
High Performance Memory Architecture for
Vector Processors

著者 撫佐 昭裕
学位授与機関 Tohoku University
URL http://hdl.handle.net/10097/39918

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235960162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TOHOKU UNIVERSITY
Graduate School of Information Sciences

High Performance Memory
Architecture for Vector

Processors
(ベクトルプロセッサのための高性能
メモリアーキテクチャに関する研究)

A dissertation submitted for the degree of

Doctor of Philosophy (Information Sciences)

Department of Computer and Mathematical Sciences

by

Akihiro MUSA

January 16, 2009

ABSTRACT

High Performance Memory Architecture for Vector Processors

（ベクトルプロセッサのための高性能メモリアーキテクチャに関する研究）

Akihiro MUSA

Abstract

Computer simulations of physical phenomena and engineered systems have become

widely recognized as the third pillar to support science and technology, in addition to

theory and experiment. Complex systems of the physical phenomena and engineered

systems are analyzed and better understood through computational models. Solving

many of important scientific and engineering problems requires supercomputers. The

supercomputers enable investigations heretofore impossible, which in turn have enabled

scientific and technological advances of vast breadth and depth. Thus, supercomputing

has become an indispensable tool in science and technology.

Supercomputers are categorized into vector and scalar systems. The mainstream of

the supercomputers has been dominated by the commodity-based scalar systems. How-

ever, US High-End Computing Revitalization Task Force reported that there was the

increasing gap between the theoretical peak performance and the sustained system per-

formance for High End Computing systems of major US high-end computing centers.

In other words, the commodity-based scalar systems have difficulty obtaining the high

computation efficiency in execution of real scientific and engineering applications. Mean-

while, vector supercomputers achieve high sustained performance and high computation

efficiencies in various scientific and engineering applications. Specifically, the Earth Sim-

ulator, which is the largest vector supercomputer in the world, has substantiated it in

various scientific applications.

However, as advantages in VLSI technology have also been accelerating processor

speeds, supercomputers have been encountering the memory wall problem. Furthermore,

i

ABSTRACT

the number of memory ports in a processor die does not increase owing to limitations of

the die area and electrical power. As a result, it is getting harder for the vector super-

computers to keep a high memory bandwidth balanced with the processor performance.

The byte per flop rate (B/FLOP), the ratio of a memory bandwidth (byte/s) to computa-

tional performance (flop/s), has decreased from 8 B/FLOP to 2.5 B/FLOP in the NEC SX

supercomputers during the last twenty years. There is the concern that the sustained

performance of future vector supercomputers seriously goes down as the B/FLOP rate

decreases.

Moreover, chip multiprocessors (CMPs) have become the mainstream in commodity-

based scalar processors from 1999, and the CMP architecture is also promising for vec-

tor processor design, because the number of transistors in a vector processor has been

increasing by a factor of eight for the last decade. Furthermore, many scientific and

engineering applications are parallelized for multi-threads using the automatic paral-

lelization and OpenMP. The CMP architecture will be adopted by vector supercomputers.

Then, it is getting harder to keep a high memory bandwidth balanced with the improve-

ment of their flop/s performance owing to the limited pin bandwidth. Therefore, the

vector processors will be unable to outperform even commodity-based scalar processors,

because the data transfer time between the main memory and the register files increases.

This dissertation has three objectives. The first objective is to clarify the relation-

ship between the memory performance and the computational performance on the su-

percomputers using real scientific applications. Particularly, several important factors

of memory systems are revealed for maintaining the high computation efficiency in vec-

tor supercomputers. The second objective is to establish the high performance memory

architecture for maintaining the high computational performance on the future vector

supercomputers. Through the experiments using real scientific applications, character-

istics of the high performance memory architecture are clarified. The third objective is to

clarify the relationship between the scalability of chip-multiprocessing and the memory

ii

ABSTRACT

bandwidth rate, and to establish the shared cache architecture that boosts the perfor-

mance of the chip multiprocessor architecture under a low B/FLOP rate.

The aim of the high performance memory architecture is to reduce data traffic be-

tween the main memory and the vector processor, and effectively to use the memory

bandwidth. Therefore, the high performance memory architecture maintains the effec-

tive memory bandwidth rate at vector register files. Then, the memory architecture

actualizes the following mechanisms.

• On-chip cache mechanism

• Miss status handling registers mechanism

• Prefetch mechanism

• Selective caching mechanism

In Chapter 2, to clarify the relationship between the memory performance and the

computational performance on the supercomputers, the vector supercomputers are com-

pared against the commodity-based scalar systems using five leading scientific appli-

cations of three scientific area; electromagnetic analysis, CFD/heat analysis and seis-

mology. These five applications are highly vectorized and parallelized. It is presented

that the vector supercomputers achieve the high computation efficiency and significantly

outperform the scalar systems. Concretely, the vector supercomputers achieve the com-

putation efficiency of 40 % or more across all of the applications. Meanwhile, the scalar

systems show that the computation efficiency is less than 14 %.

Then, it is clarified that the important factor affecting the computational performance

on scientific applications is the memory systems. The vector supercomputers employ the

interleaved memory system, while the scalar systems use the hierarchical cache mem-

ory system. The interleaved memory system organizes memory chips in banks to access

multiple words at a time. The memory latency of the second memory access or later are

hidden in the interleaved memory system. Moreover, memory access times are hidden by

iii

ABSTRACT

vector arithmetic operations. Therefore, the memory access times not hidden by overlap-

ping calculations of the vector supercomputers are much shorter than those of the scalar

systems. Concretely, the ratios of non-hidden memory access time to processing time of

the vector supercomputers are less 30 % across all of the applications, while the ratios of

the scalar systems are 50 % or more. For the three applications used in the evaluation,

the ratios of the scalar systems are 80 % or more. The memory system of the vector su-

percomputers is more effective for scientific applications than the memory system of the

scalar systems.

Moreover, it is investigated that the memory bandwidth affects the non-hidden mem-

ory access time of the vector supercomputers. The vector supercomputers as the NEC

SX-7, SX-8 and the Earth Simulator have 4 B/FLOP. When the memory bandwidth is

adjusted from 4 B/FLOP to 2 B/FLOP, the non-hidden memory access times of the ap-

plications become two or more times longer than the non-hidden memory access times

of the 4 B/FLOP system. When the memory bandwidth is further reduced to 1 B/FLOP,

the non-hidden memory access times become four or more times longer than those of the

4 B/FLOP system. As the memory bandwidth decreases, the memory read/write time

increases, and the memory access time is not hidden by the pipelined vector operations.

Therefore, the sustained performance is seriously affected by the B/FLOP rates, and the

memory bandwidth rate of the 4 B/FLOP is essential to keep the superiority of the vector

supercomputers against the scalar systems.

In Chapter 3, an on-chip cache, called vector cache, is introduced to overcome the

memory wall problem in future vector supercomputers. The vector cache reuses data

that have already been supplied to the vector unit, and maintains the effective memory

bandwidth rate at vector register files. The vector cache employs a bypass mechanism

between the vector register files and the main memory, and is controlled by software to

selectively cache load/store data. The bypass mechanism and the cache work comple-

mentarily together to provide data to the register files. Furthermore, the vector cache

employs miss status handling registers (MSHR) and a prefetch mechanism to improve

iv

ABSTRACT

the effect of the vector cache. The vector cache uses the MSHR to handle outstanding

vector loads on cache misses, resulting in the elimination of unnecessary vector load ac-

cesses. On the other hand, the prefetch mechanism has two effects on the performance.

One is that the mechanism hides the long memory latency by pipelined vector operations.

The other is the same effect of the MSHR: the prefetch mechanism reduces the redun-

dant load request between the vector cache and the main memory when multiple load

instructions access the same memory data.

Then, it is presented that the vector cache has a potential for the future vector super-

computers to cover the shortage of their memory bandwidth, and the characteristics of

the vector cache are clarified on the vector supercomputer. The vector cache recovers the

lack of the memory bandwidth, and boosts the computation efficiencies of the 2 B/FLOP

and 1 B/FLOP systems. Concretely, the vector cache increases the recovery rate of the

performance in execution of the five applications by 21 % to 99 % on the 2 B/FLOP sys-

tem and 9 % to 96 % on the 1 B/FLOP system. Especially, in the case where cache hit

rates exceed 50 %, the 2 B/FLOP system achieves a performance comparable to the 4

B/FLOP system. The vector cache with a bypass mechanism provides the data from both

the memory and the cache at once, and the sustained memory bandwidth for the register

files increase.

The potential of the vector cache with the MSHR, the prefetch mechanism and selec-

tive caching is discussed for the future vector supercomputers, which have insufficient

B/FLOP rates. It is shown that these mechanisms are effective for the future vector

supercomputers to cover the insufficient B/FLOP rates. The effects of the MSHR are

evaluated on three scientific applications. The MSHR reduces the number of load re-

quests within the difference scheme loops which continuously load the same data, and

the latency of the subsequent load requests is shortened. In the experiments, the MSHR

improves the performance by 5 % to 25 % on the 2 B/FLOP system, and 4 % to 45 % on

the 1 B/FLOP system. In addition, the performance of the prefetch mechanism is demon-

strated. The prefetching mechanism boosts the performance by 20 % to 30 % on the 2

v

ABSTRACT

B/FLOP system and 20 % to 60 % on the 1 B/FLOP system. The selective caching, which

is controlled by means of the bypass mechanism, is effective for efficient use of limited

on-chip caches. A higher performance is obtained by selective caching, compared with all

the data caching.

In Chapter 4, the performance of a chip multi vector processor (CMVP) and the effec-

tiveness of a shared vector cache are clarified. The vector processor will employ the chip

multi processor architecture in the near future. However, the CMVP does not preserve

the high memory bandwidth rate owing to the memory wall problem. Thus, the CMVP

employs the vector cache to improve the effective memory bandwidth rate. Moreover, be-

cause various scientific simulations have a high locality among multi-threads, the vector

cache is a shared cache among vector cores.

The performance of the CMVP is evaluated using the five applications. The CMVP

contains four cores and an on-chip shared cache with the MSHR. It is shown that the

CMVP without the cache needs the 4 B/FLOP rate of the off-chip memory bandwidth per

core for maintaining the scalability of vector processors in sustained performance. How-

ever, a future vector supercomputer will not be able to keep the 4 B/FLOP rate owing to

the limited pin bandwidth. On the other hand, the evaluations of the CMVP with the

shared cache have shown that the performance of the 2 B/FLOP CMVP is approximately

equivalent to the performance of the 4 B/FLOP CMVP, when the date are provided to the

register file from both the cache and the main memory at 2 B/FLOP rate each. Therefore,

the off-chip memory bandwidth of the CMVP needs to satisfy at least 2 B/FLOP using the

cache mechanism to achieve a high scalability. Moreover, the effect of the shared cache

and the MSHR are evaluated using the same applications. The results show that the

shared cache increases the cache hit rate and the efficiency of the applications. Mean-

while, the MSHR increases the number of opportunities to reuse data on the cache across

the applications of the difference schemes.

This dissertation clarifies that the memory bandwidth rate, B/FLOP, is a primary im-

portant factor of the high computational performance on the vector supercomputers. The

vi

ABSTRACT

high performance memory architecture is introduced to overcome to the memory wall

problem in future vector supercomputers. Then, the high performance memory architec-

ture has a potential to cover the shortage of the B/FLOP rate.

vii

CONTENTS

Contents

Abstract i

1 Introduction 1

1.1 Roles of Supercomputers . 1

1.2 Vector Processors . 3

1.3 Issues of Supercomputers . 8

1.3.1 Issues of scalar systems . 8

1.3.2 Issues of vector supercomputers 10

1.4 Objective of the Dissertation . 12

1.5 Organization of the Dissertation . 14

2 Memory Performance for Highly Efficient Supercomputing of Sci-

entific Applications 15

2.1 Introduction . 15

2.2 Related Work . 17

2.3 Architectural Characteristics of the Evaluated Systems 19

2.3.1 Vector supercomputers: NEC SX-7 and SX-7C 20

2.3.2 Scalar systems: NEC TX7/i9510 and SGI Altix3700 20

2.4 Benchmark Programs . 22

2.4.1 GPR simulation . 22

viii

CONTENTS

2.4.2 APFA simulation . 23

2.4.3 PRF simulation . 24

2.4.4 SFHT simulation . 24

2.4.5 PBM simulation . 25

2.5 Experimental Results and Discussion 26

2.5.1 Characterizations of benchmark programs 26

2.5.2 Efficiency of benchmark programs on the four systems . . . 27

2.5.3 Discussion on the memory performance of SX-7 and SX-7C . 30

2.5.4 Discussion on the memory performance of TX7/i9510 and Al-

tix3700 . 33

2.6 Conclusions . 37

3 An On-Chip Cache for the Vector Architecture 39

3.1 Introduction . 39

3.2 Related Work . 42

3.3 Characteristics of Scientific Applications 45

3.4 On-Chip Cache Memory for Vector Architecture 47

3.4.1 Basic mechanisms of a high performance memory architecture 47

3.4.2 Proposed vector architecture 49

3.5 Experimental Environment . 53

3.5.1 Methodology . 53

3.5.2 Benchmark programs . 54

3.6 Performance Evaluation of Vector Cache 60

3.6.1 Relationship between efficiency and cache hit rate on Kernel

loops . 60

3.6.2 Relationship between efficiency and cache hit rate on the

five benchmark programs . 63

ix

CONTENTS

3.6.3 Relationship between associativity and cache hit rate 66

3.6.4 Effects of vector cache latency on performance 68

3.7 Performance Evaluation of MSHR and Prefetching Vector Cache . 72

3.7.1 Effect of MSHR on the vector cache 72

3.7.2 Effect of prefetching on the vector cache 74

3.8 Optimizations for Vector Caching: Selective Caching and Loop Un-

rolling . 79

3.8.1 Effects of selective caching . 79

3.8.2 Effects of loop-unrolling and caching 83

3.9 Conclusions . 86

4 A Shared Cache for a Chip Multi Vector Processor 89

4.1 Introduction . 89

4.2 Related Work . 92

4.3 Characteristics of Scientific Applications 94

4.4 Chip Multi Vector Processor . 95

4.4.1 Basic mechanism of Chip Multi Vector Processor 95

4.4.2 Structure of Chip Multi Vector Processor 95

4.5 Experimental Environment . 98

4.5.1 Methodology . 98

4.5.2 Benchmark programs . 99

4.6 Performance Evaluation of CMVP 100

4.6.1 Scalability of the applications without the cache 100

4.6.2 Scalability of the applications with the vector cache 100

4.6.3 Relationship between associativity and cache hit rate 102

4.6.4 Effect of the shared vector cache 103

4.6.5 Effect of the MSHR . 104

x

CONTENTS

4.7 Conclusions . 107

5 Conclusions 108

Acknowledgments 112

Bibliography 114

xi

LIST OF FIGURES

List of Figures

1.1 Block diagram of the NEC SX vector processor. 3

1.2 Vector instructions of Source Code 1.1. 5

1.3 Pipeline diagram. 5

1.4 Decrease in computation time by vectorization. 6

1.5 Trend in architectures of top 500 supercomputer sites. 8

1.6 Divergence problem for US high end computer center. 9

1.7 Trend in performance of the NEC SX series. 11

2.1 Overview of performance for the five benchmark programs on one

processor, (a) computation efficiency and (b) sustained performance. 27

2.2 Ratio of non-hidden memory access time to processing time on one

processor. 29

2.3 Speedup ratio in 32 processors for the five benchmark programs. . 29

2.4 Relative non-hidden memory access time as a function of the num-

ber of banks. 31

2.5 Efficiency of the GPR simulation on SX-7 and SX-7C. 32

2.6 Computation efficiency of the five benchmark programs when chang-

ing the B/FLOP rate in SX-7. 33

2.7 Correlation of cache hit rate and ratio of memory access time to

processing time on TX7 and Altix. 34

xii

LIST OF FIGURES

2.8 Processing time of the GPR simulation: (a) TX7 and (b) Altix. . . . 35

2.9 Processing time of the APFA simulation: (a) TX7 and (b) Altix. . . . 36

3.1 Vector architecture with vector cache and memory system block di-

agram. 50

3.2 Instruction format of vector load/store. 50

3.3 Relationship between cache hit rate and relative memory band-

width on Kernel loop (1). 61

3.4 Relationship between cache hit rate and computation efficiency on

Kernel loop (1). 61

3.5 Relationship between cache hit rate and relative memory band-

width on Kernel loop (2). 63

3.6 Relationship between cache hit rate and relative memory band-

width on the five benchmark programs. 64

3.7 Computation efficiency of the five benchmark programs with/with-

out 8 MB vector cache. 65

3.8 Recovery rate of performance on 8 MB vector cache. 66

3.9 Cache hit rate vs. associativity on the five benchmark programs. . 67

3.10 Computation efficiency of the five benchmark programs on four

cache latency cases. 68

3.11 Computation efficiency of two kernel loops on four cache latency

cases. 69

3.12 Computation efficiency of two kernel loops on 4 B/FLOP and 2 B/FLOP

on three loop lengths. 70

3.13 (a) Computation efficiency and (b) Data transfer rate using MSHR

on the PRF simulation. 73

xiii

LIST OF FIGURES

3.14 Computation efficiency using MSHR on the GPR and SFHT simu-

lations. 73

3.15 Computation efficiency on 2 B/FLOP and 1 B/FLOP on the GPR

simulation. 74

3.16 (a) Relative non-hidden memory access time and (b) Data transfer

rate on 2 B/FLOP and 1 B/FLOP on the GPR simulation. 75

3.17 Computation efficiency on 2 B/FLOP on the SFHT and PRF simu-

lations. 76

3.18 (a) Data transfer rate on PRF and (b) Relative non-hidden memory

access time rate on the SFHT simulation. 77

3.19 Computation efficiency of both MSHR and prefetch. 78

3.20 Efficiency of selective caching and cache hit rate on 2 B/FLOP sys-

tem (the GPR simulation). 80

3.21 Recovery rate of performance and cache hit rate on selective caching

(the GPR simulation). 81

3.22 Efficiency and cache hit rate of selective caching on performance

(the PRF simulation). 81

3.23 Recovery rate of performance and cache hit rate on selective caching

(the PRF simulation). 82

3.24 Efficiency and cache hit rate of outer-unrolling on performance (the

PBM simulation). 84

3.25 Efficiency and cache hit rate of outer-unrolling on performance (the

PRF simulation). 85

4.1 CMVP block diagram. 96

4.2 Block diagram of a core. 96

xiv

LIST OF FIGURES

4.3 Relative performance of programs on the four-core CMVP without

the vector cache. 101

4.4 Relative performance of programs on the four-core CMVP with the

vector cache. 101

4.5 Cache hit rate vs. associativity on the five benchmark programs in

the four core case. 103

4.6 Cache hit rate and improved efficiency on a kernel loop of the GPR

simulation at the 2 B/FLOP. 104

4.7 Relative performance with/without the MSHR on the GPR, PRF

and SFHT simulations at the 2 B/FLOP. 105

4.8 Cache hit rate with/without the MSHR on a kernel loop of the PBM

simulation. 106

4.9 Relative performance with/without the MSHR on a kernel loop of

the PBM simulation at the 2 B/FLOP. 106

xv

LIST OF TABLES

List of Tables

2.1 Architectural summary of the systems. 19

2.2 Summary of benchmark programs. 22

2.3 Characterizations of the five benchmark programs on the evaluated

systems. 26

2.4 Non-hidden memory access time and ratio of SX-7 for the five bench-

mark programs on one processor. 28

2.5 Relative non-hidden memory access time of the five benchmark pro-

grams normalized by the 4 B/FLOP case on SX-7. 32

3.1 Summary of setting parameters. 54

3.2 MSHR hit rates of three benchmark programs. 74

4.1 Summary of setting parameters. 98

4.2 Cache hit rate . 105

xvi

LIST OF SOURCE CODES

List of Source Codes

1.1 Do Loop in Fortran code. 4

3.1 A kernel loop of FDTD (the GPR simulation). 46

3.2 Kernel Loop (1). 55

3.3 Kernel Loop (2). 55

3.4 A kernel loop of the PRF simulation. 55

3.5 A kernel loop of the PRF simulation. 56

3.6 A kernel loop of the SFHT simulation. 57

3.7 A kernel loop of the PBM simulation. 58

3.8 Outer-unrolling loop of the PBM simulation. 58

xvii

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Roles of Supercomputers

Since the invention of computers, scientists, mathematicians and engineers be-

gan using revolutionary computers that rapidly performed complex calculations

needed in the research and development. In the past decades, computer mod-

eling and simulations of physical phenomena and engineered systems have be-

come widely recognized as the third pillar to support science and technology, in

addition to theory and experiment. Complex systems such as aircraft, proteins,

human organs, global climate, space and nuclear are analyzed and better under-

stood through computational models. With advances in computing power, scien-

tists will be able to model such complex systems in greater detail, and eventually

to couple individual models to understand the behavior of an entire system.

In the circumstances, computer simulations are performed on computing plat-

forms ranging from simple workstations to very large and powerful systems:

supercomputers. Solving many of various important scientific and engineering

problems requires supercomputers. The supercomputers enable investigations

heretofore impossible, which in turn have enabled scientific and technological

1

1.1. ROLES OF SUPERCOMPUTERS

advances of vast breadth and depth. Thus, supercomputing has become an indis-

pensable tool in science and technology.

The Ministry of Education, Culture, Sports, Science and Technology in Japan

(MEXT) has been promoting “R&D Project for Innovative Simulation Software”

from 2005 [51]. In order to further contribute to the progress of science and

technology and to strengthen industrial competitiveness, the project has started

with some new simulation software contents, and involves the research and de-

velopment of world-class multi-scale multi-physics simulation software that en-

ables the more complex coupling models. These complex simulations need Peta

flop/s performance of supercomputers, and higher supercomputers are strongly

required for the future research and development.

2

1.2. VECTOR PROCESSORS

1.2 Vector Processors

Vector supercomputers are high speed and high-end computer systems designed

for the use of large-scale numerical intensive applications. In this dissertation

the vector processors architecture is mainly discussed, then an overview of the

vector processors architecture is presented in this section.

Vector supercomputers appeared to be CDC STAR-100 with peak performance

reaching 75 Mflop/s in 1974. The vector architecture was first fully exploited

in Cray-1 in 1976. Instead of leaving the data in memory like STAR-100, the

Cray design had eight vector registers which held 64 64-bit words each. Cray-1

demonstrated extremely high performance in various scientific applications by

the vector registers. Cray-1 normally had a performance of about 80 Mflop/s, but

with up to three chains running it could peak at 240 Mflop/s. In 1980s, Japanese

computer vendors, Fujitsu, Hitachi and NEC, introduced their vector processor

systems, VP-200, S810 and SX-2, respectively, which were basically improved

versions of Cray-1.

Vector

Registers

Mask

Logical

Multiply

Add/Shift

Divide

Scalar Reg. Scalar Pipe

Vector Unit

Scalar Unit

×4

×4

×4

×4

×4

 Main

Memory

Mask Reg.

Cache

Figure 1.1: Block diagram of the NEC SX vector processor.

3

1.2. VECTOR PROCESSORS

The vector processor simultaneously performs mathematical operations on

multiple array data elements, called vector, by instructions named vector instruc-

tions [69]. The vector processor is categorized into SIMD (Single Instruction

Multiple Data stream), and usually consists of a scalar unit and a vector unit as

shown in Figure 1.1. The scalar unit is similar to an ordinary pipelined scalar

processor, which executes scalar instructions for control functions, unvectorizable

part of the operating system and applications. The vector unit consists of vector

registers and pipelined arithmetic units. The vector registers are high speed tem-

porary memory that holds a part of vector data on a main memory. The maximum

number of elements to be held in a vector register, Maximum Vector Length, is

64 in Cray-1 and 256 in the NEC SX systems. The pipelined arithmetic units

are usually made up of Add, Multiply, Divide, Logical and Shift units that are

operated in a pipelined fashion, in which the vector data are input from vector

registers, and results are output every clock cycle into the vector registers.

