
A Hardware-Software Co-designed Cache Memory
System for Energy-efficient Microprocessors

著者 佐藤 雅之
学位授与機関 Tohoku University
URL http://hdl.handle.net/10097/59615

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235960375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TOHOKU UNIVERSITY

Graduate School of Information Sciences

A Hardware-Software Co-designed Cache Memory System
for Energy-efficient Microprocessors

(高エネルギ効率マイクロプロセッサのための

ハードウェア・ソフトウェア協調型キャッシュメモリシステムに関する研究)

A dissertation submitted for the degree of

Doctor of Philosophy (Information Sciences)

Department of Computer and Mathematical Sciences

by

Masayuki SATO

January 16, 2012

ABSTRACT

A Hardware-Software Co-designed Cache Memory System

for Energy-efficient Microprocessors

Masayuki Sato

Abstract

Performance improvements of microprocessors have relied on both the CMOS process tech-

nology and the computer architecture design. The advance in CMOS process technology has

shrunk the size of the transistors. This results in increases in the number of transistors on a

chip, and clock frequency, and a reduction in switching power of transistors. The computer ar-

chitecture design contributes to the utilization of these transistors. A lot of transistors are used

for microarchitecture design for effectively using the transistors as pipelining, out-of-order exe-

cution, speculative execution, and cache memories. As a result, microprocessors have achieved

improvements of performance per power consumption.

However, in recent years, the advance in the CMOS process technology hardly contributes

to the performance improvement without a significant increase of the power consumption. The

power density increases and the heating problem becomes more serious as the integrated den-

sity of the transistors increases. Therefore, while the number of transistors and their power

consumption increase, effective usage of the transistors as on-chip hardware resource becomes

the main challenge in the microprocessor design. If the hardware resource is not used for per-

formance improvement, it only consumes energy. Therefore, in the future, the computer archi-

tecture design becomes more important for microprocessors to improve performance per power

consumption.

Under this situation, this dissertation focuses on cache memories, which play important

roles in modern microprocessors. The performance of microprocessors has significantly in-

creased while the access speed of DRAM memory has slowly improved. As a result, the per-

formance gap between microprocessors and main memories has gradually widened. If micropro-

cessors access data in main memories, they have to wait for the arrival of the data coming from

main memories. The waiting time degrades resource utilization of microprocessors, and causes

significant performance degradation. Therefore, modern microprocessors have cache memories

on a chip. Cache memories store recently used data of executing applications, and supply the

data when microprocessors require them again, instead of main memories. In general, a lot of

data are reused from cache memories because almost all the applications have data access lo-

cality by some form. As a result, microprocessors can improve the performances since they can

avoid the necessity of waiting for data coming from main memories for a long time.

However, cache memories have two problems. One is growth in power consumption. Recent

advance in the CMOS process technology increases the ratio of static power consumption to the

i

ABSTRACT

total power consumption. Static power consumption is proportional to the area. Since cache

memories occupy a large portion of the area of microprocessors, their static power is not ignor-

able. The other is performance degradation by inter-thread cache conflicts. In recent years,

chip multiprocessors (CMPs) have become a major form of microprocessors. A CMP includes

multiple cores, and each of them can execute one thread. Therefore, CMPs can increase their

performances as the number of cores increases. In general, these cores share a cache memory

on a chip. This sharing causes inter-thread cache conflicts. Inter-thread cache conflicts occur

when the thread competes for cache capacity resource against the other simultaneously exe-

cuted threads. Such a competition disturbs the effective usage of cache resource. As a result, the

performance of CMPs would not improve as expected. Inter-thread cache conflicts are caused in

situations where inter-thread kickouts and capacity shortage occur. Data fetched by one thread

are evicted by data of another thread in inter-thread kickouts. When the former thread uses

the data again, cache miss occurs. Capacity shortage is the situation where the cache capacity

is too small to store the data of all threads. Hence, data required to improve the performance

of each thread cannot be stored. Consequently, inter-thread cache conflicts cause performance

degradation on CMPs.

Past researches have demonstrated that dynamic cache resizing mechanisms, especially the

power-aware dynamic cache partitioning mechanism in this dissertation, can solve these prob-

lems around cache memories. The mechanism divides the cache into some parts and indepen-

dently manages them. These parts are exclusively allocated to the executed threads. Since the

allocated parts for a thread cannot store data of other threads, the mechanism can avoid inter-

thread kickouts. Moreover, the mechanism can disable power supply for the parts that are not

allocated, and hence the power consumption of the cache memory reduces. However, the mecha-

nism cannot solve the capacity shortage problem, which is the other cause of inter-thread cache

conflicts. Therefore, it is strongly required that the mechanism and cache memories improve the

utilization efficiency of cache resource, e.g., to improve the performance without capacity growth,

or to keep the performance with a smaller capacity. Hence, the objective of the dissertation is to

achieve the effective usage of cache resource. To this end, this dissertation proposes three ap-

proaches to the effective usage of cache capacity for the power-aware dynamic cache partitioning

mechanisms, which are included in a hardware-software co-designed cache memory system for

microprocessors to achieve a high performance and a low energy consumption.

As the first approach, this dissertation discusses a voting-based working set assessment

scheme for dynamic cache resizing mechanisms. Dynamic cache resizing mechanisms, e.g. the

power-aware dynamic cache partitioning mechanism, enables only required cache capacities for

threads based on working set assessment, and can reduce energy without significant perfor-

mance degradation. In the mechanism, the accuracy of working set assessment is important to

both keep the high performance and further enhance the energy saving. However, cache access

ii

ABSTRACT

characteristics of threads affect the results of working set assessment. The mechanism moni-

tors cache accesses and collects them as statistical data for assessment. Such data sometimes

include exceptional cache access behaviors, which are irregular and ignorable for keeping the

high performance. Once such behaviors are included as the statistical data, they cause an en-

largement of the estimated working set size, resulting in an increase in the number of allocated

parts. While these increases by exceptional cache access behaviors reduce some cache misses, its

performance contributions are very small. As a result, energy consumption increases without

significant performance improvement.

To avoid the harmful effects of exceptional cache access behaviors, this dissertation proposes

a voting-based working set assessment scheme. The proposed scheme ignores the effect of ex-

ceptional cache access behaviors using fine-grain working set assessment and majority voting.

The proposed scheme assesses the working set sizes of threads by using shorter sampling peri-

ods than that of the original scheme. These periods are called voting periods. In these voting

periods, there are some periods affected by the exceptional cache access behaviors. However, the

number of affected periods is smaller than that of periods that do not include exceptional cache

access behaviors. Hence, by using the majority voting, the proposed scheme filters the results of

affected periods and employs the results of normal periods. Consequently, the proposed scheme

can distinguish and ignore the voting period including such behaviors. From the simulation

results, it is observed that the energy consumption of the dynamic cache resizing mechanism

reduces by up to 24%, and 10% on an average, without significant performance degradation.

As the second approach, this dissertation discusses a capacity-efficient insertion policy for

on-cache data management. In general, the capacities of cache memories are smaller than those

of main memories. Hence, cache memories have to manage stored data, e.g. deciding which

data block should be evicted and written back to main memories when storing a new data block.

The LRU replacement policy, which is the commonly used data management policy, is based on

the temporal locality, in which the most-recently used data block is high potential to be reused.

However, the existence of dead-on-fill blocks is the problem. A recent growth in application

complexity and an increase in variations of characteristics have enlarged the number of data

blocks that are not reused inherently, or reused after a very long time. If such data blocks are

stored in cache memories, they become dead-on-fill blocks. Dead-on-fill blocks are the blocks

that are not reused after being stored in cache memories. These blocks occupy cache memories

but do not contribute to performance improvement. Therefore, these blocks only waste the cache

capacity without performance contribution.

To evict these blocks as quickly as possible, this dissertation proposes a capacity-efficient

insertion policy. The proposed policy flexibly adjusts resident priority for newly coming blocks,

while always storing blocks with the highest resident priority in the LRU replacement policy.

There is a trade-off to achieve the proposed policy. If a newly coming block is a dead-on-fill block,

it should be stored with low resident priority for early eviction. On the other hand, if a newly

iii

ABSTRACT

coming block are not dead-on-fill block, i.e., reusable blocks, storing it with low resident priority

causes the early eviction of it before being reused, resulting in an additional cache miss. To

consider this trade-off, the proposed policy decides resident priority for newly coming blocks by

monitoring first reuses to reusable blocks in lowest resident priority. Hence, cache memories can

keep only reusable blocks and early evict dead-on-fill blocks. As a result, the policy reduces the

number of dead-on-fill blocks and helps the power-aware dynamic cache partitioning mechanism

reduce the allocated capacity to threads without significant performance degradation. Simula-

tion results show that the proposed policy can reduce the energy consumption by up to 30% and

6% on an average. Moreover, the proposed policy is also effective for the power-aware dynamic

cache partitioning mechanism in the CMP.

As the third approach, this dissertation discusses a thread scheduling method based on

working set assessment for CMPs. In many CMPs, multiple threads share a single cache. Since

the working set sizes of threads highly depends on the cache access characteristics of threads,

the sum of working set sizes of the thread combinations that share a cache may differ from

one thread combination to another. If the threads with large working set sizes share a cache,

capacity shortage occurs and degrades the performance. On the other hand, if the threads

with small working set sizes share a cache, capacity shortage does not occur. The results of

the preliminary evaluation show that performance degradation by capacity shortage becomes

larger as the sum of working set sizes increases. Especially, performance degradation becomes

significant when the sum of working set sizes of threads exceeds cache capacity.

Based on the preliminary evaluation results, this dissertation proposes a thread scheduling

method based on working set assessment. Recently, a CMP includes multiple cache memories,

each of which is shared by multiple cores. In this case, the thread combinations sharing a cache

memory can be flexibly changed. Hence, the proposed thread scheduling method changes the

thread combinations so that the capacity shortage problem is alleviated. The proposed schedul-

ing method consists of two stages, assessment of working set sizes of threads and decision of

thread assignments to cores by a scheduling algorithm. The algorithm decides the assignments

so that threads with large working sets do not share a same cache, and a thread with the largest

working set is coupled with a thread with the smallest working set. It helps the power-aware

dynamic cache partitioning mechanism allocate a sufficient number of cache parts to threads.

Simulation results show that the proposed method achieves a 1.9% higher performance than the

average over all the combinations of thread assignments, and a 8.1% higher performance than

the worst-case scheduling.

In conclusion, these three approaches can improve the utilization efficiency of cache re-

source. Therefore, the approaches in this dissertation will contribute to innovation of computer

architecture design, and realization of microprocessor with high performance and low energy

consumption.

iv

ACKNOWLEDGMENTS

Acknowledgements

This dissertation would not have been carried out without a lot of support of

many people. The author would like to acknowledge all of them gratefully.

First of all, I would like to express grateful gratitude to Professor Hiroaki

Kobayashi, my supervisor, who was abundantly helpful and offered invaluable

assistance. I benefited immensely from not only his support, counsel, and en-

couragement, but also introduction to research fields during the past eight years.

I would like to thank Professor Michitaka Kameyama and Professor Takafumi

Aoki for their thoughtful review of this dissertation and their helpful comments.

I wish to express my gratitude to Associate Professor Hiroyuki Takizawa and As-

sistant Professor Ryusuke Egawa for their technical and personal support and

their hot encouragement.

I would like to thank Processor Emeritus Michael Flynn of Stanford Uni-

versity, Associate Professor Hideaki Goto, Associate Professor Kentaro Sano,

and Associate Professor Kenichi Suzuki of Tohoku Institute of Technology for

their valuable and helpful comments. Thanks go out to Ms. Maki Takahashi,

Ms. Rikako Hasegawa, and all the members of Cyberscience Center of Tohoku

University for their support to my research activities and my comfort laboratory

life.

I would also like to express my appreciation to all the members of Kobayashi,

v

ACKNOWLEDGMENTS

Goto, and Takizawa Laboratory, Graduate School of Information Sciences, To-

hoku University. Gratefully thanks go to Dr. Isao Kotera for establishing the

power-aware dynamic cache partitioning mechanism that is the basis of this

dissertation. Special thanks go to Mr. Yusuke Tobo for partial support of the

experimental results in this dissertation. Sincerely thanks go to the member of

the processor project team, Mr. Yusuke Funaya, Mr. Gao Ye, Mr. Norihiro Tsuge,

and Mr. Takumi Takai.

I express the deep appreciation to my family. I want to thank my parents for

their affectionate encouragement and much support. I also want to thank my

grand mother and my sister. Finally, I want to thank my partner for emotional

support.

January 16, 2012

Masayuki Sato

vi

CONTENTS

Contents

Abstract i

Acknowledgements v

1 Introduction 1

1.1 Introduction . 1

1.2 Objective of the Dissertation . 4

1.3 Organization of the Dissertation . 10

2 A Voting-based Working Set Assessment Scheme for Dynamic Cache

Resizing Mechanisms 11

2.1 Introduction . 11

2.2 The Power-Aware Dynamic Cache Partitioning Mechanism 15

2.2.1 Metric for Locality Assessment 15

2.2.2 The Control Scheme of the Power-Aware Dynamic Cache

Partitioning Mechanism . 16

2.2.3 Exceptional Cache Access Behaviors and their Effect on the

Mechanism . 19

2.3 A Voting-Based Working Set Assessment Scheme 23

2.3.1 A Voting-Based Local Observation Function 23

vii

CONTENTS

2.3.2 A Voting-Based Way-Allocation Function 25

2.4 Evaluations . 27

2.4.1 Experimental Setup . 27

2.4.2 Evaluation Results of a Single-Core Processor 27

2.4.3 Evaluation Results of a 2-Core CMP 32

2.4.4 Evaluation Results of 4-Core and 6-Core CMPs 35

2.5 Conclusions . 37

3 A Capacity-efficient Insertion Policy for On-Cache Data Manage-

ment 38

3.1 Introduction . 38

3.2 Motivation . 42

3.2.1 Related Work . 42

3.2.2 Cache Block Reusability . 46

3.3 Dynamic LRU-K Insertion Policy . 49

3.3.1 Policy Overview . 49

3.3.2 Principle of Optimal Insertion Position 50

3.3.3 An Adjusting Mechanism of Insertion Position 52

3.4 Evaluations . 54

3.4.1 Experimental Setup . 54

3.4.2 Evaluation Results of a Single-Core Processor 54

3.4.3 Evaluation Results of a 2-core CMP 61

3.4.4 Hardware Overhead . 64

3.5 Conclusions . 65

4 A Thread Scheduling Method based on Working Set Assessment

for CMPs 66

viii

CONTENTS

4.1 Introduction . 66

4.2 Motivation and Related Work . 69

4.2.1 Inter-Thread Cache Conflicts 69

4.2.2 Dynamic Cache Resizing Mechanisms 72

4.2.3 Thread Scheduling Methods 75

4.3 A Thread Scheduling Method based on Working Set Assessment . . 77

4.3.1 Method Overview . 77

4.3.2 Working Set Assessment . 78

4.3.3 A Scheduling Algorithm . 79

4.3.4 Cooperation between the Thread Scheduling Method with

Dynamic Cache Resizing Mechanisms 80

4.4 Evaluations . 83

4.4.1 Experimental Setup . 83

4.4.2 Evaluation Results of Overall Performance 86

4.4.3 Evaluation Results of Individual Threads 90

4.4.4 Performance Impact of Cooperation with the Power-Aware

Dynamic Cache Partitioning 92

4.4.5 Energy Impact of the Thread Scheduling Method 93

4.5 Conclusions . 96

5 Conclusions 97

Bibliography 101

ix

LIST OF TABLES

List of Tables

2.1 Parameters of the simulated architecture for the voting-based scheme. 27

2.2 Classification of the benchmarks by DVR. 28

3.1 Parameters of the simulated architecture to investigate reusability. 47

3.2 Benchmark classification by reusability and first reuse distance. . 56

4.1 Simulation parameters for the CMP. 83

4.2 Experimented representative benchmarks. 84

4.3 Experimented benchmark combinations. 86

x

LIST OF FIGURES

List of Figures

1.1 Basic concept of the power-aware dynamic cache partitioning mech-

anism. 6

2.1 Stack distance profiling. 15

2.2 3-bit state machine to decide the way-adaptation. 18

2.3 Concept of exceptional behaviors of cache accesses and its effect

on locality assessment. 20

2.4 Way to reduce the effects of exceptional behaviors by the proposed

scheme. 23

2.5 Energy consumptions in the case of a single-core processor. 29

2.6 Performances in the case of a single-core processor. 30

2.7 Performances in the case of multi-thread execution on the 2-core

CMP. 32

2.8 Energy consumptions in the case of multi-thread execution on the

2-core CMP. 34

2.9 Performances and energy consumptions in the case of the 4-core

and 6-core CMPs. 35

3.1 Concept of the LRU chain (focusing on a single set of an 8-way

set-associative cache). 39

xi

LIST OF FIGURES

3.2 Cache block reusability. 48

3.3 Comparing the LRU replacement policy with the LRU-K insertion

policy (K = 4). 50

3.4 First reuse to a newly inserted block X and its resident priority

change in the cache. 51

3.5 Profiling results of the number of first reuses to the newly inserted

blocks in each priority position. 52

3.6 Average insertion position of all the benchmarks by the proposed

policy. 55

3.7 Energy consumption of the L3 cache on the single-core processor. . 57

3.8 Performance on the single-core processor. 58

3.9 Reusability improvement in various A of the proposed policy. 60

3.10 Energy consumption of the L3 cache on the 2-core CMP. 61

3.11 Performance on the 2-core CMP. 62

4.1 Performance of Ammp when simultaneously executed with Gcc166

on a SMT processor. 69

4.2 L2 cache miss ratio of Ammp when simultaneously executed with

Gcc166 on a SMT processor. 70

4.3 Performance of twolf when simultaneously executed with mcf on

a SMT processor. 71

4.4 L1 data cache miss ratio of twolf when simultaneously executed

with mcf on a SMT processor. 72

4.5 L2 cache miss ratio of twolf when simultaneously executed with

mcf on a SMT processor. 73

4.6 Relationship between the number of required ways and the per-

formance when two threads are simultaneously executed. 74

xii

LIST OF FIGURES

4.7 Overview of the proposal. 77

4.8 Conceptual figure of stack distance profiling. 79

4.9 Flow chart of the scheduling algorithm. 82

4.10 Utility graphs of the representative benchmarks. 85

4.11 Possible scheduling cases on the CMP from the viewpoint of cache

sharing of threads. 87

4.12 Comparing the performances of the worst, the average, the best,

the proposed cases. 88

4.13 Average of normalized IPC of the threads in the combinations. . . . 90

4.14 Comparing the performances of the average/proposed scheduling

policies with/without the power-aware dynamic cache partitioning

mechanism. 92

4.15 Energy consumption of the cache memories. 94

xiii

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Introduction

In the last four decades, performance improvement of microprocessors has con-

tinued based on both advance in CMOS process technology and innovations of

computer architecture design. The advance in CMOS process technology has

been shrinking the size of transistors. This plays the following three impor-

tant roles for performance improvement [1]. First, it increases the number of

transistors on a chip, and enables microprocessors to mount a large amount of

hardware resource for calculation. Second, it increases the switching speed of

transistors to bring an increase in the clock frequency of microprocessors, by

which the number of operations per unit time can be increased. Third, it de-

creases the power consumption per transistor, to realize that a larger number of

transistors can be switched at less power consumption. As a result, micropro-

cessors have achieved improvements of performance per power consumption.

The innovations of computer architecture design have been required to ef-

fectively use a large amount of hardware resource on a chip. A huge amount

of hardware resource enables to implement a large number of execution units.

1

1.1. Introduction

New microarchitecture designs such as pipelining [2], out-of-order execution [3],

and speculative execution [4] have been invented to improve the performance of

microprocessors. As a result, these innovations can process a large number of

instructions per cycle.

As the throughput of the processor increases, its memory system has to

achieve a higher bandwidth and a short access latency balanced with the pro-

cessor throughput. However, the data supply rate from main memories cannot

satisfy the data request rate from the microprocessors. To satisfy it, multi-level

cache hierarchy [5] is employed using a large amount of hardware resource to

hide the latency between microprocessors and main memories. By shortening

the latency, cache memories can increase the data supply rate. These inno-

vations described above have contributed to the performance improvement of

microprocessors.

