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Abstract

In recent years, due to the dramatic evolution of the CMOS technology as Moore’s law, the
amount of hardware resource on a chip and the switching speed of transistors have progressed
exponentially. Hereby, computer architects have been able to design high-speed and multi-
functional general-purpose processors. Meanwhile, the power consumption due to driving a
vast amount of hardware with high clock frequency is becoming a critical problem in high-
performance processor design. The increase in the power consumption causes a high power
density, and it brings thermal problem, high operating cost and performance degradation of
the processors to computer architects. However, needs for the higher performance processors
are still strong in several fields. Therefore, there is a strong demand for processor technology
to achieve both high-performance and low-power. Especially, mobile devices require such a
technology because their sizes and power supply are severely restricted. However, it is basically
difficult to achieve both high-performance and low-power because there is a trade-off between
them. As a general trend, high-end processors need high power, although they provide higher
performance than low-power processors. To realize high-performance and low-power processors
from a viewpoint of computer architecture designs, a mechanism, which can improve power-
efficiently of processors has been expected.

In recent processors, the cache memory is not only an important factor that determines the
processor performance but also one of the major power hungry elements of processors. Especially,
a substantial part of the static power is consumed in the large on-chip cache memory. Hence, the
reduction in power consumption by the caches is strongly desired to realize a high-performance
and low-power processor. Therefore, this dissertation focuses on the cache memories to realize
a high-performance and low-power processor.

As well as power reduction, further performance improvement is another important research
issue to realize a high-performance and low-power processor. Although a single core processor
had been a major architecture until recent years, it has become difficult to improve the perfor-
mance by increasing the clock frequency and exploiting the instruction level parallelism (ILP),
because there are a lot of technology obstacles such as a limit of the semiconductor manufac-
turing technology, a limit of the ILP, a limit of the design cost and so on. In response to this
situation, a chip multi-processor (CMP) has recently become the common architecture to in-
crease the performance. The CMP architecture, which has multiple processing cores on a single
die, can improve the performance by simultaneous execution of multiple workloads based on the
thread label parallelism (TLP).

Here, an on-chip shared cache, which generally installed in CMP, plays a key role in efficiently
executing multiple workloads. However, in the shared cache, there is a shared cache conflict
problem, in which one core cannot use the enough cache space to keep performance when multiple
cores execute independent programs. The performance impact of each core due to the shared
cache conflict depends on the cache access characteristic of the program executed on the each
care, and therefore the performances of cores unfairly degrade. Consequently, it is necessary for
CMP to avoid the shared cache conflict problem to improve the performance by exploiting TLP.

For these power consumption and the shared cache conflict problems in processor design, a
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mechanism to save cache power consumption while avoiding the shared cache conflict is required
for future high-performance and low-power CMP processors. The objective of this disserta-
tion is to establish a cache management methodology to achieve both of low-power and high-
performance. To solve these problems, this dissertation develops a basic strategy that cache
mechanism allocates the capacity in keeping performance according to the cache requirements
of applications. The power efficiency improves by turning off the power supply to the unused
cache area. The cache requirement metric is also useful to avoid the shared cache conflict prob-
lem; if the cache requirement of each core is obtained, a shared cache can be appropriately
partitioned into multiple parts, each of which is exclusively accessed only by one core.

This dissertation considers following three methods: a cache requirement metric in order to
assess minimum cache capacity to keep the performance of applications, a cache power control
mechanism to supply power to cache area depending on the cache requirement and a cache
control mechanism to avoid the shared cache conflicts in CMP. By considering these methods,
this dissertation establishes a cache management methodology to improve the power efficiency,
while keeping high-performance.

Firstly, Chapter 2 quantitatively analyzes cache access behaviors and introduces a cache
requirement metric based on the cache access locality in order to assess a minimum cache
capacity to keep the performance of application running. To analyze the cache access behaviors,
the stack distance profiling method is introduced. The stack distance profiling is a method,
which measures data reusability of cache lines by monitoring an LRU stack. It is possible to
assess the temporal access locality and the degree of the cache requirement by analyzing stack
distance distributions (SDDs), which are derived from the stack distance profiling. Additionally,
to analyze and quantify the characteristic of SDD, SDD has to be approximately modeled. This
dissertation hypothesizes that the SDDs obey Zipf’s law, and then verify the hypothesis against
the real application. The verification indicates that almost all applications have sufficiently
large correlation coefficients between SDDs and Zipf’s distributions. When the SDDs obey
Zipf’s distributions, the parameter in Zipf’s law indicates characteristics of the cache access
locality. To handily obtain the cache access locality and to utilize it for the evaluation of the
cache requirement, this dissertation proposes and verifies the cache requirement metric D. Based
on this approach, this chapter establishes the cache requirement metric for the high-performance
and low-power cache mechanism. This cache requirement metric plays an important role for the
cache management methodology proposed in this dissertation.

In Chapter 3, a cache power control mechanism, named dynamic way-adaptable cache is in-
troduced to reduce the power consumption with keeping the performance for a single workload.
The mechanism monitors the cache requirement introduced in Chapter 2, and then it appro-
priately controls the activated cache area using the cache requirement. The proposed cache
mechanism defines either increasing or decreasing the number of activated cache ways based
on the cache requirement metric for up-sizing or down-sizing the cache. To realize appropriate
cache control, the assessment of the cache requirement uses the local and global information
of the cache requirement. The local assessment of cache access behavior assesses the absolute
magnitude of the cache requirement in a fixed interval and estimates up-sizing or down-sizing by
comparing the cache requirement with two thresholds. Besides, the global assessment using an
n-bit state machine is considered to avoid aggressive reactions to the quick change of the cache
requirement in a short period. This state machine determines the up-sizing or down-sizing con-
trol. When the estimation is up-sizing, the power control hardware selects one from inactivated
ways and activates it. When the estimation is down-sizing, the hardware selects one from acti-
vated ways and inactivates it after write back cached data to the main memory. Experimental
results indicate that the proposed cache mechanism achieves the stable cache control to find
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an appropriate trade-off between activated cache area and its achieved performance. The local
assessment of the cache requirement with two thresholds achieves performance-oriented control
with more activated ways to keep the higher performance, and lower-associativity-oriented con-
trol at the expense of the performance. In global assessment, an n-bit asymmetric state machine
works well to appropriately control the number of activated ways in the case of the benchmarks
with highly-irregular access behaviors. Accordingly, this chapter establishes the cache power
control methodology to supply power to cache area depending on the cache requirement.

In Chapter 4, the way-adaptable cache mechanism introduced in the previous chapter is
extended for a shared cache of a two-core CMP. To effectively execute multiple workloads in
the case where multiple cores executing independent programs share a cache, the shared cache
requires a mechanism to avoid performance degradation by shared cache conflicts. The approach
of this dissertation to avoid the shared cache conflict and improve the cache performance is to
design a cache partitioning mechanism based on the cache requirement defined in Chapter 2. The
proposed shared cache mechanism consists of a way-allocation function for cache partitioning
and a power control function. The way-allocation function of the proposed shared cache mecha-
nism defines the allocated cache area by making comparison between the cache requirements of
applications simultaneously executed in each core. The way-adaptable cache mechanism is ap-
plied to the power control function to conserve the power consumption by inactivating these less
needed ways. The function appropriately controls the number of activated ways in the allocated
cache area by the way-allocation function. The proposed shared cache mechanism searches most
appropriate allocated and activated ways by iterating these two processes. The evaluation results
show that the proposed shared cache mechanism is comparable to the utility-based scheme with
more effective power saving. The results of all functions indicate that the proposed shared cache
mechanism achieves the performance improvement, and moreover it reduces power consumption
with keeping the performance by the power control mechanism. The power control policy of
the mechanism can be adjusted from a performance-oriented configuration to an energy-oriented
one. The proposed shared cache mechanism with a performance-oriented parameter setting can
reduce an energy consumption by 20%, while keeping the performance in comparison with a
conventional one. On the other hand, the cache with an energy-oriented parameter setting can
reduce 55% of energy consumption with a performance degradation of 13%. Moreover, a con-
trol mechanism is designed to evaluate hardware overheads. The evaluation of the hardware
overheads of the cache control circuit shows that the cache control hardware has an extremely
small overhead and a small effect on the chip design. These results show that the proposed
shared cache mechanism is a promising method for the high-performance and low-power cache
design. Therefore, this chapter establishes a shared cache control mechanism for CMP to achieve
high-performance and low-power.

In conclusion, as a result of above three approaches, this dissertation establishes the cache
management methodology to achieve both of low-power and high-performance.
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Chapter 1

Introduction

1.1 Background

The performance of general-purpose processors has been growing rapidly with develop-

ment of the semiconductor manufacturing technology, integrated-circuit design, computer

architecture design, compilation technology, and so on [1]. Moore’s law [2], which was

advocated in 1965, indicates that a transistor integration degree on a chip exponentially

grows by twofold in 1.5 years. For example, Intel’s Itanium2 Montecito released in 2006

contains 1.72 billion transistors on a single 21.5 mm by 27.7 mm die [3, 4], while Intel’s

Pentium Pro released in 1995 contains 5.5 million transistors on a die measured 17.3

mm on a side [5]. Such a rapid growth makes it possible to integrate a large amount of

hardware resources on a chip, and thereby to enhance processor performance.

On the other hand, the power consumption due to driving a vast amount of hardware

on a chip is becoming a critical problem in high-performance processor design. For exam-

ple, Intel’s Itanium2 consumes 100W at 1.8GHz [3, 4], and Intel’s Xeon consumes 163W

at 3.0GHz [6, 7]. An increase in the power consumption dose not only cause an increase in

system operation cost, but also degrades the system reliability by heat generation prob-

lem [8]. A CMOS circuit consumes dynamic power, short-circuit power, and static power.

The dynamic power and the short-circuit power are consumed for switching a transistor
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Figure 1.1: Transitions and predictions of dynamic and static power consumptions[17].

by charging or discharging the load capacity. They increase with a clock frequency be-

cause it is proportional to the number of switches per unit time. The power consumed by

the short-circuit current can be kept to less than 20% (typically less than 10%) of the dy-

namic power [9, 10]. On the other hand, the static power consumption induced by current

leakage is consumed regardless of the switching frequency. Nowadays, it becomes more

dominant in the total power consumption, as the gate width becomes smaller [11, 12].

Figure 1.1 shows predicted transition of gate width, dynamic power, and static power.

Unlike dynamic power consumption, static power consumption by subthreshold leakage

current increases exponentially in advanced CMOS technologies. According to the Inter-

national Technology Roadmap for Semiconductors (ITRS) [13], static power is expected

to dominate more than 80% of the total power [14, 15]. Therefore, computer architects

have to consider static power consumption to realize power-aware computing [16].

An increase in power consumption causes performance degradation, thermal problem,

and high system operation cost. Therefore, there is a strong demand for processor tech-

nologies to achieve both high-performance and low-power. Especially, mobile equipments

require such technologies because their sizes and power supply are severely restricted.
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Figure 1.2: Trade-off between power and performance.