Source Code 1.1: Do Loop in Fortran code.

1 DO i = 1 , N

2 A(i) = X(i) + Y(i) * Z(i)

3 END DO

Vectorization is the process of converting a program to a sequence of vector

instructions for executing the program in a vector processor. Source Code 1.1

shows a DO Loop in a Fortran code, and Figure 1.2 shows its converted vector in-

structions. Here V 0, V 1, V 2, V 3 and V 4 indicate vector registers, which hold 256

elements in the case of the NEC SX systems. Each vector instruction processes

256 elements at once. In addition, vector supercomputers hide the memory ac-

cess times by pipelined vector operations. Figure 1.3 shows a pipeline diagram

4

1.2. VECTOR PROCESSORS

of Source Code 1.1. Here, Each parallelogram shows load/store pipelines, multi

pipeline, and add pipeline. The load times of arrays Z and X are hidden by the

vector operations of V 0 ∗ V 1 and V 2 + V 3.

loop: VLoad V0, Yi : V0 <--- Yi

 VLoad V1, Zi : V1 <--- Zi

 VMulti V2, V0, V1 : V2 <--- V0 * V1

 VLoad V3, Xi : V3 <--- Xi

 VAdd V4 ,V2, V3 : V4 <--- V2 + V3

 VStore Ai, V4 : Ai <--- V4

 Ble i, n, end : if i = n, go to end

 be loop : go to loop

end:

Figure 1.2: Vector instructions of Source Code 1.1.

V 2 < - - V 0 * V 1

V l o a d V 0 Y i

VStore Ai V4
hidden memory access time

time

V l o a d V 1 Z i V l o a d V 3 X i

V 4 < - - V 2 + V 3

Figure 1.3: Pipeline diagram.

In order to achieve the higher sustained performance for a program, increas-

ing a vectorization ratio is extremely important for a vector processor. The vector-

ization ratio α is defined by a scalar computation time ratio of vectorized calcula-

tion parts Tv to the whole calculation T as shown in Figure 1.4. The calculation

time also depends on a speed ratio β , which is a ratio of vector to scalar compu-

tation performance in the vectorized calculation parts. The speed-up factor P is

5

1.2. VECTOR PROCESSORS

expressed with α and β as

P =
1

(1 − α) + α
β

. (1.1)

To improve the sustained performance, both the vectorization ratio and the speed

ratio need to be increased as large as possible.

scalar

processing

part

scalar

processing

part

vectorized part

vector

processing

part

T

Tv

Figure 1.4: Decrease in computation time by vectorization.

Moreover, the sustained performance depends on a vector length, which is a

number of iterations in DO Loop. A vector processing has an overhead time; a

start-up time of vector pipeline including the preprocessing by scalar operations

for vector operations. Thus, the start-up time becomes prominent in the case of

the shorter vector length. The vector length generally needs 20 or more.

The memory performance is a key factor to increase the sustained perfor-

mance in supercomputers. Vector supercomputers use an interleaved memory

system for the main memory. The interleaved memory system organizes memory

chips in banks to access multiple words at a time. The memory latency of the sec-

ond memory access or later are hidden in the interleaved memory system. Here,

the certain number of memory banks named minimum number of banks is needed

to hide the memory latency (bank cycle time) by sequential memory access. The

6

1.2. VECTOR PROCESSORS

minimum number of banks Nm is

Nm = Bw × Bc/D (1.2)

where Bw is memory bandwidth (GB/s) per processor, Bc is bank cycle time of

memory (ns), and D is the size of a word for floating-point data: 8 bytes. Specifi-

cally, Nm of NEC SX-7 [29] is 353 banks per processor, and Nm of NEC SX-8 [66]

is 512 banks per processor. SX-7 contains 512 banks per processor, 16,384 banks

per node, and SX-8 contains 512 banks per processor, 4,096 banks per node. Thus,

SX-7 has a margin of 159 banks; however, SX-8 does not have a margin.

7

1.3. ISSUES OF SUPERCOMPUTERS

1.3 Issues of Supercomputers

1.3.1 Issues of scalar systems

Supercomputer systems are categorized into vector and scalar systems. The

mainstream of supercomputers has been dominated by the commodity-based scalar

systems.

On the scalar systems, the 1970s saw the emergence of the microprocessor,

and RISC (reduced instruction set computer) microprocessors appeared in the

mid-1980s to early-1990s. The RISC architecture has led to 20 years of sus-

tained growth in performance at an annual rate of over 50 % [23]. Moreover,

massively parallel computers appeared in 1990s. Chip multiprocessors have be-

come the mainstream in commodity-based scalar processors from 1999. Thus,

the theoretical peak performance of scalar systems has dramatically increased

by the development of these computer architectures and technologies. Figure 1.5

shows the architectural classification of supercomputers in TOP500 supercom-

puter sites [43]. In 1993 vector supercomputers occupied 67 % of the TOP500

list, however, the number of vector supercomputers has been decreasing year by

year and scalar systems have dominated in the TOP500 list.

0

50

100

150

200

250

300

350

400

450

500

Vector

Intel

AMD

Power

Sparc

HP

Alpha

MIPS

0

50

100

150

200

250

300

350

400

450

500

SIMD

Vector

Intel

AMD

Power

Sparc

HP

Alpha

MIPS

Scalar

Figure 1.5: Trend in architectures of top 500 supercomputer sites.

8

1.3. ISSUES OF SUPERCOMPUTERS

In 2004, however, US High-End Computing Revitalization Task Force (HECRTF)

reported the divergence problem that means there was the increasing gap be-

tween the theoretical peak performance and the sustained system performance

for High End Computing systems of major US high-end computing centers as

shown in Figure 1.6 [18]. Here, the sustained system performance is measured

with a benchmark, which is specifically designed to reflect the performance of

applications codes at the centers. In other words, the commodity-based scalar

systems occupying the TOP500 list hardly obtain the high computation efficiency

in execution of real scientific and engineering applications. HECRTF described as

follows. “Continued technological improvements in microprocessor speeds driven

by Moore’s law result in the steeply rising upper curve of theoretical peak perfor-

mance. However, the result is multiprocessor machines that are increasingly out

of balance in terms of processor speed versus memory bandwidth. The imbalance

produces the disappointing rise in sustained system performance displayed by

the lower curve. This gap is critical because it is sustained system performance,

not peak performance that is usable by applications.”

SSP = Sustained
System Performance

Figure 1.6: Divergence problem for US high end computer center.

9

1.3. ISSUES OF SUPERCOMPUTERS

1.3.2 Issues of vector supercomputers

Several researchers show that vector supercomputers achieve high sustained per-

formance and high computation efficiencies in scientific and engineering applica-

tions [31], [38], [47], [55]. Also the Earth Simulator [10], which is the largest

vector supercomputer in the world, has substantiated it in various scientific ap-

plications: sustained performances (efficiencies) of 26.58 Tflop/s (65 %) in a global

atmospheric simulation [63], 16.4 Tflop/s (50 %) in a turbulence simulation [75]

and 24.6 Tflop/s (75 %) in a quantum many-body problems [73]. The high sus-

tained performance and high computation efficiencies of vector supercomputers

are owing to outstanding memory performance compared to scalar systems. It

will be discussed later in Chapter 2.

However, supercomputers have been encountering the memory wall problem

[41], [72], because the memory performance of the supercomputers hardly follow

the improvement of processor performance [23]. Moreover, the number of mem-

ory ports in a processor die does not increase owing to a limitation of the die area

and electrical power. As a result, it is getting harder for vector supercomputers

to keep a high memory bandwidth balanced with the processor performance. Fig-

ure 1.7 shows the trend in performance of the NEC SX systems during the last

twenty years [32]. The bytes per flop rate (B/FLOP) [39], the ratio of a memory

bandwidth (byte/s) to computational performance (flop/s), has decreased from 8

B/FLOP to 2.5 B/FLOP. Here, the B/FLOP is used as a technology-independent

performance parameter of vector supercomputers, instead of using absolute flop/s

and memory bandwidth values. Furthermore, the chip multiprocessor architec-

ture will be adopted in vector processor design, and the gap between the memory

performance and the processor performance will seriously expand. Therefore, the

sustained performance begins to decrease on vector supercomputers in common

10

1.3. ISSUES OF SUPERCOMPUTERS

with scalar systems.

0

50

100

150

200

250

SX-1

(1986)

SX-2N

(1989)

SX-3R

(1994)

SX-4

(1998)

SX-7

(2003)

SX-8

(2006)

SX-8R

(2007)

SX-9

(2008)

0

2

4

6

8

Gflop/s

GB/s (Mem BW)

B/FLOP

G
fl

o
p

/s
,
G

B
/s

B
/F

L
O

P

Per-Processor Performance

SX-?

(20??)

?

Figure 1.7: Trend in performance of the NEC SX series.

11

1.4. OBJECTIVE OF THE DISSERTATION

1.4 Objective of the Dissertation

Vector supercomputers encounter the memory wall problem, and the computation

efficiency of the vector supercomputers decreases owing to the increasing gap be-

tween the memory bandwidth and processor performance. Then, if the memory

wall problem is not be solved, future vector supercomputers hardly achieve the

high computational efficiency. Hence, the main objective of this dissertation is to

provide a high performance memory architecture to preserve the high computa-

tion efficiency of the future vector supercomputers. Then, this dissertation has

three objectives.

The first objective is to clarify the relationship between the memory perfor-

mance and the computational performance on the vector supercomputers using

real scientific applications. Particularly, several important factors of memory

systems are revealed for maintaining the high computation efficiency in vector

supercomputers.

Then, the high performance memory architecture is proposed to overcome the

memory wall problem. The aim of the high performance memory architecture is

to reduce data traffic between the main memory and the vector processor, and

effectively to use the memory bandwidth. Therefore, the high performance mem-

ory architecture maintains the effective memory bandwidth rate at vector regis-

ter files. In the design of the memory architecture, the following mechanisms are

developed.

• On-chip cache mechanism: To reuse data supplied to a vector processor

• Miss status handling registers mechanism: To reduce redundant data sup-

plied from the main memory

• Prefetch mechanism: To hide long memory latencies

12

1.4. OBJECTIVE OF THE DISSERTATION

• Selective caching mechanism: To effectively use the cache capacity

The second objective certifies that the high performance memory architecture

is an effective mechanism to achieve the high computation efficiency of the future

vector supercomputers. Through the experiments using real application codes,

characteristics of the high performance memory architecture are clarified, and

effects of miss status handling registers and prefetch mechanisms are examined.

Vector processors will employ a chip multiprocessor architecture in the near

future. Hence, third objective is to clarify the relationship between the scalabil-

ity of chip-multiprocessing and the B/FLOP rate, and establish a shared cache

architecture that boosts the performance of the chip multiprocessor architecture

under low B/FLOP rate.

13

1.5. ORGANIZATION OF THE DISSERTATION

1.5 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 1, the background of com-

puter simulations is described, and the importance of supercomputers is men-

tioned to advance research and development in science and engineering. In par-

ticular, the complex simulations such as multi-scale and multi-physics simula-

tions require Peta flop/s performance supercomputers.

In Chapter 2, the performance of supercomputers is examined from viewpoint

of memory performance using real scientific applications, and the effect of mem-

ory architectures is clarified. Moreover, the effects of B/FLOP and minimum

number of banks are quantitatively discussed on the sustained performance of

the scientific applications in vector supercomputers.

In Chapter 3, to overcome the memory wall problem, an on-chip cache mech-

anism, called vector cache, is introduced as the high performance memory archi-

tecture of vector supercomputers. The effects of the vector cache are evaluated

using two kernel loops and five leading scientific applications, and the charac-

teristics of the vector cache is clarified. Moreover, a prefetch mechanism, miss

status handling registers and selective caching are investigated to improve the

effect of the vector cache.

In Chapter 4, a chip multiprocessor architecture is introduced in vector su-

percomputers. The scalability of scientific applications is evaluated on four cores

of multi vector processor when changing the B/FLOP rate from 4 to 1. Moreover,

the effect of a shared cached is discussed on the improvement of the scalability.

Finally, the conclusions of the dissertation are given in Chapter 5.

14

CHAPTER 2. MEMORY PERFORMANCE FOR HIGHLY EFFICIENT
SUPERCOMPUTING OF SCIENTIFIC APPLICATIONS

Chapter 2

Memory Performance for Highly

Efficient Supercomputing of

Scientific Applications

2.1 Introduction

As shown in Chapter 1, supercomputer systems are categorized into vector and

scalar systems. The mainstream of supercomputers has been dominated by the

commodity-based scalar systems. However, the growing gap between sustained

and peak performance for real scientific applications on the scalar systems has

become remarkably exposed year and year. The sustained performance of super-

computers strongly depends on their memory systems. The vector supercomput-

ers employ the interleaved memory systems to improve the memory access per-

formance, while the scalar systems use the hierarchical cache memory systems.

In this chapter, supercomputers are evaluated from the viewpoint of memory ac-

cess performance using real scientific applications, and then the requirements

for high performance computing of the scientific applications are clarified. The

15

2.1. INTRODUCTION

contribution of this chapter is to quantitatively discuss the effects of B/FLOP and

the number of memory banks of the vector systems on the sustained performance

when executing the scientific applications in the fields of leading computational

science.

The rest of the chapter is organized as follows. Section 2.2 presents related

work. Sections 2.3 and 2.4 briefly describe the evaluated systems and scientific

applications, respectively. In Section 2.5, performance of the memory systems

on these applications is analyzed. Finally, Sections 2.6 summarizes the chap-

ter.

16

2.2. RELATED WORK

2.2 Related Work

The performance characteristics of the vector supercomputers have been researched

since 1980’s. Fatoohi has provided simple models of the performance in the vector

supercomputers, Cray-2, Cray Y-MP, EAT10-Q and NEC SX-2 using representa-

tive DAXPY-like kernel loops [16], [17]. He shows that the important factors

of the sustained performance on the vector supercomputers are the average vec-

tor length, the ratio of floating point operations to memory references and the

memory strides.

Shan and Strohmaier have investigated the memory performance characteris-

tics of a modern vector supercomputer: Cray X1, and show that the average vec-

tor length and the memory bank conflicts have a great impact on the sustained

performance [62]. In addition, Dunigan et al. have evaluated the performance of

Cray X1, and show that the high memory bandwidth improves the performance

of scientific applications [14].

Oliker et al. have compared the performance of the vector supercomputers

against the scalar systems [52], [53], [55]. They evaluated the performance of

the NEC SX-6 vector supercomputer and the IBM Power4 scalar system using

the STREAM benchmark [40] and the NAS Parallel Benchmarks [12]. They

demonstrated that SX-6 significantly outperforms the IBM Power4 system in the

STREAM benchmark and the NAS parallel Benchmarks. Moreover, they have

compared the application performance of the scalar systems, IBM Power, Intel

Itanium2 and AMD Opteron with the performance of the vector supercomputers,

Cray X1, NEC SX and Earth Simulator using leading scientific applications in

four areas: atmospheric modeling, magnetic fusion, plasma physics and material

science. They show that the vector supercomputers have the potential to achieve

excellent performance on scientific applications owing to their higher memory

17

2.2. RELATED WORK

bandwidth. However, they have not quantitatively discussed the effect of the

memory bandwidth on their performance.

18

2.3. ARCHITECTURAL CHARACTERISTICS OF THE EVALUATED
SYSTEMS

2.3 Architectural Characteristics of the Evaluated

Systems

The sustained performance of supercomputers is considered to depend on their

memory system. However, the effect of the memory system has not been quan-

titatively discussed, thus the relationship between the memory performance and

the computational performance should be clarified on supercomputers using real

scientific applications.

In this chapter, the performance of vector systems: NEC SX-7 [29] and SX-7C

[66] are compared with the performance of scalar systems: NEC TX7 [59] and

SGI Altix3700 [61] using scientific applications. SX-7 and SX-7C are represen-

tative systems in modern vector systems, and their architectures are similar to

Earth Simulator. Table 2.1 summarizes the architectural characteristics of the

four systems. The memory bandwidths of SX-7 and SX-7C are 5.5 and 10 times

higher than the memory bandwidth of TX-7 and Altix, respectively. On the other

hand, the scalar systems employ large on-chip caches to cover the lower memory

bandwidth.

Table 2.1: Architectural summary of the systems.

CPUs Clock Per CPU
system per Freq. Peak Perf. Mem. BW L3 Cache Processor

Node (GHz) (Gflop/s) (GB/s) (MB) Types
SX-7 32 1.1 8.83 35.3 - Custom
SX-7C 8 2.0 16.0 64.0 - Custom
TX7/i9510 32 1.6 6.4 6.4 9 Intel Itanium2
Altix3700 64 1.6 6.4 6.4 6 Intel Itanium2
The architecture of SX-7C is equivalent to the architecture of SX-8.

19

2.3. ARCHITECTURAL CHARACTERISTICS OF THE EVALUATED
SYSTEMS

2.3.1 Vector supercomputers: NEC SX-7 and SX-7C

SX-7 and SX-7C are shared-memory vector systems. A node of SX-7 contains

32 processors with the total peak performance of 282.5 Gflop/s and a 256 GB

main memory, and a node of SX-7C contains eight processors with the total peak

performance of 128 Gflop/s and a 128 GB main memory. SX-7 and SX-7C run

SUPER-UX (R14.1, and R15.1, respectively) a 64-bit UNIX operating system.

FORTRAN compiler, FORTRAN90/SX R.316, supports ANSI/ISO Fortran95 in

addition to functions of automatic vectorization and automatic parallelization.

Their processor has a vector operation unit and a 4-way superscalar opera-

tion unit. The SX-7’s vector operation unit contains four vector pipes (Logical,

Add/Shift, Multiply, Divide) with 144 KB vector registers, and achieves a peak

performance of 8.83 Gflop/s. Similarly, the SX-7C’s vector operation unit contains

four vector pipes (Logical, Add/Shift, Multiply, Divide/SQRT) with 144 KB vector

registers, and achieves a peak performance of 16 Gflop/s. The 4-way superscalar

operation units of SX-7 and SX-7C achieve peak performances of 1.1 Gflop/s and

2 Gflop/s, respectively. The memory bandwidths of SX-7 and SX-7C are 35.3 GB/s

with DDR-SDRAMs and 64 GB/s with DDR2-SDRAMs, respectively. The memory

bandwidth per flop/s of SX-7 and SX-7C is 4 B/FLOP.

2.3.2 Scalar systems: NEC TX7/i9510 and SGI Altix3700

TX7/i9510 and Altix3700 are ccNUMA (cache coherent Non Uniform Memory

Access) systems. A node of TX7/i9510 contains eight cells and crossbar network

modules. Each cell contains four Intel Itanium2 processors and a 32 GB main

memory, which are interconnected by a 6.4 GB/s bus. A computational building

block of Altix3700 consists of four Intel Itanium2 processors, main memory, and

two controller ASICs called the SHUB, which connect the processors and memory

20

2.3. ARCHITECTURAL CHARACTERISTICS OF THE EVALUATED
SYSTEMS

at 6.4 GB/s bandwidth. Altix interconnect is called the NUMAlink, a custom

network in the fat-tree topology [60]. Itanium2 has 3-tier on-chip data caches

consisting of 32 KB of L1, 256 KB of L2, and 6 MB (Altix) / 9 MB (TX7) of L3.

Itanium2 does not use the L1 data cache to store floating-point data [25].

The performance of memory system depends on the cache system. In the case

of TX-7, the memory access time is 20 times or more as long as the L3 cache access

time. Therefore, when a cache hit rate is low, a memory access time becomes

dominant in the total processing time; the computation efficiency on the cache

based systems gets worse accordingly.

TX7 and Altix run 64-bit Linux (RedHat AS2.1 and SGI Advanced Linux En-

vironment, respectively), and supports Fortran95 (NEC R4.3) with optimization

functions and parallel processing functions specialized for Itanium2.

21

2.4. BENCHMARK PROGRAMS

2.4 Benchmark Programs

Five leading scientific applications from three areas in scientific computing are

used to compare the sustained performance of SX-7 and SX-7C with the sustained

performance of TX7 and Altix3700. The benchmark programs have been devel-

oped by researchers of Tohoku University and are representative of each research

area. Table 2.2 shows the summary of the benchmark programs whose methods

are standard in individual areas.

Table 2.2: Summary of benchmark programs.

Area Name and Description Method Memory
Subdivision Size

Electro- GPR simulation: Simulation FDTD 8.9 GB
of Array Antenna Ground 50×750×750

magnetic Penetrating Radar
APFA simulation: Simulation FDTD 12 GB

Analysis of Anti-Podal Fermi Antenna 612×105×505
PRF simulation: Simulation of Compact Finite 1.4 GB

CFD/Heat Premixed Reactive Flow Difference Scheme
in Combustion 513×513

Analysis SFHT simulation: Simulation of SMAC 6.6 GB
Separated Flow and Heat Transfer 711×91×221

Earth PBM simulation: Simulation of Friction Law 8 GB
Science Plate Boundary Model on 32400×32400

Seismic Slow Slip

2.4.1 GPR simulation

The GPR simulation is for a simulation of an array antenna SAR-GPR (Synthetic

Aperture Radar - Ground Penetrating Radar), which detects anti personnel mines

in shallow subsurface [33], [58]. The GPR simulation evaluates performance of

22

2.4. BENCHMARK PROGRAMS

the SAR-GPR in detection of buried mines. The simulation method is the three di-

mensional FDTD (Finite Difference Time Domain) method with Berenger’s PML

(Perfectly matched layer) [37]. The FDTD method is a computational electro-

dynamics modeling technique. The time-dependent Maxwell’s equations are dis-

cretized using central-difference approximations to the space and time partial

derivatives. The electric field vector components in a volume of space are solved

at a given instant in time; then the magnetic field vector components in the same

spatial volume are solved at the next instant in time.

The simulation space consists of two regions; air-space and subsurface space

with PML of 10 layers. The performance of this code is primarily determined by

the electromagnetic field calculation processes. The basic computational struc-

ture of the processes consists of triple-nested loops accessing the memory at

non-stride-1 addresses; the ratio of its calculation cost to the total is 80 %. The

length of the innermost loop is over 500. The computational intensity, the ratio

of floating-point operations to memory references [9], is 1.1 in this code.

2.4.2 APFA simulation

Radiation patterns of an Anti-Podal Fermi Antenna (APFA) are simulated to de-

sign high gain antennas [67]. The simulation consists of two sections, a cal-

culation of the electromagnetic field around an APFA using the FDTD method

with Berenger’s PML, and an analysis of the radiation patterns using the Fourier

transform. The performance of the simulation is primarily determined by calcu-

lations of the radiation patterns; the ratio of its calculation cost to the total is 99

%. The computational structure of the calculations is triple-nested loops; the in-

nermost loop is a stride-1 loop, and its length is 255. On Itanium2, the innermost

loop is executed on the caches. The computational intensity in the loop is 2.25.

23

2.4. BENCHMARK PROGRAMS

Therefore, this code is computational-intensive, and the performance of the code

is not dominated by memory references.

2.4.3 PRF simulation

The PRF simulation provides numerical simulations of two-dimensional Premixed

Reactive Flow (PRF) in combustion for the intrinsic instabilities of two-dimensional

hydrogen/air premixed planar flames [68]. The simulation uses the 6th-order

compact finite difference scheme and the 3rd-order Runge-Kutta method for time

advancement to solve Navier-Stokes equations. The hydrogen/air detailed kinet-

ics use Stahl and Warnatz model. Here, this simulation assumes constant density

and one-step reaction.

