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論文内容要約 

InGaN alloy system has been widely used over a decade in visible optoelectronic devices because the band-gap of 

InGaN can cover the whole visible wavelength region. By using InGaN as an active layer, blue light-emitting-diodes (LEDs) 

with high output power have been commercially available. However, the light output power of InGaN-based green LEDs is 

still much lower than that of blue LEDs. In the case of a green laser diode (LD), its threshold current is much higher in 

comparison with a blue LD. These poor characteristics of devices are due to the poor crystalline quality of indium (In)-rich 

InGaN. The growth of In-rich InGaN with high crystalline quality has been still a challengeable issue. For growing In-rich 

InGaN with high crystalline quality, N-polar growth is expected because N-polarity has a benefit for capturing In-atoms, i.e., 

one nitrogen atom is captured with three atoms of group-III while in group-III polar growth, one nitrogen atom is captured with 

only one atom of group-III [1]. Also, N-polar nitride-based devices have attracted attention because of their benefits of the 

reverse direction of the internal electric field compared with conventional Ga-polar GaN-based devices such as improvement 

in carrier confinement at high current density for N-polar LDs and LEDs [2]. 

Usually, the growth of N-polar GaN on sapphire substrates by metalorganic vapor phase epitaxy (MOVPE), which is 

widely used in the mass production of III-V semiconductors, is said to be difficult because its surface becomes rough with 

hexagonal hillocks due to the generation of inversion domain and the poor surface-migration of Ga adatoms on an N-face 

surface. Also, a high density of residual impurities generates residual electrons and it impedes the realization of p-type GaN [3]. 

In our previous study, it has been already succeeded in the growth of N-polar GaN of comparable crystalline quality with 

Ga-polar GaN by optimizing the initial nitridation of a sapphire surface and the other growth conditions to promote the lateral 

growth. However, the growth of N-polar InGaN with high crystalline quality has not been realized yet. The thick InGaN film is 

a highly attractive material for the applications of photovoltaic devices such as multi-junction solar cells. Even though the use 

of N-polar-InGaN-based devices has attract attention, there are few reports on optoelectronic devices fabricated on N-polar 

crystal plane and the device performances are still poor [4]. Moreover, the effect of growth conditions on the crystalline 

qualities of N-polar thick InGaN growth using MOVPE has not been researched yet. In addition, the previous research on a 

N-polar LED structure grown by MOVPE has still suffered from the low quality of crystalline and inhomogeneous emission 



characteristics [5]. Comprehensive researches on improving an N-polar InGaN/GaN quantum well (QW) are needed for 

application N-polar devices. 

In this thesis, three objectives are mainly addressed in this thesis as follows. 

The first objective is the realization of N-polar GaN films with high crystalline quality grown by MOVPE for device 

applications. The polarity control is treated by nitridation of a sapphire surface. Its polarity is confirmed by KOH wet etching. 

For optimizing the N-polar GaN growth so as to improve the surface morphology, crystalline quality, and residual donor 

concentration, the growth was performed under the various conditions such as growth temperature, growth rate, H2/N2 ratio 

and V/III ratio. At high growth-temperature, the sample had a rough surface due to step bunching. The crystalline quality 

evaluated with XRC measurements was improved by increasing growth temperature. Room-temperature photoluminescence 

showed strong yellow luminescence around 550 nm, which might be corresponding to the carbon impunity. The surface 

morphology was drastically changed with the growth rate. For the growth rate higher than 5 m/h, many pits and cracks 

appeared on the surface. In the growth with large amount of H2 flow rate, the rough surface also appeared because of the 

formation of step bunching. This rough surface resulted in a high concentration and low mobility of residual carriers in N-polar 

GaN films. High V/III ratio resulted in low residual carrier concentration and smooth surface morphology. 

Si and Mg dopants were introduced for n-type and p-type conduction, respectively. In both cases, the surface 

morphology was roughened by increasing the dopant flow rate. From Raman spectroscopy of n-type N-polar GaN, LO 

phonon-plasmon coupled mode peaks shifted toward a lower wavenumber at high carrier concentration. N-type and p-type 

conduction were successfully demonstrated. The carrier concentration was from 2.75 × 10
18

 /cm
3
 to 1.6 × 10

18
 /cm

3
 for n-type 

conduction and 4 × 10
17

 /cm
3
 for p-type conduction, respectively. 

The second objective is the optimization of growth parameters for thick N-polar InGaN films grown by MOVPE. 

Effects of growth conditions such as the growth temperature, the group-III (In/Ga) source ratio, and the growth rate were 

experimentally investigated. The growth conditions strongly affected the surface morphology, the indium incorporation, and 

the crystalline quality of N-polar InGaN. The improper growth conditions resulted in the formation of irregularities such as 

large hillocks with hexagonal and triangular shapes. These hillocks could be successfully suppressed by adopting more thermal 

equilibrium conditions such as high temperature, slow growth rate, and low V/III ratio, because these conditions usually 

promote the surface migration of group-III adatoms during the growth. As a result, 200-nm-thick InGaN films with the low 

dislocation density of 4.5 × 10
9
 cm

-2
 and the relatively high indium composition up to 15% could be obtained maintaining the 

smooth surface. 

The third objective is the demonstration of N-polar LEDs. Both a single quantum well (SQW) and a multiple quantum 

well (MQW) on a N-polar GaN template are grown by MOVPE. The inclusion of zincblende phase and the appearance of 

hexagonal hillocks in a N-polar InGaN/GaN MQW are comprehensively investigated with respect to the growth temperature, 



partial pressure of H2 in ambient, and V/III ratio. Based on the above results, N-polar InGaN-based blue and green LEDs were 

fabricated. By increasing the V/III ratio and reducing the QW growth period, the emission wavelength of MQW LEDs was 

changed from blue to green. The relatively clear interface in MQWs of a green LED showed as small ideality factor as 8.4 

compared to 10.5 of blue LEDs. The electrically-injected emission with a wavelength of 517.4 nm at an injection current of 20 

mA was obtained. The emission peak width was 59 nm at 143 A/cm
2
, which was narrower than the reported value 63 nm of an 

N-polar green LED grown on a free standing GaN substrate. This lowering FWHM of EL spectrum compared to the 

previously reported green LED is originated from the optimization of the QW growth condition. The output power is 2.9 W 

at 100 mA (145 A/cm
2
). 

In summary, the experimental results in this thesis show the high potential of the realization of In-rich N-polar InGaN 

and high efficiency N-polar GaN-based optoelectronic devices. 
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