxation problem of

(A.7) (restricted master problem) that has a small number of extreme points and rays. This

problem produces an upper bound θ on the optimal objective value of the original problem.

Then we add a new constraint to the restricted master problem successively by solving the

dual sub-problem until the optimal solution is obtained.

Algorithm

Step 0: Initial setting. Set the initial ŷ by solving the restricted master problem.

Step 1: Sub-problem. For a fixed ŷ, solve the dual sub-problem (A.3). If the problem is

infeasible then, the original problem has an bounded solution, then stop. If the problem

is unbounded, we obtain a new extreme ray ûl
j and go to Step 2. Otherwise, we obtain

a new extreme point ûp
i . Then, if

θ = ûp
i · (b − By) + d · ŷ, (A.8)

a pair of ŷ and x̂, which corresponds to ûp
i , is an optimal solution of the original

problem. Otherwise, go to Step 2.

Step 2: Restricted master problem. Add a constraint corresponding to the extreme point ûp
i

or extreme ray ûl
j to the restricted master problem. Then we solve a new restricted

master problem and obtain a new ŷ and a new upper bound θ. Go to Step 1. If the

restricted master problem is infeasible, so is the original problem, then stop.

Note that a new extreme point or ray is always generated in each Step 1. Therefore, finite

convergence of the algorithm follows directly from the finite number of constraints of the

problem (A.7) (see, Lasdon, 1970, for a comprehensive review of the Benders decomposi-

tion).





Appendix B

Vickrey-Clarke-Groves mechanism

The VCG mechanism is the most celebrated sealed-bid (combinatorial) auction that achieves

allocative efficiency and induces truth-telling. This is a generalization of the well known

sealed-bid second price auctions proposed by Vickrey (1961). This generalization was made

by Clarke (1971) and Groves (1973).

To give a formal definition of this mechanism, let N be the set of bidders and M the set

of heterogeneous items. For every subset S of M, bidder i ∈ N is assumed to have the private

valuation vi(S) ≥ 0. Each bidder is also assumed to have the following quasi-linear utility:

ui(yi, pi) ≡
∑
S⊆M

vi(S)yi(S) − pi, (B.1)

where pi is bidder i’s payment and yi(S) = 1 if S is allocated to bidder i and zero otherwise.

The VCG mechanism for combinatorial auctions is defined as follows:

1. Bidders simultaneously report sealed bids vi giving their value for each possible com-

bination (i.e., bundle) of all items (we here assume that each bidder is truthful).

2. An auctioneer then chooses the allocation of items so as to maximize the sum of the

accepted bids (social surplus) by solving the following winner determination problem:

V =max
y

∑
i∈N

∑
S⊆M

vi(S)yi(S) (B.2)

s.t.
∑
S� j

∑
i∈N

yi(s) ≤ 1 ∀ j ∈M (B.3)

∑
S⊆M

yi(S) ≤ 1 ∀i ∈ N (B.4)

yi(s) ∈ {0, 1} ∀S ⊆M, ∀i ∈ N. (B.5)
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The first constraint (B.3) represents a capacity constraint for each item. The second

constraint (B.4) is the condition no bidder receives more than one subset. Call this

optimal solution y∗.

3. Payment pi for bidder i is equal to the decrease in the value of the social surplus by

adding him or her to the auction, i.e.,

pi ≡ V−i −
∑
k�i

∑
S⊆M

vk(S)y∗k(S), (B.6)

where the index −i represents that bidder i is removed from the auction.

From the definition, if all bidders report their valuations truthfully, the VCG mechanism

maximizes the social surplus (allocatively efficient). Then, bidder i’s utility is

ui(y∗i , pi) = V − V−i. (B.7)

This is sometimes called the marginal product.

We next show that the VCG mechanism induces truth-telling. To do this, suppose each

bidder reports (possibly untruthful) bids bi. The auctioneer chooses the allocation of items

ŷ by maximizing
∑

i∈N
∑

S⊆M bi(S)yi(S). Then, bidder i’s utility is

ui(ŷi, pi) =
∑
S⊆M

vi(S)ŷi(S) − pi (B.8)

=
∑
S⊆M

vi(S)ŷi(S) −
⎡⎢⎢⎢⎢⎢⎣V−i −

∑
k�i

∑
S⊆M

bi(S)ŷi(S)

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
∑
S⊆M

vi(S)ŷi(S) +
∑
k�i

∑
S⊆M

bi(S)ŷi(S)

⎤⎥⎥⎥⎥⎥⎦ − V−i

The second term of the final line is determined independent of bidder i’s bids. On the other

hand, the first term is always maximized when bidder i reports truthful bids vi. This is be-

cause the first term equals to the optimal objective value of the winner determination prob-

lem in that case, i.e., the auctioneer chooses the allocation by maximizing
∑

S⊆M vi(S)yi(S)+∑
k�i

∑
S⊆M bk(S)yk(S). Therefore, there is no user has incentive to report untruthful bids.