The performance of the code is primarily determined by calculations of deriva-

tions of physical equations; the ratio of its calculation cost to the total is 50 %,

and the rest of the cost has been distributed to various routines. The calculations

have doubly nested loops; the loop of x-derivations induces stride-1 memory ac-

cesses, and the loop of y-derivations induces non-stride-1 memory accesses. The

length of each innermost loop is 513. The computational intensity is 0.7 in this

code.

2.4.4 SFHT simulation

The SFHT simulation realizes direct numerical simulations of three-dimensional

laminar Separated Flow and Heat Transfer (SFHT) on surfaces of a plane [48],

[74]. Fundamental equations are the continuity, momentum and energy for a

three dimensional unsteady flow of incompressible viscous fluid with constant

properties. The finite-difference forms are the 5th-order upwind difference scheme

for space derivatives and the Crank-Nicholson method for a time derivative. The

24

2.4. BENCHMARK PROGRAMS

resulting finite-difference equations are solved using the SMAC method.

The performance of the code is primarily determined by calculations of the

predictor-corrector methods; the ratio of its calculation cost to the total is 67 %,

and the rest of the cost has been distributed to various routines. The calculations

have triple-nested loops; the innermost loop needs stride-1 memory accesses, and

its length is 349. The computational intensity is 1.0 in this code.

2.4.5 PBM simulation

The PBM simulation uses the three-dimensional numerical Plate Boundary Mod-

els (PBM) to explain an observed variation in propagation speed of post-seismic

slip [4]. This is a quasi-static simulation in an elastic half-space including a

rate- and state-dependent friction. The performance of the simulation is primar-

ily determined by a process of thrust stress with the Green function; the ratio of

its calculation cost to the total is 99 %. The computational structure of the pro-

cess is a doubly nested loop which calculates a product of matrices, the innermost

loop results in stride-1 memory accesses, and its length is 32400. The PBM sim-

ulation has two versions: an outer unrolling version and a non outer unrolling

version. The computational intensities are 1.9 in the outer unrolling version, and

1.0 in the non unrolling version. The performance of the outer unrolling version

is higher than the performance of the non unrolling version. The outer unrolling

version is evaluated in this chapter.

25

2.5. EXPERIMENTAL RESULTS AND DISCUSSION

2.5 Experimental Results and Discussion

The experiments conducted in this work measure the performance of the origi-

nal source codes, which have been developed for SX-7, with optimizations of the

compilers; compiler’s options are high-level optimizations (SX: -C hopt, TX, Altix:

-O3) and inlining subroutines. NEC compiler was used for Intel Iitanium2 on

TX7 and Altix, to evaluate the performance under the same level optimizations.

On SX-7 and SX-7C, the five benchmark programs are vectorized by the compiler.

The benchmark programs are automatically parallelized by the compiler on the

four studied systems. All the performance statistics of the four studied systems

were obtained using the NEC compiler option ftrace [50].

2.5.1 Characterizations of benchmark programs

To characterize computation behavior this section shows a vector operation ratio

(VOR) and an average vector elements (double-precision floating-point data) per

vector instruction (AVL) on the vector supercomputers, the L2 and L3 cache hit

rates on Itanium2, and a parallel ratio (PR) of thread-level parallelism, which

is the fraction of the code executed in parallel. As Table 2.3 shows, these five

benchmark programs are highly vectorized and parallelized, and the L2 cache

Table 2.3: Characterizations of the five benchmark programs on the evaluated
systems.

SX-7/7C TX7/i9510 Altix3700
VOR AVL L2 L3 L2 L3 PR

GPR 99.7 % 245.1 70.6 % 40.2 % 71.0 % 42.6 % 98 %
APFA 99.9 % 255.5 99.9 % 26.7 % 99.9 % 26.8 % 99 %
PRF 99.3 % 179.0 89.6 % 78.9 % 89.5 % 79.9 % 93 %
SFHT 99.4 % 192.9 92.4 % 21.8 % 92.4 % 21.7 % 98 %
PBM 99.5 % 255.5 88.7 % 54.8 % 88.9 % 63.2 % 98 %

26

2.5. EXPERIMENTAL RESULTS AND DISCUSSION

hit rates range from 70 % to 99.9 % according to their irregularity in memory

accesses.

2.5.2 Efficiency of benchmark programs on the four sys-

tems

The overall performance comparison of the four systems for the five benchmark

programs is shown in Figure 2.1. The vector supercomputers achieve the high

computation efficiency of 40 % or more and the higher sustained performance

across all of the benchmark programs. The scalar systems show that the compu-

tation efficiency is less than 14 % across all of the benchmark programs.

0

10

20

30

40

50

60

70

80

90

100

GPR APFA PRF SFHT PBM

E
ff

ic
ie

n
cy

 (
%

)

SX-7 SX-7C TX7/i9510 Altix3700

0

2

4

6

8

10

12

14

16

GPR APFA PRF SFHT PBM

P
er

fo
rm

an
ce

 (
G

fl
o

p
/s

)

SX-7 SX-7C TX7/i9510 Altix3700

(a)

(b)

Figure 2.1: Overview of performance for the five benchmark programs on one
processor, (a) computation efficiency and (b) sustained performance.

27

2.5. EXPERIMENTAL RESULTS AND DISCUSSION

SX-7 and SX-7C hide the memory access times by the interleaved memory sys-

tem and the pipelined vector operations, because VOR and AVL of the five bench-

mark programs are large. The memory access times not hidden by overlapping

calculations of the four systems are shown in Table 2.4. The non-hidden memory

access times of the vector supercomputers are much shorter than the non-hidden

memory access times of the scalar systems. In particular, the non-hidden mem-

ory access time of the PBM simulation on SX-7 is 5 seconds. However, the sum

of calculated floating-point data is a 13.5 trillion; 108 TB in the PBM simula-

tion. Hiding memory access latency by pipelined vector operations works best

for the PBM simulation, because the PBM simulation has the longest loop length

(32400) among the five benchmark programs and further sequentially accesses

memory. On the cache based systems, TX7 and Altix, the non-hidden memory

access times are 600+ times longer than the non-hidden memory access times of

SX-7. In the longer loops of larger simulations, the vector supercomputers are

more advantageous in the performance.

Figure 2.2 shows the ratio of non-hidden memory access time to processing

time for the five benchmark programs on one processor of the four systems. The

processing time of the scalar systems consists mostly of the non-hidden memory

Table 2.4: Non-hidden memory access time and ratio of SX-7 for the five bench-
mark programs on one processor.

GPR APFA PRF SFHT PBM
System Time Ratio Time Ratio Time Ratio Time Ratio Time Ratio
SX-7 171 1 17 1 40 1 81 1 5 1
SX-7C 90 0.5 3 0.2 21 0.5 32 0.4 6 1.2
TX7 23399 137 568 34 2170 54 3674 45 5652 1082
Altix 26319 154 612 37 1745 43 3910 48 3323 636

Time : seconds

28

2.5. EXPERIMENTAL RESULTS AND DISCUSSION

0

10

20

30

40

50

60

70

80

90

100

GPR APFA PRF SFHT PBM

R
at

io
 o

f
m

em
o
ry

 t
im

e
(%

)

SX-7 SX-7C TX7/i9510 Altix3700

Figure 2.2: Ratio of non-hidden memory access time to processing time on one
processor.

access time. The APFA simulation achieving a 99.9 % cache hit rate shows the

smallest ratio of non-hidden memory access time among the five benchmark pro-

grams on the scalar systems; however the ratio is still over 20 %. The memory

systems of the vector supercomputers are more effective for scientific applications

than those of the scalar systems.

Figure 2.3 shows the speedup ratio in 32 processors of the studied systems for

the five benchmark programs. The speedup ratio of the PRF simulation is the

lowest among the five benchmark programs on each system, because the parallel

ratio (PR) of the PRF is 93 % and lowest. SX-7 outperforms the other systems

0

5

10

15

20

25

30

GPR APFA PRF SFHT PBM

S
p
ee
d
u
p

SX-7 TX7/i9510 Altix3700

Figure 2.3: Speedup ratio in 32 processors for the five benchmark programs.

29

2.5. EXPERIMENTAL RESULTS AND DISCUSSION

across all of the benchmark programs. TX7 and Altix utilize the same proces-

sors; however, Altix scalability is higher than TX7. This is owing to many access

contentions on TX-7 bus with the lower bandwidth.

2.5.3 Discussion on the memory performance of SX-7 and

SX-7C

The PRF and SFHT simulations are used to examine the non-overlapped memory

access latencies when changing the number of banks per processor on SX-7. The

performance of the PRF simulation is dominated by memory references, because

the memory access has a 4104-byte stride, and the computational intensity is

0.7. In the SFHT simulation, the memory access needs a 16-byte stride, and

the computational intensity is 1.0. Thus, the PFR simulation is more memory-

intensive than the SFHT simulation. Figure 2.4 shows the non-hidden memory

access time normalized by the non-hidden memory access time of SX-7 with 16K

banks. The experimental results indicate that the non-hidden memory access

time increases as the number of banks decreases. When one processor of SX-

7 has 16K banks, the non-hidden memory access times of the PRF and SFHT

simulations are 40 and 81 seconds, respectively. When one processor has 0.5K

banks, the non-hidden memory access times of the PRF and SFHT simulations

are 113 and 131 seconds, respectively. The non-hidden memory access time of the

PFR simulation increases faster than The non-hidden memory access time of the

SFHT simulation, because the strides of memory access of the PFR simulation

are longer than the strides of memory access of the SFHT simulation. Then, the

PFR simulation requires more banks to reduce the memory access time.

In general, various scientific applications need non-stride-1 memory accesses,

and therefore the number of banks per processor needs more than the minimum

30

2.5. EXPERIMENTAL RESULTS AND DISCUSSION

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5K 1K 2K 4K 16K

R
el

at
iv

e
m

em
o
ry

 t
im

e

Number of Banks (K=1024)

PRF SFHT

Figure 2.4: Relative non-hidden memory access time as a function of the number
of banks.

number of banks to keep the higher computation efficiency. To evaluate the ef-

fect of the number of memory banks on the performance, the performance of the

8-parallel GPR simulation is compared between SX-7 and SX-7C. The memory

access of the GPR simulation has a 576-byte stride. Figure 2.5 shows that the

efficiency of SX-7 is 1.7 times higher than the efficiency of SX-7C in eight proces-

sors. Here, the number in each bar indicates the number of banks per processor.

Although the peak performance of SX-7C is 1.8 times faster than the peak perfor-

mance of SX-7, SX-7 and SX-7C are comparable in the sustained performance of

the GPR simulation using eight processors. On SX-7 and SX-7C, when a bench-

mark program uses eight processors in a node, each processor uses 2K banks in

SX-7 and 0.5K banks in SX-7C. As discussed in Section 1.2, SX-7C does not have

the margin in the number of banks. In the case of non-stride-1 memory accesses,

the processing time on eight processors of SX-7C increases owing to the memory

access latency not hidden by the interleaved memory. On the other hand, SX-7

has the margin in the number of banks, and SX-7 is superior to SX-7C from a

viewpoint of the capability to hide the memory access latency. Therefore, SX-

7C requires more banks for more effective computing and scalable performance

when using entire processors of one node.

31

2.5. EXPERIMENTAL RESULTS AND DISCUSSION

0

10

20

30

40

50

60

1CPU 4CPU 8CPU

E
ff

ic
ie

n
cy

 (
%

)

SX-7 SX-7C

0
.5

K

2
K

1
K

4
K

4
K

1
6

K

Figure 2.5: Efficiency of the GPR simulation on SX-7 and SX-7C.

Table 2.5: Relative non-hidden memory access time of the five benchmark pro-
grams normalized by the 4 B/FLOP case on SX-7.

B/FLOP GPR APFA PRF SFHT PBM
4 1.0 1.0 1.0 1.0 1.0
2 3.5 3.0 2.2 3.5 75.6
1 9.5 11.5 5.7 10.1 316.7

It is investigated that the memory bandwidth per processor affects the non-

overlapped memory access time of SX-7. Table 2.5 shows the results of relative

memory access times on each application when the memory bandwidth of SX-

7 is reduced by partially shutting off network switches between processors and

memory units. When the memory bandwidth is adjusted to 1/2 (2 B/FLOP), the

memory access time is two or more times longer than the memory access time of

the 4 B/FLOP case. When the memory bandwidth is reduced to 1/4 (1 B/FLOP),

the memory access time is four or more times longer than the memory access

time of the 4 B/FLOP case, which is almost comparable to the cases of the scalar

systems. As the memory bandwidth decreases, the memory read/write time in-

creases, and the memory access time is not hidden by the pipelined vector op-

erations. In the PBM simulation, the memory access time not hidden by vector

operations is 316 times as long as that of the 4 B/FLOP case. Figure 2.6 shows

32

2.5. EXPERIMENTAL RESULTS AND DISCUSSION

the ratio of the sustained performance to the peak performance when changing

the memory bandwidth from 4 B/FLOP to 2 B/FLOP and 1 B/FLOP in SX-7. The

sustained performance of these benchmark programs seriously goes down as the

memory bandwidth decreases. In particular, the performances of the GPR and

PBM simulations are degraded by half and quarter when the memory bandwidth

is reduced to 2 B/FLOP and 1 B/FLOP from 4 B/FLOP, because these benchmark

programs are memory-intensive. Therefore, the sustained performance is seri-

ously affected by the B/FLOP rates, and a memory bandwidth of the 4 B/FLOP is

essential to keep the superiority of the vector supercomputers against the scalar

systems.

0

10

20

30

40

50

60

70

80

90

100

GPR APFA PRF SFHT PBM

E
ff

ic
ie

n
cy

 (
%

)

4B/FLOP

2B/FLOP

1B/FLOP

Figure 2.6: Computation efficiency of the five benchmark programs when chang-
ing the B/FLOP rate in SX-7.

2.5.4 Discussion on the memory performance of TX7/i9510

and Altix3700

The performance of TX7/i9510 and Altix3700 depends on the cache hit rate. Fig-

ure 2.7 presents the correlation between the cache hit rate and the ratio of the

memory access time to processing time of the five benchmark programs on one

processor; here, the cache hit rate is a sum of the L2 and L3 caches. The ratio of

33

2.5. EXPERIMENTAL RESULTS AND DISCUSSION

non-hidden memory access time becomes more than 50 % even when the cache

hit rate is 95 %. Therefore, the cache hit rate needs to be almost 100 % to achieve

the high computation efficiency on the cache based systems.

0

20

40

60

80

100

70 80 90 100

R
at

io
 o

f
m

em
o

ry
 t

im
e

(%
)

Cache hit rate (%)

TX7/i9510 Altix3700

GPR SFHT

PRF

PBM

APFA

Figure 2.7: Correlation of cache hit rate and ratio of memory access time to pro-
cessing time on TX7 and Altix.

The GPR simulation has a low cache hit rate and the memory-intensive. Fig-

ure 2.8 is the processing time of the GPR simulation, and shows that the memory

access time of Altix decreases constantly. On the other hand, the memory access

time of TX7 does not decrease in the case of eight or more processors, because

the system buses of TX7 connecting processors to memory are saturated with the

data transfers. On TX7 and Altix, a cell card contains processors and a main

memory, which are interconnected by a 6.4 GB/s bus. The cell cards of TX7 and

Altix contain four processors and two processors, respectively. In the experiment,

TX7 and Altix consist of eight cell cards and 32 cell cards, respectively. In the

case of eight or more processors, TX7 uses two or more processors per cell, and

the bus of TX7 is more likely to saturate with data transfers between processors

and a memory than that of Altix, because two or more processors of a TX7 cell

share the 6.4 GB/s bus. Therefore, the experimental results suggest that it is

necessary for system configurations of the cache based systems not to saturate

the bus with data transfers on the bus.

34

2.5. EXPERIMENTAL RESULTS AND DISCUSSION

Meanwhile, the APFA simulation has a high cache hit rate, and the computa-

tional intensity is 2.2. Thus, the APFA simulation is less memory-intensive than

the GPR simulation. The experimental results of the APFA simulation shown

in Figure 2.9 indicate that the non-hidden memory access time of TX7 and Altix

decreases in the case of eight or more processors. In this case, the buses of TX7

are not saturated with data transfers between processors and a memory.

0

5,000

10,000

15,000

20,000

25,000

30,000

1CPU 4CPU 8CPU 16CPU 32CPU

P
ro

ce
ss

in
g

 t
im

e
(s

ec
)

Altix3700

Memory Time

CPU Time

0

5,000

10,000

15,000

20,000

25,000

30,000

1CPU 4CPU 8CPU 16CPU 32CPU

P
ro

ce
ss

in
g
 t

im
e

(s
ec

)

TX7/i9510

Memory Time

CPU Time

(a)

(b)

Figure 2.8: Processing time of the GPR simulation: (a) TX7 and (b) Altix.

35

2.5. EXPERIMENTAL RESULTS AND DISCUSSION

0

500

1,000

1,500

2,000

2,500

3,000

1CPU 4CPU 8CPU 16CPU 32CPU

P
ro

ce
ss

in
g
 t

im
e

(s
ec

)

TX7/i9510

Memory Time

CPU Time

0

500

1,000

1,500

2,000

2,500

3,000

1CPU 4CPU 8CPU 16CPU 32CPU

P
ro

ce
ss

in
g
 t

im
e

(s
ec

)

Altix3700

Memory Time

CPU Time

(a)

(b)

Figure 2.9: Processing time of the APFA simulation: (a) TX7 and (b) Altix.

36

2.6. CONCLUSIONS

2.6 Conclusions

This chapter has presented the memory performance of the vector supercomput-

ers of SX-7 and SX-7C and compared it against the cache based scalar systems

of TX7/i9510 and Altix3700 using five scientific applications from three areas.

The experimental results show that the vector supercomputers achieve the high

efficiency and significantly outperformed the scalar systems. It has quantita-

tively been presented that the important factor affecting the computational per-

formance on scientific applications is the memory performance. The vector su-

percomputers use the interleaved memory systems, and their memory access la-

tencies are hidden by pipelined vector operations. It have been confirmed that

the high performance of the vector supercomputers is obtained owing to a high

memory bandwidth and a large number of banks. These experiments using prac-

tical application codes have shown that both a balanced performance of the high

B/FLOP and the enough number of memory banks that exceeds the minimum

number of banks to hide the bank cycle time are essential to achieve the higher

sustained performance. Especially, the sustained performance is seriously af-

fected by the B/FLOP rates, and a memory bandwidth of the 4 B/FLOP is es-

sential to keep the superiority of the vector supercomputers against the scalar

systems.

On the scalar systems, the computational performance depends mainly on

cache hit rates. It have quantitatively been presented the correlation between

the cache hit rate and the ratio of the memory access time to processing time of

the five applications, and have confirmed that the cache hit rate needs almost 100

% to achieve efficient computing. Additionally, the computational performance

also depends on the performance of the memory bus that connects processors and

memory in a cell card. It have been demonstrated that the buses of TX7 are

37

2.6. CONCLUSIONS

saturated with data transfers among processors, when two or more processors

share a 6.4GB/s bus. To avoid such a situation the scalar systems would require

maintaining the bus bandwidth per processor not to saturate the bus with data

transfers and using cache effectively.

38

CHAPTER 3. AN ON-CHIP CACHE FOR THE VECTOR ARCHITECTURE

Chapter 3

An On-Chip Cache for the Vector

Architecture

3.1 Introduction

Vector supercomputers have high computation efficiency for scientific applica-

tions [30]. In Chapter 2, it is shown that NEC SX vector supercomputers achieve

high sustained performance in five leading applications owing to their high B/FLOP

rates compared to scalar systems. Especially, the memory bandwidth of the 4

B/FLOP is essential to keep the superiority of the vector supercomputers against

the scalar systems. However, as advantages in VLSI technology have also been

accelerating processor speeds, supercomputers have been encountering the mem-

ory wall problem. As a result, it is getting harder for vector supercomputers to

keep a high memory bandwidth balanced with the improvement of their flop/s

performance. On the NEC SX systems, the B/FLOP rate has decreased from

8 B/FLOP to 2.5 B/FLOP during the last twenty years [32]. Then, preserving

the sustained performance of future vector supercomputers requires a high per-

formance memory architecture for maintaining the memory bandwidth of the 4

39

3.1. INTRODUCTION

B/FLOP.

In this chapter, the following mechanisms are proposed as the high perfor-

mance memory architecture.

• On-chip cache mechanism

• Miss status handling registers mechanism

• Prefetch mechanism

• Selective caching mechanism

An on-chip cache, called vector cache, reuses data that have already been sup-

plied to the vector unit, and maintains the effective memory bandwidth rate at

vector register files [46], [44], [45]. Here, the effective memory bandwidth rate

indicates the memory bandwidth rate provided from both the main memory and

the vector cache to the vector register files. The vector cache employs miss status

handling registers (MSHR) [36] and a prefetch mechanism to improve the effect

of the vector cache. These techniques have already been studied on many scalar

architectures [15], [28], [57], [70]. Furthermore, the vector cache has a bypass

mechanism and data are selectively cache to reduce capacity miss rates of the

vector cache.

In this chapter, the performance of the vector cache is evaluated by using the

NEC SX simulator, by limiting off-chip memory bandwidth at the 1 B/FLOP and

2 B/FLOP rates. The characteristics of the on-chip vector cache are clarified on

the vector supercomputers.

The rest of the chapter is organized as follows. Section 3.2 presents related

work. Section 3.3 indicates characteristics of scientific applications regarding the

locality of reference for the effective use of caches. Section 3.4 describes a vector

architecture with an on-chip vector cache. Section 3.5 provides an experimental

40

3.1. INTRODUCTION

methodology and benchmark programs for performance evaluation. Section 3.6

presents experimental results when executing the kernel loops and five bench-

mark programs on the vector architecture with the vector cache. Through the

experimental results, the characteristics of the vector cache are clarified. Section

3.7 presents experimental results on the MSHR and the prefetch mechanism. In

Section 3.8, the effect of selective caching is examined on the performance, in

which only the data with high localities of reference are cached. In addition, the

relationship between loop unrolling and the vector cache is discussed. Finally,

Section 3.9 summarizes the chapter.

41

3.2. RELATED WORK

3.2 Related Work

Vector caches have been previously studied by many researchers using trace

driven simulators of convectional vector architectures from the 1990’s. This sec-

tion presents related works of the vector cache.

Gee et al. have provided an evaluation of the cache performance in vector

architectures: Cray X-MP and Ardent Titan [21], [22]. Their caches employ a

full-associative cache and an n-way set associative cache. The line sizes range

from 16 to 128 bytes, and the maximum cache size is 4 MB. Their benchmark

programs are selected from Livermore Loops [42], NAS kernels [6], Los Alamos

benchmark set [64] and real applications in chemistry, fluid dynamics and linear

analysis. They shown that vector references contained somewhat less temporal

locality, but large amounts of spatial locality compared to instruction and scalar

references, and the cache improved the computational performance of the vector

processors. Kontothanassis et al. have evaluated the cache performance of Cray

C90 architecture using NAS parallel benchmarks [34]. Their cache is a direct-

mapped cache with a 128 bytes line size, and the maximum cache size is 8 MB.

They shown that the cache reduced memory traffic from off-chip memory, and

a DRAM memory system with the cache was competitive to a SRAM memory

system.

Fu et al have evaluated the effects of hardware-based prefetch mechanisms in

the Alliant FX/8 vector processor system [19], [20]. They have proposed stride

prefecth mechanism. In the vector processor, the address of loaded data is com-

pletely identified by the base address, stride and the position of the data. The

stride prefecth mechanism takes advantage of the vector stride information spec-

ified in a vector instruction that loads or stores memory data to prefetch vector

elements into the cache. Their prefetch mechanisms reduce the influence of long

42

3.2. RELATED WORK

stride vector accesses and misses owing to block invalidations in a multiproces-

sor. Their benchmark programs are the Perfect Club collection of numerical pro-

grams. They indicated that the prefetch mechanisms are shown to have better

performance than a non-prefetching cache.