However, in recent years, the further advance in CMOS process technology

hardly contributes to the performance improvement without significant energy

increase. As the integrated density of transistors increases, the power density of

microprocessors also increases [6]. Hence, to realize higher performance micro-

processors, a serious problem is a growth in power consumption per chip. In ad-

dition, an increase in power density causes more heat [7], and cooling has been

becoming more difficult than before. Therefore, the innovations of computer ar-

chitecture design will play more important roles for performance improvement

and energy reduction in the future [8, 9].

Moreover, while the amount of hardware resource on a chip has been grown,

improvement of resource utilization has become one of the main problems in

microprocessor design. In general, a microprocessor mounts hardware resource

that can be integrated by the current technology, considering trade-offs between

2

1.1. Introduction

performance of all executed applications and hardware cost. However, when exe-

cuting an application, all the resource cannot be always used. In such a case, ex-

cessively provided hardware resource on the microprocessor does not contribute

to the performance of executing the application, while only consuming energy.

Consequently, by improving utilization efficiency of hardware resource, it is ex-

pected that microprocessors achieve their performance improvement without a

significant increase of energy consumption.

3

1.2. Objective of the Dissertation

1.2 Objective of the Dissertation

To realize high performance and low energy microprocessors, this dissertation

focuses on cache memories, which are one of the most important components of

modern microprocessors for high performance.

Recently, it has become very difficult to reduce the memory access latency.

On the other hand, the performance of microprocessors is increasing [10]. As a

result, a microprocessor has to wait for a very long time to access the main mem-

ory, and the long memory latency leads to severe performance degradation [11].

To overcome this problem, the so-called memory wall problem [12], micropro-

cessors have adopted cache memories, which are small-capacity but high-speed

memories. Accordingly, cache memories are requisite for modern microproces-

sors to avoid the long memory access latency and thereby achieve a high perfor-

mance.

Although cache memories are essential for microprocessors as mentioned

above, they also have a large impact on energy consumption of microprocessors.

Recently, the capacity of a cache memory has been growing and occupies a large

area of a chip. In deep-submicron CMOS technology, leakage current, which

is proportional to the area, is a large portion of the overall energy consump-

tion [13]. As a result, a large part of energy is consumed by cache memories.

For instance, 16% of the total power is consumed by cache memories in Alpha

21264 [14], 21% in Pentium Pro [15], and 40% in StrongARM 110 [16]. In the

case of multi-level cache, a large portion of overall energy is consumed by the

last-level cache memory, which is placed at the nearest position to main memo-

ries, e.g. 16.5% in second-level cache of Niagara 2 and 18% in third-level cache

of 3.4GHz Xeon Tulsa [17]. From the above, it is obvious that a cache memory is

one of the most important building blocks to design high performance and low

4

1.2. Objective of the Dissertation

energy microprocessors.

The contributions of cache memories to the performance clearly depend on

memory access characteristics of executed threads. Hence, there is room to im-

prove the cache utilization ratio by adapting data management and hardware

resource management to individual threads.

It has also been becoming difficult for a single thread to use more hardware

resource in parallel, because instruction-level parallelism is limited [18]. There-

fore, CMPs [19, 20] have become commonplace. By simultaneously executing

multiple threads by multiple cores, CMPs can effectively use on-chip hardware

resource based on thread-level parallelism [21], and provide a good trade-off

between performance and energy consumption. However, in almost all CMPs,

multiple threads share one cache [22], and the cache sharing causes inter-thread

cache conflicts. It causes a harmful effect on efficiency of cache usage, resulting

in performance degradation of CMPs. Therefore, it is strongly required to solve

such a cache conflict problem.

It should be noted that there are two causes of inter-thread cache conflicts.

One is inter-thread kickouts (ITKO) [23], in which data fetched by one thread

are evicted by data of another thread. If the former thread again accesses the

data that have already been replaced by the latter thread, the cache access re-

sults in a cache miss that does not occur in single thread execution. For this

reason, replacement by one thread may increase the execution time of another

thread. The other cause is capacity shortage. If cache capacities requested by

threads sharing a cache are too large, the sum of requested capacities exceeds

the capacity of the cache. In this case, their working sets cannot be stored in

the cache because the number of ways allocated to each thread is limited. As a

result, severe performance degradations may occur on simultaneously executed

5

1.2. Objective of the Dissertation

Partition

Set-associative cache

Way

0

Way

1

Way

2

Way

3

Way

4

Way

5

Way

6

Way

7

Activated Ways
for Core0

Inactivated Ways

Core0 Core1

Partition

Activated Ways
for Core1

Figure 1.1: Basic concept of the power-aware dynamic cache partitioning mech-
anism.

threads.

Under this situation, this dissertation focuses on a dynamic cache resiz-

ing mechanism, especially the power-aware dynamic cache partitioning mech-

anism [24, 25, 26]. There are two objectives in the power-aware dynamic cache

partitioning. One is the reduction of inter-thread kickouts, and the other is the

reduction of energy consumption.

The basic concept of the mechanism is shown in Figure 1.1. The mechanism

is applied to a set-associative cache shared by two cores. The cache is divided

into three parts in a unit of way. In Figure 1.1, the first part that consists of

ways 0, 1, and 2 is allocated to Core0. The second part that consists of ways 3

and 4 is allocated to Core1. The third part that consists of ways 5, 6, and 7 is

not allocated. The first and second parts are exclusively allocated to Core0 and

6

1.2. Objective of the Dissertation

Core1, respectively. Hence, one core cannot touch the part allocated to the other

core, and hence the mechanism can avoid inter-thread cache conflicts. Moreover,

the third part is disabled, and the power supply to this part is cut off by using

power gating [27]. This power control mechanism contributes to the reduction

of the power consumption of the cache. These parts are resized flexibly and dy-

namically according to the cache capacity required by each thread. As a result,

the mechanism can reduce energy consumption without significant performance

degradation.

Although the mechanism is effective to avoid inter-thread kickouts and re-

duce energy consumption, there is still room to further improve the perfor-

mance. Among the two causes inter-thread cache conflicts, capacity shortage

cannot be avoided because allocatable capacity to threads is limited by the num-

ber of maximum ways in the cache. Therefore, it is strongly required that the

mechanism and cache memories improve the utilization efficiency of cache re-

source, e.g., to improve performance without capacity growth, or to keep the

performance with a smaller capacity. Hence, the objective of this dissertation

is to achieve the improvement of utilization efficiency of cache resource. If the

objective is achieved, the power-aware dynamic cache partitioning mechanisms

can avoid inter-thread cache conflicts by capacity shortage, and reduce the en-

ergy consumption without significant performance degradation.

To this end, this dissertation proposes three approaches as follows. The first

approach is a monitoring scheme to avoid excessive allocation of the ways for

the power-aware dynamic cache partitioning mechanism. The second approach

is a cache management policy to early evict unused cache blocks to increase the

capacity for reusable blocks. The third approach is a thread scheduling method

to adjust the combination of threads sharing one cache.

7

1.2. Objective of the Dissertation

In the first approach, this dissertation discusses a monitoring scheme of the

power-aware dynamic cache partitioning mechanism. If the ways are allocated

excessively by exceptional cache access behaviors, the mechanism increases the

number of allocated ways to threads. As a result, the energy consumption grows

without performance improvement. Hence, improvement of estimation accuracy

is very important for the efficiency of the power-aware dynamic cache partition-

ing.

In the second approach, this dissertation discusses a cache management pol-

icy. In general, the capacity of cache memories is smaller than that of main

memories. Hence, some data cannot be kept in the cache until they are used.

Furthermore, some data might inherently be not reused because the applica-

tion does not access them again. The blocks of these data are not reused after

they are inserted in the cache. Such blocks are called dead-on-fill blocks [28]. If

these blocks occupy a cache, the number of allocated ways increases to store both

reusable blocks and dead-on-fill ones. In this way, dead-on-fill blocks disturb the

energy reduction by the power-aware dynamic cache partitioning mechanism.

Therefore, the reduction of dead-on-fill blocks is ignorable for the efficiency of

the power-aware dynamic cache partitioning.

The third approach is a thread scheduling method that avoids capacity short-

age. If threads with large working set sizes share a cache, inter-thread cache

conflicts by capacity shortage is not avoidable. However, it is still possible to

prevent the threads with large working sets from sharing a cache by thread

scheduling. Recently, CMPs consist of many execution cores and shared cache

memories. This enables an operating system or its thread scheduler to flexibly

change the combination of threads share a cache. As a result, capacity shortage

caused by the threads with large working set sharing the cache can be avoided.

8

1.2. Objective of the Dissertation

Accordingly, these three approaches are crucial for cache memories with the

power-aware dynamic cache partitioning mechanism. In this dissertation, all

these three approaches are totally proposed as a hardware-software co-designed

cache memory system, which can realize microprocessors with high performance

and low energy consumption. The main contribution of this dissertation is to

show that these three approaches in the proposed cache system can improve the

utilization of cache memories.

9

1.3. Organization of the Dissertation

1.3 Organization of the Dissertation

This dissertation is organized as follows. Chapter 1 describes the background

and objectives of this dissertation. Chapter 1 indicates that cache memories

play important roles for performance improvement and energy saving of micro-

processors.

Chapter 2 proposes a voting-based working set assessment scheme for dy-

namic cache resizing mechanisms. This scheme is effective to improve the esti-

mation accuracy of the working set size of a thread. By estimating the working

set size more accurately, dynamic cache resizing mechanisms become more ef-

fective to improve performance and energy efficiency.

Chapter 3 proposes a capacity-efficient insertion policy for data management.

The policy is designed to early evict dead-on-fill blocks that are not reused in the

future. As a result, it can reduce the cache capacity used by each thread, and

more cache capacity can be deactivated.

Chapter 4 proposes a thread scheduling method based on working set assess-

ment for CMPs. In the scheduling method, threads are scheduled so that they

do not share a cache memory if the total of their working set sizes exceeds the

cache memory size. As a result, a larger cache capacity can be allocated to a

thread with a large working set size, and it is expected that the overall system

performance improves.

Finally, Chapter 5 describes concluding remarks of this dissertation.

10

CHAPTER 2. A VOTING-BASED WORKING SET ASSESSMENT SCHEME
FOR DYNAMIC CACHE RESIZING MECHANISMS

Chapter 2

A Voting-based Working Set

Assessment Scheme for Dynamic

Cache Resizing Mechanisms

2.1 Introduction

To achieve high performance and energy reduction of CMPs, one promising ap-

proach is dynamic cache resizing, in which each partitioned cache region is in-

dependently managed to find an appropriate allocation of cache resources to

threads. A lot of previous researches have focused on the dynamic cache resiz-

ing mechanisms.

For energy saving, Albonesi has discussed the effects of changing the num-

ber of enabled ways of a set-associative cache on performance and energy con-

sumption [29]. Yang et al. have considered exploiting the effects of dynamic

cache resizing mechanisms by using hybrid organization of both way-based and

11

2.1. Introduction

set-based resizing mechanisms [30]. Powell et al. have proposed the DRI i-

cache [31], which can reduce static energy consumption on instruction caches.

The way-adaptable cache mechanism [24] demonstrates the effect of the dy-

namic control mechanism allowing data caches to find a good trade-off between

performance and energy consumption. To adapt to fine-grain phase changes of

applications, Pokam et al. have considered the cooperation between cache re-

sizing and compiler optimization [32]. The mechanisms to save energy for the

non-uniform cache architecture (NUCA) [33], which is an enhanced cache archi-

tecture, was also proposed [34].

For cache partitioning on CMPs, dynamic cache partitioning mechanisms [35,

36, 37, 38] can exclusively allocate ways to each thread and avoid inter-thread

kickouts. Srikantaiah et al. have proposed the adaptive set pinning. This pro-

posal is also a cache partitioning mechanism, which exclusively allocates some

of cache sets to each thread [39]. Lee et al. have proposed the novel address

mapping scheme to achieve dynamic set-based cache partitioning [40]. Chang

et al. have introduced the multiple time-sharing partitions, in which cache re-

sources are allocated from the viewpoint of both capacity and occupied time [41].

Some cache partitioning strategies for NUCA have also been proposed by Dyb-

dahl et al. [42] and Huh et al. [43]. Furthermore, to achieve both energy saving

and cache partitioning on CMPs, the power-aware dynamic cache partitioning

mechanism [26] was proposed.

In this chapter, estimation accuracy of cache capacity necessary for threads is

discussed. Accurate estimation is very important for the dynamic cache resizing

mechanisms to improve energy efficiency. If the estimated capacity of a thread

is too small against the working set size, a core executing the thread cannot

extract its potential performance. On the other hand, if the estimated capacity

12

2.1. Introduction

is too large, the mechanisms cannot allocate ways to other threads that require

more ways, or energy consumption may be increased without any performance

gain due to underutilized ways.

This chapter assumes the power-aware dynamic cache partitioning mecha-

nism that estimates working set sizes of threads by sampling their cache ac-

cesses in a certain period. This mechanism conducts locality assessment to esti-

mate the working set sizes using the sampled accesses. However, observation of

cache accesses behaviors indicates that there are some exceptional behaviors not

following the trend of the overall accesses. Such behaviors might influence the

locality assessment and result in an increase in the number of allocated ways,

even though this usually degrades energy efficiency. Some other approaches

to estimate working set sizes of threads do not consider the exceptional behav-

iors [44, 45, 46].

To avoid the increase of energy consumption by exceptional behaviors, this

chapter proposes a new scheme for working set assessment called a voting-based

working set assessment scheme. The conventional cache partitioning mecha-

nisms conduct locality assessment based on the sampling data of one long sam-

pling period, which is also used as the time length of holding the number of

ways. However, in the proposed scheme, a locality assessment result of one

sampling period is decided based on majority voting among locality assessment

results of several short sampling periods, called voting periods. Dividing one

sampling period to several voting periods enables the mechanism to identify the

periods including exceptional behaviors, and to ignore the locality assessment

results of such periods by adopting the results of majority voting. Applying the

proposed scheme to the power-aware dynamic cache partitioning mechanism,

the number of ways allocated to each thread and the energy consumption of the

13

2.1. Introduction

cache memory are reduced without significant performance degradation. Con-

sequently, this will improve energy efficiency of CMPs with large shared cache

memories.

The rest of this chapter is organized as follows. In Section 2.2, the power-

aware dynamic cache partitioning mechanism considered in this dissertation is

described, and the impact of exceptional behaviors is discussed. Section 2.3 pro-

poses a new scheme for the power-aware dynamic cache partitioning mechanism

based on the discussions in Section 2.2. In Section 2.4, the proposed scheme is

evaluated in terms of performance and energy consumption. Finally, Section 2.5

concludes this chapter.

14

2.2. The Power-Aware Dynamic Cache Partitioning Mechanism

N
u

m
b

er
 o

f
ac

ce
ss

es

C
1

C
2

C
3

C
N-1

 . . .

 . . .

N
u

m
b

er
 o

f
ac

ce
ss

es

C
1

C
2

C
3

C
N-1

 . . .

 . . .

(a) High-locality Model (b) Low-locality Model

C
N

C
N

Figure 2.1: Stack distance profiling.

2.2 The Power-Aware Dynamic Cache Partition-

ing Mechanism

This section firstly introduces a locality assessment metric, which is important

for judging whether the number of allocated ways is appropriate or not. Second,

the function of deciding the number of ways based on the locality assessment

metric is described. Finally, the effect of exceptional cache access behavior is

pointed out.

2.2.1 Metric for Locality Assessment

To estimate the number of ways required by each thread, a metric to judge

whether the thread requires more ways or not is essential. For this purpose,

the power-aware cache partitioning mechanism carries out locality assessment

using stack distance profiling [47, 48, 49].

Figure 2.1 shows two examples of the results of stack distance profiling. Let

C1, C2, ..., CN be N counters for an N -way set-associative cache with the LRU

replacement policy. Ci counts the number of accesses to the i-th line in the LRU

15

2.2. The Power-Aware Dynamic Cache Partitioning Mechanism

stack. Therefore, counters C1 and CN are used to count the numbers of accesses

to MRU lines and that to LRU lines, respectively. If a thread has a high locality,

its cache accesses are concentrated on the MRU and its nearby lines as shown

in Figure 2.1(a). However, if a thread has a low locality, its accesses are widely

distributed from MRU to LRU as shown in Figure 2.1(b). From the above, it is

that the ratio, which is defined as D in the following equation, represents the

cache access locality of a thread.

D =
C1

CN

. (2.1)

If a thread has a high locality, D of the thread becomes small. On the other

hand, if it has a low locality, D becomes large.

2.2.2 The Control Scheme of the Power-Aware Dynamic

Cache Partitioning Mechanism

To grasp the number of ways requested by each thread, the mechanism samples

cache accesses in a certain period, called a sampling period. After the sampling

period, the mechanism has an opportunity to decide to change the number of

allocated ways to each thread. This opportunity is called an adaptation oppor-

tunity. To adjust the number of ways to dynamic phase changes due to cache

access characteristics of each thread, the sampling period and the adaptation

opportunity are alternately repeated.

At an adaptation opportunity, the mechanism decides whether the number of

allocated ways to each thread should be changed. For this purpose, the mecha-

nism uses three functions: the local observation function, the global observation

function, and the way-allocation function.

16

2.2. The Power-Aware Dynamic Cache Partitioning Mechanism

The Local Observation Function

This function judges whether each thread requires more ways or not by locality

assessment at adaptation opportunities. The function uses D and thresholds t1

and t2 (t1 < t2). If D < t1, the function sends a signal dec as a locality assessment

result to the global observation function to suggest deallocating one way from

the thread and inactivating it. On the other hand, if t2 < D, the function makes

a signal inc to suggest allocating one way to the thread and activating it. If

t1 < D < t2, the function generates a signal keep to suggest keeping the current

number of ways.

The Global Observation Function

This function actually decides whether to resize the cache based on both the

current signal and the signals at the past adaptation opportunities from the

local observation function. In the case that the signal changes at every adapta-

tion opportunity, performance degradation occurs due to a lot of writeback. To

avoid this, the global observation function avoids frequent transitions between

activation and inactivation of the ways at every adaptation opportunity.

To avoid frequent inactivation, the function employs an asymmetric state

machine as shown in Figure 2.2. The state machine changes its state when inc

or dec is input from the local observation function. When inc is given to the

state machine, it outputs a cache up-sizing control signal INC and then always

transits to State “000” from any state. However, in the case of dec given, the

machine works conservatively to generate a down-sizing signal DEC and transit

to State “111”.

As a result, if the function receives inc, it decides to allocate an additional

17

2.2. The Power-Aware Dynamic Cache Partitioning Mechanism

000 001 111110

inc/INC

dec

/KEEP

dec/DECinc/INC

dec

/KEEP

dec

/KEEP

dec

/DEC

inc/INC

inc/INC

Figure 2.2: 3-bit state machine to decide the way-adaptation.

way to the thread immediately to avoid performance degradation due to insen-

sitivity to inc. However, to inactivate one way, the function requires contin-

ual inputs of dec since the past adaptation opportunities to avoid performance

degradation due to a lot of write back.

The Way-Allocation Function

This function considers changing allocation of ways to threads when the mecha-

nism activates all ways and the threads require more ways. For example, if two

threads share a cache and one thread has a larger working set than the other,

the former thread should take more cache resources.

The function assumes that the number of ways required by each thread is

proportional to the degree of their locality. After calculating Di from the cache

access samples of the i-th thread, the following inequality is used to determine

18

2.2. The Power-Aware Dynamic Cache Partitioning Mechanism

whether the number of ways allocated to threads should be increased or de-

creased.

 Allocj + = 1

Allock − = 1,
(2.2)

where

Alloci = (the number of allocated way to the i-th

threads),

j = arg max
0≤i<n

Di,

k = arg min
0≤i<n

Di,

n = (the number of threads),

and satisfies the following conditions.

Allocall =
n−1∑
i=0

Alloci, (2.3)

where Allocall denotes the cache associativity. If Dj = Dk, allocation of ways is

not changed.