However, it is basically difficult to achieve both high-performance and low-power because

there is a trade-off between them as shown in Figure 1.2. Although high-end processors

such as Intel’s Xeon [6, 7] need high power, they provide higher performance than low-

power processors such as Intel’s Atom [18]. Accordingly, an important open issue is how

to improve power-efficiently of processors.

To realize such a processor, a cache memory is an indispensable hardware element. In

recent processors, the cache memory is not only an important factor that determines the

processor performance [19] but also one of the major power consuming elements in the

on-chip hardware resources. For instance, cache and memory structures consume 30% of

the total power of Alpha 21264, and 60% of StrongARM [20]. In the 300MHz bipolar ECL

CPU [21, 22], 50% of the total power is consumed by caches. Especially, a substantial

part of the static power is consumed in the large on-chip cache memory structures with

high transistor densities. Hence, the reduction in power consumption by the caches is

strongly desired to realize a high-performance and low-power processor.

As well as power saving, further performance improvement is another important re-

search issue to realize a high-performance and low-power processor. Although a single
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core processor had been a major architecture until recent years, it has become difficult to

improve the performance by increasing the clock frequency and exploiting the instruction

level parallelism (ILP), because there are many technology obstacles as follows:

• Limit of semiconductor manufacturing technology:

due to physical limits, it is becoming difficult to shrink the transistor size and to

increase the clock frequency more [23].

• Limit of instruction level parallelism:

the number of independent instructions and ability of ILP extraction are limited,

and hence hardware investment for increases in the number of execution units and

instruction window size does not lead to performance improvement [24].

• Limit of design cost:

processor design cost is doubling every four years. It is becoming difficult to estimate

how much time it will take to design and verify more complex processor, because the

computational complexity of processor design rapidly increases with the hardware

resources on a chip [25, 26].

In response to this situation, a chip multi-processor (CMP) [27, 28] has recently become

common to increase the performance without worsening the above problems, such as

Intel’s Xeon [6, 7], AMD’s Opteron [29], IBM’s Power5 [30], Sun’s Niagara [31] and so

on. The CMP architecture, which has multiple processing cores on a single die, can

simultaneously execute multiple workloads based on the thread level parallelism (TLP).

The CMP allows core design to be smaller and simpler than single-core processors, because

the CMP performance improvement relies on not only the capabilities of cores but also

the number of cores. Therefore, the CMP design can inhibit the growth in the clock

frequency and the circuit complexity.

In general, CMP consists of multiple cores and shared hardware resources among

cores, such as the last-level cache and memory bus. Figure 1.3 shows a typical structure
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Core 1 Core 2 Core n

L1Cache L1Cache L1Cache

Shared Bus

Shared L2Cache

Main Memory

on chip

. . .

Figure 1.3: Chip multi-processor.

of CMP including the memory hierarchy. Here, an on-chip shared cache [32] plays a key

role in efficiently executing multiple workloads. In the case where multiple cores executing

independent programs share a cache, no core can use the entire cache capacity. If one core

uses a large part of the cache capacity, the others can use only the remaining small cache

space, resulting in the cache capacity shortage. This is called the shared cache conflict

problem. The performance impact of each core due to the shared cache conflict depends

on the program executed on the core, and therefore the performances of cores unfairly

degrade. Consequently, it is necessary for CMP to avoid the shared cache conflict problem

to improve the performance by exploiting TLP.

For these power consumption and the shared cache conflict problems in processor

design, a mechanism to save cache power consumption while avoiding the shared cache

conflict is required for future high-performance and low-power CMP processors.
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1.2 Objective of the Dissertation

The objective of this dissertation is to establish a cache management methodology to

achieve both of low-power and high-performance. The current cache memory design faces

two important problems; the power consumption problem and the performance degrada-

tion problem by shared cache conflicts in CMP. To solve these problems and to achieve

the objective, this dissertation develops a basic strategy that cache mechanism allocates

the capacity in keeping performance according to cache requirements of applications. The

power efficiency improves by turning off the power supply to the unused cache area. The

cache requirement metric is also useful to avoid the shared cache conflict problem; if the

cache requirement of each core is obtained, a shared cache can be appropriately parti-

tioned into multiple parts, each of which is exclusively accessed only by one core. This

dissertation considers following three issues to implement the above strategy.

• A cache requirement metric in order to assess minimum cache capacity to keep the

performance for given applications

• A cache power control mechanism to supply power to cache area depending on the

cache requirement.

• A cache control mechanism to avoid the shared cache conflicts in CMP

Through the discussion on these three issues, this dissertation establishes a cache man-

agement methodology to improve the power efficiency, while keeping high-performance.
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1.3 Organization of the Dissertation

This dissertation is organized as follows.

Chapter 1 describes the background and objective of the dissertation. Here, two

problems of current processors are pointed out: the power consumption problem and

the shared resource conflict problem. Then, this chapter presents the objective of this

dissertation and three issues to achieve the objective. Finally, this chapter shows an

organization of this dissertation.

Chapter 2 describes a modeling method of the cache access behaviors according to

Zipf’s law. In addition, a cache requirement metric is discussed based on the cache access

modeling. The cache requirement metric plays an important role for a power control

function in Chapter 3 and a cache partitioning function in Chapter 4.

Chapter 3 proposes a way-adaptable cache mechanism to optimize the power efficiency

for a single workload. The mechanism is designed in order to achieve cache power saving

through dynamic control of active ways based on the cache requirement metric proposed

in Chapter 2.

Chapter 4 extends the proposed cache mechanism for the shared cache in a two-core

CMP. To solve unfair performance degradation caused by the cache conflict among cores,

this proposed mechanism introduces the cache partitioning method based on the proposed

cache requirement metric.

Finally, Chapter 5 describes concluding remarks.
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Chapter 2

Modeling of Cache Access Behavior

2.1 Introduction

To realize efficient usage of a cache memory, accurate estimation and modeling of cache

access behaviors is the foremost function. The objective of this chapter is to analyze the

cache access behaviors and quantitatively assess the cache requirement, in order to assess

minimum cache capacity to keep the performance for given applications. To this end,

stack distance profiling is introduced to quantify cache access behaviors in this chapter.

The stack distance distributions (SDDs), which are derived from the stack distance pro-

filing, can assess the temporal locality of cache accesses. Additionally, SDDs have to be

approximately modeled to accurately predict the behaviors. This chapter hypothesizes

that the SDDs obey Zipf’s law [33], and then verify the hypothesis against the real appli-

cation. In addition, in this chapter, a cache requirement metric D based on the hypothesis

is introduced to quantitatively measure cache size requirements of individual workloads.

Finally, this chapter discusses the estimation accuracy of the metric D, by comparing the

estimated distributions with the actual ones.

The rest of this chapter is organized as follows. In Section 2.2, Zipf’s law is introduced

to model SDDs, and then proposes a cache requirement metric. Section 2.3 shows the

accuracy of the SDD model by the simulation, and also verifies the accuracy and the

8



effectiveness of the prediction method of the cache requirement. Section 2.4 concludes

the chapter with some future work.
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Table 2.1: Sequence of LRU stack.

Time Referenced Address LRU stack Stack distance

1 A A –
2 B B A –
3 C C B A –
4 C C B A 1
5 B B C A 2
6 D D B C A –
7 A A D B C 4
8 A A D B C 1
9 B B A D C 3
10 A A B D C 2

2.2 Cache Access Modeling

2.2.1 Stack Distance Profile

This section reviews the stack distance profiling [34, 35, 36] that can assess the temporal

locality of reference. The simple set associative cache employs a replacement algorithm

called least recently used (LRU). A naive implementation of LRU is to maintain a list of

lines, called an LRU stack, to determine a cache line to be replaced. Table 2.1 shows how

a simple access sequence changes the LRU stack of a 4-way set associative cache. In the

table, there are ten accesses to four different lines (A, B, C and D) that belong to the

same cache set. The most recently used (MRU) line is always moved to a top of the LRU

stack. The bottom of the LRU stack is the LRU line of the set. The stack distance of a

line is defined as the stack position of the line when the line is accessed. A stack distance

distribution (SDD) can be confirmed by a histogram of the numbers of accesses to each

stack distance. Figure 2.1 shows the SDD of the example in Table 2.1. Ci counts the

number of accesses to the stack distance i. Therefore, counters C1 and C4 are used to

count the numbers of accesses to MRU and LRU lines, respectively. Cm is used to count

10
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Figure 2.1: Stack distance distribution of the example.

the number of cache misses. The histogram of Ci obtained by the stack distance profiling

can be used to estimate whether a working set is large compared to the current cache

configuration. In the case of a small working set, the cache accesses tend to concentrate

on C1. In the case of a larger working set, a distribution of cache accesses becomes flatter,

resulting in relatively increasing C4.

Figure 2.2 shows two examples of SDDs (L2 32-way cache). Figure 2.2(a) is a distri-

bution of a workload (aster) that has a small working set. On the other hand, Figure

2.2(b) is a distribution of a workload (bzip2) with a large working set. In the case of

bzip2, the number of accesses to the MRU lines (smaller stack distances) exponentially

increases.

An approximate model of these SDDs is needed to accurately predict the cache access

behaviors and to consider the cache requirement.
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Figure 2.2: Stack distance distributions.
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2.2.2 Zipf’s Law

Zipf’s law states that the frequency of words in a document decays as a power function

of its rank [33]. It is an empirical law formulated using mathematical statics. Zipf’s law

predicts that the frequency is calculated as follows:

f(k; s,N) =
1/ks∑N

n=1 1/ns
, (2.1)

where,

N = the number of elements,

k = the rank of each element,

s = the value of the exponent characterizing,

the distribution. (s > 0)

This law is also formulated as the following equation because it is trivial that the

distribution obeying this law lies on a straight line with a double logarithmic plot.

log(f(k)) = −a log k − b, (2.2)

where,

a = s, (2.3)

b = log(
N∑

n=1

1/ns). (2.4)

Thus, a distribution obeying Zipf’s law can be represented with two parameters, a and

b. Figure 2.3 shows the same Zipf’s law probability distribution example (a = 2, b = 1.5)

plotted on linear (Figure 2.3(a)) and logarithmic scales (Figure 2.3(b)) on both axes.

Zipf’s law can be applied to many natural and social phenomena(e.g. many charac-
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Figure 2.3: Distribution obeying Zipf’s law.

teristics of world wide web use [37, 38], Top500 supercomputers ranking [39, 40, 41], a

relationship between a magnitude and total number of earthquakes [42] and so on). Char-

acteristics of these phenomena, especially web references, are similar to the stack distance,

in which the number of references to a more recently used line increases exponentially.

Therefore, Zipf’s law can be also hypothesized to represent the SDDs successfully.
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2.2.3 Cache Requirement Metric

When the SDDs obey Zipf’s distributions, the parameter s indicates characteristics of

cache access locality. However, to realize a cache partitioning with a higher accurate

performance prediction, cache accesses have to be monitored to obtain s with a low

overhead. Here, the following metric D to approximately assess the locality of a program

is proposed.

