
AN ADVANCED CONTROL OF GRID CONNECTED WIND
TURBINE GENERATORS FOR ENHANCEMENT OF
LOW-VOLTAGE RIDE-THROUGH CAPABILITY

著者 Aung  Ko Thet
学位授与機関 Tohoku University
URL http://hdl.handle.net/10097/53875



PhD Dissertation  

 

 

AN ADVANCED CONTROL OF GRID CONNECTED WIND 

TURBINE GENERATORS FOR ENHANCEMENT OF 

LOW-VOLTAGE RIDE-THROUGH CAPABILITY 

 

 

 

Aung Ko Thet 

    

    

ELECTRICAL AND COMMUNICATION DEPARTMENT 

GRADUATE SCHOOL OF ENGINEERING 

 

TOHOKU UNIVERSITY 

SENDAI, JAPAN 

 

January 25, 2012 



Acknowledgement 

 

First of all, I would like to express my sincere gratitude to my supervisor, Professor Dr. 

Hiroumi Saitoh, Graduate School of Engineering, Tohoku University, for providing 

dedicated guidance, qualified supervising, invaluable suggestions and kind 

encouragement throughout this work. I have also learned valuable lessons from his 

visions of the future power systems. Moreover, I wish to thank Professor Dr. Osamu 

Ichinokura and Professor Dr. Akio Ishiguro for helpful advice and comments. 

In addition, my special thanks go to my seniors Mr. Yuichi Tobita, Mr. Yuki Hori, Mr. 

Daiki Satoh, Mr. Masatoki Koduki and to all of the members of laboratory, including for 

sharing their opinion, knowledge, numerous fruitful discussions and making pleasant 

study environment. I also wish to thank for all who helped me improving my knowledge 

of my research in Electrical Power Systems Engineering. 

 I am heartily thankful to the Professor Dr. Hiroumi Saitoh’s family for their kind 

moral and personal support, especially during the recovery period of the Great Eastern 

Japan Earthquake at Laboratory.  

Finally, it is a pleasure to show my deepest gratitude to my parents, brothers and 

sisters for their love, continuous encouragement and dedicated support throughout my 

life; without which I would not have been able to continue my study. 

Last, certainly but not least, the financial support of the Monbukagakusho Committee 

is gratefully acknowledged. 

 



i 

 

Contents 

 

ACKNOWLEDGEMENTS 

 

TABLE OF CONTENTS 

 

1. INTRODUCTION 1 

1.1 Background of wind power integration into power systems 3 

1.2 Motivation 8 

1.3 Outline of dissertation 10 

 

2. STATE-OF-THE-ART IN MITIGATING THE IMPACTS OF 

WIND POWER INTEGRATION INTO POWER SYSTEMS    12 

2.1 Introduction 12 

2.2 Impact on power balancing 16 

2.3 Impact on transient stability 19 

2.4 Low-voltage ride-through requirements in Wind Turbine Generation 

Interconnection 24 

2.5 Conclusions 27 

 

3. PROPOSAL OF PITCH ANGLE CONTROL BASED ON 

FAST-RESPONSE VOLTAGE DIP DETECTION             28 

3.1 Introduction 28 

3.2 Proposal of pitch angle control for fixed-speed wind-turbine generator 31 

3.3 Configuration of proposed pitch control 34 



ii 

 

3.3.1 Pitch control mode selection logic 36 

3.4 Description of fixed-speed wind turbine generator model 38 

3.4.1 Aerodynamic model 39 

3.4.2 Pitch servo actuator model 40 

3.4.3 Induction generator and shaft system model 41 

3.4.4 Protection system model 43 

3.5 Wind farm connected power system model 45 

3.5.1 Static var compensator system model 47 

3.5.2 Fault model 48 

3.6 Verification the effectiveness of proposed pitch control 49 

    3.6.1 Comparison with base case 49 

3.7 Conclusions 56 

 

4. PERFORMANCE OF PROPOSED PITCH CONTROL IN 

FIXED-SPEED WIND-TURBINE GENERATOR WITH 

INDUCTION GENERATOR 57 

4.1 Introduction 57 

4.2 Evaluation by different short circuit capacity and fault point  58 

4.2.1 Scenario 1 (SVC at node #B, 1000MVA SCC, Fault at 1km from node #A, 

without pitch control) 58 

4.2.2 Scenario 2 (SVC at node #B, 1000MVA SCC, Fault at 1km from node #A, 

with pitch control) 62 

4.2.3 Scenario 3 (SVC at node #A, 1000MVA SCC, Fault at 1km from node #A 

without pitch control) 65 



iii 

 

4.2.4 LVRT Behaviors under different Short Circuit Capacity and Fault Point 

(SVC at node #B case) 68 

4.2.5 LVRT Behaviors under different Short Circuit Capacity and Fault Point 

(SVC at node#A case) 69 

4.3 Investigation with different wind speed   71 

4.4 Investigation by slower pitch servo actuator characteristics   73 

4.5 Design consideration in Sensitivity of control parameters on LVRT behavior

 75 

4.5.1 Fast Response Time Case 76 

4.5.2 Slower Response Time Case 80 

4.5.3 Applicable ranges of proportional gain 83    

4.6 Comparison study with feedback control approach    87 

4.7 Conclusions 93 

 

5.  POWER CURTAILMENT CONTROL IN VARIABLE-SPEED 

WIND-TURBINE GENERATOR WITH PMSG 94 

5.1 Introduction 94 

5.2 Proposal of power curtailment control 96 

5.2.1 Converter control 97 

5.2.2 Pitch angle control 98 

5.3 Description of variable-speed wind-turbine generator model  99 

5.3.1 Generator-side converter 100 

5.3.2 Grid-side inverter 101 

5.3.3 DC-link 103 



iv 

 

5.3.4 PMSG model 104 

5.3.5 Aerodynamic model 105 

5.3.6 Maximum power point tracking method 106 

5.3.7 Interfacing the 3 phase transmission system with PMSG model in d-q 

axis 108 

5.3.8 Block diagram of generator side inverter control 109 

5.4 Power Systems Model 110 

5.4.1 Fault model 111 

5.5 Verification the effectiveness of power curtailment control 112 

5.5.1 Effects of different short circuit capacity 112 

5.5.2 Evaluation with different short circuit capacity 114 

5.5.3. Comparison study with braking resistor  120 

    5.6 Effect of Pitch Angle Control 125 

5.7 Conclusions 127 

 

6.  SUMMARY AND CONCLUDING REMARKS 128 

 

REFERENCES 131 

 

PUBLICATIONS 135 

 

APPENDIX 138 

A. SIMULATION MODELS PARAMETERS 

A.1. Proposed pitch controller parameters 138 



v 

 

A.2 Synchronous Generator Parameters 138 

A.3 Parameters of wind turbine model 138 

A.4. Parameters of induction generator model 139 

A.5. Parameters of permanent magnet synchronous generator model 139 

A.6. Parameters of power converter and transmission line 139 

 

B. LVRT IMPACT ON FREQUENCY STABILITY OF POWER SYSTEM 

(BASED ON THE GENERATION MIX OF HOKKAIDO POWER SYSTEM)

 140 

 

C. INFLUENCE OF PROPOSED PITCH CONTROL ON CONVENTIONAL 

GENERATION IN POWER SYSTEM        143 

C.1 Power Systems with Synchronous Generator Model 143 

C.2 Synchronous Generator with AVR Model 143 

C.3 Simulation Results 148 

C.4 Conclusions 162 

 

D. COMPARISON STUDY WITH CONTROL STRATEGY OF BACK-TO-BACK 

FREQUENCY CONVERTER SYSTEM FROM LITERATURE [32] 163 

D.1 Simulation Model and Results                                        164 

D.2 Conclusions 167 



Chapter 1. Introduction 

pg. 1 
 

CHAPTER 1 

INTRODUCTION  

 

 

The worldwide concern about global warming and the possible energy shortage lead to 

increasing interest in electricity generation from renewable energy sources. Among 

various renewable energy sources, electricity generation from wind power has become 

the fastest-growing in many industrial nations and interconnections of large-scale wind 

farms are increasing every year. If the capacity of wind turbine generators (WTGs) 

interconnected to existing power systems increases significantly, the sudden 

disconnection of WTGs will cause abnormal change in system frequency.  

Up to now, WTGs have been treated in a similar manner to that of the other types of 

distributed generators and thus have been required to trip following even minor 

disturbances. To improve the stability of the power systems with large-scale wind farms, 

it would be desired that the wind farms continue the power injection without their 

disconnection due to the event of a fault occurring in the transmission network. In this 

regard, one of the concerns in large number of WTGs interconnection to power systems 

is the issue of Low-Voltage Ride-Through (LVRT). 

The main objective of this doctoral dissertation is to improve the LVRT of wind power 

generation; i.e. continuity of the wind turbine generators under faulted condition of 

electric power transmission network in order to mitigate the impact on the operation and 

stability of the power grids they feed. A new control method is proposed for LVRT 

capability improvement of the fixed-speed and variable-speed WTGs. The main concept 

of proposed control method is to adjust the generated output power according to the 
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voltage dip. The voltage dip detection in proposed method is done by under voltage 

relay and then releases part of wind power. The proposed method adjusts the pitch angle 

in the fixed-speed WTG and, adjusts the pitch angle and modulation of converter in 

variable-speed WTG. The effectiveness of the proposed method is confirmed by 

simulation studies in which the analysis of the LVRT capability of wind farm is carried 

out based on the fixed-speed and variable-speed WTGs. With the use of proposed 

control method, wind farm can contribute the LVRT capability for improvement in 

short-term stability of interconnected power systems. 
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1.1 BACKGROUND OF WIND POWER INTEGRATION IN 

POWER SYSTEMS 
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Figure 1.1: A schematic diagram of power systems 

 

The major task in operation of power systems is to maintain the balance between the 

generations and consumption all the time. A schematic diagram of power systems is 

shown in Figure 1.1. Although the modern electric power systems in all over the world 

vary in size and structural components, they all have the same basic characteristics [1]: 

A) They are comprised of three-phase ac systems operating essentially at almost 

constant voltage. 

B) They transmit electrical energy over significant distances to consumers spread over 

a wide area. This requires a transmission network system comprising subsystems 

operating at different voltage levels. 

C) For electricity generation, prime movers convert the primary sources of energy 
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(fossil, nuclear, and hydraulic) to mechanical energy and then convert to electrical 

energy. 

Basically, the stability, the reliability and the secure operation of modern power 

systems depend on the network configuration, protection relay system, and the 

operation and control of conventional power plants. The conventional power plants 

produce electric energy with synchronous generators from the energy resources such as 

fossil fuels and uranium. By controlling the energy feed into the prime movers, those 

power plants can control the balancing between the total generation and system load so 

that the desired frequency and power interchange with neighboring systems can be 

maintained. When the power system is subject to a short-circuit fault, the excitation 

control of synchronous generators in conventional power plants contributes to the 

voltage re-establishment in the power grid, and their frequency control ensures the 

systems frequency during such events. Therefore, the operation and control of 

synchronous generators in conventional power plants contribute the reliable and secure 

operation of modern power systems [1]. 

According to the World Wind Energy Association (WWEA), 35,652 MW of new 

wind energy capacity were added summing up to a global installed capacity of 194,390 

MW by the end of December 2010. The currently installed wind power capacity 

generates 430 TWh per year, equaling 2.3% of the global electricity demand. Wind 

power has already contributed 36% and more of the electricity consumption in some 

countries and regions. The northern Germany state of Schleswig-Holstein has over 2500 

MW of installed wind capacity which is enough to meet 36% of the region’s total 

electricity demand, while in Navarra, Spain, some 50% of consumption is met by wind 

power. Moreover, according to the expectations of WWEA, the global installed wind 
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power capacity can be reached at least 1,500,000 MW by the end of year 2020 [2]. 

At low penetration level of wind power, the impact of wind farms is not the system 

wide concerns. At high penetration level, if a large numbers of wind power generators 

replace the conventional power plants, the concerns about the power system stability 

increase; such as the deviations in power system frequency and voltage due to the 

unscheduled disconnection of a large numbers of WTGs following the disturbance. 

Therefore, the impacts of wind power in power systems have been studied and 

experiences in power systems operation with large amounts of wind power plants have 

been reported in many literatures. 