Batten et al proposed a Vector Refill Unit with non-blocking cache to sustain

high memory bandwidth in a cached vector machine [7]. The Vector Refill Unit

pre-execute vector memory commands to detect which of the lines they will touch

are not in cache and are prefetched. The Vector Refill Unit reduces costs by

eliminating much of the outstanding miss state required in traditional vector

architectures and by using the cache itself as a cost-effective prefetch buffer. They

describe an implementation of the Vector Refill Unit within the context of the

SCALE vector-thread processor [35] and provide an evaluation over a range of

scientific and embedded kernels. They show an improvement in performance and

a reduction in the hardware resources required to sustain high throughput in

long latency memory systems.

Modern vector supercomputer Cray X1 has a 2 MB vector cache, called Ecache,

organized as a 2-way set associative write-back cache with 32 bytes line size and

the least recently used (LRU) replacement policy [2]. Moreover, Cray inc. an-

nounced a new vector supercomputer, BlackWidow, in 2006 [24]. It has a 512 KB

L2 cache and a 8 MB L3 cache. The performance of Cray X1 has been evaluated

using real scientific applications by several researchers [8], [13], [54], [62]. These

studies have compared the performance of Cray X1 with that of other platforms;

IBM Power, SGI Altix and NEC SX. On BlackWidow, Abts et al demonstrate the

performance of a prototype hardware using the HPC challenge benchmark suite

[1]. However, they have not quantitatively discussed the effect of the cache on its

performance.

The aim of this chapter is to quantitatively investigate the effect of the vector

43

3.2. RELATED WORK

cache using modern vector supercomputer NEC SX architecture. The basic char-

acteristics of the vector cache are clarified and its effective usages are discussed.

44

3.3. CHARACTERISTICS OF SCIENTIFIC APPLICATIONS

3.3 Characteristics of Scientific Applications

Various scientific applications generally utilize difference schemes for simulating

the physics phenomena. A part of arrays in the difference schemes has a high

locality in a DO Loop. Source Code 3.1 shows an example of a difference scheme:

a kernel routine of Finite Difference Time Domain Method (FDTD method). This

method is used for the GPR and APFA simulations discussed in Chapter 2. In this

loop, the following six arrays reuse the cached data, Hy(i, j, k−1) (line 06 in Figure

3.1), Hy(i, j, k) (line 08), Hy(i−1, j, k) (line 08), Hx(i, j, k) (line 11), Hx(i, j, k−1) (line

11) and Hz(i − 1, j, k) (line 12). Therefore, the traffic between the main memory

and the processor is decreased using the vector cache. Moreover, when the arrays

Hx, Hy and Hz are selected for selective caching, then the capacity miss of these

arrays is reduced.

However, Hz(i, j−1, k) (line 05) and Hx(i, j−1, k) (line 09) hardly reuse the data

of Hz(i, j, k) (line 05) and Hx(i, j, k) (line 09) which have a locality on the index j,

because the data of Hz(i, j, k) and Hx(i, j, k) are not filled into the cache yet when

the subsequent load instructions of Hz(i, j − 1, k) and Hx(i, j − 1, k) are issued.

Therefore, the same data are reloaded and it wastes the memory bandwidth. To

solve this problem, the vector cache needs a mechanism which holds information

of in-flight load requests, and the mechanism makes the subsequent load instruc-

tions access the in-flight load data from the vector cache as the in-flight load data

arrive at the vector cache.

Moreover, the arrays except for Hx, Hy and Hz do not have a locality in this

loop. However, the prefetch mechanism of the vector cache has the potential of

hiding the memory access time of these arrays by other arithmetic operations

processed, and the execution time of the loop is reduced. Therefore, the vector

cache is effective for non reference locality arrays to increase the performance of

45

3.3. CHARACTERISTICS OF SCIENTIFIC APPLICATIONS

a DO Loop.

Source Code 3.1: A kernel loop of FDTD (the GPR simulation).

1 DO 10 k=0,Nz

2 DO 10 i=0,Nx

3 DO 10 j=0,Ny

4 E_x(i,j,k) = C_x_a(i,j,k) * E_x(i,j,k)

5 & +C_x_b(i,j,k) * ((H_z(i,j,k)-H_z(i,j-1,k))/dy

6 & -(H_y(i,j,k)-H_y(i,j,k-1))/dz-E_x_Current(i,j,k))

7 E_z(i,j,k) = C_z_a(i,j,k) * E_z(i,j,k)

8 & +C_z_b(i,j,k) * ((H_y(i,j,k)-H_y(i-1,j,k))/dx

9 & -(H_x(i,j,k)-H_x(i,j-1,k))/dy-E_z_Current(i,j,k))

10 E_y(i,j,k) = C_y_a(i,j,k) * E_y(i,j,k)

11 & +C_y_b(i,j,k) * ((H_x(i,j,k)-H_x(i,j,k-1))/dz

12 & -(H_z(i,j,k)-H_z(i-1,j,k))/dx-E_y_Current(i,j,k))

13 10 CONTINUE

46

3.4. ON-CHIP CACHE MEMORY FOR VECTOR ARCHITECTURE

3.4 On-Chip Cache Memory for Vector Architec-

ture

3.4.1 Basic mechanisms of a high performance memory ar-

chitecture

Future vector supercomputers have difficulty preserving the 4 B/FLOP memory

bandwidth rate owing to the memory wall problem. Thus, Memory architecture

of the future vector supercomputers requires to use the memory bandwidth effec-

tively. Then, four main mechanisms are proposed.

• On-chip cache mechanism (vector cache)

• Miss status handling registers mechanism

• Prefetch mechanism

• Selective caching mechanism

A vector cache reuses the data supplied to vector processor when the data have

locality, and the traffic of the data with locality between the main memory and

the processor is decreased. On vector supercomputers, the memory system em-

ploys an interleaved memory system. A vector processor has many memory ports

corresponding to the interleaved memory system, and continuous data transfer

is enabled. Thus, the vector cache consists of sub-caches with each memory port,

and the sub-cache prevents the diminishing of the effect of the interleaved mem-

ory system. Furthermore, the vector cache employs a bypass mechanism between

the main memory and vector register files. The bypass mechanism makes possi-

ble to supply data from both the main memory and the vector cache at the same

47

3.4. ON-CHIP CACHE MEMORY FOR VECTOR ARCHITECTURE

time. Thus, the total amount of data provided to the vector register files in time

is increased by the bypass mechanism.

A vector load/store instruction concurrently deals with 256 floating-point data

in the vector architecture, then the vector cache needs to process the 256 data

in continuity. The vector cache employs a non-blocking cache [15]. Moreover,

the non-blocking cache employs MSHR. In a difference scheme of scientific sim-

ulations, vector load instructions often load the same data continuously. When

subsequent load instructions are issued at a short time, however, the same data

are not yet filled into the vector cache owing to a latency of the main memory.

Thus, the subsequent load instructions cause cache misses. The MSHR makes

possible for the subsequent load instructions to reuse in-flight load data. There-

fore, the MSHR reduces redundant accesses to the main memory. In addition,

the latency of the subsequent load requests is shortened.

A prefetch mechanism uses software-directed techniques, then a prefetch di-

rective of a compiler and a prefetch instruction are equipped. Since only a prefetch

instruction is added to the SX instruction set, the prefetch mechanism does not

need to greatly modify the hardware, and the issue timing of the prefetch instruc-

tion is freely changed. On the other hand, the prefetch mechanism has two effects

on the performance. One is that the mechanism hides the long memory latency

by pipelined vector operations. The other is the same effect of the MSHR: the

prefetch mechanism reduces redundant load requests between the vector cache

and the main memory when multiple load instructions access the same data.

As the on-chip cache size is limited, selective caching mechanism is an effec-

tive approach to efficient use of the vector cache. The selective caching mecha-

nism is software-controlled: a selective directive of a complier, and vector load-

/store instructions install a flag for cache control; cache on/off. The data with

cache off are supplied through the bypass between the main memory and vector

48

3.4. ON-CHIP CACHE MEMORY FOR VECTOR ARCHITECTURE

register files.

3.4.2 Proposed vector architecture

Figure 3.1 shows a diagram of a vector processor architecture with a proposed

on-chip vector cache. The vector processor has a vector unit, a scalar unit and an

address control unit. The vector unit contains vector registers, vector arithmetic

pipes and a vector cache. The scalar unit controls all the functions of the vector

processor including the vector unit control in addition to the execution of scalar

instructions for arithmetic operations. The address control unit queues and is-

sues vector operation instructions to the vector unit. The vector operation in-

structions contain vector memory instructions and vector computational instruc-

tions. Each instruction concurrently deals with 256 double-precision floating-

point data.

The main memory unit employs an interleaved memory system. The max-

imum B/FLOP rate between the main memory and the vector processor is 4

B/FLOP. The main memory is divided into 32 parts, each of which operates inde-

pendently and supplies data to the vector processor. Thus, the main memory and

the vector processor are interconnected through 32 memory ports.

Figure 3.2 shows an instruction format of vector load/store. This instruction

has 32 bits. The field of op indicates operation codes. Cx, Cy and Cz specify the

control function of a mask operation. Vc indicates the flag for cache control; cache

on/off. Rx shows a vector arithmetic register, Ry indicates a stride of data and

Rz is memory address of data. Here, on the prefetch instruction Vc is constantly

on, and Rx is not used.

The vector cache is implemented in each memory port of the vector proces-

sor, thus the vector cache consists of 32 sub-caches. The sub-cache employs a

49

3.4. ON-CHIP CACHE MEMORY FOR VECTOR ARCHITECTURE

1B/FLOP

 ~ 4B/FLOP

Vector Registers

Main Memory

Vector

Cache

Vector

Cache

Vector

Cache

Vector

Cache
. . . .

Vector

Cache ×32

4B/FLOP

Vector

Cache
Vector

Registers

Mask Reg. Mask

Logical

Multiply

Add/Shift

Divide

Vector Unit

Scalar Unit

×4

×4

×4

×4

×4

M
a
in

 M
e
m

o
r
y
 U

n
it

Address Control

Unit

MSHR

Vector Processor

Figure 3.1: Vector architecture with vector cache and memory system block dia-
gram.

Figure 3.2: Instruction format of vector load/store.

set-associative write-through cache with the LRU replacement policy. The line

size is 8 bytes; it is the unit for memory accesses. The vector cache reduces the

memory access latency and the bank cycle. The memory bandwidth between the

cache and vector registers is 4 B/FLOP. Moreover, the sub-cache employs a bypass

50

3.4. ON-CHIP CACHE MEMORY FOR VECTOR ARCHITECTURE

mechanism between the vector register and the main memory. The bypass mech-

anism is controlled by the flag Vc of the vector load/store instructions. When the

flag indicates cache on, the supplied data by the vector load/store instruction are

cached. Meanwhile, when the flag is cache off, the vector load/store instruction

provides data via the bypass mechanism: the data are not cached.

The vector cache employs a non-blocking cache with a MSHR. Each sub-cache

has the MSHR which holds information of in-flight load requests and subsequent

requests: instruction address, vector arithmetic register address and memory

address of load data. When the memory address of a subsequent load request

is equal to the memory address of an in-flight load data, the subsequent load

request is not sent to the main memory. Then, the subsequent load requests are

immediately written to the register files as the in-flight load data arrive at the

MSHR.

A prefetch mechanism uses software-directed techniques. The prefetch in-

struction specifies memory addresses of prefetched data, and the prefetched data

are transferred from the main memory to the vector cache independently of nu-

merical pipelined operations. The prefetch instructions are issued by the address

control unit.

The vector registers consist of two sets, called vector arithmetic register and

vector data register. The vector arithmetic register consists of 8 sets of regis-

ters which hold a maximum of 256 double-precision floating-point data. Those

registers are mainly used for the vector operations. The vector data register con-

sists of 32 sets of registers which also hold a maximum of 256 double-precision

floating-point data. The vector data register is used as buffer memory for storing

data of the vector operations. The vector cache is directly connected to the vector

arithmetic register and the vector data register.

51

3.4. ON-CHIP CACHE MEMORY FOR VECTOR ARCHITECTURE

The vector arithmetic pipes consist of five types of vector pipelines: Mask, Log-

ical, Multiply, Add/Shift and Divide. Each pipeline is 4-way multiple pipelines;

total 20 pipes are included in the vector unit. Vector data are input from the vec-

tor arithmetic registers in the vector arithmetic pipes, and each vector pipeline

works independently or chains to operate simultaneously, then one or more re-

sults are output every clock cycle into the vector arithmetic registers or the vector

data registers.

52

3.5. EXPERIMENTAL ENVIRONMENT

3.5 Experimental Environment

3.5.1 Methodology

A research uses a trace-driven simulator that simulates the behavior of the pro-

posed vector architecture at the register transfer. The simulator is enhancement

of the NEC SX simulator, which accurately models a single processor of the SX

architecture; the vector unit, the scalar unit and the memory system. The sim-

ulator takes a system parameter file and a trace file as input, and the output

of the simulator contains instruction cycle counts of a benchmark program and

cache hit information. The system parameter file has configuration parameters of

a vector architecture and setting parameters, i.e., the cache size, the associativity,

the cache latency and the memory bandwidth.

The trace file contains an instruction sequence of a benchmark program and

directives of cache control: cache on/off. These directives are used in selective

caching and set the cache control flags in the vector load/store instructions. A

benchmark program is compiled by the NEC FORTRAN compiler: FORTRAN90/SX.

It supports ANSI/ISO Fortran95 in addition to functions of automatic vectoriza-

tion and automatic parallelization. The executable program runs on the SX trace

generator to produce the trace file. In this work, two kernel loops and the original

source codes of the five benchmarks are used, and are compiled with the highest

optimizations option (-C hopt [50]) and inlining subroutines.

To evaluate on-chip vector caching for future vector processors with a higher

flop/s rate but a relatively lower off-chip memory bandwidth, the effects of the

vector cache are evaluated on the vector processor by limiting its memory band-

width per flop/s rate from 4 B/FLOP down to 1 B/FLOP. Here, the 4 B/FLOP case

is equal to the B/FLOP rate of the SX-6, SX-7 and SX-8 systems, the 2 B/FLOP is

the same as Cary X1 and BlackWidow, and the 1 B/FLOP is the same level as the

53

3.5. EXPERIMENTAL ENVIRONMENT

Table 3.1: Summary of setting parameters.

Base System Architecture NEC SX-7
Main Memory DDR-SDRAM
Memory Size 256 GB
Number of bank 16,384
Vector Cache SRAM
Cache Size (Sub-cache Size) 256KB - 8MB (8KB - 256KB)
Cache Policy LRU, Write-through
Associativity 2WAY, 4WAY, 8WAY
Cache Latency 15 %, 50 %, 85 %, 100 %

(Rate of main memory latency)
Cache Bank Cycle 5 % of memory cycle
Line Size 8B
MSHR Entries (Sub-cache) 8192 (256)
Memory - Cache bandwidth per flop/s 1 B/FLOP, 2 B/FLOP, 4 B/FLOP
Cache - Register bandwidth per flop/s 4 B/FLOP

commodity-based scalar systems such as NEC TX7 series and SGI Altix series.

The setting parameters are shown in Table 3.1.

3.5.2 Benchmark programs

To clarify the basic characteristics and validity of the vector cache, two basic

kernel loops and the five benchmark programs shown in Chapter 2 are selected

again.

The following kernel loops are used to evaluate the performance of the vector

processor with the vector cache. Since these loops has no temporal locality, a part

of X(i), Y (i) and Z(i) data are stored on the vector cache in advance of the loop

execution.

54

3.5. EXPERIMENTAL ENVIRONMENT

Source Code 3.2: Kernel Loop (1).

1 DO i = 1 , 25600

2 A(i) = X(i) + Y(i)

3 END DO

Source Code 3.3: Kernel Loop (2).

1 DO i = 1 , 25600

2 A(i) = X(i) * Y(i) + Z(i)

3 END DO

Before detailed discussions on the effects of the vector cache, the characteris-

tics of representative routines on the benchmark programs are presented. The

following routines are discussed in Sections 3.6, 3.7 and 3.8.

Source Code 3.4: A kernel loop of the PRF simulation.

1 do J = 1,NJ

2 do I = 4,NI-3

3 wDX1XC1(I,J,L) = 1.D0/3.D0

4 wDX1XC2(I,J,L) = 1.D0

5 wDX1XC3(I,J,L) = 1.D0/3.D0

6 wPHIX12(I,J) = (DX1AA(I) * wPHIX11(I-2,J)

7 & +DX1BB(I) * wPHIX11(I-1,J)+DX1DD(I) * wPHIX11(I+1,J)

8 & +DX1EE(I) * wPHIX11(I+2,J)) * DELX_INV

9 end do

10 end do

Source Code 3.4 shows a difference scheme loop of the PRF simulation. As

the arrays of DX1AA(I), DX1BB(I), DX1DD(I) and DX1EE(I) (line 06, 07 and

55

3.5. EXPERIMENTAL ENVIRONMENT

08 in Source Code 3.4) are defined in the preceding loop and each size is 4 KB

only. Thus, these arrays are always on the vector register files, and these arrays

do not need to access the cache and the main memory in the loop. The array

wPHIX11 (line 06, 07 and 08) has a high locality regarding the index i. On the

SX architecture, a vector load instruction transfers 256 floating point data from

the main memory to the register files at once. Thus, a part of wPHIX11(i − 2, j)

data is reused by the subsequent load of wPHIX11(i − 1, j), wPHIX11(i + 1, j)

and wPHIX11(i + 2, j). However, the data is hardly reused and the cache hit

rate is 5 % in this loop, because the data is not filled into the cache yet when

the subsequent load instructions are issued. Hence, this problem is solved by the

MSHR and the prefetch mechanism in the vector cache.

Source Code 3.5: A kernel loop of the PRF simulation.

1 DO KK = 2,NJ

2 DO I = 1,NI

3 wDY1YC3(I,KK-1,L) = wDY1YC3(I,KK-1,L) * wDY1YC2(I,KK-1,L)

4 wDY1YC2(I,KK,L) = wDY1YC2(I,KK,L) - wDY1YC1(I,KK,L)

5 & * wDY1YC3(I,KK-1,L)

6 wDY1YC2(I,KK,L) = 1.D0 / wDY1YC2(I,KK,L)

7 wDY1YC(I,KK,L) = (wPHIY12(I,KK) - wDY1YC1(I,KK,L)

8 & * wDY1YC1(I,KK-1,L)) * wDY1YC2(I,KK,L)

9 END DO

10 END DO

Moreover, Source Code 3.5 is one of kernel loops of the PRF simulation. The

size of each array in the PRF simulation is 18 MB, and many loops are doubly

nested loop. Thus, the arrays are treated as two dimensions array, and the size

of cached data per array is 2 MB only. wDY 1Y C1, wDY 1Y C2 and wDY 1Y C3

56

3.5. EXPERIMENTAL ENVIRONMENT

in Source Code 3.5 are defined in the preceding loop. In addition, wDY 1Y C1

and wDY 1Y C2 have the spatial locality, and these arrays reuse the cached data.

Here, wDY 1Y C3(I,KK − 1, L) (line 05 in Source Code 3.5), wDY 1Y C2(I,KK,L)

(line 06), wDY 1Y C1(I,KK,L) (line 07) and wDY 1Y C2(I,KK,L) (line 08) reuse

data on the register files. Thus, these arrays do not access the cache. This loop is

discussed for selective caching in Section 3.8.

Source Code 3.6 shows one of kernel loops of the SFHT simulation. The array

of Phi has a locality, and Phi(i, j − 1, k) (line 04 in Source Code 3.6), Phi(i −

1, j, k) (line 05) and Phi(i, j, k − 1) (line 06) reuse the cached data. The other

arrays, AN , AS, AE, AW , AT , AB, AP , RGN and DIV do not have a locality. In

Section 3.7, however, these arrays are prefetched. Then, the prefetch mechanism

is an effective way for hiding the memory access time of these arrays by other

arithmetic operations processed.

Source Code 3.6: A kernel loop of the SFHT simulation.

1 do 110 k=KST(l),NK,2

2 do 110 j=JST(l),NJ,2

3 do 110 i=IST(l),NI,2

4 res=(AN(i,j,k) * Phi(i,j+1,k)+AS(i,j,k) * Phi(i,j-1,k)

5 & +AE(i,j,k) * Phi(i+1,j,k)+AW(i,j,k) * Phi(i-1,j,k)

6 & +AT(i,j,k) * Phi(i,j,k+1)+AB(i,j,k) * Phi(i,j,k-1)

7 & +AP(i,j,k) * Phi(i,j,k)-DIV(i,j,k))/AP(i,j,k)

8 res=res1 * RGNc(i,j,k)

9 Phi(i,j,k)=Phi(i,j,k)-res1

10 110 continue

The PBM simulation has two versions: a non outer unrolling version and an

outer unrolling version. Source Code 3.7 shows the main routine of the non outer

57

3.5. EXPERIMENTAL ENVIRONMENT

unrolling version. The inner loop, index j, is vectorized and arrays gd dip and

wary are stored in the vector cache by vector load instructions. However, gd dip is

spilled from the cache, because gd dip needs 7.6 GB. On the other hand, wary is

held in the cache, because its needs only 250 KB and the array is defined in the

preceding loop.

Source Code 3.7: A kernel loop of the PBM simulation.

1 do i=1,ncells

2 do j=1,ncells

3 wf_dip(i)=wf_dip(i)+gd_dip(j,i) * wary(j)

4 end do

5 end do

Source Code 3.8: Outer-unrolling loop of the PBM simulation.

1 do i=1,ncells,4

2 do j=1,ncells

3 wf_dip(i)=wf_dip(i)+gd_dip(j,i) * wary(j)

4 wf_dip(i+1)=wf_dip(i+1)+gd_dip(j,i+1) * wary(j)

5 wf_dip(i+2)=wf_dip(i+2)+gd_dip(j,i+2) * wary(j)

6 wf_dip(i+3)=wf_dip(i+3)+gd_dip(j,i+3) * wary(j)

7 end do

8 end do

Moreover, Source Code 3.8 shows an outer-unrolled 4 times in the PBM sim-

ulation. In the outer-unrolling case, array wary of the outer loop index i (line 03

in Source Code 3.8) reuses the data of the index i − 1 on the cache, and arrays

wary (line 04, 05 and 06) reuse the data on register files of wary (line 03), hence,

memory references are reduced. However, the cache capacity for gd dip increases

58

3.5. EXPERIMENTAL ENVIRONMENT

owing to an increase in the number of arrays referenced in the innermost loop.

This problem is discussed in Section 3.8.

59

3.6. PERFORMANCE EVALUATION OF VECTOR CACHE

3.6 Performance Evaluation of Vector Cache

The performance of the proposed vector processor architecture is evaluated by

using the benchmark programs, and the basic characteristics of the vector cache

are clarified in this section. Here, the vector cache does not employ the MSHR

and the prefetch mechanism.

3.6.1 Relationship between efficiency and cache hit rate on

Kernel loops

In this subsection, the execution of the kernel loop (1) is simulated on the vector

processor with the vector cache. Since this loop has no temporal locality, a part of

X(i) and Y (i) data is stored on the vector cache in advance of the loop execution.