D =
LRUcount

MRUcount
, (2.5)

where, LRUcount and MRUcount mean the numbers of LRU and MRU entries referenced

in a certain period of cache accesses, respectively. Thus, if a program executed on a core

has low-locality, D of the program becomes large. On the other hand, if it has high-

locality, D becomes small.

By using Equations (2.5) and (2.1), the relationship between D and s can be considered

as follows:

MRUcount = f(1) =
1/1s∑N

n=1 1/ns
, (2.6)

LRUcount = f(W ) =
1/W s∑N
n=1 1/ns

, (2.7)

D = W−s, (2.8)

where W is the number of ways. Equation (2.8) indicates that D depends on parameter

s. Therefore, the adjustment of D results in indirectly tuning s. The advantage of using

D instead of s for cache partitioning is ease of hardware implementation; it requires an

integer-divider and monitoring of MRU and LRU block accesses.

Bardine et al. have used metric D as a means to reduce the static power consump-

tion of D-NUCA (Dynamic Non-Uniform Cache Architecture) cache without performance

degradation [43].
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Table 2.2: Simulation parameters.

Parameter Value

Fetch width 8 insts
Decode width 8 insts
Issue width 8 insts
Commit width 8 insts
Inst. queue 64 insts
LSQ size 32 entries

L1 Icache 32kB, 2-way, 32B-line,
1 cycle latency

L1 Dcache 32kB, 2-way, 32B-line,
1 cycle latency

L2 cache 1024kB, 32-way, 64B-line,
14 cycle latency

Main memory 100 cycle latency

Clock frequency 1GHz

2.3 Experimental Analysis of Stack Distance Distri-

butions

2.3.1 Experimental Setup

An experimental analysis firstly traces L2 cache accesses to obtain the stack distance pro-

filing in this section. To this end, a cycle accurate simulator based on the M5 micropro-

cessor architectural simulator tools [44] is developed. For the experiments, Alpha-based

core with an L2 cache simulates the first two billion instructions of benchmark applica-

tions using the reference input set. The parameters used in the simulation are listed in

Table 2.2. As shown in Table 2.3, 32 benchmark applications are selected from the SPEC

CPU2006 suite version 1.1 [45].
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Table 2.3: Benchmark applications.

INT/FP Name Function Data Set(ref)

INT bzip2 Compression chicken, combined, html,
liberty, program, source

gcc C Compiler ctypeck, expr2, s04
gobmk Artificial Intelligence: Go 13x13, nngs, score2, trevorc,

trevord
sjeng Artificial Intelligence: chess
h264ref Video Compression base, main, sss
omnetpp Discrete Event Simulation
astar Path-finding Algorithms lake, river

FP bwaves Fluid Dynamics
gamess Quantum Chemistry cytosine, h2ocu2, triazolium
milc Physics / Quantum

Chromodynamics
zeusmp Physics / CFD
leslie3d Fluid Dynamics
dealII Finite Element Analysis
GemsFDTD Computational Electromagnetics
tonto Quantum Chemistry
lbm Fluid Dynamics
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2.3.2 Validity of Zipf’s Law for Modeling of SDDs

Figures from 2.4 to 2.11 shows the some SDDs that are plotted on the double logarithmic

scale, and their fitting results with the linear least-squares method. Almost all applications

except milc show a high linearity. Correlation coefficients of 30/32 applications are more

than 0.8 (Figure 2.12). Generally, a correlation coefficient over 0.8 is sufficiently large and

its distribution has a sufficient correlation. Such a SDD, therefore, can be considered to

conform to Zipf’s law.

Applications can be classified into the following four groups, according to the charac-

teristic of each distribution.

Group I bzip2, gcc, h264ref, leslie3d, GemsFDTD:

This group includes 14/32 applications. Their distributions have high corre-

lations between the logarithmic numbers of stack distances and accesses. The

cache requirement can be predicted with a high accuracy for the cache par-

titioning, because cache accesses of these applications can easily be modeled.

(Figures 2.4, 2.5, 2.6)

Group II gobmk, sjeng, astar, bwaves, gamess (cytosine, h2ocu2), dealII,

tonto:

This group includes 13/32 applications. Their distributions have higher cor-

relation coefficients, however, the numbers of accesses to the MRU lines are

overestimated and distant from the fitting results. These applications usually

have a relatively larger a. (Figures 2.7, 2.8, 2.9)

Group III gamess (triazolium), lbm, zeusmp, omnetpp:

This group includes 4/32 applications. Their distributions have relatively

lower correlation coefficients. However, the distribution has higher correla-

tion coefficients in a certain range of stack distance. In the case of gamess

(triazolium), an obvious change can be seen at around eight ways. To pre-
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Figure 2.4: SDDs and fitting results of Group I (bzip2(chicken, combined, html,

program, liberty, source)).
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Figure 2.5: SDDs and fitting results of Group I (gcc(ctypeck, expr2, s04,

h264ref(base, main, sss))).
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Figure 2.6: SDDs and fitting results of Group I (leslie3d, GemsFDTD).

dict the cache requirement, parameter a must be appropriately adjusted so as

to adapt to the change.(Figure 2.10)

Group IV milc:

Its distribution has the lowest correlation coefficient (0.27) and does not have

an appropriate fitting line. In this case, it is hard to predict the cache require-

ment by the stack distance profiling, but this kind of applications usually has

a higher cache requirement. (Figure 2.11)

The results indicate that 17/32 SDDs in the Groups I and II of the above classifications can

be modeled. The certain ranges of distributions in the Group III have higher correlation

coefficients. Therefore, almost all the SDDs conform to Zipf’s law.

The fitting lines in Figures from 2.4 to 2.11 are consistent with Equation (2.2). Except

milc whose distribution has decorrelation, parameter a ranges from 0.31 to 7.79 and b

ranges from 11.95 to 26.73. These results indicate that a and b can be used as parameters

to predict the cache access locality and cache access frequency of a workload at each cache

configuration, respectively. In the case of milc, a of its distribution can be approximated

by zero, because it has a much higher working set.
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Figure 2.7: SDDs and fitting results of Group II (gobmk(13x13, nngs, score2,

trevorc, trevord), sjeng).
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Figure 2.8: SDDs and fitting results of Group II (astar(lake, river), bwaves,

gamess(cytosine, h2ocu2), dealII).
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Figure 2.9: SDD and fitting result of Group II(tonto).
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Figure 2.10: SDDs and fitting results of Group III(gamess(triazolium), zeusmp, lbm,

omnetpp).
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Figure 2.11: SDD and fitting result of Group IV(milc).
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Figure 2.12: Coefficient of correlations.
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Figure 2.13: Derror of each application.

2.3.3 Validation of D as a Metric for Cache Requirements

To clarify the effectiveness of D, this section compares the cache requirement metric

Dactual by Equation (2.5) with the cache requirement Dfit calculated by the fitting line of

Equation (2.8). Figure 2.13 shows error Derror of each workload obtained by the following

equation.

Derror = |Dactual − Dfit|, (2.9)

Note that, in Figure 2.13, the average do not include milc to calculate, because it has

no appropriate fitting line. Also note that each size of 32-way, 16-way and 8-way cache

is 1MB, 512KB and 256KB respectively. The results show that Derror increases as the

number of L2 cache ways allocated to a workload decreases, and its averages are sufficiently

small when the cache has more than 16-way. Therefore, the cache requirement metric with

more than 16-way cache can accurately predict the actual SDD. A hardware overhead does

not change when the number of ways increases, because D is calculated using only the

number of MRU and LRU accesses. Thus, the metric D has the efficacy as a quantification

method of the cache requirement for a high associative cache.

However, some applications have a large Derror. Derror increases when the SDDs do not

conform to Zipf’s law (Groups IV). Derror are more than 0.15 in five applications (bzip2
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(chicken, combined, liberty), gamess cytosine and omnetpp), in which the numbers of

LRU accesses are extremely large. This is because D linearly increases with the number of

LRU accesses, while D inversely increases with the number of MRU accesses. Therefore,

the estimation accuracy of the cache requirement can be improved by considering the

number of LRU accesses adequately. This is remained as the future work.
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2.4 Conclusions

This chapter has introduced the cache requirement metric in order to assess the minimum

cache capacity to keep the performance of applications. Firstly, the stack distance profiling

method, which analyzes the cache locality with the histogram, has been introduced in

order to assess cache access behaviors. Then, the profiling result of each application has

been modeled with validating the hypothesis that the stack distance distribution obeys

Zipf’s law. The verification results have shown that almost all the SDDs conform to Zipf’s

law. Finally, this chapter has proposed and verified a metric based on the hypothesis to

measure cache size requirements of individual workloads quantitatively. The results have

shown that the D used to quantify cache requirements is effective to estimate the locality

of an application.

According to this approach, this chapter has established the cache requirement metric

for the high-performance and low-power cache mechanism. The proposed cache require-

ment metric plays an important role for a cache power control method in Chapter 3 and

a cache partitioning method for the CMP’s shared cache in Chapter 4.
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Chapter 3

Dynamic Way-Adaptable Cache

Mechanism

3.1 Introduction

Although cache memories play an important role to achieve high-performance processing

on several kinds of microprocessors, they become the major power consumption sources

due to their large capacity. As high-performance microprocessors have a large highly-

associative on-chip cache, e.g., Itanium2 [46], novel low-power on-chip cache architectures

are highly desired. Higher-associativity is also crucial for embedded microprocessors to

cover the limited on-chip cache capacity [47]. However, not all applications need large

cache capacity and higher associativity throughout their execution. The different usage of

the hardware resources happens not only across applications, but also within the execution

of individual applications. Therefore, if a cache is partitioned and necessary/unnecessary

building blocks of the cache can be activated/inactivated so as to react to the resource

requests by workloads, resource-efficient and power-efficient computing could be realized.

Several approaches have been proposed to reduce cache power consumption by adjust-

ing the hardware resources in an on-demand fashion and to trade off a small performance

penalty for large power savings. Block buffering[48], filter cache [49], and L-cache [50]
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achieve the power saving by adding a very small L0-cache between the processor and

L1-cache. The mechanism of selective cache ways provides the functionality to statically

turn on/off cache ways and is controlled by a performance metric given by users [51].

The accounting cache with dynamically resizing on-chip storage structures uses a toler-

ance metric to control the amount of performance degradation permissible [52, 53]. The

advantage of the design is its ability to directly calculate the effect of different configura-

tions relative to some base configurations and to protect against pathological behaviors.

The way predictive set-associative caches [54, 55, 56] initially access one way, which is

predicted to hold the accessed data. If the initial access does not hit, the other ways are

accessed. Although the prediction successes have prospects of dynamic power saving, the

misses degrade access latency. To reduce leakage current, the cache decay mechanism [57]

shuts off the power supply to invalidate cache lines in a way. However, it causes the per-

formance degradation by an increase in cache misses, since shutting off the power must

discard the hold data. The drowsy cache [58] has been proposed to cover the drawback

of the cache decay. It disables a part of the cache by dynamically switching to a lower-

leakage mode called drowsy mode. The drowsy mode keeps supplying minimum power

necessary to cached data to each line, even though it has a large overhead due to the

high complexity of its power-gating circuits. Powell et al. have proposed the Dynamically

ResIzable instruction-cache (DRI i-cache) [59, 60], which is an approach to reducing static

power. The cache turns off power supply to a part of cache sets by introducing gated-Vdd

transistors. The cache resizing is estimated using the number of miss and the threshold.

