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Abstract

Discourse processing is the task of making implicit information ex-

plicit in natural language texts. Typically, when the writer makes in-

formation implicit, they think that the reader shares the same world

knowledge, or the knowledge about our world including commonsense

knowledge, with the writer. For machines, therefore, it is not an easy

task to recover the information omitted by the human writer. To

bridge the knowledge gap between humans and machines, a machine-

readable database of world knowledge (knowledge base) is expected to

play an important role in discourse processing.

What is a computational mechanism that enables us to effectively

exploit the knowledge base for discourse processing? In the last few

years, a number of techniques that acquire world knowledge resources

have been developed. As a result, a number of machine-readable

resources have been made available. Given the recent advances of

statistical approaches to NLP, most of the existing approaches to dis-

course processing encodes the world knowledge as the feature vectors

for machine learning-based classifiers (feature-based approaches).

However, a feature-based approach has a severe limitation when it is

used as a framework of discourse processing. The limitation is that

the feature-based approaches cannot derive implicit information from

a text by combining several kinds of world knowledge. In discourse

processing, it is crucial to have the capability of deriving new informa-

tion through the combination of different types of world knowledge.

Let us consider the case of coreference resolution, one of the discourse

processing tasks where we identify the group of linguistic expressions

that refers to the same real-world entity. Conventional approaches



to coreference resolution have exploited world knowledge to capture

syntactic or semantic compatibility between mentions, encoding them

as a feature vector for machine learning-based classifiers. However,

there exist many cases where several antecedents are syntactically

or semantically compatible with an anaphoric expression, and the

derivation of implicit information through the combination of several

world knowledge provides a key solution to these problems.

In order to address this issue, we explore an inference-based approach,

based on a mode of inference called abduction, or inference to the best

explanation. Specifically, we adopt cost-based abduction on first-order

logic, where the plausibility of explanation is evaluated through a real-

valued function (cost function). In first-order logic abduction, world

knowledge is encoded as a set of logical forms: world knowledge is

declaratively used in the inference-based approach. The declarative

encoding of world knowledge naturally overcomes the limitations of

feature-based approaches, and enables us to infer the most plausible,

implicitly stated information combining heterogeneous inference rules

and the pieces of information observed from texts.

In spite of successful theoretical progress and small-scale systems,

work on large-scale, “real life” systems foundered on two main diffi-

culties so far: (i) reasoning procedures were not efficient enough, and

(ii) the cost function is hand-tuned for each task. In this thesis, we

propose an efficient inference method of cost-based abduction in first-

order predicate logic that avoids computationally expensive grounding

procedures in order to explore inference-based approaches in realistic

settings. Through the large-scale evaluation, we demonstrate that the

proposed procedure outperforms the previous approaches.

We then show how to formulate the supervised machine learning prob-

lem of abduction with the framework of online large-margin training,

which has been shown to have both predictive performance and scala-

bility to larger problems. We demonstrate that the proposed training

framework successfully reduces the predictive loss in both open tests



and closed tests.

Using the proposed inference and learning frameworks, we give an

in-depth comparison of two approaches in both qualitative and em-

pirical perspectives. Specifically, we conduct a case study on anaphora

resolution, where we create two machine learning-based anaphora res-

olution models following feature-based and abductive inference-based

approaches. We propose a machine learning-based hybrid model that

combines the conventional compatibility feature-based approach with

a logical inference-based approach. We integrate those two approaches

to complement the weakness of each approach, using an abductive

inference framework. The empirical evaluation and the qualitative

analyses demonstrate that inference-based approaches have several

potential advantages to feature-based approaches.
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Chapter 1

Introduction

In natural language texts, the writer frequently omits the information that the

reader can restore by using commonsense knowledge or taking the plausible in-

terpretation of the given texts into account. For example, in the sentences “John

bought a car. The engine was good.”, the writer does not explicitly mention that

the engine is the engine of the car that John bought, because the writer expects

that the reader can identify it with the commonsense knowledge that “engine is

a part of car”, and the plausible interpretation that the engine is part of John’s

car.

Discourse processing, a subtask of natural language processing (NLP), is the

process of making implicit information, such as the information above, explicit

in natural language texts. In this thesis, we study the computational aspect of

discourse processing, i.e. what kind of computational mechanism should be built

for the realization of automatic discourse processing. The study of computational

aspect of discourse processing is essential to a broad range of scientific researches,

such as cognitive science and linguistics, because the natural language is the basic

communication tool that people use. Moreover, we could exploit automatic dis-

course processing to extract some useful information from a vast amount of texts

online, which are produced by the recent advances of Information Technology

represented by World Wide Web.

The omission of information in a text is basically triggered by the writer’s as-

sumption that the reader shares the same world knowledge, the knowledge about

our world including commonsense knowledge, with the writer. However, com-
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puters do not have world knowledge; thus it is not an easy task for computers

to restore the information omitted by the human writer. There could be several

ways to bridge the gap of world knowledge between humans and machines. In

this thesis, we take the most straightforward solution, which gives a knowledge

base, a machine-readable database of world knowledge, to computers. In order to

exploit the knowledge base in automatic discourse processing, we need to address

the following two big issues.

Firstly, how do we construct the knowledge base? The amount of world knowl-

edge seems unlimited and growing everyday, but is it possible to construct the

knowledge base large enough to approximate the actual world knowledge? In the

last few years, a number of techniques that acquire world knowledge resources

have been developed. As a result, a number of machine-readable resources have

been made available that encode the kinds of knowledge needed for NLP [Fell-

baum, 1998; Ruppenhofer et al., 2010, etc.]. Moreover, statistical corpus-based

methods for extracting general rules from large amounts of text have been de-

vised [Chklovski and Pantel, 2004; Hovy et al., 2011; Penas and Hovy, 2010;

Schoenmackers et al., 2010, etc.]. Therefore, in this thesis, we assume that the

knowledge base is sufficient enough to explore the computational aspect of dis-

course processing, and do not address the issue of how to acquire the knowledge

base.

The second issue is what computational mechanism enables us to exploit the

knowledge base in an effective way. Given the recent advance of statistical ap-

proaches to NLP, most of the existing approaches for NLP encodes the world

knowledge as the feature vectors of machine learning-based classifiers, which are

designed for each particular NLP task (henceforth, we call it feature-based ap-

proaches). However, a feature-based approach has a severe limitation when it is

used as a framework of discourse processing. The limitation is that the feature-

based approaches cannot derive implicit information from a text by combining

several kinds of world knowledge. In discourse processing, it is crucial to have

the capability of deriving new information through the combination of different

types of world knowledge.

Let us consider the case of coreference resolution, one of the discourse process-

ing tasks where we identify the group of linguistic expressions that refers to the

2



same real-world entity. Conventional approaches to coreference resolution have

exploited world knowledge to capture syntactic or semantic compatibility between

mentions, encoding them as a feature vector for machine learning-based classi-

fiers. However, there exist many cases where several antecedents are syntactically

or semantically compatible with an anaphoric expression, and the derivation of

implicit information through the combination of several world knowledge provides

a key solution to these problems. Consider the following example:

• The scientists gave the chimps some bananas because they were hungry.

We have two antecedents [the scientists]j′ and [the chimps]j, which are both

semantically compatible with the anaphor [they]j. Therefore, the compatibility

feature-based methods cannot choose the correct antecedent [the chimps]j in a

systematic way.

Thus, the question remains as to which mechanism enables world knowledge

to be maximally effective in discourse processing. This is the main research issue

in this thesis. In the next section, we elaborate on how to address this issue in

our study.

1.1 Research Issues and Methodologies

To find out what mechanism is able to effectively exploit world knowledge, we

work on the main hypothesis that an inference-based approach would be a bet-

ter alternative mechanism to feature-based approaches. Specifically, we explore

a first-order logical inference-based discourse processing framework, based on a

mode of inference called abduction, or inference to the best explanation. Logic-

based abductive discourse processing has been studied intensively in the 1980s

and 1990s; Hobbs et al. [1993] show that the lowest-cost abductive explanation

provides the solutions to a broad range of natural language understanding prob-

lems, such as word sense disambiguation, anaphora, and metonymy resolution.

In abductive inference-based approaches, world knowledge is encoded as a set

of first-order logical formulae, and used as the background knowledge of logical

inference. That is, world knowledge is declaratively used in inference-based ap-

proaches, while world knowledge is procedurally used in feature-based approaches.

3



The declarative encoding of world knowledge brings us two benefits, which are

the key advantages of using abduction for discourse processing:

• abduction-based approaches naturally resolve interdependencies between

NLP tasks, and identifies the most coherent interpretation to all tasks with-

out writing a specific procedure;

• abduction-based approaches jointly resolve the ambiguity of knowledge ap-

plicability, selecting the most plausible knowledge according to a given con-

text;

• abduction-based approaches infer the most plausible, implicitly stated in-

formation combining heterogeneous inference rules and the pieces of infor-

mation observed from texts.

From a machine learning perspective, abduction-based processing amounts to the

joint inference of a particular NLP task and derivation of implicit information.

The point is that, however, we can naturally model the joint inference without

complicated steps. What we have to do is to write an appropriate knowledge

base.

In spite of successful theoretical progress and small-scale inference-based sys-

tems, work on large-scale, “real life” systems foundered on three main difficulties

so far: (i) there was no sufficiently large knowledge base of the right sort for lan-

guage processing, (ii) reasoning procedures were not efficient enough, and (iii) a

function that evaluates the plausibility of explanation was manually tuned for

each purpose. As mentioned earlier, the difficulty (i) is almost resolved, but the

difficulties (ii) and (iii) still remain. Therefore, the inference-based approach has

not been able to be evaluated on real-life problems and a large knowledge base

so far. This leads us to the following research issue:

1. Do inference-based approaches indeed enable us to exploit world knowledge

in a effective way better than feature-based approaches do on a real-life

dataset? What is the difference between inference-based approaches and

feature-based approaches in both a qualitative and empirical perspective?

4



To answer this question, we conduct the case study on anaphora resolution and

give a detailed comparison of two approaches from both the qualitative and em-

pirical perspective. Anaphora resolution is the task of identifying the referents of

mentions or objects related to mentions, which is one of the important tasks of

natural language processing.

Let us return to the three issues of inference-based approaches so far. In

abduction, there exists a several explanations to observation in general. To pick

the best one, we need some measure to evaluate the plausibility of explanations.

In this thesis, we adopt cost-based abduction, a variant of abduction where the

best explanation is defined as the explanation that minimizes the cost function

of explanation. In first-order logical cost-based abduction (henceforth, we call

it first-order cost-based abduction), the problem of finding the best explanation

is equivalent to a constrained combinatorial optimization problem with respect

to the cost function, which is an NP-hard problem [Charniak and Goldman,

1991]. In fact, Ovchinnikova et al. [2011] report that Mini-TACITUS abductive

reasoning system [Mulkar et al., 2007] could not complete to search the entire

search space of explanations within 30 minutes in most of the RTE problems in

their experiments.

In the literature, many researchers have tried to overcome cost-based ab-

duction’s inefficiency by a range of methods from approximation to exact in-

ference [Chivers et al., 2007; Ishizuka and Matsuo, 1998; Poole, 1993b; Santos,

1996, etc.]. For example, Santos (1994) formulate cost-based abduction in propo-

sitional logic using Integer Linear Programming (ILP), and showed its efficiency.

However, to the best of our knowledge, most of the proposed methods are opti-

mized for propositional logic. In order to employ these methods for first-order

cost-based abduction, we need to transform knowledge bases and observations

to propositional logic (henceforth, we call the transformation grounding). The

process of grounding generates a quite huge search space and does not scale to

larger problems. This leads to the second research issue:

2. To maximally receive the benefits of large-scale knowledge acquisition stud-

ies, how do we efficiently search for the best explanation in first-order cost-

based abduction?

5



To address this issue, we propose an Integer Linear Programming-based solution

to perform an efficient search in first-order cost-based abduction.

Less attention has been paid to the issue (iii), i.e. how to automatically learn

the cost function, which rank candidate explanations in order of their plausibility.

To apply abductive inference to a wide range of tasks, this non-trivial issue needs

to be addressed, as the criterion of plausibility is highly task-dependent. A no-

table exception is a series of studies in the context of Statistical Relational Learn-

ing [Blythe et al., 2011; Kate and Mooney, 2009; Raghavan and Mooney, 2010;

Singla and Domingos, 2011], where they emulate abduction in the probabilistic

deductive inference framework, Markov Logic Networks (MLNs) [Richardson and

Domingos, 2006], or Bayesian Logic Programs [Kersting and Raedt, 2001]. These

approaches can exploit several choices of machine learning methods originally de-

veloped for probabilistic models [Huynh and Mooney, 2009; Lowd and Domingos,

2007, etc.].

However, emulating abduction in these approaches has severe overhead. For

example, the emulation in MLNs requires a special procedure to convert abduc-

tion problems into deduction problems because MLNs are deductive inference

framework in nature. This conversion process generates a large number of ax-

ioms, and hence hampers the application of MLN-based approaches to larger

problems (see Sec. 4.5 for more detail). Since inference is a subroutine of learn-

ing procedure, learning is also intractable on large dataset, as reported in Singla

and Domingos [2011]. This motivates us to address the third research issue:

3. How do we train a cost function of abduction for predicting the desired

explanations?

We propose an online large-margin training framework of first-order cost-based

abduction based on Passive Aggressive algorithm [Crammer et al., 2006].

1.2 Contributions

In this thesis, we address three research questions described in the previous sec-

tion, making the following contributions:
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• In-depth comparison of feature-based and inference-based approaches:

We give a detailed comparison of feature-based approaches and inference-

based approaches in both qualitative and empirical ways. To the best

of our knowledge, none of the previous studies discuss the difference be-

tween feature-based approaches and inference-based approaches, nor com-

pare both approaches through a large-scale evaluation (Chapter 2, 5, 6).

• Lifted inference technique for cost-based abduction on first-order

logic: We propose an efficient method of cost-based abduction in first-order

predicate logic that avoids computationally expensive grounding procedures

(Chapter 3). Most of the previous approaches to cost-based abduction have

solved cost-based abduction in propositional-level. However, it is compu-

tationally expensive to convert first-order logic formulae into propositional

logic formulae. Our method does not require grounding and works directly

on first-order level. We also provide a mathematical proof of the complete-

ness and soundness of the proposed inference procedure.

• ILP formulation of first-order cost-based abduction problem: We

formulate the best-explanation search problem as an Integer Linear Pro-

gramming (ILP) optimization problem (Chapter 3). We can exploit several

choices of state-of-the-art combinatorial optimization technology developed

in Operations Research. In addition, the resulting framework is highly ex-

tensible; e.g., we can easily incorporate linguistically motivated heuristics

by simply adding some ILP variables and/or constraints to an optimization

problem, keeping the overall framework unchanged. We also show how Cut-

ting Plane Inference, which is an iterative optimization strategy developed

in Operations Research, can be applied to make first-order abduction more

scalable.

• Supervised learning framework for cost-based abduction: We show

how to formulate the machine learning problem of abduction with the frame-

work of online large-margin training, which has been shown to have both

predictive performance and scalability to larger problems (Chapter 4). We

generalize the score function of abduction as a weighted linear model and
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then learn the weight vector. The linear model-based formulation enables

us to flexibly design the score function. We support partially observed gold-

standard explanations as training examples, where the weights are learned

to rank any explanation that includes the gold-standard explanation as the

best explanation.

• Providing the all-in-one software package for cost-based abduction

on the public webpage: We have implemented the proposed techniques

of inference and learning in one software package, which is called Henry.

The software is publicly available at the author’s webpage.1 This is the

first all-in-one-package that accomplishes efficient inference and supervised

learning.

1.3 Thesis Overview

The rest of this thesis is structured as follows.

• Chapter 2: Inference-based Approach for Discourse Processing We

introduce an inference-based approach for discourse processing problems.

Our hypothesis is that first-order logic-based abduction would be a better

approach for solving the discourse processing problems. We first review

a history of abductive discourse processing, and then elaborate on how

the discourse processing problems can be cast as the abductive inference

problem, following the framework of Interpretation as Abduction [Hobbs

et al., 1993]. We demonstrate that the abduction-based formalism solves

several discourse processing problems in an integrated fashion and is also a

promising alternative to exploit world knowledge in an effective way.

• Chapter 3: ILP-based Lifted Inference for Cost-based Abduction

The problem of finding the least-cost abductive explanation is an NP-hard

problem. In this chapter, we propose an efficient inference method for

cost-based abduction on first-order logic. We show how to perform cost-

based abduction directly on first-order level in a similar way to resolution

1http://github.com/naoya-i/henry-n700/
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[Robinson, 1965] and formulate the problem of least-cost explanation finding

as an Integer Linear Programming problem.

• Chapter 4: Online Large-margin Weight Learning for Cost-based

Abduction We address the issue of how to give a cost function that reason-

ably evaluates the plausibility of explanations. In this chapter, we propose

a supervised approach for learning the cost function. To make the learn-

ing algorithm possible to have both scalability and generalization ability,

we adopt Passive Aggressive algorithm [Crammer et al., 2006], an online

large-margin training algorithm.

• Chapter 5: Resolving Direct and Indirect Anaphora with Feature-

based Approach To take a deeper look at the difference between feature-

based and inference-based approaches, we conduct the case study on anaphora

resolution. We first propose a feature-based model of anaphora resolution.

We give a detailed error analysis of the feature-based anaphora resolution

model, and then discuss the problem of feature-based approaches. We found

out that it is difficult for the feature-based approaches to solve problems

where there are more than one candidate antecedents which are semanti-

cally compatible with an anaphor in the preceding context.

• Chapter 6: Inference-based Approach to Coreference Resolution

Based on the error analyses of previous chapter, we propose an inference-

based model for coreference resolution, the subtask of anaphora resolution.

Specifically, we propose a machine learning-based hybrid model that com-

bines the conventional compatibility feature-based approach with a logical

inference-based approach. We integrate those two approaches to comple-

ment the weakness of each approach, using an abductive inference frame-

work. For inference and learning, we use an efficient inference method

proposed in Chapter 3 and a learning framework proposed in Chapter 4.

We show that inference-based formalisms can infer implicit information that

functions as useful clue for coreference resolution. We conduct a large-scale

empirical evaluation and demonstrate that the inference-based approach is

promising alternative to feature-based approaches.
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• Chapter 7: Conclusions We summarize our discussion, and present our

future direction.
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Chapter 2

Inference-based Approach for

Discourse Processing

In this chapter, we give a basic idea of how to formalize discourse processing

problems in a logical inference-based framework. We first start with the introduc-

tion of first-order logic and first-order logic-based abduction. We then describe

cost-based abduction, where the best explanation is defined as the lowest cost

explanation among possible explanations. We then introduce Interpretation as

Abduction [Hobbs et al., 1993], which is a pioneering work of abductive natural

language processing framework.

2.1 First-Order Logic

First-Order Logic (FOL) is a language for meaning representation. In FOL, the

basic unit of meaning is an atom. An atom is a form of P (X1, X2, ...Xn), which

consists of two parts: (i) predicate P and (ii) terms X1, X2, ...Xn. A predicate is

a symbol that represents relation between objects. A term represents object in

the world. Therefore, the atom love(John, Mary) means that John and Mary is

in a relationship of love. Terms can be constant, variable, or function symbols. A

constant symbol exactly specifies one object in the world, and a variable symbol

means any objects in the world. A function symbol represent mappings from

objects to objects.
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An atom can be negated. When an atom is negated, the truth value of an

atom becomes false. In FOL, a negation is represented by “¬”, so a negated

atom is written as ¬P (X1, X2, ...Xn). Negation can be recursively applied, and

if negation is applied to an negated atom, then it becomes a non-negated atom.

A non-negated atom or negated atom is called literal. A ground atom, or ground

literal refers to an atom or literal where all the terms are constants.

We sometimes want to represent that there are multiple facts being true or

false. In FOL, a logical connector can be used to connect multiple literals. A

logical connector can be L1 ∧ L2 (conjunction, true iff both L1 and L2 are true),

L1 ∨ L2 (disjunction, true iff L1 or L2 are true), L1 ⇒ L2 (implication, true iff

L1 is false or L2 is true), or L1 ⇔ L2 (equivalence, true iff L1 and L2 have the

same truth value). For example, love(John, Mary) ∧ [love(John, Catherine) ∨
love(John, Ada)] means that John loves Mary, and John loves Catherine or Ada

(could be both). Formula is an literal or literals that are connected by the logical

connectors. The logical connectors can also connect formulas (e.g. L1∧L2 ⇒ L3).

Variables can be universally quantified (∀) or existentially quantified (∃) in a

formulae. The quantification is written as ∀x1, x2, ...xnF or ∃x1, x2, ...xnF , where

x1, x2, ...xn is variables that are quantified. Universal quantification means that

the formula is true iff the formula is true for all objects in the world. Existential

quantification means that the formula is true iff the formula is true for at least

one object in the world. A formula is satisfiable iff there exists a truth assignment

to each literal in the formula which makes the formulae true. A formula F1 is

said to be entailed by another formula F2 iff F2 is true in every truth assignments

which satisfy F1. The entailment relation is denoted by |=.

2.2 Abduction

Abduction is inference to the best explanation. We use function-free first-order

logic with finite domains as the meaning representation of abduction in this thesis.

Formally, first-order logical abduction is defined as follows:1

1The same framework is used in induction. While induction finds a set of plausible rules
from observations, abduction finds a set of plausible facts.
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• Given: Background knowledge B, and observations O, where B is a set of

first-order logical formulae, and O is a set of literals or equalities.

• Find: An explanation (or hypothesis) H such that H ∪B |= O, H ∪B 6|=⊥,

where H is a set of literals or equalities. Each element in H is called an

elemental explanation.

Let us define some terminologies. We define equality to be the form x = y

(positive equality) or x 6= y (negative equality), where x and y are either variables

or constants. The equality x = y means that referents of x and y are the same

(i.e. {p(x), p(y), x = y} has the same meaning as {p(x)}). We say that the literal

p is the logical consequence of S if S |= p; p is (explicitly) hypothesized w.r.t. H

if p ∈ H; p is implicitly hypothesized if H ∪ B |= p w.r.t. H and B (i.e. p is a

logical consequence of H w.r.t. B); p is explained if H ∪ B \ {p} |= p; otherwise

p is assumed. We refer to the operation that we unify two or more literals in set

S of literals, and apply the unifier to S as factoring of S.

In this paper, we assume that all variables occurring in a logical form of

background knowledge are universally quantified with the widest possible scope,

unless it is explicitly stated as existentially quantified. On the one hand, we

assume that variables occurring in an explanation and observation are existen-

tially quantified implicitly. We assume that the background knowledge has no

cyclic dependencies between an explaining literal and an explained literal (e.g.

B = {P (x) → Q(x), Q(x) → P (x)} has a cyclic dependency). We call this

assumption knowledge recursion-free assumption.

Typically, several explanations H explaining O exist. We call each of them a

candidate explanation, and represent a set of candidate explanations of O given B

as HO,B. The goal of abduction is to find the best explanation among candidate

explanations by a specific evaluation measure.

2.3 Cost-based Abduction

Typically, several explanations H explaining O exist. We call each of them a can-

didate explanation, and represent a set of candidate explanations of O given B

as HO,B. The goal of abduction is to find the best explanation among candidate
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explanations by a specific evaluation measure. In this paper, we formulate abduc-

tion as the task of finding the minimum-cost explanation Ĥ among HO,B. Hence-

forth, we refer to abduction based on the minimum-cost explanation finding as

the Cost-based Abduction (CBA). Formally, we find Ĥ = arg minH∈HO,B
cost(H),

where cost is a function HO,B → R, which is called the cost function.

Let us describe the task of abduction with a toy example. Given B = {p(x, y)∧
q(x) → r(x), s(x) → r(x)}, O = {r(z)}, we have four candidate explanations:

H1 = {r(z)}, H2 = {p(z, w), q(z)}, H3 = {s(z)}, and H4 = {p(z, w), q(z), s(z)}.
The task of abduction is to select the best explanation among them in terms

of the cost. Suppose cost(H1) = 5.5, cost(H2) = 12.25, cost(H3) = 10.8, and

cost(H4) = 7.13. The correct prediction is then H1.

In the literature, several kinds of cost functions have been proposed, including

cost-based and probability-based [Charniak and Goldman, 1991; Hobbs et al.,

1993; Poole, 1993a; Raghavan and Mooney, 2010; Singla and Domingos, 2011,

etc.]. In this paper, we adopt the cost function proposed by Hobbs et al. (1993).

The cost function assumes that each elemental explanation p ∈ H has the cost of

hypothesizing p (intuitively, the plausibility of p being an explanation for given

observations), and sums up the costs of assumed elemental explanations. Hence-

forth, we write P (x)$c to denote P (x) having a cost c.

During the construction of H, one can factor H to generate a new explanation

at any time. When H is factored, the following things happen: (i) the literal that

has the smallest cost among a set of unified literals remains in H, and (ii) for the

unifier {xi/yi}ni=1, a set of elemental explanations {xi = y$0
i }ni=1 is added to H. For

example, one can factor H = {R(a)$20, R(b)$10, Q(a)$20} with the unifier {a/b}
to get H ′ = {R(b)$10, a = b$0, Q(b)$20}, where the smaller cost $10 is assigned to

R(b). Formally, the cost function is defined as follows:

cost(H) =
∑

h∈A(H)

cost(h), (2.1)

where A(H) is a set of assumed literals in H.
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(∃e1,e2,x1,x2,y1,y2) 
                 john(x1) ∧ go(e1, x1, x2) ∧ bank(x2) ∧ he(y1) ∧ get(e2, y1, y2) ∧ loan(y2)   

loan(y2)  ⇒ (∃e2, y1, y3) issue(e2, y3, y2, y1) ∧ financial_inst(y3) 

Explanation	 issue(e2, y3, y2, y1) 
⇒ get(e2, y1, y2) 

financial_inst(x2) 
⇒ bank(x2) 

x2=y3 
issue(e2, x2, x3, x1)   
⇒ go(e2, x1, x2) 

x1=y1 

John went to the bank.    He got a loan.  

John and he 
are coreferent	

bank refers to  
a financial bank	

went to the bank  
is the purpose of  

got a loan	

hypothesized	

Observation	

Input	
hypothesized	

Figure 2.1: Example of abductive interpretation.

2.4 Interpretation as Abduction

Hobbs et al. (1993) pioneered an abduction-based approach for natural lan-

guage understanding. The key idea is that “interpreting sentences is to prove

the logical forms of sentences, allowing assumptions, merging redundancies where

necessary.” They demonstrate that a wide range of NLP tasks involved in dis-

course interpretation, including anaphora resolution, discourse relation recogni-

tion, etc., can be cast as the problem of finding an explanation to the pieces of

information observed from the discourse.

A logical form (LF) of a text represent observations, which need to be ex-

plained by background knowledge. In our discourse processing pipeline, a text

is first input to the English parser Boxer [Bos, 2008]. For each segment, the

parse produced by Boxer is a first-order fragment of the DRS language used in

Discourse Representation Theory [Kamp and Reyle, 1993]. An add-on to Boxer

converts the DRS into a logical form in the style of Hobbs [1985].

The LF is a conjunction of propositions, which have generalized entity argu-

ments that can be used for showing relationships among the propositions. Hobbs

[1985] extends Davidson [1967]’s approach to all predications and claims that

corresponding to any predication that can be made in natural language, there is

an eventuality. Correspondingly, any predication in the logical notation has an
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extra argument, which refers to the “condition”, in which that predication is true.

Thus, in the logical form John(e1, j) ∧ run(e2, j) for the sentence John runs, e2

is a running event by John and e1 is a condition of j being named “John”.

In the context of discourse processing, we call a hypothesis explaining a logical

form an interpretation of this LF. The interpretation of the text is carried out

by an abductive system. The system tries to prove the logical form of the text,

allowing assumptions where necessary. Where the system is able to prove parts

of the LF, it is anchoring it in what is already known from the overall discourse

or from a knowledge base. Where assumptions are necessary, it is gaining new

information.