2.2.3 Exceptional Cache Access Behaviors and their Effect

on the Mechanism

Observing cache access behaviors of threads, a certain number of LRU accesses

sometimes happen in a very short period. In many cases, these accesses do not

follow the overall trend of cache access behaviors. Hence, these accesses are con-

sidered exceptional behaviors of cache accesses. If sampled accesses including

19

2.2. The Power-Aware Dynamic Cache Partitioning Mechanism

Time

M
et

ri
c

fo
r

lo
ca

li
ty

 a
ss

es
sm

en
t

Average value of the priod
increases !!

exceptional
cache accesses

sampling period Bsampling period A

adaptation

opportunity

adaptation

opportunity

Figure 2.3: Concept of exceptional behaviors of cache accesses and its effect on
locality assessment.

exceptional behaviors are used for locality assessment, the mechanism causes

the excessive activation of the ways. As a result, the mechanism loses a chance

to reduce energy consumption.

Figure 2.3 shows examples of two sampling periods to describe the effect of

exceptional behaviors. In the figure, sampling period A does not include excep-

tional behaviors. On the other hand, sampling period B includes such behaviors.

In this situation, comparing the average locality assessment metric D of the pe-

riod A with that of the period B, the former is obviously larger than the latter.

This difference between the periods A and B causes different locality assessment

results while the overall trends of two periods are almost the same. Thus, such

an exceptional behavior in period B may cause a misjudgment and increase the

number of activated ways, resulting in degradation of energy efficiency.

The reason of energy efficiency degradation is that the newly activated way

20

2.2. The Power-Aware Dynamic Cache Partitioning Mechanism

by the exceptional behaviors may not be effectively used. At an adaptation op-

portunity, if the behaviors are observed temporarily in the previous sampling

period and do not appear in the next period, the activated way does not con-

tribute to performance improvement.

Moreover, even if exceptional behaviors iteratively occur, performance does

not always improve by adapting to the behaviors. When the mechanism adapts

the cache to such behaviors and activates a new way, some cache accesses may

hit. However, the number of accesses saved by this adaptation is smaller than

that by exceptional behaviors because, in general, the number of accesses to

LRU lines gradually decreases as the number of ways increases. Hence perfor-

mance impact of the saved accesses is small.

In these cases, exceptional behaviors cause the increase in the number of

activated ways, which results in the growth in energy consumption. However,

the performance improvement is not significant. Hence, energy efficiency of the

cache mechanism degrades. To avoid degradation of energy efficiency in such

cases, the mechanism should be insensitive to exceptional behaviors.

One possible solution is to increase the length of the sampling periods. If

the interval becomes long, average D of the sampling period B in Figure 2.3

decreases. However, there are two drawbacks of using a long sampling period.

First, if the sampling period becomes long, the probability of including multiple

exceptional behaviors in one sampling period increases. In this case, the usage

of a long period cannot reduce average D. Second, once the number of ways

is increased by exceptional behaviors, it also takes a long time to reduce the

number of activated ways because of the long sampling period.

21

2.2. The Power-Aware Dynamic Cache Partitioning Mechanism

In addition, it becomes further difficult for the mechanism to immediately in-

activate ways because of the effect of the global observation function. The mech-

anism cannot help using the global observation function to avoid frequent tran-

sitions between activation and inactivation of the ways. However, because sev-

eral sampling periods are needed to inactivate the ways after activating them,

the global observation function also increases energy consumption if excessively

adapting the cache to exceptional behaviors. Moreover, it is not preferable that

the global observation function avoids an immediate increase in the number of

ways. If the global observation function always be less sensitive to inc signal,

e.g., continual inputs of inc in several periods are needed to actually increase the

number of ways as well as dec, performance degradation becomes large by ignor-

ing the inc signal that are not affected by exceptional behaviors. Consequently,

a new technique is required to negate only the effect of exceptional behaviors,

without changing the length of the sampling periods and the global observation

function, resulting in a reduction in the number of activated ways.

22

2.3. A Voting-Based Working Set Assessment Scheme

Time

M
et

ri
c

fo
r

lo
ca

li
ty

 a
ss

es
sm

en
t

a sampling period

voting periods

decisions of
voting periods

dec inc dec

majority voting
result

dec

...

...

...

average

value

Figure 2.4: Way to reduce the effects of exceptional behaviors by the proposed
scheme.

2.3 A Voting-Based Working Set Assessment Scheme

To reduce the effect of exceptional behaviors, a voting-based working set assess-

ment scheme is proposed in this section. The scheme consists of two main func-

tions. One is a voting-based local observation function. The other is a voting-

based way-allocation function.

2.3.1 A Voting-Based Local Observation Function

To properly assess cache access locality, the voting-based local observation func-

tion identifies exceptional behaviors and avoids excessive adaptation to them.

First, to identify exceptional behaviors, the proposed scheme divides a sam-

pling period into several short sub-periods, which are called voting periods. Fig-

ure 2.4 illustrates the relationship between a sampling period including an ex-

ceptional behavior and voting periods. In the figure, the second voting period

23

2.3. A Voting-Based Working Set Assessment Scheme

includes an exceptional behavior, and thereby the locality assessment of the vot-

ing period results in inc. However, the other voting periods in the figure do not

include exceptional behaviors. Among these voting periods, only the second pe-

riod makes the different decision. Hence, the scheme can detect that the second

voting period contains an exceptional behavior.

Second, the scheme makes a final decision based on a series of locality as-

sessment results that are generated by voting periods. To reduce the impact of

exceptional behaviors on the final judgment, the scheme should consider only

locality assessment results of voting periods that do not include any exceptional

behavior. To realize such a control, the proposed scheme uses majority voting

among the locality assessment results, which are made by the voting periods be-

tween two consecutive adaptation opportunities. If some voting periods generate

different locality assessment results against the overall trend, the scheme can

figure out that these voting periods include exceptional behaviors and therefore

ignore their results by majority voting. Moreover, if almost all voting periods

have the same locality assessment results, the scheme can decide that cache ac-

cess behavior is stable, and hence the scheme decides to adjust the number of

ways based on the results. In the case of Figure 2.4, the proposed scheme can

reject the locality assessment result of the second voting period by majority vot-

ing because only this period includes the exceptional behavior and outputs the

different results.

The local observation function of the proposed scheme works as follows. At

the end of every voting period, the result of locality assessment of a thread in

the period, i.e. inc, dec, or keep is decided by Eq. (2.1) and two thresholds (t1, t2).

If an adaptation opportunity comes during a voting period, the voting period is

immediately terminated and the locality assessment of the period is performed

24

2.3. A Voting-Based Working Set Assessment Scheme

using the statistics information collected until then. At the adaptation opportu-

nity, if the number of votes to dec is equal to that to inc, or if that to keep is the

largest, the function outputs keep. Otherwise, the function outputs the signal

associated with the most votes.

In the proposed scheme, the length of the voting periods is an important pa-

rameter to appropriately assess the cache access locality. The length should be

as short as possible to isolate only exceptional behaviors from the others and to

obtain more votes at the adaptation opportunity. However, too short voting peri-

ods cannot include a sufficient number of cache accesses to statistically capture

the locality. The proposed scheme uses an access-based interval [26] to decide

the length of the voting periods, in which the end of the periods comes after a

certain number of cache accesses. By using this interval, the proposed scheme

can ensure that a certain number of sampled accesses are guaranteed in one vot-

ing period. In addition, an adaptation opportunity comes at a fixed time-based

interval [37] to make the adaptation frequency moderate.

2.3.2 A Voting-Based Way-Allocation Function

Suppose that all ways are activated and already allocated to the threads. Then,

if a thread with a smaller working set size has more ways than other threads,

some of ways should be reallocated to the latter threads. For reallocation, the

proposed scheme again uses the majority voting results for the way-allocation

function.

The number of votes to inc means how strongly a thread demands a large

cache capacity. If the number of votes to inc of one thread is larger than that of

other thread, a larger cache capacity should be allocated to the former thread.

However, simple comparison of the numbers of inc votes among threads is unfair

25

2.3. A Voting-Based Working Set Assessment Scheme

for threads with fewer ways, because the number of votes in one sampling period

is proportional to the number of accesses, which increases with the number of

allocated ways. Hence, the function must consider the number of allocated ways.

Due to this reason, weighted votes (wv) is defined, which is the number of votes

to inc divided by the number of allocated ways, and the scheme decides the

allocation of ways to the i-th threads as follows.

 Allocj + = 1

Allock − = 1,
(2.4)

where

Alloci = (the number of allocated ways to the i-th

thread),

j = arg max
0≤i<n

wvi,

k = arg min
0≤i<n

wvi,

wvi = inci / Alloci,

inci = (the number of votes to inc of the i-th thread).

Using the above equations, the function can consider not only the number of

votes but also the number of allocated ways to achieve fair comparison between

two different threads.

26

2.4. Evaluations

Table 2.1: Parameters of the simulated architecture for the voting-based
scheme.

Core
8-issue out-of-order, 2GHz, 32nm technology
Memory
L1 I-Cache: 32kB, 4-way, 64B-line, 1 cycle latency
L1 D-Cache: 32kB, 4-way, 64B-line, 1 cycle latency
L2 Cache: 2MB, 32-way, 64B-line, 14 cycle latency
Main Memory: 200 cycle latency

2.4 Evaluations

2.4.1 Experimental Setup

A simulator including the proposed scheme has been developed based on the M5

Simulator System [50] and CACTI 6.5 [51, 52, 53]. Table 2.1 shows the simu-

lation parameters of a modeled processor and memory hierarchy. The proposed

scheme with the power-aware dynamic cache partitioning mechanism is applied

to the L2 cache, which is a 2MB, 32-way set-associative cache in our evaluation.

In the power-aware dynamic cache partitioning mechanism, thresholds (t1, t2)

are required as mentioned in Section 2.2.2. According to the previous work [26],

(t1, t2) = (0.001, 0.005) is a fine-tuned parameter set to maintain a certain per-

formance, and these values are used. Benchmarks examined on the simulator

are selected from the SPEC CPU2006 benchmark suite [54]. Each simulation is

done by executing first one billion cycles of the simulated processor.

2.4.2 Evaluation Results of a Single-Core Processor

This section shows evaluation results in the cases of executing a single thread

on a single-core processor, to clarify the effect of the proposed scheme. Before

27

2.4. Evaluations

Table 2.2: Classification of the benchmarks by DVR.

Class DVR Benchmarks
I ≥ 0.25 soplex, bwaves, tonto, h264ref, omnetpp,

gobmk, astar
II < 0.25 libquantum, GemsFDTD, milc, gamess,

lbm, calculix, wrf
III = 0 zeusmp, bzip2

showing the results, the benchmarks are classified into three classes based on

their characteristics observed from the experimental results.

For classification of the benchmarks, Dissenting Vote Rate (DVR) is defined

as a metric. DVR is a ratio of the number of dissenting votes to the number of

all votes. For example, when the voting-based local observation function judges

that the number of ways should be decreased, the votes to inc and keep in this

sampling period are dissenting votes. Since it is considered that the voting peri-

ods against the final judge of the sampling period include exceptional behaviors,

an increase in DVR indicates an increase in the occurrence frequency of excep-

tional behaviors.

Table 2.2 shows the classes of the benchmarks. A benchmark whose DVR

is larger than 0.25 is classified into Class I. The benchmarks in Class I are

supposed that they include more exceptional behaviors than the other bench-

marks because DVR of the benchmarks in this class is larger than those of the

other benchmarks. A benchmark whose DVR is smaller than 0.25 is classified

into Class II. The benchmarks in this class include some exceptional behav-

iors, but its frequency is lower than that of benchmarks in Class I. Finally, a

benchmark whose DVR is zero is classified into Class III. One reason that their

DVRs become zero is that they have a few accesses to the L2 cache and hence

exceptional behaviors do not occur. Another reason is that their voting periods

28

2.4. Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

I II III AVG.

N
o

rm
a

li
ze

d
 E

n
er

g
y

13-bit 12-bit 11-bit 10-bit 9-bit

8-bit 7-bit 6-bit 5-bit 4-bit

Figure 2.5: Energy consumptions in the case of a single-core processor.

become longer than sampling periods because of very few accesses. Under this

situation, dissenting votes cannot occur because voting is performed only once

in a sampling period.

Figure 2.5 shows the energy consumptions of the L2 cache, when its power-

aware dynamic cache partitioning mechanism is controlled by the proposed voting-

based working set assessment scheme. In the figure, “n-bit” indicates the voting-

based control scheme with an n-bit saturating counter that decides the length

of a voting period. When the counter of each thread is saturated, the scheme

performs locality assessment for the thread and votes the result of the voting

period. The horizontal axis indicates the class of benchmarks, and the vertical

axis means the energy consumption normalized by that in the case of “without

the voting scheme.” From this figure, it is demonstrated that the voting-based

partitioned cache can reduce the energy consumption for the benchmarks in

29

2.4. Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

I II III AVG.

N
o

r
m

a
li

z
e
d

 I
P

C

13-bit 12-bit 11-bit 10-bit 9-bit

8-bit 7-bit 6-bit 5-bit 4-bit

Figure 2.6: Performances in the case of a single-core processor.

Classes I and II. This indicates that the superiority of the voting-based scheme

over the without-voting one becomes significant if cache accesses of the bench-

marks in Classes I and II often include exceptional behaviors. In this figure, the

energy consumption monotonically decreases with the number of counter bits.

This is because that the short voting periods help the voting-based scheme to

finely distinguish the periods including exceptional behaviors from the other pe-

riods. As a result, the voting-based partitioned cache can find a lot of chances to

reduce the number of allocated ways.

Figure 2.6 shows performances by the voting-based partitioned cache. In this

figure, the horizontal axis indicates the class of benchmark. The vertical axis

indicates the relative IPC, which is the IPC normalized by that of the without-

voting partitioned cache. This figure shows that performance degradations are

less than 1% on an average. Therefore, the voting-based scheme does not give a

30

2.4. Evaluations

harmful effect on performances.

Figure 2.6 also shows that the performances of the benchmarks in Class I

slightly degrade. However, the performance degradation can be reduced if the

number of counter bits is large, hence the negative performance impact of the

proposed scheme is small enough. In addition, for the benchmarks in Class

II, the voting-based partitioned cache can attain the same performance as the

without-voting one. This is because their DVRs are low and hence they do not

often cause exceptional behaviors. Therefore, these two caches similarly adjust

the allocation, resulting in the lesser performance degradation of Class II than

that of Class I. Finally, for every benchmark in Class III, the voting-based par-

titioned cache can achieve the same performance as the without-voting one. As

their DVRs are zero and exceptional behaviors do not occur, there is no differ-

ence between their cache control results.

Moreover, Figures 2.5 and 2.6 show that the voting-based scheme can im-

prove energy efficiency. Even though energy consumptions are significantly re-

duced, performance degradations are moderate. For example, the voting-based

partitioned cache with a 13-bit saturating counter can achieve a 2.8% reduction

in energy consumption while a 0.2% performance degradation on an average.

The number of counter bits can be also adjusted so as to make the cache more

low-energy-oriented. The cache with an 8-bit saturating counter can achieve a

15% reduction in energy consumption while a 1% performance degradation on

an average. Even in the worst performance case of soplex, the scheme can re-

duce energy consumption by 35%, while a 7% performance degradation. These

results indicate that the proposed scheme can improve energy efficiency of the

cache with the power-aware dynamic cache partitioning by ignoring exceptional

31

2.4. Evaluations

0

0.2

0.4

0.6

0.8

1

I-I I-II I-III II-II II-III III-III AVG

R
el

a
ti

v
e

W
ei

g
h

te
d

 S
p

ee
d

u
p

w/o voting 10-bit voting

Figure 2.7: Performances in the case of multi-thread execution on the 2-core
CMP.

behaviors. In the case of lower bit saturating counters, from 7-bit to 4-bit in Fig-

ures 2.5 and 2.6, the performance and the energy monotonically decrease with

the number of counter bits. These results suggest that the number of counter

bits is not very small to avoid significant performance degradation by the pro-

posed scheme.

2.4.3 Evaluation Results of a 2-Core CMP

This section shows the evaluation results of the voting-based partitioned cache

in the case of multi-thread execution on a 2-core CMP, by the performance and

the energy consumption. Considering the number of benchmarks in Table 2.2,

120 combinations of two threads are generated. In this way, these combinations

are grouped into five combination classes: I-I, I-II, I-III, II-II, II-III, and III-III,

each of which denotes classes of two benchmarks. Hereafter, the results are

shown by an average value of each combination class.

32

2.4. Evaluations

A performance metric used to evaluate overall performance of CMPs is Weighted

Speedup [55], which is defined as follows.

(WeightedSpeedup) =
N−1∑
i=0

MultiIPCi

SingleIPCi

. (2.5)

Here, N is the number of threads, SingleIPCi is the original performance of the

i-th thread in the case of single-thread execution. MultiIPCi is the performance

of the i-th thread in the case of multi-thread execution. The performances of

both SingleIPCi and MultiIPCi are measured in IPC. Since the performance is

normalized by IPC of single-thread execution, the metric becomes fair for low

IPC threads, unlike throughput that is simply the sum of IPC of all threads.

The performances are normalized by those without the power-aware dynamic

cache partitioning mechanisms.

In the following evaluation, 10-bit saturating counters for the proposed scheme

are used. This is because the voting-based partitioned cache can achieve 99%

performance on an average compared with the conventional cache, in which a

thread can use the entire capacity, and performance degradation is moderate.

In addition, the results are normalized by those of the conventional cache, to

compare the cache with the voting-based partitioned cache with not only the

without-voting partitioned one but also the conventional one.

Figure 2.7 shows the performance of each combination class. The horizon-

tal axis shows the combination class name. The vertical axis shows relative

weighted speedup, which is normalized by that of the conventional cache with-

out partitioning. In the figure, “w/o voting”, and “10-bit voting” mean the without-

voting partitioned cache, and the voting-based one with the 10-bit counters,

respectively. Figure 2.7 shows that the performances of the voting-based par-

titioned cache are lower than those of the without-voting one. However, their

33

2.4. Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

I-I I-II I-III II-II II-III III-III AVG

R
el

a
ti

v
e

E
n

er
g
y

w/o voting 10-bit voting

Figure 2.8: Energy consumptions in the case of multi-thread execution on the
2-core CMP.

performance difference is about 1% and quite small as discussed in the pre-

vious section. Moreover the voting-based partitioned cache can improve the

performance compared with the conventional cache. Hence, the voting-based

partitioned cache still maintains the performance improvements by the effect of

cache partitioning, avoiding inter-thread kickouts.

In terms of energy efficiency, the voting-based scheme is superior to the

without-voting scheme. Figure 2.8 shows the average energy consumption for

executing thread combinations in each combination class. Figures 2.7 and 2.8

suggest that the voting-based partitioned cache can reduce the energy consump-

tion by about 10% on an average without severe performance degradations; the

performance degradation is 0.4% on an average in this evaluation. In all the

experimented benchmark combinations, the maximum energy reduction is 24%

34

2.4. Evaluations

0

0.2

0.4

0.6

0.8

1

4-core 6-core

R
el

a
ti

v
e

W
ei

g
h

te
d

 S
p

ee
d

u
p

w/o voting 10-bit voting

(a) Performances

0

0.2

0.4

0.6

0.8

1

4-core 6-core

R
el

a
ti

v
e

E
n

er
g
y

w/o voting 10-bit voting

(b) Energy consumptions

Figure 2.9: Performances and energy consumptions in the case of the 4-core and
6-core CMPs.

while the maximum performance degradation is 2%. Accordingly, the voting-

based scheme can improve the energy efficiency of the cache with the power-

aware dynamic cache partitioning mechanism.

2.4.4 Evaluation Results of 4-Core and 6-Core CMPs

To confirm the potential of the proposed scheme in many-core environments,

performance evaluations using 4-core and 6-core CMPs are carried out. In the

experiments, the benchmarks in Class I is only used since they have large im-

pacts on the voting-based partitioned cache as observed in the previous sections.

Figure 2.9 shows the average weighted speedups and the energy consumptions

by 4-core and 6-core CMPs in each scheme. The result of the 4-core CMP shows

the average of the results of 35 combinations, each of which consists of four

benchmarks. Likewise, the evaluation of the 6-core CMP shows the average of

the results of seven combinations, each of which consists of six benchmarks.