According to the reference [3], several power systems and control areas coping with 

the large amounts of wind power have been operated. The experiences from Denmark, 

Spain, Portugal and Ireland; which have integrated the wind power equal to the 9-20% 

of yearly electricity demand, show that wind power production will only have to be 

regulated at some rare instances, and Transmission Systems Operators (TSOs) need 

on-line information of both the production and demand levels as well as respective 

forecasts in their control rooms. Spain and Portugal have launched centers for 

distributed energy that convey data to TSOs and even can react to control needs. 

 The experiences from Northern Germany show that the unscheduled disconnection 

of wind farms in the event of grid fault jeopardizes not only problem for system reserve 

but also the voltage collapse in the grid [4]. To avoid such unscheduled disconnection, it 

is desired to keep the wind turbine operation during and after the momentary voltage 

dip or fault. Therefore, TSOs of most industrial countries have been revised their grid 

codes (Requirements and Standards for Grid Connection) by adding “Low-Voltage 

Ride-Through” (LVRT) requirements in large-scaled wind farm interconnection to 
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power systems. Without the fulfillment of grid codes, the penetration level of wind 

power generation cannot be increased further, according to the experiences and 

practices of European countries [5].  

In this regard, one of the concerns in the interconnection of large amounts of the wind 

power generator is the issue of “Low-Voltage Ride-Through” (LVRT) capability (in 

some literatures or grid codes, the terms of “Fault-Ride-Through” (FRT) is used). The 

characteristic of LVRT requirement varies according to the TSOs, due to the differences 

in voltage level at Point of Common Coupling (PCC), voltage and frequency 

controllability, and generation mix of the existing systems that they operate.  

As shown in Figure 1.2, Germany, Denmark, Spain, Portugal, France, Sweden, 

Belgium, Poland, Ireland, Romania, Italy and UK have implemented 

Fault-Ride-Through (FRT)/Low-Voltage Ride-Through (LVRT) requirements for wind 

power plants in order to keep a certain level of security of supply [3, 4, 5, 6]. LVRT 

does not necessarily presuppose voltage control. In grid codes, time-voltage diagrams 

are used to define a dip profile area where disconnection is not allowed. Depending on 

specific requirements and experiences in wind power integration, the European 

countries have defined different LVRT characteristics up to now, as shown in figure 1.2. 

Most of LVRT requirements address only symmetrical three-phase grid fault. The 

voltages refer to the voltage level at the point of connection and the diagrams describe 

border lines, and tripping is not allowed above the lines. According to the common 

interpretation of the expected wind turbine behavior below the border line, a wind 

turbine can be tripped by the circuit breaker [5]. 

In Japan, according to the Tohoku Electric Power Company news on 2011-09-30 

(http://www.tohoku-epco.co.jp/news/normal/1183529_1049.html), installed capacity of 
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wind power integration will be expected to reach about 2000 MW in year 2020. 

Therefore, in near future, similar grid codes as shown in figure 1.2 will be necessary in 

Japanese power systems to avoid the system frequency deviation (appendix B). 

 

 

Figure 1.2: Comparison among the LVRT requirements for wind power plants [5, 6] 

 

Nowadays, LVRT incompatible wind power plants are not accepted by most of TSOs 

to connect their transmission networks. In this regard, to meet the LVRT requirements is 

now the most challenging issue in wind power industry. In other words, to strengthen 

the stability, reliability and secure operation of the power systems with large amount of 

wind power integration, it is necessary to develop the methods and competences for 

LVRT capability improvement of wind power plants. This opens up the new research 

area in the scope of large-scaled integration of wind power plants in power system.  
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1.2 MOTIVATION  

 

Historically, wind turbines have not been designed to react rapidly to a voltage dip. 

They have been traditionally treated in a similar manner to that of distributed generation. 

Wind turbine generators have been required to trip following even minor disturbances, 

as described in reference [7]. If wind power integration into power systems is high, the 

sudden disconnection of wind farms due to the voltage dip can affect significantly the 

power balance in the power systems. Hence, for the stability improvement of the wind 

farm connected power system, it would be desired that the wind farm continues the 

power injection without disconnecting. In this regard, one of the concerns in large 

amounts of wind power integration is the issue of low-voltage ride-through (LVRT); 

remaining connected and supplying power during and after the voltage dip, which 

contributes to mitigate the impact of wind farm connected power system stability.  

In order to contribute the LVRT capability to wind farms, there are two approaches; 

1) Improvement in power systems network side and  

2) Improvement in wind power generation side.  

The former one is to improve or reinforce the voltage stability of power systems by 

the application of extra devices such as Flexible AC Transmission Systems (FACTS) 

devices. The later one is to improve the controllers or re-design the wind generation 

systems in wind farms. The response time of FACTS devices is in the range of some ten 

milliseconds. In case of critical events within the power system, e.g. faults or 

instantaneous voltage drop, FACTS devices react immediately to these events due to 

their short response time. However, it is obvious that usage of FACTS devices increases 

the wind power integration and operation costs. This will cause the cost distribution to 
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non-wind-power related stakeholders; such as electric transmission network operator, 

consumers, etc. Therefore, WTGs are demanded more controllability to fulfill the LVRT 

requirements. On the other hand, to achieve the LVRT ability by improvement in wind 

power generation, there are many challenges such as fast response time to the voltage 

dip. 

In this dissertation, we have paid a special attention to “Low-Voltage Ride-Through” 

capability of wind farm to mitigate the wind generation impact on electric power 

systems during and after the instantaneous low voltage condition. We propose the 

advanced control systems for LVRT capability improvement of fixed-speed wind 

turbine (FSWT) and the variable-speed wind turbine (VSWT) in wind farm, which is 

based on the voltage dip detection to contribute the LVRT capability of the wind power 

generator to remain connected to the grid during and after the fault. 
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1.3 OUTLINE OF DISSERTATION 

 

The dissertation is organized as follows: 

Chapter 2 describes the large wind farms impact on power system balancing, 

transient stability, and the requirement of Low-Voltage Ride-Through. 

Chapter 3 addresses the concept of proposed generic pitch-angle control. The main 

concept of the proposal is to release the active power extracted from wind by adjusting 

the pitch angle when the momentary voltage dip is occurred. The proposed pitch angle 

control is based on the fast-response under voltage relay and the use of voltage as an 

input of PI controller. The effectiveness of the proposed pitch angle control is confirmed 

by comparing with base case. 

Chapter 4 discusses the effectiveness of the proposal as well as power systems 

modeling in fault study and voltage stabilization of wind farm connected bus by Static 

Var Compensator Systems (SVS or alternately SVC). This chapter also deals with the 

short-term voltage stability phenomena of wind farm with respect to the 3 phase ground 

fault.  The relation of active power injection and voltage stability of power systems is 

explained. Influence on the voltage recovery by the reactive power requirement of the 

induction generator is also described. The effectiveness of proposed pitch angle control 

is confirmed with different voltage controllability of network, grid stiffness, location of 

SVC, and fault locations. The range of proportional gain in a proposal with respect to 

the response time of under voltage relay is presented. Moreover, performance of the 

proposed pitch control is compared with feedback approach. 

Chapter 5 discusses the improvement of LVRT capability of Permanent Magnet 

Synchronous Generator (PMSG) typed wind power generation systems. The analysis of 
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PMSG behavior under different grid stiffness shows that the proposed control method is 

effective for LVRT improvement. 

Chapter 6 summarizes the dissertation main points and contributions. Moreover, 

future aspects of research are proposed. 

Finally, this dissertation is ended with appendixes.  
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CHAPTER 2    

STATE-OF-THE-ART IN MITIGATING THE IMPACTS OF 

WIND POWER INTEGRATION IN POWER SYSTEMS 

 

 

2.1 INTRODUCTION 
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Figure 2.1: Conceptual diagram of power system operation 

 

Wind power interconnection has influence on the power system operation. Figure 2.1 

shows the conceptual diagram of power system operation. Electrical energy is 

transported by transmission network from power plants to load, and the system operator 

has to maintain the stability by balancing between supply and varying demand at all 

times. According to literature [2], a properly designed and operated power system 

should meet the following fundamental requirements: 
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1. The system must be able to meet the continually changing demand for active and 

reactive power. As the electricity cannot be stored conveniently in sufficient 

quantities, adequate “spinning reserve” of active and reactive power should be 

maintained and appropriately controlled all the time. 

2. The system should supply energy at minimum cost and with minimum ecological 

impact. 

3. The quality of power supply must meet certain minimum standards with regards to 

the constancy of frequency and voltage, and level of reliability.  

From the standing point of those fundamental requirements, the integration of wind 

energy generation systems has impacts on the power quality and operation of power 

systems. The impacts of wind power integration on power systems depend to a large 

extent on the: 

1) Level of wind power penetration 

2) Grid size, and 

3) Generation mix in the system. 

Wind power integration at low to moderate levels is a matter of cost. For low 

integration levels of wind power, system operation will hardly be affected. If the amount 

of wind power generation increases, the power generation from conventional power 

plants must be reduced in order to balance power generation and consumption. Presently, 

conventional power plants are kept in operation to provide voltage and frequency 

control through the grid. The increase in large amount of wind power generation 

introduces a challenge with regard to controlling the voltage and balancing the power in 

the grid, thus affecting the system stability. Therefore, several studies are reported 

related to the wind impact on power system stability. The findings of these studies are 
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related to a superposition of different aspects of wind power, such as the fluctuating 

nature, distributed location of wind farms, generator technologies, generator control and 

prediction of network reinforcements and additional reserve requirements [8].  

Generally, the impacts of wind power on the power system can be categorized into 

short-term effects and long-term effects. In literature [9], as shown in Figure 2.2, the 

studies of wind power impact on the power system are presented in terms of time scale 

and area relevant for impact studies.  

 

 

Figure 2.2 Impacts of wind power on power systems; divided in different time scales 

and width of area relevant for the studies [9] 

 

For the time scale of milliseconds to a minute, power quality problem is the local area 

issue of grid connection, ranging from 10km to 50km.  Voltage management problem 
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is concerned with local and regional area, ranging from 50km to 100km. Grid stability 

and primary reserve (frequency activated reserve) concerns are dealt with the 

system-wide perspective, ranging from 1000km to 5000km. 

For the time scale of minutes to an hour, distribution efficiency and congestion 

management problems are concerned with local and regional area. Transmission 

efficiency is related to the regional and system-wide perspective. Regulating the 

secondary reserve (load following reserve) is the issue of system-wide concerns. For the 

time scale of day to years, adequacy of power and grid problems are concerned with the 

regional and system-wide area. 

The scope of this thesis is mainly related to the wind power impacts on short-term 

effects of power system; based on the time scale of milliseconds to a minute.  
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2.2 IMPACT ON POWER BALANCING 

 

The impacts of wind power on the power system operational security, reliability and 

efficiency are mainly related to the balancing capability of power systems.  
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Figure 2.3: Conceptual diagram of power system operation with wind farm 

 

Figure 2.3 shows the conceptual diagram of power system operation with wind farm. 

The frequency in a power system is controlled by adjusting the active power of the 

generators with respect to the load. Large wind farms can contribute to frequency 

control, if the wind turbines are capable of controlling their pitch angles from a power 

system operator. The impact of large wind power generation (exceeding 50% of the 

overall power) on frequency stability and voltage profile during a contingency situation 

was explored in literature [10]. Taking the existing control systems for wind generators 
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as the baseline case, it was found out that at the conceptual level, there are indeed a 

range of options which would place wind generating plants in a position to support 

system frequency in an emergency situation. 

For both fixed-and variable-speed wind turbines, load-frequency control can be 

obtained by slightly increasing the nominal blade pitch angle, reloading the wind 

turbine by a corresponding amount. Fixed-speed wind turbine tends to be more sensitive 

to changes in pitch angle compared with variable-speed wind turbine due to their 

constant speed operation. Thus, the wind turbine output can be adjusted in sympathy 

with frequency variations, akin to governor control on a conventional generator [8]. 