In the following two ways, the data for caching are selected to change the range

of cache hit rates, and their effects on performance are examined. One is to store

both X(i) and Y (i) with the same index i on the cache, and load instructions of

both X(i) and Y (i) are set to cache on, named Case 1. The other is to cache only

X(i), and load instructions of X(i) and Y (i) are set to cache on and cache off,

respectively. This is Case 2. Here, the cache associativity is 2 way, and the cache

latency is 15 % of the main memory latency in the setting parameters.

Figure 3.3 shows the relationship between the cache hit rate and the relative

memory bandwidth. The relative memory bandwidth is obtained by normalizing

the effective memory bandwidth of the systems with the vector cache by the ef-

fective memory bandwidth of the 4 B/FLOP system without the cache. Figure 3.4

shows the relationship between the cache hit rate and the computation efficiency.

Figure 3.3 indicates that the relative memory bandwidth of each case increases

as the cache hit rate increases. Therefore, the vector cache is one of the promis-

ing solutions to cover a lack of the memory bandwidth. Similar to Figure 3.3, the

60

3.6. PERFORMANCE EVALUATION OF VECTOR CACHE

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

R
el

a
ti

v
e

M
em

o
ry

 B
a

n
d

w
id

th

Cache Hit Rate (%)

4B/F 2B/F Case1

2B/F Case2 1B/F Case1

1B/F Case2

Figure 3.3: Relationship between cache hit rate and relative memory bandwidth
on Kernel loop (1).

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100

E
ff

ic
ie

n
cy

 (
%

)

Cache Hit Rate (%)

4B/F 2B/F Case1

2B/F Case2 1B/F Case1

1B/F Case2

Figure 3.4: Relationship between cache hit rate and computation efficiency on
Kernel loop (1).

computation efficiency of each case in Figure 3.4 improves as the cache hit rate

increases.

Figures 3.3 and 3.4 show the correlation between the relative memory band-

width and the computation efficiency. On both the 2 B/FLOP and 1 B/FLOP

systems, the performance of Case 2 is greater than the performance of Case 1. In

particular, Case 2 with the vector cache of the 50 % hit rate on the 2 B/FLOP sys-

tem achieves the same performance of the 4 B/FLOP system. On the 4 B/FLOP

system, each of X(i) and Y (i) is provided at a 2 B/FLOP rate on average. When

61

3.6. PERFORMANCE EVALUATION OF VECTOR CACHE

the cache hit rate is 50 % in Case 2, all data of X(i) are supplied directly from

the vector cache at the 2 B/FLOP rate and all data of Y (i) are supplied from the

memory at the 2 B/FLOP rate through the bypass mechanism. Consequently,

each of X(i) and Y (i) is provided at the 2 B/FLOP rate on the vector registers,

and the total amount of data provided to vector registers in time is equal to the

total amount of data in the 4 B/FLOP system. However, the 1 B/FLOP system

with vector caching with the 50 % hit rate does not achieve the performance of

the 4 B/FLOP system. Because Y (i) is provided at a 1 B/FLOP rate, the total

B/FLOP rate at the vector registers does not reach the 4 B/FLOP rate. On the

other hand, in Case 1, the data of X(i) and Y (i) are supplied from either of the

vector cache or the memory at the same index i. While supplying the data from

the memory, X(i) and Y (i) have to share the memory bandwidth rate. Therefore,

the 1 B/FLOP and 2 B/FLOP systems need a cache hit rate of 100 % to achieve a

performance of the 4 B/FLOP system.

Similarly, the performance of Kernel (2) is examined on the 2 B/FLOP system

in the following three cases. In Case 1, all of X(i), Y (i), and Z(i) are cached with

the same index i in advance. In Case 2, both X(i) and Y (i) are provided from the

vector cache, and therefore the maximum cache hit rate is 66 %. In Case 3, only

X(i) is in the cache, and hence the maximum cache hit rate is 33%. Figure 3.5

shows the relationship between the cache hit rate and the change in the relative

memory bandwidth regarding Kernel (2). On the 4 B/FLOP system, each of X(i),

Y (i) and Z(i) is provided at a 4/3 B/FLOP rate on average. The performance of

Case 2 is comparable to the performance of the 4 B/FLOP system when the cache

hit rate is 66 %, because the B/FLOP rate of each data is the 4/3 B/FLOP rate on

average. However, in Case 3, both Y (i) and Z(i) are provided from the memory,

and Y (i) and Z(i) have to share the 2 B/FLOP rate at the vector register. As a

result, the relative memory bandwidth never reaches the memory bandwidth of

62

3.6. PERFORMANCE EVALUATION OF VECTOR CACHE

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

R
el

a
ti

v
e

M
em

o
ry

 B
a

n
d

w
id

th

Cache Hit Rate (%)

4B/F

2B/F Case1

2B/F Case2

2B/F Case3

Figure 3.5: Relationship between cache hit rate and relative memory bandwidth
on Kernel loop (2).

the 4 B/FLOP system.

These results indicate that the vector cache has a potential for the future

vector supercomputers to cover the shortage of memory bandwidth. In additions,

all data do not need to be cached from the discussions on Figures 3.3 and 3.5.

The key data determining the performance needs to be cached to make good use

of limited on-chip capacity.

3.6.2 Relationship between efficiency and cache hit rate on

the five benchmark programs

The execution of the five benchmark programs is simulated with the vector cache

varying memory bandwidth per flop/s rates; 1 B/FLOP and 2 B/FLOP. Here, all

vector load/store instructions are set to cache on, the cache associativity is 2 way,

and the cache latency is 15 % of the main memory latency in the setting parame-

ters.

Figure 3.6 shows the relationship between the cache hit rate of the 8 MB

vector cache and the relative memory bandwidth. Figure 3.6 indicates that the

vector cache improves the effective memory bandwidth, depending on the cache

63

3.6. PERFORMANCE EVALUATION OF VECTOR CACHE

hit rate of the benchmarks. Cache hit rates vary from 13 % in the SFHT simu-

lation to 96 % in the APFA simulation, because these depend on the locality of

reference in individual applications.

0

0.25

0.5

0.75

1

0 20 40 60 80 100

R
el

a
ti

v
e

M
em

o
ry

 B
a
n

d
w

id
th

Cache Hit Rate (%)

2B/F 8MB

1B/F 8MB
P

B
M

S
F

H
T

G
P

R

P
R

F

A
P

F
A

Figure 3.6: Relationship between cache hit rate and relative memory bandwidth
on the five benchmark programs.

In the APFA simulation, the relative memory bandwidth is 0.96 at the 2

B/FLOP system with 96 % hit of the 8 MB cache, resulting in an effective mem-

ory bandwidth almost equal to the 4 B/FLOP system. In this case, most data are

provided from the cache. The PBM simulation of the 2 B/FLOP system reaches

the effective memory bandwidth of the 4 B/FLOP system at the cache hit rate 50

%. In this case, all data of wary in Source Code 3.7 are supplied directly from

the vector cache at the 2 B/FLOP rate and all data of gd dip are supplied from the

main memory at the 2 B/FLOP rate. Therefore, the total amount of data provided

to vector registers in time is equal to the total amount of data in the 4 B/FLOP

system. The vector cache with a bypass mechanism provides the data from both

the memory and the cache at once, and the sustained memory bandwidth for the

registers increase.

The relative memory bandwidths in others benchmark programs, the SFHT,

64

3.6. PERFORMANCE EVALUATION OF VECTOR CACHE

GPR and PRF simulations, are over 0.6 on the 2 B/FLOP system and 0.3 on

the 1 B/FLOP system. Here, the relative memory bandwidth without the cache

is 0.5 on the 2 B/FLOP system and 0.25 on the 1 B/FLOP system. Thus, the

improvement of the relative memory bandwidth is over 20 % using the 8 MB

cache.

0

10

20

30

40

50

GPR APFA PRF SFHT PBM

E
ff

ic
ie

n
cy

 (
%

)

4B/F 2B/F non-cache 2B/F 8MB 1B/F non-cache 1B/F 8MB

Figure 3.7: Computation efficiency of the five benchmark programs with/without
8 MB vector cache.

Figure 3.7 shows the computation efficiency of the five benchmark programs

on the 4 B/FLOP system without the cache, the 2 B/FLOP and 1 B/FLOP sys-

tems with/without the 8 MB cache. Figure 3.7 indicates that the efficiency of the

2 B/FLOP and 1 B/FLOP systems is increased by the cache. In particular, the

2 B/FLOP system with the cache achieves the same efficiency as the 4 B/FLOP

system in the APFA and PBM simulations. Figure 3.8 shows the relationship

between the cache hit rate of the 8 MB cache and the recovery rate of the perfor-

mance by the cache from the 2 B/FLOP and 1 B/FLOP systems to the 4 B/FLOP

system. The recovery rate goes up as the cache hit rate increases. The vector

cache increases the recovery rate by 21 % to 99 % on the 2 B/FLOP system and 9

% to 96 % on the 1 B/FLOP system, depending on the data access locality of each

65

3.6. PERFORMANCE EVALUATION OF VECTOR CACHE

benchmark program. The results indicate that the vector cache has a potential

for the future vector supercomputers to cover the shortage of memory bandwidth

on real scientific applications.

0

20

40

60

80

100

0 20 40 60 80 100

P
er

fo
rm

a
n

ce
 R

ec
o

v
er

y
 R

a
te

 (
%

)

Cache Hit Rate (%)

2B/F 8MB

1B/F 8MB

P
B

M

S
F

H
T

G
P

R P
R

F

A
P

F
A

Figure 3.8: Recovery rate of performance on 8 MB vector cache.

3.6.3 Relationship between associativity and cache hit rate

In this subsection, the effect of the associativity is examined ranging from 2 to 8

ways on the cache hit rate. Here, the cache latency is 15 % of the main memory

latency in the setting parameters.

Figure 3.9 shows that the cache hit rates on each set associative cache, cover-

ing cache sizes from 256 KB to 8 MB. Four benchmark programs, the APFA, PRF,

SFHT and PBM simulations, approximately have constant cache hit rates across

three associativity cases. The cache hit rates vary with the associativity in the

GPR simulation.

The cache hit rate is dependent on among placements of the arrays on memory,

memory access patterns of the programs and the associativity. In the GPR simu-

lation, its basic computational structure consists of triple nested loops. The loops

access many arrays at intervals of 584 bytes stride addresses, and the cached

66

3.6. PERFORMANCE EVALUATION OF VECTOR CACHE

GPR APFA

PRF SFHT

PBM

0

10

20

30

40

50

2WAY 4WAY 8WAY

C
ac

h
e

H
it

 R
at

e
(%

)
0.25MB 0.5MB 1MB 2MB 4MB 8MB

0

20

40

60

80

100

2WAY 4WAY 8WAY

C
ac

h
e

H
it

 R
at

e
(%

)

0.25MB 0.5MB 1MB 2MB 4MB 8MB

0

10

20

30

40

50

2WAY 4WAY 8WAY

C
ac

h
e

H
it

 R
at

e
(%

)

0.25MB 0.5MB 1MB 2MB 4MB 8MB

0

10

20

30

40

50

2WAY 4WAY 8WAY

C
ac

h
e

H
it

 R
at

e
(%

)

0.25MB 0.5MB 1MB 2MB 4MB 8MB

0

10

20

30

40

50

2WAY 4WAY 8WAY

C
ac

h
e

H
it

 R
at

e
(%

)

0.25MB 0.5MB 1MB 2MB 4MB 8MB

Figure 3.9: Cache hit rate vs. associativity on the five benchmark programs.

data are frequently replaced. Therefore, the cache hit rate varies with the cache

capacities and the associativity. In the SFHT simulation, the memory access pat-

terns have 8 bytes stride accesses. On the 2 MB case, the cached data which will

be reused on the 2-way set associative cache are evicted by some other data. Thus

this is owing to a placement of memory addresses of the arrays. Other programs

have constant cache hit rates across three associativity cases. These memory ac-

cess patterns are 8 bytes or 16 bytes stride accesses, and the placement of the

arrays on memory does not cause any conflict of reused data.

67

3.6. PERFORMANCE EVALUATION OF VECTOR CACHE

These results provide that the associativity has effects on the cache hit rates

when a loop accesses many arrays at intervals of large stride addresses as shown

in the GPR simulation. Therefore, the vector cache requires 8-way associativity

cache.

3.6.4 Effects of vector cache latency on performance

In general, the latency of the on-chip cache is considerably shorter than the la-

tency of the off-chip memory. The effects of the cache access latency are investi-

gated on the performance of the five benchmark programs.

0

10

20

30

40

50

60

15% 50% 85% 100%

E
ff

ic
ie

n
cy

 (
%

)

Cache Latency Case

GPR APFA PRF SFHT PBM

Figure 3.10: Computation efficiency of the five benchmark programs on four
cache latency cases.

Figure 3.10 shows the relationship between the computation efficiency of the

benchmark programs and four cache latencies; 15 %, 50 %, 85 % and 100 % of

the memory access latency on the 2 B/FLOP system with the 2 MB cache. The

five benchmark programs have the same efficiency when changing the cache la-

tency, because the vector architecture hides the memory access times by pipelined

vector operations when a vector operation ratio and a vector loop length of bench-

mark programs are enough large. In addition, the vector cache consists of 32

sub-caches between vector register files and the main memory via each memory

68

3.6. PERFORMANCE EVALUATION OF VECTOR CACHE

0

2

4

6

8

10

12

14

16

18

15% 50% 85% 100%

E
ff

ic
ie

n
cy

 (
%

)

Cache Latency Case

Kernel Loop (1)

64 128 256

0

5

10

15

20

25

30

15% 50% 85% 100%

E
ff

ic
ie

n
cy

 (
%

)

Cache Latency Case

Kernel Loop (2)

64 128 256

Figure 3.11: Computation efficiency of two kernel loops on four cache latency
cases.

port. The sub-caches connected to 32 memory ports provide multiple words at a

time. The cache latency of the second memory access or later is hidden in the

sub-cache system.

For comparison, the performance of shorter loop length cases is examined us-

ing Kernel loops (1) and (2) on the 2 B/FLOP system when changing the cache

access latency. Figure 3.11 shows that the relationship between the computa-

tion efficiency and four cache latency cases in Kernel loops. Here, three loop

length cases are examined in the 100 % cache hit rate; 1 ≤ i ≤ 64, 1 ≤ i ≤ 128,

1 ≤ i ≤ 256. On the shorter loop length cases, Figure 3.11 indicates that the

vector cache latency is an importance factor in the performance, when pipelined

vector operations do not hide the memory access time. Especially, on the loop

69

3.6. PERFORMANCE EVALUATION OF VECTOR CACHE

0
2
4
6
8

10
12
14
16
18
20

64 128 256

E
ff

ic
ie

n
cy

 (
%

)

Loop Length

Kernel Loop (1)

4B/F 4B/F 2MB 2B/F 2B/F 2MB

0

5

10

15

20

25

30

35

64 128 256

E
ff

ic
ie

n
cy

 (
%

)

Loop Length

Kernel Loop (2)

4B/F 4B/F 2MB 2B/F 2B/F 2MB

Figure 3.12: Computation efficiency of two kernel loops on 4 B/FLOP and 2
B/FLOP on three loop lengths.

length 64 case, the 15 % latency case has two times higher efficiency than the

100 % case in Kernel (1), and the 15 % latency case has 12 % higher efficiency in

Kernel (2). However, the longer the loop length, the lower the effect of the cache

latency.

Figure 3.12 shows that the computation efficiency of Kernel loops in the 4

B/FLOP and 2 B/FLOP systems with/without the vector cache. On both the loop

lengths 64 and 128 of Kernel (1), the efficiency of the 4 B/FLOP system with the

cache is higher than the efficiency of the 4 B/FLOP system without the cache,

and the loop length 128 case of the 4 B/FLOP system with the cache achieves

the highest efficiency. Meanwhile, in Kernel (2), the loop length 64 case of the 4

B/FLOP system with the cache has the highest efficiency. In these kernel loops

70

3.6. PERFORMANCE EVALUATION OF VECTOR CACHE

the memory access time of the shorter loop length case is not entirely hidden

by pipelined vector operations only, then the ratio of memory access time to the

processing time becomes the smallest owing to the decrease in memory latency

by the cache. Therefore, the performance of shorter loop length cases is sensitive

to the vector cache latency, and the vector cache boosts the performance of the

benchmark programs with short vector lengths on the 4 B/FLOP system.

71

3.7. PERFORMANCE EVALUATION OF MSHR AND PREFETCHING
VECTOR CACHE

3.7 Performance Evaluation of MSHR and Prefetch-

ing Vector Cache

This section shows the effects of the MSHR and prefetching on the performance

of three benchmark programs: the PRF, GPR, and SFHT simulations.

3.7.1 Effect of MSHR on the vector cache

The MSHR has the potential for increasing the performance in difference schemes

of scientific applications. Figure 3.13 shows (a) the computation efficiency and (b)

the data transfer rate using the MSHR on the PRF simulation for the difference

scheme loop. The sustained performance with the MSHR is 1.25× and 1.45×

higher than the sustained performance without the MSHR on the 2 B/FLOP and

1 B/FLOP systems, respectively. The computation efficiency is 31 % on the 2

B/FLOP system, and 18 % on the 1 B/FLOP system. The MSHR does not supply

redundant data from the main memory, and hence the data transfer rates are im-

proved as shown in Figure 3.13 (b). The data transfer rates on the 2 B/FLOP and

1 B/FLOP systems reach 78 % and 45 % of the data transfer rate of the 4 B/FLOP

system, respectively. Figure 3.14 shows the computation efficiency increased by

the MSHR for difference scheme loops of the GPR and SFHT simulations. On the

GPR simulation, the sustained performance with the MSHR is 1.11 times higher

than the sustained performance without the MSHR. In the SFHT simulation,

the sustained performance is improved by the MSHR by 4 to 5 %. Here, Table 3.2

shows the MSHR hit rate, a fraction of memory accesses solved by the MSHR, on

the three benchmark programs. It is showed that the MSHR is an effective way

to handle the loops of the difference schemes.

72

3.7. PERFORMANCE EVALUATION OF MSHR AND PREFETCHING
VECTOR CACHE

0

2

4

6

8

10

12

14

16

4B/F 2B/F 2B/F
8MB

2B/F
MSHR

1B/F 1B/F
8MB

1B/F
MSHR

D
a
ta

 t
ra

n
sf

e
r
ra

te
 (

G
B

/s
)

0

5

10

15

20

25

30

35

40

45

4B/F 2B/F 2B/F
8MB

2B/F
MSHR

1B/F 1B/F
8MB

1B/F
MSHR

E
ff

ic
ie

n
c
y

 (
%

)

(b)

(a)

Figure 3.13: (a) Computation efficiency and (b) Data transfer rate using MSHR
on the PRF simulation.

0

10

20

30

40

50

60

GPR SFHT

E
ff

ic
ie

n
c
y

 (
%

)

4B/F 2B/F 2B/F 8MB 2B/F MSHR 1B/F 1B/F 8MB 1B/F MSHR

Figure 3.14: Computation efficiency using MSHR on the GPR and SFHT simula-
tions.

73

3.7. PERFORMANCE EVALUATION OF MSHR AND PREFETCHING
VECTOR CACHE

Table 3.2: MSHR hit rates of three benchmark programs.

Names GPR PRF SFHT
Hit Rate (%) 11 47 4

3.7.2 Effect of prefetching on the vector cache

The prefetch mechanism is provided to increase the effect of the vector cache on

the 2 B/FLOP and 1 B/FLOP systems. Several memory instructions are executed

by the prefetch mechanism to obtain the effects of the following two types. TYPE

I is that the prefetch mechanism reduces the memory access time by issuing

the load instructions enough before they are needed, because the memory access

time is hidden by other arithmetic operations processed simultaneously. TYPE

II is the same effect of the MSHR: the prefetch mechanism reduces the number

of load requests to the main memory by removing redundant load instructions

accessing the same memory address.

0

10

20

30

40

50

4B/F 2B/F 2B/F
8MB

2B/F
TYPE I

2B/F
TYPE II

1B/F 1B/F
8MB

1B/F
TYPE I

1B/F
TYPE II

E
ff

ic
ie

n
c
y

 (
%

)

Figure 3.15: Computation efficiency on 2 B/FLOP and 1 B/FLOP on the GPR
simulation.

In the GPR simulation (Source Code 3.1), the prefetching arrays of TYPE I:

Ex(i, j, k) (line 04 in Source Code 3.1), Ez(i, j, k) (line 07) and Ey(i, j, k) (line 10)

and of TYPE II: Hz(i, j, k) (line 05) and Hx(i, j, k) (line 09) are selected. These

74

3.7. PERFORMANCE EVALUATION OF MSHR AND PREFETCHING
VECTOR CACHE

0

5

10

15

20

25

4B/F 2B/F 2B/F

8MB

2B/F

TYPE II

1B/F 1B/F

8MB

1B/F

TYPE II

D
a

ta
 t

r
a

n
sf

e
r

r
a

te
 (

G
B

/s
)

(b)

0

2

4

6

8

10

12

14

4B/F 2B/F 2B/F

8MB

2B/F

TYPE I

1B/F 1B/F

8MB

1B/F

TYPE I

R
el

a
ti

v
e

n
o
n

-h
id

d
en

m
em

o
ry

 a
cc

es
s

ti
m

e

(a)

Figure 3.16: (a) Relative non-hidden memory access time and (b) Data transfer
rate on 2 B/FLOP and 1 B/FLOP on the GPR simulation.

array data are prefetched at one iteration ahead of outer index i. Figure 3.15

shows the computation efficiency in this loop using the prefetch mechanism on

the 2 B/FLOP and 1 B/FLOP systems. In TYPE II, the computation efficiencies

are 43 % on the 2 B/FLOP system, and 22 % on the 1 B/FLOP system. The

prefetching mechanism improves the performance by 20 %. Regarding TYPE I, a

10 % improvement in performance is obtained by prefetching. Figure 3.16 shows

(a) the relative non-hidden memory access time on TYPE I and (b) data transfer

rate on TYPE II in this loop. Here, the relative non-hidden memory access time

is obtained by normalizing the non-hidden memory access time of each system

by the non-hidden memory access time of the 4 B/FLOP system. The prefetch

of TYPE I reduces the non-hidden memory access time by 20 % on both the 2

75

3.7. PERFORMANCE EVALUATION OF MSHR AND PREFETCHING
VECTOR CACHE

B/FLOP and 1 B/FLOP systems. On the other hand, as shown in Figure 3.16

(b), the effect of TYPE II is equivalent to the effect of the MSHR, and TYPE

II increases the data transfer rate of the 2 B/FLOP and 1 B/FLOP systems to

7.3 GB/s and 3.6 GB/s, respectively. Therefore, the prefetch mechanism hides

the memory access time by other arithmetic operations, and increase the data

transfer rate on the vector supercomputer.

0

10

20

30

40

PRF SFHT

E
ff

ic
ie

n
cy

 (
%

)

4B/F 2B/F 2B/F 8MB 2B/F Prefetch

1B/F 1B/F 8MB 1B/F Prefetch

Figure 3.17: Computation efficiency on 2 B/FLOP on the SFHT and PRF simula-
tions.

Similarly, the effect of the prefetch mechanism is simulated for the loop of

the PRF simulation in Source Code 3.4 and the loop of the SFHT simulation in

Source Code 3.6. Array wPHIX11(i + 2, j) is prefetched on the PRF simulation.