However, the DRI i-cache can be applied only to an L1 instruction cache, which is based

on a direct-mapped or low-associative cache with a small area. In order to reduce static

power consumption, the mechanism has to cover not only an L1 instruction cache but

also L1 data and lower-level (L2, L3) caches, which occupy a larger fraction of the chip

area. Furthermore, the DRI i-cache employs a coarse-grain cache resizing mechanism by

changing the number of index bits. Therefore, it is difficult to finely adapt its size to the

program requirements.
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These caches called way-adaptable caches in this chapter help to realize a good power-

optimizing computing regarding on-chip cache resources, however, their control depends

on absolute performance metrics such as cache hit rates and/or CPI (Clocks Per Instruc-

tion), which are application-specific metrics. For example, Yang et al. [61] proposed a

resizing control mechanism that uses a threshold based on the cache miss rate. However,

as the miss rates of individual applications are different even on the same hardware con-

figuration, e.g., “keeping miss rate less than 0.01” is not an universal target for all of the

applications on given hardware, it needs the profiling information of each application in

advance to set its specific threshold for the resizing control.

This chapter presents a cache resizing control mechanism for dynamic way-adaptable

caches. The mechanism uses the local and global information about the locality of cache

accesses during execution. As the local information, the cache access pattern is evaluated

by the cache requirement metric D based on the stack distance profiling of the cache

access. If the cache accesses have relatively small D, which means that the cache accesses

are concentrated on and near the MRU lines, the mechanism knows that the current

cache resource allocation is excessive and there is room to decrease the number of ways

activated. On the other hand, if the accesses have relatively large D, which means that

the accesses are widely distributed from the MRU lines to the LRU ones, the mechanism

understands that more ways are needed to keep the performance as long as the resources

are available. In addition, to examine the global behavior of the locality of cache accesses,

an n-bit state machine like n-bit branch predictors is introduced into the mechanism. The

state machine traces and evaluates the strength and weakness of the requests for cache

resources across the execution time. Therefore, the mechanism can avoid unstable actions

for enabling/disabling cache ways when the locality shows the highly irregular behavior.

The rest of this chapter is organized as follows. Section 3.2 presents a cache resizing

mechanism to control the dynamic way-adaptable cache. In the mechanism, n-bit state

machines to appropriately decide when the way enabling or disabling should take place

are used to avoid unstable behavior of way adaptation in highly irregular locality of
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accesses. Section 3.3 presents the performance evaluation of the proposed mechanism.

The experimental results indicate that n-bit asymmetric state machines show the good

performance in terms of power-optimized computing even in the case of applications with

irregularity in locality of accesses across the execution time. Section 3.4 concludes this

chapter.
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3.2 Cache-Resizing Control Mechanism

3.2.1 Mechanism Overview

The cache-resizing control mechanism for a many-way set-associative cache is designed

with a power-gating function, which can shut off the power supply to each way indepen-

dently using the power-gating circuits. Figure 3.1 shows the power-gating by an NMOS

transistor. An electric potential of the virtual GND line can be shifted from a potential

of the GND line to one of the VDD line by the control signal. The circuit block is active

when the potential of the virtual GND line is GND, and inactive when the potential is

VDD.

To appropriately resize a cache, the approach of this mechanism is to determine

whether it should up-size or down-size an allocated cache area based on the cache re-

quirement metric D. In fact, the inputs of this mechanism are cache access sampling

results for a fixed interval, and the output is a cache resizing request INC (up-sizing),

DEC (down-sizing) or KEEP (keeping current configuration). The power-gating hard-

ware activates or inactivates one way when the cache resizing is requested.

Figure 3.2 indicates the control flow chart of the proposed mechanism. After the

cache access sampling phase, the mechanism calculates the cache requirement metric D.

It outputs the resizing request based on the D through the assessment of local and global

access behaviors. When the output request is INC and the cache has inactivated ways

(W active < W total, where W active means the number of activated ways and W total

means the number of total ways), the cache selects one way from inactivated ways and

activates the way by turning on the power supply. When the request is DEC and the

number of activated ways is more than two because the mechanism needs MRU and LRU

lines to calculate D, it selects one way from activated ways. After the data included in the

selected way is written back to a lower-level memory, the power-gating circuits inactivate

the way by shutting off the power supply.
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Figure 3.1: Power-gating circuit.
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Figure 3.2: The control flow chart of the proposed mechanism.
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Algorithm 1 The local assessment of the cache requirement.

Require: D = LRUcount/MRUcount
if D < T1 then

return Down-sizing request (dec)
else if D > T2 then

return Up-sizing request (inc)
else

return Keeping configuration request (keep)
end if

3.2.2 Assessment of Local Behavior

The aim of the local assessment is to quantitatively assess the absolute magnitude of

cache requirement in a fixed interval and to estimate to up/down-size an allocated cache

size. The input of this assessment is the cache requirement metric D, and the output is

a resizing signal, which is an input to the next phase: the global assessment.

To quantify the absolute magnitude of local requirement for cache resources, D is

compared with two thresholds, T1 and T2 (T1 < T2). Algorithm 1 shows the description of

the algorithm to estimate the up/down-sizing request. If D, which is obtained in execution

of a program on a core, is larger than T2, the program can be considered to have the low

locality and hence to need many ways. In this situation, the resizing mechanism outputs

a signal inc (up-sizing request) to increase the number of activated ways. On the other

hand, it gives a signal dec (down-sizing request) to decrease the number of activated ways

if D is smaller than T1. If D is between T1 and T2, the mechanism outputs a signal keep to

keep the current configuration. The mechanism tends to output dec if both T1 and T2 are

relatively large. On the contrary, it tends to output inc if both T1 and T2 are relatively

small. Thus smaller thresholds make the mechanism performance-oriented, and larger

ones make it lower-power-oriented. As a result, the mechanism can adjust the control

policy from a performance-oriented configuration to a lower-power-oriented one.
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3.2.3 Assessment of Global Behavior

Although the adaptability of the cache to the change in the locality during execution

is very important to realize power-optimized computing, it should be conservative when

the locality is highly irregular and unstable. A cache resizing request given by local

behavior assessment is not always consistent with its previous and subsequent ones; it

may alternate up-sizing and down-sizing due to a temporal disturbance in memory access.

If the locality of accesses becomes high and low very quickly in a short cache monitoring

period, frequently enabling and disabling a cache way may happen when only using the

information about the local behavior of the locality of accesses as defined in Chapter 2,

resulting in the performance loss due to the large overhead without any gain. Therefore,

the strategy to this situation is to wait at the current position until going into the steady

state. To prevent excessively responding to such unstable requests, it is effective to utilize

an n-bit state machine of cache resizing requests. The state machine judges that the

requests are strong if the same resizing demands continue for a certain period. When the

request is considered strong, the mechanism resizes the activated area.

Figure 3.3 shows an n-bit state machine, which uses an idea similar to the n-bit branch

prediction scheme [62, 63]. As the branch predictor suggests the strength and weakness

of the branch direction based on the information about the past branch activities, the

proposed state machine predicts the stability of a cache resizing request in the next period

using the past several evaluations of the locality by metric D.

Figure 3.3(a) shows a state transition diagram of a 3-bit symmetric state machine

that moves toward the state for taking the opposite action symmetrically, and Table 3.1

shows its state transition table. The state machine will provide flexible cache control in

adjusting the monitoring interval to obtain a steady state in the locality behavior. At the

same time, it also makes cache resizing slow to the change in the locality. Before moving

into State 000 and State 111 for generating the INC and DEC signal respectively, the

machine transits to intermediate states from 001 to 110 to judge the continuity of the
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up-sizing and down-sizing requests. During these states, it outputs KEEP to keep the

current cache configuration. After continuing inc or dec requests, the machine transits

to State 000 or State 111 and then outputs the INC signal for up-sizing or DEC for

down-sizing.

The symmetric state machine takes time to appropriately adapt the cache size to the

cache requirement, because the machine conservatively works to generate signals for the

up/down-sizing. However, the down-sizing operation strongly impacts the performance,

since it has to write back the hold data. Therefore, to avoid the performance degradation,

the power control mechanism gets the up-sizing operation to work aggressively and the

down-sizing one to work conservatively.

The asymmetric state machine realizes the cache resizing control so as to react quickly

to up-sizing requests and slowly to down-sizing requests, it can minimize performance

degradation. Figure 3.3(b) and Table 3.2 show an asymmetric 3-bit state machine. When

inc is given to the state machine, it outputs the cache up-sizing control signal INC and

then always transits to State 000 from any state. However, in the case of dec given,

the machine works conservatively to generate the down-sizing signal DEC. This state

machine can prevent responding to temporary disturbances, and further make inactivation

conservative to minimize the performance degradation induced by shortage of activated

ways.

Yang et al. [61] also suggested that the effectiveness of a state machine for way-

adaptable cache control although they used miss rates for cache resizing decision. How-

ever, their state machine was designed to detect repeated resizing between two adjacent

sizes in a way-adaptable cache when the size of the required cache is just between realiz-

able sizes. On the other hand, the function of the proposed state machine is to follow the

dynamic behavior the locality of accesses and to evaluate the strength or weakness of a

cache resizing request to judge whether taking a resizing action or not in the next period.
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Table 3.1: State transition table of symmetric 3-bit state machine.

State Input signal
inc keep dec

000 INC/000 KEEP/000 KEEP/001
001 INC/000 KEEP/001 KEEP/010
010 KEEP/001 KEEP/010 KEEP/011
011 KEEP/010 KEEP/011 KEEP/100
100 KEEP/011 KEEP/100 KEEP/101
101 KEEP/100 KEEP/101 KEEP/110
110 KEEP/101 KEEP/110 DEC/111
111 KEEP/110 KEEP/111 DEC/111

Table 3.2: State transition table of asymmetric 3-bit state machine.

State Input signal
inc keep dec

000 INC/000 KEEP/000 KEEP/001
001 INC/000 KEEP/001 KEEP/010
010 INC/000 KEEP/010 KEEP/011
011 INC/000 KEEP/011 KEEP/100
100 INC/000 KEEP/100 KEEP/101
101 INC/000 KEEP/101 KEEP/110
110 INC/000 KEEP/110 DEC/111
111 INC/000 KEEP/111 DEC/111
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Figure 3.3: 3-bit state machines for cache control.
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3.3 Performance Evaluation

3.3.1 Simulation Model

A way-adaptable cache is a set-associative cache, in which each way can independently

be enabled or disabled. Like a conventional set-associative cache with the LRU policy for

replacement, each entry in the cache has an LRU state. To evaluate the performance of the

proposed control mechanism, a cycle accurate simulator is developed using SimpleScalar

tool set version 3 [64]. Table 3.4 shows the parameters of the simulator designed based on

Alpha 21264 [65]. This section examines the performance of way-adaptable caches that can

change the number of ways from 2 to 32. The local and global evaluations of the locality for

resizing are performed every 100K memory accesses. SPECint/fp [45], MediaBench [66],

anagram, and dhrystone listed in Table 3.3 are used as the benchmark applications for

the performance evaluation. For art, equake, and mpeg2encode, one billion instructions

are executed to reduce simulation time, while skipping the first 500M instructions to

avoid temporal effects in the initial phase of the execution on the performance. For the

other applications, the entire instructions are simulated. In the following discussion, this

section examines the performance in CPI and the number of activated ways obtained by

averaging the results of L1 instruction and data caches if not specified.
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Table 3.3: Benchmarks applications.