To reduce the frequency fluctuation which cannot be absorbed by power systems, the 

causing wind power generators with the maximum turbulence degree for frequency 

fluctuation can be searched and frequency stability can be improved by appropriately 

disconnection of wind farm [11]. In the literature [12], frequency fluctuation by wind 

power can be improved by using the kinetic energy stored in the inertia of 

variable-speed wind turbine. Therefore, the wind power generation can contribute in 

primary and secondary frequency control.  

Frequency deviations from nominal can happen not only under normal operation, but 

also in the wake of transient faults. To assist the generation after transient faults, power 

system operators require wind turbines to be able to operate in a wide range of 

frequencies, which can be problematic for fixed speed wind turbines [13]. In the 

literature [14], a PID pitch angle controller is presented for damping of grid frequency 

oscillations in most of the wind speeds of the wind turbine operating range. Therefore, 

the pitch angle control enables a wind turbine to perform power system stabilization 

similar to conventional power plants. 



Chapter 2. Stat of Art in Impacts of Wind Power Integration in Power Systems 

 

pg. 18 

 

In the literature [15], a system of wind power forecasting has developed to predict the 

total wind power output in the power system of Tohoku Electric Power Co., Inc, Japan. 

The weather forecasting data from Japan Meteorological Agency is used to stimulate the 

wind speed at tower height of every wind farm in control area of Tohoku Electric Power 

Co., Inc. Then, this system forecasts and provides the estimated output of wind power in 

every 10 minutes, and the forecasting errors are improved by using statistical methods 

with several steps. This system has accuracy of about 8% (current day forecast) and 

10% (next day forecast), which can contribute the power balancing control in system.  

According to the literatures discussed in above, wind energy generation systems can 

contribute to mitigate the impacts on short-term power balancing. Moreover, by 

forecasting the wind power output in power system, the operation of generators can be 

scheduled to maintain the balance between the demand and supply. 
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2.3 IMPACT ON TRANSIENT STABILITY 

 

One of the major concerns in power system operation is the stability which deals with 

the behavior of the power system to remain in a state of operating equilibrium under 

normal operating conditions and to regain an acceptable state of equilibrium after being 

subjected to disturbances such as,  

1) continual gradually load changes and the system adjusts itself to the changing 

conditions,  

2) sudden changes in load or generation, loss of a tie between two subsystems, or short 

circuits on transmission lines. 

 

 

 Figure 2.4: IEEE/CIGRE Power system stability diagram  

 

It is impractical to study by considering all the aspects into a single problem. Power 

system’s stability can be classified according to time scale and interests of ability to 

maintain in equilibrium regarding to the disturbance. Figure 2.4 presents the general 
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classification of power system stability [16]. 

If the amount of wind power generation increases, the power generation from 

conventional power plants must be reduced in order to balance power generation and 

consumption. Presently, conventional power plants are kept in operation to provide 

voltage and frequency control through the grid. Therefore, the large amount of 

increasing wind power generation introduces the challenges with regard to controlling 

the voltage and balancing the power in a grid, thus affecting systems stability.  

 The impacts of wind turbine on the stability of power systems have been discussed 

in many publications. The main aspects of wind power having a possible impact on 

stability issues are: 

1) Wind energy generators are usually connected to lower voltage levels than 

conventional power stations. Most wind farms are connected to sub-transmission 

(110kV, 66kV) or even to distribution levels (20kV, 10kV) and not directly to 

transmission levels (>110kV) via big step-up transformers as in case of conventional 

power stations. 

2) Wind resources are usually scattered in locations than conventional power stations. 

Hence, power flows are considerable different in the presence of a high amount of 

wind power and power systems are typically not optimized for wind power transport 

and to be vulnerable to fault. This aspect can be more or less severe according to the 

geographical location. 

3) Because of the fluctuating nature of wind power and limited predictability of wind 

speed, power systems with a high amount of wind power usually require higher 

spinning reserve than conventional power systems, which adds inertia to the system. 

4) Wind generators are usually based on different generator technologies so that the 
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impacts on power system stability depend on their characteristic accordingly. 

The impacts of voltage quality, power characteristic and grid frequency depend on the 

turbine type considered [17]. Such findings are not only based on theoretical 

considerations, but have been confirmed by measurements [18]. The inherent variability 

of wind power causes wind turbines to exhibit power fluctuations and causes flicker in 

the grid [19]. In more critical operating conditions, wind turbines can even compromise 

voltage stability in the grid [20]. It has been found though, that the operation of wind 

turbines itself is also affected by variations in grid voltage, voltage imbalance, variation 

in system frequency and voltage distortion [13]. 

The effect of large-scale wind power generation on power system oscillation was 

investigated and presented the results qualitatively, in literature [21], in which the power 

generated by the two synchronous generators in the test system is gradually replacing by 

power from either constant or variable-speed wind turbines, while observing the 

movement of the eigenvalues through the complex plane. From the results, an increase 

in frequency and damping of power system oscillations was observed. Furthermore, it 

was shown that constant-speed wind turbines damp the power system oscillations more 

than variable-speed turbines because of the damping effect of the squirrel cage 

induction generator used in constant-speed wind turbines.   

However, the above mentioned studies did not consider the protective disconnection 

due to the voltage dip at the wind turbine generator terminals. Even simple grid problem 

such as a two-phase line fault occurred in the 220kV grid in the Oldenburg region, 

Northern Germany, resulted in split second-long voltage dips in the region concerned, 

which caused a sudden loss of around 1,100MW of wind power feed-in [4]. 

Furthermore, in literature [22], significant power loss caused by a factitious short-circuit 
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fault in Western Denmark grid was explained. According to the study for the value of 

Low-Voltage Ride-Through (LVRT) capability of wind generation in the UK [23], the 

lack of LVRT capability will lead to increasing in fuel cost because of the wind energy 

loss which will need to be compensated by an equivalent increase in the output from 

convention plant. For LVRT capability improvement, use of Flexible AC Transmission 

Systems (FACTS) devices is reported in literature [24] and the use of series dynamic 

barking resistors is reported in literature [25]. In literature [26], the issue of voltage 

stability at a short-circuit fault in the grid and associated control strategies for induction 

generator based wind turbines are presented. However, it is not included how to achieve 

the fast control action for LVRT of constant-speed wind turbine rather that the use of 

command from power system control center. 

The representative previous works related to the LVRT of wind turbine generator 

based on Doubly Fed Induction Generator (DFIG) are as follows. In the literature [27], 

the effect of protection devices such as a crowbar is investigated. Analyzing the reasons 

of a DFIG system with series grid-side converter for LVRT and control scheme for 

operation under unbalanced grid faults conditions are presented in literature [28]. The 

dynamic behavior of variable- speed wind turbines and their interaction with the power 

systems are discussed in literature [29].  

Due to the grid connection via a full-scale converter, the Permanent Magnet 

Synchronous Generator (PMSG) based wind turbine can easier accomplish LVRT and 

provide a higher amount of reactive power to the grid than DFIG wind turbines. In 

contrast to full converter connected wind turbines, the reactive power supply of a DFIG 

wind turbine is limited due to the limited size of the converter. Because of direct grid 

connection, DFIG wind turbines are directly subjected of using a partial scale converter 
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turns into a technical disadvantage in cause of grid faults. Nevertheless, with an 

appropriate control and protection system, DFIG can also ride-through the grid faults 

and contribute to power system support in a satisfactory manner. 

The previous works with respect to the countermeasures for voltage dip on PMSG are 

described as follows. In the literature [30], the Braking Resistor (BR) is used in parallel 

with DC capacitor to dissipate the extra energy. The advantage of this approach is 

simple in control performance although the additional cost is added. In the literature 

[31], the use of diode rectifier and DC-DC chopper, DC-DC boost-converter, and PWM 

rectifier with battery for storing the extra wind energy are suggested. In the literature 

[32], the use of Energy Storage System (ESS) and Braking Chopper (BC) is suggested 

to handle the DC-link voltage. Although the extra cost is inevitable, this results the 

improvement of overall performance for both fault ride-through and power smoothening 

so as to the overall performance of PMSG. In the literature [33], a control scheme is 

suggested to store the excessive kinetic energy in the large rotating masses of wind 

turbine and generator. However, the phenomenon of reactive power injection and over 

speeding of rotor during the voltage dip are not shown in this literature. According to 

the study in the appendix D, this method cannot inject reactive power during fault 

period.  
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2.4  LOW-VOLTAGE RIDE-THROUGH REQUIREMENTS IN 

WIND ENERGY GENERATION INTERCONNECTION  
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Figure 2.5: Conceptual diagram of low-voltage ride-through requirement  

 

The term “Low-Voltage Ride-Through” of wind turbine stems from the desire to 

remain connected to the grid during a momentary voltage dip. In the Figure 2.5, a 

conceptual diagram which shows the necessity of wind farms’ low-voltage ride-through 

capability for stable power system operation. As shown in the Figure 2.5, the dotted 

circle represents the generated power loss, PWF, from wind farm due to the unscheduled 

disconnection by fault occurring. In the event of a fault in the transmission network, the 

voltage over the network will be depressed as a result of the current flowing into the 

fault point. When the fault is cleared by the operation of the protection system, the 
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voltage recovers to system voltage. The voltage dip duration time is related to the length 

of time to clear a transmission line fault, usually 10 to 20 cycles, and the magnitude of 

the voltage dip is determined by the location and type of fault. The rate of recovery 

likely depends on the strength of the interconnection and reactive power support. Many 

wind turbine generators are based on asynchronous machines, directly connected 

squirrel cage machine which cannot control reactive power and terminal voltage 

themselves. Being the lack of voltage and reactive power self-controllability, the 

terminal voltage of wind turbine generators are strongly related to the voltage at the 

point of interconnection and, of course, also in the case of voltage depressed by the 

fault. 

Wind turbine generators have traditionally been treated in a similar manner to that of 

distributed generation. They have been required to trip following even minor 

disturbances, as in literature [7]. In this regards, the generated wind power capacity will 

be lost when the event of voltage dip continues until the fault clearing. The ability of the 

generation capacity to remain connected to the network during and after the voltage dip 

is vital to the stability of the network, and hence the premature tripping of wind turbine 

generators due to voltage dip can further risk the short-term voltage stability of the 

power systems and the amplification of the effect to the transient and frequency 

stability. Especially, when there is a high generating capacity from wind power, LVRT is 

seen to be particularly important in terms of maintaining the short-term stability of 

power systems relates to large disturbance. Therefore, to prevent the sudden loss of 

large amounts of wind power due to voltage dip in the grid, power system operators in 

most industrial countries have been revised their grid codes of LVRT requirement of 

wind power generator for interconnection to grid. It becomes clear that “Low-Voltage 
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Ride-Through” capability has been an essential requirement in wind power generation 

to mitigate the impacts on power systems. 

The most important stipulations of Low-Voltage Ride-Through (LVRT) requirements 

which are introduced in most countries with high penetration of wind power generation 

are twofold, namely that; 

1) wind turbines have to stay connected to the grid during voltage dips and, 

2) they have to initiate forced reactive current injection for supporting the grid voltage. 

The second requirement implies that wind turbine has to implement a fast voltage 

controller [4]. In other words, wind turbine must response quickly with respect to the 

voltage dip in order to remain connected with grid. 

In the previous studies, there is still lack of considering how to get fast response in 

controlling for LVRT improvement. Moreover, consideration of the network stiffness is 

not included in developing their methods. Since the short circuit current depends on the 

network stiffness, the amount of power injected by Wind Turbine Generator (WTG) 

during and after a fault is strongly related to the stiffness. In this regard, the network 

stiffness in terms of Short Circuit Capacity (SCC) should be considered. Therefore, this 

thesis presents the new control method for fixed-speed wind turbine (FSWT) and 

permanent magnet synchronous generator (PMSG) for mitigating the impact of voltage 

dip under various SCC. The effectiveness of the proposed control method is compared 

with the use of conventional approaches. 
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2.5  CONCLUSIONS  

 

Wind energy integration to power systems has impacts on frequency stability. According 

to the experience from European countries, the unscheduled disconnection of wind 

energy generation is not undesirable to maintain the demand-supply balance. Therefore, 

LVRT requirement becomes one of the essential grid codes in interconnection of wind 

farm. The terminology of Fault-Ride-Through (FRT) is also used in some literatures 

although the essence is the same with LVRT. The characteristics of LVRT requirements 

of each country are different according to their network structure, voltage level of 

interconnection, size of wind farm, generation mix and so on. 
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CHAPTER 3 

PROPOSAL OF PITCH ANGLE CONTROL BASED ON 

FAST-RESPONSE VOLTAGE DIP DETECTION 

 

 

3.1 INTRODUCTION 

 

In the case of conventional power stations such as hydro, gas or steam, diesel power 

stations, etc., the delivery of energy can be regulated and adjusted to match demand by 

users (Figure 3.1(a)). In contrast, the wind power generation system is subject to the 

delivery of wind energy which cannot be demanded by end users (Figure 3.1 (b, c)). 