This prefetch type is TYPE II. AN , AE, AT , AP , RGN and DIV are prefetched

on the SFHT simulation. This prefetch is classified into TYPE I. These array

data are prefetched at one iteration ahead of the outer index i. Figure 3.17 shows

the computation efficiency in two loops using the prefetch mechanism on the 2

B/FLOP and 1 B/FLOP systems. In the PRF simulation, prefetching achieves

1.3× and 1.6× performance improvements on the 2 B/FLOP and 1 B/FLOP sys-

tems, respectively. On the SFHT simulation, the performance is 1.3 times higher

than the performance of the non-prefetch case. Figure 3.18 shows (a) the data

76

3.7. PERFORMANCE EVALUATION OF MSHR AND PREFETCHING
VECTOR CACHE

0

2

4

6

8

10

12

14

16

4B/F 2B/F 2B/F
8MB

2B/F
Prefetch

1B/F 1B/F
8MB

1B/F
Prefetch

D
a

ta
 t

ra
n

sf
er

 r
a

te
 (

G
B

/s
)

0

10

20

30

40

50

60

70

80

4B/F 2B/F 2B/F
8MB

2B/F
Prefetch

1B/F 1B/F
8MB

1B/F
PrefetchN

o
n

-h
id

d
e
n

 m
e
m

o
ry

 a
cc

e
ss

ra

te
 (

%
)

(a)

(b)

Figure 3.18: (a) Data transfer rate on PRF and (b) Relative non-hidden memory
access time rate on the SFHT simulation.

transfer rate on the PRF simulation and (b) the relative non-hidden memory ac-

cess time on the SFHT simulation. The data transfer rate improvements are 1.5

GB/s and 2.1 GB/s from the non-prefetch case on the 2 B/FLOP and 1 B/FLOP

systems, respectively. The non-hidden memory access times are reduced to 70 %

of the non-prefetch case on the 2 B/FLOP and 1 B/FLOP systems. Just as the

GPR simulation, the prefetch mechanism of TYPE I hides the memory access

time by other arithmetic operations. Moreover, the prefetch mechanism of TYPE

II increases the data transfer rate.

Finally, the effects of both the MSHR and the prefetch mechanism are eval-

uated for the three benchmark programs. Figure 3.19 shows the computation

77

3.7. PERFORMANCE EVALUATION OF MSHR AND PREFETCHING
VECTOR CACHE

efficiencies of the benchmark programs with the MSHR and the prefetch mech-

anism (P + M in Figure 3.19 indicates the case of using both the MSHR and

the prefetch mechanism). The GPR simulation has the synergistic effects of the

MSHR and the prefetch mechanism. The performance improvement by using

both the MSHR and the prefetch mechanism are 10 % on the GPR simulation.

On the PRF simulation, the computation efficiency of the MSHR case is 1.9 %

higher than the computation efficiency of both the MSHR and the prefetch case.

This is because the busy time of the address control unit is increased by prefetch-

ing; the prefetch on the PRF simulation is the same effect of the MSHR, and

the prefetch instructions are issued to the address control unit. Besides, as the

MSHR effect is small in the SFHT simulation, the synergistic effect of the MSHR

and the prefetch mechanism is unavailable. The results suggest that the effects

of both the MSHR and prefetch mechanism are more dependent on the character-

istics of benchmark programs, however, both the MSHR and prefetch mechanism

have the potential for the vector cache to increase the sustained performance.

0

10

20

30

40

50

60

GPR PRF SFHT

E
ff

ic
ie

n
cy

 (
%

)

4B/F 2B/F 2B/F 8MB Prefetch MSHR P + M

Figure 3.19: Computation efficiency of both MSHR and prefetch.

78

3.8. OPTIMIZATIONS FOR VECTOR CACHING: SELECTIVE CACHING
AND LOOP UNROLLING

3.8 Optimizations for Vector Caching: Selective

Caching and Loop Unrolling

This section discusses some optimization techniques for the vector cache to re-

duce cache miss rates on benchmark programs.

3.8.1 Effects of selective caching

As the on-chip size is limited, selective caching is an effective approach to efficient

use of the on-chip cache, which is expected to reduce capacity miss rates. The

selective caching is evaluated using two benchmark programs, the GPR and PRF

simulations. The simulation methods of the two benchmark programs are Finite

Difference Time Domain (FDTD) method and Compact Finite Difference Scheme

of flow and heart, respectively. Then a part of arrays has a high locality in these

cases.

In the GPR simulation, the size of each array used is 330 MB, then the cache

is not able to store all the arrays owing to cache size limitation. However, the

difference scheme as shown in Source Code 3.1 generally has temporal locality

in accessing arrays; H x, H y and H z. These arrays are selected for selective

caching, then these arrays require the cache capacity of 2.7 MB to reuse the

data with locality. Figure 3.20 shows the effect of selective caching on the 2

B/FLOP system with the vector cache in the GPR simulation. Figure 3.21 shows

the recovery rate of the performance from the 2 B/FLOP system without the cache

to the 4 B/FLOP system by selective caching. The cache sizes are varied from 256

KB up to 8 MB. Here, “ALL” in the figures indicates that all the arrays in the

loop are cached. “Selective” shows that some of the arrays are selectively cached.

“Cache Usage Rate” indicates the ratio of number of cache hit references to the

79

3.8. OPTIMIZATIONS FOR VECTOR CACHING: SELECTIVE CACHING
AND LOOP UNROLLING

0

10

20

30

30

32

34

36

38

40

256K 512K 1M 2M 4M 8M

C
a

ch
e

U
sa

g
e

R
a

te
 (

%
)

E
ff

ic
ie

n
cy

 (
%

)

Cache Size (B)

ALL (Performance)

Selective (Performance)

ALL (Cache usage rate)

Selective (Cache usage rate)

Figure 3.20: Efficiency of selective caching and cache hit rate on 2 B/FLOP system
(the GPR simulation).

total memory references.

In the 256 KB cache case, the efficiencies of “ALL” and “Selective” are 33.3 %

and 34.1 %, and the cache usage rate are 9.6 % and 16.6 %, respectively. The

arrays H y(i, j, k), H y(i − 1, j, k) (line 08 in Source Code 3.1), H x(i, j, k) (line 11)

and H z(i− 1, j, k) (line 12) load data from the cache on “Selective.” However, the

arrays H y(i, j, k − 1) (line 06) and H x(i, j, k − 1) (line 11) cause cache misses,

because the cache capacity is small, and the reused data of these arrays are re-

placed by other array data. In “ALL,” H y(i − 1, j, k) (line 08) and H z(i − 1, j, k)

(line 12) cause cache misses, because the reused data of these arrays are replaced

by other array data. Figures 3.20 and 3.21 indicate that the performance and the

cache usage rate increase as the cache size increase. On the 4 MB cache, the

cache hit rate of “Selective” is 24 % and its efficiency is 3 % higher than the effi-

ciency of “ALL.” The recovery rate of performance is mere 34 %. In this case, the

arrays H x, H y and H z load all the reusable data from the cache by the selec-

tive caching. On this difference scheme, array data with temporal locality do not

require a large cache capacity. However, the GPR simulation does not achieve

80

3.8. OPTIMIZATIONS FOR VECTOR CACHING: SELECTIVE CACHING
AND LOOP UNROLLING

0

10

20

30

0

10

20

30

40

256K 512K 1M 2M 4M 8M

C
a

ch
e

U
sa

g
e

R
a

te
 (

%
)

R
ec

o
v

er
y

 R
a

te
 o

f
P

er
fo

rm
a

n
c

(%
)

Cache Size (B)

ALL (Recover Rate)

Selective (Recover Rate)

ALL (Cache usage rate)

Selective (Cache usage rate)

Figure 3.21: Recovery rate of performance and cache hit rate on selective caching
(the GPR simulation).

high cache usage rates and recovery rates of performance by selective caching,

because this loop has many non-locality arrays; C x a, E x, E x Current etc.

Similarly, the effect of the selective caching is simulated for the loop of the

PRF simulation in Source Code 3.5. The arrays wDY 1Y C1 and wDY 1Y C2 have

the spatial locality. These arrays are selected for selective caching.

0

10

20

30

40

50

60

70

20

25

30

35

256K 512K 1M 2M 4M 8M

C
a
ch

e
U

sa
g

e
R

a
te

 (
%

)

E
ff

ic
ie

n
cy

 (
%

)

Cache Size (B)

ALL (Performance)

Selective (Performance)

ALL (Cache usage rate)

Selective (Cache usage rate)

Figure 3.22: Efficiency and cache hit rate of selective caching on performance (the
PRF simulation).

81

3.8. OPTIMIZATIONS FOR VECTOR CACHING: SELECTIVE CACHING
AND LOOP UNROLLING

0

10

20

30

40

50

60

70

20

40

60

80

256K 512K 1M 2M 4M 8M

C
a

ch
e

U
sa

g
e

R
a

te
 (

%
)

R
ec

o
v

er
y

 R
a

te
 o

f
p

er
fo

rm
a

n
ce

 (
%

)

Cache Size (B)

ALL (Performance)

Selective (Performance)

ALL (Cache usage rate)

Selective (Cache usage rate)

Figure 3.23: Recovery rate of performance and cache hit rate on selective caching
(the PRF simulation).

Figures 3.22 and 3.23 show the efficiency and the recovery rate of the perfor-

mance from the 2 B/FLOP system to the 4 B/FLOP system by selective caching in

the PRF simulation. Figure 3.22 indicates that the cache hit rates and efficiency

of “Selective” are the same as the cache hit rates and efficiency of “ALL” until 2

MB cache size. The cache hit rate is 33 %. The arrays wDY 1Y C2(I,KK − 1, L)

(line 03) and wDY 1Y C1(I,KK − 1, L) (line 08) are cache hit arrays in each case,

because these arrays require the cache capacity of 72 KB to reuse the data with

locality. Over 4 MB cache size, however, “Selective” achieves a 66 % cache hit

rate, resulting in a 30+ % improvement in efficiency. Furthermore, Figure 3.23

indicates that the recovery rate is 78 %. In this case, wDY 1Y C2(I,KK,L) and

wDY 1Y C1(I,KK,L) (line 04) reuse the data defined in the preceding loop. There-

fore, on selective caching, array data are reused between loops, when the array is

small.

The results of the GPR and PRF simulations show that the selective caching

improves the performance of the benchmark programs. Compared with the GPR

simulation, the PRF simulation has higher values regarding both the cache usage

82

3.8. OPTIMIZATIONS FOR VECTOR CACHING: SELECTIVE CACHING
AND LOOP UNROLLING

rate and improved efficiency, because the ratio of arrays with locality per loop on

the PRF simulation is higher than the ratio of arrays with locality per loop on

the GPR simulation. In the GPR simulation, the reused data are only defined

in the loop, and the cache miss always occurs in this loop. For example, arrays

H y(i, j, k) (line 08 in Source Code 3.1) hits the data of H y(i, j, k) (line 06), but

H y(i, j, k) (line 06) does not hit the data owing to their first accesses (cold miss).

On the other hand, the cached data of the PRF simulation are provided in the

immediately preceding loop, and therefore, cache misses do not occur like the

first access in the PRF simulation.

3.8.2 Effects of loop-unrolling and caching

Loop unrolling is effective for higher utilization of vector pipelines, which is a

basic loop optimization. However, loop unrolling also needs more cache capacity

to capture all the arrays of unrolled loops. Therefore, the relationship between

loop unrolling and vector caching is clarified.

Figure 3.24 shows the efficiency and the cache hit rate of the outer-unrolling

case on the PBM simulation with the 2 B/FLOP system. “2B/F” indicates the

without-cache case, and the efficiency constantly increases as the degree of un-

rolling increases. The cache hit rate of the 0.5 MB cache case is 49 % on the

non-unrolling case and becomes poor as the loop unrolling proceeds, because the

cached data of wary in Source Code 3.7 are evicted from the cache by gd dip. Thus,

the efficiency of the 0.5 MB cache case achieves 49 % on the non-unrolling case,

and it is similar to the efficiency of the 2 B/FLOP system with unrolling. In this

case, a conflicting effect between caching and unrolling appears. Moreover, the

cache hit rates of the 8 MB cache case decrease as the degree of unrolling in-

creases. The cached data remain on the cache in this case, but the cache hit rate

83

3.8. OPTIMIZATIONS FOR VECTOR CACHING: SELECTIVE CACHING
AND LOOP UNROLLING

decreases owing to a decrease in the number of wary references. However, the

efficiency is approximately constant; 48 % or 49 % because unrolling covers the

losing effect of caching. This case shows that the effects of caching are compara-

ble to that of unrolling.

0

10

20

30

40

50

60

0

10

20

30

40

50

60

Non-Unroll Unroll 2 Unroll 4 Unroll 8 Unroll 16

C
a
ch

e
H

it
 R

a
te

 (
%

)

E
ff

ic
ie

n
cy

 (
%

)

2B/F 0.5MB 8MB Hit rate 0.5MB Hit rate 8MB

Figure 3.24: Efficiency and cache hit rate of outer-unrolling on performance (the
PBM simulation).

Similarly, the effect of the unrolling is simulated for the loop of the PRF sim-

ulation in Source Code 3.5. Figure 3.25 shows the efficiency and the cache hit

rate of outer-unrolling with the 2 B/FLOP system. The cache hit rates of both the

0.5 MB and 8 MB caches gradually reduce as the degree of unrolling increase,

because of an increase in the cache miss rate. In this case, the highest efficiency

is 33 % on the 8 MB cache with the unrolling degree of 4 since the gain by loop

unrolling covers the loss owing to the increase in the miss rate. It is higher than

the selective caching case; it is 30.7 % (Ref. Figure 3.22). Thus, this case indicates

the synergistic effect of both caching and unrolling.

These results indicate that loop unrolling has both conflicting and synergistic

effects with caching. Loop unrolling is a basic optimization and has beneficial

84

3.8. OPTIMIZATIONS FOR VECTOR CACHING: SELECTIVE CACHING
AND LOOP UNROLLING

effects in various applications. Therefore, caching has to be used carefully as a

complementary tuning option for loop unrolling.

0

10

20

30

40

50

60

0

5

10

15

20

25

30

35

Non-Unroll Unroll 2 Unroll 4 Unroll 8 Unroll 16

C
a

ch
e

H
it

 R
a

te
 (

%
)

E
ff

ic
ie

n
cy

 (
%

)
2B/F 0.5MB 8MB hit rate 0.5MB hit rate 8MB

Figure 3.25: Efficiency and cache hit rate of outer-unrolling on performance (the
PRF simulation).

85

3.9. CONCLUSIONS

3.9 Conclusions

This chapter has presented that the vector cache has a potential for the future

vector supercomputers to cover the shortage of their memory bandwidth, and

clarifies the characteristics of an on-chip vector cache with the bypass mecha-

nism on the vector supercomputer NEC SX architecture. The relationship be-

tween the cache hit rate and the performance is demonstrated using two DAXPY-

like loops. Moreover, this chapter has clarified the same relationship found on

the five benchmark programs. The vector cache recovers the lack of the mem-

ory bandwidth, and boosts the computation efficiencies of the 2 B/FLOP and 1

B/FLOP systems. The degree of the contribution of the vector caches highly de-

pends on the characteristics of the applications, and the vector cache increases

the recovery rate of the performance in execution of the five applications by 21

% to 99 % on the 2 B/FLOP system and 9 % to 96 % on the 1 B/FLOP system.

Especially, when cache hit rates are 50 % or more, the 2 B/FLOP system achieves

a performance comparable to the 4 B/FLOP system. The vector cache with a by-

pass mechanism provides the data from both the memory and the cache at once,

and the sustained memory bandwidth for the registers increase.

This chapter has also discussed the relationship between performance and

cache design parameters such as cache associativity and cache latency. The ef-

fect of the cache associativity from 2-way to 8-way is examined. The associativity

has effects on the cache hit rates when a loop accesses many arrays at intervals of

large stride addresses. In addition, the effect of the cache latency is examined on

the performance when changing it to 15 %, 50 % , 85 % and 100 % of the memory

latency. It is demonstrated that the computational efficiencies of five benchmark

programs are constant across these latency changes, when the vector loop lengths

86

3.9. CONCLUSIONS

of the benchmark programs are 256 or more. In these cases, the latency is hid-

den by pipelined vector operations. However, in the case of shorter vector loop

lengths, the cache latency affects the performance, and the 15 % latency case of

Kernel (1) has two times higher efficiency than the 100 % case in the 2 B/FLOP

system. In addition, the 4 B/FLOP system is also boosted owing to the effect of

the short latency of the cache.

Moreover, this chapter has discussed the potential of on-chip vector cache with

the MSHR and the prefetch mechanism for the future vector supercomputers,

which have insufficient memory bandwidth per flop/s rates. The effects of the

MSHR are evaluated on three scientific applications. The MSHR reduces the

number of load requests on the difference scheme loops which continuously load

the same data, and the latency of the subsequent load requests is shortened.

Thus, the MSHR improves the performance by 5 % to 25 % on the 2 B/FLOP sys-

tem, and 4 % to 45 % on the 1 B/FLOP system. In addition, this chapter have

demonstrated the performance of the prefetch mechanism under the two types;

TYPE I: the prefetch mechanism hides the memory access time by other arith-

metic operations, and TYPE II: the prefetch mechanism reduces the number of

load requests to the main memory by removing redundant load instructions ac-

cessing the same memory address. The prefetching mechanism boosts the perfor-

mance by 20 % to 30 % on the 2 B/FLOP system and 20 to 60 % on the 1 B/FLOP

system.

Finally this chapter has discussed selective caching and the relationship be-

tween loop-unrolling and caching. This chapter has shown that selective caching,

which is controlled by means of the bypass mechanism, is effective for efficient

use of the limited capacity of the on-chip caches. Two cases are examined; the

ratios of arrays with locality per loop are higher and lower cases. In each case,

the higher performance is obtained by selective caching, compared with all the

87

3.9. CONCLUSIONS

data caching. In addition, the loop unrolling is useful in the improvement of

performance, and caching is complementary to the effect of loop unrolling.

88

CHAPTER 4. A SHARED CACHE FOR A CHIP MULTI VECTOR
PROCESSOR

Chapter 4

A Shared Cache for a Chip Multi

Vector Processor

4.1 Introduction

Thanks to advances in circuit integration technologies, chip multiprocessors (CMPs)

have become the mainstream in commodity-based scalar processors. Eight-core

CMPs are already found in the commercial market. CMP-based vector processors

have not been found in the commercial market yet. However, the CMP architec-

ture is also promising for vector processor design, because the number of tran-

sistors in a vector processor has been increasing by a factor of eight for the last

decade. In the cases of the NEC SX vector supercomputers, the vector processor

of the SX-7 system released in 2001 consists of 60 million transistors, and the

vector processor of the SX-9 system released in 2008 has 350 million transistors

manufactured using the 65 nm technology. Thus, vector pipelines will be added

in a vector processor. However, many scientific and engineering applications are

parallelized for multi-threads using the automatic parallelization and OpenMP.

89

4.1. INTRODUCTION

The computational granularity of the multi-threads is greater than the granu-

larity of loop vectorization, and it is more effective that the CMP architecture

is adopted by vector supercomputers. Therefore, the CMP architecture will be

mainstream of future vector supercomputers.

A characteristic of modern vector supercomputers is their high off-chip mem-

ory bandwidth, which brings significant advantages of vector supercomputers

over the scalar-based systems [52], [53]. In Chapter 2, the ratio of memory band-

width to the floating-point operation rate needs to reach 4 B/FLOP to keep a high

sustained performance in execution of real scientific applications. When a vec-

tor processor employs a multi core processor chip, however, it is getting harder

to keep a high memory bandwidth balanced with the improvement of their flop/s

performance owing to the limited pin bandwidth. If the memory bandwidth is not

enough for multi vector core processors, the vector processors would be unable to

outperform even commodity-based scalar processors.

In Chapter 3, it is indicated that an on-chip vector cache improves the effective

memory bandwidth rate of a single-core vector processor, when its off-chip mem-

ory bandwidth is decreased. Then, it is clarified that the vector cache increases

the sustained performance to a certain degree on the 1 B/FLOP and 2 B/FLOP

systems. In this chapter, the vector cache is adopted by a chip multi vector pro-

cessor (CMVP) to cover its limited off-chip memory bandwidth. In particular, the

effects of the on-chip shared vector cache are discussed on the performance of the

CMVP when executing real scientific applications.

The rest of the chapter is organized as follows. Section 4.2 presents related

work. Section 4.3 indicates the locality of a difference scheme in a multi-threading

case. Section 4.4 describes the design of a CMVP architecture discussed in this

chapter. Section 4.5 provides an experimental methodology and benchmark pro-

grams for the evaluation of the CMVP. Section 4.6 presents experimental results

90

4.1. INTRODUCTION

when executing five scientific applications on the vector architecture. The effects

of a shared cache on the performance of the CMVP are discussed. Finally, Section

4.7 summarizes the chapter.

91

4.2. RELATED WORK

4.2 Related Work

The investigations on a chip multi vector processor are unpublished up to the

present time. In this chapter, the papers which are discussed about a shared

cache in scalar systems are described.

On studies of shared caches, Nayfeh et al. have investigated the performance

of three memory architectures on a multiprocessor: shared-primary cache, shared-

secondary cache, and shared memory [49]. Their CPU and the parallel mem-

ory references are modeled using Mipsy and the SimOS simulator, respectively.

They consider a 16 KB 2-way set-associative L1 cache and a 512 KB 2-way set-

associative L2 cache. Their benchmark programs are selected from SPEC92 [11]

and SPLASH [65]. They indicated that the shared-primary cache and shared-

secondary cache architectures have a potential for increasing the sustained per-

formance of the benchmark programs.

Although CMPs have been studied by many researchers, most investigations

of CMPs are concerned with scalar processors. Peng et al. have evaluated the

memory performance and scalability in commodity-based scalar processors [56]:

Intel Core 2 Duo [26], Intel Pentium D [27] and AMD Athlon 64X2 [3]. The

aim of their papers is to demonstrate that the computational performance and

scalability on CMPs are impacted by the memory hierarchy architecture among

three processors. Their benchmark programs are selected from SPEC CPU2000,

SPEC CPU2006, SPEC jbb2005 [11], SPLASH2 [71] and BioPerf [5]. They

shown that Core 2 Duo has the best performance for most of the benchmarks,

because Core 2 Duo employs the shared L2 cache that stores the data shared by

multiple threads.

So far, there is no chip vector multiprocessor for high end computing systems

so called supercomputers, however, the CMP architecture is definitely the key

92

4.2. RELATED WORK

technology for future vector processor design. As Chapter 3 has indicated that

an on-chip cache has the potential for keeping the performance when their off-

chip memory bandwidth is limited, the concepts of a shared cache mechanism for

scalar-based CMPs are applied to a CMVP for increasing the performance. Thus,

a CMVP with a shared cache mechanism is designed, and its performance using

scientific and engineering applications is evaluated.

93

4.3. CHARACTERISTICS OF SCIENTIFIC APPLICATIONS

4.3 Characteristics of Scientific Applications

Various scientific applications generally utilize difference schemes for simulating

the physics phenomena. When the applications of difference schemes are paral-

lelized for multi-threading, a part of arrays has a high locality among threads.

The example of a difference scheme is Source Code 3.1 in Chapter 3: it is a

kernel routine of Finite Difference Time Domain Method (FDTD method). The

outermost loop, index k, is parallelized by multi-threading. In the case of sin-

gle thread execution, array elements H y(i, j, k) (line 06 in Source Code 3.1) and

H x(i, j, k) (line 11) are cached, but they are not reused as H y(i, j, k − 1) (line

06) and H x(i, j, k − 1) (line 11), because they are replaced by other data before

reused. In the case of multi-threading execution, however, they are reused as

H y(i, j, k−1) and H x(i, j, k−1) by another thread. In the difference schemes, one

thread often reuses data on a shared cache that are fetched by another thread.

As shown in Chapter 3, it is indicated that the MSHR is a necessary func-

tion for difference schemes to effectively utilize their locality of reference. Since

a latency of main memory is much longer than CPU cycles, the MSHR effectively

handles subsequent vector loads of the same data, whose fetch request is out-

standing to the memory. This is because each thread of a difference scheme loads

the same data at the same time on multi-threading, even though the reused data

are not yet filled into the cache when the subsequent load instructions are issued.