Suites Benchmarks Functions Instruction Cache
Executed References

SPECint95 go go program 100M 29M
gcc Based on the GNU C Compiler 100M 37M
compress UNIX utility program 78M 3M
perl Programming language 19M 7M

SPECfp2000 ammp Computational Chemistry 19M 8M
art Image Recognition / Neural Networks 100M 14M
equake Seismic Wave Propagation Simulation 100M 37M

MediaBench mpeg2encode Mpeg2 encoder 100M 24M
mpeg2decode Mpeg2 decoder 100M 18M
g721-encode Voice compression encoder 100M 46M
g721-decode Voice compression decoder 100M 46M
rasta Speech recognition 17M 6M

Misc anagram Puzzle 15M 5M
dhrystone Synthetic benchmark 100M 33M

Table 3.4: Simulation parameters.

Parameter Value
Fetch queue 4 entries
Branch predictor comb(bimodal, 2-level gshare)

bimodal - 2048 entries
gshare Level1 1024(hint. 10)
Level2 4096(global)
Combining pred. 1024 entries
RAS entries-32; BTB-1024 × 2ways

Branch mispred. latency 10 cycles
Decode width 4 instructions
Issue width 4 instructions
Commit width 4 instructions
Register update unit 16 entries
Load/Store queue 32 entries
Instruction TLB 64×4-way, 8K pages, 30 cycles
Data TLB 128× 4-way, 8K pages, 30 cycles
Memory latency 80 cycles
Memory access bus 32 entries
Functional Units Int 4, FP 2
L1 I-Cache 64KB, 32-way, 32B line, 2 cycles
L1 D-Cache 64KB, 32-way, 32B line, 2 cycles
L2 unified-Cache 1MB, 32-way, 64B line, 12 cycles
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3.3.2 Experimental Results and Discussion

Figure 3.4 graphs the performance of several configurations of the proposed control mech-

anism as a function of the number of bits for the state machines. Here, T1 and T2 are set

to 0.005 and 0.02, respectively. In the case of the SPECfp and MediaBench benchmarks

with the regular and high locality, the number of bits does not play an important role

in cache reconfiguration. Even without the state machine, the cache can be reconfig-

ured very compactly while keeping almost the same performance that can be achieved

by a 32-way cache. Therefore, only the local evaluation of the locality based on metric

D at each time is sufficient to control the cache in this case. However, in the case of

the SPECint95 benchmarks, which have highly irregular and time-variant behavior of

the locality, e.g., gcc, more bits can provide more appropriate cache configurations in

terms of performance/resource-usage. In addition, the control using the asymmetric state

machines presents better performance compared with that using symmetric ones. There-

fore, these results clearly indicate that analyses of both local and global behaviors of the

locality are quite effective for stable control of way-adaptable caches.

To examine the way-enabling/disabling behavior in detail, Figure 3.5 shows the num-

ber of activated ways of the L1 instruction cache as a function of elapsed time in gcc.

In the case of cache resizing control without the state machine, no global information

about the locality is considered. Therefore, the cache sensitively reacts to the very quick

change in the locality as shown in the figure. As a result, the number of average activated

ways becomes very small and its achieved CPI reaches an unacceptably poor level. On

the other hand, the consideration of the global behavior of the locality by using 2- and

3-bit state machines appropriately relaxes the sensitivity to the change in the degree of

the locality during execution and realizes the stable cache control.

Cache resizing control using the n-bit symmetric state machine tends to keep the

number of average activated ways small compared with the n-bit asymmetric state ma-

chine case. This is because once the number of average activated ways becomes small,
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it needs several consecutive requests for way-increasing to return back to the state for

taking the way-increasing actions. Therefore, the cache slowly responds to the requests

for increasing ways, resulting in a lower CPI, even though the number of activated ways

is also saved. The n-bit asymmetric state machines can solve this problem, because it is

very conservative to reduce the cache ways and sensitive to the quick change toward the

lower locality. Consequently, the excessive reduction of cache ways is avoided while still

providing a certain degree of saving in cache resource usage.

Figure 3.6 shows the effects of the number of bits on CPI and the time-variant change

in activated ways of the L1 instruction cache. Figure 3.7 presents the number of recon-

figurations of cache ways as a function of the number of bits for the asymmetric state

machine. The figures suggest that although three or more bits do not show clear improve-

ment in term of CPI performance, the number of activations/inactivations of the cache

ways decreases as the number of bits increases. Therefore, from the viewpoint of the lower

overheads in controlling the cache ways, increasing bits is preferable. On the other hand,

the larger number of bits makes the cache resizing adaptability low. Three bits should

realize a good trade-off under this environment, although the precise evaluation of time

and space overheads in reconfiguration of ways is required to find the appropriate bit size,

namely, the number of states in the state machine to define the degree of conservativeness

to requests for deactivating cache ways. This is addressed as future work.

The values of T1 and T2 affect the performance of the cache mechanism. Figure 3.8

explores the CPI space as a function of T1 and T2. Here, the 3-bit asymmetric state

machine is used. The figure also shows the dynamic behavior of the activated ways in L1

instruction and data caches. As the figure shows, a pair of smaller T1 and T2, (0.001,

0.002) keeps higher associativity in both L1 instruction and data caches, and results in

a lower CPI, i.e., performance-oriented control to the cache. On the other hand, larger

T1 and T2, e.g., (0.029, 0.030) achieve lower-power-oriented control at the expense of

the performance. These are also confirmed in the other integer benchmarks. Therefore,

these parameters should be adjustable at user-/system-levels to satisfy various requests
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Figure 3.5: Way behavior vs. Elapsed time (gcc, L1 Instruction Cache).
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Figure 3.7: Number of reconfigurations.

regarding trade-offs between performance and resource-usage.

Since D in the range between T1 and T2 does not request any cache resizing, making

the range wider may lead to stable control in unstable behavior of access locality. However,

wider ranges between T1 and T2 also make the adaptability of the cache dull even in the

case where strong and continuous resizing requests occur. The state machine achieves

an effect similar to appropriate dynamic-adjusting of the range between T1 and T2; it

makes the cache adaptability dull in the unstable situation and sensitive in the stable

situation. Therefore, the combination of the local and global analysis of the locality for

cache resizing decision is very important for dynamic way-adaptable cache control.

As shown in Figure 3.9, rasta presents very interesting stack distance distributions

over the L1 instruction cache with 32 ways. In Figure 3.9, LRUstate0 (LRU0) means

the count of the accesses to cache entries with the most recently used (MRU) state, and

LRUstate31 (LRU31) means the count of the LRU state entries accessed. As the statistics

concerning the cache accesses are measured every 100K memory accesses, “time t” on the

time-axis means the t-th time interval measured in the unit of 100K memory accesses. Its
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behavior is highly regular, but periodically it needs to access old cache entries with LRU

or nearby-LRU states, while almost no access to the entries with intermediate LRU states.

In this case, as the LRU replacement policy does not work well on caches without enough

associativity, metric D cannot figure out the locality of accesses. Therefore, another

intelligent replacement is required to reduce the distribution of accesses on a smaller

number of cache ways. A self-tuning replacement policy [67], instead of the LRU policy,

might be promising for this purpose.
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3.4 Conclusions

This chapter has designed a low-power cache control mechanism for the way-adaptable

cache using power-gating scheme. To control the cache, the local and global behaviors

of the locality of cache accesses on the cache are evaluated. The local evaluation of the

locality is carried out using the statistics of LRU states of accessed entries. Besides, the

global behavior of the locality monitored using n-bit state machines is considered to avoid

aggressive reactions to the quick change in the degree of the locality in a short period. By

considering the locality of accesses locally and globally, the on-line estimation of relative

contribution of each way to the performance becomes possible, and therefore, it can avoid

the use of absolute performance metrics such as miss rates and CPI for making resizing

decision, which highly depend on individual applications.

Experimental results have indicated that the proposed cache mechanism achieves a

stable cache control to find an appropriate trade-off between activated cache area and

its achieved performance. The local assessment of cache requirement with two thresholds

has achieved performance-oriented control with more activated ways to keep the higher

performance, and lower-associativity-oriented control at the expense of CPI. In the global

assessment, an n-bit asymmetric state machine works well to appropriately control the

number of activated ways in the case of the benchmarks with highly-irregular access

behaviors. Accordingly, this chapter has established the cache power control methodology

to supply power to cache area depending on the cache requirement.

The proposed cache mechanism has assumed just a private cache in this chapter.

In the following chapter, the proposed cache mechanism will be extended for the cache

partitioning for CMP, which is current major processor architecture.
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Chapter 4

Power-Aware Dynamic Cache

Partitioning for CMPs

4.1 Introduction

Recently, a Chip Multi-Processor (CMP) has become a popular architecture for current

general-purpose processors. The CMP is a promising architecture to effectively utilize

a large amount of hardware budget on a chip and to enhance the performance by using

thread-level parallelism [28]. Here, an on-chip shared cache among cores is the key ele-

ments to efficiently execute multiple workloads. However, the cache sharing causes the

shared cache conflicts, and thereby it degrades the CMP performance. Therefore, to op-

timize the power efficiency and to achieve the high-performance and low-power cache for

CMP, the cache mechanism has to solve the cache conflict problem.

The objective of this chapter is to establish a cache management methodology to avoid

the shared cache conflicts in the two-core CMP with high-performance and low-power con-

sumption. This chapter introduces a power-aware cache partitioning mechanism for the

shared cache in order to avoid the shared cache conflict problem and to enhance the power

efficiency in CMPs. The cache mechanism, which is an extension of the way-adaptable

cache, has two functions: a way-allocation function for cache partitioning and a power
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control function for power-aware computing. The way-allocation function allocates ways

of a set-associative cache to each core based on their contributions to the effective perfor-

mance; each core can use the allocated ways as its private memory space as with the L1

cache. Ways are allocated to each core in proportion to the degree of their locality. As

a result, the L2 cache is shared among cores without conflicts, and hence the mechanism

allows each core to exclusively use an appropriately-sized cache area. The function also

helps to find out less needed cache ways, which hardly contribute to the performance.