Moreover, as shown in the Figure 3.1 (b, c)), the control strategies applied on generators 

are different which depend on the types of wind power generation systems. Generally, 

wind power generation systems can be classified into variable speed wind turbine and 

fixed speed turbine, according to the nature of rotor operation. However, turbine-blade 

angle controlling is a common to any wind turbine generation systems regardless of 

fixed or variable speed operation. Wind turbine blade-angle control can be achieved by 

the pitch control of wind turbine. Pitch control is the most common means of 

controlling the aerodynamic power generated by the turbine rotor.  

This study proposes the pitch angle control and Power Curtailment (PC) control for 

FSWT with a directly grid-coupled squirrel-cage induction-generator (SCIG) model 

[34] and the variable-speed wind turbine (VSWT) with a PMSG model [35], as shown 

in the Figure 3.1 (b) and (c), respectively.  
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Figure 3.1: Energy delivery and control of electrical supply systems in (a) Conventional 

power generation (b) Wind power generation with direct grid connection (c) Wind 

power generation with back-to-back frequency converter 
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In this chapter, the detail of proposed pitch control for LVRT capability improvement 

is explained. In FSWT, LVRT behavior is related to the sudden disconnection of wind 

turbine in the wake of fault. The difficulty with the LVRT issue in FSWT is the 

capability of controlling active and reactive power output to ensure the proper response 

to the faults. 
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3.2 PROPOSAL OF PITCH ANGLE CONTROL IN FIXED-SPEED 

WIND TURBINE 
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Figure 3.2: A Proposed pitch controller for LVRT capability of FSWT 

 

In the FSWT, a directly grid-coupled SCIG is used mostly for wind power generation 

which absorbs reactive power from the power grid. This implies that the conventional 

induction generators are excited from the power grid. Such induction generators cannot 

control their excitation by themselves. Due to the lacks of self-excitation control, the 

SCIG consumes reactive power and therefore, it is usually equipped with capacitors for 

reactive power compensation. However, the use of these capacitors is not enough to 

enhance the LVRT.  

Therefore, during the voltage depression caused by a fault, the wind turbine is only 

able to deliver real power to the network in proportion to the retained voltage. The 

difference between mechanical power supplied by the rotor and electrical power of the 

generator will appear as acceleration power, speeding up the rotor and drive train (gear 

box) and accumulating stored energy in inertia. If this situation is allowed to continue,   

1) the wind turbine will over speed which can damage to the drive train (gear box), 
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and 

2) the accumulated energy stored in inertia after recovering the generator terminal 

voltage will produce over current which can damage the induction generator. 

To avoid these occurrences, the following action must be either done; 

1) to control the rotor speed to reduce the incoming wind power or 

2) to separate the generator from the grid and introduce a dump load to dissipate the 

power that cannot be absorbed by the grid. 

In order to continue the power supply during the voltage dip, the second approach is 

not desirable. The control of wind turbine speed by reducing the extracted wind power 

is the only way to achieve the LVRT for the fixed-speed wind turbine. So the pitch 

control action to balance the mechanical and electromagnetic torque is necessary for the 

LVRT.  

In the FSWT, squirrel -cage induction-generator typed WTGs are implemented. These 

types of generators absorb reactive power from a power network to supply real power, 

so that they cannot control their terminal voltage by themselves. This implies that, 

during the voltage depression caused by a fault occurred in the network, the wind 

turbine is only able to deliver real power to the network in proportion to the retained 

voltage. Therefore, as shown in Figure 3.2, the power imbalance between mechanical 

input power, Twt, to the generator and electrical output, Te, accelerates the generator 

rotor. If this situation is allowed to continue, the WTG will reach to over speed limit or 

over current limit in the wake of the fault and then eventually, the generator will be 

disconnected by protection systems. So it is vital to balance between the mechanical 

input power, Twt, and the electrical output, Te, for enhancing the LVRT capability of 

FSWT. If the turbine rotor speed, ωrotor, can be reduced quickly during voltage dip so as 
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not to rise over the maximum speed, then the sudden disconnection of WTG can be 

avoided. 

The main concept of the proposed pitch angle control is based on the voltage dip 

detection by fast response of under voltage relay and a feedback PI control of terminal 

voltage, Vs, during voltage dip. A sudden voltage dip is detected by the under voltage 

relay to initiate the pitch angle control in LVRT mode. Then, the pitch angle of blades is 

changed according to the depth of voltage dip so as to suppress the rapid increase of 

rotor speed by the release of blowing wind power. By this way, the mechanical input 

power, Twt, can be controlled in order to balance the retarding electrical torque, TTTTeeee, of 

the generator during and after the fault. 
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3.3 CONFIGURATION OF PROPOSED PITCH CONTROL 

 

The configuration of pitch angle control system consists of three parts: (1) wind turbine 

protection and pitch angle controller selection, (2) LVRT mode controller, and (3) 

normal mode controller, as shown in Figure 3.3. In the first part, the protection relays 

for the rotor over speed and induction generator over current are included. The 

protection system detects the rotor speed, ωrotor, and generator current, Is, whether in 

LVRT pitch control mode or normal mode. If the protection system detects over 

speeding limit or over current limit [26], wind turbine is disconnected for the safety 

purpose, and the pitch angle is set to 90°. 

The second part is designed to control the pitch angle according to the WTG behavior 

during voltage dip. The proposed pitch controller for LVRT is illustrated in the part of 

Figure 3.3 enclosed by the dotted lines. The pitch angle βLVRT for LVRT is the output of 

proportional integral (PI) controller which is very widely used for many kinds of control 

systems. The parameters are shown in Appendix A.1. The input of the PI controller is 

the difference between reference voltage, Vref, and the measurement of generator 

terminal voltage, Vs. When the generator terminal voltage drops below the 0.7 (p.u.) of 

nominal voltage, the LVRT pitch control mode is activated by the under voltage relay 

with the total delay time of 100ms. It is assumed that this delay time includes the relay 

pickup time, Tuvr<100ms, communication and switching delay. After the monitored 

voltage, Vs, has recovered for more than 5s, LVRT pitch control mode is deactivated. 

These under voltage relay time settings used in this study are taken from the reference 

[36].  
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Figure 3.3: A block diagram of the proposed pitch control 

 

The pitch angle control in wind turbine is the most common means of controlling the 

generated power. Therefore, the pitch controller in normal mode operation is also 

included as a third part. During the normal mode operation which is determined by the 

protection system switching logic, the pitch angle is controlled by conventional 

controller in which generated active power, Pe, is used as an input parameter. When the 

generated active power is above the rated power, 2MW, the blades are pitched by 

βNORMAL to reduce the extracted wind power. The explanation of the pitch control mode 

selection scheme is done in the next section. 
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3.3.1 PITCH CONTROL MODE SELECTION LOGIC 

 

 

Figure 3.4: Flow chart of pitch control mode selection 

 

The pitch control mode selection is done by the coordination of wind turbine protection 

system. The selection between the two control modes in section 3.2 is based on 

monitoring the magnitude of terminal voltage, Vs, the stator current, Is, of SCIG, and 

wind turbine rotor speed, ωrotor. The selection logic for pitch control modes is explained 
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here by using Figure. 3.4. Firstly, checking of whether the stator current, Is, or the rotor 

speed of wind turbine, ωrotor, exceeding the specified limit parameters [26] is carried out. 

If, at least one of these parameters is exceeded for 40 ms, the safety stop command is 

sent to pitch controller to set the maximum pitch angle (βSAFETY=90°) and, at the same 

time, the WTG is disconnected from power network by the operation of circuit breaker 

(CB). Otherwise, pitch angle, βNORMAL, is set by the normal mode pitch control with the 

input signal of generated active power unless a voltage dip is detected. If the voltage dip 

inception is detected, the protection system switches the LVRT mode pitch control 

action and sets pitch angle, βLVRT. 
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3.4 DESCRIPTION OF FIXED-SPEED WIND TURBINE  

 

 

Figure 3.5: Generic block diagram of wind turbine with FSWT [26] 

 

Figure 3.5 shows the generic block diagram of FSWT used in this study. An induction 

generator in FSWT is connected directly to the AC network, and therefore the turbine 

rotates at a nearly constant speed. As the wind speed varies, the power produced will 

vary roughly as the cube of the wind speed. At rated wind speed, the electrical power 

generated becomes equal to the rating of the turbine, and the blades are then pitch in 

order to reduce the aerodynamic efficiency of the rotor and limit the power to the rated 

value. The usual strategy is to pitch the blades in response to the power error, defined as 

the difference between the rated power and the actual power being generated, as 

measured by a power transducer. The primary objective of the pitch control is then to 

maintain the output power at the rated level when the wind speed is higher than the 

rated speed. In emergency condition, pitch angle adjustment can be done not only by the 
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supervisory control for active power control but also by the protection systems as an 

aerodynamic break for safety. 

 

3.4.1 AERODYNAMIC MODEL     

 

The power extracted from the blowing wind can be expressed by the following equation 

[34]:  

3
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where ρ is the air density, λ is the tip speed ratio 
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λ = , β is the pitch angle, Awt is 

the area covered by the wind turbine rotor, ωwt is the wind turbine rotor angular 

frequency, Tm is the torque from blowing wind and vwind is the wind speed. The power 

coefficient, Cp, is approximated by the following equation [34]: 
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Equation 3.1 can be normalized at the certain based condition. In the per unit (pu) 

system, we have: 

3
___ puwindpupppum vCkP =     (3.4) 

where 

pumP _ =Power in pu of nominal power for particular values of ρ and A 

pupC _ =Performance coefficient in pu of the maximum value of pC  

puwindv _ =Wind speed in pu of the base wind speed.  

The parameters c1~c9 in equation (3.2) and (3.3) used in the simulation study are 
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shown in Appendix A.3. By adjusting the pitch angle, β, the power extracted from the 

blowing wind can be effectively controlled. 

 

3.4.2 PITCH SERVO ACTUATOR MODEL     

 

A pitch servo actuator model is shown in Figure 3.6. The pitch servo actuator system 

actually has non-linear characteristics, but it can be approximately expressed as a 

first-order servo model. Usually, a first-order servo model is sufficient in investigations 

of phenomenon related to power system stability [26]. In this model, a servo time 

constant and a limitation of both the pitch angle and its rate of change are taken into 

account, as the pitch angle cannot be changed immediately. The rate of change 

limitation decides how fast the extracted wind power can be reduced. In this study, the 

pitch angle changes, ∆β/∆t, is limited by a possible pitch rate for a modern wind 

turbine, i.e., dβ/dt MAX and dβ/dt MIN at ±15 [deg/s] respectively [37]. Then, the pitch 

angle is limited between β MAX=90° and β MIN=0°. The servo time constant is set at 

TSERVO=0.25s [24]. 
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Figure 3.6: Pitch actuator model 
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3.4.3 INDUCTION GENERATOR AND SHAFT SYSTEM MODEL     

 

In SCIG model, we take into account the transients in the rotor circuit as well as the 

fundamental-frequency transients components of stator circuit [38]. It implies that the 

magnetic saturation and any losses apart from the copper losses are neglected, and flux 

distribution, stator voltages and currents can be assumed as sinusoidal at the 

fundamental frequency [1, 26, 38, 39 ]. The model equations of SCIG in per unit (p.u.) 

systems [38] can be expressed by equations 3.5 to 3.9. The electrical part of the machine 

is represented by a fourth-order state-space model and the mechanical part is 

represented by a second-order system. The electrical output torque, Te, can be expressed 

by equations 3.9. All electrical variables and parameters shown in Appendix A.4 are 

referred to the stator.  

dsqsqssqs
dt

d
iRv ωψψ ++=                 (3.5) 

qsdsdssds
dt

d
iRv ωψψ −+=            (3.6) 

drrqrqrrqr
dt

d
iRv ψωωψ )( −++=′     (3.7) 

qrrdrdrrdr
dt

d
iRv ψωωψ )( −−+=′     (3.8) 

 )(5.1 qsqsdsdse iipT ψψ −=                 (3.9) 

The subscript definitions are as follows: d is d axis quantity, q is q axis quantity, r is 

rotor quantity, s is stator quantity, l is leakage inductance, m is Magnetizing inductance 

a is the phase a of AC three phase and b is the phase b of AC three phase. 