When loop k in Source Code 3.1 is parallelized, two array elements, H y(i, j, k)

(line 06 in Source Code 3.1) and H x(i, j, k) (line 11) are cached and reused. How-

ever, without the MSHR, they are not reused on the cache as H y(i, j, k − 1) (line

06) and H x(i, j, k − 1) (line 11).

94

4.4. CHIP MULTI VECTOR PROCESSOR

4.4 Chip Multi Vector Processor

4.4.1 Basic mechanism of Chip Multi Vector Processor

On a chip multi vector processor, maintaining the memory bandwidth rate to 4

B/FLOP becomes more difficult. As shown in Chapter 3, the vector cache im-

proves the effective memory bandwidth rate of a single-core vector processor.

Therefore, the vector cache with the bypass mechanism and the MSHR mech-

anism is a key technology for the CMVP. The constitution of the vector cache

is not a private cache but shared cache, because difference schemes of scientific

simulations have a high locality among multi-threads.

A core of the CMVP makes the same composition as the processor as shown

in Chapter 3. Each core has 32 memory ports. The core and the vector cache are

interconnected through 32 crossbar switches at 4 B/FLOP. Each crossbar switch

has a priority control mechanism of data transfer from the cores to the vector

cache. When two or more cores send data at once, the data are forwarded to the

vector cache according to a priority policy. In this chapter, the priority level of the

data transfer is as follows. Core0 > Core1 > Core2 > Core3

4.4.2 Structure of Chip Multi Vector Processor

Figure 4.1 shows the CMVP block diagram, which has four vector cores and

a shared vector cache. The vector core and the vector cache are similar to the

architecture shown in Chapter 3. Figure 4.2 shows the block diagram of a core

of the CMVP. Each core works independently. The core has a vector unit, scalar

unit and an address control unit. The vector unit contains four parallel vector

pipe sets, each of which has five types of vector arithmetic pipes (Mask, Logical,

Add/Shift, Multiply, Divide), and vector registers.

95

4.4. CHIP MULTI VECTOR PROCESSOR

Sub-cache 0

Chip Multi Vector Processor

Main Memory Unit

Core 0 Core 1 Core 2 Core 3

S
ca

la
r

U
n
it

V. Register

Vector

Pipe Set
Vector

Pipe Set
Vector

Pipe Set
Vector

Pipe Set

S
ca

la
r

U
n
it

V. Register

Vector

Pipe Set
Vector

Pipe Set
Vector

Pipe Set
Vector

Pipe Set

S
ca

la
r

U
n
it

V. Register

Vector

Pipe Set
Vector

Pipe Set
Vector

Pipe Set
Vector

Pipe Set

S
ca

la
r

U
n
it

V. Register

Vector

Pipe Set
Vector

Pipe Set
Vector

Pipe Set
Vector

Pipe Set

Sub-cache 1 Sub-cache 31Vector Cache

MSHRMSHRMSHR

Figure 4.1: CMVP block diagram.

Vector

Cache

Vector

Registers

Mask Reg.

Scalar Unit
Address

Control Unit

Mask

Logical

Multiply

Add/Shift

Divide

Vector Pipe Set
×4

Vector Unit

To Main

Memory

To Main Memory

(Bypass)

Core

Figure 4.2: Block diagram of a core.

The vector cache consists of 32 sub-caches. The sub-cache is a non-blocking

cache and includes a tag array, a data array and a MSHR. The sub-cache employs

a set-associative write-through cache with the LRU replacement policy. The line

size is 8 bytes. The vector cache reduces the memory access latency by 85 % and

the bank cycle by 95 %. The memory bandwidth between the vector cache and

the vector core is 4 B/FLOP.

The main memory unit is an interleaved memory system and is divided into

96

4.4. CHIP MULTI VECTOR PROCESSOR

32 parts, each of which operates independently and supplies data to the cores.

The maximum memory bandwidth rate, B/FLOP, between the main memory and

the vector processor is 4 B/FLOP.

97

4.5. EXPERIMENTAL ENVIRONMENT

4.5 Experimental Environment

4.5.1 Methodology

A trace-drive simulator is developed for simulating the behavior of the proposed

CMVP architecture at the register transfer level. The simulator is enhancement

of the NEC SX simulator as shown in Chapter 3. Particularly, this simulator

deals with a parallelized program by multi-threads of DO Loop level using the

automatic parallelization and OpenMP.

To evaluate the CMVP as a future vector processor with a higher flop/s rate

but a relatively lower off-chip memory bandwidth, the effects of the vector cache

are evaluated on the CMVP by limiting its memory bandwidth per flop/s rate

from 4 B/FLOP down to 1 B/FLOP.

Table 4.1: Summary of setting parameters.

Base System Architecture SX-7
Number of Core 1, 2, 4
Main Memory DDR-SDRAM
Memory Size 256 GB
Number of bank 16,384
Vector Cache SRAM
Total Size (Sub-cache) 256 KB - 8 MB (8 KB - 256 KB)
Associativity 2WAY, 4WAY, 8WAY
Cache Policy write-through, LRU replacement
Line Size 8 bytes
Cache Latency 15 % of main memory latency
Cache Bank Cycle 5 % of main memory cycles
MSHR Entries (Sub-cache) 65,536 (2048)
Memory – Cache 1 B/FLOP, 2 B/FLOP,
bandwidth per flop/s 4 B/FLOP
Cache – Register 4 B/FLOP
bandwidth per flop/s

98

4.5. EXPERIMENTAL ENVIRONMENT

The setting parameters are shown in Table 4.1. Here, the NEC SX-7 architec-

ture [29] is adopted as a vector core, and the vector cache size is 8 MB, which is

the same as Cray BlackWidow’s cache capacity. The bandwidth per flop/s between

the main memory and the vector cache indicates a value per the four-core CMVP.

In addition, on the single core case, Core 0 is simulated in Figure 4.1 that exclu-

sively uses the full bandwidth between the main memory and the vector cache.

On the two cores simulation, Core 0 and Core 1 share the bandwidth.

4.5.2 Benchmark programs

The performance of the CMVP with the shared vector cache is evaluated by us-

ing the five benchmark programs as shown in Chapter 2. Here, the four bench-

mark programs, the GPR, APFA, PRF and SFHT simulations, utilize difference

schemes, and the PBM simulation does not use the difference schemes.

As shown in Section 4.3, difference schemes have the high locality among

threads. The PBM simulation has also a high locality of reference in multi-

threading. In Source Code 3.7 of the PBM simulation, the outer loop, index i, is

parallelized by multi-threading. The array wary(j) has a capacity of 250 KB, and

the array gd dip accessed by four threads spills the array wary(j) from the vector

cache, when the cache size is below 1.25 MB. However, each thread accesses the

same array data wary(j) at once. Hence, using the MSHR, three threads of the

subsequent load instruction reuse the cached data of the array wary(j).

99

4.6. PERFORMANCE EVALUATION OF CMVP

4.6 Performance Evaluation of CMVP

In this section, the performance of the CMVP is evaluated using the benchmark

programs, and the potential of the shared cache with the MSHR for the CMVP is

clarified.

4.6.1 Scalability of the applications without the cache

First, the performance of five benchmark programs is evaluated when chang-

ing the B/FLOP rate from 4 down to 1 in the four-core CMVP without the vec-

tor cache. Figure 4.3 shows the relative performance of the five benchmark

programs. Here, the relative performance is obtained by normalizing the sus-

tained performance of each case by the sustained performance of a single core

at the 1 B/FLOP rate. When the B/FLOP rate is 4, the speedups of the five

benchmark programs are greater than 3.6 on the four-core CMVP. The 4 B/FLOP

CMVP scales well, because each program has a high parallel ratio. However, the

amount of the supplied date from the memory is insufficient on the 1 B/FLOP and

2 B/FLOP CMVPs. Thus, the scalability of the CMVP decreases as the B/FLOP

rate decreases. Especially, the relative performance on the four-core CMVP in the

GPR and PBM simulations, which are memory intensive, only achieve speedups

of 1.1 at the 1 B/FLOP rate and 2.2 at the 2 B/FLOP rate. Therefore, these results

indicate that B/FLOP rates seriously affect the scalability of the CMVP.

4.6.2 Scalability of the applications with the vector cache

Figure 4.4 shows the relative performance on the vector cache with the MSHR

when the B/FLOP rates are reduced from 4 to 1. Here, the relative performance is

obtained by normalizing the sustained performance of each case by the sustained

100

4.6. PERFORMANCE EVALUATION OF CMVP

0

1

2

3

4

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

R
e
la

ti
v

e
 P

e
r
f
o

r
m

a
n

c
e

Number of Cores

1 B/F 2 B/F 4 B/F

GPR APFA PRF SFHT PBM

Figure 4.3: Relative performance of programs on the four-core CMVP without the
vector cache.

performance of a single core without the cache at the 1 B/FLOP rate. The scala-

bility of the five benchmark programs is improved by the cache mechanism. Es-

pecially, the performances of the 1 B/FLOP and 2 B/FLOP CMVPs for the APFA

simulation are comparable to the performance of the 4 B/FLOP CMVP. For the

PRF and PBM simulations, the performance of the 2 B/FLOP CMVP approxi-

mately achieves the performance of the 4 B/FLOP CMVP.

0

1

2

3

4

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

R
e
la

ti
v

e
 P

e
r
f
o

r
m

a
n

c
e

Number of Cores

1 B/F CacheMSHR 2 B/F CacheMSHR 4 B/F

GPR APFA PRF SFHT PBM

Figure 4.4: Relative performance of programs on the four-core CMVP with the
vector cache.

The relative performances of the 1 B/FLOP CMVP are smaller than the rela-

tive performances of the 2 B/FLOP CMVP. This is because the 1 B/FLOP CMVP

does not provide data to vector registers at the rate of 4 B/FLOP unless all the

101

4.6. PERFORMANCE EVALUATION OF CMVP

data are on the cache, even though the 2 B/FLOP CMVP can. Especially, the

performance of the 2 B/FLOP CMVP is approximately equivalent to the perfor-

mance of the 4 B/FLOP CMVP, when the data are provided to the register file

from the cache and the memory at 2 B/FLOP rate each. Therefore, the off-chip

memory bandwidth per CMVP needs to satisfy at least 2 B/FLOP to achieve a

high scalability.

4.6.3 Relationship between associativity and cache hit rate

In Chapter 3, it is provided that the associativity has effects on the cache hit

rates in the single core case. In this subsection, the effect of the associativity is

examined ranging from 2-way to 8-way on the cache hit rate in the multi core

case. set

Figure 4.5 shows that the cache hit rate on each set associative cache by

changing cache sizes from 256 KB to 8 MB. Three benchmark programs, the

GPR, PRF and SFHT simulations approximately have constant cache hit rates

across three associativity cases. In the APFA and PBM simulations the cache hit

rates vary with the associativity. Particularly, in the APFA simulation the cache

hit rate increase by 10 % from a 2-way set associative cache to an 8-way set as-

sociative cache on the 256 KB cache capacity. Then, in the PBM simulation the

cache hit rate increase by 4 % from a 2-way set associative cache to an 8-way set

associative cache on the 2MB cache capacity.

On the multi-core case, each core accesses the cache at once, and the cache

access patterns become random. Then, the placement of the arrays on the cache

causes the conflict of reused data. Therefore, CMPV requires 4-way or more as-

sociative cache.

102

4.6. PERFORMANCE EVALUATION OF CMVP

GPR APFA

PRF SFHT

PBM

0

10

20

30

40

50

2WAY 4WAY 8WAY

C
a

c
h

e
 h

it
 r

a
te

 (
%

)

0.25MB 0.5MB 1MB 2MB 4MB 8MB

0

20

40

60

80

100

2WAY 4WAY 8WAY

C
a

c
h

e
 h

it
 r

a
te

 (
%

)

0.25MB 0.5MB 1MB 2MB 4MB 8MB

0

10

20

30

40

50

2WAY 4WAY 8WAY

C
a

c
h

e
 h

it
 r

a
te

 (
%

)

0.25MB 0.5MB 1MB 2MB 4MB 8MB

0

10

20

30

40

50

2WAY 4WAY 8WAY

C
a

c
h

e
 h

it
 r

a
te

 (
%

)

0.25MB 0.5MB 1MB 2MB 4MB 8MB

0

10

20

30

40

50

2WAY 4WAY 8WAY

C
a
c
h

e
 h

it
 r

a
te

 (
%

)

0.25MB 0.5MB 1MB 2MB 4MB 8MB

Figure 4.5: Cache hit rate vs. associativity on the five benchmark programs in
the four core case.

4.6.4 Effect of the shared vector cache

For multi-threaded programs of various difference schemes, a thread reuses the

data on the cache previously loaded by another thread. Here, the effect of the

shared cache with the MSHR is shown using the GPR simulation, which uses the

FDTD method, as shown in Subsection 4.3. Figure 4.6 indicates the cache hit

rates and the improved efficiencies per core by the shared cache at the 2 B/FLOP

rate. The cache hit rate increases by 6.5 % from the one-core case to the four-core

103

4.6. PERFORMANCE EVALUATION OF CMVP

case, and the improved efficiency per core is increased by 3.3 %, because the array

elements Hy(i, j, k−1) (line 06 in Source Code 3.1) and Hx(i, j, k−1) (line 11) reuse

the cached data on the shared cache. For the accesses of Core 1 to array element

Hy(i, j, k − 1) at index k = n, Core 1 reuses the cached data of the array element

Hy(i, j, k) that has been loaded at index k = n−1 by Core 0. Consequently, sharing

the cache among vector cores increases the cache hit rate of difference schemes,

resulting in performance improvement.

0

5

10

15

20

25

0

2

4

6

8

10

12

14

1core 2core 4core
C

a
ch

e
H

it
 R

a
te

 (
%

)

Im
p

ro
v
ed

 E
ff

ic
ie

n
cy

 (
%

)

Performance Gain cache hit rate

Figure 4.6: Cache hit rate and improved efficiency on a kernel loop of the GPR
simulation at the 2 B/FLOP.

4.6.5 Effect of the MSHR

For both multi-threaded and vectorized programs of difference schemes that con-

tinuously load the same data, the MSHR has the potential for increasing the per-

formance. Figure 4.7 shows the relative performance with/without the MSHR

on the four-core CMVP at the 2 B/FLOP rate. Here, the relative performance is

obtained by normalizing the sustained performance of each case by the sustained

performance of the four-core CMVP without the cache at the 2 B/FLOP rate. The

improvements of the relative performance obtained by the MSHR are from 6 % in

the SFHT simulation to 17 % in the GPR simulation. Table 4.2 shows the cache

hit rates of three applications with/without the MSHR. The MSHR improves the

104

4.6. PERFORMANCE EVALUATION OF CMVP

cache hit rates by 4.9 % to 6.4 %. Therefore, the MSHR increases the number of

opportunities to reuse data on the cache across the applications of the difference

schemes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

GPR PRF SFHT

R
e
la

ti
v
e
 P

e
r
f
o
r
m

a
n

c
e

2 B/F 2 B/F Cache 2 B/F CacheMSHR

Figure 4.7: Relative performance with/without the MSHR on the GPR, PRF and
SFHT simulations at the 2 B/FLOP.

Table 4.2: Cache hit rate

GPR PRF SFHT
Cache 23.0 % 21.1 % 6.2 %
Cache + MSHR 27.9 % 27.5 % 11.5 %

In the PBM simulation, which does not use the difference schemes, the MSHR

is also an effective way to increase the performance of the CMVP. Figure 4.8 in-

dicates the cache hit rates with/without the MSHR on the four-core CMVP when

changing the cache size from 256 KB to 8 MB. The MSHR improves the cache

hit rates by 33 % when the cache size is below 1 MB. Moreover, Figure 4.9 shows

the relative performance with/without the MSHR on the four-core CMVP at the

2 B/FLOP rate. Here, the relative performance is obtained by normalizing the

sustained performance using the cache without the MSHR at the 2 B/FLOP rate.

The improvements of the relative performance using the MSHR is 50 % below

1 MB cache. Therefore, the MSHR has the potential to increases the sustained

105

4.6. PERFORMANCE EVALUATION OF CMVP

performance when each thread share in the same data of the vector cache.

0

10

20

30

40

50

0.25 0.5 1 2 4 8

C
a
ch

e
H

it
 R

a
te

 (
%

)

Cache Size (MB)

Cache CacheMSHR

Figure 4.8: Cache hit rate with/without the MSHR on a kernel loop of the PBM
simulation.

0

0.5

1

1.5

2

0.25 0.5 1 2 4 8

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

Cache Size(MB)

Cache CacheMSHR

Figure 4.9: Relative performance with/without the MSHR on a kernel loop of the
PBM simulation at the 2 B/FLOP.

106

4.7. CONCLUSIONS

4.7 Conclusions

In this chapter, the performance of the CMVP is evaluated using five scien-

tific applications. The CMVP contains four vector cores and an on-chip shared

cache with the MSHR. It is shown that the CMVP without the cache needs the 4

B/FLOP rate of the off-chip memory bandwidth per core for maintaining the scal-

ability of vector processors in sustained performance. However, a future vector

supercomputer will not be able to keep the 4 B/FLOP rate owing to the limited

pin bandwidth. Therefore, the on-chip shared cache is proposed for the CMVP.

The evaluations of the CMVP have shown that the off-chip memory bandwidth

on the CMVP should satisfy at least 2 B/FLOP using the cache mechanism to

achieve a high scalability. . This chapter has discussed the relationship between

performance and cache design parameters: cache associativity. The effect of the

cache associativity is examined setting from 2-way to 8-way. The cache hit rate

is sensitive to the associativity in the two benchmark programs. The results in-

dicate that the performance cache of CMVP depend on the cache associativity.

Moreover, the effect of the shared cache and the MSHR are evaluated using

the scientific applications. The results show that the shared cache increases the

cache hit rate and the efficiency of the GPR simulation by 6.5 % and 3.3 %, re-

spectively. Meanwhile, the MSHR is effective for both the multi-threaded and the

vectorized programs. The cache hit rates increase by 4.9 % on the GPR simula-

tion and by 33 % on the PBM simulation, and the relative performance improves

by 14 % on the GPR simulation and by 50 % on the PBM simulation

107

CHAPTER 5. CONCLUSIONS

Chapter 5

Conclusions

Vector supercomputers achieve the high computation efficiency by the high B/FLOP

rate in scientific and engineering applications. However, the vector supercom-

puters encounter the memory wall problem, and the computation efficiency de-

creases owing to the widening gap between the memory bandwidth and proces-

sor performance. In the circumstances, this dissertation proposes a high per-

formance memory architecture to overcome the memory wall problem on vector

supercomputers. The high performance memory architecture is a vector cache

mechanism, which has four mechanisms: bypass mechanism, miss status han-

dling register, prefetch mechanism, selective caching. The objective of this dis-

sertation is to clarify the following points.

• Performance of vector supercomputers is maintained by memory perfor-

mance, particularly the B/FLOP rate.

• A proposed high performance memory architecture has the potential of in-

creasing the relative B/FLOP rate for future vector supercomputers.

• Scalability of a chip multi vector processor on future vector supercomputers

is maintained by memory performance, particularly the B/FLOP rate.

108

CHAPTER 5. CONCLUSIONS

• A shared vector cache has the potential of increasing the relative B/FLOP

rate on the chip multi vector processors.

Furthermore, this dissertation clarifies the characteristics of the high perfor-

mance memory architecture.

In Chapter 2, the memory performance of vector supercomputers and scalar

systems is examined across five scientific applications. The vector supercom-

puters achieve the high computation efficiency and significantly outperform the

scalar systems in the scientific applications, because the vector supercomputers

use the interleaved memory systems and their memory access latencies are hid-

den by pipelined vector operations. The performance of the interleaved memory

systems is preserved by the memory bandwidth and enough number of memory

banks. In particular, the B/FLOP rate needs to reach 4 to preserve the computa-

tional performance in the vector supercomputers.

In Chapter 3, the potential of the proposed vector cache is discussed for fu-

ture vector supercomputers, whose memory bandwidth rates will decrease at 2

B/FLOP or lower. The aim of the vector cache is to reduce data traffic between the

main memory and the vector processor, and effectively to use the memory band-

width. Thus the vector cache consists of sub-caches, which prevent the diminish-

ing of the effect of the interleaved memory system. Furthermore, the vector cache

employs a bypass mechanism between the main memory and vector register files,

then the total amount of data provided to the vector register files is increased by

the bypass mechanism. These mechanisms are examined using the five scientific

applications. The vector cache increases the recovery rate of the performance in

execution of the five applications by 21 % to 99 % on the 2 B/FLOP system and

9 % to 96 % on the 1 B/FLOP system. Especially, as cache hit rates are 50 % or

more, the 2 B/FLOP system achieves a performance comparable to the 4 B/FLOP

system.

109

CHAPTER 5. CONCLUSIONS

Moreover, the MSHR, the prefetch mechanism and the selective caching are

introduced in the vector cache to improve the effect of the vector cache. These

mechanisms reduce redundant data supplied from the main memory and hide

the latency of the main memory. Furthermore, these mechanisms become effec-

tive use for the cache capacity. The experimental results indicate that the MSHR

improves the computational performance by 5 % to 25 % on the 2 B/FLOP sys-

tem, and 4 % to 45 % on the 1 B/FLOP system. The MSHR reduces the number

of load requests within the difference scheme loops which continuously load the

same data, and the latencies of the subsequent load requests are shortened. In

the prefetch mechanism, the performance of the prefetch mechanism is demon-

strated under the two types; TYPE I: the prefetch mechanism hides the memory

access time by other arithmetic operations, and TYPE II: the prefetch mechanism

reduces the number of load requests to the main memory by removing redundant

load instructions accessing the same memory address. The prefetching mecha-

nism boosts the performance by 20 % to 30 % on the 2 B/FLOP system and 20

% to 60 % on the 1 B/FLOP system. In the selective caching, two cases are ex-

amined; the ratios of arrays with locality per loop are higher and lower cases.

In each case, the higher performance is obtained by selective caching, compared

with all the data caching.

In Chapter 4, the performance of the chip multi vector processor (CMVP) and

the effectiveness of the shared vector cache are discussed. A vector processor will

employ the chip multi processor architecture in the near future. However, the

CMVP does not preserve the high memory bandwidth rate owing to the memory

wall problem. Thus, the vector cache is a key to improve the effective memory

bandwidth rate for the CMVP. Moreover, because difference schemes of scientific

simulations have a high locality among multi-threads, the vector cache employs

a shared cache. Then, the performance of the CMVP is evaluated using the five

110

CHAPTER 5. CONCLUSIONS

applications.

The CMVP without the cache needs the 4 B/FLOP rate of the off-chip mem-

ory bandwidth per core for maintaining the scalability of vector processors in

sustained performance. When the B/FLOP rate is 4, the speedups of the four

programs are greater than 3.6 on the four-core CMVP, however, the scalability of

the CMVP decreases as the B/FLOP rate decreases. Especially, the relative per-

formance on the four-core CMVP in the memory intensive programs only achieve

speedups of 1.1 at the 1 B/FLOP and 2.2 at 2 B/FLOP rates. Meantime, by the

shared cache mechanism with MSHR, the scalability of the four programs is im-

proved. Especially, the performances of the 1 B/FLOP and 2 B/FLOP CMVPs for

the APFA simulation are comparable to the performance of the 4 B/FLOP CMVP.

For the PRF and PBM simulations, the performance of the 2 B/FLOP CMVP ap-

proximately achieves the performance of the 4 B/FLOP CMVP. Therefore, the off-

chip memory bandwidth on the CMVP needs to satisfy at least 2 B/FLOP using

the cache mechanism to achieve a high scalability.