Figure 2.1 shows an example taken from [Hobbs et al., 1993]. In this example,

we solve three types of NLP tasks: (i) coreference resolution, e.g. the coreference

relation between John and he (x1 = y1), (ii) intent recognition, e.g. the intention

of John (backward-inference on go(e1, x1, x2) to loan(y2)), and (iii) word sense

disambiguation, e.g. the meaning of bank is not a riverbank, but a financial insti-

tution (backward-inference on bank(x2) to financial inst(x2), where the inference

rule means that “a financial institution is expressed as bank in a text).

Specificity of explanations It is crucial to discuss the specificity of explana-

tions. We say that an explanation H is more specific than another explanation

H ′ if H ∪ B |= H ′. As discussed in Hobbs et al. [1993], we want to decide the

appropriate specificity of an explanation because there are often little evidence

(i.e., observation) to support specific explanations. Traditionally, two extreme

modes of abduction have been considered. The first is most-specific abduction. In

most-specific abduction, what we can explain from background knowledge is all

explained, which is suitable for diagnostic systems. In diagnostic systems, users

might want to know what causes the current situation as much as possible. Some

cost-based approaches and probabilistic approaches fall into this group [Char-

niak and Goldman, 1991; Raghavan and Mooney, 2010, etc.]. The second is

least-specific abduction. Literally, an explanation is obtained by just assuming

observations in this mode. Using only least-specific abduction makes little sense,

but as described below, it makes sense if it is combined with most-specific abduc-

tion.
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In natural language understanding systems, we need both modes at the same

time. Adopting only one of these levels is problematic. For example, if we

adopt most-specific abduction, the system yields too specific explanation such

as “Bob took a gun because he would rob XYZ bank using a machine gun which

he had bought three days ago.” Conversely, if we adopt least-specific abduction,

the system assumes just observation, as in “Bob took a gun because he took a gun.”

We thus want to determine the suitable specificity during inference. To the best

of our knowledge, Hobbs et al. (1993)’s weighted abduction is only a framework

that concerns the appropriateness of explanation specificity. The cost function of

weighted abduction naturally handles this by propagating costs of propositions

and unification as described in Sec. 3.2.

2.4.1 Weighted Abduction

As mentioned before, abduction needs to select the best hypothesis, and hence

this framework also needs to select the best interpretation based on some evalu-

ation measure. Hobbs et al. [1993] propose the cost function that can evaluate

two types of plausibility of hypotheses simultaneously: the correctness and infor-

mativeness. The correctness represents how much reliable the contents of infor-

mation are. The informativeness is how specific the information is. As discussed

in Hobbs et al. [1993], the criterion of plausibility is extremely task-dependent.

For example, one might want hating as the correct explanation of killing in story

understanding tasks, while mentally-ill might be favored in medical diagnostic

tasks. One might desire the most specific explanation possible in medical diag-

nostic systems, whereas one might want less specific explanations in story under-

standing systems. Therefore, Hobbs et al. [1993] parametrized the cost function

in a way that one can construct the cost function that favors more specific and

thus more informative explanations, or explanations less specific but reliable in

terms of a specific task by altering the parameters. The resulting framework is

called Weighted Abduction.

In principle, the cost function gives a penalty for assuming specific and unre-

liable information but rewards for inferring the same information from different

observations. To the best of our knowledge, Hobbs et al. (1993)’s weighted ab-
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duction is the only framework that concerns the appropriateness of hypothesis

specificity. Hobbs et al. (1993) exploit this cost function for text understand-

ing where the key idea is that interpreting sentences is to find the lowest-cost

abductive explanation to the logical forms of the sentences in the agreement of

correctness-informativeness tradeoff.

2.4.1.1 The basics

In weighted abduction, observations are given with costs, and background axioms

are given with weights. It then performs backward-reasoning on each observation,

propagates its cost to the assumed literals according to the weights on the applied

axioms, and merges redundancies where possible. A cost of interpretation is then

the sum of all the costs on elemental hypotheses in the interpretation. Finally, it

chooses the lowest cost interpretation as the best interpretation.

Let us first describe the representations used for background knowledge, ob-

servations, and hypothesis in weighted abduction:

• Background knowledge B: a set of first-order logical formulae whose

literals in its antecedent are assigned positive real-valued weights. In ad-

dition, both antecedent and consequent consist of a conjunction of literals.

We use a notation pw to indicate “a literal p has the weight w.” We define

wB as a weight vector of background knowledge B, where i-th component

wBi corresponds to a weight of a specific literal in a specific axiom (i.e.

each component has a one-to-one mapping to each weight in background

knowledge).

• Observations O: an existentially quantified conjunction of literals. Each

literal has a positive real-valued cost. We use a notation p$c to denote “a

literal p has the cost c,” and cost(p) to denote “the cost of the literal p.”

• Hypothesis H: an existentially quantified conjunction of literals. Each

literal also has a positive real-valued cost. The cost of H is then defined as

cost(H) =
∑

h∈H cost(h).

In the Hobbs et al.’s framework, inference procedure is only defined on the formats

defined above, although neither formats of B, O nor H are mentioned explicitly.
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2.4.1.2 Procedure of weighted abductive inference

Given a weight vector wB, the cost function of H is defined as the sum of all the

costs of elemental hypotheses in H:

cost(H;wB) =
∑

h∈PH

cost(h;wB) (2.2)

=
∑

h∈PH

 ∏
i∈chain(h)

wBi

 cost(obs(h)), (2.3)

where PH is a set of elemental hypotheses that are not explained, chain(h) is a

set of indices to a literal in axioms that are used for hypothesizing h, and obs(h)

is an observed literal that is back-chained on to hypothesize h.

Let us describe how the weighted abduction works. Like logical abduction, H

is abductively inferred from O and B, and the costs of elemental hypotheses in

H are passed back from O multiplying the weights on the applied axioms in B.

When two elemental hypotheses are unified, the smaller cost is assigned to the

unified literal. Let us illustrate how these procedure works taking the following

axioms and observations as an example:

B = {∀x(p(x)0.3 ∧ q(x)0.9 → r(x)), (2.4)

∀x∃y(p(y)1.3 → b(x)), (2.5)

O = ∃a(r(a)$20 ∧ b(a)$10) (2.6)

A candidate hypothesis that immediately arises is simply assuming O, i.e., H1 =

∃a(r(a)$20∧ b(a)$10), where cost(H1) = $20+$10 = $30. If we perform backward

inference on r(a)$20 using axiom (1), we get H2 = ∃a(p(a)$6∧q(a)$18∧b(a)$10) and

cost(H2) = $34. As we said, the costs are passed back from r(a)$20 multiplying

the weights on axiom (1), and hence cost(p(a)) = $20 · 0.3 = $6 and cost(q(a)) =

$20 · 0.9 = $18.

If we perform backward inference on both r(a) and b(a) by using axiom (1)

and (2), we get another candidate hypothesis H3 = ∃a, b(p(a)$6∧q(a)$18∧p(b)$13),

in which p(a)$6 is unifiable with p(b)$13 assuming that a and b to be identical.

In weighted abduction, since the cost of unified literal is given by the smaller
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cost, H3 is refined as ∃b(q(b)$18 ∧ p(a)$6), and cost(H3) = $24. Considering only

these three candidate hypotheses, a solution hypothesis H∗ = H3, which has a

minimum cost cost(H3) = $24.

We mentioned that weighted abduction is able to evaluate the specificity of a

hypothesis in Sec. 2.4. The mechanism of specificity evaluation is accomplished

by the propagation of costs. We can see the working example of this mechanism

in the toy problem above: comparing cost(H1) with cost(H2) means determining

if r(a) should be explained more specifically or not.

2.5 Conclusion

In this chapter, we described the basic idea of abductive inference-based approach

for discourse processing. We elaborated on Hobbs et al.’s Interpretation as Ab-

duction framework, the pioneering work of abductive discourse processing. In

the Interpretation as Abduction framework, interpreting sentences amounts to

proving the logical forms of the sentences. To rank the possible proofs (explana-

tions), Hobbs et al. use the cost function that can evaluate the correctness and

informativeness of explanations, which are both essential to abductive discourse

processing.
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Chapter 3

ILP-based Lifted Inference for

Cost-based Abduction

In order to apply abduction to real-life problems with large-scale knowledge base,

we need to address the following issue: how to search for the best explanation ef-

ficiently. In this chapter, we adopt first-order logic-based cost-based abduction

(henceforth, first-order cost-based abduction), where we use function-free first-

order logic (FOL) as a representation language. In first-order cost-based ab-

duction, the explanation is represented by a set of literals, and the plausibility of

explanation is evaluated through the sum of the costs defined on each literal. The

best explanation is defined as the lowest-cost explanation. Finding the lowest-cost

explanation can be reduced to a constrained combinatorial optimization problem

with respect to the cost function, which is an NP-hard problem [Charniak and

Goldman, 1991]; this hampers the application of abduction with large knowledge

resources to real-life problems. In fact, Ovchinnikova et al. [2011] report that

the Mini-TACITUS cost-based abduction system [Mulkar et al., 2007] could not

search the entire search space of explanations within 30 minutes in most of the

RTE problems in their experiments.

In the literature, many researchers have tried to overcome cost-based ab-

duction’s inefficiency by a range of methods from approximation to exact in-

ference [Chivers et al., 2007; Ishizuka and Matsuo, 1998; Poole, 1993b; Santos,

1994, etc.]. For example, Santos (1994) formulate cost-based abduction in propo-
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sitional logic using Integer Linear Programming (ILP), and showed its efficiency.

However, to the best of our knowledge, most of the proposed methods are opti-

mized for propositional logic. In order to employ these methods for first-order

cost-based abduction, we need to transform knowledge bases and observations

to propositional logic (henceforth, we call this transformation grounding). The

process of grounding generates a quite huge search space, and does not scale to

larger problems as discussed in Sec. 3.1.

In this chapter, we provide a sound, complete, and scalable solution to first-

order cost-based abduction. The key idea is that we solve first-order CBA prob-

lems using the lifted inference technique, where each inference operation is directly

performed on first-order level like resolution [Robinson, 1965]. In principle, this

way of problem formulation gives us three benefits:

• we can reduce the search space of candidate explanations in comparison

to a grounding approach, because we are able to avoid instantiating FOL

formulae with all possible constants;

• the best explanation finding problem can be reduced to the constrained

combinatorial optimization problem of first-order literals and/or equalities,

meaning that we can exploit several choices of combinatorial optimization

technology developed in Operations Research. Specifically, our optimization

problem can be naturally formulated as an Integer Linear Programming

(ILP) problem, which can be efficiently solved by existing ILP solvers;

• the resulting framework is highly extensible; e.g., we can easily incorpo-

rate linguistically motivated heuristics by simply adding some ILP vari-

ables and/or constraints to an optimization problem, keeping the overall

framework unchanged.

In the rest of this chapter, we first formalize the best explanation finding in first-

order CBA using the lifted inference technique, and then describe how to solve

it as the ILP optimization problem.

3.1 Lifted First-order Inference for CBA
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Candidate 
hypothesis: hq(y) hr(A) hs(x) hs(y) ht(u) hr(x) hx=A hx=y hy=A ur(A),r(x) us(x),s(y) 

H1: {q(y), r(A), s(x)} 1 1 1 0 0 0 0 0 0 0 0 
H2: {q(y), r(A), s(x), r(x)} 1 1 1 1 0 1 0 0 0 0 0 
H3: {q(y), r(A), s(x), r(x), x=A} 1 1 1 1 0 1 1 0 0 0 1 
H4: {q(y), r(A), s(x), r(x), s(y), t(u),  
x=A, x=y} 1 1 1 1 1 1 1 1 1 1 1 

Set of potential elemental hypotheses:!
  P ={s(y), t(u), r(x), q(y), r(A), s(x), x=y, A=x} 

Input:!
  B: {r(x) → s(x), s(x) ∧ t(y) → q(x)} 
  O: {q(y), r(A), s(x)} 

{q(y) ∧ r(A) ∧ s(x)} 

r(x)  s(y) ∧ t(u)  
y=x A=x 

Backward-chaining:!

ILP representation of search space:!
Output:!
  H*: {q(y), r(A), s(x), r(x), x=A} 

Step 2. Solve ILP optimization problem 

Step 1. Generate P 

 Example ILP constraints:!
 1: hq(y) = 1 
 2: hx=y + hA=x – hy=A ≤ 1 
 3: a{s(y),t(u)} ≤ hq(y) 
 4: 2a{s(y),t(u)} ≤ hq(y) + ht(u) 
 5:  hs(x) + (1-a{r(x)}) + 
            (1-us(x),s(y)) ≤  2 + cs(x) 
 6: 3ur(x), r(A) ≤ hx=A + hr(x) + hr(A)  

ILP variables:!

Figure 3.1: Summary of the ILP-based approach.

First-order logic inherits all the theoretical property of propositional logic, and

hence the sound and complete inference can be performed on propositional logic.

However, performing first-order logical inference on propositional level has severe

overhead, because we need grounding, which generates the ground instances of

first-order logical formulae in knowledge bases and observations (i.e. instantiating

them with all possible constants). The grounding procedure generates a large

number of formulae when a domain is large. In this chapter, we thus propose

to perform the cost-based abduction on first-order level. The approach is in the

spirit of resolution [Robinson, 1965], but is applied to the best explanation finding

problems. In the rest of this section, we show how to solve the abductive inference

problem on first-order level.

Figure 3.1 summarizes our approach. In principle, our approach takes two

steps: (i) Step 1: search-space generation, and (ii) Step 2: best-explanation search.

In the search-space generation step, we first construct a set of all possible literals

and/or equalities that are potentially included in H. For example, given the toy

problem in Sec. 2.3, we construct the following set: {r(z), p(z, w), q(z), s(z)}. In

the best-explanation search step, we find the best explanation for O by finding

the best combination of literals or equalities among the set of literals constructed

in the search-space generation step, according to the cost function. The problem
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is solved in the form of constrained boolean optimization problem, which is the

problem of finding the truth assignment to boolean variables that maximizes or

minimizes an objective function satisfying the given constraints.

Now we move on to the detail of our approach. To describe the basic idea

of our approach clearly, let us restrict the formats of background knowledge,

observation, and explanation as follows:

• Background knowledge: a set of first-order Horn clauses (i.e. p1 ∧ p2 ∧ ... ∧
pn → q, where p1, p2, ..., pn, and q are atoms);

• Observations: a set of positive literals or positive equalities;

• Explanation: a set of positive literals or positive equalities.

Henceforth, we call each Horn clause in background knowledge an axiom, the

right hand side the head, and the left hand side the body. We show how to extend

the expressivity in Sec. 3.3.

We give the overall algorithm in Algorithm 1. Given a background knowl-

edge B and observations O, we first create set P of literals or equalities that

are potentially included as constituents of the best explanation of O (line 2–10).

We refer to the literal or equality p ∈ P as the potential elemental explanation.

To enumerate the potential elemental explanations, we first initialize P with O.

We then iteratively apply backward-inference to each p ∈ P (line 2–6). Algo-

rithm 2 depicts the backward-inference operation in detail (line 5–8). We define

backward-inference as the following operation:

• Input: the Horn clause p1 ∧ p2 ∧ ... ∧ pn → q and the literal l, where there

must exist the most general unifier θ such that lθ = qθ.

• Output: {p1, p2, ..., pn}θ, where the variables that are not substituted by

θ are replaced with existentially quantified variables not appearing in P so

far.

For example, given the axiom p(x, y) ∧ q(x, y, z) → r(x) and r(a), it derives

{p(a, u1), q(a, u1, u2)}, where u1 and u2 are existentially quantified variables not

appearing in P . Note that P is not equivalent to a set of resolvents that are

24



Algorithm 1 liftedFirstOrderCBA(Background knowledge B, Observation
O, Cost function cost)
1: P ← O, S ← O
2: while S 6= φ do
3: S ← getPotentialElementalExplanations(S, B)
4: P ← P ∪ S
5: end while
6: for p1, p2 ∈ P do
7: if ∃θp1θ = p2θ then
8: for x/y ∈ θ do P ← P ∪ {x = y}
9: end if

10: end for
11: return findBestExplanation(P, cost)

generated by a particular proof procedure. The goal of proof procedure is to check

whether a logical formula is implied by a set of logical formulae. Therefore, the

derived proof might not contain a set of all literals that can explain observations.

For example, SLD resolution [Kowalski, 1974], a backward inference-based proof

procedure that works on the Horn clause formulae, what literals resolved upon

is selected by a particular computation rule (e.g. leftmost), and the resolution

procedure terminates when the proof is found to be failure or success. However,

what we want to enumerate is the set of all literals that can explain observations.

Since we have the knowledge recursion-free assumption, line 2–11 terminates in

a finite time (i.e. until no more backward-inference can be applied).

In line 6–10, we search for the pairs of unifiable literals in P in order to

represent the application of factoring operation to H. For each pair of unifiable

literals, we add the equalities that are potentially hypothesized by the unifier (see

Sec. 2.3). We do not unify such literals in P here, because we want to treat that

the factoring operations are also defeasible, “possibly” true operation. We use

the cost function to determine whether they should be factored or not.

In line 11, we find the best explanation. Given P , the problem of best ex-

planation finding can be reduced to a constrained combinatorial optimization

problem. Notice that the number of candidate explanations exponentially grows

(i.e. O(2|P |)), because each explanation is represented by the combination of

potential elemental explanations. We immediately see that the simple approach
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Algorithm 2 getPotentialElementalExplanations(Background knowledge
B, set S of literals)

1: R← {}
2: for l ∈ S do
3: for p1 ∧ p2 ∧ ... ∧ pn → q ∈ B do
4: if ∃θlθ = qθ then
5: for v ∈ notSubstitutedVars({p1, p2, ..., pn}, θ) do
6: θ ← θ ∪ {v/ui}; i← i + 1
7: end for
8: R← R ∪ {p1, p2, ..., pn}θ
9: end if

10: end for
11: end for
12: return R

which finds a minimal explanation by evaluating all the candidate explanations

intractable. To improve the inefficiency, we formulate the best explanation find-

ing as the 0-1 ILP optimization problem to exploit the state-of-the-art search

strategy of combinatorial optimization problems. The formulation is described in

the next section.

3.2 ILP Formulation

We formulate the best-explanation finding problem as an ILP optimization prob-

lem, where the search space is represented as ILP variables and constraints, and

the cost function is used as the ILP objective. Intuitively, for each p ∈ P , we

introduce some 0-1 state variable that represents whether or not the potential

elemental explanation p is (explicitly, or implicitly) hypothesized. Then every

possible H ∈ HO,B can be expressed as the combination of value assignments to

these state variables.

We elaborate on two types of ILP variables and ILP constraints in the opti-

mization problem: (i) for representing the search space of candidate explanations,

(ii) for implementing the cost function. The ILP formulation here models abduc-

tion in FOL without negation. We extend this formulation in Sec. 3.3.1 so that

it supports negation.
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3.2.1 Formulation for CBA Search Space

To represent whether the literal or equality p ∈ P is hypothesized (including

implicitly hypothesized) or not, we introduce an ILP variable h ∈ {0, 1} as follows:

for each p ∈ P : hp =

1 iff H ∪B |= p;

0 otherwise.

For example, H2 in Figure 3.1 holds hr(x) = 1, where r(x) is hypothesized in H2.

We also use h to represent equalities. In H3, the variable hx=A is set to 1 because

x = A is assumed. Note that h variables does not represent the truth values of

p (i.e. hp = 0 does not mean H ∪ B |= ¬p). Once a value assignment to h is

determined, we construct H based on the assignment as follows:

Definition 3.2.1 Given a particular value assignment to h variables, we generate

an explanation H as follows:

• p ∈ H ⇔ hp = 1 for each p ∈ P ;

• p 6∈ H ⇔ hp = 0 for each p ∈ P .

That is, all logical consequences of H ∪ B are considered to be an explanation

(i.e. the generated explanation includes implicitly hypothesized literals, as well

as explicitly hypothesized literals).

Note that not all value assignments to ILP variables h are allowed. By the

definition of candidate explanation in Sec. 2.3, for example, it is not allowed to

output the assignment that there exists p ∈ O s.t. H∪B 6|= p. To ensure that the

search space includes only valid candidate explanations (i.e. H satisfies H ∪B |=
O and H ∪B 6|=⊥), we impose several constraints on the value assignments of h.

We denote T to represent a set of logical atomic terms in P .

Constraint 1: From the definition of explanation, observations must be the log-

ical consequences of H ∪B (i.e. H ∪B |= O).

for each p ∈ O : hp = 1 (3.1)
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Since we assume that P includes only positive literals, it is not required to

ensure the consistency of H ∪ B. In Figure 3.1, the constraint hq(y) = 1 is

generated.

Constraint 2: From the equality axiom in first-order logic, equality relations

must be symmetric (i.e. for all x, y ∈ T , hx=y = 1 ⇒ hy=x = 1), and

transitive (i.e. for all x, y, z ∈ T , hx=y = 1 ∧ hy=z = 1 ⇒ hx=z = 1). We

introduce the following constraints:

for each x, y ∈ T : hx=y = hy=x (3.2)

for each x, y, z ∈ T : hx=y + hy=z − hx=z ≤ 1 (3.3)

In Figure 3.1, the constraint hx=y + hA=x − hy=A ≤ 1 is generated as an

instance of inequality (3.3).

Constraint 3: From the definition of h variables, hp must be 1 if there exists

set Q of literals that implies p are explicitly or implicitly hypothesized (i.e.

for all Q ⊆ P , (Q∪B |= p∧H ∪B |= Q)⇒ H ∪B |= p). We introduce new

ILP variable aQ ∈ {0, 1} for set Q of elemental explanations s.t. aQ = 1 iff

all literals in Q is a logical consequence of H ∪B; aQ = 0 otherwise. Using

aQ, the constraint ∀Q ⊆ P [(H ∪ B |= Q ∧ Q ∪ B |= p) ⇒ hp = 1] can be

expressed as follows:

for each p ∈ P :
∑

Q∈E(p)

aQ ≤ |E(p)| · hp, (3.4)

where E(p) is a set of set of potential elemental explanations that explain

p. For example, in Figure 3.1, the constraint a{s(y),t(u)} ≤ hs(x) is generated.

Constraint 4: From the definition of an ILP variable a, for all Q ⊆ P , aQ can

be set to 1 if and only if Q is a logical consequence of H ∪B (for all q ∈ Q,

28



hq = 1). This can be expressed as follows:

for each p ∈ P, Q ∈ E(p) : |Q|aQ ≤
∑
q∈Q

hq (3.5)

for each p ∈ P, Q ∈ E(p) :
∑
q∈Q

hq ≤ |Q| − 1 + aQ (3.6)

In this formulation, we generate O(n3) ILP constraints for Constraint 2, where

n is the number of logical atomic terms appearing in P . As the reader will see in

Sec. 4.4, this makes inference intractable in large-scale processing. We propose

how this drawback can be overcome by exploiting Cutting Plane Inference in

Sec. 3.3.2.

3.2.2 Formulation for Implementing The Cost Function

As mentioned in Sec. 2.3, we adopt the cost function proposed by Hobbs et al.

(1993). For convenience, we repeat the cost function:

cost(H) =
∑

h∈A(H)

cost(h), (3.7)

where A(H) is a set of assumed literals in H. This means that the cost of H is

calculated from the subset of hypothesized literals. To represent the set of literals

that are counted in the cost function, we first introduce ILP variables c ∈ {0, 1}
as follows:

for each p ∈ P : cp =

1 if p pays its cost

0 otherwise.

In Figure 3.1, cs(x) will be set to 0 in H2 since s(x) does not pay the cost (i.e.

s(x) is explained by r(x)).

Using c variables, the objective function of the ILP problem is given by:

minimize cost(H) =
∑
p∈P

cp · cost(p) (3.8)

Note that it is easy to incorporate another criteria into the cost function. For
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instance, one can consider the plausibility of coreference relation between two

mentions in a text. Assuming mentions are represented by variables (e.g. cat(x)

means that the mention x whose linguistic expression is cat appears in a text), one

can add
∑

x,y∈T cost(x, y, O)·hx=y, where the cost is calculated by the information

mentioned in O. For example, one could design the cost function that returns

a higher cost if two contradictory properties are mentioned in O (e.g cat(x) and

dog(y) occur in O).

Again, from the definition of c variables, not all value assignments to c are

allowed. Accordingly, we introduce several constraints on c as follows.

Constraint 5: From the definition of the cost function in Sec. 2.3, cp is set to

1 if and only if (i) p is not explained (i.e. assumed), and (ii) p is not

unified with any other literal that has the smaller cost by factoring of H.

To represent the second case, we introduce new ILP variable up1,p2 ∈ {0, 1}
for the pair (p1, p2) of unifiable literals s.t. up1,p2 = 1 iff p1 is unified with

p2 by factoring of H; up1,p2 = 0 otherwise. Using u, the condition can be

expressed as follows:

for each p ∈ P : hp +
∑

Q∈E(p)

(1− aQ) +
∑

p′∈U−(p)

(1− up,p′) ≤

|E(p)|+ |U−(p)|+ cp (3.9)

for each p ∈ P : (1 + |E(p)|+ |U−(p)|) · cp ≤ hp +∑
Q∈E(p)

(1− aQ) +
∑

p′∈U−(p)

(1− up,p′), (3.10)

where U−(p) is a set of literals that (i) are unifiable with p, and (ii) have

the cost smaller than cost(p). For example, in Figure 3.1, we introduce

hs(x) + (1− a{r(x)}) + (1− us(x),s(y)) ≤ 2 + cs(x) as an instance of inequality

(3.9).

Finally, we impose a constraint on up1,p2 so that the value of up1,p2 is allowed to

be 1 only if (i) there exists the equalities that make p1 and p2 equivalent in H,

and (ii) p1 and p2 are hypothesized.

Constraint 6: By the definition of an ILP variable u, up1(x),p2(y) can be set

to 1 if and only if (i) two literals p1(x) ≡ p1(x1, x2, ..., xn) and p2(y) ≡
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p2(y1, y2, ..., yn) are unified (i.e. the substitution {xi/yi}ni=1 occurs, namely

hxi=yi
= 1 for all i ∈ {1, 2, ..., n}), and (ii) both p1(x) and p2(x) are hy-

pothesized.

(n + 2) · up1(x),p2(y) ≤
n∑

i=1

hxi=yi
+ hp1(x) + hp2(y) (3.11)

n∑
i=1

hxi=yi
+ hp1(x) + hp2(y) ≤ (n + 2)− 1 + up1(x),p2(y) (3.12)

In Figure 3.1, the constraint (1 + 2) · ur(x),r(A) ≤ hx=A + hr(x) + hr(A) is

generated. Finally, in order to avoid the case where we hypothesize a single

literal that (i) does not explain anything, but (ii) is unified with the other

literal, we impose the following constraint:

for each p ∈ P : hp ≤
∑

Q∈C(p)

aQ, (3.13)

where C(p) is a set of set of literals with which p co-occur to explain the

other literal. In Figure 2, since s(y) co-occurs with t(u) to explain q(y)

(i.e. C(s(y)) = {{s(y), t(u)}}), we introduce hs(y) ≤ as(y),t(u). If we do not

have this constraint, we can hypothesize s(y) without hypothesizing t(u)

to reduce the cost of s(x). Since such a hypothesis cannot be generated

through backward-inference, we need to prohibit it.

We show the soundness and completeness of the proposed formulation in Sec.

3.3.1, showing how to handle negation in our formulation.