35

2.4. Evaluations

Although the energy consumptions of the voting-based partitioned cache are

reduced in the 2-core CMP, the performances and the energy consumptions of

the voting-based partitioned cache are comparable with that of the without-

voting partitioned one in both the 4-core CMP and the 6-core CMP. Observing

partitioning behaviors, inactivation of the ways hardly occurs in both the par-

titioned caches because a 2MB cache is too small to be shared by the 4 cores

or 6 cores. This means that the threads require more ways while there is no

inactivated way, and hence the energy consumptions are not reduced in the 4-

core and the 6-core CMPs. Therefore, to achieve energy reduction in many-core

environments by the proposed scheme, it is necessary that cache capacity and

associativity are more larger than those of the experimented environments, re-

spectively.

36

2.5. Conclusions

2.5 Conclusions

The power-aware dynamic cache partitioning mechanisms are promising to re-

alize energy-efficient computing on multi-core processors. In these mechanisms,

it is important to accurately estimate the number of ways required by a thread,

because inaccurate resizing of the cache degrades energy efficiency. This chap-

ter has discussed exceptional behaviors of cache accesses and their effects on the

locality assessment results to be used to estimate the number of required ways.

To reduce the negative effects, this chapter proposed a voting-based working set

assessment scheme that decides the number of activated ways based on majority

voting of the results in several short periods.

By using the proposed scheme for the power-aware dynamic cache partition-

ing mechanism, the power consumption is decreased by up to 24%, and 10%

on an average without significant performance degradation in the case of the

2-core CMP. These results suggest that the power-aware dynamic cache parti-

tioning mechanism with the proposed scheme can make the shared cache more

energy-efficient than that with the conventional scheme. In addition, the pro-

posed scheme can still improve energy efficiency in the cases of CMPs with four

and six cores. Moreover, the results also show that the proposed scheme can

find a better trade-off between performance and energy by adjusting the length

of a voting period. In the case of an appropriate voting period length, the perfor-

mance degradation induced by the proposed scheme becomes quite small.

37

CHAPTER 3. A CAPACITY-EFFICIENT INSERTION POLICY FOR
ON-CACHE DATA MANAGEMENT

Chapter 3

A Capacity-efficient Insertion

Policy for On-Cache Data

Management

3.1 Introduction

One important technical issue of the power-aware dynamic cache partitioning

mechanism is the existence of dead-on-fill blocks [28], which are blocks occupied

by the data that are not reused after being stored in the cache. In recent years,

various applications have become more complex and its data set becomes larger.

As a result, some applications use most data only once, others take a long time to

reuse data. If such data are once inserted in the cache, they become dead-on-fill

blocks and are evicted from the cache without being reused. In the case of a lot

of dead-on-fill blocks, the power-aware dynamic cache partitioning mechanism

would allocate an enough number of ways to the thread to store both reusable

blocks and dead-on-fill ones, even though dead-on-fill blocks do not contribute

38

3.1. Introduction

8 7 6 5 4 3 2 1

A B C D E F G H

K

eviction

MRU LRU

Figure 3.1: Concept of the LRU chain (focusing on a single set of an 8-way set-
associative cache).

to performance improvement but consume energy. Accordingly, there is room to

reduce the number of allocated ways to the threads by reducing the number of

dead-on-fill blocks in the cache.

In addition, dead-on-fill blocks need a long time to be evicted if the Least

Recently Used (LRU) replacement policy is used for cache data management.

The LRU replacement policy is commonly used as a data management policy

of cache memories because data management based on the temporal locality

of reference have a positive impact on performance for almost all applications.

Based on the temporal locality, the policy assumes MRU (Most Recently Used)

data have the highest probability to be reused. To show the management of the

LRU replacement policy in this chapter, the resident priority of each block is

indicated using the LRU chain [56], which is a structure to manage the resident

priority of each block. Figure 3.1 depicts the LRU chain of a set in an 8-way

set-associative cache. The left-most side of the LRU chain (K=8) is the highest

resident priority position, i.e., the MRU position. The right-most side of the

LRU chain (K=1) is the lowest resident priority position, the LRU position. In

the LRU replacement policy, if a newly coming block is inserted into the LRU

chain, the block is placed at the MRU position. At the same time, the block at

the LRU position is evicted and is written back to the lower-level in the memory

hierarchy. The resident priorities of the other blocks decrease; the block that was

placed at n-th LRU position (K = n) moves to the (n− 1)-th position (K = n− 1),

39

3.1. Introduction

where 2 ≤ n ≤ 8. However, such a priority management method does not care

about dead-on-fill blocks. Every new block is placed at the MRU position. This

means that the highest resident priority is also given to dead-on-fill blocks as

well as reusable ones. Once dead-on-fill blocks are placed at the MRU position,

they require a long time to be placed at the LRU position, and to be evicted.

Especially, the power-aware dynamic cache partitioning mechanism is likely

to suffer from dead-on-fill blocks. In general, the mechanism is applied to the

last-level cache memory (LLC), which is the nearest cache to the main memory.

This is because LLC has the largest impact on energy and inter-thread cache

conflicts. In recent years, capacity and associativity are growing in LLC, and

the growth of associativity increases the length of the LRU chain. If the length

becomes longer, the eviction of dead-on-fill blocks requires a longer time than

the case of the lower associativity cache. As a result, the number of dead-on-

fill blocks in the cache increases. If dead-on-fill blocks are evicted as early as

possible, the power-aware dynamic cache partitioning mechanism can become

more efficient.

This chapter proposes a new cache insertion policy named dynamic LRU-

K insertion policy to evict dead-on-fill blocks earlier. While the conventional

LRU policy places a newly coming block at the MRU position that is the high-

est resident priority position, the proposed policy inserts a new block into the

K-th LRU position that is the K-th lowest resident priority position in an n-

way set associative cache (1 ≤ K ≤ n). Furthermore, the policy evaluates the

reusability of cache blocks and dynamically determines K during execution. As

a result, the proposed policy can evict dead-on-fill blocks earlier than the LRU

policy, while keeping reusable blocks. If the number of dead-on-fill blocks in the

cache is reduced, the power-aware dynamic cache partitioning mechanism can

40

3.1. Introduction

deactivate the ways storing dead-on-fill blocks without significant performance

degradation. Therefore, the proposed policy allows the mechanism to carry out

capacity-efficient resizing.

The rest of this chapter is organized as follows. Section 3.2 describes the mo-

tivation and related work. Section 3.3 proposes the dynamic LRU-K insertion

policy for dynamic cache resizing mechanisms. In Section 3.4, the proposal is

evaluated in terms of energy consumption and performance. Section 3.5 con-

cludes this chapter.

41

3.2. Motivation

3.2 Motivation

3.2.1 Related Work

Data management policies are important for improving the cache efficiency, and

a lot of researches have been performed in this field. In this chapter, the main

idea to reduce dead-on-fill blocks is to change the position in the LRU chain to

which a new block is inserted, called an insertion position. The Segmented LRU

(SLRU) replacement policy [57] was originally proposed for cache management

of a disk system. Its basic concept is the same as the proposal in this chapter.

However, the insertion position, called the SLRU parameter, is not discussed

well in [57]. They only indicate that the length between the MRU position and

the insertion position should be 60-80% of the overall length of the LRU chain.

Qureshi et al. proposed the adaptive insertion policy [58] and Jaleel et al. pro-

posed its enhanced version [59], in which the insertion position is switched ei-

ther the MRU position or the LRU position. However, their policies do not insert

blocks into the other positions. Khan et al. [60] presented an insertion position

selection mechanism. Using decision tree analysis, the mechanism selects the

insertion position for each application from the candidate positions. The num-

ber of candidates is still limited because of the verification overhead of decision

tree analysis. In addition, the limit of the insertion position deprives chances to

further improve the reusability or to keep the high performance. Compared with

the above studies, this chapter aims at the flexible configuration of the insertion

position without a significant increase in its hardware and control overheads.

The proposed policy can insert any priority position in the LRU chain.

There are some insertion policies based on other replacement policies. The

dynamic re-referential interval prediction (DRRIP) [56] was based on the Not

42

3.2. Motivation

Recently Used (NRU) replacement policy, which is employed in the industrial

microprocessors [61, 62]. However, the insertion position of their proposal is

limited to three positions. While the performance of the original NRU policy

does not exceed that of the LRU policy, the performance of DRRIP is higher

than that of the LRU policy. This fact indicates that the flexibility of insertion

position is also important to improve the performance for various replacement

policies. The pseudo insertion/promotion policy (PIPP) [63] changes the inser-

tion position flexibly to any priority positions. However, their policy is based on

the frequency-based promotion used in the Least Frequently Used policy [64].

In the frequency-based promotion, a block is promoted to the one higher pri-

ority position when the block is accessed. This is the disadvantage of PIPP

because the frequency-based promotion significantly reduces the reusability of

the data preferred by the recency-based promotion. In the recency-based promo-

tion, the accessed blocks are promoted to the highest resident priority position

as with the LRU replacement policy. Chaudhuri [28] have indicated that the

performance of PIPP does not exceed that of other intelligent insertion poli-

cies. Chaudhuri has also proposed the Pseudo-LIFO policy (pLIFO) in his paper.

However, the policy does not have any promotion activity, and the performance

of pLIFO cannot exceed that of DRRIP in [56]. These results also let us confirm

that the recency-based promotion used in the major cache management policies

is basically important to improve the performance of cache memories. Based on

these observations, this chapter focuses on the insertion position for the LRU

replacement policy, the representative policy with the recency-based promotion.

Flexibility of the insertion position for the other policies with the recency-based

promotion, e.g., the NRU replacement policy, should be discussed in future work.

Another advanced replacement policy, the Shepherd Cache [65] was proposed

43

3.2. Motivation

for emulating the Belady’s OPT [66] that is an optimal replacement algorithm

using offline profiling. Recently, the performance gap between the LRU re-

placement policy and the Belady’s OPT is growing as the associativity of set-

associative caches is increasing. This gap was investigated in [67]. However,

to emulate optimal replacement online, a large hardware overhead is required.

This fact is not preferable for dynamic cache resizing mechanisms such as the

power-aware dynamic cache partitioning mechanism because they aim at energy

reduction. Some researches combined different two policies, especially the LRU

policy and the LFU policy. ARC [68] divides a cache into two parts. One part is

managed by the LRU policy and the other part is by the LFU policy. These parts

are dynamically resized by cache access characteristics. Adaptive Cache [69]

tracks the replacement activity of two policies, and a victim block is selected

by imitating the policy that is achieving the smaller miss rate. These policies

require additional tag arrays to track the activity of the two policies, and their

hardware costs are still large. Loh [70] has proposed the adaptive multi-queue

policy specialized for 3-dimensional DRAM caches.

Dead-block prediction methods have also been proposed to reduce the dead-

on-fill blocks. The focus of these methods is on a dead block, which is reusable

but no longer reused. While the concept of dead-on-fill blocks is included in the

concept of dead blocks in a larger sense, this dissertation focuses on only dead-

on-fill blocks. This is because the ratio of dead-on-fill blocks is larger than that

of dead blocks, which will be shown in Figure 3.2 in Section 3.2.2. In future, both

dead-on-fill blocks and dead blocks should be considered because early eviction

of dead blocks also has the potential to reduce the number of ways even in the

benchmark with a lot of reusable lines. Burger et al. have investigated the ra-

tio of dead blocks in the cache [71]. Their results also indicate that the ratio of

44

3.2. Motivation

dead blocks is large, in which dead blocks include dead-on-fill blocks. Chaud-

huri [28] have investigated the number of accesses to each block, in which the

block becomes dead-on-fill one.

Dead-block prediction is used for two objectives. One objective is energy re-

duction. Cache Decay [72], IATAC [73], and Adaptive Mode Control [74] have

been proposed to turn off cache lines that store dead blocks. HDOS [75] can im-

mediately turn off these lines by detecting memory instructions that leave dead

blocks in the cache. Drowsy Cache [76] changes the mode of cache lines includ-

ing dead blocks into the drowsy mode, in which static energy consumption is

reduced by a lower supply voltage. The other objective is performance improve-

ment. IRGD [77] predicts dead blocks using inter-reference gap, which is the

interval between two accesses to the same block. The counter-based cache re-

placement [78] predicts dead blocks by counting the number of accesses and its

histories. Cache Bursts [79] makes tolerant predictions against irregular cache

accesses while the prior prediction methods detect dead blocks by histories of

cache accesses.

Cache bypassing methods can also reduce dead-on-fill blocks, in which the

data causing dead-on-fill blocks are bypassed and not stored in the cache. Tyson

et al. [80] have proposed the first approach of cache bypassing using a table

structure associated with load and store instructions, as with the 2-bit branch

prediction scheme. Johnson et al. [81] have proposed cache bypassing based on

address location and access frequency of the data. In addition, Johnson et al.

have also proposed a bypass buffer that stores data that are reused in a very

short term. Such data are valuable to be stored in the cache, but are likely to

become dead blocks immediately. The bypass buffer stores such data instead

45

3.2. Motivation

of cache memories. The counter-based cache replacement and bypassing algo-

rithm [78] can realize bypassing of dead-on-fill blocks using same hardware with

dead-block prediction. Sandberg et al. [82] have proposed a software-based ap-

proach using a prefetch instruction for non-temporal data in a real micropro-

cessor [83]. They use StatStack [84] that is an approximate profiling method

of stack distance profiling [49]. However, in general, prediction misses on by-

passing may cause a large performance degradation because the blocks are not

stored at all. The trade-off between performance and energy reduction by cache

bypassing for the power-aware dynamic cache partitioning mechanism is beyond

the scope of this dissertation and should be discussed in future work.

Furthermore, this chapter focuses on the effect of dead-on-fill blocks to the

power-aware dynamic cache partitioning mechanism. Dead-on-fill blocks occupy

the cache without performance contribution. Hence, the existence of dead-on-fill

blocks waste the allocated ways to the threads, i.e., the ways are overwhelmed

with dead-on-fill blocks. If this problem is solved, it is possible to improve the

energy efficiency of the power-aware dynamic cache partitioning mechanism.

Previous researches about the mechanism do not discuss this point. The contri-

butions of this chapter are to propose a new insertion policy for early eviction

of dead-on-fill block and to clarify its effectiveness on the power-aware dynamic

cache partitioning mechanism.

3.2.2 Cache Block Reusability

To understand how many data are reused, reusability that is the ratio of reusable

blocks and dead-on-fill blocks is preliminary investigated. The simulation for

investigating the cache block reusability is carried out as follows. A simulator

46

3.2. Motivation

Table 3.1: Parameters of the simulated architecture to investigate reusability.

Core
8-issue out-of-order, 2GHz, 32nm CMOS technology
Memory
L1 I-Cache: 32kB, 2-way, 64B-line, 1 cycle latency
L1 D-Cache: 32kB, 2-way, 64B-line, 1 cycle latency
L2 Cache: 512kB, 8-way, 64B-line, 10-cycle latency
L3 Cache: 2MB, 32-way, 64B-line, 20-cycle latency
Main Memory: 200-cycle latency

based on the M5 simulator system [50] and CACTI 6.5 [51, 52, 53] has been de-

veloped. Parameters used in the simulation are listed in Table 3.1. The power-

aware dynamic cache partitioning mechanism is used in the last-level L3 cache.

The mechanism can adjust a trade-off between performance improvement and

energy reduction using some parameters. For simplicity of the discussion in this

chapter, a performance-oriented parameter configuration is used, which reduces

the energy consumption as long as the performance loss is not significant. Cache

resizing is performed every 5 million cycles. Benchmark programs examined on

the simulator are selected from the SPEC CPU2006 Benchmark suite [54]. Each

simulation is done by executing 2 billion instructions after 1 billion instructions.

Figure 3.2 shows the ratio of reusable blocks and dead-on-fill ones in the

L3 cache in every benchmark. A lot of dead-on-fill blocks exist in most of the

benchmarks. This figure brings out that 63% of all blocks are dead-on-fill blocks

on an average. In addition, the ratio of dead-on-fill blocks to the overall blocks

significantly depends on the benchmark programs. For example, 30% of blocks

are dead-on-fill ones in h264ref, and 93% in namd.

From these observations, it is clear that a large part of the cache is filled

47

3.2. Motivation

0%

20%

40%

60%

80%

100%

h2
64

re
f

om
ne

tp
p

as
ta

r

bz
ip

2

hm
m

er

so
pl

ex

de
al

II

go
bm

k

G
em

sF
D

TD
m

cf

sj
en

g

na
m

d

AV
G

.

R
eu
sa
b
il
it
y

reusable blocks dead-on-fill blocks

Figure 3.2: Cache block reusability.

with dead-on-fill blocks. They would decrease the benefit gained from the power-

aware dynamic cache partitioning mechanism. If the ratio of dead-on-fill blocks

can be reduced, the mechanism can reduce the allocated cache parts that are

available for a running thread. Consequently, the data management policy

needs to consider dead-on-fill blocks more proactively, and to reduce the number

of them in the cache.

48

3.3. Dynamic LRU-K Insertion Policy

3.3 Dynamic LRU-K Insertion Policy

3.3.1 Policy Overview

To reduce dead-on-fill blocks in the cache, this paper proposes a new insertion

policy named dynamic LRU-K insertion policy. In this policy, a new block is

inserted at the K-th LRU position in the LRU chain. Moreover, the value K is

dynamically adjusted for each application and its dynamic changes of reusability

characteristics. As a result, the dynamic LRU-K insertion policy can evict dead-

on-fill blocks earlier than the LRU policy that always inserts new blocks at the

MRU position irrespective of their non-reusability. This improves the efficiency

of cache usage.

The power-aware dynamic cache partitioning mechanism can enhance capacity-

efficient allocation by using the proposed policy. Figure 3.3 shows the difference

in behavior between the LRU policy and the proposed policy. In this figure,

the insertion position in the proposed policy is fixed to the fourth LRU position

(K = 4) as an example. To store all reusable blocks in this access stream, the

LRU replacement policy requires the whole LRU chain. On the other hand, the

proposed policy requires only a part of the LRU chain from the highest resident

priority position to the third LRU position. This means that the LRU replace-

ment policy requires eight ways while the proposed policy only requires six ways

to keep reusable blocks, where the required length of the LRU chain is equal

to the number of ways in the set-associative cache. As shown in this figure,

reusable blocks can be stored using fewer ways, resulting in lowering the cache

capacity activated by the power-aware dynamic cache partitioning mechanism.

49

3.3. Dynamic LRU-K Insertion Policy

Access

Access

Access

Access

8 7 6 5 4 3 2 1

A B C D E F G H

A B C D E F GP

A B C D E FQ P

A B C D E F G H

A B C D E F GP

A B C D E FQ P

A B C D ER Q P A B C D ER Q P

A B C DS R Q P A B C D S R Q P

A B C DSR Q P A B C D SR Q P

8 7 6 5 4 3 2 1

LRU Replacement Policy LRU-K Insertion Policy (K = 4)

Reusable blocks Dead-on-fill blocks

P

Q

R

Access R

S

K K

Figure 3.3: Comparing the LRU replacement policy with the LRU-K insertion
policy (K = 4).

3.3.2 Principle of Optimal Insertion Position

In the power-aware dynamic cache partitioning mechanism, the resized cache

capacity should be as small as possible unless reusable blocks are evicted. Hence,

the policy has to decide the optimal insertion position under this condition.

There is a trade-off when deciding the optimal insertion position. Consider-

ing early eviction of dead-on-fill blocks, value K should be as small as possible.

However, to avoid eviction of reusable blocks, K should not be too small. To keep

a balance between these two factors, the insertion position adjusted by K is de-

cided based on the profile data, each of which records the position where a block

is reused for the first time.

Figure 3.4 illustrates how the resident priority of a new cache block X changes

in a set of an 8-way set-associative cache with the LRU replacement policy. First,

X is inserted at the MRU (K = 8) position. After four misses occur, X is placed

at the fourth LRU position. Then, when the first reuse of X occurs, the block is

50

3.3. Dynamic LRU-K Insertion Policy

X A B C D E F GA miss occurs,
and a new block X comes.

8 7 6 5 4 3 2 1

P Q R S X A B CAfter four misses,
block X reaches the 4th LRU position.

X P Q R S A B CThe first reuse to X occurs.