Theorem B.1 (VCG mechanism) In the VCG mechanism, truth reporting is a dominant

strategy for each bidder. The social surplus is maximized when all bidders report their

valuations truthfully.
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Unfortunately, the VCG mechanism requires complex tasks to both the auctioneer and

bidders. Specifically, the auctioneer have to solve |N| + 1 combinatorial optimization prob-

lems exactly. It is computational burden when the number of bidders is large. On the other

hand, bidders have to report bids for possible combination of all items. This is not just the

computationally hard problem but also undesirable in terms of the privacy: bidders are re-

quired to reveal their private information more than necessary. See Ausubel and Milgrom

(2006) for a comprehensive review of the VCG mechanism.





Appendix C

Primal-dual algorithm

In this appendix, we briefly introduce a primal-dual algorithm corresponding to the (exact)

ascending auction proposed by Demange, Gale, and Sotomayor (1986). This algorithm is

known as the “Hungarian method” (Kuhn, 1955).

Consider an assignment problem (notations used here are same as in Appendix B):

max
x≥0

∑
i∈N

∑
j∈M

vijyij (C.1)

s.t.
∑
i∈N

yij ≤ 1 ∀ j ∈M (C.2)

∑
j∈M

yij ≤ 1 ∀i ∈ N, (C.3)

and its dual problem:

min
(π,p)≥0

∑
i∈N

πi +
∑
j∈M

pj (C.4)

s.t. πi ≥ vij − pj ∀i ∈ N, ∀ j ∈M. (C.5)

where (π,p) are Lagrange multipliers for constraints (C.8), (C.9), which are interpreted as

the bidders’ payoffs and item prices.

In the primal-dual algorithm for the assignment problem, we first set an initial feasible

solution (i.e., initial price): p = 0. We next define the admissible set Di(p) that satisfies the

following condition:

Di(p) = { j | πi = vij − pj} ∀i ∈ N. (C.6)

This set corresponds to bidder’s demand set in each round.
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Next we check the feasibility of primal variables by solving the following restricted pri-

mal problem:

max
x≥0

∑
i∈N

∑
j∈Di(p)

yij (C.7)

s.t.
∑
i∈N

yij ≤ 1 ∀ j ∈M (C.8)

∑
j∈M

yij ≤ 1 ∀i ∈ N, . (C.9)

This problem can be seen as the maxi-flow problem on a certain network. Thus, we adopt the

labeling algorithm (Ford-Fulkerson algorithm) to solve this problem. If a feasible solution

exists, the solution and the current dual variables are optimal, i.e., all bidders can be allocated

an item form his demand set and prices are competitive equilibrium prices.

Otherwise, we have to update dual variables. To achieve minimum competitive equilib-

rium prices, the DGS auction here chooses a minimal overdemanded set and updates prices

in the set. However, finding the overdemanded set is computationally burden in general. For

this problem, Sankaran (1994) demonstrated that such prices can be achieved by updating

dual variables in a certain overdemanded set. Interestingly, this set is identified by solving

the restricted primal problem based on the Ford-Fulkerson algorithm. Thus, we increase

values of dual variables in this set by one unit in each round until the optimal solution is

obtained.

Algorithm

Step 0: Initialization. Set dual variables p = 0.

Step 1: Checking the primal feasibility. First, we generate the admissible sets Di(p) under

the current dual variables p. Then, we solve the restricted primal problem using the

Ford-Fulkerson algorithm. If a feasible solution exists, the solution and the current

dual variables are optimal, then stop. Otherwise, go to Step 2.

Step 2: Updating dual variables. Increase values of dual variables in the overdemanded set

that is identified in Step 1 by one unit
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Braess, D., 1968. Über ein Paradoxon aus der Verkehrsplanung. Mathematical Methods of

Operations Research 12 (1), 258–268.

Button, K. J., Verhoef, E. T., 1998. Road Pricing, Traffic congestion and the Environment:

Issues of Efficiency and Social Feasibility. Edward Elgar.

Cantarella, C. E., Improta, G., 1991. Iterative procedure for equilibrium network traffic signal

setting. Transportation Research Part A 25 (5), 241–249.