3.3 Improving Expressiveness and Efficiency of

ILP Formulation

The presented ILP formulation is still imperfect in terms of the expressivity and

efficiency. The first problem is that it does not support negative literals in either

background knowledge, observation or explanation. The lack of support of nega-

tion does not allow us to represent a negative proposition, which is often required
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in the discourse processing problems. We thus introduce two formulations for

making the ILP formulation support negation (Sec. 3.3.1). The second problem

is that we need to generate O(n3) transitivity constraints, where n is the number

of logical atomic terms (see Constraint 2). This often makes inference intractable

in large-scale inference. We improve the inefficiency by employing Cutting Plane

Inference, which is an iterative optimization strategy developed in Operations

Research (Sec. 3.3.2).

3.3.1 Handling Negation in ILP-based Formulation

The capability of handling negations is crucial for a wide range of abductive infer-

ence systems. For example, in abduction-based natural language interpretation,

one can easily imagine that it needs to handle negated expressions, such as “I

don’t like ice cream.”, or “Tweety is not a bird.”, etc. Traditionally, there are two

big paradigms of negation implementation in the context of logic programming,

where negation operator is treated under two different semantics: (i) classical

negation, and (ii) negation as failure. For classical negation, the negation opera-

tor is interpreted as negation in classical logic (i.e. ¬p means that the proposition

p is false). Negation as failure is based on closed world assumption (CWA) [Re-

iter, 1978], which assumes that background knowledge represents all true facts,

and propositions that cannot be proven are concluded to be false. Therefore, ¬p

means that p is false if we cannot prove p. Many logic programming software,

e.g. Prolog, adopts negation as failure, where the negation operator is written as

not for the clarity of different semantics.

In this section, we show how to implement negation in the ILP formulation

under the semantics of classical negation. That is, by “hypothesize ¬p”, we mean

that we assume that p is false. It does not mean that we assume that p is false if

p cannot be proven. The latter semantics could be adopted in analogy to SLDNF-

resolution [Apt and van Emden, 1982], which is an extension of SLD-resolution

[Robinson, 1965] with negation as failure support.

In SLDNF-resolution, negative literal ¬p in the goal expression invokes ad-

ditional SLD-resolution with the goal ← p to decide whether ¬p is true or not.

Applying this idea to our framework, one could use the explanation of p as the
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explanation of ¬p, where the cost of ¬p is inverse proportion to the cost of ex-

planation of p (i.e. the better p is explained, the less probable ¬p being true is).

We will purse this direction in future work.

Let us redefine the formats of background knowledge, observation, and expla-

nation as follows:

• Background knowledge: a set of first-order logical formulae in the form

l1 ∧ l2 ∧ ... ∧ ln → m, where l1, l2, ..., ln, and m are literals;

• Observations: a set of literals or equalities;

• Explanation: a set of literals or equalities.

In the rest of this section, we give two formulations for expressing negative

literals and inequality of variables (i.e. x 6= y ) for the framework described

in Sec. 3.1. Three non-trivial questions arise when the ILP-based framework

supports negation: (i) how to represent logical negation in terms of ILP variables,

(ii) how to exclude inconsistent explanations from the search space of candidate

explanations, and (iii) whether the extended formulation is sound and complete;

that is, the search space represented by the extended formulation does not include

inconsistent explanations, and none of valid candidate explanations are excluded

from the search space.

First, consider the case where there are two literals p(x1, x2, ..., xn) = p(x) and

¬p(y1, y2, ..., yn) = ¬p(y) in set P of potential elemental explanations such that

p(x) and p(y) are unifiable. Concerning the issue (i), we represent negative literal

¬a as h¬a in the ILP optimization problem. Recall that ha = 0 does not mean

¬a. To address the issue (ii), we want to prohibit H ∪B |= p(x)∧¬p(x), namely

prevent the two literals from being hypothesized simultaneously (i.e. hp(x) = 1

and hp(y) = 1) if x = y is implied by H∪B (i.e. hxi=yi
= 1 for all i ∈ {1, 2, ..., n}).

Therefore we introduce the following constraint.

Constraint 7: By the definition of explanation in Sec. 2.3 (H ∪ B 6|=⊥), two

contradictory literals p(x1, x2, ..., xn) ≡ p(x) and ¬p(y1, y2, ..., yn) ≡ ¬p(y)

cannot be both hypothesized (hp(x) = 1 and h¬p(y) = 1) if xi = yi are
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hypothesized (hxi=yi
= 1) for all i ∈ {1, 2, ..., n}. This can be expressed as:

hp(x) + h¬p(y) +
n∑

i=1

hxi=yi
≤ 1 + n. (3.14)

Notice that the case where x = y reduces to: hp(x) + h¬p(x) ≤ 1. This

type of constraint grows in O(nm) for each predicate p, where n is the

number of positive instantiation of p in P , and m is the number of negative

instantiation of p in P .

Inequalities can also be formulated as the special case of inequality (3.14).

Similarly to negative literals, we represent x 6= y as hx 6=y in the ILP opti-

mization problem. We then prohibit two contradictory equalities x = y and

x 6= y from being hypothesized simultaneously:

hx=y + hx 6=y+ ≤ 1 (3.15)

The important question here is how to find the pairs of potentially contra-

dictory literals (i.e. p(x) and ¬p(y)). Algorithm 1 does not enumerate all the

set of literals that can be logical consequences of H ∪ B, because the algorithm

uses backward-inference for creating set P of potential elemental explanations.

As a result, the system loses its soundness: an inconsistent explanation can

be chosen as the best explanation. For example, given O = {p(a),¬r(a)} and

B = {q(x)→ p(x), q(x)→ r(x)}, Algorithm 1 generates P = {p(a),¬r(a), q(a)}.
Let us consider one inconsistent explanation H = {q(a),¬r(a)}. Although r(a)

is a logical consequence of H ∪ B, Algorithm 1 does not generate the ILP vari-

able hr(a) and the ILP constraint hr(a) + h¬r(a) ≤ 1. Therefore, the system can

incorrectly output the inconsistent explanation H = {q(a),¬r(a)} as the best

explanation.

In order to avoid this problem, one could exploit deduction of B ∪ P to let P

include all the possible logical consequences of H ∪B. The clause C is said to be

deduced from the set Σ of clauses iff there exists the clause D such that D can be

derived from Σ through resolution, and D subsumes C. Lee (1967) showed the

completeness of deduction: every logical consequence of Σ can be deduced from Σ,
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where Σ is a set of logical formulae (called Subsumption theorem). Therefore, one

could use deduction to add a complete set of logical consequences of H ∪B that

are potentially implied by H ∪ B, and add them to the search space. As shown

below, the system is proven to be sound and complete over such a search space.

In practical, as a deductive inference system, one could use many sophisticated

deductive inference engines that have been developed so far. In our experiments

in Sec. 4.4, however, we use Constraint 6 without performing deduction, and the

empirical evaluation with deduction is our future work. Finally, to show that our

system is sound and complete, we prove the following theorem:

Theorem 3.3.1 Let B be a background knowledge, O be observations, and P

be a set of potential elemental explanations w.r.t. B and O. Suppose P is con-

structed in the following way: (i) we first execute the procedure liftedFirstOrderCBA

in Algorithm 1, and (ii) we add a set of literals derived by deduction from P∪B to

P . Let SH be a 0-1 value assignment function to ILP variables h (i.e. P → {0, 1})
introduced in Sec. 3.1. Let HS be a candidate explanation, which is constructed

from SH followed by the definition 3.2.1, namely HS = {p | p ∈ P, SH(p) = 1}.
Then, the following proposition is true:

• HS is a candidate explanation if and only if SH is a solution of ILP optimiza-

tion problem (3.7), namely SH satisfies the whole constraints introduced in

Sec. 3.1 and Sec. 3.3.1.

Proof See Appendix 7.2.6.

3.3.2 Cutting Plane Inference for CBA

One major drawback of the ILP formulation is that it needs to generate O(n3)

transitivity constraints, where n is the number of logical atomic terms, because

we perform inference over FOL-based representation. That makes inference in-

tractable (see Sec. 4.4 for empirical evidence) because it generates an ILP opti-

mization problem that has quite a large number of constraints. Moreover, han-

dling negation quadratically increases Constraint 7 described in Sec. 3.3.1.

How do we overcome this drawback? The idea is that “all the transitivity

constraints may not be violated all at once; so we gradually optimize and add
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Algorithm 3 cpiForliftedFirstOrderCBA(Background Knowledge B, Obser-
vation O)

1: (Ψ, I)← createBaseILP(B, O)
2: repeat
3: sol← solveILP(Ψ, I); V ← {}
4: for x, y ∈ {t1, t2 | t1 ∈ T, t2 ∈ T, sol(ht1=t2) = 1) do
5: for z ∈ termsUnifiableWith(x, y) do
6: // H ∪B |= x = y ∧ y = z, and H ∪B 6|= x = z
7: if sol(hy=z) = 1 and sol(hx=z) = 0 then V ← V ∪{hx=y+hy=z−hx=z ≤

1}
8: // H ∪B |= x = y ∧ x = z, and H ∪B 6|= y = z
9: if sol(hy=z) = 0 and sol(hx=z) = 1 then V ← V ∪{hx=y+hx=z−hy=z ≤

1}
10: end for
11: end for
12: I ← I ∪ V
13: until V 6= φ

transitivity constraints if violated in an iterative manner.” More formally, we

propose to apply Cutting Plane Inference (CPI) to the CBA problems. CPI is

an exact inference optimization technique that is originally developed for solving

large linear programming (LP) problems in Operations Research [Dantzig et al.,

1954]. CPI has been successfully applied to a wide range of constrained opti-

mization problems where constraints are very large [J. Berant and Goldberger,

2008; Riedel, 2008; Riedel and Clarke, 2006; T. Joachims, 2009, etc.], from proba-

bilistic deductive inference problems [Riedel, 2008] to machine learning problems

[T. Joachims, 2009]. To the best of our knowledge, however, our work is the

first successful work to apply CPI to abductive inference tasks. In principle, CPI

solves optimization problem in an iterative manner as follows: it solves an opti-

mization problem without constraints, and then adds violated constraints to the

optimization problem. When the iteration terminates, it guarantees solutions to

be optimal. The proposed algorithm, called CPI4CBA, is also an exact inference

framework.

How do we apply the technique of CPI to cost-based abduction problems?

Intuitively, we iterate the following two steps: (i) solving an abduction problem

without enforcing transitivity on logical atomic terms, and (ii) generating transi-
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tivity constraints dynamically when transitiveness of unification is violated (e.g.

H ∪ B |= x = y ∧ y = z, and H ∪ B 6|= x = z). The iteration terminates if there

is no violated unification transitivity. The pseudo-code is given in Algorithm 3.

In line 1, we first create an ILP optimization problem described in Sec. 3.1 and

Sec. 3.3.1 but without transitivity constraints (i.e. Constraint 2), where Ψ de-

notes a set of ILP variables, and I denotes a set of ILP constraints. In line 2–13,

we repeat: checking consistency of unification transitiveness, adding constraints

for violated transitiveness, and re-optimizing. In line 3, we find the solution sol

for the current ILP optimization problem. Then, for each pair (x, y) of logical

atomic terms unified in the solution sol (line 4), find the logical term z which is

unifiable with x and y (line 5). If the transitive relation x, y with respect to z is

violated (i.e. hx=z = 0∧ hy=z = 1 or hx=z = 1∧ hy=z = 0), then we generate con-

straints for preventing this violation, and keep it in set V of constraints (line 6–9).

Finally, we again perform an ILP optimization with newly generated constraints

(line 12 and 3). The iteration ends when there is no violated transitiveness (line

13).

The key advantages of CPI4CBA is that it can reduce the time of search-

space generation, and it is also expected to reduce the time of ILP optimization.

CPI4CBA does not generate all the transitivity constraints before optimization,

which saves the time for search-space generation. In addition, optimization prob-

lems that we solve would become smaller than the original problem in most cases,

because not all the transitivity constraints may not be necessary to be considered.

In the worst case, we need to solve the optimization problem that is same as the

original one; but in most cases we found out that we do not need to. We will

show its empirical evidence through large-scale evaluation in Sec. 4.4.

3.4 Runtime Evaluation

How much does CPI improve the runtime of ILP-based reasoner? Does CPI

scale to larger real-life problems? To answer these questions, we evaluated the

CPI4CBA algorithm in two settings: (i) STORY, the task of plan recognition,

and (ii) RTE, the popular, knowledge-intensive, real-life natural language pro-

cessing task of Recognizing Textual Entailment (RTE). While most of the ex-
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isting abductive inference systems are evaluated on rather small, and/or artifi-

cial datasets [Kate and Mooney, 2009; Raghavan and Mooney, 2010; Singla and

Domingos, 2011, etc.], our evaluation takes a real-life, much larger datasets (see

Sec. 3.4.1). In our experiments, we compare our system with the systems [Blythe

et al., 2011; Kate and Mooney, 2009; Singla and Domingos, 2011] based on Markov

Logic Networks (MLNs) [Richardson and Domingos, 2006]. For our experiments,

we have used a 12-Core Opteron 6174 (2.2GHz) 128 GB RAM machine, and as-

signed 8 cpu cores for each run. For an ILP solver, we used Gurobi Optimizer.1

It is commercial but an academic license is freely available.

3.4.1 Settings

STORY: For this setting, we have used Ng and Mooney (92)’s story under-

standing dataset,2 which is widely used for evaluation of abductive plan recogni-

tion systems [Kate and Mooney, 2009; Raghavan and Mooney, 2010; Singla and

Domingos, 2011]. In this task, we need to abductively infer the top-level plans of

characters from actions. We follow Singla and Mooney’s setting to define top-level

plan predicates. The top-level plan predicates include 10 types of literals, such

as shopping.3 The dataset consists of 50 plan recognition problems represented

by a set of ground atoms (e.g. {getting off(Getoff16), agent get off(Getoff16,Fred16)

name(Fred16,Fred)}) and 107 background Horn clauses (e.g. go step(r, g)∧going(g)→
robbing(r)). The dataset contains on average 12.6 literals in the logical forms of

actions. To make the predicates representing top-level plans (e.g. shopping,

robbing) disjoint, we generated 73 disjointness axioms by using the formulation

described in Sec. 3.3.1.4

To assign a cost to each literal (i.e. cost(h) in the equation (3.8)), we followed

Hobbs et al. (1993)’s weighted abduction theory. In the theory, as mentioned in

Sec. 2.3, each literal in the left-hand side of axioms has a set of weights, which is

expressed as pw1
1 ∧ pw2

2 ∧ ... ∧ pwn
n → q. During backward-chaining, each weight

1http://www.gurobi.com/
2ftp://ftp.cs.utexas.edu/pub/mooney/accel
3The complete list of top-level plan predicates: shopping, robbing, traveling, rest dining,

drinking, paying, jogging, and partying.
4For example, robbing(x) ∧ shopping(x) →⊥ is represented by hrobbing(x) + hshopping(y) +

hx=y ≤ 2.
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is multiplied with the cost of literal that is backchained on. For example, given

p(x)0.6 ∧ q(x)0.6 → r(x) and r(a)$10, the theory derives {p(a)$6, q(a)$6}. Be-

cause the background knowledge of Ng and Mooney (92)’s dataset does not have

weights, we assigned the weights to axioms so that the sum of the weights is

1.2 (e.g. p0.4 ∧ q0.4 ∧ r0.4 → s). This assignment means that backward-inference

always increases the cost of explanation, and unification is the only way to reduce

the cost. That is, it is almost equivalent to performing pure logic-based abduc-

tion, where the number of literals in an explanation is used as the plausibility of

explanation.

RTE: For observations (input), we employed the second challenge of RTE

dataset.1 In the task of RTE, we need to correctly determine whether one text

(called text, or T) entails another (called hypothesis, or H) or not. The dataset

consists of development set and test set, each of which includes 800 natural lan-

guage text-hypothesis pairs. We have used all of the 800 texts from test set.

We have converted texts into logical forms presented in [Hobbs, 1985] using the

Boxer semantic parser [Bos, 2008]. The number of literals in observations is

29.6 literals on average. For background knowledge, we have extracted 289,655

axioms2 from WordNet 3.0 [Fellbaum, 1998], and 7,558 axioms from FrameNet

1.5 [Ruppenhofer et al., 2010] following Ovchinnikova et al. [2011]. In principle,

the WordNet knowledge base contains several kinds of lexical relations between

words, such as IS-A, ontological relations (e.g. dog(x) → animal(x)). FrameNet

knowledge bases contain lexeme-to-frame mappings, frame-frame relations, etc.

For example, the mapping from surface realization “give to” to a frame “Giv-

ing” is given by: Giving(e1, x1, x2, x3)∧donor(e1, x1) ∧recipient(e1, x2)∧ theme(e1, x3)

→ give(e1, x1, x3) ∧ to(e2, e1, x2). We again followed Hobbs et al. [1993]’s weighted

abduction theory for calculating the cost of explanation. We assigned the weights

to axioms by following Ovchinnikova et al. [2011] in this setting.

3.4.2 Results and Discussion

The reasoner was given a 2-minute time limit for each inference step (i.e.

1http://pascallin.ecs.soton.ac.uk/Challenges/RTE2/
2Extracted relations are: word-to-synset mapping, hypernym-hyponym, cause-effect, entail-

ment, derivational, instance-of relations.
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Setting Method Depth Generation [sec.] ILP inf [sec.] # of ILP cnstr
(timeout = 120) (timeout = 120)

STORY

IAICBA

1 0.02 (100.0 %) 0.60 (100.0 %) 3,708
2 0.12 (100.0 %) 5.34 (100.0 %) 23,543
3 0.33 (100.0 %) 8.11 (100.0 %) 50,667
∞ 0.35 (100.0 %) 9.00 (100.0 %) 61,122

CPI4CBA

1 0.01 (100.0 %) 0.34 (100.0 %) 784 (∆ 451)
2 0.07 (100.0 %) 4.15 (100.0 %) 7,393 (∆ 922)
3 0.16 (100.0 %) 3.36 (100.0 %) 16,959 (∆ 495)
∞ 0.22 (100.0 %) 5.95 (100.0 %) 24,759 (∆ 522)

RTE

IAICBA

1 0.01 (100.0 %) 0.25 (99.7 %) 1,104
2 0.08 (100.0 %) 2.15 (98.1 %) 5,185
3 0.56 (99.9 %) 5.66 (93.0 %) 16,992
∞ 4.78 (90.7 %) 15.40 (60.7 %) 36,773

CPI4CBA

1 0.01 (100.0 %) 0.05 (100.0 %) 269 (∆ 62)
2 0.04 (100.0 %) 0.35 (99.6 %) 1,228 (∆ 151)
3 0.09 (100.0 %) 1.66 (99.0 %) 2,705 (∆ 216)
∞ 0.84 (98.4 %) 11.73 (76.9 %) 10,060 (∆ 137)

Table 3.1: The results of averaged inference time in STORY and RTE.

search-space generation and best-explanation search). In Table 3.1, we show the

results of each setting for two inference method in Table 3.1: (i) IAICBA: the

inference method without CPI, and (ii) CPI4CBA: inference method with CPI.

In order to investigate the relation between the size of search space and the run-

time, we show the results for each depth, which we used for limiting the length

of backward-chaining. In the “Generation” column, we show the runtime that

is taken for search-space generation in seconds averaged over all problems whose

search-space generation is finished within 2 minutes. In the parenthesis, we show

the percentage of those problems whose search-space generation is finished within

2 minutes. In the column “ILP inf”, we show the runtime of ILP optimization

averaged on only problems such that both search-space generation and ILP opti-

mization are finished within 2 minutes, as well as the percentage of those problems

(e.g. 80 % means “for 80 % of all the problems, search-space generation was fin-

ished within 2 minutes, and so was ILP inference.”). In the “# of ILP cnstr”

column, we show the averaged number of generated ILP constraints. Concerning
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CPI4CBA, the number denotes the averaged number of constraints considered

in the end, including the constraints added by CPI. The number marked by ∆

indicates the averaged number of constraints that are added during CPI (i.e. how

many times are the constraints added by line 7 or 9 in Algorithm 3).

Overall, the runtimes in both search-space generation and ILP inference are

dramatically improved from IAICBA to CPI4CBA in both settings, as shown in

Table 3.1. In addition, CPI4CBA can find optimal solutions in ILP inference for

more than 90 % of the problems, even for depth∞. This indicates that CPI4CBA

scales to larger problems. From the results of IAICBA in RTE settings, we can

see the significant bottleneck of IAICBA in large-scale reasoning: the time of

search-space generation. The search-space generation could be done within 2

minutes for only 90.7 % of the problems. CPI4CBA successfully overcomes this

bottleneck. CPI4CBA is clearly advantageous in the search-space generation

because it is not necessary to generate transitivity constraints, an operation that

grows cubically before optimization.

In addition, CPI4CBA also reduces the time of ILP inference significantly. In

ILP inference, CPI did not guarantee the reduction of inference time in theory;

however, as shown in Table 3.1, we found that the number of ILP constraints

actually used is much less than the original problem. Therefore, CPI4CBA suc-

cessfully reduces the complexity of the ILP optimization problems in practice.

This is also supported by the fact that CPI4CBA keeps 93.9% in “ILP inf” for

Depth =∞ because it solves very large ILP optimization problems that fail to be

generated in IAICBA. In order to see how CPI contributes to the improvement of

ILP inference time, we show how the runtime of IAICBA is affected by CPI4CBA

method for each problem in Figure 3.2. Each data point corresponds to one prob-

lem in STORY and RTE settings. We show the data points for problems that

we found optimal solutions in ILP inference for Depth =∞. Overall, the runtime

of CPI4CBA is smaller than IAICBA in most problems. In particular, we can see

that CPI4CBA successfully reduces the time of ILP inference for larger problems

by exploiting the iterative optimization technique. In the larger domain of RTE

setting, we found that the performance was improved in 81.7 % of the problems.

Finally, we compare our results with other existing systems. Regarding the

MLN-based systems [Blythe et al., 2011; Kate and Mooney, 2009; Singla and
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Figure 3.2: Runtime comparison between IAICBA and CPI4CBA (logarithmic
scale). The left figure shows the results of STORY dataset, and the right figure
shows the results of RTE datasets.

Domingos, 2011], our results are comparable or slightly less efficient in the STORY

setting, and more efficient than the existing systems in the RTE setting. For

the STORY setting, Singla and Mooney (2011) report the results of two sys-

tems with an exact inference technique using CPI for MLNs [Riedel, 2008]: (i)

Kate and Mooney (2009)’s approach: 2.93 seconds, and (ii) Singla and Mooney

(2011)’s approach: 0.93 seconds.1 To make the comparison fair, we evaluated

our approach with one CPU core. The inference time is 31.3 seconds on average

(optimal solutions were found for the 80 % of the problems). MLN-based ap-

proaches seem to be reasonably efficient for small datasets. However, it does not

scale to larger problems; for the RTE setting, Blythe et al. (2011) report that

only 28 from 100 selected RTE-2 problems could be run to completion with only

the FrameNet knowledge bases. The processing time was 7.5 minutes on average

(personal communication).2 On the other hand, our method solves 76.9% of all

the problems, where suboptimal solutions are still available for the rest of 21.5%,

1This is the result of MLN-HC in Singla and Domingos [2011]. MLN-HCAM cannot be
directly compared with our results, since the search space is different from our experiments
because they unify some assumptions in advance to reduce the search space.

2They used 56,000 FrameNet axioms in the experiments, while we used 289,655 WordNet
axioms and 7,558 FrameNet axioms.
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and it takes only 0.84 seconds for search-space generation, and 11.73 seconds for

ILP inference. As mentioned in Sec. 4.5, our framework is more scalable because

our framework does not need to explicitly generate the axioms to emulate ex-

plaining away effect (i.e. inferring one cause makes another cause less probable),

and need no grounding.

3.5 Related Work

The computational aspect of abduction has been studied extensively in the con-

texts of logic programming and Statistical Relational Learning. In the context

of logic programming, abduction has been introduced as the extension of logic

programming [Kakas et al., 1992; Stickel, 1991, etc.], where the extended frame-

work is often called Abductive Logic Programming (ALP). Since abduction and

induction share the basic framework (see Sec. 2.3 for detail), abduction has also

been studied in the area of Inductive Logic Programming, the logic programming

framework for induction [Inoue, 2004; Tamaddoni-Nezhad et al., 2006, etc.]. In

the context of ALP, Stickel (1991) showed how to formulate minimum-cost expla-

nation finding in Prolog, a popular implementation of logic programming. Stickel

allows the system to assume literals during the SLD resolution when Horn-clause

rules or facts unifiable with the targeted literal are not found. In their system,

the cost of explanation is calculated by the sum of the costs of elemental ex-

planations, and the costs of axioms used for constructing the proof. However,

Stickel does not show how to implement it in a efficient way. After a few years, a

number of methods attempting to efficiently find the minimum-cost explanation

have been proposed [Abdelbar and Hefny, 2005; Chivers et al., 2007; Guinn et al.,

2008; Ishizuka and Matsuo, 1998; Prendinger and Ishizuka, 1999; Santos, 1994,

etc.]; for example, Santos (1994) formulated cost-based abduction in proposi-

tional logic using ILP, and showed its efficiency. However, most of them focus on

improving the inefficiency of propositional logic-based abduction. As discussed in

Sec. 3.1, one could use such a framework through propositionalization techniques

for first-order CBA; however, the propositionalization will produce a huge amount

of ground instances of background knowledge axioms and literals in observation.

Hence they would not scale to larger problems with large knowledge bases.
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3.5.1 Comparison with Santos’s ILP-based Formulation

The most similar previous work to us is Santos (1994)’s ILP-based formulation of

propositional logic-based CBA. Our approach is different from Santos (1994)’s LP

formulation in two ways. The first difference is that we are capable of evaluating

the specificity of explanations, which is one of important features for abduction-

based NLP as discussed in Sec. 2.3. Santos’s approach amounts to performing

most-specific abduction, and they find a truth assignment to all the propositions

in the world. Let us describe how the appropriate level of specificity is controlled

in our approach. Suppose O = {p(a), q(a)}, and B = {r(x) → p(x)}. We then

have two candidate explanations. The first explanation is H1 = {p(a), q(a)},
which simply assumes observations, and the cost is cost(p(a)) + cost(q(a)) (i.e.

cp(a) = 1, cq(a) = 1). Backward-chaining on p(a) yields the second explanation

H2 = {q(a), r(a)}, which is more specific than H1. The cost of H2 is cost(q(a)) +

cost(r(a)) (cp(a) = 0, cq(a) = 1, cr(a) = 1). Note that we do not count p(a)

because p(a) is not assumed anymore. Therefore, for this problem, if cost(r(a)) <

cost(p(a)), then more specific explanation H1 is selected as the best explanation;

otherwise, the less specific explanation H2 is selected as the best explanation.

This is controlled by the ILP variables c and Constraints 5 and 6, which are not

introduced in Santos (1994)’s approach. To summarize, our approach can decide

which specificity of explanation is appropriate for the current observation and

knowledge base, based on how well the explanation is supported by observations.

Another difference from Santos (1994)’s approach is that our approach di-

rectly models first-order CBA, while his approach formulates propositional-logic

abduction. We could employ their approach for first-order CBA since it is well-

known that FOL formulae can be represented by propositional logic formulae

through the application of grounding procedure (i.e. generate logical formulae,

replacing variables with all possible constants). However, abductive inference over

propositional level will make inference intractable when existentially quantified

variables are included in observations or background knowledge. For example,

suppose that B = {q(x, y) → p(x, y), r(x, y) → ∃zq(x, z)}, O = {p(x, y)} and all

possible constants are C = {C1, C2, ..., Cn}. To ground this observation, we need

to generate a disjunctive clause for p(x, y), replacing x and y with all possible
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combinations from C, i.e. p(C1, C1) ∨ p(C1, C2) ∨ ... ∨ p(Cn, Cn). Extending the

expressivity of observation is not a difficult work, but the problem is: in the

search-space generation process, we get O(n2) potential elemental explanations

(i.e. q(Ci, Cj) for all i, j ∈ {1, 2, ..., n}) to explain each disjunct. In addition,

backchaining on each q(Ci, Cj) with r(x, y) → ∃zq(x, z) yields O(n) potential

elemental explanations (i.e. r(Ci, Ck) for all k ∈ {1, 2, ..., n}). In contrast, the

search-space generation in our approach yields {p(x, y), q(x, y), r(z, u)}. As the

readers can see, our approach seems to be more robust to the size of domain.