Ti
m
e

Resident priority (K)

Figure 3.4: First reuse to a newly inserted block X and its resident priority
change in the cache.

again moved to the MRU position. Focusing on this block, the optimal insertion

position is the fifth LRU position. Even if X is inserted at the fifth LRU position,

the first reuse of X occurs before X is evicted.

The position where X is reused for the first time is called the first reuse

position of X. Figure 3.5 shows an example of histograms of first reuse positions.

The vertical axis means the frequency of first reuses at each LRU position. The

left-side histogram is a typical one in the case where a new cache block is always

inserted at the MRU position. This histogram indicates that first reuses do not

occur at the third, second, and first LRU positions. Therefore, a cache block

that reaches the third LRU position without being reused should be evicted. In

this situation, the insertion position of a new cache block should be changed to

the fifth position as shown in the right-side histogram. As a result, dead-on-fill

blocks are evicted earlier without evicting reusable blocks. It should be noted

that the total number of first reuses in the left-side histogram is the same as that

in the right-side one. This means that the newly coming reusable blocks are not

evicted before being reused, even after the change of the insertion position.

51

3.3. Dynamic LRU-K Insertion Policy

8 7 6 5 4 3 2 1
K

Th
e
nu

m
be

r o
f
fir
st
 re

us
es

8 7 6 5 4 3 2 1
K

Th
e
nu

m
be

r o
f fi

rs
t r
eu

se
s

When the insertion position at K=8 When the insertion position at K=5

Figure 3.5: Profiling results of the number of first reuses to the newly inserted
blocks in each priority position.

3.3.3 An Adjusting Mechanism of Insertion Position

A key to achieve automatic adjustment of the insertion position is to find the

position of the right-most edge of the histogram of first reuse positions. At lower

LRU positions after this edge position, there is no more first reuse in the his-

togram. As the insertion position moves to the lower LRU position, the right-

most edge of the histogram also becomes closer to the LRU position. When the

right-most edge reaches the LRU position, the insertion position becomes the

lowest under the condition of not reducing first reuses. To find this insertion

position, it is necessary to count the first reuses of blocks at the LRU position,

because the number of first reuses typically decreases with K due to the tempo-

ral locality of reference.

In addition, phase changes in executing an application affect cache block

reusability. This means that the shape of the histogram changes during the

execution. Hence, the insertion position K should be changed at a fixed interval

according to the algorithm described below.

52

3.3. Dynamic LRU-K Insertion Policy

K :=

 K + 1 (if Cf,LRU ≥ A)

K − 1 (if Cf,LRU < A),
(3.1)

where,

K = (the insertion position in the LRU chain),

Cf,LRU = (the number of first reuses at the LRU

position),

A = (the threshold for judgement of first reuses).

According to Equation (3.1), the insertion position is shifted to the right by

reducing K if the number of first reuses at the LRU position is small. On the

other hand, the insertion position is moved to the left if the number of first

reuses at the LRU position is large. As a result, the insertion position is ad-

justed to be the lowest under the condition of not causing significant perfor-

mance degradation. Accordingly, it is expected that the power-aware dynamic

cache partitioning mechanism can activate only the minimum number of ways

to keep the performance.

53

3.4. Evaluations

3.4 Evaluations

3.4.1 Experimental Setup

In this section, the energy consumption and the performance of the power-

aware dynamic cache partitioning mechanism with the proposed policy are eval-

uated. The proposed policy has been incorporated into the simulator used in

Section 3.2.2. Simulation parameters are the same as shown in Table 3.1. The

proposed policy changes the insertion position K every 5 million cycles, which

is the same as the interval of changing the number of activated ways in the

power-aware dynamic cache partitioning. Benchmark programs examined on

the simulator are selected from the SPEC CPU2006 Benchmark suite [54]. Each

simulation is done by executing 2 billion instructions after 1 billion instructions.

3.4.2 Evaluation Results of a Single-Core Processor

Insertion Position

To simply confirm that the policy can change the insertion position, Figure 3.6

shows the average insertion position by the proposed policy. The vertical axis

indicates the average insertion position, which is calculated by normalizing

average K by the average number of activated ways during execution. The

metric is used in this evaluation because the maximum value of K depends

on the number of allocated ways and changes during execution. As the graph

bar becomes short, the insertion position becomes closer to the LRU position.

Eight bars represent the average insertion positions of all the benchmarks when

A = 1, 2, 4, 8, 16, 32, 64, 128, respectively. This figure shows that the insertion posi-

tion averaged over all the benchmarks is about 0.86 when A = 1. This indicates

54

3.4. Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64 128A
v

er
a

g
e

In
se

rt
io

n
 P

o
si

ti
o

n

Threashold A

Figure 3.6: Average insertion position of all the benchmarks by the proposed
policy.

that the proposed policy can move the insertion position closer to the LRU posi-

tion than the LRU policy. Moreover, as the threshold A increases, the average

insertion position becomes closer to the LRU position.

Energy Consumption and Performance

In the following evaluation, the benchmark programs are classified into four cat-

egories from two viewpoints. In terms of reusability, the benchmarks are first

classified into two categories, high(H) and low(L). The proposed policy is effec-

tive for the benchmarks in the L category because they have many dead-on-fill

blocks. The benchmarks in each category are further classified into two classes,

long(L) and short(S), from the viewpoint of first reuse distance, which is the dis-

tance between the insertion position and the first reuse position. The distance of

55

3.4. Evaluations

Table 3.2: Benchmark classification by reusability and first reuse distance.

First reuse distance
Long (L) Short (S)

Reusability High (H) astar h264ref
hmmer omnetpp
bzip2 soplex

Low (L) gobmk dealII
mcf GemsFDTD

sjeng namd

each benchmark is assessed using the length between the insertion position and

the LRU position when A = 1, where the distance is normalized by the num-

ber of activated ways decided by the power-aware dynamic cache partitioning

mechanism with the conventional LRU replacement policy. Between these two

categories, the proposed policy works better for the benchmarks in the S cate-

gory because the insertion positions of the benchmarks in the S category tend to

become closer to the LRU position than those in the other categories.

Hereafter, these four categories are denoted by the combination of two let-

ters. For example, the HL category includes benchmarks that are included in

both the high(H) reusability category and the long(L) distance category. Table 3.2

shows the classification results. From the above discussions, it is predicted that

the proposal is expected to be effective especially for the benchmarks in the LS

category.

Figure 3.7 shows the energy consumption of the L3 cache with the power-

aware dynamic cache partitioning mechanism and the dynamic LRU-K inser-

tion policy. Here, the energy consumption is normalized by that with the LRU

replacement policy. The horizontal axis shows the benchmark groups as defined

in the previous paragraph. In the left-side graph, eight bars in each category

56

3.4. Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

HL HS LL LS AVG.

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

1 2 4 8 16 32 64 128 CIP

Figure 3.7: Energy consumption of the L3 cache on the single-core processor.

indicate the energy consumptions with A = 1, 2, 4, 8, 16, 32, 64, and 128, respec-

tively. To compare the proposed policy with a policy whose insertion position is

limited and not flexible, the right-most bar shows the results obtained with the

center insertion policy (CIP), which simply inserts blocks at the middle between

the LRU and MRU positions, i.e., the fourth LRU position if eight ways are acti-

vated as a result of dynamic resizing. This graph shows that the proposed policy

can reduce the energy consumption of the L3 cache. When A = 1, the energy

consumption is reduced by 6% on an average.

Figure 3.8 shows the normalized IPC to evaluate the performance of the

single-thread execution, which is Instruction Per Cycle (IPC) normalized by that

of the L3 cache with the power-aware dynamic cache partitioning mechanism

and the LRU replacement policy. The horizontal axis shows the benchmark cate-

gories. In all the categories, the performance degradation by the proposed policy

57

3.4. Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

HL HS LL LS AVG.

P
e
r
fo
r
m
a
n
c
e

1 2 4 8 16 32 64 128 CIP

Figure 3.8: Performance on the single-core processor.

is not significant compared with the energy reduction. When A = 1, the max-

imum performance degradation is smaller than 1%. As a result, the proposed

policy can enhance the energy efficiency of the power-aware dynamic cache par-

titioning.

As predicted at the benchmark classification, the proposed policy can reduce

more energy consumption for the HS and LS categories than the HL and LL cat-

egories. Moreover, energy reduction of the LS benchmarks is larger than that of

the HS benchmarks. As a result, the proposed policy is the most effective for the

LS category. When A = 1, a maximum energy reduction of about 30% is achieved

for dealII, which is one of the benchmarks in the LS category.

Figures 3.7 and 3.8 also indicate trade-offs decided by threshold A. If A = 1,

the performance degradation is very small and therefore the energy reduction

58

3.4. Evaluations

is relatively small. As A increases, the performance degradation becomes indis-

pensable while the energy reduction becomes large. When A = 128, the policy

brings a 3% performance degradation with a 36% energy reduction on an aver-

age. These observations suggest that A is as small as possible if the performance

degradation is avoided by the proposed policy. On the other hand, by increasing

A, the proposed policy can prioritize a large energy reduction in compensation

for a certain performance degradation.

Comparing the proposed policy with CIP, the proposed policy can achieve a

higher energy efficiency. Figures 3.7 and 3.8 show that the proposed policy with

A = 64 achieves a lower energy consumption than that of CIP even though the

performances of both the proposed policy and CIP are the same. This is because

the proposed policy can change the insertion position more flexibly than CIP.

Reusability

In the both evaluations, energy consumption and performance monotonically

degrade as A increases. To find the optimal value of A, Figure 3.9 shows the

reusability, which is the ratio of reusable blocks in the cache. In the figure, the

vertical axis indicates the reusability, and the horizontal axis shows the results

of the benchmark categories and the average result of all the benchmarks. The

left-most bar in nine bars shows the reusability of the LRU replacement policy,

the other bars shows those of the proposed policy when A = 1, 2, 4, 8, 16, 32, 64,

and 128, respectively.

From the average results, it is observed that the proposed policy can im-

prove the reusability compared with the LRU replacement policy. These results

indicate that the proposed policy can reduce dead-on-fill blocks. However, the

effectiveness is limited when A is too large, e.g., A = 64, and 128 in the figure. In

59

3.4. Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

HL HS LL LS AVG.

R
eu
sa
b
il
it
y

LRU 1 2 4 8 16 32 64 128

Figure 3.9: Reusability improvement in various A of the proposed policy.

these cases, the proposed policy evicts even reusable blocks earlier, and hence

those blocks are changed into dead-on-fill blocks. Accordingly, A is an impor-

tant parameter that should be carefully configured. This result shows that the

reusability is the highest when A = 32 on an average. Hence, this value is the

optimal from the viewpoint of reusability in the simulated architecture.

Focusing on each benchmark category, the reusability of the proposed pol-

icy is improved in the HS, LL, and LS benchmarks. On the other hand, the HL

benchmarks hardly improve the reusability in higher A. The HL benchmarks

originally have high reusability, and their first reuse distances are very long.

Therefore, the proposed policy causes a lot of evictions of reusable blocks that

have long distances of first reuses. However, the reusability is still compara-

ble with the LRU replacement policy if A is smaller than 32. As a result, the

performance impacts are not significant, as shown in Figure 3.8.

60

3.4. Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 7 13 19 25 31 37 43 49 55 61

o
rm

a
li

ze
d

 E
n

er
g

y

Workloads

A=1 A=16 A=32

Figure 3.10: Energy consumption of the L3 cache on the 2-core CMP.

3.4.3 Evaluation Results of a 2-core CMP

This subsection evaluates the energy consumption and the performance of a 2-

core CMP. The simulation is performed by the 2-thread workloads, each of which

consists of 2 benchmarks. Hence, the number of workloads is 66 (= 12C2). Each

simulation is done by executing first 2 billion cycles of the simulated micropro-

cessor so that the experimented periods of all benchmarks do not change as

much as possible.

Figure 3.10 shows the energy consumption of the L3 cache with the proposed

policy. In the figure, the vertical axis indicates the energy consumption, which is

normalized by that of the power-aware dynamic cache partitioning mechanism

with the LRU replacement policy. The horizontal axis shows the workloads.

Here, the workloads are arranged in ascending order of the normalized energy.

61

3.4. Evaluations

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1 7 13 19 25 31 37 43 49 55 61N
o

rm
a

li
ze

d
 W

ei
g

h
te

d
 S

p
ee

d
u

p

Workloads

A=1 A=16 A=32

Figure 3.11: Performance on the 2-core CMP.

The three lines show the results of A = 1, 16, and 32, respectively. The results

with A = 1 indicate the normalized energy consumptions achieved when eviction

of reusable blocks is avoided as much as possible. The results with A = 16 or 32

show the normalized energy consumptions when the eviction of some reusable

blocks is allowed and the reusability becomes the higher, as shown in Figure 3.9.

In Figure 3.10, it is observed that the proposed policy can reduce the energy

consumption of the L3 cache with the power-aware dynamic cache partitioning

mechanism by about 2% on an average when A = 1. If A becomes larger, the

proposed policy can reduce more energy consumption. The proposed policy can

reduce the energy consumption by 11% and 19% on an average when A = 16 and

32, respectively. Furthermore, the number of workloads whose energy consump-

tion is obviously decreased increases with A.

Figure 3.11 shows Weighted Speedup [55] to evaluate the performances of

62

3.4. Evaluations

the multi-thread workloads. The performances are normalized by those of the

power-aware dynamic cache partitioning mechanism with the LRU replacement

policy. In Figure 3.11, the vertical axis shows the performance, and the horizon-

tal axis indicates the workloads. Three lines show the results with A = 1, 16, and

32, respectively. This figure indicates that the significant performance degrada-

tions do not occur in any workloads. The maximum performance degradations

are 2%, 3%, and 3% when A = 1, 16, and 32, respectively.

Additional performance improvements are obtained in some workloads. Es-

pecially, when A = 32, the maximum performance improvement of about 4%

is observed in the combination of bzip2 and hmmer, which is at the highest

performance workload when A = 32 in Figure 3.11. At the same time, the en-

ergy consumption does not change. This combination is the 57-th lowest energy

workload when A = 32 in Figure 3.10. In the case of the combination of astar

and hmmer when A = 32, both the performance improvement and the energy

reduction are achieved. The performance improvement is about 2%, the second

highest performance workload of A = 32 in Figure 3.11. At the same time, the

energy consumption is reduced by about 24%, the 22-th lowest energy work-

load when A = 32 in Figure 3.10. These results indicate that the reduction in

dead-on-fill blocks can improve the performance while the energy consumption

is reduced.

From these observations, it is clear that the proposed policy can contribute to

the reduction in dead-on-fill blocks and the improvement of cache block reusabil-

ity. As a result, the proposed policy can achieve energy reduction of the power-

aware dynamic cache partitioning without significant performance degradation,

and can achieve remarkable performance improvement in some cases.

63

3.4. Evaluations

3.4.4 Hardware Overhead

The implementation overhead of the proposed policy is discussed. The proposed

policy needs one bit per cache line to distinguish whether accesses to blocks

are first reuses or not. However, in a cache with 64-byte (512-bit) blocks, the

additional bit cost is less than 0.2% of all the bits of the L3 data array in the

experimented cache configuration. In addition, an access counter used to count

Cfirst,1, and a register specifying the insertion position K are required. These

hardware costs are negligible compared with the overall cache hardware. The

above discussions indicate that the proposed policy will be implemented at a low

overhead.

However, the power-aware dynamic cache partitioning mechanism and some

other dynamic cache resizing mechanisms need stack distance profiling [49]

based on the LRU replacement policy to decide the cache size to be allocated

to threads. In our experiments, the power-aware dynamic cache partitioning

mechanism stores the resident priority of the LRU chain of the LRU replace-

ment policy in addition to the resident priority of the proposed policy. This will

cause a non-ignorable overhead if this mechanism is naively implemented, i.e.,

additional five bits per line. The overhead is 1% of all the bits of the L3 data

array in the experimented cache configuration. In the future, we will develop an

approximate approach to stack distance profiling by using the LRU chain of the

proposed policy, and reduce the overhead to store the information of the LRU

chain of the LRU replacement policy.

64

3.5. Conclusions

3.5 Conclusions

In recent years, various applications have become more complex and its data

set becomes larger. As a result, some applications cause dead-on-fill blocks.

Dead-on-fill blocks may occupy the cache capacity while they do not contribute

to performance. This is because they are not reused after their insertion to cache

memories. Due to their existence, the power-aware dynamic cache partitioning

mechanism must activate much more cache area to maintain both reusable and

dead-on-fill blocks. As a result, the effect of the mechanism on energy efficiency

degrades.

To reduce dead-on-fill blocks in the cache, this paper has proposed the dy-

namic LRU-K insertion policy. The proposed policy can flexibly insert newly

coming blocks into any resident priority positions to keep a balance between

early eviction of dead-on-fill blocks and retainment of reusable blocks. There-

fore, the proposed policy enables the power-aware dynamic cache partitioning

mechanism to do efficient allocation without performance degradation by reduc-

ing only dead-on-fill blocks. Experimental results show that energy consumption

of the cache is reduced by up to 30%, and 6% on an average without significant

performance degradation in the single-core processor. Moreover, the simulation

results show that the proposed policy is also effective for the power-aware dy-

namic cache partitioning mechanism in the CMP.

65

CHAPTER 4. A THREAD SCHEDULING METHOD BASED ON WORKING
SET ASSESSMENT FOR CMPS

Chapter 4

A Thread Scheduling Method

based on Working Set Assessment

for CMPs

4.1 Introduction

This chapter focuses on inter-thread cache conflicts. In many CMPs, multiple

threads share a single cache, and CMP suffers from inter-thread cache conflicts.

Inter-thread cache conflicts have two causes, inter-thread kickouts (ITKOs) and

capacity shortage. ITKOs occur when newly coming data of a thread replaces

data of other threads in the cache. Capacity shortage occurs when the sum of

working set sizes of the threads becomes larger than the cache capacity.

Against ITKOs, the power-aware dynamic cache partitioning mechanism [24,

25, 26] discussed in the previous chapters has been proposed. However, one of

the problems in the mechanism is that it cannot avoid capacity shortage. The

mechanism should allocate the ways so that the working sets can be stored in

66

4.1. Introduction

the cache. However, the mechanism cannot do it in the case where threads with

large working sets share a cache, in which the sum of working set sizes of the

threads becomes larger than the cache capacity. As a result, performance does

not improve by the power-aware dynamic cache partitioning mechanism.

To avoid capacity shortage in the power-aware dynamic cache partitioning

mechanism, this chapter focuses on differences of working set sizes among threads.

Since the working set sizes of threads highly depends on the cache access char-

acteristics of threads, the sum of working set sizes of the thread combinations

that share a cache may be different from one thread combination to another. If

the threads with large working set sizes share a cache, capacity shortage occurs

and degrades the performance. However, if the threads with small working set

sizes share a cache, capacity shortage does not occur. The results of the pre-

liminary evaluation show that performance degradation by capacity shortage

becomes larger as the sum of working set sizes increases. Especially, perfor-

mance degradation becomes significant when the sum of working set sizes of

threads exceeds cache capacity.

In this chapter, to solve the cache capacity shortage problem, a thread schedul-

ing method based on working set assessment for CMPs is proposed. Recently,

a CMP includes multiple cache memories, each of which is shared by multiple

cores. In this case, the thread combinations sharing a cache memory can be flexi-

bly changed. Hence, the proposed thread scheduling method changes the thread

combinations so that the capacity shortage problem is alleviated. The proposed

scheduling method consists of two stages, assessment of working set sizes of

threads and decision of thread assignments to cores by a scheduling algorithm.

The algorithm decides the assignments so that threads with large working sets

do not share a same cache, and a thread with the largest working set is coupled

67

4.1. Introduction

with a thread with the smallest working set. As a result, the power-aware dy-

namic cache partitioning mechanism can allocate the enough number of ways to

the threads, resulting in performance improvement.

The rest of this chapter is organized as follows. In Section 4.2, the motivation

of this chapter from the viewpoint of inter-thread cache conflicts and related

work are described. Section 4.3 proposes the thread scheduling method based

on working set assessment. In Section 4.4, the proposed method is evaluated.

Finally, Section 4.5 concludes this chapter.