The parameter definitions are as follows: ψ is electromagnetic flux, R is resistance, L 

is inductance, i is current, v is voltage. Those parameters have the following relations: 
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qrmqssqs iLiL +=ψ , drmdssds iLiL +=ψ , dsmdrrdr iLiL +=ψ qsmqrrqr iLiL +=ψ ,

mlss LLL += , mlrr LLL +=  

The equations of motion are as follows: 
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where rθθβ −= , β =the difference between the position of reference frame and rotor,  

rθ =position (electrical) of the rotor, θ=angular position of the reference frame, θm is the 

rotor angular position, ωm is rotational speed, H is a lumped inertia constant, F is 

damping coefficient, and Twt is the mechanical input torque.  
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3.4.4 PROTECTION SYSTEMS MODEL 

 

It is helpful to consider the protection system as quite distinct from the main or ‘normal’ 

control system of the turbine. Its function is to bring the turbine to a safe condition in 

the event of serious or potentially serious problem. It means that the turbine with the 

applied brakes is brought to be at rest. 

The normal wind-turbine supervisory controller should be capable of starting and 

stopping the turbine safely in all foreseeable ‘normal’ conditions, including extreme 

winds, loss of the electrical network, and most fault conditions which are detected by 

the controller. The protection system acts as a back-up to the main control system, and 

takes over if the main system appears to be failing to do this. It may also be activated by 

an operator-controlled emergency stop button. 

Therefore, the protection system must be independent from the main control system 

as far as possible, and must be designed to be fail-safe and highly reliable. Rather than 

utilizing any form of computer or micro-processor based logic, the safety system would 

normally consist of a hard-wired fail-safe circuit linking a number of normally open 

relay contacts. The protective relay system of a fixed-speed wind turbine watches and 

checks several electrical and mechanical parameters such as the terminal voltage, the 

stator current and the rotor speed. The protective relay system orders disconnection of 

the wind turbines when at least one of the monitored parameters exceeded its relay 

settings. The induction generator is rigid and not usually harmed by delivering over of 

its rated power for some period of time as long as its rated temperature is not exceeded. 

Especially in the application of wind turbine generation system, the blowing wind can 

reduce the temperature of generator. According to the typical relay settings for 
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fixed-speed wind turbines manufactured and commissioned in Denmark, the over 

current relay will be tripped if the generated current above 2 (p.u.) for 40ms [26]. In this 

study, in addition to the monitoring of over current above 2 (p.u.) for 40ms, the rotor 

speed which is not more than 18.7 rpm (110% of rated speed) is also used as a 

monitored parameter. If any one of those contacts is lost, the protection system trips, 

causing the appropriate fail-safe actions to operate. This might include disconnecting all 

electrical systems from the supply, allowing fail-safe pitching to the feather position, 

and allowing the spring-applied shaft brake to come on. 

The protection system might, for example, be tripped by any one of the following: 

� Rotor over-speed, i.e., reaching the hardware over-speed limit- this is set higher 

than the software over-speed limit which would cause the normal supervisory 

controller to initiate a shut-down ( typical arrangement of rotor speed sensing 

equipment on low-speed shaft); 

� Emergency stop button pressed by an operator; 

� Other faults indicating that the main controller might not be able to control the 

turbine such as generator over current. 

The wind turbine may also trip by under voltage, over voltage, under frequency, and 

over frequency relay. These relay settings can be found in [26]. However, when wind 

turbines disconnect in operation situations without any risk of voltage instability or 

damage to the equipment, this can be defined as unnecessary disconnection. In this 

study, wind turbine tripping by over and under frequency conditions is not included as 

the frequency fluctuation is not considered. Moreover, as the main goal of this study is 

not to disconnect by voltage dip, the tripping by under voltage relay is not desired. 

Although the protective tripping by under voltage relay is not included, the proposed 



Chapter 3. Proposal of Pitch Angle Control based on Fast-Response Voltage Dip 

Detection 

 

pg. 45 
 

control method adjusts the pitch angle according to the voltage dip. 

 

3.5 WIND FARM CONNECTED POWER SYSTEM MODEL 

 

 

Figure 3.7: A model of power systems including wind farm and SVC 

 

The power system model including a wind farm shown in Figure 3.7 is used. The 

wind farm consists of 15 FSWTs of which each has 2MW rated power capacity [34]. 

The wind farm is connected to 66kV bus at which Static Var Compensator System 

(SVC) of 30 Mvar capacity is installed for bus voltage stabilization. 
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The turbulence nature of wind speed can be neglected because the voltage dip 

duration is relatively short in LVRT studies. During the normal operation, even the 

wind blows up to 25 m/s, the maximum possible rotor speed will be around the rated 

rotor speed. Therefore, it can be considered that the maximum power generation 

conditions are the worst-cases performance for evaluating LVRT. In this regard, the 

complicated wind speed model is omitted in the simulation studies, and the rated wind 

speed of 14m/s is mainly used as the worst-case condition for LVRT. 

Moreover, the internal wind farm network and any interactions between the turbines 

themselves are neglected in this study. This implies that, it is not necessary to model 

individual wind turbines in the wind farm as far as they are in same type and connected 

to the same bus. Instead, an aggregated wind farm model is used to evaluate the 

interaction with power systems. The aggregated model is developed by lumping of 15 

WTGs into a single equivalent wind turbine. These WTGs are assumed to have the 

identical system parameters and same wind speed are exerting on each WTGs. The 

fixed shunt capacitor of (0.5p.u.) [34] is assumed to be connected to each WTG 

throughout the LVRT.  

The power system is represented by the infinite bus with an equivalent impedance, 

Zth. The Zth has X/R ratio of 10 and the value is set according to the short circuit 

capacity (SCC) of power systems, i.e. (4.356+j43.56)Ωat100MVA, (0.8712+j8.712)Ω 

at 500MVA, and (0.4356+j4.356)Ω at 1000MVA respectively. The FSWT, CB, wind 

turbine transformers, SVC, cables and grid transformers [35] are modeled by using the 

simulation tool of MATLAB/Simulink environment. 
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3.5.1 STATIC VAR COMPENSATOR SYSTEM MODEL    
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Figure 3.8: Block diagram of SVC 

 

When a wind farm is connected to the power systems, the impedance between wind 

farm and systems will be dominated by reactance. Therefore, the reactive power flow 

dominates any voltage variation at the point of wind farm connection. In general, it 

would be expected that the fast response reactive power compensation device is 

implemented at the point of wind farm connection to control the voltage variation due to 

fluctuated nature of wind speed causing the variation in reactive power absorption by 

SCIG. Therefore, to verify the effectiveness of the proposed pitch control method, the 

voltage control ability at the point of wind farm connection is considered by using SVC. 

The SVC is modeled as an equivalent current source, Isvc. The current, Isvc, is assumed 

to be regulated by the control system indicated in Figure 3.8. This model only considers 

for observing the impact on voltage stability at fundamental frequency [38, 40]. It 

implies that the details of power electronics, the measurement system, and the 
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synchronization system are represented by simple transfer functions at the system’s 

fundamental frequency. The SVC has the dynamic performance of ±30 Mvar, with the 

average thyristor valves firing time delay, Td, of 4ms and the V-I characteristics slope or 

droop reactance, KSL, of 0.03 p.u. at 30 MVA base. The reference voltage (Vref) of the 

voltage regulator with PI controller is set at 1.03 p.u. to stabilize the voltage at the Point 

of Common Coupling (Vpcc). 

 

3.5.2 FAULT MODEL     

 

Three-phase-to-ground fault model [38] is used in this study. The fault in the 

transmission network depresses the network voltage and thereby weakens the power 

transfer capacity of the wind farm to power system across the network. Then the WTGs 

are in over speeding and trip from the network in consequence. Therefore, one of the 

serious network faults, three-phase-to-ground fault, is used as a worst-case for 

evaluating the proposed pitch control for LVRT. 
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3.6 VERIFICATION THE EFFECTIVENESS OF PROPOSED 

PITCH CONTROL  

 

The effectiveness of the proposed pitch control is checked by simulation studies. By 

assuming the different fault points between node #A and #B (at 1km, 8km, 18 km of 

19km long sub-transmission line from the node #A respectively) in Figure 3.7, the 

voltage along the sub-transmission lines is depressed until the faulted line is isolated. 

The fault sequence used in the simulation is the three-phase-to-ground fault occurred in 

one of the 66kV sub-transmission lines. The fault is occurred at 500 ms and the faulted 

line is isolated at 700 ms from the start point of simulation.  

 

3.6.1 COMPARISON WITH BASE CASE 

 

Base Case (Without pitch control scenario of SCC=500MVA, SVC at node #B, fault 

point of 1 km from node #A between node A and B)  

The LVRT of wind farm cannot be achieved in base case. The associated LVRT 

behavior of wind farm is shown in Figure 3.9 and 3.10. After isolating the faulted line, 

the generated active power of wind farm is lost at 2098 ms from the start point of 

simulation, as WTG is disconnected. When the fault is occurred at the distance of 1km 

from node #A at 500 ms, the generator terminal voltage is depressed suddenly to 0.5p.u. 

Although the wind turbines are not designed to be disconnected by the under voltage 

relay, both mechanical parts and electrical parts of wind turbine generator are protected 

by means of the over current relay and over speed protection systems. The generator 

terminal voltage continues depressing to the 0.03 p.u. until the faulted line is isolated at 
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700ms. During the voltage dip, as explained in section 3.2, the electrical output of WTG 

proportionally decreases to the magnitude of terminal voltage. As a result, as shown in 

Figure 3.9, the turbine rotor speed increases because of the imbalance between 

mechanical input and electrical output.  

Once the faulted line is isolated at 700 ms, the terminal voltage tends to recover back. 

Consequently, SCIG absorbs more reactive power due to over speeding (not reached to 

the protection system limit of 1.1 p.u. at that instance) and this causes over current in 

the stator of SCIG (not reached to the protection system limit of 2 p.u. for 40ms at that 

instance) as shown in Figure 3.9 and Figure 3.10. However, the terminal voltage of 

SCIG is collapsed due to the continuous over speeding of rotor and unfortunately 

reached to the over speed protective relay limits for 40 ms at the time of 2098 ms from 

the start point of simulation. Therefore, WTG is disconnected from the grid by over 

speed protection in order to avoid the damaging.  

The behavior of SVC which explained in section 3.5.1 is shown in Figure 3.11. Due 

to the fault, the bus voltage controlled by SVC at node #B is depressed to the 0.4 p.u. 

until the fault is isolated. According to the reference voltage setting of voltage regulator, 

SVC injected the reactive power of 30Mvar once the voltage at node #B is recovered 

back. Although the SVC fed the reactive power absorbed by the wind farm during and 

after the fault, the continuous power supply of wind farm is cannot be achieved in this 

case. 
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Figure. 3.9: Wind Farm Behavior (Base Case: without pitch control) 
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Figure 3.10: Stator current (Base Case: without pitch control) 

 

 

 

 

 

Figure 3.11: SVC behavior (Base Case: without pitch control) 
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Proposal Case (With pitch control scenario of SCC=500MVA, SVC at node #B, fault 

point of 1 km from node #A between node A and B)     

The LVRT of wind farm can be achieved in proposal case. The associated LVRT 

behavior of wind farm in proposal case is shown in Figure 3.12 and 3.13. In comparison 

with the case 1, the generated power from wind farm can continue to supply after the 

fault is isolated although the behavior of wind farm during the voltage dip (except the 

pitch angle) in proposal case is almost the same as base case. The pitch angle is started 

to adjust by proposed pitch control at 600ms (100ms after the fault) from the start point 

of simulation so as to reduce the torque and rotor over speeding.  