3.5.2 Comparison with Other Logic-based Formalisms

In the context of Statistical Relational Learning, abduction has also been widely

studied. One of the prominent formalisms is PRISM [Sato and Kameya, 2008],

which is a general logic-based probabilistic modeling language. In the past two

decades, a number of the techniques for efficient inference or learning has been

studied extensively (see [Sato and Kameya, 2008] for overview). Concerning infer-

ence, in principle, PRISM achieves the best explanation finding in a polynomial

time through a tabled search technique for logic programs [Tamaki and Sato,

1986]. However, the tabled search technique exploits local information that is

computed so far, and hence is incompatible with the factoring of explanation,

which is rather global operation (personal communication). It is non-trivial issue

to incorporate the factoring process into the search without the loss of efficiency.

Another important stream is the series of studies [Blythe et al., 2011; Kate

and Mooney, 2009; Singla and Domingos, 2011, etc.], where abduction has been

emulated through Markov Logic Networks (MLNs) [Richardson and Domingos,

2006], a probabilistic deductive inference framework. MLNs provide full support

of first-order predicate logic and the software packages of inference and learn-

ing; however, MLN-based approaches have severe overhead of inference: (i) they

require special procedures to convert abduction problems into deduction prob-

lems because of the deductive nature of MLNs, and (ii) they need grounding for

inference.

To emulate abduction in the deductive framework, the pioneering work of

MLN-based abduction [Kate and Mooney, 2009] exploits the reverse implication
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of the original axioms, and uses the additional axioms to emulate explaining away

effect (i.e. inferring one cause makes another cause less probable). For example,

suppose B = {p1 → q, p2 → q, p3 → q}. Then, B is not used in MLN background

knowledge base as it is: B is converted into the following set of logical formulae:

{q → p1 ∨ p2 ∨ p3, q → ¬p1 ∨ ¬p2, q → ¬p1 ∨ ¬p3}. As the readers can imagine,

MLN-based approach suffers from the inefficiency of inference due to the increase

of converted axioms. In addition, to the best of our knowledge, most of the

existing approaches for maximum-a-posterior (MAP) inference for MLN [Riedel,

2008; Singla and Domingos, 2006, etc.] need (partial) grounding of axioms, which

makes inference prohibitively slow.

In terms of the applications, there are also a lot of researches that exploit

abduction in many fields. For example, in Systems Biology, abduction is used

for discovering scientific knowledge, such as causal relationships from genotype to

phenotype, or modeling inhibition in metabolic networks [Doncescu et al., 2008;

Tamaddoni-Nezhad et al., 2006, etc.].

3.6 Conclusion

We have proposed an ILP-based formulation for cost-based abduction in first-

order predicate logic. Compared to prior work, our method is more expressive

and efficient, and its theoretical correctness is guaranteed. Although FOL rea-

soning is computationally expensive, the proposed optimization strategy using

Cutting Plane Inference brings us to a significant boosting of the efficiency of

the reasoner. We have evaluated our method on two datasets, including real-life

problems (i.e. RTE dataset with axioms generated from WordNet and FrameNet).

Our evaluation revealed that our inference method CPI4CBA was highly efficient

than other existing systems. The abductive inference engine presented in this

chapter is made publicly available.1

1http://github.com/henry-n700/
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Chapter 4

Online Large-margin Weight

Learning for Cost-based

Abduction

Less attention has been paid to how to automatically learn a function, which

rank candidate explanations in order of their plausibility (henceforth, we call it

the score function). To apply abductive inference to a wide range of tasks, this

non-trivial issue needs to be addressed because the criterion of plausibility is

highly task-dependent. A notable exception is a series of studies in the context

of Statistical Relational Learning [Blythe et al., 2011; Kate and Mooney, 2009;

Raghavan and Mooney, 2010; Singla and Domingos, 2011], where they emulate

abduction in the probabilistic deductive inference framework, Markov Logic Net-

works (MLNs) [Richardson and Domingos, 2006], or Bayesian Logic Programs

[Kersting and Raedt, 2001]. These approaches can exploit several choices of ma-

chine learning methods originally developed for probabilistic models [Huynh and

Mooney, 2009; Lowd and Domingos, 2007]. However, emulating abduction in

these approaches has severe overhead. For example, the emulation in MLNs re-

quires special procedure to convert abduction problems into deduction problems

because MLNs are deductive inference framework in nature. This conversion pro-

cess generates a large number of axioms, and hence hampers the application of

MLN-based approaches to larger problems (see Sec. 4.5 for more detail). Since
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inference is a subroutine of learning procedure, learning is also intractable on

large dataset, as reported in [Singla and Domingos, 2011].

In this chapter, we propose a supervised learning approach for first-order

logic-based abduction, extending the tractable first-order abductive inference en-

gine [Inoue and Inui, 2012]. In order to apply abduction to a wide range of

tasks, we support two kinds of gold-standard explanations as training examples:

exactly-specified, or partially-specified. Given exactly-specified gold-standard ex-

planations, our framework trains the score function so that it ranks the given

explanation itself as the best explanation. Given partially-specified gold-standard

explanations, on the other hand, the framework trains the score function so that

it ranks any explanation that includes the gold-standard explanation as the best

explanation. It is useful to support partially-specified gold-standard explanations,

because one might want to use abduction for a specific task, where the subset of

the best explanation is used as the output label of the task. In the case of plan

recognition, for example, one might want a system to output any explanation

that includes the correct plan literals, and does not care about any other types

of literals in the explanation.

We formulate these learning problems as discriminative structured learning

with latent variables. More specifically, we model the score function as a weighted

linear feature function, and then apply Passive Aggressive algorithm [Crammer

et al., 2006], an online large-margin training algorithm, to tune the weights.

In the rest of this chapter, we first formalize the abductive reasoning problem

as a structured prediction with a weighted linear model, and then define the

weight learning problem (Sec. 4.1). We show how to use the weighted linear

feature function in the ILP-based formulation (Sec. 4.2), and then show how

to learn the weights by instantiating Passive Aggressive algorithm. We start

with the simple case where exactly-specified gold-standard explanations are given

(Sec. 4.3.1), and then describe a learning framework for partially-specified gold-

standard explanations (Sec. 4.3.2)
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4.1 Problem Formulation

We first generalize the cost function of abudction with a weighted linear model.

Henceforth, we use the term score function, following the convention of statis-

tical machine learning study. Let Φ(H) = {φ1(H), φ2(H), ..., φn(H)} be a n-

dimensional feature vector of an explanation H, and w = {w1, w2, ..., wn} be a

n-dimensional weight vector. We then define the score function as follows:

score(H;w) = w ·Φ(H) =
n∑

i=1

wi · φi(H) (4.1)

We refer to w as the parameter of score function. We assume each element φi(H)

to be the following:

φi(H) =

Vi if H ∪B |= Ci;

0 otherwise,
(4.2)

where Vi is a real-valued constant, and Ci is a first-order logical formula where

each element is a literal or substitution included in H. We call Vi the feature value,

φi(H) the feature function, and Ci the feature condition. The feature vector is

designed by a user. For example, one might create a feature function φi such that

(Vi, Ci) = (1, x = y ∧ cat(x) ∧ dog(y)). The task of abductive reasoning is then

formalized as follows:

H = arg max
H∈HO,B

score(H;w) = arg max
H∈HO,B

w ·Φ(H) (4.3)

Notice that this formulation is equivalent to a structured prediction problem (or

multi-class classification problem), where the input is O, B, and the set of possible

output structures (or classes) is HO,B. We find the best H in the modified ILP-

based framework, which is described in the next section.

Let us formalize the supervised learning problem of first-order logic-based ab-

duction. Let D = {(Oi, Hi)}ni=1 be a set of training examples, where Oi is an

observation (i.e. input) and Hi is either exactly-specified, or partially-specified

gold-standard explanation for Oi. Based on the definition in Sec. 3.1, we assume
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that Oi and Hi are given by a set of literals or substitutions. The goal of super-

vised learning is to learn score(H;w), which has minimal prediction errors on

D. To achieve this goal, we estimate a weight vector w that minimizes the value∑n
i=1 ∆(Ĥi, Hi), where Ĥi is the best explanation for Oi inferred by the system,

and ∆(Ĥi, Hi) is a non-negative function that measures the difference between Ĥi

and Hi. Henceforth, we call ∆(Ĥi, Hi) the loss function. Because the definition

of loss is task-dependent, the loss function is designed by the user. The simple

example of loss function for exactly-specified gold-standard explanations is the

following (a.k.a 0-1 loss function):

∆(Ĥi, Hi) =

1 if Ĥi 6= Hi;

0 otherwise (i.e. Ĥi = Hi)
(4.4)

In this paper, we assume that there is enough knowledge to infer the gold-

standard explanation for each problem (the knowledge completeness assumption).

If this assumption were not satisfied, which means that the gold-standard expla-

nation is not included in the candidate explanations, then we could not infer the

gold-standard explanation even if we change the weight vector.

4.2 ILP-based Abduction with Weighted Linear

Model

In order to exploit the weighted linear feature function as the score function, we

replace the ILP-based objective function (3.8) with equation (4.5). We introduce

new ILP variables fi ∈ {0, 1} such that fi = 1 if and only if the feature condition

Ci is entailed by H ∪ B; fi = 0 otherwise. The extended ILP objective function

is as follows:

max. score(H;w) =
n∑

i=1

wi · (Vi · fi) (4.5)

Following the definition of fi above, we associate the feature condition Ci with

the assignment of fi by introducing new ILP constraint so that fi = 1⇔ H∪B |=
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Ci. In general, however, this association cannot be represented as a single ILP

constraint. Therefore, we first decompose Ci into a Conjunctive Normal Form

CNF(Ci), a set of disjunctive clause, and then introduce ILP constraints for each

disjunctive clause.

Let Dj
i be the j-th disjunctive clause in CNF(Ci). For all j ∈ {1, 2, ..., |CNF(Ci)|},

we first introduce new ILP variable f j
i ∈ {0, 1} such that f j

i = 1⇔ H ∪B |= Dj
i .

To allow to set f j
i = 1 iff H ∪B |= Dj

i , we impose the following ILP constraint:

0 ≤ |l(Dj
i )|f

j
i − [

∑
L∈l(Dj

i )

I(L)] ≤ |l(Dj
i )| − 1, (4.6)

where l(Dj
i ) is a set of literals or substitutions in Dj

i , and I(L) is a function that

returns hL if L is a literal; sL if L is a positive substitution; 1 − sL if L is a

negative substitution. On the most-right of the term, we add −1 because at least

one L ∈ l(Dj
i ) must be hypothesized (remember that Dj

i is a disjunctive clause)

when f j
i = 1.

Finally, to ensure that fi = 1 iff f j
i = 1 for all j ∈ {1, 2, ..., |CNF(Ci)|}, we

introduce the following ILP constraint:

−|CNF(Ci)|+ 1 ≤ |CNF(Ci)|fi −
|CNF(Ci)|∑

j=1

f j
i ≤ 0 (4.7)

Note that we are able to use a constant instead of fi in equation (4.5) when the

value of feature is decidable from observations (i.e. O |= Ci). In this case, the

constraints (4.6), (4.7) need not be introduced.

Let us describe the ILP constraints (4.6), (4.7) with an example. Suppose

that we have the feature condition Ck = ¬p(x) ∧ (p(y) ∨ q(y) ∨ x 6= y) for k-th

feature. The CNF of this formula is {¬p(x), p(y) ∨ q(y) ∨ x 6= y}. We thus

introduce two ILP variables for each clause: f 1
k , f 2

k ∈ {0, 1}, and then introduce

the ILP constraints f 1
k − h¬p(x) = 0 (i.e. f 1

k = 1 ⇔ H ∪ B |= ¬p(x)), and

0 ≤ 3f 2
k−[hp(y)+hq(y)+(1−sx,y)] ≤ 2 (i.e. f 2

k = 1⇔ H∪B |= [p(y)∨q(y)∨x 6= y]).

Finally, we introduce −1 ≤ 2fk − (f 1
k + f 2

k ) ≤ 0 to ensure that fk = 1 ⇔ f 1
k =

1 ∧ f 2
k = 1.
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Algorithm 4 learnExact(training examples D, background knowledge B, int
N , double C)

1: w← 0
2: for n = 1 to N do
3: for all (Oi, Hi) ∈ D do
4: Ĥ ← arg maxH∈HOi,B

score(H;w)

5: if Ĥ 6= Hi then

6: τ ← min(C, score(Hi;w)−score(Ĥ;w)+∆(Ĥ,Hi)

||Φ(Ĥ)−Φ(Hi)||2
)

7: w← w + τ(Φ(Hi)−Φ(Ĥ))
8: end if
9: end for

10: end for
11: return w

4.3 Online Large-margin Weight Learning

4.3.1 Learning from Exactly-specified Explanations

In order to train the weight vector w, we employ Passive-Aggressive (PA) algo-

rithm [Crammer et al., 2006], which is a supervised large-margin online learning

algorithm applicable to a wide range of linear classifiers ranging from binary

classifiers to structured predictors. The motivation is that (i) an online learn-

ing makes our framework scalable, and (ii) it has been empirically shown that

large-margin approaches demonstrate a superior generalization ability on unseen

datasets. In this section, we consider the simplest setting where exactly-specified

explanations are given as training examples. The framework learns the score

function so that it ranks the given explanation itself as the best explanation.

Algorithm 4 depicts our learning algorithm. Every time we receive a training

instance (Oi, Hi) from a set D of training instances, we first find the highest-score

explanation Ĥ given the current weight vector (line 4). If the current prediction

has a prediction error, we train the weight vector (line 5–8). A new weight

vector w should satisfy the following conditions: (i) score(Hi;w) is greater than

score(Ĥ;w) by at least a margin ∆(Ĥ, Hi), and (ii) the difference between the

current weight vector w′ and the new weight vector w is minimal. In line 6,

we calculate how much w should be corrected, where C is a parameter of PA
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algorithm, meaning the aggressiveness of weight updates. Intuitively, the more

different Ĥ and Hi are, the larger an ensured margin is.

4.3.2 Learning from Partially-specified Explanations

Let us consider the case where we use abduction for a specific task, and the

subset of the best explanation is used as the output label of the task. In plan

recognition, for example, one might use only plan literals (i.e. literals that repre-

sent a plan) in the best explanation to decide the system output, and might not

care about any other types of literals in the explanation. In this situation, the

learning framework is required to have the capability of learning the score func-

tion from partially-specified gold-standard explanations: training a weight vector

that can rank any explanation that includes the gold-standard explanation as the

best explanation, because one wants the system to output any explanation that

includes the correct plan literals. Of course, one could exhaustively give all ex-

planations that include the correct plan literals as exactly-specified explanations,

but it is intractable in many cases due to the exponential growth of the number

of candidate explanations.

Therefore, in this section, we extend the learning algorithm in the previous

section to allow the setting where Hi is partially-specified gold-standard explana-

tion. We formulate the learning problem as a discriminative structured learning

with latent variables [Cherry and Quirk, 2008; Felzenszwalb et al., 2010; Yu and

Joachims, 2009] etc., where the output label is a set of literals that are specified

in Hi, and the rest are regarded as latent variables.

Algorithm 5 depicts the extended learning algorithm. The key extensions from

Algorithm 4 are two folds: (i) we update the weight vector if the partially-specified

gold-standard explanation Hi is not included in the current prediction Ĥ (line

5–9), and (ii) we perform latent variable completion, the inference to complete the

unspecified part of the partially-specified gold-standard explanation Hi (line 6).

We refer to the completed explanation as the pseudo exactly-specified explanation.

Note that one can use k-best completed explanations as pseudo exactly-specified

explanations, instead of using one completed explanation. In future, we will

compare the performance of the k-best explanations approach with the 1-best

53



Algorithm 5 learnPartial(training examples D, background knowledge B, int
N , double C)

1: Initialize w
2: for n = 1 to N do
3: for all (Oi, Hi) ∈ D do
4: Ĥ ← arg maxH∈HOi,B

score(H;w)

5: if Hi 6⊆ Ĥ then
6: H ← arg maxH∈HOi,B

score(H;w) subject to Hi ⊆ H

7: τ ← min(C, score(H;w)−score(Ĥ;w)+∆(H,Hi)

||Φ(Ĥ)−Φ(H)||2 )

8: w← w + τ(Φ(H)−Φ(Ĥ))
9: end if

10: end for
11: end for
12: return w

explanation approach.

Latent variable completion In order to infer H in latent variable completion,

we follow Yamamoto et al. [2012]’s learning framework for abduction, where H

is the highest-score explanation among candidate explanations that are the super

set of Hi. To find such H, we perform abduction with (Oi, B), satisfying the

following two constraints: (i) for all literal L ∈ Hi, there exists a literal U and

a set of substitutions θ in H such that Uθ = L (i.e. H |= Hi), and (ii) for all

substitution x = y ∈ Hi, x = y must be hypothesized in H i.e. (H |= x = y).

These constraints ensure that the best explanation for Oi entails Hi. To impose

constraint (i), we create the feature function ΦL(H) for all L ∈ Hi, which returns

−∞ if none of the literals unifiable with L are hypothesized:

ΦL(H) =

−∞ if H 6|=
∨

L′∈H(UNIF(L,L′) ∧ L′);

0 otherwise,
(4.8)

where UNIF(L,L′) is true only if L ≡ p(x1, x2, ..., xn) and L′ ≡ q(y1, y2, ..., yn)

are unifiable (i.e. p ≡ q and x1 = y1∧x2 = y2∧ ...∧xn = yn); false otherwise. For

constraint (ii), we add the following ILP constraints: sx=y = 1 for all x = y ∈ Hi,

and sx=y = 0 for all x 6= y ∈ Hi. Note that the score of H will be −∞ when
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Algorithm 6 distLearnPartial(training examples D, background knowledge
B, int N , int S, int PA N , double PA C)

1: Shard D into S pieces D = {D1, D2, ..., DS}
2: w← 0
3: for i = 1 to N do
4: for s = 1 to S do
5: w(i,s) ← learnPartial(Ds, B, PA N, PA C,w)
6: end for
7: w =

∑
s µi,sw

(i,s)

8: end for
9: return w

knowledge complete assumption is not satisfied. We skip the weight update if the

score is −∞.

4.3.3 Distributed Learning

To make the framework more scalable, we implemented the training algorithm

in a distributed structure learning framework for perceptrons, following [McDon-

ald et al., 2010]. The algorithm is shown in Algorithm 6. In the distributed

learning framework, training dataset is divided into S pieces. For each piece,

we independently run the learning procedure in parallel. Finally, we merge the

weight vectors learned from each piece. According to McDonald et al., the con-

vergence property of this algorithm is also theoretically guaranteed, when we use

Passive Aggressive algorithm [Crammer et al., 2006].

4.4 Evaluation

In this section, we evaluate our online large-margin learning algorithm in two

applications to answer the following questions: (i) does the weight vector trained

by partially-specified explanations indeed give predictive performance better than

the untuned weight vector does? (ii) can machine learning-based abductive rea-

soning be combined with the powerful existing feature-based classifiers (e.g. Sup-

port Vector Machines [Vapnik, 1995a]) for boosting predictive performance? For

all experiments, we run our own implementation for the extended version of ILP-

55



Table 4.1: Feature set used for abductive story understanding.
Feature Description

Predicates Hypothesized a set of predicate names of literals that are
hypothesized.

Predicates Explained a set of predicate names of literals that are
explained by at least one set of literals.

Predicates Unified a set of predicate names of literals that have
at least one equivalent literal in a explana-
tion.

Axioms Satisfied a set of names of axioms that are satisfied by
a explanation.

based reasoner shown in Sec. 4.2. The implementation is made publicly available

on the web.1 We used a 12-core Opteron 6174 (2.2GHz) 128 GB RAM machine.

We used Gurobi optimizer 5.02 as an ILP solver, and 8 cores for solving ILP

problems in parallel processing. The parameter C of PA algorithm is set to 1.0

in the experiments.

4.4.1 Story Understanding

The task of story understanding is to abductively infer the top-level plans of

characters from observed actions. For example, given “Bill went to the liquor-

store. He pointed a gun at the owner,” we need to infer Bill ’s plan, e.g. Bill is

robbing at the liquor store. By evaluating our algorithm on this task, we want to

empirically check whether our algortihm has the capability to learn the signals of

“good” explanation from partially-specified gold-standard explanations or not.

We used Ng and Mooney [1992]’s story understanding dataset, which is widely

used for evaluation of abductive plan recognition systems [Kate and Mooney,

2009; Raghavan and Mooney, 2010; Singla and Domingos, 2011]. The dataset

consists of development set and test set, each of which includes 25 pairs of ob-

served actions and its gold-standard plan.3 In the dataset, the actions and gold-

1http://github.com/naoya-i/henry-n700/
2http://www.gurobi.com/
3To the best of our knowledge, this dataset is a only public dataset that provides a complete

test environment for abduction, although it is small. We plan to create the bigger dataset for
future evaluation.
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standard plans are given by a set of first-order literals (e.g. {inst(get2, getting),

agent get(get2, bob2), name(bob2, bob)}). The dataset contains on average 12.6

literals in the actions, and 12.0 literals in the gold-standard plans. The dataset

also provides the background knowledge base, which contains 107 first-order logi-

cal Horn clauses (e.g. inst(R, robbing)∧get weapon step(R, G)→ inst(G, getting)).

We use the development set for training, and the test set for measuring predic-

tive performance. We gave the gold standard plan literals as partially-specified

gold-standard explanations for training.

To perform plan recognition, we apply abduction with the background knowl-

edge base, giving the observed actions as observations. We summarize the feature

vector used for this setting in Table 4.1. To capture the feature of explanations,

we introduce a feature that represents what kinds of literals are included (Predi-

cates Hypothesized), and explained (Predicates Explained) in an expla-

nation. We also incorporate the information of axioms satisfied by an explanation

(Axioms Satisfied). Predicates Unified feature captures the following in-

tuition: the information that is supported by many observations (i.e. the situation

where the same kind of literal is hypothesized from multiple observations) is more

reliable. All the features are encoded by 0-1 features, and each one represents

whether each element is included in an explanation.

For the loss function, we want to measure the difference between predicted

explanation H and the gold-standard explanation H, in terms of plan literals.

We used the following function:

∆(H,H) = |H| − |H ∩H|+ n(H), (4.9)

where n(H) is the number of plan literals in H that are not included in H. We

considered 10 types of literals as plan literals, following Singla and Domingos

[2011]. It is clear that this function is a non-negative, and its value is zero iff (i)

H ⊆ H, and (ii) H includes plan literals only specified in H.

For evaluating the prediction performance of our system, we focused on how

well the system infers plan literals, including their role fillers, following Singla

and Domingos [2011]. More specifically, we use precision (ratio of inferred literals

that are correct), recall (ratio of correct literals that are inferred by the system),
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Table 4.2: Performance of plan recognition in two settings.
Logical Abduction Trained
Loss P R F Loss P R F

Closed Test 0.24 0.20 0.40 0.27 0.12 0.35 0.69 0.46
Open Test 0.26 0.18 0.44 0.25 0.18 0.28 0.57 0.37

and F-measure (harmonic mean of precision and recall), because the gold data

often has multiple plan literals.

Results and discussion: To see the effect of weight learning, we show

the value of loss function averaged for all the problems, and predictive perfor-

mances for closed test and open test in Table 4.2. We consider two settings

here. In Logical Abduction setting, we try to simulate classical logical ab-

duction that favors the fewer number of elemental explanations: we thus set

-1.0 to Predicates Hypothesized, and 1.0 to Predicates Explained and

Predicates Unified, and do not tune the weights. In Trained setting, we

used our learning procedure for tuning a weight vector.1 In both tests, Table 4.2

indicates that the training algorithm reduced the loss value than classical logical

abduction did, so that it improved the predictive performance. The results of

open test also reveal that our learning algorithm shows the generalization ability

to unseen data.

4.4.2 NP Coreference Resolution

Noun-phrase (NP) coreference resolution is the task of identifying the group of

NPs that refer to the same entity in the world. For example, in the sentence “Tim

shouted at Ed because he was angry.”, we need to identify the group {he, Tim}.
On the other hand, in the sentence “Tim shouted at Ed because he crashed the

car.”, we need to identify the group {he, Ed}. As the reader can see, coreference

resolution requires commonsense reasoning using world knowledge, such as causal

relations of events, and synonymous relations of words, etc.

The question here is: what benefits could we receive from the development of

machine learning framework for abduction? Our hypothesis is that combining the

1A weight vector is initialized with the zero vector.
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learning of logical inference with the existing powerful feature-based classifier (e.g.

Support Vector Machines [Vapnik, 1995a]) would improve the performance of

knowledge-intensive tasks such as coreference resolution. Therefore, we compare

the predictive performance of feature-based classifier with a machine learning-

based abductive reasoning procedure combined with the existing feature-based

classifiers, using coreference resolution as a test bed. To simulate the feature-

based classifiers, we created a feature function for each pair of literals that rep-

resent NPs, following the feature set proposed by Soon et al. [2001b], which is

widely used as the simple baseline model of coreference resolution. Henceforth,

we call it Soon system.

To solve coreference problems with abduction using world knowledge, we

adopt the idea of Interpretation as Abduction [Hobbs et al., 1993]. The idea

is that the interpretation of sentences is an abductive explanation to the logical

forms (LFs) of sentences, where substitutions correspond to the identification of

coreference relations. We thus perform abduction with world knowledge, giving

the LFs of text as an observation. We then extract substitutions from the best

explanation for identifying the coreference relations. For combining the abduc-

tive reasoning with Soon system, we use the feature set summarized in Table 4.1

and the feature set of Soon system simultaneously in the score function. The

resulting system is called Soon+Abduction.

We use the CoNLL-2011 shared task dataset [Pradhan et al., 2011].1 We used

100 documents of training dataset for training, and 100 documents from develop-

ment dataset for testing. We convert the dataset into the logical forms, and en-

code the gold-standard coreference annotations as substitutions. We then give the

substitutions as partially-specified gold-standard explanations. We used Boxer se-

mantic parser [Bos, 2008] for the logical form conversion. As a world knowledge,

we used WordNet [Fellbaum, 1998] and FrameNet [Ruppenhofer et al., 2010]. We

convert the world knowledge to the form of axioms, such as synsetX(s)→ dog(s),

following Ovchinnikova [2012].

For the loss function, we used a pairwise loss function ∆P (H,H) = WO/TO,

where TO is the number of pairs of variables in the observation and WO is the

number of substitutions for observed variables (i.e. variables representing NPs)

1http://conll.cemantix.org/2011/.
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Table 4.3: Performance of NP coreference resolution, provided by feature-based
classifier and abductive reasoner combined with feature-based classifier.

Setting System Pairwise Loss

Closed Test Soon 0.40
Soon+Abduction 0.29

Open Test Soon 0.55
Soon+Abduction 0.48

in H that disagrees with H. The pairwise loss function is also used for supervised

clustering-based coreference resolution [Finley and Joachims, 2005]. Again, it is

clear that this function is a non-negative, and its value is zero iff there are no

disagreement.

Results and discussion: Table 4.3 shows the values of pairwise loss func-

tion in closed test and open test setting. For Soon+Abduction, we initialized

the weight vector with the same value as Logical Abduction setting in the

story understanding setting, and then trained the weights. In both settings, the

loss of Soon+Abduction system is less than Soon system. This indicates

that combining the learning of logical inference using the world knowledge with

feature-based classifier has a positive impact to the predictive performance of

feature-based classifier. In our future work, we will conduct an additional experi-

ment to check the best way to exploit the world knowldge: comparing the results

with the performance of feature-based classifier using the world knowledge as a

feature.