68

4.2. Motivation and Related Work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 IP
C

Executed Instruction (Billion Instructions)

Ammp and Gcc166 on SMT

Ammp performance

Figure 4.1: Performance of Ammp when simultaneously executed with Gcc166
on a SMT processor.

4.2 Motivation and Related Work

4.2.1 Inter-Thread Cache Conflicts

As discussed in Section 4.1, inter-thread cache conflicts have a major impact to

the performance of multi-thread execution. To clarify the effects of inter-thread

cache conflicts, preliminary evaluations are carried out. In these evaluations,

a simultaneous multithreading (SMT) processor executing two threads is simu-

lated. The processor has a two-level cache hierarchy. The threads used in the

simulations are selected from the SPEC CPU2000 benchmark suite [85].

First, simultaneous execution of ammp and gcc166 are examined. Figure 4.1

69

4.2. Motivation and Related Work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

L2
 c

ac
he

 m
is

s
ra

tio

Executed Instruction (Billion Instructions)

Ammp and Gcc166 on SMT

SMT-Ammp Ammp

Figure 4.2: L2 cache miss ratio of Ammp when simultaneously executed with
Gcc166 on a SMT processor.

depicts the performance of ammp in multi-thread execution by measured in In-

struction Per Cycle (IPC), which is normalized by the performance of single-

thread execution. From the figure, it is observed that the performance of multi-

thread execution gradually and significantly degrades in the period from 0.6 to

0.8 billion instructions. Figure 4.2 shows the miss ratio for ammp in the L2 cache.

The executed period of Figure 4.2 is the same as that of Figure 4.1. Figure 4.2

indicates the miss ratio of the L2 cache gradually and significantly increases

in the same period as with the performance degradation focused in Figure 4.1.

During the same period, the miss ratio of the L1 cache does not change com-

pared with that of single-thread execution. Therefore, the increase in the miss

ratio of the L2 cache occurs by inter-thread cache conflicts, which degrade the

performance of ammp.

Second, simultaneous execution of twolf and mcf is discussed. Figure 4.3

70

4.2. Motivation and Related Work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 IP
C

Executed Instruction (Billion Instructions)

Mcf and Twolf on SMT

Twolf performance

Figure 4.3: Performance of twolf when simultaneously executed with mcf on a
SMT processor.

indicates the performance of twolf in multi-thread execution in IPC, which is

normalized by IPC of single-thread execution. From the figure, it is observed

that the performance significantly degrades after executing 0.5 billion instruc-

tions. Figure 4.5 shows the L2 cache miss ratio of twolf. As with ammp, the

performance degrades as the miss ratio increases. On the other hand, Figure 4.4

shows the L1 cache miss ratio. Figures 4.3 and 4.4 indicate that the increase in

the L1 cache miss ratio in the period from 0.2 to 0.5 billion executed instructions

hardly affects the performance. Hence, the L2 cache has a larger impact on the

performance than the L1 cache.

From the above, it is observed that inter-thread cache conflicts cause the

increase in the miss ratio in the shared caches, and cause significant perfor-

mance degradation. Moreover, last-level caches have larger impacts on the per-

formance than upper-level caches.

71

4.2. Motivation and Related Work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

L1
 D

ca
ch

e
m

is
s

ra
tio

Executed Instruction (Billion Instructions)

Mcf and Twolf on SMT

SMT-Twolf Twolf

Figure 4.4: L1 data cache miss ratio of twolf when simultaneously executed
with mcf on a SMT processor.

There are some other papers that indicate the harmful effect of inter-thread

cache conflicts on the performance of multi-thread execution. Hily et al. de-

scribed that ignoring the effect of inter-thread cache conflicts causes over-estimation

of the performance of SMT processors [86]. In addition, Thekkath et al. investi-

gate the effectiveness for microprocessors to support multiple hardware contexts

and conclude that the effect of inter-thread cache conflicts becomes larger as the

number of threads increases [87].

4.2.2 Dynamic Cache Resizing Mechanisms

As previously discussed, one of the causes of inter-thread cache conflicts is ITKO.

To avoid ITKOs, dynamic cache resizing mechanisms, e.g., the power-aware dy-

namic cache partitioning mechanism, have been proposed. The mechanism can

prevent ITKOs and achieve energy saving. As another approach that can avoid

72

4.2. Motivation and Related Work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

L2
 c

ac
he

 m
is

s
ra

tio

Billion Instruction (Billion Instructions)

Mcf and Twolf on SMT

SMT-Twolf Twolf

Figure 4.5: L2 cache miss ratio of twolf when simultaneously executed with
mcf on a SMT processor.

ITKO, Lin et al. proposed a software-controlled dynamic cache partitioning by

using virtual memory address mapping of the operating system [88]. It is the

interesting case that dynamic cache partitioning mechanisms are applied to a

real machine. Compared with the past researches of dynamic cache partitioning

mechanisms by simulation experiments, performance improvement in the real

machines is significant.

However, the problem in the power-aware dynamic cache partitioning mech-

anisms is that their performance improvements are limited when threads with

large working sets share a cache. Moreto et al. have reported that performance

degradation in dynamic cache partitioning becomes larger if the sum of the suf-

ficient numbers of ways, which is for maintaining 90% performance on each

individual thread, exceeds the total number of ways in the cache [89].

73

4.2. Motivation and Related Work

1.5

1.6

1.7

1.8

1.9

2.0

2.1

0 8 16 24 32 40 48 56 64

W
ei

g
h

te
d

 S
p

ee
d

u
p

The number of required ways

Figure 4.6: Relationship between the number of required ways and the perfor-
mance when two threads are simultaneously executed.

To highlight this problem more clearly, a preliminary experiment is per-

formed. This experiment assumes a 2-core CMP with a last-level 32-way 1MB

L2 shared cache in which the power-aware dynamic cache partitioning mech-

anism [26] is applied. On this CMP, various combinations of two threads are

executed. These two threads are selected from threads with various working set

sizes in the SPEC CPU2000 benchmark suite [85]. From the execution results,

relationship between the sum of working set sizes of threads and performance

degradation is revealed. Here, the working set size of the benchmark is defined

as the number of ways that the thread requires for achieving 95% performance

compared with the performance when the ways in the cache are fully allocated.

Figure 4.6 shows the relationship between the sum of working set sizes of

74

4.2. Motivation and Related Work

threads sharing the L2 cache and their performance. The horizontal axis shows

the sum of working set sizes of threads in the unit of the number of ways. The

vertical axis shows the weighted speedup [55]. Figure 4.6 indicates that the per-

formance degradation becomes larger as the sum of working set sizes increases.

Especially, the performance degradation is significant if the sum of working set

sizes exceeds 32 ways, while not significant if the sum is less than 32 ways. From

these results, it is clear that the sum of working set sizes should not exceed the

shared cache capacity of CMPs to avoid severe performance degradation.

To overcome the performance degradation due to capacity shortage, this chap-

ter proposes a thread scheduling method, which assigns the threads to cores so

that the threads with large working sets do not share a same cache.

4.2.3 Thread Scheduling Methods

There are several researches about thread scheduling methods considering inter-

thread cache conflicts. Settle et al. indicated that the main cause of perfor-

mance degradation in simultaneous multithreading (SMT) processors [90] is

inter-thread cache conflicts. Furthermore, they proposed the cache monitoring

scheme to find out cache sets that cause ITKOs [91], and a thread scheduling

method to avoid ITKOs [92]. Knauerhase et al. focused on threads with high

cache miss rates, and scheduled such threads to different phases or cores [93].

Banikazemi et al. have proposed a thread scheduling method based on the per-

formance prediction model considering cache line occupancy, miss rate, and cycle

per instruction of threads [94].

These previous researches focused on reducing ITKOs by thread scheduling.

On the other hand, the thread scheduling method proposed in this chapter also

75

4.2. Motivation and Related Work

alleviates the capacity shortage problem in shared caches. In addition, the pro-

posed scheduling method reduces ITKOs by cooperating with the power-aware

dynamic cache partitioning mechanisms. As a result, this approach considers

the two causes of inter-thread cache conflicts, ITKOs and capacity shortage, and

further performance improvement is expected. Suh et al. proposed memory-

aware scheduling, shown in detail in [95], and cache partitioning using marginal

gain, which is the derivative of the miss-rate curve [96]. However, they do not

consider the combination of thread scheduling and cache partitioning.

Thread scheduling methods focusing on other kinds of resource, e.g. execu-

tion cores of SMT processors, have been also proposed. This dissertation consid-

ers a cache memory as the most important component in which conflicts should

be reduced. In addition, inter-thread conflicts in execution cores do not occur

on the supposed CMP in this dissertation because resource in the cores is not

shared by multiple threads. Therefore, other kinds of resource and their con-

flicts are beyond the scope of this dissertation. El-Moursy et al. [97] have pro-

posed the scheduling method based on the ready to in-flight instruction ratio

(RIR). If this ratio is large, the thread is sensitive to resource conflicts in the

SMT processor. Snavely et al. [55] have also proposed the thread scheduling

method considering the conflicts on execution units, instruction queues, and

caches, exhaustively. Other researches have considered resource conflicts on

SMT processors from the viewpoint of QoS [98], and intra-core resource parti-

tioning [99].

76

4.3. A Thread Scheduling Method based on Working Set Assessment

Core0 Core1 Core3 Core4

Thread Scheduling

Thread

0 1 2 3

Off-Chip Main Memory

Shared Cache0 Shared Cache1

Figure 4.7: Overview of the proposal.

4.3 A Thread Scheduling Method based on Work-

ing Set Assessment

4.3.1 Method Overview

To avoid the performance degradation by capacity shortage when using the

power-aware dynamic cache partitioning, this chapter proposes a thread schedul-

ing method based on working set assessment for CMPs. Figure 4.7 shows the

CMP architecture assumed in the proposed method. The CMP has four cores

and two shared caches. The structure of the CMP is also employed in real mi-

croprocessors, Intel Core 2 Quad [100] and Intel Xeon [101]. The power-aware

77

4.3. A Thread Scheduling Method based on Working Set Assessment

dynamic cache partitioning mechanisms are applied to these two caches. On

this architecture, the proposed method equalizes the sums of working set sizes

of threads among Shared Cache 0 and 1 and alleviates the capacity shortage

problem.

In the proposed method, the working set sizes of the threads are assessed.

Then, based on the assessment results, combinations of threads that should

share a same cache are decided by a scheduling algorithm. The details of these

processes are shown in the following sections.

4.3.2 Working Set Assessment

In the proposed scheme, an assessment of working set sizes of threads is per-

formed by stack distance profiling [49] and locality assessment metric D as pre-

viously discussed in Chapter 2.

Here, the conceptual figure of stack distance profiling is shown again in Fig-

ure 4.8. The Cx means the number of accesses to blocks with the x-th LRU

position (1 < x < N in the case that N ways are allocated by the power-aware

dynamic cache partitioning mechanism). In the power-aware dynamic cache

partitioning mechanism, the locality assessment metric D(= C1/CN) is used for

deciding the number of allocated ways. If D < t1, the number of allocated ways

should be increased. If D > t2, the number of allocated ways is decreased. If

t1 < D < t2, the number of allocated ways is not changed. This means that the

number of allocated ways is sufficient when t1 < D < t2. Therefore, working set

size W assessed in the proposed method is defined as follows.

W = x where t1 <
C1

Cx

< t2 (4.1)

78

4.3. A Thread Scheduling Method based on Working Set Assessment

N
u

m
b

e
r

o
f

a
c
c
e
s
s
e
s

C
1

C
2

C
3

C
N-1

 . . .

 . . . C
N

Figure 4.8: Conceptual figure of stack distance profiling.

4.3.3 A Scheduling Algorithm

The proposed method needs a scheduling algorithm to decide assignments of

threads to cores so that threads with large working sets do not share a same

cache. In this section, the scheduling algorithm is described in detail as bellow.

The objective of this algorithm is to make thread combinations that should

share a cache, so that the sum of working set sizes of a shared cache becomes

equal to that of other shared cache as much as possible. This approach avoids

the situation where threads with large working set sizes share a same cache.

Let assume a k-core CMP with k/n shared caches, in which n cores share a

cache. On this CMP, the proposed method assigns k threads to k cores. The flow

chart of the algorithm is shown in Figure 4.9. At the initial state, there are the

79

4.3. A Thread Scheduling Method based on Working Set Assessment

list T that contains k threads, and the list G that consists of k/n groups. At the

end of the algorithm, each group includes n threads. Assignments of threads to

cores are decided so that these n threads share a same cache.

In Step 1 of the algorithm, threads in T are sorted according to their working

set sizes in descending order. In Figure 4.9, Wi denotes the working set size of

the i-th thread in T . In Step 2, each of top k/n threads in T is allocated into one

of groups in G. As a result of Step 2, the i-th thread in T is allocated to the i-th

group. In Step 3, the groups in G are sorted according to the sum of working set

sizes of the allocated threads in ascending order. In Figure 4.9, Wall,j is the sum

of working set sizes of threads allocated to the j-th group. This step is required

to allow a thread with a larger Wi to be added to a group with smaller Wall,j in

Step 2 of the next iteration. Finally, the scheduling algorithm finishes if T is

empty. Otherwise, go to Step 2.

4.3.4 Cooperation between the Thread Scheduling Method

with Dynamic Cache Resizing Mechanisms

The cooperation between the proposed thread scheduling based on working set

assessment and the power-aware dynamic cache partitioning mechanism has

two advantages.

The first advantage is avoidance of both capacity shortage and ITKOs. With-

out the power-aware dynamic cache partitioning mechanism, ITKOs cannot be

avoided. Therefore, thread scheduling methods must consider both capacity

shortage and inter-thread kickouts. In the proposed method, the scheduling al-

gorithm only has to concentrate on the capacity shortage, and the power-aware

dynamic cache partitioning mechanism avoids ITKOs. Based of these effects,

the performance of the multi-thread execution improves.

80

4.3. A Thread Scheduling Method based on Working Set Assessment

The second advantage is that this cooperation can realize the flexible way-

allocation and energy saving of the power-aware dynamic cache partitioning

mechanism. Under the situation that a thread with large working set and that

with small working set share a cache without capacity shortage, the larger ca-

pacity should be allocated to the former thread. As a result, the thread with

large working set can obtain sufficient performance. In addition, in the case

of the sum of working set sizes of the threads is smaller than the capacity of

a cache, the power-aware dynamic cache partitioning mechanism can disable

excessive ways and reduce energy. As a result, the proposed cache system can

contribute to energy saving as well as performance improvement.

81

4.3. A Thread Scheduling Method based on Working Set Assessment

Step 1.

Step 2.

Step 3.

start

end

Yes
No

Sort T by W
i

in descending order

Allocate top k/n threads to groups

and remove the threads from T

Sort G by W
all, j

in ascending order

Is T empty ?

Figure 4.9: Flow chart of the scheduling algorithm.

82

4.4. Evaluations

Table 4.1: Simulation parameters for the CMP.

Architectural parameters Specifications
Core 8-issue out-of-order
L1 I-cache 32kB, 2-way, 32B-line, 1 cycle latency
L1 D-cache 32kB, 2-way, 32B-line, 1 cycle latency
L2 cache 1MB, 32-way, 64B-line, 14-cycle latency
Main memory 100-cycle latency
Frequency 1 GHz
Technology 70 nm
Vdd 0.9V

4.4 Evaluations

4.4.1 Experimental Setup

This section evaluates the effectiveness of the proposed scheduling method. A

simulator is developed based on the M5 simulator [50] and CACTI 4.2 [51, 102]

for this evaluation. Detailed parameters are shown in Table 4.1. This CMP

has four cores and two last-level L2 shared caches, each of which is shared by

two cores. The power-aware dynamic cache partitioning mechanisms is applied

to each of the L2 cache. In the simulations, four threads are simultaneously

executed on the CMP, and one core executes one thread. Each simulation is

done by 1 billion cycles.

The experimental procedure is as follows. Firstly, the proposed method has

to know the working set sizes of the threads. In the evaluations, the working set

sizes are assessed by the single-thread execution of the power-aware dynamic

cache partitioning mechanisms with the parameters (t1, t2) = (0.001, 0.005). The

number of allocated ways obtained by each execution is used as the working set

83

4.4. Evaluations

Table 4.2: Experimented representative benchmarks.

Benchmark Contents Utility Working set (way)
vpr place FPGA Circuit Placement H 32

twolf Place and Route Simulator H 32
equake Wave Propagation Simulation S 18
mesa 3-D Graphics Library S 11

wupwise Quantum Chromodynamics L 9
applu Partial Differential Equation L 7

size. The detailed definition is as follow.

Wp =

∑t1
t=t0

w(t)

t1 − t0
. (4.2)

Here,

Wp = (the working set size of thread), (4.3)

w(t) = (the number of currently allocated ways at time t), (4.4)

t0 = (the time at that the profiling starts), (4.5)

t1 = (the time at that the profiling ends). (4.6)

After the working set sizes of threads are assessed, the scheduling algorithm

decides the assignment of the threads to the cores.

The threads used for the simulations are selected from the SPEC CPU2000

benchmark suite [85]. From the suite, the six representative benchmark pro-

grams are selected based on the characteristics of cache accesses, and used as

the threads. By using these threads, thread combinations are representative of

all thread combinations from the viewpoint of working set sizes. This process

can reduce the number of experimented combinations without losing generality.

84

4.4. Evaluations

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

N
o

rm
a

liz
e

d
 I
P

C

Number of allocated ways

(a) vpr place (H)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

N
o

rm
a

liz
e

d
 I
P

C

Number of allocated ways

(b) equake (S)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

N
o

rm
a

liz
e

d
 I
P

C

Number of allocated ways

(c) wupwise (L)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

N
o

rm
a

liz
e

d
 I
P

C

Number of allocated ways

(d) twolf (H)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

N
o

rm
a

liz
e

d
 I
P

C

Number of allocated ways

(e) mesa (S)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

N
o

rm
a

liz
e

d
 I
P

C

Number of allocated ways

(f) applu (L)

Figure 4.10: Utility graphs of the representative benchmarks.

In the selection, all the benchmarks are categorized into three classes based

on their utility graphs [37]. As a result of the classification, the benchmark pro-

grams are classified into high-utility, saturating-utility, and low-utility. By se-

lecting two representative benchmarks from each class, all the six benchmarks

are selected, as shown in Table 4.2. Figure 4.10 shows the utility graphs of

the selected benchmarks. In this figure, the performance is evaluated by IPC

normalized by that when 32 ways are fully allocated to the thread. VprPlace

and Twolf are categorized into high-utility benchmarks. High-utility bench-

marks increase their performances gradually as the number of ways increases.

Mesa and Equake are saturating-utility benchmarks. Their performances are

drastically improved by increasing the number of ways. However, their perfor-

mances are not improved when the number of allocated ways is large. Wupwise

and Apple are low-utility benchmarks. The performances of low-utility bench-

marks are not improved even if the number of ways increases. From the above

85

4.4. Evaluations

Table 4.3: Experimented benchmark combinations.

Combinations Benchmarks
HHSS vpr place twolf equake mesa
HHSL vpr place twolf equake wupwise
HHLL vpr place twolf wupwise applu
HSSL vpr place equake mesa wupwise
HSLL vpr place equake wupwise applu
SSLL equake mesa wupwise applu

observations, it can be expected that high- , saturating- , and low-utility bench-

marks have large, middle, and small working set sizes, respectively. This fact

can be confirmed by the working set sizes in Table 4.2. Hence, the profiling

method used in the proposed scheduling mechanism can appropriately estimate

the working set sizes of these benchmarks.

With these benchmarks, six combinations of benchmarks are generated for

performance evaluation. Although 15 combinations can be constructed from

six benchmarks (6C4 = 15), the number of benchmark combinations is reduced

by removing the combinations having the same characteristics. For example,

both of [VprPlace, Equake, Wupwise, Applu] and [Twolf, Mesa, Wupwise,

Applu] consist of one high-utility, one saturating-utility, and two low-utility

benchmarks. In this case, only the former benchmark combination is used for

the evaluation, and the combination denoted HSLL (the thread combination of

High, Sat, Low, and Low utility). Table 4.3 shows characteristics of six combi-

nations and given labels for identification.