Carey, M., Srinivasan, A., 1993. Externalities, Average and Marginal Costs, and Tolls on

Congested Networks with Time-Varying Flows. Operations Research 41 (1), 217–231.

Cascetta, E., 2001. Transportation Systems Engineering Theory and Methods. Wiley and

Sons.

Cascetta, E., Gallo, M., Montella, B., 1998. Optimal signal setting on traffic networks with

stochastic equilibrium assignment. In: Proceedings of the Tristan III Conference.

Cascetta, E., Gallo, M., Montella, B., 2006. Models and algorithm for the optimization of

signal settings on urban networks with stochastic assignment models. Annals of Opera-

tions Research 144 (1), 301–328.

Cavallo, R., Parkes, D., Singh, S., 2006. Optimal coordinated planning amongst self-

interested agents with private state. 55–62.

Chen, L., Yang, H., 2012. Managing congestion and emissions in road networks with tolls

and rebates. Transportation Research Part B 46 (8), 933–948.

Chiang, W., Chen, J., Xu, X., 2007. An overview of research on revenue management: cur-

rent issues and future research. Journal of Revenue Management 1 (1), 97–128.

Chiou, S. W., 1999. Optimization of area traffic control for equilibrium network flows. Trans-

portation Science 33 (3), 279–289.



142

Cipriani, E., Fusco, G., 2004. Combined signal setting design and traffic assignment prob-

lem. European Journal of Operational Research 155 (3), 569–583.

Clarke, E. H., 1971. Multipart pricing of public goods. Public Choice 11 (1), 17–33.

Cordeau, J.-F., Soumis, F., Desrosiers, J., 2000. A Benders decomposition approach for the

locomotive and car assignment problem. Transportation Science 34 (2), 133–149.

Cramton, P., Shoham, Y., Steinberg, R., 2006. Combinatorial Auctions. MIT Press.

Daganzo, C., 1994. The cell transmission model: A dynamic representation of highway

traffic consistent with the hydrodynamic theory. Transportation Research Part B 28 (4),

269–287.

Daganzo, C., 2007. Urban gridlock: Macroscopic modeling and mitigation approaches.

Transportation Research Part B 41 (1), 49–62.

Daganzo, C., Garcia, R., 2000. A Pareto improving strategy for the time-dependent morning

commute problem. Transportation Science 34 (3), 303–311.

Daganzo, C. F., 1985. The uniqueness of a time-dependent equilibrium distribution of ar-

rivals at a single bottleneck. Transportation Science 19 (1), 29–37.

Daganzo, C. F., 1995. A pareto optimum congestion reduction scheme. Transportation Re-

search Part B 29 (2), 139–154.

Dales, J. H., 1968. Land, water, and ownership. The Canadian Journal of Economics 1 (4),

791–804.

de Palma, A., Lindsey, R., 2011. Traffic congestion pricing methodologies and technologies.

Transportation Research Part C 19 (6), 1377–1399.

de Vries, S., Schummer, J., Vohra, R. V., 2007. On ascending vickrey auctions for heteroge-

neous objects. Journal of Economic Theory 132 (1), 95–118.

de Vries, S., Vohra, R. V., 2003. Combinatorial auctions: A survey. INFORMS Journal on

Computing 15 (3), 284–309.



143

Demange, G., Gale, D., Sotomayor, M., 1986. Multi-item auctions. The Journal of Political

Economy 94 (4), 863–872.

Dickson, T. J., 1981. A note on traffic assignment and signal timings in a signal-controlled

road network. Transportation Research Part B 15 (4), 267–271.

Doan, K., Ukkusuri, S., Han, L., 2011. On the existence of pricing strategies in the discrete

time heterogeneous single bottleneck model. Transportation Research Part B 45 (9), 1483–

1500.

Doan, K., Ukkusuri, S. V., 2012. On the holding-back problem in the cell transmission based

dynamic traffic assignment models. Transportation Research Part B 46 (9), 1218–1238.

Downs, A., 1962. The law of peak-hour expressway congestion. Traffic Quarterly 16, 393–

409.

Dramitinos, M., Stamoulis, G. D., Courcoubetis, C., 2007. An auction mechanism for allo-

cating the bandwidth of networks to their users. Computer Networks 51 (18), 4979–4996.
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Teodorović, D., Edara, P., 2005. Highway space inventory control system. In: Proceedings of

the 16th International Symposium on Transportation and Traffic Theory. Emerald Group

Publishing Limited, 43–62.
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