By comparing Figure 3.9 with 3.12, the over speeding of rotor can be reduced during 

the post-fault period in proposal case. The rotor speed recovers back to pre-fault level 

(around 1 p.u.) at 1500ms. Consequently, the proposed pitch control contributes to 

voltage recovery and reduction of the over current in the stator of SCIG after the fault is 

isolated as shown in Figure 3.12 and 3.13 respectively.  

 The behavior of SVC in proposal case is shown in Figure 3.14. Due to the fault, the 

bus voltage controlled by SVC at node #B is depressed to the 0.4 p.u. until the fault is 

isolated. According to the reference voltage setting of voltage regulator, SVC injected 

the reactive power of 30Mvar once the voltage at node #B is recovered back. The SVC 

fed the reactive power absorbed by the wind farm during and after the fault until the 

terminal voltage recovers back to the nominal voltage of 1 p.u. 
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Figure. 3.12: Wind Farm Behavior (Proposal Case: with pitch control) 
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Figure 3.13: Stator current (Proposal Case: with pitch control) 

 

 

 

 

 

Figure 3.14: SVC behavior (Proposal Case: with pitch control) 
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3.7 CONCLUSIONS 

 

This chapter described the concept and detailed description of the proposed pitch 

control. The effectiveness of this method is also shown. The kernel of the proposed 

pitch control is to release the active power extracted from the wind by adjusting the 

pitch angle of wind turbine blade according to the magnitude of voltage dip. Due to the 

use of disturbance as a control systems input, the proposed method is fallen into the 

group of feed-forward approach. The proposed control systems can modify the pitch 

angle in the short response time by the coordination of protective relay. Then the pitch 

angle is adjusted by PI controller based on the measurement of induction generator 

terminal voltage.  
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CHAPTER 4   

PERFORMANCE OF PROPOSED PITCH CONTROL IN 

FIXED-SPEED WIND-TURBINE GENERATOR WITH 

INDUCTION GENERATOR 

 

 

4.1 INTRODUCTION 

 

In this chapter, the effectiveness of the proposed pitch control method for LVRT is 

confirmed by means of simulation studies. The objective of this study is related to the 

electromechanical dynamic behavior of WTG and hence, only the fundamental 

frequency component of voltages and currents is taken into account in all the simulation 

models. The simulation models in this chapter are explained in Chapter 3. 

The performance of proposed pitch control is discussed under different grid stiffness 

with the consideration of  

1) Different fault locations.  

2) Different locations of Static Var Compensation System (SVC). 

Moreover, the effectiveness of the proposed method is confirmed under several wind 

speeds condition. Design consideration is included by quantitative study in which the 

influence of sensitivity of control parameters on LVRT behavior is examined. As the 

proposed control method is based on the feed-forward approach, the comparison with 

feedback approach is done for clear understanding.  
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4.2 EVALUATION BY DIFFERENT SHORT CIRCUIT 

CAPACITY AND FAULT POINT  

 

The effectiveness of the proposed pitch control is checked by simulation studies. By 

assuming the different fault points between node #A and #B (at 1km, 8km, 18 km of 

19km long sub-transmission line from the node #A respectively) in Figure 3.7, the 

voltage along the sub-transmission lines is depressed until the faulted line is isolated. 

The fault sequence used in the simulation is the three-phase-to-ground fault occurred in 

one of the 66kV sub-transmission lines. The fault is occurred at 500 ms and the faulted 

line is isolated at 700 ms from the start point of simulation. In addition to these, LVRT 

behaviors of wind farm are explored by considering the two different locations (whether 

at node #A or node #B) of SVC and the three different stiffness (100MVA, 500MVA, 

1000MVA of SCC respectively) of power systems.  

 

4.2.1 SCENARIO 1 (SVC AT NODE #B, 1000MVA SCC, FAULT AT 1KM FROM 

NODE #A, WITHOUT PITCH CONTROL) 

 

The LVRT behavior of wind farm for this scenario is shown in Figure 4.1 and Figure 

4.2. The associated SVC behavior is also shown in Figure 4.3. In Figure 4.1, the 

generated active power of wind farm is lost at 2338 ms from the start point of 

simulation due to the wind farm disconnection after isolating the faulted line. When the 

fault is occurred at the distance of 1km from node #A, the generated terminal voltage is 

depressed suddenly to 0.5 p.u at the 500 ms. The generator terminal voltage continues 

depressing to the 0.03 p.u. until the faulted line is isolated at 700 ms. As explained in 

section 3.2, the imbalance between mechanical input and electrical output is occurred 
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which causes the rotor over speeding.  

 Once the faulted line is isolated at 700 ms, the terminal voltage tends to recover 

back. Consequently, SCIG absorbs more reactive power due to over speeding (not 

reached to the protection system limit of 1.1 p.u. at that instance) and this causes over 

current in the stator of SCIG (not reached to the protection system limit of 2 p.u. for 

40ms at that instance) as shown in Figure 4.1 and Figure 4.2. However, the terminal 

voltage of SCIG is collapsed due to the continuous over speeding of rotor and 

unfortunately reached to the over speed protective relay limits for 40 ms at the time of 

2338 ms from the start point of simulation. Therefore, WTG is disconnected from the 

grid by over speed protection in order to avoid the damaging. 
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Figure 4.1: Wind Farm Behavior (scenario1: without pitch control)  
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Figure 4.2: Stator current (scenario1: without pitch control) 

 

 

 

Figure 4.3: SVC Behavior (scenario1: without pitch control) 
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The behavior of SVC is shown in Figure 4.3. Due to the fault, the bus voltage 

controlled by SVC at node #B is depressed to the 0.5 p.u. until the fault is isolated. 

According to the reference voltage setting of voltage regulator, SVC injected the 

reactive power of 30Mvar once the voltage at node #B is recovered back. Although the 

SVC fed the reactive power absorbed by the wind farm during and after the fault, the 

continuous power supply of wind farm cannot be achieved in this case. 

 

4.2.2 SCENARIO 2 (SVC AT NODE #B, 1000MVA SCC, FAULT AT 1KM FROM 

NODE #A, WITH PITCH CONTROL) 

 

The LVRT behavior of wind farm for this scenario is shown in Figure 4.4 and Figure 4.5. 

The associated SVC behavior is also shown in Figure 4.6. With the use of proposed 

pitch control, the LVRT can be improved. By comparing Figure 4.1 with Figure 4.4, the 

over speeding of rotor can be reduced during the post-fault period in scenario 2. The 

rotor speed recovers back to pre-fault level (around 1 p.u.) at 1500ms. Consequently, the 

proposed pitch control contributes to voltage recovery and reduction of the over current 

in the stator of SCIG after the fault is isolated as shown in Figure 4.4 and Figure 4.5 

respectively. 
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Figure 4.4: Wind Farm Behavior (scenario2: with pitch control)  
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Figure 4.5: Stator current (scenario2: without pitch control) 

 

 

Figure 4.6: SVC Behavior (scenario2: without pitch control) 
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4.2.3 SCENARIO 3 (SVC AT NODE #A, 1000MVA SCC, FAULT AT 1KM FROM 

NODE #A WITHOUT PITCH CONTROL) 

 

The LVRT behavior of wind farm in this scenario is shown in Figure 4.7 and Figure 4.8. 

The associated SVC behavior is also shown in Figure 4.9. In Figure 4.7, the generated 

active power of wind farm is lost at 1023 ms from the start point of simulation due to 

the wind farm disconnection after isolating the faulted line. As shown in Figure 4.8, 

wind farm is disconnected by over current protection. 

The behavior of SVC in scenario 3 is shown in Figure 4.9. Due to the fault, the bus 

voltage controlled by SVC at node #B is depressed to the around 0 p.u. until the fault is 

isolated. According to the reference voltage setting of voltage regulator, SVC injected 

the reactive power of 30Mvar once the voltage at node #B is recovered back. The SVC 

fed the reactive power absorbed by the wind farm after the fault until the terminal 

voltage recovers back to the nominal voltage of 1 p.u. Due to the close location to fault, 

SVC cannot fed reactive power during the voltage dip. 

By comparing scenario 1 and 3, the location of SVC with respect to the fault point 

will affect the reactive power injection during the voltage dip. This will cause the 

different phenomenon in disconnection of wind farm. 
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Figure 4.7: Wind Farm Behavior (scenario3: without pitch control)  
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Figure 4.8: Stator current (scenario3: without pitch control) 

 

 

Figure 4.9: SVC Behavior (scenario3: without pitch control) 
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4.2.4 LVRT BEHAVIORS UNDER DIFFERENT SHORT CIRCUIT CAPACITY 

AND FAULT POINT (SVC AT NODE #B CASE) 

 

Table 4.1. LVRT Behaviors for SVC at node #B (far from wind farm) 

 (SCC) with pitch control without pitch control fault pt. from #A

Over Speed (5.59s) Over Speed (1.534s) 1km

100 MVA Succeed Over Speed (1.552s) 8km

Over Speed (5.62s) Over Speed (1.535s) 18km

Succeed Over Speed (2.098s) 1km

500 MVA Succeed Over Speed (2.392s) 8km

Succeed Over Speed (2.131s) 18km

Succeed Over Speed (2.338s) 1km

1000 MVA Succeed Succeed 8km

Succeed Over Speed (2.472s) 18km
 

 

The LVRT behaviors of wind farm are evaluated under different SCC and fault points.  

Table 4.1 summarizes the LVRT behaviors of wind farm for these cases in which the 

SVC is supposed to be connected at the node #B. In this table, the disconnection reason 

with corresponding time, and fault points are shown according to the SCC. The 

proposed pitch control is effective for all the cases of 500 MVA SCC and 1000 MVA 

SCC, as explained in previous sections.  

In the 100 MVA SCC case, the proposed pitch control is only effective for the 8 km 

fault point case. LVRT cannot be achieved for 1 km fault point and 18 km fault point 

cases. For the 1 km fault point case, the voltage recovery capability of WTG is reduced 

due to the close fault location. Similarly, the fault at 18 km from node #A reduces the 

voltage support ability of SVC. Therefore, in the section 4.2.5, we considered the close 
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location of SVC to the wind farm in evaluation of LVRT. 

The stiffness of power systems influences on LVRT behavior. LVRT can be achieved 

with the use of only SVC for the 8km fault point in 1000MVA SCC case. This is 

because the impact of fault on voltage support ability of SVC is less. 

 

4.2.5 LVRT BEHAVIORS UNDER DIFFERENT SHORT CIRCUIT CAPACITY 

AND FAULT POINT (SVC AT NODE#A CASE) 

 

Table 4.2. LVRT Behaviors for SVC at node #A (close to wind farm) 

 (SCC) with pitch control without pitch control fault pt. from #A 

Succeed Over Speed (1.552s) 1km

100 MVA Succeed Over Speed (1.572s) 8km

Succeed Over Speed (1.555s) 18km

Succeed Over Speed (2.315s) 1km

500 MVA Succeed Over Speed (2.998s) 8km

Succeed Over Speed (2.382s) 18km

Succeed Over current (1.023s) 1km

1000 MVA Succeed Succeed 8km

Succeed Over current (1.071s) 18km
 

 

Table 4.2 summarizes the LVRT behaviors of wind farm for the cases in which the SVC 

is supposed to be connected at the node #A. With the proposed pitch control, the 

disconnection of wind farm by over speed and over current can be avoided in all 

conditions. 

For the only SVC cases in the 100 MVA SCC and the 500 MVA SCC, as mentioned 

before, the LVRT cannot be improved as wind farm is disconnected by over speed 
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protection. For 1 km fault point and 18 km fault point cases in 1000MVA, although the 

continuous connection can be achieved for the 8 km fault point, the wind farm is 

disconnected by over current protection of WTG. This phenomenon may be related to 

the close location of reactive power injection.  

By comparing the Table 4.1 and Table 4.2, especially in SCC of 100 MVA case, the 

closed location of SVC to wind farm (at node #A) gives better LVRT performance than 

the far location of SVC from wind farm (at node #B). Two factors influence on LVRT 

behavior of wind farm. One is the location of SVC and the other is the SCC of power 

systems.  