4.4.2 Evaluation Results of Overall Performance

To know the performance improvements by the proposed method, overall per-

formances of CMPs are evaluated in this section. In the evaluations, Weighted

86

4.4. Evaluations

Cache0 Cache1

Core
0

Core
1

Core
2

Core
3

1st
Thread

2nd
Thread

3rd
Thread

4th
Thread

Cache0 Cache1

Core
0

Core
1

Core
2

Core
3

1st
Thread

2nd
Thread

3rd
Thread

4th
Thread

Cache0 Cache1

Core
0

Core
1

Core
2

Core
3

1st
Thread

2nd
Thread

3rd
Thread

4th
Thread

By the proposal

Figure 4.11: Possible scheduling cases on the CMP from the viewpoint of cache
sharing of threads.

Speedup [55] is used as a performance metric.

Before showing the results, the detail of the evaluation method is described

as follows. When four threads are executed on the CMP, three possible combi-

nations of threads can be considered at the scheduling as shown in Figure 4.11,

in which the combination selected by the proposed method is included. Among

the three combinations, the combination with the highest performance is de-

fined as the best case. Therefore, it is desirable that the best case is selected

by the proposed method. The average performance over all the three combina-

tions is called the average case. The performance of the average case is used as

the expected performance if the scheduling method does not consider the cache

sharing, e.g. a random scheduling method. The combination with the lowest per-

formance is called the worst case. This combination induces capacity shortage.

Finally, the combination selected by the proposed scheduling method is called

the proposed case. In this evaluation, the proposed case is compared with the

above three cases and evaluated.

Figure 4.12 shows the performances of all the cases. Four bars show the

performance of the worst case, the average case, the best case, and the proposed

case, respectively. The figure shows that the proposed case can get averagely

4% higher performance, and up to 8% compared with the worst case. Therefore,

the proposed scheduling method can avoid the performance degradation caused

87

4.4. Evaluations

3.50

3.55

3.60

3.65

3.70

3.75

3.80

3.85

3.90

3.95

4.00

HHSS HHSL HHLL HSSL HSLL SSLL average

W
ei

g
h

te
d

 S
p

ee
d

u
p

worst average best proposal

Figure 4.12: Comparing the performances of the worst, the average, the best,
the proposed cases.

by selecting the worst case of scheduling. In addition, the performance of the

proposed case is 1.9% higher than that of the average case. Furthermore, in the

four thread combinations, the proposed case is equal to the best case. In the

other two combinations, the performance difference between the proposed case

and the best case is very small. Accordingly, the proposed method can assign

threads to the cores to obtain the suboptimal performances.

The thread combination of HHLL, the performance improvement by the pro-

posed case compared with the worst case of scheduling becomes the largest

among the experimented thread combinations. This is because the combina-

tion consists of two threads with the largest working sets and two threads with

the smallest working sets. In the worst case for this combination, the threads

with large working sets share a same cache. Therefore, capacity shortage occurs

88

4.4. Evaluations

in the cache, and the performance degrades. On the other hand, in the proposed

scheduling method, a thread with the largest working set and that with the

smallest working set share a same cache. In this case, the capacity shortage is

drastically alleviated, resulting in the performance improvement.

The combination of SSLL does not improve the performances even in any

cases, compared with the other combinations. This is because that the combina-

tion includes the four threads with smallest working sets. In this combination,

the power-aware dynamic cache partitioning mechanisms can allocate the ways

sufficiently in any cases, and significant capacity shortage and its performance

degradation do not occur.

In the combinations of HHSS and HHLL, the proposed case is not the best

case. Hence, the proposed scheduling method cannot select the best assignment

of threads to cores. This is because the high-utility benchmarks vpr place

and twolf included in these combinations have the same working set size, 32

ways, which is the number of ways when fully allocated. Hence, the proposed

method cannot distinguish which the thread has a larger working set than the

other thread. In addition, the objective of the working set assessment is orig-

inally to know the number of required ways, not to estimate the degree of the

performance degradation when the number of ways is limited. Therefore, if the

threads are coupled and actually executed, unpredictable performance degrada-

tions sometimes occur. In such cases, the proposed method cannot always select

the best assignments of threads to cores. However, the performance difference

between the best case and the proposed case is still little in HHSS and HHLL

combinations, and the proposed scheduling method can achieve the suboptimal

performances.

89

4.4. Evaluations

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1st 2nd 3rd 4th

N
o

r
m

a
li

z
e
d

 I
P

C

worst average best proposal

Figure 4.13: Average of normalized IPC of the threads in the combinations.

4.4.3 Evaluation Results of Individual Threads

To show the mechanism of the performance improvement by the proposed method

in detail, this section evaluates performances of individual threads. Normalized

IPC is used as the performance metric of a particular thread.

Figure 4.13 shows the performance of individual threads. The horizontal axis

indicates the order in working set sizes. For example, 1st means the threads

with the first largest working sets in the combinations. In a similar fashion of

Figure 4.12 in the previous section, Figure 4.13 includes the results of the worst

case, the average case, the best case, and the proposed case.

For example, the proposed case achieves 2% and 3.5% performance improve-

ments in the first and the second threads compared with the average case, re-

spectively. Moreover, compared to the worst case, the proposed case realizes

5% and 12% performance improvements, respectively. From these results, it is

90

4.4. Evaluations

clear that the proposed method can improve the performances of the two threads

with the larger working set sizes. In addition, performance improvements of

the threads with the second largest working sets are larger than those of the

threads with the first largest working sets. This is because the thread with the

second largest working set cannot get enough cache capacity compared with the

threads with the first largest working sets if the former and the latter share a

same cache. The proposed method can solve this confused situation, and the

performance improvement of the threads with the second largest working sets

becomes larger.

On the other hand, the proposed case reduces 0.1% of performance on an

average in the third and the fourth threads. Compared with the best case, the

proposed method reduces 1% and 0.3% of performance on an average in the

third and the fourth threads, respectively. This is because these threads become

coupled with the threads with larger working sets by the proposed method. As a

result, the number of allocated ways for the third and fourth threads decreases.

However, the performance improvements of the first and the second threads are

significant. Therefore, the overall performance of the CMP improves, even if the

third and fourth threads slightly degrade their performances.

In addition, fairness of the performances among the threads improves by the

proposed method. In the worst case, the performance degradations of the first

and second threads are large. However, by the proposed method, their perfor-

mances significantly improve while the performances of the third and fourth

threads slightly degrade. As a result, the difference of the performances among

the four threads becomes small.

91

4.4. Evaluations

3.50

3.55

3.60

3.65

3.70

3.75

3.80

3.85

3.90

3.95

4.00

HHSS HHSL HHLL HSSL HSLL SSLL average

W
ei

g
h

te
d

 S
p

ee
d

u
p

none wac_only scheduling_only proposal

Figure 4.14: Comparing the performances of the average/proposed scheduling
policies with/without the power-aware dynamic cache partitioning mechanism.

4.4.4 Performance Impact of Cooperation with the Power-

Aware Dynamic Cache Partitioning

The proposed method can achieve the performance improvements by assuming

the reduction of ITKOs by the power-aware dynamic cache partitioning mech-

anism. Furthermore, the better performances are obtained compared with the

other scheduling method that does not consider both ITKOs and capacity short-

age simultaneously. To show these facts, the performance impact of the power-

aware dynamic cache partitioning mechanism for the proposed method is dis-

cussed.

Figure 4.14 shows the performances of the average case and the proposed

case, with/without the power-aware dynamic cache partitioning mechanism. In

the figure, four bars in each benchmark represent the average case without

92

4.4. Evaluations

the mechanism (none), the average case with the mechanism (wac only), the

proposed case without the mechanism (scheduling only), and the proposed case

with the mechanism (proposal).

Figure 4.14 indicates that the highest performance is achieved by the pro-

posed case with the mechanism. This indicates the effectiveness of the proposed

scheduling method. In addition, comparing none and scheduling only, there are

no performance impacts of the proposed scheduling method without the mecha-

nism. Focusing on each thread combination, the performance impact of the pro-

posed scheduling method is not steady without the power-aware dynamic cache

partitioning mechanism. For example, the proposed scheduling method without

the mechanism can achieve the performance improvements in HHSS and HHSL.

On the other hand, the proposed method degrades the performances in HHLL,

HSSL, HSLL, and SSLL. These results indicate that the performance degrada-

tion by ITKOs occurs without the mechanism, even in the proposed case that

considers capacity shortage. Therefore, it is important to consider both capacity

shortage and ITKOs in inter-thread cache conflicts.

4.4.5 Energy Impact of the Thread Scheduling Method

To understand the energy impact of the proposed method, the energy consump-

tion by the cache memories is shown in Figure 4.15. The metric of energy con-

sumption is normalized energy. Here, energy consumption with the energy re-

duction control is normalized by that without the energy reduction control. The

vertical axis of the figure shows normalized energy. Four bars in each thread

combination represent the worst, average, best, and proposed cases from the

viewpoint of energy consumption, respectively.

From Figure 4.15, it is observed that the energy reduction control of the

93

4.4. Evaluations

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

HHSS HHSL HHLL HSSL HSLL SSLL Average

N
o

rm
a

li
ze

d
 E

n
er

g
y

worst average best proposal

Figure 4.15: Energy consumption of the cache memories.

power-aware dynamic cache partitioning mechanism can reduce the energy even

in the proposed case. However, compared with the other cases, the energy reduc-

tion of the proposed case is not significant, and equal to the worst case. This is

because the proposed method contributes to an increase in cache utilization. By

the proposed method, threads with larger working sets can get more capacity by

sharing a same cache with the threads with smaller working sets. In this case,

the power-aware dynamic cache partitioning mechanism increases the number

of allocated ways for the threads with larger working sets. As a result, the en-

ergy consumption increases.

Observing the overall trends in Figure 4.15, it is clear the thread combi-

nations of HHSS, HHSL, and HHLL do not reduce the energy consumption signifi-

cantly. These combinations need a large cache capacity because the threads with

large working sets are included. Hence, the number of allocated ways cannot be

94

4.4. Evaluations

decreased by the energy reduction control of the power-aware dynamic cache

partitioning mechanism. On the other hand, the proposed method reduces the

energy consumption of the combinations of HSSL, HSLL, and SSLL, especially by

up to 86% in the combination of SSLL. These combinations include many threads

with small working sets. Hence, a lot of ways that do not contribute to the per-

formance can be inactivated. As a result, the energy consumption decreases.

From all the discussions above, it is clear the proposed method can achieve

performance improvement because the method can increase the number of al-

located ways for the threads with large working sets. On the other hand, an

increase of the number of allocated ways causes the additional energy consump-

tion. Therefore, the proposed method can improve the utilization of the cache

memories at the cost of the energy growth. However, the energy consumption is

still reduced even in the proposed method compared with the case without the

energy reduction control of the power-aware dynamic cache partitioning mech-

anisms. Hence, the cooperation between the proposed method and the power-

aware dynamic cache partitioning mechanisms can also contribute the energy

reduction.

95

4.5. Conclusions

4.5 Conclusions

CMPs have become major in modern microprocessors. CMPs can simultaneously

execute multiple threads using multiple cores on a chip. However, simultane-

ous execution of multiple threads causes inter-thread cache conflicts, which are

ITKOs and capacity shortage. If inter-thread cache conflicts occur, CMPs can-

not exploit their potential and the performances are limited. The power-aware

dynamic cache partitioning mechanism can reduce ITKOs and improve the per-

formances of multi-thread execution on CMPs. However, if multiple threads

with large working sets share a same cache on CMPs, capacity shortage occurs

in the cache, resulting in performance degradation.

To overcome this problem, the thread scheduling based on working set as-

sessment is proposed in this chapter. The proposed method supposes that there

are multiple shared caches with the power-aware dynamic cache partitioning

mechanisms. In this case, the thread combinations sharing a single cache can

be flexibly changed. Hence, the proposed method changes the thread combina-

tions sharing a cache so that the capacity shortage problem is alleviated. At

first, the working set sizes of threads are assessed using the locality assessment

metric. Second, the assignments of the threads to the cores are decided by the

scheduling algorithm based on working set sizes. The algorithm prevents the

threads with the largest working sets from sharing a same cache. As a result,

the thread scheduling method alleviates inter-thread cache conflicts by capacity

shortage. The simulation results show the average performance of the proposed

method is 1.9% higher than that of the average of all the case of scheduling, and

8.1% higher than that of the worst case of scheduling.

96

CHAPTER 5. CONCLUSIONS

Chapter 5

Conclusions

The advance in CMOS process technology and the innovations on computer ar-

chitecture design are important for microprocessors to achieve high performance

and low energy consumption. However, it has been becoming difficult for the

CMOS process technology to contribute to performance improvement and en-

ergy reduction. Under this situation, it is required to further innovate computer

architecture design in the future.

This dissertation focuses on cache memories. Although cache memories are

important for performance improvement of microprocessors, their energy con-

sumption and inter-thread cache conflicts on CMPs are not ignorable. To over-

come these problems, the power-aware dynamic cache partitioning mechanism [24,

25, 26] is proposed. However, one of the main causes of inter-thread cache con-

flicts, capacity shortage, is still the problem on the mechanism. Therefore, the

objective of this dissertation is to improve utilization efficiency of cache resource,

resulting in alleviation of the capacity shortage problem and achievement of

high performance and low power cache memories. To this end, this disserta-

tion has proposed three approaches, and incorporated them into a hardware-

software co-designed cache memory system.

97

CHAPTER 5. CONCLUSIONS

In Chapter 2, estimation accuracy of the working set sizes of the threads in

the power-aware dynamic cache partitioning mechanism has been discussed. It

is important to accurately estimate the number of ways required by a thread, be-

cause inaccurate estimation causes performance degradation and energy growth.

Chapter 2 figures out that exceptional cache access behaviors cause inaccurate

allocation of the ways. To reduce the negative effect of the exceptional cache

access behaviors, Chapter 2 proposed a voting-based working set assessment

scheme. The proposed scheme decides the number of allocated ways based on

majority voting of the finer-grain working set assessment than the previous

scheme. The evaluation results show that the proposed scheme can decrease the

energy consumption by up to 24% and 10% on average without significant per-

formance degradation. Consequently, by reducing the effect of exceptional cache

access behaviors, the power-aware dynamic cache partitioning mechanism can

reduce the energy consumption.

In Chapter 3, data management for the power-aware dynamic cache parti-

tioning mechanism has been examined. In cache memories, dead-on-fill blocks

may occupy the cache capacity, even though they do not contribute to perfor-

mance. Due to the existence of them, the power-aware dynamic cache parti-

tioning mechanism must allocate a large cache size to threads to maintain both

reusable and dead-on-fill blocks in the cache. To evict dead-on-fill blocks from

the cache, Chapter 3 proposed the dynamic LRU-K insertion policy. This pol-

icy evicts dead-on-fill blocks earlier, and helps the power-aware dynamic cache

partitioning mechanism achieve efficient allocation of the cache capacity. By

applying the proposed policy to the cache with the power-aware dynamic cache

partitioning mechanism, energy consumption of the cache is reduced by up to

98

CHAPTER 5. CONCLUSIONS

30% and 6% on an average without significant performance degradation. There-

fore, Chapter 3 revealed that the proposed policy can evict dead-on-fill blocks

earlier, and as a result, the power-aware dynamic cache partitioning mechanism

can improve the efficiency.

In Chapter 4, thread scheduling to avoid inter-thread cache conflicts has been

considered. The simultaneous execution of multiple threads with large work-

ing set sizes cause capacity shortage, resulting in performance degradation. In

this case, the CMP cannot achieve performance improvement as expected. To

against this, Chapter 4 proposed a thread scheduling method based on working

set assessment. The proposed method can avoid capacity shortage by scheduling

threads based on the working set sizes of the threads, and helps the power-aware

dynamic cache partitioning mechanisms allocate more ways to the threads with

larger working set sizes. The evaluation results show that the performance by

the proposed method is 1.9% higher than that of the average of all the cases, and

8.1% higher than that of the worst case of scheduling. Consequently, Chapter

4 indicated that the thread scheduling method can avoid capacity shortage and

improve the performance.

From the above, this dissertation concludes that the proposed three approaches

can contribute to performance improvement and energy reduction of the hardware-

software co-designed cache memory system.

Finally, long-term future work is described as follows.

• To show the generality of the scheme proposed in Chapter 2, the scheme

should be applied to other dynamic cache resizing mechanisms.

• The data management policy proposed in Chapter 3 does not consider dead

blocks. The data management policy that reduces not only dead-on-fill

99

CHAPTER 5. CONCLUSIONS

blocks but also dead blocks should be considered to achieve higher uti-

lization efficiency. Furthermore, to reduce dead-on-fill blocks more aggres-

sively, cooperation with cache bypassing should be considered.

• To make the thread scheduling method proposed in Chapter 4 more prac-

tical, dynamic thread scheduling and its implementation should be consid-

ered.

100

BIBLIOGRAPHY

Bibliography

[1] Gordon E. Moore. Cramming More Components Onto Integrated Circuits.

Electronics, pages 114–117, January 1965.

[2] Steven R. Kunkel and James E. Smith. Optimal Pipelining in Super-

computers. ACM SIGARCH Computer Architecture News, 14(2):404–411,

June 1986.

[3] Robert M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arith-

metic Units. IBM Journal of Research and Development, 11(1):25–33, Jan-

uary 1967.

[4] James E. Smith. A Study of Branch Prediction Strategies. In Proceedings

of the 8th annual symposium on Computer Architecture, pages 135–148,

May 1981.

[5] Robert T. Short and Henry M. Levy. A Simulation Study of Two-Level

Caches. ACM SIGARCH Computer Architecture News, 16(2):81–88, May

1988.

[6] Shekhar Borkar. Design Challenges of Technology Scaling. IEEE Micro,

19(4):23–29, 1999.

101

BIBLIOGRAPHY

[7] Wei Huang, Shougata Ghosh, Siva Velusamy, Karthik Sankara-

narayanan, Kevin Skadron, and Mircea R. Stan. HotSpot: A Compact

Thermal Modeling Methodology for Early-Stage VLSI Design. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 14(5):501–

513, May 2006.

[8] Tilak Agerwala and Siddhartha Chatterjee. Computer Architecture:

Challenges and Opportunities for the Next Decade. IEEE Micro, 25(3):58–

69, May 2005.

[9] Mircea R. Stan and Kevin Skadron. Power-Aware Computing. IEEE Com-

puter, 36(12):35–38, December 2003.

[10] Keith Boland and Apostolos Dollas. Predicting and Precluding Problems

with Memory Latency. IEEE Micro, 14(4):59–67, 1994.

[11] Srikanth T. Srinivasan and Alvin R. Lebeck. Load Latency Tolerance In

Dynamically Scheduled Processors. In Proceedings of the 31st annual

ACM/IEEE International Symposium on Microarchitecture, pages 148–

159, November 1998.

[12] Wm. A. Wulf and Sally A. McKee. Hitting the Memory Wall: Implications

of the Obvious. ACM SIGARCH Computer Architecture News, 23(1):20–

24, March 1995.

[13] Nam Sung Kim, Krisztian Flautner, David Blaauw, and Trevor Mudge.

Circuit and Microarchitectural Techniques for Reducing Cache Leakage

Power. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, 12(2):167–184, February 2004.

102

BIBLIOGRAPHY

[14] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A Frame-

work for Architectural-Level Power Analysis and Optimizations. In Pro-

ceedings of 27th International Symposium on Computer Architecture, vol-

ume 28, pages 83–94. Acm, 2000.

[15] Srilatha Manne, Artur Klauser, and Dirk Grunwald. Pipeline Gating:

Speculation Control For Energy Reduction. In Proceedings. 25th An-

nual International Symposium on Computer Architecture, pages 132–141.

IEEE Comput. Soc, 1998.

[16] James Montanaro, Richard T. Witek, Krishna Anne, Andrew J. Black,

Elizabeth M. Cooper, Dniel W. Dobberpuhl, Paul M. Donahue, Jim Eno,

Gregory W. Hoeppner, David Kruckemyer, Thomas H. Lee, Peter C. M.

Lin, Liam Madden, Daniel Murray, Mark H. Pearce, Sribalan Santhanam,

Kathryn J. Snyder, Ray Stehpany, and Stephen C. Thierauf. A 160-MHz,

32-b, 0.5-W CMOS RISC microprocessor. IEEE Journal of Solid-State Cir-

cuits, 31(11):1703–1714, November 1996.