4.5 Related Work

Probabilistic logical abduction has been studied in the context of Statistical Re-

lational Learning [Blythe et al., 2011; Kate and Mooney, 2009; Raghavan and

Mooney, 2010; Singla and Domingos, 2011] etc. They assume to use the stan-

dard learning algorithms of probabilistic models (e.g. EM) for learning the score

function. However, the inference of probabilistic models for first-order logical

inference is computationally expensive, because the inference is performed on

a propositional level. Due to the intractability of inference, some work report
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that they could not learn weights on large dataset [Blythe et al., 2011; Singla

and Domingos, 2011]. Raghavan and Mooney [2010] propose Bayesian Abductive

Logic Programs, which constructs a Bayesian Network by using the backward-

chaining procedure similar to the ILP-based approach, but they use a task-specific

heuristic rule to unify literals to reduce the computational complexity of inference

during the construction of the network. Given much larger and dataset in gen-

eral domain, their framework would not be a scalable solution. Other researchers

[Blythe et al., 2011; Kate and Mooney, 2009; Singla and Domingos, 2011] employ

Markov Logic Networks (MLNs) [Richardson and Domingos, 2006] to emulate ab-

ductive inference. MLNs provide well-studied software packages of inference and

learning; however, MLN-based approaches require special procedures to convert

abduction problems into deduction problems because of the deductive nature

of MLNs. The pioneering work of MLN-based abduction [Kate and Mooney,

2009] converts background axioms into MLN logical formulae by (i) reversing

implication and (ii) constructing axioms representing mutual exclusiveness of ex-

planation (e.g. the set of background knowledge axioms {p1 → q, p2 → q, p3 → q}
is converted into the following MLN formulae: q → p1 ∨ p2 ∨ p3, q → ¬p1 ∨ ¬p2,

q → ¬p1∨¬p3 etc.). As the readers can imagine, MLN-based approach suffers from

the inefficiency of inference due to the increase of converted axioms. In addition,

the current solution of MAP inference for MLNs, which is needed for the best

explanation finding, works on a propositional level. Therefore, learning would not

scale to larger problems due to the severe overhead [Inoue and Inui, 2012]. Singla

and Domingos [2011] report that their MLN-based abduction models cannot be

trained on larger dataset.

As mentioned in Sec. 4.3.2, Yamamoto et al. formulate the learning problem

of first-order logic abduction as the framework similar to us. The key difference

is that they use score function that is non-linear in terms of weights, and thus

use a different optimization strategy for optimizing the weights. Comparing the

performance of our work with them is interesting and important future direction.

Our work is also related to a structured learning approaches that exploit latent

variables, which demonstrate a superior performance in many tasks ranging from

natural language processing to graphical processing. For example, Latent Support

Vector Machines, a variant of structured learning model with latent variables, is
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widely used [Cherry and Quirk, 2008; Felzenszwalb et al., 2010; Yu and Joachims,

2009] etc. for many classification tasks, and shown to outperform the existing

systems.

4.6 Conclusion

In this chapter, we have proposed a supervised approach for learning the score

function of abduction. We formulated the learning procedure in the framework

of structured learning with latent variables. Our approach enables us to learn the

score function from partially-specified gold-standards, which is a useful feature in

real-life tasks. In our evaluation, we found that our learning procedure can reduce

the loss, and improve predictive performance of story understanding tasks in both

open test and closed test. We also explored the potential use of machine learning-

based abductive reasoning, i.e. the integration of learning of logical inference and

feature-based classifiers. The experiments showed that the integration of these

two approaches is promising.
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Chapter 5

Resolving Direct and Indirect

Anaphora with Feature-based

Approach

Anaphora is a phenomenon that a linguistic expression refers to the other lin-

guistic expression. A referring expression is called an anaphor, and its referent

is called an antecedent. In nominal anaphora, an anaphor and its antecedent

in the preceding discourse hold either a direct anaphoric relation or an indirect

relation. Direct anaphoric relation refers to a link in which an anaphor and an

antecedent are in such a relation as synonymy and hypernymy/hyponymy, as in

house–building. Indirect anaphoric relation, on the other hand, refers to a link in

which an anaphor and an antecedent have such relations as meronymy/holonymy

and attribute/value as in ticket–price. For the other case, a noun phrase occasion-

ally holds an exophoric relation to an antecedent that lies outside the discourse

that the noun phrase presents. The process of identifying such anaphoric relation

is called anaphora resolution.

In this chapter, we conduct the case study on anaphora resolution, in order

to give a detailed comparison of feature-based and inference-based approaches

from both the qualitative and empirical perspective. We propose a feature-based

anaphora resolution model in this chapter, and then discuss the problems of

feature-based approaches. To improve the performance, we propose an alternative
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model of anaphora resolution, which is an inference-based approach in the next

chapter.

5.1 Preliminary

Anaphora resolution has been studied intensively in recent years because of its

significance in many natural language processing (NLP) applications such as in-

formation extraction and machine translation. Recent studies in anaphora resolu-

tion have proposed the resolution frameworks for both of direct (e.g., coreference,

pronoun resolution) and indirect anaphoric cases (e.g., bridging reference [Clark,

1977] resolution), placing the main focus on the direct anaphoric case [Iida et al.,

2005; Poesio et al., 2004; Soon et al., 2001a, etc.]. The identification of exophoric

relations, in contrast, has been paid little attention in the literature. Anaphoric-

ity determination, which is the task of determining whether an anaphor has an

antecedent in the preceding discourse or not, is related to identifying exophoric

relations, but the methods for anaphoricity determination are not designed to

explicitly capture exophoric relations because they are tuned for finding noun

phrase coreference chains in discourse.

However, for the practical use of anaphora resolution, we need to solve the

following non-trivial problem: in a real text, anaphors such as noun phrases can

occur as either direct anaphoric, indirect anaphoric or exophoric relations, which

is not easy to disambiguate from its surface expression. That is, in anaphora

resolution, it is necessary to judge what kind of anaphoric relation is used to tie

an anaphor and its (potential) antecedent (henceforth, we call this task anaphora

type classification). In fact, our corpus analysis (detailed in Section 5.4) shows

that more than 50% of noun phrases modified by a definiteness modifier (we call

such noun phrases definite noun phrase) have non-trivial ambiguity in terms of

the anaphora types that have to be classified for each given text. Given these

issues, we decompose the task of nominal anaphora resolution as a combination

of two distinct but arguably interdependent subtasks.

• Antecedent selection: the task of identifying the antecedent of a given

anaphor, and
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• Anaphora type classification: the task of judging what kind of anaphora

type is used for a given anaphor, i.e., classifying a given anaphor into direct

anaphoric, indirect anaphoric or exophoric.

Given this task decomposition, three unexplored issues immediately come up:

Issue 1. Whether the model for antecedent selection should be designed and

trained separately for direct anaphora and indirect anaphora or whether it

can be trained as a single common model;

Issue 2. What contextual information is useful for determining each of the

anaphora types;

Issue 3. How the two subtasks can be best combined (e.g., which subtask should

be carried out first).

In this chapter, we explore these issues taking Japanese as our target language.

Specifically, we focus on anaphora resolution for noun phrases modified by a

definiteness modifier, as detailed in the next section.

5.1.1 Definition of Anaphora Type

As mentioned, an anaphor can hold a direct or indirect relation with its an-

tecedent. Occasionally, an anaphor refers to an antecedent that is not in the

same discourse. The terms direct anaphora and indirect anaphora have been

used to denote some different anaphoric phenomena in previous work, e.g. direct

anaphora in [Vieira and Poesio, 2000] indicates only the reference that an anaphor

and its antecedent have identical head words, whereas direct anaphora in [Mitkov

et al., 2000] includes a synonymous or generalization/specialization link of an

anaphor and its antecedent. As a result, we redefine the following three anaphora

types to denote the use of anaphoric expressions in our classification task:

• direct anaphora: An anaphor refers to its antecedent directly. In example

(1), “そのCD” (the CD) refers to “彼女の新しいアルバム” (her new album)

directly.
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(1) 彼女の新しいアルバム(i′)が昨日発売された．早くそのCD(i)が欲しい．
Her new album(i′) was released yesterday. I want to get the CD(i) as

soon as possible.

• indirect anaphora: An anaphor has an antecedent related with the anaphor

rather than referred to, as in example (2).

(2) そのアーティストは新曲(i′)を発表した．早くそのCD(i)が欲しい．
The artist announced her new song(i′). I want to get the CD(i) as soon

as possible.

“そのCD” (the CD) refers to her new song indirectly. The discourse entity

that directly corresponds to “その CD” (the CD) is not in the preceding

sentence; instead 新曲 (her new song) is considered as an antecedent of “

そのCD” (the CD) because it is associated with “そのCD” (the CD).

• exophora: An anaphor that has no antecedent in a text is regarded as

exophoric. An exophoric expression is typically used in newspaper articles;

for instance, “その日” (the day) refers to the date of the post.

As seen from the above examples (1), (2) and reported in Section 1, the anaphora

type can be different for an identical expression. In other words, the anaphora

type must be disambiguated taking its appearing context into account.

5.1.2 Definiteness of Japanese Noun Phrase

Definite noun phrase is a noun phrase that describes a specific and identifiable

entity in a certain context, as “大統領” (the president) referring to “韓国の大統
領” (Korean President) in example (3):

(3) 今月 4日，韓国の大統領(i′)が来日した．大統領(i)は翌日の記者会見で，新
プランの詳細を語った．
Korean President(i′) visited Japan on the 4th this month. The president(i)

talked about the details of his new plan at the news conference next day.

On the other hand, indefinite noun phrase is a noun phrase that describes a

general entity, as “本” (a book) in example (4):
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(4) コロンビア図書館で本を借りた．
I borrowed a book from Columbia Libraries.

In anaphora resolution, we must determine whether a target noun phrase is

definite or indefinite, because indefinite noun phrases have no referent in the

text. However, as seen from the above two examples (3) and (4), English noun

phrases are easy to determine its definiteness according to the existence of a

definiteness modifier (the, this, that) 1, whereas Japanese noun phrases are not.

For this reason, it is sometimes difficult even for human annotators to determine

the definiteness of a bare noun phrase. In this thesis, as the first step toward

complete understanding of Japanese nominal anaphora, we focus on anaphora

resolution for noun phrases marked with 指示連体詞 (Kono, Sono, Ano); “こ
の+NP” (this NP), “その+NP” (the NP) and “あの+NP” (that NP), which

account for a large proportion of occurrences of nominal anaphora in Japanese

texts.

5.2 Related Work

In this section, we review previous research on anaphora resolution for antecedent

selection and anaphora type classification respectively. In Section 5.2.1, we look

over how the previous work had taken the approaches to antecedent selection for

direct anaphora and indirect anaphora. In Section 5.2.2, we discuss Vieira’s work

and Nakaiwa’s work on anaphora type classification.

5.2.1 Antecedent Selection

A wide range of approaches to antecedent selection has been proposed in earlier

work. Note that these studies focus on one side of direct or indirect anaphora,

in other words, they are based on the assumption that the system knows that

the given anaphor is direct anaphora or indirect anaphora. This motivates us to

explore the design of the antecedent selection model (issue 1 ).

1In some cases, a noun phrase without a definiteness modifier such as a proper noun,
appositional noun phrase can be regarded as definite.
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昨日，市内の図書館に行った．そこでは，...
Anaphor

Antecedent Candidates

図書館 Coreferential relation is identified.

Yesterday, I went to the library in my city.

So many people were studying there.

Figure 5.1: Identifying a co-referential relation by the tournament model.

5.2.1.1 Direct Anaphora

There exist two main approaches: rule-based approaches and machine learning-

based approaches. In contrast to the rule-based approaches such as Baldwin

[1995]; Brennan et al. [1987]; Mitkov [1997]; Okumura and Tamura [1996]; Shalom

and J. [1994], empirical, or machine learning-based approaches have shown to be

a cost-efficient solution achieving performance that is comparable to the best

performing rule-based systems [Ge et al., 1998; Iida et al., 2005; Mccarthy and

Lehnert, 1995; Ng and Cardie, 2002, 2001; Soon et al., 2001a; Strube and Muller,

2003; Yang et al., 2003, etc.]. Most of these studies focus only on the corefer-

ence resolution task, particularly in the context of evaluation-oriented research

programs such as Message Understanding Conference (MUC)1 and Automatic

Content Extraction (ACE)2.

The state-of-the-art method of Japanese coreference resolution is tournament

model proposed in [Iida et al., 2005]. The tournament model selects the best can-

didate antecedent by conducting one-on-one games in a step-ladder tournament.

More specifically, the model conducts a tournament consisting of a series of games

in which candidate antecedents compete with each other and selects the winner

of the tournament as the best candidate antecedent. In order to describe how the

1http://www-nlpir.nist.gov/related projects/muc/index.html
2http://www.nist.gov/speech/tests/ace/
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tournament model works, suppose we have the following example sentence:

(5) 昨日，市内の図書館(i′)に行った．そこ(i)では，たくさんの人が勉強してい
た．
Yesterday, I went to the library(i′) in my city. So many people were studying

there(i).

“図書館” (the library) and “そこ” (there) hold a co-referential relation in exam-

ple (5). When we apply the tournament model to the anaphor “そこ” (there)

in example (5), the noun phrases preceding “そこ” (there) are regarded as the

antecedent candidates, and the tournament model identifies its antecedent “図書
館” (the library) through the step-ladder tournament as shown in Figure 5.1. In

the training procedure of the tournament model, we give instances, each created

from an antecedent paired with one other competing candidate. The advantage

of this model is that the model can use the information of the two competing

candidates at the same time in training and classification, compared to a binary

classification approach [Ng and Cardie, 2002; Soon et al., 2001a, etc.]. We adopt

the tournament model for creating antecedent selection model, as mentioned in

Section 5.3.1

5.2.1.2 Indirect Anaphora

To the contrary, the methods for indirect anaphora resolution have been relatively

unexplored compared with direct anaphora. Those works are implemented by

rule-based approaches [Bunescu, 2003; Murata et al., 1999; Poesio et al., 1997,

etc.] and learning-based approaches [Poesio et al., 2004], encoding the centering

theory [Grosz et al., 1995], lexical resources such as WordNet [Fellbaum, 1998]

and web-based knowledge. In comparison to direct anaphora, the resolution of

indirect anaphora is still a much more difficult task because it is required to

capture the wide variety of semantic relations (e.g. store–the discount, drilling–

the activity). For example, Poesio et al. [2002] proposed acquiring the lexical

knowledge of the meronymy relations for resolving bridging references [Clark,

1977] by using syntactic patterns such as the NP of NP and NP’s NP.
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5.2.2 Anaphora type classification

As mentioned in Section 1, there has been little attention paid to the issue of

anaphora type classification. Exceptions can be seen in [Vieira and Poesio, 2000]

and [Nakaiwa et al., 1995], and we describe their work in this section. Note that

their system carries out anaphora type classification before antecedent selection.

However, it remains unexplored how to integrate antecedent identification and

anaphora type classification into anaphora resolution, which is to be investigated

as issue 2.

5.2.2.1 English Definite Description Processing System

Vieira’s work (2000) is motivated by corpus study for the use of definite de-

scriptions1. Their system does not only find an antecedent but classifies a given

definite description into the following three categories.

• direct anaphora: subsequent-mention definite descriptions that refer to an

antecedent with the same head noun as the description;

• bridging descriptions : definite descriptions that either (i) have an antecedent

denoting the same discourse entity, but using a different head noun (as in

house ... building), or (ii) are related by a relation other than identity to

an entity already introduced in the discourse;

• discourse-new : first-mention definite descriptions that denote objects not

related by shared associative knowledge to entities already introduced in

the discourse.

Compared with our taxonomy, their definition of direct anaphora is restricted to

the case where an anaphor and its antecedent have an identical head. Therefore,

the other cases (e.g. a pair of new album and the CD) are not regarded as direct

anaphora but such cases are classified into bridging descriptions. The definition

of discourse-new, on the other hand, refers to the same notion as our definition

of exophora except that the generic use of the definite article the as in play the

1 Definite description is a noun phrase marked with the.
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piano is classified into discourse-new. Note that Japanese definiteness modifiers

are not used in such a way.

In their work, the system chooses the correct anaphora type of a given definite

NP and if possible, finds its antecedent following a set of hand-coded rules on the

basis of the lexical and syntactic features. The process can be regarded as four

notable steps.

1. The system applies some heuristics exploiting lexical and syntactic features

based on [Hawkins, 1978] to detect non-anaphoric cases (‘unfamiliar use’ or

‘larger situation use’ in Hawkin’s work) to an anaphor. If the test succeeds,

it interprets the anaphor as discourse-new.

2. The system tries to find a same-head antecedent (i.e., an antecedent as di-

rect anaphora) from a set of potential candidates appearing in the preceding

discourse. If a suitable candidate is found, the system classifies an anaphor

as direct anaphora and returns the candidate as its antecedent.

3. The rules to recognize discourse-new, such as ‘pre-modifier use’ and ‘proper

noun use’ (e.g. the United States), are applied to an anaphor. If the test

succeeds, the anaphor is classified as discourse-new.

4. The system tries to find an NP associated with an anaphor (which is called

an anchor in their work) in the preceding discourse. If such an NP is found,

the anaphor is classified as bridging description and judges the NP as its

anchor. Otherwise, the system does not output anymore.

The heuristics to detect non-anaphoric or discourse-new anaphors are based

on the syntactic and lexical features, while the rules for direct anaphora and

bridging descriptions simply try to find an antecedent. Consequently, their work

can be said to focus on detecting discourse-new descriptions compared to our

work. They reported their system achieved 57% recall and 70% precision in their

empirical evaluation.

5.2.2.2 Extra-sentential Resolution of Japanese Zero Pronouns

Zero pronoun is an invisible pronoun arising from omitting a linguistic expres-

sion. In example (6), we can observe a zero pronoun φi referring to an omitted
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expression 私 (I ).

(6) (φiは)近所の本屋で本を買った．
(I) bought a book at a nearby bookstore.

This ellipsis causes a serious problem to NLP applications such as information

extraction systems and machine translation systems, and frequently occurs in

Japanese. Nakaiwa’s work focuses on identifying the semantic type 1 of the ref-

erent of such Japanese zero pronouns for machine translation, especially zero

pronouns which have no referent inside the discourse. The relatedness to our

work is that their work detects an anaphor which has a extra-sentential refer-

ence, i.e., classifying anaphor into exophoric or not. Their system determines an

anaphor is exophoric when its referent is not found in the discourse, and if it’s

determined, then identifies its type of referent by using the semantic constraints

such as modal expressions, verbal semantic attributes. They reported the accu-

racy of 85.5% for identifying the type of referent of 196 zero pronouns referring

to five types of entity; I, we, you, it and a specific person.

As to anaphora type classification, note that (i) their system classifies an

anaphor into exophoric or not, and (ii) the clue of its classification is just whether

the antecedent is found in the discourse or not.

5.3 Feature-based Anaphora Resolution Models

The purpose of our work is to investigate the three unexplored issues shown in

Section 1. First of all, we explain our learning-based antecedent selection models

and anaphora type classification models.

5.3.1 Antecedent Selection Model

One issue to explore in antecedent selection is whether a single common model

suffices for both direct and indirect anaphora or a separate model should be

built for each. In this section, in order to explore issue 1, we first design two

1I, we, you, it, or a specific person.
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different strategies for selecting antecedents in Section 5.3.1.1, and elaborate the

antecedent selection models in the rest of section.

5.3.1.1 Mix Strategy and Separate Strategy

From the point of view in which we consider both anaphora types in parallel

in an antecedent identification, we can consider the following two strategies as

summarized in Figures 5.2 and 5.3.

• Mix Strategy : Designing a single model for the resolution of both direct

and indirect anaphora. The information to capture a direct-anaphoric an-

tecedent and indirect-anaphoric antecedent is jointly incorporated into a

single common model. The model is trained with labeled examples of both

direct and indirect anaphora. We call this model as the mix antecedent

selection model.

• Separate Strategy : Preparing a distinct model for each anaphora type sep-

arately; i.e., the selection model for direct anaphora and the model for

indirect anaphora. Unlike the mix strategy, each model incorporates the

information to capture an antecedent for each anaphora type separately.

In the direct antecedent selection model, only the information that captures

a direct-anaphoric antecedent is used. In the indirect antecedent selection

model, on the other hand, only the information for the indirect-anaphoric

antecedent is used. For the training, labeled examples of direct anaphora

are only used in the direct antecedent selection model and labeled examples

of indirect anaphora are only used in the indirect antecedent selection model.

The separate strategy is expected to be advantageous because useful informa-

tion for detecting direct-anaphoric antecedents is different from one for indirect-

anaphoric antecedents. For example, synonymous relations between anaphor and

antecedent are important for selecting direct-anaphoric antecedents. In example

(1), an antecedent selection model must know that CD and album are synony-

mous. For indirect anaphora, on the other hand, it is required to recognize such

semantic relations as part-whole and attribute-value as shown in example (2),

where it is essential that CD is semantically related with song.
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(2) The problem of indirect anaphora

お気に入りの歌手が新曲(i’)を発表．

早くその歌(i)を聞きたい．
 

My favorite singer released his new song(i’).
　
I want to listen the song(i) as soon as possible.

お気に入りの歌手がCD(i’)を出した．

早くその歌(i)を聞きたい．
 

My favorite singer released his new CD(i’).
　
I want to listen the song(i) as soon as possible.

(1) The problem of direct anaphora

Antecedent
Selection

Model

Figure 5.2: Mix strategy for antecedent selection.

The single common model is used for resolving both direct and indirect
anaphora.

(2) The problem of indirect anaphora

お気に入りの歌手が新曲(i’) を発表．

早くその歌(i)を聞きたい．
 

My favorite singer released his new song(i’).
　
I want to listen the song(i) as soon as possible.

お気に入りの歌手がCD (i’) を出した．

早くその歌(i)を聞きたい．
 

My favorite singer released his new CD (i’).
　
I want to listen the song(i) as soon as possible.

(1) The problem of direct anaphora

Direct
Antecedent
Selection

Model

Indirect
Antecedent
Selection

Model

Figure 5.3: Separate strategy for antecedent selection.

The distinct two models are used for resolving each direct and indirect
anaphora.
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There are a variety of existing machine learning-based methods designed for

coreference resolution ranging from classification-based models [Soon et al., 2001a,

etc.] and preference-based models [Ng and Cardie, 2001, etc.] to comparison-

based models [Iida et al., 2005; Yang et al., 2003, etc.]. Among them, we adopt

a state-of-the-art model for coreference resolution in Japanese [Iida et al., 2005],

called the tournament model because it achieved the best performance for coref-

erence resolution in Japanese as mentioned in Section 5.2.1.1.

5.3.1.2 Training Procedure

Our antecedent selection model learns the preference of the antecedent by the

anaphor over the other competing candidate antecedents. Thus, we extract the

training instances from 3 elements; an anaphor, its antecedent and the competing

candidate. Suppose a text that consists of noun phrases NP1, NP2, NP3, NP4

and ANP , and let an anaphor ANP and an antecedent NP2 hold anaphoric

relation1, as shown in Figure 5.4. In this situation, we learn the preference

of NP2 by ANP over the other candidates NP1, NP3 and NP4, so we first

extract the training instance 〈class = right, NP1, NP2, ANP 〉. The class label

denotes which candidate is preferred. In the same manner, we extract the training

instances 〈class = left,NP2, NP3, ANP 〉 and 〈class = left, NP2, NP4, ANP 〉.
Figure 5.4 (a) illustrates this procedure.

5.3.1.3 Selection Method

Given an anaphor, the antecedent selection model determines the most likely an-

tecedent by comparing which candidate antecedent is preferred most by a given

anaphor in all the candidate antecedents. Our model realizes this decision by

conducting a tournament consisting of a series of games in which candidate an-

tecedents compete with each other, taking candidate antecedents in the right-to-

left order. Finally, the model identifies the winner of the tournament as the an-

tecedent of the given anaphor. Suppose we have the same text as a text described

in Section 5.3.1.2 as shown in Figure 5.4, and we want to select the antecedent

1 We enumerated only noun phrases as the potential antecedents for convenience. In our
evaluations, we include verbal predicates in the list of potential antecedents for such cases as
...we calculate the value in advance. – The precomputation ....
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(b) Selection of an antecedent(a) Training example generation

NP1 NP2 NP3 NP4 ANP

Anaphoric Relation

Antecedent Candidates

Anaphor

NP1 NP2 ANP right

NP3NP2 ANP left  

NP4NP2 ANP left  

ClassFeatures

NP3 NP4 ANP right

NP4NP2 ANP left  

NP1 NP2 ANP right

ClassFeatures

NP1 NP2 NP3 NP4 ANP

...

(1)(2)

(3)

(1)

(2)

(3)

(1)
(2)

(3)

(1)

(2)

(3)

NP2
Anaphoric relation 

is identified.

NP1 NP2 NP3 ANPNP4

!

!

!

Figure 5.4: The procedure of training example generation and selection for an-
tecedent selection model.
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of the anaphor ANP . In this situation, the first game is NP3 v.s. NP4, so we

check whether ANP prefers NP3 to NP4, or NP4 to NP3 by a binary classifier

trained in the manner of Section 5.3.1.2. Thus, we give 〈NP3, NP4, ANP 〉 to

the binary classifier. Suppose it returned class = right; NP4 won in this game.

After this, an winner is compared with the next candidate one by one. That is,

we give 〈NP2, NP4, ANP 〉 to the classifier and class = left returns. Then we

give 〈NP1, NP2, ANP 〉 to the classifier and class = right returns. As a result,

NP2 is identified as the antecedent of ANP . This example game is illustrated in

Figure 5.4 (b).

5.3.1.4 Feature Set

The feature set for antecedent selection is designed based on the literature of

coreference resolution [Denis and Baldridge, 2008; Iida et al., 2005; Ng and Cardie,

2001; Soon et al., 2001a; Yang et al., 2003, etc.] as shown in Table 5.1 and 5.2.

In addition, we introduce the following lexical semantic features:

• Wn Semantic Relation: In order to capture various semantic relations

between an anaphor and its antecedent, we incorporate the binary fea-

tures that represent the semantic relation found in the Japanese WordNet

0.9 [Isahara et al., 2008]1.

• Synonymous, Is Hyponym Of Anaphor: We recognize synonymous

and hyper-hyponym relations by using a very large amount of synonym

and hypernym-hyponym relations (about three million hypernymy relations

and two hundred thousand synonymy relations) automatically created from

Web texts and Wikipedia [Sumida et al., 2008].

• Bgh Id, Bgh Common Anc: We incorporate the lexical information ob-

tained from the Bunrui Goi Hyo thesaurus [NLRI, 1964]. We encode the

information as two types: (i) binary features that represent the semantic

class ID, and (ii) a real-valued feature that indicates the depth of the lowest

common ancestor of an anaphor and its candidate.

1http://nlpwww.nict.go.jp/wn-ja/
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Table 5.1: Feature set for antecedent selection and the MLAC models.
Feature Description
Definitive 1 if Cp is definite noun phrase; else 0.
Depend Class* POS ∈ {NOUN,PREDICATE}* of word which Cp

depends.
Depended Class* POS ∈ {NOUN,PREDICATE}* of word depending

Cp.
Anaphor Dm Type Type of definiteness modifier of ANP .
Anaphor Head Head morpheme of ANP .
Anaphor Pos POS of ANP .
Anaphor Case Case particle of ANP .
Candidate Head Head morpheme of Cp.
Candidate Pos POS of Cp.
Candidate Ne Proper noun-type of Cp.
Candidate Case Case particle of Cp.
Candidate Bgh Id* The semantic class ID of Cp at the level of a middle grain

size defined in Bunrui Goi Hyo.