As described above, the memory bandwidth rate, B/FLOP, is a primary impor-

tant factor of the high computational performance on the vector supercomput-

ers. The high performance memory architecture is introduced to overcome to the

memory wall problem in future vector supercomputers. Then, the high perfor-

mance memory architecture has a potential to cover the shortage of the B/FLOP

rate. In particular, the bypass and MSHR mechanisms are fundamental to the

hardware mechanism of the future vector supercomputers.

111

ACKNOWLEDGMENTS

Acknowledgments

I have obtained a lot of supports and kindly help from many people at Tohoku

University and NEC corporation. I can hardly complete this study without them.

I would like to express my sincere gratitude to all of them.

First of all, I would like to express my sincere thanks to my research supervi-

sor, Professor Hiroaki Kobayashi, who conducted me to research fields, and has

supported and encouraged me throughout years. I would like to thank Professor

Kazuhiro Nakahashi and Professor Satoru Yamamoto for their thoughtful review

of this dissertation and their helpful comments. I wish to express my appreciation

to Associate Professor Hideaki Goto, Associate Professor Hiroyuki Takizawa and

Assistant Professor Ryusuke Egawa for their valuable and helpful suggestions

and comments.

I would like to express my appreciation to Research Associate Koki Okabe for

his worthy suggestions and discussion. I would like to thank Professor Motoyuki

Sato, Professor Akira Hasegawa, Professor Goro Masuya, Professor Terukazu

Ota and Professor Kunio Sawaya for their advice about applications. I am pleased

to acknowledge the assistance of Mr. Yoshiei Sato and Mr. Takashi Soga. They

are member of Supercomputer team of Kobayashi Laboratory.

Special thanks go to Mr. Takaaki Shimizu, Mr. Satoru Hirokami and Mr.

Kiyoshi Sugiyama of NEC Corporation for their support and encouragements.

Thanks go to Ms. Yoko Isobe and Mr. Satoshi Jinguji of NEC Computertechno for

112

ACKNOWLEDGMENTS

their support and suggestions. I am also pleased to acknowledge the assistance

of Mr. Matsuo Aoyama and Mr. Hirofumi Akiba of NEC Software Tohoku.

Finally, I express the deep appreciation to my family, who bring someone peace

and comfort. I want to express my gratitude to my wife Ms. Katsumi Musa as a

life partner. I also want to thank my daughter Ms. Yumiko Musa and my son Mr.

Yuki Musa.

113

BIBLIOGRAPHY

Bibliography

[1] D. Abts et al. ”The Cray BlackWidow: A Highly Scalable Vector Multipro-

cessor”. In Proceedings of the ACM/IEEE SC2007 conference, Reno, USA,

November 2007.

[2] D. Abts, S. Scott, and D. J. Lilja. ”So Many States, So Little Time: Ver-

ifying Memory Coherence in the Cray X1”. In International Parallel and

Distributed Processing Symposium, April 2003.

[3] AMD. ”AMD Athlon 64X2 Dual-Core Product Data Sheet”. Technical report,

AMD, 2007. http://www.amd.com/us-en/Processors/ProductInformation/.

[4] K. Ariyoshi, T. Matsuzawa, and A. Hasegawa. ”The key frictional param-

eters controlling spatial variation in the speed of postseismic slip propaga-

tion on a subduction plate boundary”. Earth and Planetary Science Letters,

256:136–146, 2007.

[5] D. A. Bader, Y. Li, T. Li, and V. Sachdeva. ”A Benchmark Suite to Evaluate

High-Performance Computer Architecture on Bioinformatics Applications”.

http://www.bioperf.org/.

[6] D. H. Bailey. ”NAS kernels”. http://www.netlib.org/benchmark/nas.

114

BIBLIOGRAPHY

[7] C. Batten, R. Krashinsky, S. Gerding, and K. Asanovic. ”Cache Refill/Access

Decoupling for Vector Machines”. In Proceedings of the 37th International

Symposium on Microarchitecture, pages 331–342, Portland, 2004.

[8] R. Biswas et al. ”NAS Experience with the Cray X1”. Technical report,

NASA Ames Research Center, September 2005.

[9] D. Callahan, J. Cocke, and K. Kennedy. ”Estimating Interlock and Improving

Balance for Pipelined Architectures”. Journal of Parallel and Distributed

Computing, 5:334–358, 1994.

[10] The Earth Simulator Center. ”Outline of the Earth Simulator Project”. In

Annual Report of The Earth Simulator Center (April 2002 - March 2003),

pages 2–7, 2003.

[11] Standard Performance Evaluation Corporation. ”SPEC’s Benchmarks and

Published Results”. http://www.spec.org/benchmarks.html.

[12] NASA Advanced Supercomputing Division. ”NAS Parallel Benchmarks”.

http://www.nas.nasa.gov/Software/NPB.

[13] T. H. Dunigan Jr., M. R. Fahey, J. B. White III, and P. H. Worley. ”Early

Evaluation of The Cray X1”. In Proceedings of the ACM/IEEE SC2003 con-

ference, Phoenix, USA, November 2003.

[14] T. H. Dunigan Jr., J. S. Vetter, J. B. White III, and P. H. Worley. ”Performance

Evaluation of The Cray X1 Distributed Shared-Memory Architecture”. In

IEEE MICRO, volume 25, pages 30–40, 2005.

[15] K. I. Farkas and N. P. Jouppi. ”Complexity/Performance Tradeoffs with Non-

Blocking Loads”. In The 21th International Symposium on Computer Archi-

tecture (ISCA), Chicago, USA, April 1994.

115

BIBLIOGRAPHY

[16] R. A. Fatoohi. ”Vector Performance Analysis of Three Supercomputers:

Cray-2, Cray Y-MP and ETA10-Q”. In Proceedings of Supercomputing ‘89,

1989.

[17] R. A. Fatoohi. ”Vector Performance Analysis of The NEC SX-2”. In Proceed-

ings of Supercomputing‘90, 1990.

[18] High-End Computing Revitalization Task Force. ”Federal Plan for High-

End Computing”. Technical report, Executive Office of the President, Office

of Science and Technology Policy, May 2004. Report of the High-End Com-

puting Revitalization Task Force.

[19] J. W. C. Fu and J. H. Patel. ”Data Prefetching in Multiprocessor Vector

Cache Memories”. In 18th Annual International Symposium on Computer

Architecture, pages 54–63, 1991.

[20] J. W. C. Fu and J. H. Patel. ”Data Prefetching Strategies for Vector Cache

Memories”. In 5th International Parallel Processing Symposium, May 1991.

[21] J. D. Gee and A. J. Smith. ”Vector Processor Caches”. Technical Report

UCB/CSD-92-707, University of California, October 1992.

[22] J. D. Gee and A. J. Smith. ”The Effectiveness of Caches for Vector Proces-

sors”. In The 8th international Conference on Supercomputing 1994, pages

333–343, July 1994.

[23] J. K. Hennessy and D. A. Patterson. ”Computer Architecture: A Quantitative

Approach, fourth edition”. Morgan Kaufman, 2007.

116

BIBLIOGRAPHY

[24] Cray Inc. ”Next-Generation Cray Supercomputer Will Deliver

Leading-Edge Vector Processing and Integrated Scalar Capa-

bility.”. http://investors.cray.com/phoenix.zhtml?c=98390&p=irol-

newsArticle&ID=876494.

[25] Intel. ”Intel Itanium Architecture Software Developer’s Manual”, 2002.

[26] Intel. ”Intel Core2 Extreme Processor X6800 and Intel Core2 Duo Desktop

Processor E6000 and E4000 Series Datasheet”. Technical report, Intel, 2008.

[27] Intel. ”Intel Pentium D Processor 800 Sequence Datasheet”. Technical re-

port, Intel, 2008.

[28] R. E. Kessler. ”The Alpha 21264 microprocessor”. IEEE Micro, 19(2):24–36,

1999.

[29] K. Kitagawa, S. Tagaya, Y. Hagiwara, and Y. Kanoh. ”A Hardware Overview

of SX-6 and SX-7 Supercomputer”. NEC Research & Development, 44:2–7,

2003.

[30] H. Kobayashi. ”Implication of Memory Performance in Vector-Parallel and

Scalar-Parallel HEC”. In M. Resch et al., editors, High Performance Com-

puting on Vector Systems 2006, pages 21–50. Springer-Verlag, 2006.

[31] H. Kobayashi, R. Egawa, H. Takizawa, K. Okabe, A. Musa, T. Soga, and

Y Shimomura. ”First Experiences with NEC SX-9”. In M. Resch et al.,

editors, High Performance Computing on Vector Systems 2008, pages 3–11.

Springer-Verlag, 2008.

[32] H. Kobayashi, A. Musa, Y. Sato, H. Takizawa, and K. Okabe. ”The potential

of On-chip Memory Systems for Future Vector Architectures”. In M. Resch

117

BIBLIOGRAPHY

et al., editors, High Performance Computing on Vector Systems 2007, pages

247–264. Springer-Verlag, 2007.

[33] T. Kobayashi, X. Feng, and M. Sato. ”FDTD simulation on array antenna

SAR-GPR for land mine detection”. In Proceedings of SSR2003: 1st Interna-

tional Symposium on Systems and Human Science, pages 279–283, Osaka,

Japan, November 2003.

[34] L. I. Kontothanassis, R. A. Sugumar, G. J. Faanes, J. E. Smith, and M. L.

Scott. ”Cache Performance in Vector Supercomputers”. In Proceedings of the

1994 conference on Supercomputing, pages 255–264, Washington D.C., 1994.

[35] R. Krashinsky et al. ”The Vector-Thread Architecture”. In The 31th Inter-

national Symposium on Computer Architecture (ISCA), Munich, Germany,

June 2004.

[36] D. Kroft. ”Lockup-Free Instruction Fetch/Prefetch Cache Organization”. In

The 8th International Symposium on Computer Architecture (ISCA), pages

81–87, PA, USA, 1981.

[37] K. S. Kunz and R. J. Luebbers. ”The Finite Difference Time Domain Method

for Electromagnetics”. CRC Press, Boca Raton, FL, 1993.

[38] P. Lammers and U Kuster. ”Recent Performance Results of the Lattice Boltz-

mann Method”. In M. Resch et al., editors, High Performance Computing on

Vector Systems 2006, pages 51–59. Springer-Verlag, 2006.

[39] J. McCalpin. ”Memory bandwidth and machine balance in current high per-

formance computers”. In IEEE Computer Society Technical Committee on

Computer Architecture (TCCA) Newsletter, pages 19–25, December 1995.

118

BIBLIOGRAPHY

[40] J. D. McCalpin. ”STREAM: Sustainable memory bandwidth in high perfor-

mance computers”. http://www.cs.virginia.edu/stream.

[41] S. A. McKee. ”Reflections on the Memory Wall”. In Proceedings of the 1st

conference on Computing frontiers, Ischia, Italy, April 2004.

[42] F.H. McMahon. ”Livermore loops”. http://www.netlib.org/benchmark/livermore.

[43] H. Meuer, J. Dongarra, E. Strohmaier, and H. Simon. ”TOP 500 Supercom-

puter Sites”. http://top500.org.

[44] A. Musa, Y. Sato, R. Egawa, H. Takizawa, K. Okabe, and H. Kobayashi.

”An On-Chip cache Design for Vector Processors”. In Proceedings of the 8th

MEDEA workshop on Memory performance: Dealing with Applications, sys-

tems and architecture, pages 17–23, Romania, 2007.

[45] A. Musa, Y. Sato, R. Egawa, H. Takizawa, K. Okabe, and H. Kobayashi.

”Characteristics of an On-chip Cache on NEC SX Vector Architecture”. In-

terdisciplinary Information Sciences, In printing, 2009.

[46] A. Musa, Y. Sato, T. Soga, R. Egawa, H. Takizawa, K. Okabe, and

H. Kobayashi. ”Effects of MSHR and Prefetch Mechanism on an On-Chip

Cache of the Vector Architecture”. In Proceedings of the 6th International

Symposium on Parallel and Distributed Processing and Application 2008,

pages 845–858, Italy, 2006.

[47] A. Musa, H. Takizawa, K. Okabe, T. Soga, and H. Kobayashi. ”Implications

of Memory Performance for Highly Efficient Supercomputing of Scientific

Applications”. In Proceedings of the 4th International Symposium on Paral-

lel and Distributed Processing and Application 2006, pages 845–858, Italy,

2006.

119

BIBLIOGRAPHY

[48] M. Nakajima, H. Yanaoka, H. Yoshikawa, and T. Ota. ”Numerical Simula-

tion of Three-Dimensional Separated Flow and Heat Transfer around Stag-

gerd Surface-Mounted Rectangular Blocks in a Channel”. Numerical Heat

Transfer (PartA), 47:691–708, 2005.

[49] B. A. Nayfeh, L. Hammond, and K. Olukotun. ”Evaluation of Design Al-

ternatives for a Multiprocessor Microprocessor”. In The 23th International

Symposium on Computer Architecture (ISCA), pages 67–77, PA, USA, 1996.

[50] NEC. ”FORTRAN90/SX Programmer’s Guide”, 2006.

[51] Ministry of Education, Culture, Sports, Science, and Technology (Japanese

Govemment). ”White Paper on Science and Technology 2006”, 2006.

[52] L. Oliker, A. Canning, J. Carter, and J. Shalf. ”Scientific Computations on

Modern Parallel Vector System”. In Proceedings of the ACM/IEEE SC2004

conference, Pittsburgh, USA, November 2004.

[53] L. Oliker, A. Canning, J. Carter, J. Shalf, and D. Skinner. ”Evaluation

of Cache-based Superscalar and Cacheless Vector Architectures for Scien-

tific Computations”. In Proceedings of the ACM/IEEE SC2003 conference,

Phoenix, USA, November 2003.

[54] L. Oliker et al. ”A Performance Evaluation of the Cray X1 for Scientific Ap-

plications”. In VECPAR’04: 6th International Meeting on High Performance

Computing for Computational Science, Valencia, Spain, June 2004.

[55] L. Oliker et al. ”Leading Computational Methods on Scalar and Vector HEC

Platforms”. In Proceedings of the ACM/IEEE SC2005 conference, Seattle,

USA, November 2005.

120

BIBLIOGRAPHY

[56] L. Peng, J-K. Peir, T. K. Prakash, Y-K. Chen, and D. Koppelman. ”Memory

Performance and Scalability of Intel’s and AMD’s Dual-Core Processors: A

Case Study”. In 26th IEEE International Performance Computing and Com-

munications Conference (IPCCC), pages 55–64, New Orleans, LA, 2007.

[57] V. Santhanam, E. H. Gornish, and W. Hsu. ”Data Prefetching on the HP

PA-8000”. In The 24th International Symposium on Computer Architecture

(ISCA), Denver, USA, June 1997.

[58] M. Sato, T. Kobayashi, Z. Zeng, G. Fang, and X. Feng. ”High Resolution GPR

System for landmine detection”. In International Conference Requirements

and Technologies for the Detection, Removal and Neutralization of Land-

mines and UXO, pages 548–553, Brussele, Belgium, September 2003.

[59] T. Senta, A. Takahashi, T. Kadoi, T. Itoh, S. Kawaguchi, and Y. Kishida. ”Ita-

nium2 32-way Server System Architecture”. NEC Research & Development,

44:8–12, 2003.

[60] SGI. ”White paper: SGI NUMAlink Industry Leading Interconnect Technol-

ogy”. Technical report, SGI Inc., 2005.

[61] SGI. ”SGI Altix 4700 Servers and Supercomputers”. Technical report, SGI

Inc., 2007. http://www.sgi.com/pdfs/3867.pdf.

[62] H. Shan and E. Strohmaier. ”Performance Characteristics of the Cray X1

and Their Implications for Application Performance Tuning”. In 18th An-

nual International Conference on Supercomputing, pages 175–183, Malo,

France, 2004.

121

BIBLIOGRAPHY

[63] S. Shingu et al. ”A 26.58 Tflops Global Atmospheric Simulation with the

Spectral Transform Method on the Earth Simulator”. In Proceedings of the

ACM/IEEE SC2002 conference, Baltimore, USA, November 2002.

[64] M. L. Simmons and H. J. Wasserman. ”Los Alamos National

Laboratory computer benchmarking 1986”. http://lib-www.lanl.gov/cgi-

bin/getfile?00319242.pdf.

[65] J. P. Singh, W. D. Weber, and A. Gupta. ”SPLASH: Stanford Parallel Appli-

cations for Shared-Memory”. Computer Architecture News, 20(1):5–44, 1992.

[66] S. Tagaya, M. Nishida, T. Hagiwara, T. Yanagawa, Y. Yokoya, H. Takahara,

J. Stadler, and M. Galle. ”The NEC SX-8 Vector Supercomputer System”.

In M. Resch et al., editors, High Performance Computing on Vector Systems,

pages 3–24. Springer-Verlag, 2005.

[67] Y. Takagi, H. Sato, Y. Wagatsuma, K. Mizuno, and K. Sawaya. ”Study of

High Gain and Broadband Antipodal Fermi Antenna with Corrugation”. In

2004 International Symposium on Antennas and Propagation, volume 1,

pages 69–72, 2004.

[68] K. Tsuboi and G. Masuya. ”Direct Numerical Simulations for Instabilities

of Remixed Planar Flames”. In The Fourth Asia-Pacific Conference on Com-

bustion, pages 136–139, Nanjing, China, November 2003.

[69] T. Watanabe. ”Instruction Set Architecture for a Series of Vector Processors

and Their Performance Evaluations”. PhD thesis, Tohoku University, 2005.

[70] S. P. V. Wiel and D. J. Lilja. ”When caches aren’t enough: Data prefetching

techniques”. IEEE Computer, 30(7):23–30, 1997.

122

BIBLIOGRAPHY

[71] S. C. Woo, M. Ohara, M. Torrie, Singh J. P., and A. Gupta. ”The SPLASH-2

Programs: Characterization and Methodological Considerations”. In The

22th International Symposium on Computer Architecture (ISCA), Santa

Margherita Ligure, Italy, June 1995.

[72] W. Wulf and S. McKee. ”Hitting the wall: Implications of the obvious.”. ACM

SIGArch Computer Architecture, 23(1):20–24, March 1995.

[73] S. Yamada, T. Imamura, T. Kano, and M. Machida. ”High-Performance Com-

puting for Exact Numerical approaches to Quantum Many-Body Problems

on the Earth Simulator”. In Proceedings of the ACM/IEEE SC2006 confer-

ence, Tampa, USA, November 2006.

[74] H. Yanaoka, H. Yoshikawa, and T. Ota. ”Direct Numerical Simulation of Tur-

bulent Separated Flow and Heat Transfer over a Blunt Flat Plate”. Journal

of Heat Transfer, 125:779–787, 2003.

[75] M. Yokokawa et al. ”16.4-Tflops Direct Numerical Simulation of Turbu-

lence by a Fourier Spectral Method on the Earth”. In Proceedings of the

ACM/IEEE SC2002 conference, Baltimore, USA, November 2002.

123

PUBLICATIONS

Publications

Journal Papers

[1] Akihiro Musa, Yoshiei Sato, Ryusuke Egawa, Hiroyuki Takizawa, Koki Ok-

abe, Hiroaki Kobayashi.

“The Potential of On-Chip Memory Systems for Future Vector Architec-

tures.”

Accepted for the publication in Interdisciplinary Information Sciences (IIS).

(Chapter 3)

124

Conference Papers

Conference Papers

[1] Akihiro Musa, Hiroyuki Takizawa, Koki Okabe, Takashi Soga, Hiroaki Kobayashi.

“Implications of Memory Performance for Highly Efficient Supercomputing

of Scientific Applications.”

Proceedings of The 4th International Symposium on Parallel and Distributed

Processing and Application (ISPA06), pp. 845-858, December 2006. (Chap-

ter 2)

[2] Hiroaki Kobayashi, Akihiro Musa, Yoshiei Sato, Hiroyuki Takizawa, Koki

Okabe, Hiroaki Kobayashi.

“The Potential of On-Chip Memory Systems for Future Vector Architecture.”

Proceedings of The 7th Teraflop Workshop (High Performance Computing on

Vector Systems 2007), pp. 249-264, April 2007. (Chapter 3)

[3] Akihiro Musa, Yoshiei Sato, Ryusuke Egawa, Hiroyuki Takizawa, Koki Ok-

abe, Hiroaki Kobayashi.

“An On-Chip Cache Design for Vector Processors.”

Proceedings of The 8th MEDEA workshop on Memory performance: Dealing

with Applications, systems and architecture, pp. 17-23, September 2007.

(Chapter 3)

[4] Akihiro Musa, Yoshiei Sato, Takashi Soga, Koki Okabe, Ryusuke Egawa,

Hiroyuki Takizawa, Hiroaki Kobayashi.

“A Shared Cache for a Chip Multi Vector Processor.”

Proceedings of The 9th MEDEA workshop on Memory performance: Deal-

ing with Applications, systems and architecture, pp. 24-29, October 2008.

(Chapter 4)

125

Conference Papers

[5] Akihiro Musa, Yoshiei Sato, Takashi Soga, Koki Okabe, Ryusuke Egawa,

Hiroyuki Takizawa, Hiroaki Kobayashi.

“Effects of MSHR and Prefetch Mechanisms on an On-Chip Cache of the

Vector Architecture.”

Proceedings of The 6th International Symposium on Parallel and Distributed

Processing and Application (ISPA08), pp. 335-342, December 2008. (Chap-

ter 3)

[6] Akihiro Musa, Yoshiei Sato, Ryusuke Egawa, Hiroyuki Takizawa, Koki Ok-

abe, Hiroaki Kobayashi.

“Early Evaluation of On-Chip Vector Caching for the NEC SX Vector Archi-

tecture.”

The poster presentation at The Premier International Conference on High

Performance Computing, Networking, Storage and Analysis (SC07), Novem-

ber 2007. (Chapter 3)

[7] Akihiro Musa, Yoshiei Sato, Takashi Soga, Ryusuke Egawa, Hiroyuki Tak-

izawa, Koki Okabe, Hiroaki Kobayashi.

“Caching an on Chip Multi Vector Processor.”

The poster presentation at The Premier International Conference on High

Performance Computing, Networking, Storage and Analysis (SC08), Novem-

ber 2008. (Chapter 4)

[8] Hiroyuki Takizawa, Koki Okabe, Akihiro Musa, Takashi Soga, Yoshiaki

Matsumura，Manabu Ito, Hiroaki Kobayashi.

“Performance Evaluation of SX-7 Using Real Simulation Codes.”

126

Conference Papers

ハイパフォーマンスコンピューティングと計算科学シンポジュームHPCS2006（ポ

スタープレゼンテーション）, 1月 2006. (Chapter 2)

[9] 佐藤義永，撫佐昭裕，江川隆輔，滝沢寛之，岡部公起，小林広明.

“ベクトルプロセッサ用キャッシュメモリの性能評価”

ハイパフォーマンスコンピューティングと計算科学シンポジュームHPCS2008（ポ

スタープレゼンテーション）, 1月 2008. (Chapter 3)

[10] 佐藤義永，撫佐昭裕，江川隆輔，滝沢寛之，岡部公起，小林広明.

“ベクトルプロセッサ用キャッシュメモリにおけるMSHRの性能評価”

次世代スーパーコンピューティング・シンポジューム 2008（ポスタープレゼンテー

ション）, 9月 2008. (Chapter 3)

127

Technical Report

Technical Report

[1] 小林 広明，岡部 公起，撫佐昭裕，曽我 隆，松村 佳昭，伊藤 学.

“実シミュレーションコードによる大規模科学計算システムの性能評価”

SENAC，Vol.38, No.4, pp. 39-59, 2005. (Chapter 2)

128