[17] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.

Tullsen, and Norman P. Jouppi. McPAT: An Integrated Power, Area, and

Timing Modeling Framework for Multicore and Manycore Architectures.

In Proceedings of 42nd Annual IEEE/ACM International Symposium on

Microarchitecture, pages 469–480, 2009.

[18] David W Wall. Limits of Instruction-Level Parallelism. ACM SIGARCH

Computer Architecture News, 19(2):176–188, 1991.

[19] Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter, An-

drew Chang, Yevgeny Gurevich, and Whay S. Lee. The M-Machine Multi-

computer. In Proceedings of the 28th Annual International Symposium on

103

BIBLIOGRAPHY

Microarchitecture, pages 146–156. IEEE Comput. Soc. Press, 1995.

[20] Lance Hammond, Basem A. Nayfeh, and Kunle Olukotun. A Single-Chip

Multiprocessor. IEEE Computer, 30(9):79–85, 1997.

[21] Jack L. Lo, Joel S. Emer, Henry M. Levy, Rebecca L. Stamm, Dean M.

Tullsen, and Susan J. Eggers. Converting Thread-Level Parallelism to

Instruction-Level Parallelism via Simultaneous Multithreading. ACM

Transactions on Computer Systems, 15(3):322–354, August 1997.

[22] Basem A. Nayfeh and Kunle Olukotun. Exploring the Design Space for a

Shared-Cache Multiprocessor. In Proceedings of 21 International Sympo-

sium on Computer Architecture, pages 166–175. IEEE Comput. Soc. Press,

1994.

[23] Joshua Kihm, Alex Settle, Andrew Janiszewski, and Daniel A. Connors.

Understanding the Impact of Inter-Thread Cache Interference on ILP in

Modern SMT Processors. The Journal of Instruction-Level Parallelism,

7:1–28, 2005.

[24] Hiroaki Kobayashi, Isao Kotera, and Hiroyuki Takizawa. Locality Analy-

sis to Control Dynamically Way-Adaptable Caches. ACM SIGARCH Com-

puter Architecture News, 33(3):25–32, 2005.

[25] Isao Kotera, Ryusuke Egawa, Hiroyuki Takizawa, and Hiroaki

Kobayashi. A Power-Aware Shared Cache Mechanism Based on Local-

ity Assessment of Memory Reference for CMPs. In Proceedings of ACM

PACT’07 Workshop on Memory Performance, Dealing with Applications,

Systems and Architectures (MEDEA’07), pages 121–127, 2007.

104

BIBLIOGRAPHY

[26] Isao Kotera, Kenta Abe, Ryusuke Egawa, Hiroyuki Takizawa, and Hi-

roaki Kobayashi. Power-Aware Dynamic Cache Partitioning for CMPs.

Transaction on High-Performance Embedded Architectures and Compil-

ers, 3(2):149–167, 2008.

[27] Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and T. N.

Vijaykumar. Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep-

Submicron Cache Memories. In Proceedings of the 2000 International

Symposium on Low Power Electronics and Design - ISLPED ’00, pages

90–95, New York, New York, USA, August 2000. ACM Press.

[28] Mainak Chaudhuri. Pseudo-LIFO: The Foundation of a New Family of Re-

placement Policies for Last-level Caches. In Proceedings of the 42nd An-

nual IEEE/ACM International Symposium on Microarchitecture, pages

401–412. ACM, 2009.

[29] David H Albonesi. Selective Cache Ways: On-Demand Cache Resource

Allocation. In Proceedings of 32nd Annual International Symposium on

Microarchitecture, pages 248–259, 1999.

[30] Se-Hyun Yang, Michael D. Powell, Babak Falsafi, and T. N. Vijaykumar.

Exploiting Choice in Resizable Cache Design to Optimize Deep-Submicron

Processor Energy-Delay. In Proceedings of The Eighth International Sym-

posium on High-Performance Computer Architecture, 2002.

[31] Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and T. N.

Vijaykumar. Reducing Leakage in a High-Performance Deep-Submicron

Instruction Cache. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 9(1):77–89, February 2001.

105

BIBLIOGRAPHY

[32] Gilles Pokam and Francois Bodin. Energy-efficiency potential of a phase-

based cache resizing scheme for embedded systems. In Eighth Work-

shop on Interaction between Compilers and Computer Architectures, 2004.

INTERACT-8 2004., pages 53–62. IEEE, 2004.

[33] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An Adaptive, Non-

Uniform Cache Structure for Wire-Delay Dominated On-Chip Caches. In

Proceedings of the 10th International Conference on Architectural Support

for Programming Languages and Operating Systems, volume 30, pages

211–222, December 2002.

[34] Alessandro Bardine, Manuel Comparetti, Pierfrancesco Foglia, Giacomo

Gabrielli, and Cosimo Antonio Prete. Way adaptable D-NUCA caches. In-

ternational Journal of High Performance Systems Architecture, 2(3/4):215,

August 2010.

[35] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair Cache Sharing

and Partitioning in a Chip Multiprocessor Architecture. In Proceedings of

13th International Conference on Parallel Architecture and Compilation

Techniques, pages 111–122, 2004.

[36] Gookwon E. Suh, Larry Rudolph, and Srinivas Devadas. Dynamic Parti-

tioning of Shared Cache Memory. Journal of Supercomputing, 28(1):7–26,

2004.

[37] Moinuddin K. Qureshi and Yale N. Patt. Utility-Based Cache Partition-

ing: A Low-Overhead, High-Performance, Runtime Mechanism to Parti-

tion Shared Caches. In Proceedings of the 39th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pages 423–432, 2006.

106

BIBLIOGRAPHY

[38] Alex Settle, Daniel A. Connors, Enric Gibert, and Antonio Gonzáles. A

Dynamically Reconfigurable Cache for Multithreaded Processors. Journal

of Embedded Computing, 2(2):221–233, 2006.

[39] Shekhar Srikantaiah, Mahmut Kandemir, and Mary Jane Irwin. Adaptive

Set Pinning: Managing Shared Caches in Chip Multiprocessors. ACM

SIGARCH Computer Architecture News, 36(1):135–144, 2008.

[40] Tsung Lee and Hsiang-Hua Tsou. A novel cache mapping scheme for dy-

namic set-based cache partitioning. In Proceedings of 2009 IEEE Youth

Conference on Information, Computing and Telecommunication, pages

459–462. IEEE, September 2009.

[41] Jichuan Chang and Gurindar S. Sohi. Cooperative Cache Partitioning

for Chip Multiprocessors. In Proceedings of the 21st annual international

conference on Supercomputing - ICS ’07, page 242, New York, New York,

USA, June 2007. ACM Press.

[42] Haakon Dybdahl and Per Stenstrom. An Adaptive Shared/Private NUCA

Cache Partitioning Scheme for Chip Multiprocessors. In Proceedings of

2007 IEEE 13th International Symposium on High Performance Computer

Architecture, pages 2–12. IEEE, February 2007.

[43] Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhang, Doug Burger,

and Stephen W. Keckler. A NUCA Substrate for Flexible CMP Cache Shar-

ing. IEEE Transactions on Parallel and Distributed Systems, 18(8):1028–

1040, August 2007.

[44] Miquel Moreto, Francisco J. Cazorla, Alex Ramirez, and Mateo Valero.

Online Prediction of Applications Cache Utility. In Proceedings of the

107

BIBLIOGRAPHY

International Conference on Embedded Computer Systems: Architecture,

Modeling and Simulation, pages 169–177, 2007.

[45] Richard West, Puneet Zaroo, Carl A. Waldspurger, and Xiao Zhang. On-

line Cache Modeling for Commodity Multicore Processors. ACM SIGOPS

Operating Systems Review, 44(4):19–29, December 2010.

[46] David K. Tam, Reza Azimi, Livio B. Soares, and Michael Stumm.

RapidMRC: Approximating L2 miss rate curves on commodity systems

for online optimization. In ACM SIGPLAN Notices, volume 44, pages 121–

132, February 2009.

[47] Richard L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation

techniques for storage hierarchies. IBM Systems Journal, 9(2):78–117,

1970.

[48] Mark D. Hill and Alan Jay Smith. Evaluating Associativity in CPU

Caches. IEEE Transactions on Computers, 38(12):1612–1630, 1989.

[49] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting

Inter-Thread Cache Contention on a Chip Multi-Processor Architecture.

In Proceedings of the 11th International Symposium on High-Performance

Computer Architecture, pages 340–351, 2005.

[50] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G.

Saidi, and Steven K. Reinhardt. The M5 Simulator: Modeling Networked

Systems. IEEE Micro, 26(4):52–60, 2006.

[51] Steven J E Willton and Norman P. Jouppi. CACTI: An Enhanced Cache

Access and Cycle Time Model. IEEE Journal of Solid-State Circuits,

31(5):677–688, 1996.

108

BIBLIOGRAPHY

[52] Shyamkumar Thoziyoor, Naveen Muralimanohar, and Norman P Jouppi.

CACTI 5.0. Technical report, HP Labs, 2007.

[53] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P.

Jouppi. CACTI 6.0: A Tool to Model Large Caches. Technical Report

HPL-2009-85, HP Labs, 2009.

[54] John L. Henning. SPEC CPU2006 Benchmark Descriptions. ACM

SIGARCH Computer Architecture News, 34(4):1–17, 2006.

[55] Allan Snavely and Dean M Tullsen. Symbiotic Jobscheduling for a Simul-

taneous Multithreading Processor. ACM SIGPLAN Notices, 35(11):234–

244, 2000.

[56] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr., and Joel Emer.

High Performance Cache Replacement Using Re-Reference Interval Pre-

diction (RRIP). In Proceedings of the 37th annual International Sympo-

sium on Computer Architecture, volume 38, pages 60–71, 2010.

[57] R. Karedla, J. S. Love, and B. G. Wherry. Caching Strategies to Improve

Disk System Performance. Computer, 27(3):38–46, March 1994.

[58] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and

Joel Emer. Adaptive Insertion Policies for High Performance Caching. In

Proceedings of the 34th Annual International Symposium on Computer

Architecture, pages 381–391, 2007.

[59] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien Sebot,

Simon Steely Jr., and Joel Emer. Adaptive Insertion Policies for Managing

Shared Caches. In Proceedings of the 17th International Conference on

Parallel Architecture and Compilation Techniques, pages 208–219, 2008.

109

BIBLIOGRAPHY

[60] Samira Khan and Daniel A. Jimenez. Insertion Policy Selection using

Decision Tree Analysis. In Proceedings of IEEE International Conference

on Computer Design, pages 106–111. IEEE, October 2010.

[61] Inside the Intel Itanium 2 processor: an Itanium Processor Family Mem-

ber for Balanced Performance over a Wide Range of Applications. In White

paper, Hewlett Packard, number July, 2002.

[62] UltraSPARC T2 Supplement to the UltraSPARC Architecture 2007. Tech-

nical report, Sun Microsystems, Inc., 2007.

[63] Yuejian Xie and Gabriel H. Loh. PIPP: Promotion/Insertion Pseudo-

Partitioning of Multi-Core Shared Caches. ACM SIGARCH Computer Ar-

chitecture News, 37(12):174–183, 2009.

[64] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh, Sang Lyul Min,

Yookun Cho, and Chong Sang Kim. LRFU: A Spectrum of Policies that

Subsumes the Least Recently Used and Least Frequently Used Policies.

IEEE Transactions on Computers, 50(12):1352–1361, December 2001.

[65] Kaushik Rajan and Govindarajan Ramaswamy. Emulating Optimal Re-

placement with a Shepherd Cache. In Proceedings of 40th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 445–

454. Ieee, December 2007.

[66] Laszlo A. Belady. A study of replacement algorithms for a virtual-storage

computer. IBM Systems Journal, 5(2):78–101, 1966.

110

BIBLIOGRAPHY

[67] Wayne A. Wong and Jean-Loup Baer. Modified LRU Policies for Improving

Second-level Cache Behavior. In Proceedings of Sixth International Sym-

posium on High-Performance Computer Architecture, pages 49–60. IEEE

Comput. Soc, 2000.

[68] Nirmod Megiddo and Dharmendra S. Modha. ARC: A Self-Tuning, Low

Overhead Replacement Cache. In Proceedings of FAST ’03: 2nd USENIX

Conference on File and Strage Techniques, pages 115–130, 2003.

[69] Ranjith Subramanian, Yannis Smaragdakis, and Gabriel H. Loh. Adap-

tive Caches: Effective Shaping of Cache Behavior to Workloads. In 2006

39th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO’06), pages 385–396. IEEE, December 2006.

[70] Gabriel H. Loh. Extending the Effectiveness of 3D-Stacked DRAM Caches

with an Adaptive Multi-Queue Policy. In Proceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 201–

212, 2009.

[71] Douglas C. Burger, James R. Goodman, and Alain Kagi. The Declining

Effectiveness of Dynamic Caching for General-Purpose Microprocessors.

Technical report, Univ. of Wisconsin-Madison Computer Sciences Dept.,

1995.

[72] Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. Cache Decay:

Exploiting Generational Behavier to Reduce Cache Leakage Power. ACM

SIGARCH Computer Architecture News, 29(2):240–251, 2001.

111

BIBLIOGRAPHY

[73] Jaume Abella, Antonio González, Xavier Vera, and Michael F. P. O’Boyle.

IATAC: A Smart Predictor to Turn-off L2 Cache Lines. ACM Transactions

on Architecture and Code Optimization, 2(1):55–77, March 2005.

[74] Huiyang Zhou, M.C. Toburen, Eric Rotenberg, and T.M. Conte. Adaptive

mode control: A static-power-efficient cache design. ACM Transactions on

Embedded Computing Systems (TECS), 2(3):347–372, 2003.

[75] Tomoaki Ukezono and Kiyofumi Tanaka. Reduction of leakage energy

in low level caches. In Proceedings of International Conference on Green

Computing, pages 537–544. IEEE, August 2010.

[76] Krisztian Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and

Trevor Mudge. Drowsy Caches: Simple Techniques for Reducing Leak-

age Power. In Proceedings of 29th Annual International Symposium on

Computer Architecture, pages 148–157, 2002.

[77] Masamichi Takagi and Kei Hiraki. Inter-Reference Gap Distribution

Replacement : An Improved Replacement Algorithm for Set-Associative

Caches. In Proceeding of ICS ’04 Proceedings of the 18th annual interna-

tional conference on Supercomputing, pages 20–30, 2004.

[78] Mazen Kharbutli and Yan Solihin. Counter-Based Cache Replacement

and Bypassing Algorithms. IEEE Transactions on Computers, 57(4):433–

447, April 2008.

[79] Haiming Liu, Michael Ferdman, Jaehyuk Huh, and Doug Burger. Cache

Bursts: A New Approach for Eliminating Dead Blocks and Increasing

112

BIBLIOGRAPHY

Cache Efficiency. In Proceedings of the 41st annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, volume 36, pages 222–233. IEEE,

November 2008.

[80] Gary Tyson, Matthew Farrens, John Matthews, and Andrew R. Pleszkun.

A Modified Approach to Data Cache Management. In Proceedings of the

28th annual International Symposium on Microarchitecture, pages 93–

103, 1995.

[81] Teresa L. Johnson, Daniel A. Connors, Matthew C. Merten, and Wen-

Mei W. Hwu. Run-Time Cache Bypassing. IEEE Transactions on Com-

puters, 48(12):1338–1354, 1999.

[82] Andreas Sandberg, David Eklöv, and Erik Hagersten. Reducing Cache

Pollution Through Detection and Elimination of Non-Temporal Memory

Accesses. In Proceedings of the ACM/IEEE International Conference for

High Performance Computing, Networking, Storage and Analysis, number

November, 2010.

[83] Family 10h AMD Phenom II Processor Product Data Sheet. Technical

Documents of Advanced Micro Devices, 2009.

[84] David Eklov and Erik Hagersten. StatStack: Efficient Modeling of LRU

Caches. In Proceedings of IEEE International Symposium on Performance

Analysis of Systems & Software, pages 55–65. IEEE, March 2010.

[85] John L Henning. SPEC CPU2000: Measuring CPU Performance in the

New Millennium. IEEE Computer, 33(7):28–35, 2000.

113

BIBLIOGRAPHY

[86] Sébastien Hily and André Seznec. Contention on 2nd Level Cache May

Limit the Effectiveness of Simultaneous Multithreading. Technical Re-

port PI-1086, INRIA, 1997.

[87] Radhika Thekkath and Susan J. Eggers. The Effectiveness of Multiple

Hardware Contexts. ACM SIGOPS Operating Systems Review, 28(5):328–

337, December 1994.

[88] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, and P Sadayappan.

Gaining Insights into Multicore Cache Partitioning: Bridging the Gap be-

tween Simulation and Real Systems. In Proceedings of IEEE 14th Inter-

national Symposium on High-Performance Computer Architecture, pages

367–378, 2008.

[89] Miquel Moreto, Francisco J. Cazorla, Alex Ramirez, and Mateo Valero.

Explaining Dynamic Cache Partitioning Speed Ups. IEEE Computer Ar-

chitecture Letters, 6(1):1–4, 2007.

[90] Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, Rebecca L.

Stamm, and Dean M. Tullsen. Simultaneous Multithreading: A Platform

for Next-Generation Processors. IEEE Micro, 17(5):12–19, 1997.

[91] Joshua L. Kihm and Daniel A. Connors. Implementation of Fine-Grained

Cache Monitoring for Improved SMT Scheduling. In Proceedings of IEEE

International Conference on Computer Design: VLSI in Computers and

Processors, pages 326–331, 2004.

[92] Alex Settle, Joshua Kihm, Andrew Janiszewski, and Daniel A. Connors.

Architectural Support for Enhanced SMT Job Scheduling. In Proceedings

114

BIBLIOGRAPHY

of the 13th International Conference on Parallel Architecture and Compi-

lation Techniques (PACT’04), pages 63–73, 2004.

[93] Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong Li, and Scott Hahn.

Using OS Observations to Improve Performance in Multicore Systems.

IEEE Micro, 28(3):54–66, 2008.

[94] Mohammad Banikazemi, Dan Poff, and Bulent Abali. PAM: a novel per-

formance/power aware meta-scheduler for multi-core systems. In Proceed-

ings of the 2008 ACM/IEEE conference on Supercomputing, 2008.

[95] Gookwon E. Suh, Larry Rudolph, and Srinivas Devadas. Effects of Mem-

ory Performance on Parallel Job Scheduling. In Proceedings of the 7th

International Workshop on JobScheduling Strategies for Parallel Process-

ing, pages 116–132, June 2001.

[96] Gookwon E. Suh, Srinivas Devadas, and Larry Rudolph. A New Memory

Monitoring Scheme for Memory-Aware Scheduling and Partitioning. In

Proceedings of The Eighth International Symposium on High-Performance

Computer Architecture, pages 117–128, 2002.

[97] Ali El-Moursy, Rajeev Garg, David H. Albonesi, and Sandhya Dwarkadas.

Compatible Phase Co-Scheduling on a CMP of Multi-Threaded Processors.

In Proceedings of the 20th International Parallel and Distributed Process-

ing Symposium IPDPS 2006, 2006.

[98] Francisco J. Cazorla, Peter M. W. Knijnenburg, Rizos Sakellariou, Enrique

Fernandez, Alex Ramirez, and Mateo Valero. Predictable Performance in

SMT Processors: Synergy between the OS and SMTs. IEEE Transactions

on Computers, 55(7), 2006.

115

BIBLIOGRAPHY

[99] Steven E. Raasch and Steven K. Reinhardt. The Impact of Resource Parti-

tioning on SMT Processors. In Proceedings of the 12th International Con-

ference on Parallel Architectures and Compilation Techniques (PACT’03),

page 15, 2003.

[100] Intel Core 2 Quad Processor New version now available based on Intel’s

45nm technology. In Intel Product Brief. Intel Corporation, 2007.

[101] Quad-Core Intel Xeon Processor 5300 Series. In Intel Product Brief, 2007.

[102] David Tarjan and Shyamkumar Thoziyoor. CACTI 4.0. Technical report,

HP Labs, 2006.

116