ANP denotes an anaphor. Cp∈{L,R} denotes either of the two compared candidate
antecedents (CL and CR denote the left and right candidate, respectively). ‘*’ denotes
features used only in the direct antecedent selection model (ASM), the mix-ASM, the
d-MLAC model, or the p-MLAC model. ‘**’ denotes features used only in the
indirect-ASM, the mix-ASM, the i-MLAC model, or the p-MLAC model. In the
p-MLAC model, the feature set extracted from direct-ASM is distinguished from the
one extracted from indirect-ASM.
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Table 5.2: Feature set for antecedent selection and the MLAC models.
Feature Description
Wn Semantic Relation The semantic relation between ANP and Cp found in

WordNet.
String Match Type* The string match type ∈

{HEAD, PART, COMPLETE} if the string of
Cp matches the string of ANP ; else empty.

Sentence Distance The number of sentences intervening between Cp and
ANP

Similarity* Distributional similarity between ANP and Cp

Pmi** Point-wise mutual information between ANP and Cp

Bgh Common Anc* The depth of lowest common ancestor of Cp and ANP
in BGH

Synonymous 1 if Cp and ANP are synonymous; else 0.
Is Hyponym Of Anaphor 1 if Cp is a hyponym of ANP ; else 0.
Depend Relation Function word when CL depends on CR if CL depends

on CR; else empty.
Sentence Distance The number of sentences intervening between CL and

CR

Depended Count Diff* Difference between the count of bunsetsus depending CL

and CR.

The definition of ANP , Cp∈{L,R} ‘*’, ‘**’ follows Table 5.1.
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• Similarity: To robustly estimate semantic similarities between an anaphor

and its candidate antecedent, we adopt the cosine similarity between an

anaphor and candidate antecedent, which is calculated from a cooccurrence

matrix of (n, 〈c, v〉), where n is a noun phrase appearing in an argument

position of a verb v marked by a case particle c. The cooccurrences are

counted from two decades worth of news paper articles, and their distribu-

tion P (n, 〈c, v〉) is estimated by pLSI [Hofmann, 1999] with 1,000 hidden

topic classes to overcome the data sparseness problem.

• Pmi: The degree of indirect-anaphoric association between an anaphor ANP

and candidate CND is calculated differently depending on whether CND

is a noun or predicate. For the case of a noun, we follow the literature

of indirect anaphora resolution [Murata et al., 1999; Poesio et al., 2004,

etc.] to capture such semantic relations as part-whole. The associativeness

is calculated from the cooccurrences of ANP and CND in the pattern of

“CND の ANP (ANP of CND)”. Frequencies of cooccurrence counts are

obtained from the Web Japanese N-gram Version 1 [Kudo and Kazawa,

2007]. For the case of a predicate, on the other hand, the associativeness is

calculated from the cooccurrences of ANP and CND in the pattern where

CND syntactically depends on (i.e. modifies) ANP (in English, the pattern

like “ANP that (subj) CND”). If we find many occurrences of, for example,

“闘う (to fight)” modifying “夢 (a dream)” in a corpus, then “夢 (a dream)”

is likely to refer to an event referred to by “闘う (to fight)” as in (7).

(7) チャンピオンと闘い(i′)たい。その夢(i)は実現すると信じている。
I want to fight(i′) the champion. I believe the dream(i) will come true.

5.3.2 Anaphora Type Classification Model

As mentioned in Section 5.2.2, the clue of anaphora type classification is the

information of a context that precedes an anaphor. However, it is not explored

well that which information in the context is useful for anaphora type classifica-

tion (issue 2 ) in the previous studies. In this section, we consider four machine

learning-based models for anaphora type classification in order to find the answer

80



of issue 2. The difference between the contextual clues that each classifier uses

is summarized in Table 5.3.

5.3.2.1 No-context Model

This anaphora type classifier determines whether an anaphor bears either direct

anaphora, indirect anaphora or exophora, by using only the properties of an

anaphor. For training, we give only an anaphor and its annotated anaphora

type to the classifier. We illustrate an example of training example generation

in Figure 5.5 (a). In Figure 5.5 (a), anaphors ANP1, ANP2 and ANP3 are given

to the classifier as its training examples. The feature set used in this model is

detailed in Table 5.4.

By comparing this model with the other models, we can see the effect of using

contextual information in anaphora type classification.

5.3.2.2 Broad Context Model

This anaphora type classifier determines an anaphora type by using the proper-

ties of an anaphor and the lexical and syntactic information from all potential

antecedents. For training, we give an anaphor and all the potential antecedents

with annotated anaphora type to the classifier. Figure 5.5 (b) illustrates the

procedure of the training example generation. In Figure 5.5 (b), for an anaphor

ANP1, anaphor itself ANP1 and its potential antecedent NP1, NP2, NP3, NP4

are given to the classifier as its training examples. Our features for learn-

ing and classification are summarized in Table 5.4. We use such features as

Has Synonym Of Anaphor and Has String Matched, which capture con-

textual information encoded from all potential antecedents, based on the litera-

ture [Vieira and Poesio, 2000, etc.].

5.3.2.3 Most Likely Antecedent Context Model

The Broad Context model described above utilizes all the antecedent candidates

as contextual information. Contrary to the Broad Context model, we intro-

duce Most Likely Antecedent Context model which uses only the most likely

antecedent(s) as contextual information, instead of all the potential antecedents.
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Table 5.3: Summary of the information used in each anaphora type classifier.

Contextual Information NCM BCM MLACM
Mix Direct Indirect Parallel

Anaphor
√ √ √ √ √ √

All potential antecedents
√

Antecedent selected by mASM
√

Antecedent selected by dASM
√ √

Antecedent selected by iASM
√ √

The mASM, dASM and iASM denote mix, direct and indirect antecedent selection
model respectively. The NCM, BCM and MLACM denote No-context, Broad Context
and Most Likely Antecedent Context anaphora type classification model described in
Section 5.3.2.

Exophora

NP1 NP2 NP3 NP4 ANP1

Direct Anaphora

direct     

ClassFeatures

ANP1

(a) No-context Model

NP5 NP6 NP7 ANP2 NP8 NP9 ANP3

Indirect Anaphora

indirect  ANP2

exophoraANP3

direct     

ClassFeatures

ANP1

(b) Broad Context Model

indirect  ANP2

exophoraANP3

NP1 NP4
...

NP1 NP7
...

NP1 NP9
...

Figure 5.5: The procedure of training example generation for No-context model
and Broad Context model.
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Table 5.4: Feature set for No-context model and Broad Context Model
Feature Description
Anaphor Dm Type Type of definiteness modifier of ANP . The pos-

sible value is one of “Kono”, “Sono” or “Ano”.
Anaphor Head Head morpheme of ANP .
Anaphor Pos POS of ANP .
Anaphor Case Case particle of ANP .
Holding Pos* POS of all the candidates in the preceding sen-

tences.
Has Synonym Of Anaphor* 1 if there exists a synonym of ANP in the pre-

ceding sentences; else 0.
Has Hyponym Of Anaphor* 1 if there exists a hyponym of ANP in the pre-

ceding sentences; else 0.
Has String Matched* 1 if there exists NP whose string matches the

last string of (head of) ANP in the preceding
sentences; else 0.

Max Pmi* Maximum PMI between ANP and each candi-
dates in the preceding sentences.

Max Noun Sim* Maximum noun-noun similarity between ANP
and each candidates in the preceding sentences.

ANP denotes an anaphor. ‘*’ denotes the features that capture the contextual
information, which is only used for Broad Context model.
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This model receives an anaphor and the most likely antecedent candidate(s)

as its input. The classifier determines the anaphora type by utilizing information

from both the anaphor and the selected candidate antecedent(s). This model

has an advantage over the Broad Context model that it determines the anaphora

type of a given anaphor taking into account the information of its most likely

candidate antecedent. The most likely candidate can be expected to provide

contextual information useful for anaphora type classification: for example, if

her new song is selected as the best candidate antecedent in example (8), the

anaphora type will be easily identified by using the lexical knowledge that CD is

the semantically related object of song.

(8) The artist announced her new song. I want to get the CD as soon as pos-

sible.

Since we have 3 choices of the antecedent selection models as described in Section

5.3.1.1 (one is created from the mix strategy, and the rest is from the separate

strategies), finally at least the following four models are available for anaphora

type classification.

• Mix Most Likely Antecedent Context (m-MLAC) Model : Classifies anaphora

type by using the information of the best candidate antecedent selected by

the mix antecedent selection model.

• Direct Most Likely Antecedent Context (d-MLAC) Model : Classifies anaphora

type by using the information of the most likely direct anaphoric antecedent

selected by the direct antecedent selection model.

• Indirect Most Likely Antecedent Context (i-MLAC) Model : Analogous to

the d-MLAC model, classifies anaphora type by using the information of the

most likely indirect anaphoric antecedent selected by the indirect antecedent

selection model.

• Parallel Most Likely Antecedent Context (p-MLAC) Model : Classifies anaphora

type referring to two candidates selected by the direct and indirect an-

tecedent selection models.
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The p-MLAC model provides richer contextual information for classifying anaphora

type than any other configuration because it can always refer to the most likely

candidate antecedents of direct anaphora and indirect anaphora, which may be

useful for determining anaphora type.

Training Procedure The training procedure of each model depends on which

kinds of information is needed. Basically, we use a pair 〈an anaphor, anno-

tated antecedent or pseudo-antecedent〉 as a training instance. It depends on

the anaphora type of interested anaphor and the type of antecedent selection

model that the classifier utilizes to determine whether it is annotated antecedent

or pseudo-antecedent. We describe the training procedure of each model below

using Figures 5.6, 5.7 and 5.8.

• m-MLAC model : Give an anaphor and an annotated antecedent with the

label of anaphora type to the classifier, except an exophoric anaphor. Since

the exophoric anaphor has no antecedent annotated in the training set,

we pick up the pseudo-antecedent by using the mix antecedent selection

model and give it to the classifier with the exophoric anaphor. For exam-

ple, in Figure 5.6, a direct anaphor ANP1 is paired with the annotated

antecedent NP2, and an indirect anaphor ANP2 is paired with the an-

notated antecedent NP7, and an exophoric anaphor ANP3 is paired with

pseudo-antecedent NP5 selected by the mix antecedent selection model.

• d-MLAC model : Give an anaphor and an annotated antecedent with the

label “direct” to the classifier if the anaphor is labeled as direct anaphora.

In the case of an indirect anaphoric or exophoric anaphor, we select pseudo-

antecedent by using the direct antecedent selection model and give it to the

classifier, instead of using annotated antecedent even though the indirect

anaphor has an annotated antecedent. Recall that the d-MLAC model

determines an anaphora type by using the information of the most likely

antecedent selected by the direct antecedent selection model. Figure 5.7 ex-

emplifies this procedure. In Figure 5.7, a direct anaphoric anaphor ANP1 is

paired with the annotated antecedent NP2, and an indirect anaphor ANP2

is paired with the pseudo-antecedent NP3 selected by the direct antecedent
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Pseudo-antecedent selected 

by mix antecedent selection model.

Figure 5.6: The procedure of training example generation for m-MLAC model.
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selection model. Note that an annotated antecedent NP7 is not used. Fi-

nally, an exophoric anaphor ANP3 is paired with the pseudo-antecedent

NP5 selected by the direct antecedent selection model.

• i-MLAC model : Similarly to the d-MLAC model, give an anaphor and an

annotated antecedent with a label “indirect” to the classifier if the indirect

anaphor is given. In the case of a direct or exophoric anaphor, we select

pseudo-antecedent by using the indirect antecedent selection model and give

it to the classifier.

• p-MLAC model : Give a triplet 〈an anaphor, a direct anaphoric (pseudo)

antecedent, an indirect anaphoric (pseudo) antecedent〉 to the classifier. It

depends on the anaphora type how we give the two antecedents. First,

in the case of a direct anaphor, we give an annotated antecedent and a

pseudo-antecedent selected by the indirect antecedent selection model with

a label “direct” to the classifier. Second, in the case of an indirect anaphor,

we give an annotated antecedent and a pseudo-antecedent selected by the

direct antecedent selection model with a label “indirect” to the classifier.

Finally, for an exophoric anaphor, we give two pseudo-antecedents selected

by the direct antecedent selection model and the indirect antecedent selection

model with a label “exophora.”

We describe this procedure taking an example illustrated in Figure 5.8. For

a direct anaphor ANP1, we make the triplet by taking an annotated an-

tecedent NP2 as a direct anaphoric antecedent, and pseudo-antecedent NP1

selected by the indirect antecedent selection model as an indirect anaphoric

antecedent. Contrary to the direct anaphoric case, we take pseudo-antecedent

NP3 selected by the direct antecedent selection model as a direct anaphoric

antecedent, and an annotated antecedent NP7 as an indirect anaphoric

antecedent in the case of an indirect anaphor ANP2. For an exophoric

anaphor ANP3, we pick up two antecedents by using both the direct and

indirect antecedent selection model since an exophoric anaphor has no an-

notated antecedent. Suppose NP5 and NP8 are selected respectively. Then

we make the triplet from the two pseudo-antecedents; NP5 and NP8.
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Figure 5.7: The procedure of training example generation for d-MLAC model.
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Figure 5.8: The procedure of training example generation for p-MLAC model.
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Feature set The classifier uses the best candidate(s) antecedent selected

by the antecedent selection model as its contextual information. This sort of

information is encoded as features analogous to that for antecedent selection as

summarized in Tables 5.1 and 5.2.

5.3.3 Anaphora Resolution Framework

We proposed three antecedent selection models (mix, direct, and indirect an-

tecedent selection model) and four anaphora type classification models (No-context,

Broad Context, and four Most Likely Antecedent Context models), each of which

determines the referent and the anaphora type of a given anaphor. As mentioned

in Section 1, one of the purposes of our work is to find an appropriate method of

an anaphora resolution model which handles both the subtasks, i.e., antecedent

selection and anaphora type classification. Thus, in this section, we integrate

an antecedent selection model described in Section 5.3.1 with an anaphora type

classification model described in Section 5.3.2 to find a practical anaphora reso-

lution model capable of identifying a referent and resolving the ambiguity of an

anaphora type in a real text (issue 3 ). In order to consider five anaphora res-

olution models here, we combine the antecedent selection models and anaphora

type classification models described so far.

According to whether the antecedent selection is carried out before the anaphora

type classification or after in a framework, we consider two types of configuration;

Classify-then-Select (C/S) and Select-then-Classify (S/C) configuration. The C/S

configuration first determines the anaphora type by using the No-context model

or the Broad Context model, and selects an antecedent by using the direct or in-

direct antecedent selection models depending on the determined anaphora type.

The S/C configuration, on the other hand, first selects an antecedent candidate

by using mix, direct, or indirect antecedent selection model, and determines an

anaphora type by using the information of the selected antecedent candidate.

This configuration reselects an antecedent by the other antecedent selection model

if necessary. We elaborate each configuration in Sections 5.3.3.1 and 5.3.3.2.
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5.3.3.1 Classify-then-Select Configuration

Given an anaphor, this configuration first determines whether the anaphor bears

either direct anaphora, indirect anaphora or exophora. If the anaphora type is

judged as direct anaphora, then the direct antecedent selection model is called.

If the anaphora type is judged as indirect anaphora, on the other hand, then the

indirect antecedent selection model is called. There is no antecedent selection

model called if exophora is selected.

By altering the choice of anaphora type classification models, the following

two alternative models are available for the Classify-then-Select configuration,

each of which is illustrated in Figure 5.9.

• nc-Classify-then-Select (ncC/S) Model : Classify anaphora type of a given

anaphor by using the No-context anaphora type classification model before

selecting the antecedent.

• bc-Classify-then-Select (bcC/S) Model : Classify anaphora type of a given

anaphor by using the Broad Context model before selecting the antecedent.

5.3.3.2 Select-then-Classify Configuration

Given an anaphor, this configuration first selects an antecedent candidate. Sec-

ond, an anaphora type is determined by using the information of the candidate,

i.e., this configuration determines an anaphora type by using the MLAC anaphora

type classification model. In this section, we consider four models since we have

alternative antecedent selection models and MLAC models.

• m-Select-then-Classify (mS/C) Model : Select an antecedent candidate with

the mix antecedent selection model, and pass it to the m-MLAC model to

classify an anaphora type. This model just returns the candidate passed to

the m-MLAC model as the outputting antecedent. If the anaphor is classi-

fied as exophora, it outputs no antecedent. This procedure is illustrated in

Figure 5.10.

• d-Select-then-Classify (dS/C) Model : Select an antecedent candidate by the

direct antecedent selection model and then pass it to the d-MLAC model to
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∗ASM denotes Antecedent Selection Model.

Figure 5.9: Classify-then-Select anaphora resolution framework.
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classify the anaphora type. If the anaphor is classified as direct anaphora,

it just returns the passed candidate as the outputting antecedent. If the

anaphor is classified as indirect anaphora, search for the antecedent with

the indirect antecedent selection model. It outputs no antecedent if the

anaphor is classified as exophora. Figure 5.11 illustrates this procedure.

• i-Select-then-Classify (iS/C) Model : Select an antecedent candidate by the

indirect antecedent selection model and then classify the anaphora type with

the i-MLAC model. If the anaphor is classified as direct anaphora, search for

the antecedent with the direct antecedent selection model. If the anaphor

is classified as indirect anaphora, it just returns the candidate selected first

as the outputting antecedent. It outputs no antecedent if the anaphor is

classified as exophora. This procedure is shown in Figure 5.12.

• p-Select-then-Classify (pS/C) Model : Select two antecedent candidates by

the direct and indirect antecedent selection models in parallel, and then

pass both the candidates to classify the p-MLAC model to determine the

anaphora type. If the anaphor is classified as direct anaphora, it outputs an

antecedent selected by the direct antecedent selection model. If the anaphor

is classified as an indirect anaphora, it outputs the antecedent selected

by the indirect antecedent selection model. If the anaphor is classified as

exophora, it outputs no antecedent. Figure 5.13 illustrates this procedure.

As mentioned in Section 5.3.2.3, note that this configuration is expected to have

an advantage over the C/S configuration in that it determines an anaphora type

taking into account the information of its most likely antecedent candidate, in-

stead of all the candidates. It may do harm to an anaphora type classification to

use the information of all the candidates, since it includes too much information

useless or harmful to classify an anaphora type.
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Figure 5.10: m-Select-then-Classify anaphora resolution framework.
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Figure 5.11: d-Select-then-Classify anaphora resolution framework.
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96



Indirect ASM

Antecedent Selection

Output

Type == Direct anaphora

(Direct anaphora, NPd)

Output

(Indirect anaphora, NPi)

Output

(Exophora, NULL)

Type == ExophoraType == Indirect anaphora

I_Antecedent = NPi

Anaphora Type Classification

Parallel Most Likely Antecedent Context model

Determine Type ! {Direct anaphora, Indirect anaphora, Exophora}

Direct ASM

D_Antecedent = NPd

Figure 5.13: p-Select-then-Classify anaphora resolution framework.

ASM denotes Antecedent Selection Model.

97



Table 5.5: Distribution of anaphoric relations in the broadcast articles.

Syntax Direct Indirect Exophora Ambiguous
Noun 530 466 - 0
Predicate 70 435 - 8
Overall 600 901 248 8

‘Noun’ and ‘Predicate’ denote the syntactic category of an antecedent. ‘Ambiguous’
was annotated to an anaphor which holds both direct and indirect anaphoric
relations. In our evaluations, we discarded such instances.

Table 5.6: Distribution of anaphoric relations in the editorial articles.
Syntax Direct Indirect Exophora Ambiguous
Noun 550 561 - 0
Predicate 114 883 - 2
Overall 664 1,444 222 2

The definition of ‘Noun’, ‘Predicate’ and ‘Ambiguous’ follows Table 5.5.

5.4 Dataset

For training and testing our models, we created an annotated corpus that con-

tains 2,929 newspaper articles consisting of 19,669 sentences for 2,320 broadcasts,

18,714 sentences for 609 editorials, which are the same articles as in the NAIST

Text Corpus [Iida et al., 2007]. The NAIST Text Corpus also contains anaphoric

relations of noun phrases, but they are strictly restricted as coreference relations

(i.e. two NPs must refer to the same entity in the world). For this reason, most

NPs marked with a definiteness modifier that we need are not annotated even

when two NPs have a direct-anaphoric relation. Therefore, we re-annotated (i) di-

rect anaphoric relations, (ii) indirect anaphoric relations and (iii) exophoric noun

phrases of noun phrases marked by one of the three definiteness modifiers, that

is this (この), the (その), and that (あの). In the specification of our corpus, not

only noun phrases but verb phrases are chosen as antecedents. For example, the

verbal predicate calculates(i′) is selected as an antecedent of the precomputation(i)

in example (9).
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(9) システムは前もって値を計算する(i′)。その前計算(i)はシステムの性能を大
幅に向上させている。
The system calculates(i′) the value in advance. The precomputation(i) sig-

nificantly improves its performance.

We also annotated anaphoric relations in the case where an anaphor is anaphoric

with more than two antecedents. For example, we label indirect anaphoric rela-

tions for the two pairs of NPs mouse devices–the other items and keyboards–the

other items as seen in example (10).

(10) ABCコンピュータはマウス(i′)とキーボード(j′)の値下げを発表した。
その他の商品(i,j)については値下げをしないと主張した。
ABC computer announced that they reduced the price of mouse devices(i′)

and keyboards(j′).

They claimed that they would not cut the price of the other items(i,j).

Finally, we obtained 1,264 instances of direct anaphora, 2,345 instances of indirect

anaphora, and 470 instances of exophora. The detailed statistics are shown in

Tables 5.5 and 5.6. To assess the reliability of the annotation, we estimated

its agreement rate with the two annotators from 418 examples1 in terms of K

statistics [Sidney and Castellan, 1988]. It resulted in K = 0.73, which indicates

good reliability. For measuring the agreement ratio of antecedent selection, we

used 322 examples (109 for direct anaphora and 213 for indirect anaphora) whose

anaphora types are identically identified by both two annotators. The agreement

ratio was calculated2 according to the following equation:

Agreement =
# of instances which both two annotators identified the same antecedent

# of all instances
.

The agreement ratio for annotating direct-anaphoric relation obtained 80.7%

(88/109). However, for 21 examples whose antecedents are not identically selected

1These examples are randomly sampled from our corpus, and account for 10% of all the
examples.

2 We regarded the matching of the rightmost offset as the agreement. When multiple
antecedents are annotated, the criterion of matching is that one of the antecedents is at least
identical with one of the antecedents annotated by the other annotator.
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by the annotators, our analysis revealed that 52.4% (11/21) of these examples

are cases where the antecedents annotated by the two annotators are different

but in anaphoric relation, which should be regarded as an agreement. There-

fore, the inter-annotator agreement ratio of direct-anaphoric relation achieves

90.8% (99/109), which indicates good reliability but it is required to consider

anaphoric chains in the annotation procedure. The agreement ratio of indirect-

anaphoric relation, on the other hand, obtained a comparatively lower ratio of

62.9% (134/213). One of the typically non-matching cases is shown in example

(11).

(11) 政府(i)は明日までに委員(j)を決める方針だ。その人選(k)は我々にも影響が
及ぶだろう。
The government(i) is going to determine the member of the committee(j) by

tomorrow. Probably the election(k) will also affect us.

In this example, both the government and the member of the committee are

considered to be associated objects of the election, which indicates that multiple

discourse elements are often associated with one anaphor in various semantic

relations in indirect anaphora. We should reflect on such problems when the

annotation scheme and task definition of indirect anaphora resolution are argued,

including bridging reference resolution.

5.5 Experiments

We conduct empirical evaluations in order to investigate the three issues shown

in Section 1. First, we compare two antecedent selection models, the single and

separate models described in Section 5.3.1 in order to find out issue 1, i.e., whether

an antecedent selection model should be trained separately for direct anaphora

and indirect anaphora. Second, the anaphora type classification models described

in Section 5.3.2 are evaluated to explore what information helps with the anaphora

type classification (issue 2 ). Finally, we evaluate the overall accuracy of the entire

anaphora resolution task to explore how the models can be best configured (issue

3 ).
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In our experiments, we used anaphors whose antecedent is a head of an NP

that appears in the preceding context of the anaphor (i.e., cataphora is ignored),

only taking articles in the broadcast domain into account. Therefore, we used 572

instances of direct anaphora, 878 instances of indirect anaphora and 248 instances

of exophora. The evaluation was carried out by 10-fold cross-validation. In our

evaluation of antecedent selection, if a selected antecedent is in the same direct-

anaphoric chain as the labeled antecedent, this selected antecedent is evaluated

as correct1.

For creating binary classifiers used in antecedent selection and anaphora type

classification, we adopted Support Vector Machines [Vapnik, 1995b]2, with a poly-

nomial kernel of degree 2 and its default parameters.

We adopt the one-versus-rest method for the three-way classification for

anaphora types. In other words, we recast the multi-class classification prob-

lem as combinations of a binary classification. Given an anaphor, each anaphora

type classifier outputs a score that represents the likelihood of its anaphora type.

According to these three scores, we select the anaphora type that achieves the

maximum score.

5.5.1 Results of Antecedent Selection

The results of antecedent selection are shown in Table 5.7. The results3 indicate

that the Separate Strategy outperforms the Mix Strategy on two anaphora types.

As for issue 1, we conclude that the information used for antecedent selection

should be separated for each anaphora type and the selection models should be

trained for each anaphora type. We therefore discard the mix strategy for the

further experiments (i.e. discarding the m-MLAC model and the mS/C model).

We also illustrate the learning curves of each model, shown in Figure 5.14.

Reducing the training data to 50%, 25%, 12.5%, 6.25% and 3.13%, we conducted

the evaluation over three random trials for each size and averaged the accuracies.

1We manually checked our results because of the lack of annotation of anaphoric chains
as noted in Section 5.4. Due to the cost of this manual checking, we took only the broadcast
articles into account in our experiments, leaving the editorials out.

2SV M light http://svmlight.joachims.org/
3The accuracy of the separate strategy is better than the mix strategy with statistical

significance (p < 0.01, McNemar test).
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Table 5.7: Results of antecedent selection
Anaphora Type Mix Strategy Separate Strategy
Direct anaphora 63.3% (362/572) 65.4% (374/572)
Indirect anaphora 50.5% (443/878) 53.2% (467/878)
Overall 55.2% (801/1,450) 58.0% (841/1,450)

Table 5.8: Precision, recall and F-value of anaphora type classification.

Direct Anaphora Indirect Anaphora Exophora
Model P R F P R F P R F
NC 67.7% 74.5% 70.9% 80.6% 87.1% 83.7% 75.0% 36.3% 48.9%
BC 69.4% 73.4% 71.4% 74.9% 87.5% 80.7% 92.5% 25.0% 39.4%

d-MLAC 70.9% 84.6% 77.1% 83.2% 85.6% 84.4% 90.1% 40.3% 55.7%
i-MLAC 67.7% 74.8% 71.1% 78.1% 88.3% 82.9% 93.2% 27.8% 42.9%
p-MLAC 71.2% 82.0% 76.1% 82.1% 86.7% 84.3% 91.9% 41.1% 57.2%

Figure 5.14 indicates that in the direct antecedent selection model the accuracy

becomes better as the training data increase, whereas the increase of the indirect

one looks difficult to improve although our data set included more instances for

indirect anaphora than for the direct one. These results support the finding in

previous work that an indirect anaphora is harder to resolve than direct anaphora

and suggest that we need a more sophisticated antecedent selection model for

indirect anaphora.