The voltage variation of network depends on the location of SVC. In the case of SVC 

at node #A (close to wind farm), the voltage variation at wind farm terminal is less than 

that of SVC at node #B (far from the wind farm). In consequence, the wind farm can 

inject more power during the terminal voltage recovery after isolating the fault. 

Therefore, in the case of SVC at node #A, the rotational speed increases slowly up to 

over speed limit compared with the case of SVC at node #B.  

In addition, the larger in SCC results smaller voltage variation of network due to the 

smaller equivalent impedance. Therefore, except for the 1000MVA case in Table 4.2 

(disconnection due to over current), it takes longer time for the rotor speed to reach the 

upper limit when the SCC becomes larger. 
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4.3 INVESTIGATION WITH DIFFERENT WIND SPEED  

 

(SCC=500MVA, SVC at node #B, fault points of 1 km and 8km from node #A; between 

node A and B) 

Due to the varying nature of wind, we also investigate the effectiveness of proposed 

pitch control under the different wind speed conditions from 7 m/s to 25 m/s.  

Table 4.3 summarizes the LVRT behaviors of wind farm for the fault point of 1km 

from node #A. The proposed pitch control can improve LVRT at all wind speed range. 

For SVC only case, LVRT cannot be achieved for wind speed of 14~16 m/s and 21 m/s. 

The reason of disconnection in those wind speeds is related to the magnitude of terminal 

voltage recovery. In those wind speeds, the terminal voltage of WTG cannot recover 

back to nominal voltage from the 0.5 p.u. level during the post-fault period and this 

leads to continuation of over speeding. Except for those wind speeds, the use of SVC 

improves the terminal voltage to recover higher than 0.5 p.u. level during the post-fault 

period. This phenomenon seems to be related to the voltage regulation characteristic of 

network with respect to the WTG operation state and performance of SVC. 

The similar investigations are also performed for the fault point of 18km from node 

#A.  The simulation results are summarized in Table 4.4. The proposed pitch control 

can improve LVRT at all wind speed range. For SVC only case, LVRT cannot be 

achieved for wind speed of 14 m/s, 15 m/s, 16 m/s, due to the disconnection by over 

speed protection, as mentioned above. 
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Table 4.3. LVRT Behaviors for fault point of 1km from node #A; between node 

A and B 

wind speed(m/s) 7-13 14- 16 17-20 21 22-25

Only SVC Succeed Fail Succeed Fail Succeed

SVC&Pitch Succeed
 

 

Table 4.4. LVRT Behaviors for fault point of 18km from node #A between node 

A and B 

wind speed(m/s) 7-13 14- 16 17-20 21 22-25

Only SVC Succeed Fail Succeed Succeed Succeed

SVC&Pitch Succeed
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4.4 INVESTIGATION BY SLOWER PITCH ACTUATOR 

CHARACTERISTICS 

 

(With pitch control scenario of SCC=500MVA, SVC at node #B, fault point of 1 km 

from node #A between node A and B) 

We also checked the effectiveness of the proposed pitch control with respect to the 

servo time constant and rate of change of pitch angle, dβ/dt. Figure 4.10 is the 

simulation results with pitch control scenario of the same as simulation conditions 

mentioned in section 3.6.1 except the difference in pitch actuator model parameters. The 

servo time constant, TSERVO=1s and dβ/dt=±10 [deg/s] are used as a slower pitch 

actuator. According to Figure 4.10, the proposed pitch control method is effective with 

the slower pitch actuator condition of up to TSERVO =1s and dβ/dt=±10 [deg/s]. Due to 

the slow response in pitch angle, the slower voltage recovery occurs comparing with the 

proposal case in section 3.6.1.  
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Figure 4.10: Wind farm behavior (with Tservo=1s and dβ/dt=±10 [deg/s]) 
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4.5 DESIGN CONSIDERATION IN SENSITIVITY OF CONTROL 

PARAMETERS ON LVRT BEHAVIOR 

 

In this section, the influence on LVRT behavior by sensitivity of control parameters is 

explored. The proposed pitch control includes Proportional Integral (PI) controller, as 

explained in section 3.3, which has influence on the LVRT behavior. Therefore, by 

simulation study, the quantitative analysis is carried out to find out the influence of PI 

parameters on LVRT with respect to response time of control action. According to this 

study, we can say that the range of the proportional gain parameter in PI controller 

should be between 8 and 15 to get the appropriate LVRT behavior for various conditions. 

The range of integral gain parameter is satisfied between 0 and 50 accordingly. 

The simulation results can be divided into 2 groups according to the delay time 

setting, Tuvr in section 3.3, to active pitch control with respect to the specific range of 

proportional and integral gains. The following two cases are studied under the condition 

of SCC=500MVA, Tservo=0.25s, SVC at #A, wind speed=14m/s, fault at 1 km from #A, 

200ms of 3phase short circuit fault duration from 2s of simulation starting time.    

Case (1) Fast Response Time Case [Tuvr =0.1s] 

(a) 0=<Kp =<15 

(b) 0=<Ki =<50 

Case (2) Slower Response Time Case [Tuvr =1s] 

(a) 0=<Kp =<15 

(b) 0=<Ki =<50 
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4.5.1 FAST RESPONSE TIME CASE 

  

 [Tuvr=0.1s] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Ki=0    (b) Ki =50 

Figure 4.11: Pitch Angle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Ki=0    (b) Ki =50 

Figure 4.12: Terminal Voltage 
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(a) Ki=0    (b) Ki =50 

Figure 4.13: Rotational Speed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Ki=0    (b) Ki =50 

 

Figure 4.14: Active Power 
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(a) Ki=0    (b) Ki =50 

Figure 4.15: Mechanical Torque of WTG 
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achieved. 

The results of associated rotational speeds are plotted in Figure 4.13. We can see that 

the ability to return to nominal speed is related to proportional gain. For the Kp =15, the 

rotational speed oscillation is found.  

By comparing with the Figure 4.14 and Figure 4.15, the proportional gain, Kp =15, 

results in more power oscillation during voltage recovery period comparing to that of  

Kp =3.2 although mechanical torque oscillation is not found.  

The influence of integral gain is not found in this case. 
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4.5.2 SLOWER RESPONSE TIME CASE  

 

 [Tuvr =1s] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Ki=0     (b) Ki =50 

Figure 4.16: Pitch Angle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Ki=0    (b) Ki =50 

Figure 4.17: Terminal Voltage 
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(a) Ki=0    (b) Ki =50 

Figure 4.18: Rotational Speed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Ki=0    (b) Ki =50 

Figure 4.19: Active Power 
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(a) Ki=0    (b) Ki =50 

Figure 4.20: Mechanical Torque of WTG 

 

In the case of delay time, Tuvr=1s, the wind farm fails to satisfy LVRT with the range of 

0≤Kp<7.2 and 0≤Ki ≤50, and achieves to satisfy LVRT with the range of 7.2 ≤Kp <15 

and 0≤Ki ≤50. The selected results are shown in Figure 4.16~ Figure 4.20. The pitch 

angles with PI parameters (Kp =7.1 & Ki =0), (Kp =7.2 & Ki =0), (Kp =15 & Ki =0) are 

shown in Figure 4.16. The pitch angles start to change with 1s delay after detecting the 

voltage dip (at 3s). Increasing proportional gain parameter results in more pitch angle 

changing during the post fault period (>2.2s). For (Kp =7.1 & Ki =0) case, the 

oscillation of pitch angle occurred due the hunting of normal mode pitch controller after 

disconnection. The more study is needed to explain.  

As shown in Figure 4.17, we can check that wind farm (with parameter of Kp =7.1 & 

Ki =0) is disconnected at 7.82s by over speed (see Figure 4.18). The WTG voltage dip 

behavior in all PI parameters (Kp =7.1 & Ki =0), (Kp =7.2 & Ki =0), (Kp =15 & Ki =0) 
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are almost the same. The behavior of voltage recovery is different according to the PI 

parameters. The increase in Kp , the voltage recovery becomes faster. For the Kp =15, 

the over-shoot in voltage recovery is also found although the fast voltage recovery is 

achieved. 

The results of associated rotational speeds are plotted in Figure 4.18. We can see that 

the ability to return to nominal speed is related to proportional gain. For the Kp =15, the 

rotational speed oscillation is also found.  

By comparing with the Figure 4.19 & Figure 4.20, the proportional gain, Kp =15, 

results in more power oscillation during voltage recovery period comparing to that of  

Kp =7.2.  

The influence of integral gain is not also found in this case. 

 

4.5.3 APPLICABLE RANGES OF PROPORTIONAL GAIN 

 

Figure 4.21 and Figure 4.22 show the relationship between the proportional gain value 

and UVR relay pickup time delay in the case of 500 MVA SCC when the SVC is 

connected at node #A and #B, respectively. For the fastest response time, 0.1s, the 

LVRT can be achieved with the proportional gain value between 3.2 and 15 in the case 

of SVC at node #A, and between 3.9 and 15 in case of SVC at node #B. Beyond the 

gain value of 15, the active power oscillation is observed during the voltage recovery 

period. The integral gain value can be applied up to 50 with respect to those 

proportional gains. The trend of narrowing the range of gain value can be found in 

increasing time delay to initiate the pitch control. 
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Figure 4.21 Applicable gain ranges vs. delay time (SVC at node #A case) 

 

 

Figure 4.22 Applicable gain ranges vs. delay time (SVC at node #B case) 
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As shown in the Figure 4.23 and Figure 4.24, the adjustment of proportional gain can 

improve the voltage recovery at the terminal of WTG. Increasing the proportional gain 

parameter results less active power generation of WTG. This will cause the less reactive 

power absorption from the power systems for voltage recovery during the post fault 

period. Therefore, the performance of proposed method can be improved in the case of 

slower response time of UVR.  

 

 

Figure 4.23: Voltage recovery with respect to the proportional gain and delay time 

(SVC at node #A case) 
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Figure 4.24: Voltage recovery with respect to the proportional gain and delay time 

(SVC at node #B case) 
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4.6 COMPARISON STUDY WITH FEEDBACK CONTROL 

APPROACH 

 

 

W(S) G(S)

H(S)

Pm Pe, rotor
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Vw

 

Figure 4.25: Outline of pitch angle control in feedback approach 

 

The aim of pitch angle (β) control in conventional way is to regulate the mechanical 

power (Pm) extracted from the wind (Vw) to operate the WTG at desired active power 

(Pe) or rotor speed (ωrotor). It is usually done by the supervisory control or by means of 

the feedback control approach in WTG, as shown in Figure 4.25. In FSWT, pitch 

control is used to limit the generated active power at rated capacity in the case of the 

rated wind speed and above. In VSWT, pitch control is used to get the maximum output 

generation power at the associated rotational speed with respect to the wind speed. 
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Figure 4.26: Outline of pitch angle control in proposal 

 

The Figure 4.26 shows the outline of pitch angle control in proposed approach. The 

proposed pitch control is based on the feed-forward approach. If the disturbance can be 

measured and known in advance; even approximately or statistically, a correcting 

control action can be added for the compensation of disturbance. This is known as 

feed-forward control. The proposed control method uses the terminal voltage of wind 

turbine (V) for initiating the control action and using as input to LVRT mode controller. 

As shown in Figure 4.26, the terminal voltage is a disturbance to the WTG; i.e. G(s) and 

W(s). Therefore, the proposed pitch control method is fallen into the group of the 

feed-forward control method. 

The LVRT requirement is specified by the power system operators; based on their 

experiences in wind energy integration and the practices of the systems operation. 

Therefore, the effect of the disturbance can be predicted and the use of feed-forward 

control approach is possible. 
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From the perspective of classical control theory, comparison regarding to the stability 

and response of controller can be done between the feed-forward approach and feedback 

approach as in the following Table 4.5. 

 

Table 4.5 Comparison between feedback and feed-forward approach 

 Feedback Approach Feed-forward Approach 

Stability Characteristics of controller 

have influence on the stability 

of WTG all the time. 

Characteristics of controller have 

influence on the stability of WTG 

only during the period of disturbance. 

Response Starts to response after the 

effect of disturbance is 

happening. 

Starts to response once the occurring 

of disturbance is detected. 