The way-adaptable cache mechanism is applied to the power control function to conserve

the power consumption by disabling these less needed ways. In this chapter, the per-

formance of the proposed mechanism is evaluated in terms of three metrics. First, the

weighted speedup is used to assess the performance improvement by the proposed way-

allocation function. Then, the cache energy consumption is evaluated to show the power

saving capability of the proposed power-aware cache partitioning mechanism. Finally, the

hardware overhead to implement the control unit of the proposed mechanism is evaluated.

The rest of this chapter is organized as follows. Section 4.2 describes the shared

cache conflict problem and its solutions with simple examples. Section 4.3 describes

details on the proposed cache partitioning and power-aware cache mechanism under some

assumptions. In particular, the way-allocation and power control functions are discussed.

Section 4.4 shows the performance evaluation of the proposed mechanism. Section 4.5

concludes the chapter.
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4.2 Shared Cache Conflict Problem

4.2.1 Problem Overview

CMPs usually have multilevel caches including a shared last-level cache among cores as

shown in Figure 1.3. The cache sharing enables CMP to simultaneously execute multiple

threads or programs. In such CMPs, threads or programs running on different cores can

share data at a low latency. They can also utilize the large cache capacity because all

cores can access the entire cache space. However, the cache sharing causes a problem

of unfair performance degradation among cores. Data used by a specific program might

occupy most of the cache space if the program has a higher access frequency or a larger

working set than the other programs. As a result, the others cannot sufficiently use the

cache space and therefore their cache misses considerably increase. In this paper, this

unfair situation in the shared cache is named a shared cache conflict.

Unfair performance degradation by the shared cache conflict critically impacts its

throughput and the effectiveness of an operating system scheduler [68]. Moreover, it also

reduces the ability to enforce priorities and to provide Quality-of-Service (QoS) [69]. The

fair cache sharing is required in order to improve not only the processor performance but

also the system performance.
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4.2.2 Conflict Mechanism

This section describes the basic example of the unfair performance degradation using the

LRU stack as shown in Section 2.2.1. The following examples assume 4-way set associative

cache shared by two cores. Applications (App.0, App.1) simultaneously executed in each

core do not share their address space. This example focuses on accesses to any cache set.

A, B and C are block addresses accessed by App.0 in the same cache set and X, Y and

Z are by App.1. The following two examples describe the cases of the non-conflict access

and the conflict access.

When the applications executed simultaneously have the same access frequency and

the same access locality, the unfair performance degradation by the shared cache conflicts

does not occur. Table 4.1 shows the changes of the LRU stack while the shared cache is

alternately accessed from both of the applications as follows:

• App.0: A A A B B B C C C

• App.1: X X X Y Y Y Z Z Z

In Table 4.1, the “Miss” column indicates the timing and the kind of misses by each

application (I: Compulsory (Initial) miss). In this case, every applications have just three

compulsory misses and these miss rates are even (0.33), respectively. Therefore, the

performance based on the miss rate does not unfairly degrade among cores.

The next example shows the case of unfair performance degradation. The one-sided

performance degradation occurs by getting rid of reusable data according to the LRU

replacement policy. The unwished replacements are caused by the difference of access

locality. This case assumes the combination of applications, which have different access

localities. Each application access is indicated as follows:

• App.0: A A A B B B C C C

• App.1: X Y Z X Y Z X Y Z
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Table 4.1: LRU stack sequence of fair accesses.

Referenced LRU Stack Miss
Address App. 0 App. 1

A A I
X X A I
A A X
X X A
A A X
X X A
B B X A I
Y Y B X A I
B B Y X A
Y Y B X A
B B Y X A
Y Y B X A
C C Y B X I
Z Z C Y B I
C C Z Y B
Z Z C Y B
C C Z Y B
Z X C Y B

Num. of Misses 3 3

Miss Rate .33 .33

Total Miss Rate .33
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From stack distance distributions of each application as shown in Figure 4.1, App.0 has

the high locality, which mostly accesses to the MRU line, and App.1 has lower locality

than App.0. As Table 4.1 and 4.2 show the changes of the LRU stack while the cache

is alternately accessed. Although misses by App.0 are only three initial misses (I), miss

by App.1 are three initial misses and four conflict misses (C). The miss rate of App.1 is

also larger than that of App.0 because the access frequencies are equal. Moreover, the

total miss rate increases. Therefore, the different access locality causes unfair performance

degradation among cores, and the throughput degrades compared to the case of fair access

behavior.
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Figure 4.1: Stack distance distribution of each application in example.

59



Table 4.2: LRU stack sequence of shared cache conflict.

Referenced LRU Stack Miss
Address App. 0 App. 1

A A I
X X A I
A A X
Y Y A X I
A A Y X
Z Z A Y X I
B B Z A Y I
X X B Z A C
B B X Z A
Y Y B X Z C
B B Y X Z
Z Z B Y X
C C Z B Y I
X X C Z B C
C C X Z B
Y Y C X Z C
C C Y X Z
Z Z C Y X

Num. of Misses 3 7

Miss Rate .33 .78

Total Miss Rate .56
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4.2.3 Solutions to the Shared Cache Conflict Problem

One of simple ways to solve the problem is increasing the cache size. However, this ap-

proach leads to an increase in power consumption and an inefficient use of a large cache for

most applications. To solve the performance degradation due to the cache conflicts, sev-

eral cache partitioning methods have been proposed [70]. The cache partitioning method

exclusively allocates cache resource to cores/threads. Appropriate cache partitioning can

avoid the shared cache conflict, and thereby can avoid the unfair performance degrada-

tion, because cores/threads can exclusively use the allocated cache area. Table 4.3 shows

an example of avoiding the shared cache conflict by cache partitioning in the case of access

pattern indicated as the cache conflict in Table 4.2. In this case, one line and three lines

are respectively allocated to each application by cache partitioning appropriately. Each

allocated area manages LRU stacks (LS0 and LS1). The number of misses by App.1 is

less than one of Table 4.2, and both of applications have equal miss rate, because conflict

misses do not occur by cache partitioning. Therefore, appropriate cache partitioning can

be considered as one solution to protect CMPs from the shared cache conflict. However,

the cache partitioning needs an algorithm, which fairly allocates cache area.

So far, many control methods for the cache partitioning have been proposed. Suh et

al. have investigated the dynamic partitioning method for a shared cache [71] to solve

the performance degradation problem. They proposed a marginal gain based cache par-

titioning algorithm with a low-overhead control scheme. Chandra et al. have also studied

the performance impact of L2 cache sharing by threads on a CMP architecture, and

proposed three models in order to accurately predict the performance using the stack

distance and a circular sequence profile of each thread [36, 68]. The utility-based cache

partitioning method [72] proposed by Qureshi et al. gains a high performance benefit

with a low-overhead hardware configuration. In addition, they described that their par-

titioning algorithm has a high scalability. Iyer et al. have also proposed a QoS-enabled

memory architecture [73] for CMP platforms. This architecture allocates more shared
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Table 4.3: LRU stack sequence of cache partitioning.

Referenced LRU Stacks Miss
Address LS0 LS1 App. 0 App. 1

A A I
X A X I
A A X
Y A Y X I
A A Y X
Z A Z Y X I
B B Z Y X I
X B X Z Y
B B X Z Y
Y B Y X Z
B B Y X Z
Z B Z Y X
C C Z Y X I
X C X Z Y
C C X Z Y
Y C Y X Z
C C Y X Z
Z C Z Y X

Num. of Misses 3 3

Miss Rate .33 .33

Total Miss Rate .33
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memory resources to high priority applications based on guidance from the operating

system. However, these studies have not discussed the power consumption well.

This chapter introduces a cache partitioning method by cache ways to apply the

proposed dynamic way-adaptable cache mechanism to CMPs. It is because CMPs need

to avoid the performance degradation by the shared cache conflict to improve the power

efficiency of CMPs. This chapter proposes a power-aware cache partitioning method to

achieve the high-performance and low-power cache for CMP.
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4.3 Cache Control Mechanism

4.3.1 Assumptions

The proposed power-aware cache partitioning mechanism is designed under the following

assumptions.

• Two cores sharing an L2 unified cache on a chip configure a building block for CMPs.

Each core has L1 private data/instruction caches.

• The L2 shared cache is a large, highly-associative on-chip cache, in which the power

supply to each way can be controlled independently for power control using the

power-gating circuits. Each core can access each way exclusively; the cache includes

a mechanism that permits a core to access a way. In addition, the mechanism

introduces an access monitoring unit to the L2 cache. This unit counts the numbers

of accesses to MRU and LRU lines based on the true-LRU replacement policy.

• Co-scheduled threads on different cores are spawned from different applications.

Therefore, they do not share any memory space, and each core executes a different

application in the evaluations. The cache mechanism assumes that the operating

system, which manages the thread scheduling, is responsible for switching the par-

titioning mode and the non-partitioning mode. Both context switch and thread

migration between cores are also not considered in this chapter.
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4.3.2 Mechanism Overview

A power-aware cache partitioning mechanism is introduced under the assumptions in the

previous section. Figure 4.2 shows the basic concept of the proposed cache mechanism.

Each way is allocated to one of two cores. A virtual partition defined as the boundary

between two areas, each of which is allocated to one core, dynamically moves over the

L2 cache during executions. Some ways are activated according to locality of memory

reference in each area, and the other ways are inactivated for power saving. Each core

can access allocated and activated ways only.

Figure 4.3 shows a control flow graph for an L2 cache shared with two cores. The first

step is for cache access sampling to obtain statistics used in calculation of D. This step is

carried out at fixed intervals, e.g., every 100,000 L2 accesses. The cache mechanism has a

way-allocation function and a power control function. The former function decides which

ways each core can use, and the latter decides how many ways are inactivated for power

saving. In the case where both of the two cores have one or more inactivated ways, the

way-allocation function is not performed, because way-allocation in such a situation does

not decrease conflicts at all but causes a certain overhead.

The mechanism can randomly select a cache way to be reallocated or inactivated.

Before inactivation, the data on the selected way are written back to the main memory

for data coherency.
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Algorithm 2 Determination of the number of allocated ways.

Require: Di = LRUcounti/MRUcounti
if D0 > D1 then

Alloc0+ = 1
Alloc1− = 1

else if D0 < D1 then
Alloc0− = 1
Alloc1+ = 1

else
keep current configuration

end if

4.3.3 Way-Allocation Function

The way-allocation function allocates each way of a set-associative cache to a core; each

core can use the allocated ways as its private memory space like the L1 cache.

This section proposes an allocation method that considers the cache reference locality

using D. Algorithm 2 shows the way-allocation algorithm. After calculating Di from the

number of cache accesses of core i(i = 0, 1), the function determines whether the number

of ways allocated to core i should be increased or decreased from the comparison between

D0 and D1. Here, Alloci is the number of ways that are allocated to core i, and satisfies

the following conditions.

Allocall =
∑

Alloci, (4.1)

where Allocall denotes the cache associativity. If D0 = D1, way-allocation is not per-

formed.
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4.3.4 Power Control Function

The power control function used in the proposed cache mechanism is based on the way-

adaptable cache control proposed in Chapter 3. The number of activated ways increases so

as to keep Di between two thresholds to prevent unacceptable performance degradation.