5.5.2 Results of Anaphora Type Classification

Now, we move on to issue 2. The results of anaphora type classification are

shown in Tables 5.8 and 5.9. The BC model obtained the lowest accuracy of

73.6%, which indicates that contextual information features proposed in the lit-

erature [Vieira and Poesio, 2000, etc.], such as Has String Matched, were not

actually informative. Note that the performance of the BC model is lower than

the NC model1, which identifies an anaphora type by using only the information

of an anaphor. On the other hand, the d-MLAC model successfully improved

its performance by using the information of selected candidate antecedent as

1The difference is statistically significant (p < 0.06, McNemar test).
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Figure 5.14: Learning curve for separate models.

the contextual information. The d-MLAC model achieved the best accuracy of

78.7%, which indicates that the selected best candidate antecedent provides use-

ful contextual information for anaphora type classification1. The i-MLAC and

p-MLAC models, however, do not improve their performance as well as the d-

MLAC model although it uses the selected best candidate(s) information. It is

considered that the fundamental reason is the poor performance of the indirect

antecedent selection model as shown in Table 5.7, i.e., the indirect antecedent se-

lection model does not provide correct contextual information to anaphora type

classification. It is expected that all the MLAC models get better performance

when the antecedent selection model improves.
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Table 5.9: Accuracy of anaphora type classification.

Model Accuracy
NC 75.4%
BC 73.6%

d-MLAC 78.7%
i-MLAC 74.9%
p-MLAC 78.4%

Table 5.10: Overall results of anaphora resolution

Model Accuracy
nc-Classify-then-Select 47.3% (803/1,698)
bc-Classify-then-Select 46.3% (787/1,698)
d-Select-then-Classify 50.6% (859/1,698)
i-Select-then-Classify 46.3% (787/1,648)
p-Select-then-Classify 50.4% (855/1,698)

5.5.3 Results of Overall Anaphora Resolution

Finally, we evaluated the overall accuracy of the entire anaphora resolution task

given by:

Accuracy =
# of instances whose antecedent and anaphora type is identified correctly

# of all instances
.

The results are shown in Table 5.10. The dS/C model achieved the best accuracy,

which is significantly better than the Classify-then-Select models. As for issue

3, we found that it is the best configuration that it selects an antecedent first,

and then passes the antecedent to an anaphora type classifier to determine the

anaphora type.

5.5.4 Error Analysis of Antecedent Selection

Our error analysis revealed that a majority (about 60%) of errors in direct

anaphora were caused by the fact that both correct and incorrect candidates

1The d-MLAC model outperformed the NC, BC models with statistical significance using
p < 0.03, p < 0.01, as McNemar test parameters respectively.
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belong to the same semantic category. Example (12) shows a typical selection

error:

(12) 私は映画(j)の知識がないが、『フランケンシュタイン』(i′)ぐらいは知ってい
る。この映画(i)は、本当に名作だ。
I don’t have good knowledge of movies(j) but still know of “Frankenstein”(i′).

I think this movie(i) is indeed a great masterpiece.

where the wrong candidate “映画 (j) (movies(j))” was selected as the antecedent

of “この映画 (i) (this movie(i))”.1 As can be imagined from this example, there

is still room for improvement by carefully taking into account this kind of error

using other clues such as information from salience.

For indirect anaphora, we analyzed our resource to capture the associativeness

between an anaphor and its antecedent, encoded as Pmi in the feature set. Our

analysis indicated that about half of the pattern ‘ANT of ANP ’, which occurred

in the test data, had been assigned a minus value, i.e., no positive association

found between an anaphor and its antecedent for the resource when applying

Pmi. To evaluate the contribution to our model, we conducted an evaluation

where the Pmi feature set was disabled. As a result of this additional evaluation,

the model obtained 51.4% (451/878), which is no significant difference compared

with the original accuracy. We need to find more useful clues to capture the asso-

ciativeness between an anaphor and the related object in indirect anaphora. The

low quality of our annotating data of indirect-anaphoric relation, as mentioned

in Section 5.4, might be also one of the reasons for the low accuracy of indirect

anaphora resolution.

5.5.5 Error Analysis of Anaphora Type Classification

The identification of exophora is a more difficult task than the other anaphora

types as shown in the low F-measure and recall in Table 5.8. Our analysis for the

exophoric instances misclassified by the d-MLAC model revealed that the typical

errors were temporal expressions such as 年 (year), 日 (day) and 時期 (period).

We observed that such expressions occurred as not only exophora but also as the

1In Japanese, the plural form of a noun is not morphologically distinguished from its singular
form.
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Table 5.11: The majority of misclassified-exophoric instances

Occurrences in our corpus
NP of an anaphor Direct anaphora Indirect anaphora Exophora
年 (year) 42.9% (9/21) 9.5% (2/21) 47.6% (10/21)
日 (day) 68.3% (82/120) 0.9% (1/120) 30.8% (37/120)
時 (time) 8.9% (5/56) 82.1% (46/56) 8.9% (5/56)
時期 (period) 25.0% (5/20) 35.0% (7/20) 40.0% (8/20)

other anaphora types many times, as summarized in Table 5.11, which indicates

that the interpretation of temporal expression is also important for identifying the

other anaphora types. In our current framework, however, it is hard to recognize

such expressions accurately since the precise recognition of temporal expressions

is required to identify a relation between an event specified by the expression and

the other events. We consider integrating the framework of temporal relation

identification, which has been proposed in the evaluation-oriented studies such

as TempEval1, with anaphora type classification framework, which will be our

future work.

5.6 Conclusion

We have addressed the three issues of nominal anaphora resolution for Japanese

NPs marked by a definiteness modifier under two subtasks, i.e., antecedent se-

lection and anaphora type classification. The issues we addressed were: (i) how

the antecedent selection model should be designed, (ii) what information helps

anaphora type classification, and (iii) how the antecedent selection and anaphora

type classification should be carried out. Our empirical evaluations showed that

the separate strategy achieved better accuracy than the mix strategy for an-

tecedent selection, and the d-MLAC model gives the best result for anaphora

type classification. As for the integrated models, the d-Select-then-Classify model

achieved the best accuracy. We have made several findings through the evalu-

ations: (i) an antecedent selection model should be trained separately for each

anaphora type using the information useful for identifying its antecedent, (ii)

1http://www.timeml.org/tempeval/
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the best candidate antecedent selected by an antecedent selection model pro-

vides contextual information useful for anaphora type classification, and (iii) the

antecedent selection should be carried out before anaphora type classification.

However, there is still considerable room for improvement in both subtasks.

Our error analysis for antecedent selection reveals that the wrong antecedent,

which belongs to the same semantic category as correct antecedent, is likely to be

selected while selecting direct-anaphoric antecedent, and the association measure

of indirect-anaphoric relatedness does not contribute to selecting the indirect-

anaphoric antecedent. For anaphora type classification, our analysis reveals that

temporal expressions typically cause error in the identification of exophora. To

recognize such expressions precisely, we will consider integrating temporal relation

identification with anaphora type classification. Our future work also includes

taking general noun phrases into account in anaphora resolution. In the next

chapter, we propose the inference-based approach to anaphora resolution, which

overcomes these limitations.
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Chapter 6

Inference-based Approach to

Coreference Resolution

In this chapter, we propose an inference-based direct anaphora resolution model.

Particularly, we focus on coreference resolution problem, where we need to iden-

tify a set of mentions that refers to the same entity in the world. Conventional

approaches to coreference resolution have exploited world knowledge to capture

syntactic or semantic compatibility between mentions, encoding them as a feature

vector for machine learning-based classifiers. However, as mentioned in Chapter 6,

there exist many cases where several antecedents are syntactically or semantically

compatible with an anaphoric expression, and therefore the existing approaches

are not guaranteed to identify correct antecedents in such cases. Following Rah-

man and Ng [2012], we refer to these cases as difficult coreference problems.

In this chapter, to remedy this problem, we propose a machine learning-based

hybrid model that combines the conventional compatibility-based approach with a

logical inference-based approach. Our key idea is that the information of implicit

events inferred by logical inference (henceforth, implicit events) provides useful

clues for selecting the correct antecedent. We integrate those two approaches to

complement the weakness of each approach, using an abductive inference frame-

work.
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The scientists gave the chimps some bananas 
 
 
 
 
 
 
because they were hungry. 

Knowledge:  X is hungry → X eat something 

= 

Knowledge: !
   X give Y Z → Y have Z 

chimps have bananas 

chimps eat bananas coref 

they eat something 

Knowledge: !
  a food can be eaten 

Knowledge:  
  banana is a food 

Figure 6.1: Example of inference-based coreference resolution.

6.1 Motivation

An inference-based formulation is appealing for coreference resolution because it

is a realization of the observation that we understand new material by linking it

with what we already know. It instantiates in natural language understanding

the more general principle that we understand our environment by coming up

with the best explanation for the observables in the environment.

Hobbs et al. [1993] show that the lowest-cost abductive proof provides the

solution to a whole range of natural language pragmatics problems, such as word

sense disambiguation, anaphora and metonymy resolution, interpretation of noun

compounds and prepositional phrases, detection of discourse relations, etc. For

examples of application of abduction to discourse processing see [Charniak and

Goldman, 1991; Inoue and Inui, 2011; Ovchinnikova, 2012; Ovchinnikova et al.,

2011].

Let us elaborate how this idea helps us to solve difficult coreference problems

with the following example sentence:

• The scientists gave the chimps some bananas because they were hungry.

To help the readers follow our discussion easily, we describe our idea using the

diagram of inference flow in Figure 6.1.1 In Figure 6.1, we infer that [the chimps]j

would have the bananas, applying the causal knowledge that giving causes having

1The arrows in the diagram are not logical implications.
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to the observation that the scientists gave some bananas to them. We also infer

that the chimps would eat the bananas since having bananas causes the desire of

eating. On the other hand, we infer that [they]j would eat something, because

being hungry causes eating something. Notice that we have two eating events

that are derivable from the observed text.

Following the assumption above, we conclude that two eating events are likely

to be coreferent; that is, [they]j and [chimps]j should be coreferent. Although

both the scientists and the chimps are semantically compatible with [they]j, cap-

turing coreference relation between implicit eating events provides the clue that

supports the chimps is a better antecedent for they.

In order to create a computational mechanism that realizes these procedures,

we need at least two subtasks: (i) deriving plausible implicit events from ob-

served information (implicit event derivation), and (ii) resolving coreference be-

tween observed mentions (coreference resolution), exploiting the derived implicit

information as a clue. In this chapter, we recast the two subtasks as the prob-

lem of abductive explanation finding and then define a trainable score function

that evaluates the abductive explanation in terms of the goodness of coreference

relations and the reliability of inference.

6.2 The Model

6.2.1 Generation of Abductive Explanation for Implicit

Event Derivation and Coreference Resolution

Following Hobbs et al. [1993], we jointly model the task of implicit event deriva-

tion and coreference resolution as the abductive inference problem, where a target

text and world knowledge are regarded as the observation and the background

knowledge respectively. We recall that the spirit of Hobbs et al. [1993] is that

the process of interpreting sentences is reducible to the process of finding the

minimal explanation to the sentences; that is, the process of natural language

understanding amounts to performing abductive inference, where the observation

is the logical forms (LFs) of a target discourse, and the background knowledge is

a set of LFs of inference rules derived from world knowledge (or, could be meta-
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scientist(s)   give(s, c, b)   chimp(c)   banana(b) 
 
 
 
 
 
 
 
they(t)   hungry(t) Knowledge!

   hungry(x) → ∃f eat(x, f) 

Knowledge!
   give(x, y, z) → have(y, z) 

eat(c , b) 
c=t, b=u 

∃u eat(t, u) 

Knowledge!
  eat(x, y) → have(x, y) 

Knowledge 
  banana(x) → food(x) food(b) 

Knowledge!
  eat(x, y) → food(y) 

Explanation 

have(c, b) 

Observations: 

Figure 6.2: Example of abduction-based coreference resolution.

level knowledge). The LFs in each candidate explanation represents one possible

interpretation of the text.

In our context, each possible combination of decisions about derivation of

implicit events and coreference are mapped into the LFs in each abductive ex-

planation. The motivation for using an abductive inference framework is that we

resort to the minimality of explanation for evaluating the plausibility of inferred

implicit events.

More formally, given a target text and world knowledge as the observation O

and background knowledge B, we find the best explanation Ĥ:

Ĥ = arg max
H∈HO,B

score(H), (6.1)

where each explanation H ∈ HO,B includes the decision about implicit events, or

coreference relations, and score(H) is a score function that jointly evaluates the

goodness of coreference decisions and derivation of implicit events in H.

In the following, we summarize the mappings between natural language and

LFs used in abduction-based coreference resolution. Figure 6.2 illustrates the

example abductive inference to Figure 6.1 using these mappings.

• A target text: observation (e.g. ∃c, t(chimp(c) ∧ scientist(s) ∧ they(t)))

– Mentions: logical variables (e.g. c, t, s)
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– Event: literals (e.g. eat(c))

• World knowledge: background knowledge (e.g. ∀x(eat(x)→ hungry(x)))

• Output: Explanation

– Coreference: equality assumptions (e.g. t = s, c = t)

– Event coreference: unification of two literals (e.g. {eat(c), eat(t)} →
{eat(c), c = t})

– Implicit events: literals derived by backward inference (e.g. [(∀xeat(x)→
hungry(x)) ∧ hungry(c)]→ eat(c))

6.2.2 Scoring Plausibility of Abductive Explanations

Now we move on to the issue of how to design the abductive score function

score(H) in equation (6.1). How can we say that one explanation is better than

the others in our context? Since our model jointly infers implicit events and

coreference relations, the score function should be capable of evaluating abductive

explanations in terms of two aspects: (i) the goodness of coreference relations

and (ii) the goodness of inference used for deriving implicit events. The second

aspect is needed, because abductive inference is not always valid, unlike deductive

inference.

To take the two aspects into account, we first model the score function as

a linear model, and then encode these information in the feature function. Let

Φ(H) = {φ1(H), φ2(H), ..., φn(H)} be a n-dimensional feature vector of an ex-

planation H, and w = {w1, w2, ..., wn} be a n-dimensional weight vector. We

then define the score function as follows:

score(H;w) = w ·Φ(H) =
n∑

i=1

wi · φi(H) (6.2)

We refer to w as the parameter of score function. In the rest of this section, we

decompose the feature vector Φ into two parts ΦC ,ΦI , namely the feature vec-

tor for coreference decisions, and the feature vector for implicit event derivation
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respectively. For inference and learning, we use the proposed method described

in Chapter 4.

Coreference: We first describe a score function for coreference evaluation. As

a coreference resolution model, we use clustering-based approach [McCallum and

Wellner, 2004], which has several advantages to traditional pairwise-mention or

entity-mention approaches. Because the clustering-based approach globally eval-

uates the overall coreference relations, it does not lead to globally inconsistent

coreference relation decision such as (Obama–He) and (Obama–She).

As mentioned earlier, each decision about coreference relation corresponds to

each equality assumption. In order to implement clustering-based coreference

model, we sum up the goodness of equality assumptions included in an explana-

tion as follows:

Φ(H) =
∑

(x,y)∈eqs(H)

ΦC(x, y, O), (6.3)

where eqs(H) is a set of equality assumptions in H, and O is an observation. The

feature function ΦC models the semantic compatibility between two mentions

x, y based on the observed information (see Sec. 6.4.1). The transitive relations

over equality assumptions are guaranteed by the axioms of equality in first-order

logic. Finding the best explanation that maximizes this score function amounts

to correlation clustering of mentions [Finley and Joachims, 2005].

Modeling implicit event derivation: We then describe our full model. We

extend equation (6.3) to evaluate the likelihood of both coreference resolution

and implicit event derivation. First, we replace ΦC(x, y, O) with ΦC(x, y, H) to

use the information that is derived by abductive inference. Second, we add two

new terms to take the plausibility of inferred implicit events into account.

For evaluating the likelihood of implicit event derivation, we resort to the

minimality of explanation, following [Hobbs et al., 1993]. Intuitively, the score

function gives a penalty for assuming specific and unreliable information but

rewards for explaining other information or inferring the same information from

different observations. We model this intuition by modeling the feature function
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with two terms: (i) what axioms are used for construction of H (ΦA), and (ii)

what literals are explained in H (ΦL):

Φ(H) =
∑

(x,y)∈eqs(H)

ΦC(x, y, H) +

∑
a∈axioms(H)

ΦA(a) +
∑

p∈literals(H)

ΦL(p), (6.4)

where axioms(H) is a set of axiom instances that are used for constructing H,

and literals(H) is a set of literals (equality assumptions are not included) in H.

The first extension enables us to exploit the implicit information inferred by

abductive inference for coreference resolution. For example, in order to realize

the example inference in Figure 6.1, we can exploit a binary feature that indicates

whether eat(x) and eat(y) are abductively inferred from the observed text or not.

The second extension allows us to give a penalty for deriving “not necessarily

true” information with backward inference, according to the reliability of axioms.

One can give a confidence value estimated by a certain knowledge acquisition

technology as the feature value. In our experiment, we use a binary feature for

indicating whether an inference rule is used or not, as described in Sec. 6.4.1.

6.3 Related Work

6.3.1 Coreference Resolution

In the past decades, a lot of effort in computational linguistics and NLP was

put into coreference resolution, see [Ng, 2010] for a detailed survey. Coreference

resolution may require deep understanding of text, access to world knowledge,

and inference ability. For example, Levesque [2011] considers twin sentences such

as Ed shouted at Tim because he crashed the car and Ed shouted at Tim because

he was angry. In order to resolve coreference in these sentences one requires

world knowledge about people shouting when being angry and people shouting

at someone who made a mistake, e.g., crashed a car.

Surprisingly, most of the contemporary coreference resolution systems, in-

cluding the Stanford NLP system [Lee et al., 2011], the winner of CoNLL-2011
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shared task: “Modeling Unrestricted Coreference in OntoNotes” [Pradhan et al.,

2011], are rule-based resolvers. They encode traditional linguistic constraints on

coreference and do not exploit any world knowledge. There exist attempts to

resolve coreference based on world knowledge resources such as WordNet hier-

archy, Wikipedia, semantic similarity, narrative chains [Irwin et al., 2011; Ng,

2007; Ponzetto and Strube, 2006; Rahman and Ng, 2012]. Unfortunately, the

corresponding resolvers were either not evaluated in large-scale challenges, such

as CoNLL shared task, or did not show convincing performance in the challenges.

Thus, the question remains open whether employing world knowledge can improve

coreference resolution in large unfiltered corpora.

6.3.2 Overmerging in Inference-based Discourse Process-

ing

If abduction is applied to discourse processing, coreference links naturally fol-

low as a by-product of constructing best explanations. In weighted abduction,

coreference resolution is equal to unification of predications; see [Hobbs et al.,

1993] or Chapter 2. Similarly, if deductive model building is applied to discourse

interpretation, coreference links result from the model minimality. Both infer-

ence approaches are based on the idea that predications having the same names

refer to the same entity and therefore their arguments can be set to be equal if

it does not imply logical contradictions. However, in the situations when neces-

sary knowledge is missing from the knowledge base, both the deductive and the

abductive procedures are likely to miss relevant coreference links and establish

wrong links (overmerge entities).

For example, given O = animal(e1, x) ∧ animal(e2, y), weighted abduction

incorrectly assumes x equals y even when dog(e3, x) and cat(e4, y) are observed.

For John runs and Bill runs, with the observations O = John(e1, x)∧run(e2, x)∧
Bill(e3, y) ∧ run(e4, y), weighted abduction assumes John and Bill are the same

individual just because they are both running. If we had complete knowledge

about disjointness, the overmerging problem might not occur because of logical

contradictions. However, it is not plausible to assume that we would have an

exhaustive knowledge base.
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The overmerging problem is a serious obstacle in applying reasoning to dis-

course processing, because it leads to a large number of incorrect inferences, see

[Ovchinnikova, 2012] for examples. There have been attempts to employ semantic

similarity for merging predications in a deductive framework [Dellert, 2011] and

attempts to use linguistically motivated constraints in order to prohibit incorrect

unification in an abductive framework [Ovchinnikova, 2012; Ovchinnikova et al.,

2011]. However, the issue of overmerging was never systematically studied and

the proposed solutions were never evaluated. In terms of this respect, our pro-

posal can be regarded as the framework that can prohibit incorrect unification

through the cost of equalities.

6.4 Evaluation

We evaluate coreference resolution in our weighted abduction framework using

the CoNLL-2011 shared task dataset [Pradhan et al., 2011]. The CoNLL-2011

dataset was based on the English portion of the OntoNotes 4.0 data [Hovy et al.,

2006]. OntoNotes is a corpus of large scale annotation of multiple levels of the

shallow semantic structure in text. The OntoNotes coreference annotation cap-

tures general anaphoric coreference that covers entities and events not limited to

noun phrases or a limited set of entity types.

The CoNLL-2011 shared task was to automatically identify mentions of en-

tities and events in text and to link the coreferring mentions together to form

entity/event chains. In our experiment, we do not identify mentions, but only

compute precision and recall of the inferred coreferences links given the mentions

identified in the gold standard annotation.

In the CoNLL-2011 shared task, four metrics were used for evaluating coref-

erence performance: MUC, B3, CEAF, and BLANC. The evaluation metrics are

described in [Pradhan et al., 2011]. Each of the metric tries to address the short-

comings of the earlier metrics. MUC is the oldest metric; it has been criticized for

not penalizing overmerging [Recasens and Hovy, 2010]. Since one of the goals of

this study is to reduce overmerging in our inference-based framework, this metric

does not seem to be representative for us. The B3 and CEAF metrics were also

considered to produce counter-intuitive results [Luo, 2005; Recasens and Hovy,
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2010]. BLANC, as the most recent evaluation metric, overcomes the drawbacks

of MUC, B3, and CEAF. The definition formula of BLANC given in [Recasens

and Hovy, 2010] is replicated in Table 6.1, where rn, wc, rn, wn indicate the num-

ber of right coreference links, wrong coreference links, right non-coreference links,

and wrong non-coreference links correspondingly.

Score Coreference Non-coreference Metric

P Pc =
rc

rc + wc
Pn =

rn

rn + wn
BLANC-P =

Pc + Pn

2

R Rc =
rc

rc + wn
Rn =

rn

rn + wc
BLANC-R =

Rc + Rn

2

F Fc =
2PcRc

Pc + Rc
Fn =

2PnRn

Pn + Rn
BLANC =

Fc + Fn

2

Table 6.1: Definition formula for BLANC.

We rely on BLANC when drawing conclusions, but present values of other

three evaluation metrics as well.

6.4.1 Features

We derive features for resolving coreference from different knowledge sources,

which are described in this section. Each feature is defined for pairs of unifiable

variables (v1, v2). The features are summarized in Table 6.1.

Incompatible properties If two entities have incompatible properties, they

are unlikely to be identical. We use WordNet antonymy (black – white) and sibling

relation (cat – dog) to derive incompatible properties. Moreover, we assume that

two proper names not belonging to the same WordNet synset are unlikely to refer

to the same entity. Correspondingly, we generate three binary features A, S, and

P (see Table 6.1).

Conditional unification If two entities have very frequent common properties,

these properties usually do not represent a good evidence for the entities to be

identical. For example, given John goes and he goes, it might be incorrect to

assume that John and he are coreferential just because they are both going. We

want to allow unification of frequent predications (e.g., go) only if there is other
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Feature type Feature

Incompatible
A(v1, v2) =


1 if ∃p1(.., v1, ..), p2(.., v2, ..): p1, p2 are
WN antonyms;
0 otherwise

properties S(v1, v2) =


1 if ∃p1(.., v1, ..), p2(.., v2, ..): p1, p2 are
WN siblings;
0 otherwise

P (v1, v2) =


1 if ∃p1(e1, v1), p2(e2, v2): p1, p2 are
proper names,
not in the same WN synset;
0 otherwise

Conditional unification CU(v1, v2) =


1 if ∃p1(v1, x1, .., xn), p2(v2, y1, .., yn):
p1, p2 are frequent predicates
and ∀i ∈ {1, .., n} : sxi,yi = 1;
0 otherwise

Argument inequality
SA(v1, v2) =

{
1 if ∃p(.., v1, .., v2, ..);
0 otherwise

EA(v1, v2) =


1 if ∃p(v1, .., e1, ..), p(v2, .., e2, ..):
sv1,v2 ∧ se1,e2 = 0;
0 otherwise

Explicit non-identity NI(v1, v2) =


1 if ∃p(e, v1, v2): p is
a non-identity predicate;
0 otherwise

Functional relations FR(v1, v2) =


1 if ∃p(e1, v1, x1), p(e2, v2, x2):
p is a functional relation predicate
and x1 6= x2 and v1 = v2;
0 otherwise

Modality M(v1, v2) =
{

1 if |MCPred(v1) ∩MCPred(v2)| = ∅;
0 otherwise

Common properties
CP1(v1, v2) = |CPred(v1, v2)|,
CP2(v1, v2) =

∑
p∈CPred(v1,v2) Freq(p)

CP3(v1, v2) =
∑

p∈CPred(v1,v2) WNAbst(p)

Derivational relation DR(v1, v2) =


1 if ∃p1(v1, ..), p2(v2, ..):
p1, p2 are derivationally related;
0 otherwise

Table 6.1: Summary of the feature set.

evidence for their arguments to be unified. In order to capture this idea, we

introduce binary feature CU and compute its value as follows: If v1 and v2 occur

as first arguments of propositions p1(v1, x1, .., xn), p2(v2, y1, .., yn), such that p1, p2

are frequent predicates, and ∀i ∈ {1, .., n} : sxi,yi
= 1 (where s is an ILP variable,

118



see Sec. 3) then CU(v1, v2) = 1; otherwise CU(v1, v2) = 0.

Argument inequality We use two argument constraints to generate features.

First, we assume that arguments of the same proposition usually cannot refer to

the same entity. Reflexive verbs represent an exception (e.g., John cut himself ),

but we assume that these cases are resolved by the Boxer semantic parser (see

Sec. 2.4) and do not require inference. We create binary feature SA and compute

its value as follows: If v1 and v2 occur as arguments of the same proposition then

SA(v1, v2) = 1; otherwise SA(v1, v2) = 0.

One more feature we introduce concerns event variables. For example, given

the sentences John said that Mary was reading and John said that he was tired

we do not want to unify both say propositions, because in both cases something

else has been said. Predicates like say usually have clauses as their arguments.

Unifying clauses just because they are arguments of the same predicate is often in-

correct. In our framework, a clause is represented by an event variable, i.e. a vari-

able, which is a first arguments of the head of the clause. We make the following

assumption: If two unifiable propositions p(v1, .., e1, ..), p(v2, .., e2, ..) have event

variables as their arguments, then they are unlikely to be unified if the event argu-

ments have not been unified. We create binary feature EA and compute its value

as follows: if (i) there are two unifiable propositions p(v1, .., e1, ..), p(v2, .., e2, ..)

that have event variables e1, e2 as non-first arguments, (ii) e1 6= e2, and (iii)

v1 = v2, then EA(v1, v2) = 1; otherwise EA(v1, v2) = 0.

Explicit non-identity We manually collected a set of 33 predicates indicating

explicit non-identity, e.g., similar to, different from, equal to. Presence of these

predicates in a logical form indicates that their second and third arguments are

unlikely to refer to the same entity. We create binary feature NI and compute

its value as follows: If there is p(e, v1, v2) and p is a predicate indicating explicit

non-identity then NI(v1, v2) = 1; otherwise NI(v1, v2) = 0.

Functional relations A binary relation r is functional if ∀x, y1, y2 : r(x, y1) ∧
r(x, y2)→ y1 = y2. For example, a person can be a son of exactly one person. Lin

et al. [2010] automatically learn functional relations from a corpus and assign a
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confidence score to each extracted relation. We use the set of functional relations

generated by [Lin et al., 2010] in order to generate feature FR. We extract 1,661

functional relations from the dataset. We create binary feature FR and compute

its value as follows: if (i) there are two predicates p(e1, v1, x1), p(e2, v2, x2), where p

indicates a functional relation, (ii) x1 6= x2, and (iii) v1 = v2 then FR(v1, v2) = 1;

otherwise FR(v1, v2) = 0.

Modality We assume that two predications having different modality are un-

likely to refer to the same entity. For example, given John runs and he does

not/might run, John and he are unlikely to be coreferential. Let MPred(v) be

a set of predicates that represent the modality of event v. In our experiments,

we consider three modality-denoting predicates produced by the Boxer semantic

parser (nec, pos, not), and verbal predicates (e.g., think) as modality-denoting

predicates. We create binary feature M and compute its value as follows: if

there are two unifiable verbal propositions p(v1, ...), p(v2, ...) and |MPred(v1) ∩
MPred(v2)| = ∅ then M(v1, v2) = 1; otherwise M(v1, v2) = 0.

Common properties We assume that the more properties two entities share

the more likely it is that they are identical. For example, given John was jogging,

while Bill was sleeping. He jogs every day, John and he are likely to be coreferen-

tial, because they are both arguments of jog. Let CPred(v1, v2) be a set of pairs of

predicates p1, p2, such that v1, v2 occur at the same argument positions of p1 and

p2 while p1 are p2 equal or they occurs in the same WordNet synset. We generate

three types of real-valued features: CP1(v1, v2) = |CPred(v1, v2)|, CP2(v1, v2) =∑
p∈CPred(v1,v2) Freq(p), and CP3(v1, v2) =

∑
p∈CPred(v1,v2) WNAbst(p), where Freq(p)

is a word-frequency of p from the Corpus of Contemporary American English1,

and WNAbst(p) is a level of abstraction of p in the WordNet hierarchy (the

number of steps to the root).

Derivational relations We use WordNet derivational relations between nouns

and verbs in order to link nominalizations and verbs. For example, given Sales of

1http://www.wordfrequency.info/
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cars grew. The growth followed year-to-year increases, grew and growth are coref-

erential. We generate binary feature DR to capture these links (see Table 6.1).

6.4.2 Knowledge for Inference

Abductive reasoning procedure is based on a knowledge base consisting of a set

of axioms. In the experiment described in this chapter we employed following

background knowledge.

WordNet The dataset we use for evaluation (see Sec. 6.4) is annotated with

WordNet [Fellbaum, 1998] senses. Given this annotation, we mapped word senses

to WordNet synsets. Given WordNet relations defined on synsets, we generate

axioms of the following form:

Hyperonymy, instantiation: synset1(s1, x)→ synset2(s2, x)

Causation, entailment: synset1(s1, e1)→ synset2(s2, e2)

Meronymy, membership: synset1(s1, x1)→ synset2(s2, x2) ∧ of(x1, x2)

We extract 22,815 axioms from WordNet.

FrameNet We generated axioms mapping predicates with their arguments into

FrameNet [Ruppenhofer et al., 2010] frames and roles. For example, the following

axiom maps the verb give to the Giving frame.

Giving(e1) ∧ donor(e1, x1) ∧ recipient(e1, x2) ∧ theme(e1, x3)→ give(e1, x1, x3)

∧ to(e2, e1, x2)

Weights of these axioms are based on frequencies of lexeme-frame mappings

in the annotated corpora provided by the FrameNet project. Moreover, we used

FrameNet frame relations to derive axioms. An example of an axiomatized rela-

tion is given below.

Giving(e1) ∧ donor(e1, x1) ∧ recipient(e1, x2) ∧ theme(e1, x3) →
Getting(e2) ∧ source(e2, x1) ∧ recipient(e1, x2) ∧ theme(e1, x3)

In order to generate the FrameNet axioms, we used the previous work on

axiomatizing FrameNet [Ovchinnikova, 2012]. We generated 12,060 axioms from

the dataset. In addition, we used a resource assigning possible lexical fillers

disambiguated into WordNet synsets to FrameNet roles [Bryl et al., 2012]. For
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example, the role theme of the Giving frame is mapped to synsets object#n#1

and thing#n#1. Given this information, the following axiom is generated.

thing#n#1 (s, x) → Giving(e1) ∧ theme(e1, x)

Weights of these axioms are based on the scores provided by [Bryl et al., 2012].

We generated 24,571 axioms from the dataset.

Narrative chains Similar to [Rahman and Ng, 2012], we employ narrative

chains learned by Chambers and Jurafsky [2009], which were shown to have im-

pact on resolving complex coreference; see [Rahman and Ng, 2012] for details.

Narrative chains are partially ordered sets of events centered around a common

protagonist that are likely to happen in a sequence. Knowledge about such se-

quences can facilitate coreference resolution. For example, given Max fell, because

John pushed him we know that Max and him are coreferential, because we know

that an object of the pushing event can be a subject of the falling event. For

example, we generate the following axioms.

Script#1(s, e1, x1, u)→ arrest(e1, x1, x2, x3) ∧ police(e2, x1)

Script#1(s, e1, x1, u)→ charge(e1, x1, x2, x3) ∧ police(e2, x1)

Weights of these axioms are based on the scores provided by Chambers and

Jurafsky [2009]. We extract 1,391,540 axioms from the dataset.

6.4.3 Disambiguation of Named Entities

In the experiment on coreference resolution, we extended Boxer ’s output with

the information inferred by the AIDA tool. The AIDA tool [Yosef et al., 2011] is

a framework for entity detection and disambiguation. Given a natural language

text, it maps mentions of ambiguous names onto canonical entities like people or

places, registered in a knowledge base like DBpedia [Bizer et al., 2009] or YAGO

[Suchanek et al., 2008]. For example, mentions A. Einstein and Einstein will

be both mapped to the YAGO node Albert Einstein. An add-on to our pipeline

assigns the same variables to each two named entities disambiguated by AIDA

into the same YAGO node.
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6.4.4 Results and Discussions

We intend to evaluate whether introduction of linguistically motivated features

(Sec. 6.4.1) and world knowledge (Sec. 6.4.2) enables us to outperform the naive

inference-based approach implying that predications with the same names refer to

the same entities. In order to evaluate the impact of each feature and knowledge

component separately, we run ablation tests.

Note that for 145 of 6,894 sentences in the test set, no logical forms were pro-

duces by the Boxer semantic parser. Moreover, in the run employing WordNet-

based inference, inference results could not be produced for 101 of 303 test texts

because of the computational complexity of reasoning. In order to keep the com-

parison fair, we use evaluate all features and knowledge components on the same

set of 202 texts, for which inference results were produced in all runs.

Table 6.2 represents the results of the ablation tests. We test the features

listed in Table 6.1 as well as axioms extracted from WordNet (WN), FrameNet

(FN), narrative chains (NC) and knowledge provided by AIDA (AI). All features

representing incompatible properties are tested together (IP in Table 6.2). Simi-

larly, all argument inequality features (AI) and common property features (CP )

are tested together.

The first row in the table represents results for to the run without employing

any features and knowledge resources. In the second run, world knowledge is

employed without linguistic features. These two runs correspond to the original

weighted abduction approach to unification implying unification of all predica-

tions having the same predicate names. We see that adding knowledge does

not result in higher values of BLANC. This happens because of the overmerging

problem increased by additional coreference links inferred with the help of the

employed knowledge resources.

Then we test linguistic features intended to block incorrect unification (IP ,

CU , AI, NI, FR, M) one by one. Each of the features improves the BLANC

values; conditional unification CU has the most significant impact. The common

property feature (CP ) and the derivational relations feature (M) introduce ad-

ditional unifications. Therefore we test them together with the best combination

of the unification blocking features (IP+CU+AI+NI+FR+M). Both features
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have a positive impact as compared to the run employing just the unification

blocking features. Now we test each world knowledge component using the best

combination of features (IP+CU+AI+NI+FR+M+CP ). Again, each knowl-

edge component has a positive impact in terms of BLANC as compared to the

run using the best combination of all features.

Features Inference BLANC
IP CU AI NI FR M CP DR WN FN NC AI R P F

53.0 51.7 39.1√ √ √ √
52.3 51.3 39.9√
53.5 51.9 41.0√
55.7 60.9 56.6√
53.0 51.6 41.0√
52.8 51.5 40.5√
52.9 51.6 40.7√
53.3 51.7 41.0√ √ √ √ √ √ √
58.4 61.6 59.4√ √ √ √ √ √ √
57.5 61.4 58.6√ √ √ √ √ √ √ √ √
57.4 61.2 58.5√ √ √ √ √ √ √ √ √
59.5 61.0 60.1√ √ √ √ √ √ √ √ √
59.0 61.5 59.9√ √ √ √ √ √ √ √ √
59.7 61.5 60.4√ √ √ √ √ √ √ √ √ √ √ √
59.9 60.9 60.3

Table 6.2: Ablation tests of features and world knowledge.

The results of the ablation tests show significant improvement over the naive

approach (by more than 20% F-measure), but can we claim that we solved the

overmerging problem? We perform one more experiment in order to get a deeper

understanding of the performance of our discourse processing pipeline in corefer-

ence resolution.

As already mentioned, the best performance in the CoNLL-2011 shared task

was achieved by the Stanford NLP system [Lee et al., 2011]. We replicate the

results of Stanford NLP as applied to the CoNLL-2011 dataset; see the first row

in Table 6.3. We use the output of Stanford NLP only for those texts, which could

be processed by our discourse processing pipeline, therefore the recall/precision

values for Stanford NLP in Table 6.3 are lower than the original results published

in [Lee et al., 2011].

We aim at checking whether enriching the output of the state-of-the-art coref-

erence resolver with additional links inferred by our system using all features

and all world knowledge will improve the performance. The evaluation of the

“merged” output is presented in the second row of Table 6.3 (SNLP+WA). Un-
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fortunately, we have to admit that the precision of SNLP+WA is lower than that

of SNLP alone. This happens because adding world knowledge results in new

coreference links, but the overmerging problem is not completely solved. SNLP

discovers 2277 out of 7557 correct coreference links and 40247 out of 41527 correct

non-coreference links. In the merged output, there are more correct coreference

links (3065), but less correct non-coreference links (36959).

System MUC B3 CEAFE BLANC
R P F R P F R P F R P F

SNLP 42.8 74.4 54.3 50.4 85.2 63.4 66.3 32.6 43.7 63.5 76.2 66.7
SNLP+WA 52.0 70.1 59.7 57.3 72.7 64.1 60.5 37.2 46.1 64.8 64.7 64.7

Table 6.3: Performance of the Standford NLP system (SNLP) compared to
performance of our weighted abduction engine enriched with Standford NLP
(SNLP+WA) output.

The main cause of overmerging is related incompatible properties. We antici-

pated the incompatible properties to have a more significant impact on precision

than they actually had in the ablation tests. But in the current study, we consider

only those properties to be incompatible, which are expressed syntactically in the

same way, e.g., Japanese goods vs. German goods. However, the same property

can be expressed by a wide variety of syntactic constructions, e.g., goods from

Germany, goods produced in Germany, Germany produced goods etc. In order to

discover deeper contradictions, we have to work on normalization of the repre-

sentation of properties, e.g., use origin:Germany :x instead of German(e, x) and

from(e1, x, y)∧Germany(e2, y). FrameNet attempts to achieve such a normaliza-

tion by using standardized frame and role names. Unfortunately, the limited

coverage of the FrameNet resource [Cao et al., 2008; Shen and Lapata, 2007] does

not allow us to solve the problem on a large scale.

Analyzing the results, we also found overmergings not implying any explicit

contradictions. For example, in the sentence He sat near him, both he preposi-

tions are unlikely be coreferential, but our framework fails to capture it. Such

overmergings might be blocked by explicit modeling of discourse salience. In the

future, we plan to use existing discourse salience models (e.g., [Lappin and Leass,

1994]) to create real-valued salience features for weighted unification.

One more issue concerns the quality of the obtained interpretations. Our

learning framework assumes that we can obtain optimal solutions, but we also
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exploit suboptimal solutions by imposing a timeout in this experiment. However,

it has been reported that exploiting suboptimal solutions sometimes hurts perfor-

mance [Finley and Joachims, 2008]. In the future, we will address this problem

using an approximate learning framework (e.g., [Huang et al., 2012]).

6.5 Conclusions

In this chapter, we explored an inference-based coreference resolution model. In

our framework, resolving coreference is a by-product of constructing best interpre-

tations of text. Traditional approaches to coreference resolution have exploited

world knowledge to capture semantic compatibility between mentions, encoding

them as a feature vector for machine learning-based classifiers. However, there

are many cases where there exist many cases where several antecedents are syn-

tactically or semantically compatible with an anaphoric expression.

In this chapter, to remedy this problem, we have proposed a machine learning-

based hybrid model that combines the traditional compatibility-based approach

with a logical inference-based approach. We recast the problem of implicit event

derivation and coreference resolution as the problem of abductive explanation

finding, integrating those two approaches to complement the weakness of each

approach with an abductive inference framework. Our empirical evaluation shows

that the implicit event information improves the performance of compatibility

feature-based coreference resolution model.

However, the use of implicit event information is not as effective as we ex-

pected. Our additional investigation revealed that explanations are certainly

generated for each problem, but we observed that the explanations generated by

the current knowledge base are not really useful for coreference resolution. Our

future direction includes a direct evaluation of the quality of implicit event infor-

mation inferred by the system to figure out what kind of knowledge is still not

enough for inferring useful information for coreference resolution.
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Chapter 7

Conclusions

7.1 Summary

In this thesis, we have addressed one of the big issues in natural language pro-

cessing research: what mechanism enables us to use world knowledge effectively

in discourse processing? To find out the answer of this question, we have worked

on the main hypothesis that inference-based approaches would be better alter-

native mechanisms to conventional feature-based approaches. As an inference

framework, we have focused on a particular mode of inference, namely abduction.

The key contribution of this thesis can be summarized as follows:

(i) we propose an efficient inference method of first-order logic-based abduction

that avoids computationally expensive grounding procedures, showing how

to directly formulate the abductive inference problem on first-order logic as

an Integer Linear Programming (ILP) optimization problem;

(ii) we show how to formulate the machine learning problem of first-order logic-

based abduction with the framework of online large-margin training, which

has been shown to have both predictive performance and scalability to larger

problems;

(iii) we propose a novel hybrid model that combines the conventional feature-

based approach with a logical inference-based approach with an abductive

127



inference, giving a detailed comparison of feature-based approaches and

inference-based approaches in both qualitative and empirical ways.

In Chapter 2, we give a basic idea of inference-based discourse processing. In

particular, we elaborate on the Interpretation as Abduction framework [Hobbs

et al., 1993], an pioneering work of abduction-based approach to discourse pro-

cessing. There have been two big obstacles to apply abduction-based discourse

processing to real-life problems: (i) how to search the best abductive explanation

efficiently and (ii) how to train the score function in a supervised manner. In

order to verify our main hypothesis, we first address these two problems in the

next two chapters.

In Chapter 3, we have proposed an ILP-based formulation for cost-based ab-

duction in first-order predicate logic. Although FOL reasoning is computationally

expensive, the proposed optimization strategy exploits two techniques to improve

the inefficiency. The first technique is lifted inference, where inference on first-

order logic is directly performed without grounding. The second technique is

cutting plane inference, which is an iterative optimization procedure for large

constrained optimization problems. These techniques bring us to a significant

boosting of the efficiency of the reasoner. We have evaluated our method on two

datasets, including real-life NLP problems (i.e. RTE dataset with axioms gener-

ated from WordNet and FrameNet). Our evaluation revealed that our inference

method was more efficient than the other existing abductive reasoners.

In Chapter 4, we proposed a supervised approach for training the abductive

score function. We formulated the learning problem as the problem of discrim-

inative structured learning with latent variables. More specifically, we modeled

the score function as a weighted linear feature function, and then apply Passive

Aggressive algorithm [Crammer et al., 2006], an online large-margin training al-

gorithm. In our evaluation, we demonstrated that our learning procedure could

reduce the loss, and improved the predictive performance of story understanding

tasks in both open tests and closed tests.

Since the proposed methods in Chapter 3 and Chapter 4 could overcome the

two obstacles of real-life abductive discourse processing, we conducted a detailed

comparison of feature-based approaches and inference-based approaches by taking

anaphora resolution as the subject of our case study in the next two chapters. In
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the case study, we use the techniques developed in Chapter 3 and Chapter 4 for

inference and learning.

In Chapter 5, we first proposed a feature-based anaphora resolution model

and then discussed the problem of feature-based approaches. From the detailed

error analysis of our model, we found out that there exist many cases where sev-

eral antecedents are syntactically or semantically compatible with an anaphoric

expression, and the feature-based approaches are not guaranteed to identify cor-

rect antecedents in such situations. This kind of problems is named difficult

coreference problems in Chapter 6.

In Chapter 6, we have proposed an inference-based coreference resolution

model that improves the limitations of feature-based anaphora resolution model

and handles difficult coreference problems. We propose a machine learning-based

hybrid model that combines the conventional feature-based approach with a logi-

cal inference-based approach. We integrate those two approaches to complement

the weakness of each approach, using an abductive inference framework. In the

evaluation, we found that our inference-based coreference resolution model im-

proved the performance of coreference resolution model. However, the use of

implicit event information is not as effective as we expected. We suspect that the

generated explanations are still not useful enough for coreference resolution.

7.2 Future Directions

Let us go back to the main question of this thesis and try to answer the question:

what mechanism enables us to exploit world knowledge resources for discourse

processing in a maximally effective way. To answer this question, we have worked

on the main hypothesis that inference-based approaches would be better alterna-

tives to feature-based approaches in this thesis. To answer whether the hypothesis

is proven to be true or false, we believe that the answer is “the hypothesis is par-

tially explained (proven to be true), namely the hypothesis is still assumed with

a small cost.”

Why is it still “assumed”? As shown in the results of the case study in

Chapter 6, the effect of using inference is not as effective as we expected. From

the experiments, we can see the following three problems. The first problem is
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about the insufficiency of knowledge resources. Our additional analysis after the

experiments revealed that we could generate an abductive explanation for about a

half of the texts, but most of them cannot be used as a useful clue for coreference

resolution.

The second problem is the issue of computational efficiency of abductive rea-

soner. We observed that about a half of the coreference problems were not solved

within 60 seconds even if the depth of backward-chaining was limited to two steps.

We found that the bottleneck is the search-space generation process, which is a

process of generating a set of potential elemental explanations (see Chapter 3 for

detail).

The third problem is about the meaning representation of natural language

texts. The current meaning representation we rely on is almost close to the

surface expression. As a result, we get two different meaning representations

for linguistic expressions that denote the same meaning (e.g. Japanese goods

and Goods produced in Japan are converted into goods(x) ∧ japanese(x) and

goods(x) ∧ produce(e, u, x) ∧ in(e, y) ∧ japan(y) respectively), which makes our

reasoning process error prune.

In the next subsections, we elaborate on how to address these issues in future

work.

7.2.1 Harvesting World Knowledge for Events

We found that there are few inference rules for event–event relations which are

needed for identifying coreference in our knowledge base, such as causal rela-

tion, purpose-means relation, and presupposition relation. As a solution to the

insufficiency problem of knowledge sources, we attempt to take two solutions.

The first option is to extract more inference rules from ConceptNet5.1 Con-

ceptNet5 is a large commonsense knowledge base, which is derived from different

knowledge sources such as ReVerb,2 WordNet, or OpenMind project. However,

ConceptNet5 does not provide us the coreference relations between arguments

in two concepts. For example, the concept have is related to the concept eat

1http://conceptnet5.media.mit.edu/
2http://reverb.cs.washington.edu/
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with MotivatedByGoal relation, but it does not tell us the subject/object of eat

corresponds to the subject/object of have. Therefore, in order to convert these

relations into the logical forms, we need to estimate which arguments in a con-

cept corresponds to arguments in another concept (e.g. eat(X, Y )⇒ have(X, Y )

v.s. eat(X, Y ) ⇒ have(Y,X)). We plan to use a distributional hypothesis-based

approach, similarly to DIRT score [Lin and Pantel, 2001].

The DIRT score calculates the likelihood of inference rules, based on the

extended distributional hypothesis: that is, given inference rule X rel1 Y ↔
X rel2 Y, the rule is plausible if a set of instantiations of each corresponding

argument is similar. For example, X solve Y ↔ X is a solution of Y is plausible,

because the instances of the subject position of solve would be similar to the

instances of the subject position of is a solution of.

The second option we consider is to use an abstract representation for verbs

and then perform inference on the abstract level, using axioms defined on the

abstract level, such as deep lexical semantics in [Hobbs, 2008]. This generalization

would allow us to alleviate the sparsity problem of inference rules.

7.2.2 Comparing Abductive Approach with Deductive Ap-

proach for Discourse Processing

A recent study [Raghavan et al., 2012] proposes a probabilistic deductive inference

approach for discourse processing. Raghavan et al. [2012] use Bayesian Logic

Programs (BLPs) [Kersting and Raedt, 2001] to infer implicit information from

observed texts. The key difference to an abductive inference approach is that

abductive inference does not commit to the truth value of propositions if there

is no information enough to determine the truth value of these propositions (see

the discussion of specificity in Chapter 2 for more detail).

However, it is a non-trivial issue whether this property has a big impact on

the quality of inferred explanations or not. It will be interesting to compare

the output of explanations generated by abduction with probabilistic conclusions

generated by deduction.
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7.2.3 Applying Cutting Plane Inference for Search-space

Generation

To address the issue of efficiency of the reasoner, we plan to apply Cutting Plane

Inference to both the search-space generation and ILP inference. More specifi-

cally, we repeat the generation of potential elemental explanations and ILP opti-

mization interactively, as in cutting plane MAP inference in MLNs [Riedel, 2008].

Currently, the cutting plane inference is applied to the ILP optimization step

in the proposed method in Chapter 3. However, applying it to both the search

space generation and ILP optimization makes the reasoner more efficient, because

we found out that the search-space generation is the bottleneck of our approach,

as mentioned earlier.

7.2.4 Normalizing Meaning Representations

In order to address the issue of meaning representation, we plan to normalize the

logical forms in observations and knowledge bases. For example, we plan to make

Japanese goods and Goods produced in Japan, which are currently converted into

goods(x) ∧ japanese(x) and goods(x) ∧ produce(e, u, x) ∧ in(e, y) ∧ japan(y), to

have the same logical forms such as origin : Japan : x. FrameNet attempts

to achieve such a normalization by using standardized frame and role names.

However, the limited coverage of the FrameNet resource [Cao et al., 2008; Shen

and Lapata, 2007] does not allow us to solve the problem on a large scale.

7.2.5 Handling Linguistic Expressions of Logical Connec-

tors and Quantifiers

We plan to elaborate our treatment of natural language expressions standing

for logical connectors and quantifiers such as if, not, or, all, each, and others.

Moreover, modality requires special treatment. This advance is needed in order to

achieve more precise inferences, which are at the moment based on our approach

to the unification of the core information content (“aboutness”) of texts.
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7.2.6 Evaluating Abductive Explanations

There are two options to achieve the evaluation of abductive explanations in-

ferred by the system. The first option is an intrinsic evaluation, namely human

evaluators directly check whether the generated explanations are good or not.

The second option is an extrinsic evaluation. In the extrinsic evaluation, we as-

sume to use an abductive explanation as a clue of a certain NLP task and check

whether using the information of generated explanations improves the predictive

performance of the NLP task or not.

In this thesis, we adopted the second option. We evaluated abductive expla-

nations in terms of whether they provide a useful clue for coreference resolution

or not. As another extrinsic evaluation, we intend to use the task of Recogniz-

ing Textual Entailment (RTE), one of the knowledge-intensive natural language

processing tasks. In RTE, the system is given a text (T) and a hypothesis (H)

and must decide whether the hypothesis is entailed by the text plus common-

sense knowledge. Because the previous study [Hickl and Bensley, 2007] shows

that inferring implicit information inferred from texts plays an important role in

RTE, it would be a good test bed for evaluating abductive explanations. We also

plan to evaluate our inference-based coreference resolution model on a dataset

from [Rahman and Ng, 2012],1 which is a set of difficult coreference problems.

Our future direction also includes an intrinsic evaluation of abductive expla-

nations. However, to the best of our knowledge, there are few previous study that

directly evaluates inferred implicit information. A series of studies in Machine

Reading (MR) [Etzioni et al., 2006; Penas and Hovy, 2010, etc.] projects pursues

implicit information extraction from natural language texts. We first plan to

evaluate our system on the task of MR. We also intend to create our own corpus

for evaluating inferred information. As a first step, we will evaluate generated

explanations by human evaluators to see what is needed for constructing the

evaluation corpus (e.g. the task formulation, a manual that achieves consistent

annotation).

1http://www.hlt.utdallas.edu/~vince/data/emnlp12/
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Proof of Theorem 3.3.1

Note that we do not have to consider all the ILP constraints here. As mentioned

in Sec. 3.2, our constraints consist of three types: (i) for ensuring that HS explains

observation (Constraint 1), (ii) for ensuring that HS is consistent (Constraint 2,

7), and (iii) for implementing a cost function in weighted abduction (the rest);

as the reader can see, the proof of soundness and completeness is related to only

(i) and (ii).

Let α1 be a proposition that HS satisfies HS∪B |= O, and α2 be a proposition

that HS satisfies HS∪B 6|=⊥. Let βi be a proposition that SH satisfies Constraint

i described in Sec. 3.2 and Sec. 3.3.1. For convenience, we repeat the constraints

to be mentioned below:

• Constraint 1: (∀p ∈ O)hp = 1

• Constraint 2: (∀x, y, z ∈ T )hx=y = 1 ∧ hy=z = 1⇒ hx=z = 1

• Constraint 7: hq(x1,x2,...,xn) = 1∧h¬q(y1,y2,...,yn) = 1⇒ (∃i ∈ {1, 2, ...n})hxi=yi
= 0

For readability, we translated the ILP constraints into equivalent logical con-

straints. The proof of equivalence between ILP constraints and logical formulae

can be found in Santos [1994]. Using these notations, the proposition that we

need to prove can be expressed as α1 ∧ α2 ⇔ β1 ∧ β2 ∧ β7.

(i) α1 ∧ α2 ⇒ β1 ∧ β2 ∧ β7: it is clear that all the ILP constraints above are

not violated given that HS explains O and is consistent.

(ii) β1 ∧ β2 ∧ β7 ⇒ α1 ∧ α2: we prove that β1 ∧ β2 ∧ β7 ∧ (¬α1 ∨¬α2) leads to

contradiction in the following.

First, we consider the case of ¬α1. This implies that HS ∪ B 6|= O. However,

by β1, we conclude HS ∪B |= O. Therefore, the β1 ∧ β2 ∧ β7 and ¬α1 cannot be

134



true at the same time.

Second, we consider the case of ¬α2, namely HS ∪B |=⊥. By the definition of

inconsistency in propositional logic theory, this implies (HS∪B |= φ)∧(HS∪B |=
¬φ), where φ is a logical formula. We have two cases that let this formula true.

The first case is that two contradictory literals or equalities cause inconsistency:

there exists the atom A such that HS ∪ B |= A ∧ ¬A, or the pair x, y of logical

atomic terms such that HS ∪ B |= x = y ∧ x 6= y. However, by β7, for any

atoms A, its positive literal A and negative literal ¬A cannot be hypothesized

simultaneously in SH . Also, for the pair x, y of logical atomic terms, x = y and

x 6= z cannot be hypothesized simultaneously. The second case is the violation

of equality axioms:1 ∃(x, y, z ∈ T )[HS ∪ B |= (x = y ∧ y = z)] ∧ (HS ∪ B 6|=
x = z)]. However, by β2, for all x, y, z in SH must satisfy transitivity, namely

∀(x, y, z)[HS ∪ B |= (x = y ∧ y = z)] ⇒ (HS ∪ B |= x = z). Since both cases

cannot be true, β1 ∧ β2 ∧ β7 and ¬α2 cannot be true at the same time.

Since neither case can be true, we therefore conclude that HS is a candidate

explanation if and only if SH satisfies the ILP constraints 1, 2, and 7. �

1We omit the proof of reflexivity, symmetricalness because it is trivial by the definition of
the ILP variable s.
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