To avoid iterating activation and inactivation of a way, the both local and global

observation of the access behavior in memory accesses are required. For locally observing

the behavior, D defined by Equation (2.8) is again employed. In addition, for globally

observing its local behavior, the mechanism adopts an n-bit state machine.

69



Table 4.4: Simulation parameters.

Parameter Value

Fetch width 8 insts
Decode width 8 insts
Issue width 8 insts
Commit width 8 insts
Inst. queue 64 insts
LSQ size 32 entries

L1 Icache 32kB, 2-way, 32B-line, 1 cycle latency
L1 Dcache 32kB, 2-way, 32B-line, 1 cycle latency

L2 shared cache 1024kB, 32-way, 64B-line, 14 cycle latency
Main memory 100 cycle latency

Frequency 1GHz
Technology 70nm
Vdd 0.9V

4.4 Performance Evaluation

4.4.1 Methodology

For the architectural cache simulation, a cycle accurate simulator was developed based

on the M5 microprocessor architectural simulator tools [44] and CACTI version 4.2 [74].

The experiments examine a CMP of two Alpha-based cores with an L2 shared cache.

The parameters used in the simulation are listed in Table 4.4. The simulation executes

the first 500 million instructions using the reference input set. The sampling span of the

proposed cache is 100,000 L2 cache accesses.

The simulation uses 15 workloads that consist of combinations of six benchmarks. Ta-

ble 2.3 shows the benchmarks selected from the SPEC CPU2006 suite [45] for performance

evaluation. Each core runs one independent benchmark program. In order to evaluate the

proposal fairly, various benchmarks are selected based on their utility graphs [72]. The

utility graphs of the benchmark programs are shown in Figure 4.4. These graphs indicate
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their performance in IPC as a function of the number of activated ways. Based on the

utility graphs, the benchmarks are classified into three groups: high-utility (High), satu-

rating utility(Sat) and low-utility (Low). The applications that have high-utility benefit

from an increase in activated ways (e.g. gcc, bzip2). These applications have a lower

access locality. The applications with saturating utility have a smaller working set than

the applications with high-utility ; giving more than eight ways dose not significantly im-

prove their performance (e.g. dealII, sjeng). The applications that have low-utility do

not benefit significantly from an increase in activated ways (e.g. mcf, cactusADM). These

applications have a higher access locality. Two applications are selected from each group

as shown in Table 2.3.

This experiment evaluates the proposed cache with the weighted speedup and its energy

consumption. The weighted speedup is used as a metric for quantifying the performance

of parallel processing, in which multiple applications execute in parallel on different cores.

Let SingleIPCi be the IPC of the i-th application when it is executed on a single core and

can exclusively use the entire resource of the CMP, and IPCi be the IPC of an application

when running with another application on the CMP. The weighted speedup is given by:

Weighted Speedup =
∑

(
IPCi

SingleIPCi

). (4.2)

With the information from M5 and CACTI, the cache energy consumption is calculated

as follows:

Etotal = Ed + Es, (4.3)

Ed =
∫

(Ed data array ×
Wactive

Wtotal

× AL2)dt + Ed data other + Ed tag, (4.4)

Es =
∫

(Ps data array ×
Wactive

Wtotal

)dt + Es data other + Es tag, (4.5)
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Table 4.5: Benchmark applications.

Name Function Utility

gcc C Compiler High
bzip2 Compression High
dealII Finite Element Analysis Sat
sjeng Artificial Intelligence: chess Sat
mcf Combinatorial Optimization Low
cactusADM(cactus) General Relativity Low

where,

Ed data array = dynamic energy consumed at bit lines in a

data array when all ways are activated,

(4.6)

Ps data array = static power consumed at word lines when all

ways are activated,

(4.7)

Wactive = the number of activated ways, (4.8)

Wtotal = the total number of ways in the L2 cache, (4.9)

AL2 = the number of L2 cache accesses, (4.10)

Ed data other = the dynamic energy consumption at the

other elements in a data array,

(4.11)

Ed tag = the dynamic energy consumption at the oth-

ers,

(4.12)

Es data other = the static energy consumption at the other

elements in a data array, and

(4.13)

Es tag = the static energy consumption at the others. (4.14)

The total cache energy consumption, Etotal, is the sum of Ed and Es that are the

dynamic energy consumption for transistor switching and the static energy consumption

due to leakage current, respectively. This section also estimates Ed and Es from the

product of the array energy consumption and the proportion of the activated area.
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Figure 4.4: Activated ways vs. IPC.
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Figure 4.5: Performance of way-allocation.

4.4.2 Evaluation of Way-Allocation Function

To evaluate just the way-allocation function, this section compares the performance of

the way-allocation function with five cache mechanisms: the utility-based cache partition-

ing method [72] (Utility-Based) which is representative of current partitioning schemes,

Half-and-Half which is static equal partitioning between two cores, Missrate and Access

which are the proposed way-allocation scheme using miss rate and the number of accesses

respectively as the cache requirement metric D, and the non-partitioning shared cache

(Non-Partition).

Figure 4.5 shows the evaluation results of the proposed way-allocation function (Way-

Alloc) and the other five cache mechanisms. The horizontal axis in Figure 4.5 shows the

combination of the benchmarks. The vertical axis shows the weighted speedups of CMPs.

The bars labeled Average indicate the geometric means of weighed-speedups of each cache

mechanism for individual benchmarks.

The weighted speedup of the proposed way-allocation outperforms the non-partitioning

cache for 10/15 combinations listed in Figure 4.5. Especially, in the combinations which

are improved the performance with the Utility-Based method, the proposed mechanism

significantly improves the performance (for instance bzip2-sjeng). Therefore, it is ob-

vious that the proposed cache mechanism can avoid cache conflicts and appropriately

74



allocate cache ways. As a result, the proposed way-allocation based on locality assess-

ment can prevent the performance degradation.

The weighted speedups of Way-Alloc and Utility-Based are the same as or more than

that of Half-and-Half in almost all workloads. The Half-and-Half cannot achieve the

performance improvement. Therefore, the results indicate that cache partitioning with

the adaptive mechanism is beneficial. Moreover, the results also indicate that the pro-

posed way-allocation has a performance comparable to the utility-based cache partitioning

scheme. In addition, the proposed scheme can save the power consumption, while keeping

a certain level performance by adding the power control function.

The figure also shows that the performance of Missrate and Access are lower than one

of the non-partitioning cache on average. The results indicate that the way-allocations

by the cache requirement cannot achieve appropriate cache partitioning. It is because

that metrics Access and Missrate do not consider the access locality, and it is difficult to

evaluate the appropriate cache size using them. Therefore, the proposed metric D based

on the cache access locality has superiority in the cache partitioning ability to the metrics

based on the miss rate or the number of accesses.

The weighted speedup obtained by the proposed cache mechanism outperforms the

non-partitioning cache for almost all combinations without bzip2. Especially, the speedup

improves in every combinations with sjeng. Therefore, it is obvious that the way-

allocation function of the proposed cache mechanism is adequate for execution of the

applications including the higher cache access locality: saturating or low utility. The

validity of the proposed locality assessment model is confirmed by these results.

Every benchmark pair including bzip2 leads to either significant performance improve-

ment or degradation. As the utility of bzip2 does not saturate, its performance improves

in proportion to the number of activated ways as shown in Figure 4.4(b). Therefore, it

is difficult to define the appropriate position of the virtual partition. A solution to this

problem remains as the future work.
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4.4.3 Evaluation of Way-Allocation with Power Control

Performance and Power Consumption

The proposed cache mechanism is evaluated and discussed in terms of the performance

and the power consumption. Three different (t1, t2)-threshold settings for power control,

(0.1, 0.5), (0.01, 0.05) and (0.001, 0.005) are examined. An asymmetric 3-bit state machine

is used to observe the global behavior in memory accesses. These experiments consider

a write-back overhead that is needed to keep data coherency when ways are inactivated,

but do not consider an overhead in power-gating for cache ways. Figures 4.6 and 4.7 show

the weighted speedup and the energy consumption in all the benchmark combinations,

respectively. The values of Figures 4.6 and 4.7 are normalized by the conventional cache.

Figures 4.6 and 4.7 indicate that both of the weighted speedup and the energy consump-

tion become their maximum values when the thresholds are (0.001, 0.005) on almost all

benchmark combinations. In contrast, when the thresholds are (0.1, 0.5), both of them

indicate their minimum values. When both benchmarks in the combinations have saturat-

ing or low utility (e.g. sjeng-cactus), the weighted speedup and the energy consumption

are not sensitive to the configurations, and achieve high performance and low energy con-

sumption. For example, in the case of a smaller threshold configuration (0.001, 0.005)

with the sjeng-cactus benchmarks, it can reduce 48% of the energy consumption while

keeping the weighted speedup.

On average, the proposed cache can reduce energy consumption by 20% while keeping

the performance, when the thresholds are smaller such as (0.001, 0.005). On the other

hand, in the case of larger thresholds such as (0.1, 0.5), it can reduce a 55% energy

consumption with a performance degradation of 13%. This experiment has confirmed

that the values of the thresholds can decide the degree of the control policy between the

performance-oriented and the energy-oriented configurations.

Figure 4.8 shows the dynamic behavior of the number of allocated and activated

ways across time, when gcc and sjeng are executed in parallel. Most of the time, the
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Figure 4.6: Effects of t1 and t2 on weighted speedup.
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Figure 4.7: Effects of t1 and t2 on energy consumption.

allocation function is skipped, because most ways are inactivated for the energy-oriented

configuration (0.1, 0.5) as shown in Figure 4.8(a). There is no significant difference in the

number of activated ways between two cores. On the other hand, with the performance-

oriented configuration (0.001, 0.005) as shown in Figure 4.8(b), almost all of ways are

activated, and the way-allocation function effectively works. Especially, the activated

ways of gcc increases significantly, because gcc have the lower access locality than sjeng.

Therefore, the proposed mechanism appropriately allocates cache ways, and controls the

activated cache area based on the access locality.

In the cases of dealII-sjeng, the energy consumption is not minimum when thresh-
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Figure 4.8: Elapsed time vs. Allocated ways (gcc-sjeng).

78



 0

 5

 10

 15

 20

 25

 0  2  4  6  8  10  12  14  16

E
ne

rg
y 

(J
)

Activated Ways

(a) gcc

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  2  4  6  8  10  12  14  16

E
ne

rg
y 

(J
)

Activated Ways

(b) bzip2

 0

 0.5

 1

 1.5

 2

 2.5

 0  2  4  6  8  10  12  14  16

E
ne

rg
y 

(J
)

Activated Ways

(c) dealII

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0  2  4  6  8  10  12  14  16

E
ne

rg
y 

(J
)

Activated Ways

(d) sjeng

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0  2  4  6  8  10  12  14  16

E
ne

rg
y 

(J
)

Activated Ways

(e) mcf

 0

 5

 10

 15

 20

 25

 0  2  4  6  8  10  12  14  16

E
ne

rg
y 

(J
)

Activated Ways

(f) cactusADM

Figure 4.9: Activated ways vs. Energy consumption.
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olds are energy-oriented. This is because the execution time increases rapidly when the

number of activated ways decreases. Figure 4.9 shows the energy consumptions of each

benchmark with the number of activated ways. All but dealII show a monotonic increase

with the number of activated ways. However, in the case of combinations with dealII,

the minimum energy consumption is achieved when three ways are activated. Therefore,

the proposed cache may not decrease the energy consumption on the energy-oriented

configuration when the benchmarks like dealII are executed.

In the case of the combinations with bzip2 (e.g. gcc-bzip2), the maximum weighted

speedup is achieved at medium thresholds (0.01, 0.05). This is attributed to the fact that

the benchmark has the high-utility and the large working set as shown in Figure 4.4. The

behavior analysis of combinations including high utility applications will be discussed in

the future work.
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Figure 4.10: Elapsed time vs. Stack distance distribution (gcc).

Effects of Sampling Intervals

The dynamic behavior of the stack distance profiling depends on a characteristic of the

program. Some programs frequently and drastically change a cache access behavior, and

some programs hardly change it. Figures 4.10 to 4.15 show the dynamic behavior of the

SDD for L2 cache, when each benchmark program is executed as a single workload. Note

that the sampling interval of each SDD is 10 million cycles. From these figures, the SDD

of gcc drastically changes and mcf and sjeng are relatively stable. Therefore, to appro-

priately control the cache power and partitioning according to the cache requirement, it

is important to evaluate the sampling interval.

Let the parameter N be a bit width of the sampling counter, which defines the max-

imum sampling interval. The proposed control mechanism works after 2N L2 cache ac-

cesses. When N is too small, the way-allocation and the power control are performed

too often, resulting in an increase in the write-back overheads. On the other hand, the

mechanism cannot control the number of ways on demand, when it is too large.
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Figure 4.11: Elapsed time vs. Stack distance distribution (bzip2).
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Figure 4.12: Elapsed time vs. Stack distance distribution (dealII).
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Figure 4.13: Elapsed time vs. Stack distance distribution (sjeng).
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Figure 4.14: Elapsed time vs. Stack distance distribution (mcf).
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Figure 4.15: Elapsed time vs. Stack distance distribution (cactus).

Figure 4.16 compares the weighted speedups of four interval configurations (N=8,

12, 16, 20; each sampling interval is 28, 212, 216, or 220 L2 cache accesses.) and the

conventional shared cache. This experiment uses the performance-oriented configuration

(t1, t2) = (0.001, 0.005). The results indicate that decrease in the number of bits of the

counter leads to a performance degradation. The results of the 8-bit configuration fall

below the conventional cache in all workloads. Moreover, each workload has its own

optimal control interval. A majority of workloads reaches their perk performances in the

cases of 12-bit or 16-bit intervals. Hence, the control interval is an important parameter

that decides the performance of the cache control mechanism. The cache mechanism needs

an algorithm, which dynamically optimized the control interval for running applications.
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Figure 4.16: Effects of interval length.
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4.4.4 Evaluation of Hardware Overhead

To evaluate hardware overheads of the proposed cache control mechanism, this section

designs a circuit as shown in Figure 4.17. The designed circuit consists of two dividers

(DIV), three comparators (D COMP and T COMP), and two state machines (STATE).

Four configurations (N = 8, 12, 16, 20) were designed by Rohm 0.18 µm CMOS Technol-

ogy, using Synopsys EDA tools.

Table 4.4.4 shows the design results of the four configurations. The delay time is small

enough compared with the sampling interval; therefore, the delay of the proposed mecha-

nism hardly affects the way-allocation and power saving capability. Moreover, the circuit

areas are extremely small compared with cache area. For comparison, this section esti-

mates the area of a 1MB 32-way cache by 0.18 µm CMOS Technology using CACTI [74].

The proposed mechanism consumes only 0.1% of the cache memory area. The hardware

overheads of the cache control mechanism, therefore, have an extremely small effect on

the chip design.
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Table 4.6: Hardware overheads.

8-bit 12-bit 16-bit 20-bit

Delay (ns) 21.16 35.38 52.61 84.96

Area(µm2) 27221 56314 92100 149831
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4.5 Conclusions

This chapter has proposed a power-aware cache partitioning mechanism. This chapter

has focused on the performance improvement by the function enhancement of the way-

adaptable cache mechanism for CMP’s shared cache. The mechanism has a way-allocation

function based on the cache partitioning method and a power control function based

on the way-adaptable cache mechanism. To solve the unfair performance degradation

problem in CMP, the way-allocation function can decide the percentage of cache resources

allocated to each core. The power control function decides the cache resources necessary

for keeping the current performance. That is, the former is for a relative evaluation by

comparing cores’ demands for cache resources, and the latter is for an absolute evaluation

by estimating the magnitude of the demand by each core.

The evaluation results have shown that the mechanism can save the power consump-

tion, although the proposed cache mechanism and the utility-based scheme are compara-

ble in the cache partitioning performance. The evaluation results also have shown that

the power control policy of the mechanism can be adjusted from a performance-oriented

configuration to an energy-oriented one. The way-allocation cache with a performance-

oriented parameter setting can reduce an energy consumption by 20%, while keeping

the performance in comparison with a conventional one. On the other hand, the cache

with a energy-oriented parameter setting can reduce 55% energy consumption with a

performance degradation of 13%. Moreover, the control mechanism has been designed

to evaluate hardware overheads. The proposed cache control hardware has an extremely

small overhead and gives a small effect on the chip design.

Therefore, this chapter has established a cache control mechanism for CMP to achieve

high-performance and low-power.
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Chapter 5

Conclusions

In this dissertation, the efficient cache mechanism has been explored for the low-power

and high-performance microprocessors. In recent microprocessors, cache memories are

one of important elements to achieve high-performance processing with overcoming the

memory wall problem. However, there are two open problems to realize an efficient

cache mechanism for the low-power and high-performance microprocessors; the power

consumption problem and the shared cache conflict problem.

Under this situation, this dissertation has proposed the cache control mechanisms for a

low-power and high-performance cache memory based on the following three approaches.

• The cache requirement metric based on the cache access locality has been introduced

to assess the minimum cache capacity with keeping the performance of application

running.

• The cache power control mechanism based on the cache requirement metric has

been introduced to reduce the power consumption with keeping the performance of

cache memories.

• The cache partitioning mechanism based on the cache requirement has been intro-

duced to avoid the unfair performance degradation of shared cache memories for

CMP architecture.
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In Chapter 2, the cache access behaviors have been quantitatively analyzed and the

cache requirement metric based on the cache access locality has been introduced in order to

assess a minimum cache capacity with keeping the performance of application running. To

analyze the cache access behaviors, a stack distance profiling method has been introduced.

The stack distance profiling measures data reusability of cache lines by monitoring an LRU

stack. It is possible to assess the temporal access locality and the degree of the cache

requirement by analyzing stack distance distributions (SDDs), which are derived from the

stack distance profiling. Additionally, to analyze and quantify the characteristic of SDD,

SDD has to be approximately modeled. This chapter has hypothesized that the SDDs

obey Zipf’s law, and then verify the hypothesis against real applications. The verification

has indicated that almost all applications have sufficiently large correlation coefficients

between SDDs and Zipf’s distributions. When the SDDs obey Zipf’s distributions, the

parameter in Zipf’s law indicates characteristics of the cache access locality. To handily

obtain the cache access locality and to utilize it for the evaluation of the cache requirement,

this dissertation has proposed and verified the cache requirement metric D, which uses

the number of MRU and LRU entries accessed in a certain period of cache accesses.

According to this approach, this chapter has established the cache requirement metric for

the high-performance and low-power cache mechanism.

In Chapter 3, the low-power cache mechanism using the power-gating mechanism has

been designed. The proposed cache mechanism defines the activated and inactivated

cache area based on the cache requirement. The mechanism dynamically monitors the

cache requirement, and then it appropriately controls the activated cache area using the

assessment of the local and global behavior. To realize appropriate cache control, the

assessment of the cache requirement uses the local and global information of the cache

requirement. The local assessment is carried out using the statistics of LRU states of

accessed entries. Besides, the global assessment using the n-bit state machine is considered

to avoid aggressive reactions to the quick change of the cache requirement in a short period.

When the estimation is up-sizing, the power control hardware selects one from inactivated
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ways and activates it. When the estimation is down-sizing, the hardware selects one from

activated ways and inactivates it after write back cached data to the main memory.

Experimental results have indicated that the proposed cache mechanism achieves the

stable cache control to find an appropriate trade-off between activated cache area and its

achieved performance. The local assessment of the cache requirement with two thresholds

has achieved performance-oriented control with more activated ways to keep the higher

performance, and lower-associativity-oriented control at the expense of CPI. In the global

assessment, an n-bit asymmetric state machine works well to appropriately control the

number of activated ways in the case of the benchmarks with highly-irregular access

behaviors. Accordingly, this chapter has established the cache power control methodology

to supply power to cache area depending on the cache requirement.

In Chapter 4, the extended low-power and high-performance cache mechanism has

been designed for the shared cache for a two-core CMP. To effectively execute multiple

workloads in the case where multiple cores executing independent programs share a cache,

the shared cache requires a mechanism to avoid performance degradation by shared cache

conflicts. The proposed shared cache mechanism consists of the way-allocation function

for cache partitioning and the power control function. The way-allocation function of the

proposed shared cache mechanism defines the allocated cache area by making comparison

between the cache requirements of applications simultaneously executed in each core. The

way-adaptable cache mechanism is applied to the power control function to conserve the

power consumption by inactivating these less needed ways. The function appropriately

controls the number of activated ways in the allocated cache area by the way-allocation

function. The proposed shared cache mechanism searches most appropriate allocated and

activated ways by iterating these two processes.

The evaluation results have shown that the proposed shared cache mechanism is com-

parable to the utility-based scheme with more effective power saving. The results of all

functions have indicated that the proposed shared mechanism achieves the performance

improvement, and moreover it reduces power consumption with keeping the performance
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by using the power control mechanism. The power control policy of the mechanism can be

adjusted from a performance-oriented configuration to an energy-oriented one. The way-

allocation cache with a performance-oriented parameter setting has reduced an energy

consumption by 20%, while keeping the performance in comparison with a conventional

one. On the other hand, the cache with an energy-oriented parameter setting can reduce

55% of energy consumption with a performance degradation of 13%. Moreover, the pro-

posed control mechanism has been designed to evaluate hardware overheads of the cache

control circuit. The evaluation of hardware overheads has shown that the cache control

hardware has an extremely small overhead and a small effect on the chip design. These re-

sults have indicated that the proposed shared cache mechanism is a promising method for

the high-performance and low-power cache design. Therefore, this chapter has established

a cache control mechanism for CMP to achieve high-performance and low-power.

From above approaches, this dissertation proves that the proposed cache mechanism

realizes the low-power and high-performance processors. This innovative progress pre-

sented in this dissertation conduces to the dawn of new cache design for the low-power

and many-core processors.
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