 

Therefore, from the view point of the stability and response time, the proposed pitch 

control has advantages and disadvantages over the conventional feedback control 

approach, as follows.  

 

Advantages:  

1) Comparing to the active power (Pe) feedback control, the proposed pitch control 

can contribute LVRT capability which cannot be achieved in conventional approach. 

The reason is that the proposed method uses feed-forward control approach in 

which the voltage dip is measured and accounted for before the occurring of voltage 
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dip affect; i.e. reaching to the protection system limits of WTG which cause the 

lack of LVRT capability.  

2) Comparing to the rotor speed (ωrotor) feedback control, the proposed pitch control 

can contribute the faster rate of voltage recovery after the wake of fault. The reason 

is that the proposed method uses the voltage as a control input to adjust the active 

power generation while the conventional rotor speed control only aims to maintain 

at the rated speed. 

 

Disadvantage: 

As the proposed control method may not match exactly for compensation of voltage 

dip effect on the dynamics of WTG with respect to the power systems, the additional 

design consideration is desired.  

 

Comparison: 

The comparison study is carried out by simulation study which is based on the 

condition in section 3.6. 

As the disconnection of wind turbine during the post-fault period is mostly related to 

the rotor over speeding, it can be considered that the rotational speed can be used as an 

input to controller instead of using the magnitude of the induction generator terminal 

voltage. Therefore, the control system shown in Figure 4.27 is also used to compare 

performance of LVRT with the proposed pitch angle control. The design parameter of 

Kp=300, Ki=50 with the rotational speed control reference with 1.02pu is used for 

simulations. Then the comparison of  

1) Normal mode control case  
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2) Proposed pitch control case and  

3) Rotational speed feedback control with ωref=1.02pu cases are carried out.  

The comparison of simulation results are plotted in the Figure 4.28. From this figure, 

it can be clearly seen that proposed pitch control can give better result in voltage 

recovery. In the case of speed feedback control, the voltage recovery recovers to rated 

level at 2.5s from simulation time. From the stability view point, as shown in the 

appendix C, the faster voltage recovery contributes the better transient stability 

performance. Moreover, if we use the rotational speed control reference with 1.04pu, 

the terminal voltage recovery cannot be achieve. Therefore, from the perspective of 

power system’s transient stability, it can be considered that the proposed pitch control 

method is more effective and practical.  

 

β

s

K
K

I
P +

 

Figure 4.27: Rotational Speed Feedback Control  
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Fig. 4.28: Comparison of normal mode control, proposed pitch control and Speed 

feedback control with PI algorithm (ωref=1.02pu), 
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4.7 CONCLUSIONS 

 

The wind farm LVRT capability can be improved by the proposed pitch control. The 

concept of protective relay coordination in pitch control is presented to react rapidly to 

the voltage dip to act during the event of fault, and use for temporary reduction of the 

mechanical power of wind turbine. This concept contributes the LVRT capability in cost 

effective way of wind farm integration as the usage frequency of the pitch control for 

LVRT would be expected relatively few comparing with that of pitch control in normal 

condition. With the expectation of advance technology development in wind turbine 

parts for less mechanical stress, the proposed pitch control is worthwhile to use as an 

additional back up counter measure for LVRT. 

According to our study, the LVRT behavior is closely related to the voltage recovery 

after clearing the fault. Therefore, the stiffness of grid and location of reactive power 

source should be taken into account in LVRT studies.  

There would be many ways to improve our study in this chapter. Firstly, the 

relationship of PI controller parameters to the grid stiffness, time delay in initiating the 

pitch control and the development of pitch controller parameters designing procedure 

are shown to be essential to study. Secondly, it would be important to take into 

consideration of influences on LVRT by different locations and internal network 

structure of wind farm in LVRT evaluations, use of instantaneous SVC model, and 

LVRT failure at specific wind speed range with respect to the voltage variation.  
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CHAPTER 5   

POWER CURTAILMENT CONTROL IN VARIABLE 

-SPEED WIND-TURBINE GENERATOR WITH PMSG 

 

 

5.1 INTRODUCTION 

 

Among the wind turbine generators, variable-speed wind turbine (VSWT) system which 

employs a Permanent Magnet Synchronous Generator (PMSG) and a double conversion 

electronic converter to connect the turbine to grid has become increasing. PMSGs have 

many advantages such as the ability to work with a wide range of wind speeds, higher 

efficiency, and maintenance free for gear and more controllability.  

This chapter presents a new control method to mitigate a faulted network impact on 

PMSG based wind turbine generation systems which uses back-to back frequency 

converter to connect the network. When a fault occurs, power imbalance causes over 

voltage in DC-link between the back-to-back frequency converters. To reduce the over 

voltage in DC-link, a new control method is proposed to balance the active power by 

controlling the generator side converter and pitch control. The effectiveness of the new 

control method is verified by analyzing the behavior of PMSG under faulted conditions 

with MATLAB/Simulink. Comparison study between the use of traditional approach of 

using the braking resistor parallel to DC-link and the presented control method is also 

carried out. The results show that the new control method can reduce the over voltage in 
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DC-link and will guarantee the Low-Voltage Ride-Through (LVRT) capability of 

PMSG as a back-up control system. 
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5.2 PROPOSAL OF POWER CURTAILMENT CONTROL 

 

PMSGω

converter inverter

linkDC

WV

dcE
Networkθ lQ

qli dli

β
MPPTP

refP
PCCV

GP GQ
qi di

lP

 

Figure 5.1: Outline diagram of PMSG including power curtailment control 

 

The outline of the proposed power curtailment control for LVRT of PMSG wind 

turbine is shown in Figure 5.1. The main idea of proposed control is to release the 

extracted wind power by means of pitch angle (β) control and active power control (Pref) 

at generator side converter. When the voltage dip (Vpcc) is occurred at the Point of 

Common Coupling (PCC), the injected power to power systems (Pl) is decreased 

according to the voltage dip. To improve the LVRT capability of PMSG, it is necessary 

to maintain the balance between generated power (PG) and injected power to power 

systems (Pl) during the voltage dip. If not, the power imbalance will cause the voltage 

(Edc) raise in DC link. This will cause the operation of protection system to protect the 

power electronic devices. A power curtailment control is proposed to react rapidly to the 

voltage dip. In the proposed control, the combination of the rotational speed is 

controlled by means of pitch angle (β) and generated active power is controlled (PG) by 

generator side converter. 
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5.2.1 CONVERTER CONTROL 
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Figure 5.2: Block diagram of power curtailment control 

 

In Figure 5.2, the block diagram of converter control is illustrated. The aim of the 

converter control is to set the generator terminal voltage according to the active power 

(PG) and reactive power (QG) of PMSG. When the voltage at the PCC is detected to 

<0.9 (p.u.), the active power reference (Pref) is switched to the 0.4MW, i.e., 20 percent 

of Prated as the voltage dip of 0.2 p.u. is used in this study. The converter also controls to 

achieve the zero reactive power absorption or generation by PMSG. For normal 

condition, PG is controlled by means of Pref set by the Maximum Power Point Tracking 

(MPPT) algorithm [12, 35].  
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5.2.2 PITCH ANGLE CONTROL 

 

In the Figure 5.2, the portion of pitch angle controller is illustrated. The aim of this 

control is to adjust the extracted power from wind and to maintain the rotational speed. 

When the voltage dip is detected, the reference pitch angle is switched from the MPPT 

mode to the Power Curtailment Control. By this way, the rotational speed can be 

maintained according to the generated active power condition. 
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5.3 DESCRIPTION OF VARIABLE-SPEED WIND-TURBINE 

GENERATOR MODEL 

 

The schematic diagram of VSWT with the use of PMSG is shown in Figure 5.3. The 

aerodynamic rotor and generator shaft is coupled directly (i.e. without a gear box). The 

generator is a multi-pole synchronous generator designed for low speeds. The generator 

is excited by permanent magnet. To permit variable-speed operation, the synchronous 

generator is connected to the grid through a variable frequency power converter system 

which completely decouples the generator speed from the grid frequency. Therefore, the 

electrical frequency of the generator may vary as the wind speed changes, while the grid 

frequency remains unchanged.  

The rating of the power converter-inverter system corresponds to the rated power of 

the generator plus losses. The power converter-inverter system consists of the grid-side 

inverter and the generator-side converter connected back-to-back through a DC link.   

carrier
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Figure.5.3: Outline of PMSG implemented wind turbine 
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5.3.1 GENERATOR-SIDE CONVERTER 

 

Figure.5.4: Outline of Generator-Side Converter 

 

The grid-side converter is shown in Figure 5.4. In the grid-side converter, the 

two-level Pulse Width Modulated (PWM) switching method is used for each phase. 

PWM waveforms are constructed by triangle comparison of switching frequency. Duty 

ratio input is between 0 and 1. It means that either high or low level switch is to be 

closed. In this model, switching losses and voltage drop at diode are neglected. 

In Figure 5.4, the stator currents, iu,iv,iw, injected current to DC-link, iconv, and DC-link 

voltage, Vcp, are illustrated. The switch states signal from the controller, 1 for closed at 

upper and 0 for closed at lower, can be written as 
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The terminal voltage of PMSG can be calculated with the use of the DC-link voltage, 

Vcp, as follows: 
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To get the phase voltage, 

















−

















=

















1

1

1

3
)(

)(

)(

)(

)(

)(

cp

w

v

u

cp

w

v

u

V
n

tS

tS

tS

V

tv

tv

tv

   (5.3) 

where, )()()( tStStSn wvu ++=  

Then the calculated phase voltages by equation (5.3) is transformed to d-q axis which 

is used to calculated PMSG generated current of id,iq, by equation(5.16). The stator 

winding is assumed as Y connected type and so natural point current, i0, is regarded as 

zero. Then the calculated PMSG generated current of id,iq, are inverse transformed to 

the stator currents, iu,iv,iw,.  

The injected current to DC-link, iconv, can be calculated by  
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5.3.2 GRID-SIDE INVERTER 
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 Figure.5.5: Outline of Grid-Side Inverter 
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In the Figure 5.5, injected current to inverter, invi , phase voltage and phase current of 

inverter, cbacba iiivvv ,,,,, , network voltage, ncnbna VVV ,, , transmission line parameters, 

lineR , lineL , are illustrated. 

The switch states signal from the controller, 1 for closed at upper and 0 for closed at 

lower, can be written as 
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The inverter voltage can be calculated as 
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where, )()()()( tStStStn cba ++=  

Then the network voltage can be calculated as 























−

+=

















=

)
3

2
sin(

)
3

2
sin(

)sin(

)(

)(

)(

)(

πϖ

πω

ω

tV

tV

tV

tv

tv

tv

tv

n

n

n

nc

nb

na

network    (5.7) 

The injected current to network can be calculated by 
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The injected current from DC-link to inverter, invi , can be calculated by  
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Then the calculated network voltage, )(tvnetwork , and injected current to network, 

)(tiline , are transformed to d-q axis, vdn, vqn and idl,iql, to calculate the active power and 

reactive power. 

)}()()()({
2

3
)( titvtitvtP qlqndldnPMSG +=   (5.11) 

)}()()()({
2

3
)( titvtitvtQ qldndlqnPMSG −=   (5.12) 

 

5.3.3 DC-LINK 

 

In the Figure 5.6, the outline of DC-link is illustrated. In this figure, the injected 

current from converter, iconv, current flows into the capacitor, icp, injected current to 

inverter, iinv, are illustrated. The current flows into the capacitor can be calculated by 

)()()( tititi invconvcp −=    (5.13) 
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Figure.5.6: Outline of DC-link 

 

The voltage of DC-link can be calculated by 

∫= dtti
C
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1

)(    (5.14) 

 

5.3.4 PMSG MODEL 

 

The mathematical model of PMSG can be written as follows: 
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where 
fa Ψ=Ψ

2

3
, vd,vq：d-q axis voltage, id,iq：d-q axis current, Ld,Lq：d-q axis 

admittance, Ra： stator resistance, 
fΨ ： peak value of magnetic flux excitation   

ω：electrical rotation in rad/s. 

Then the stator current in d-q axis can be calculated 
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From equation (5.16), the electrical torque of PMSG can be calculated as 
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)}()()()({)( titiLLtiptTe qdqdqaPMSG −+−= ψ   (5.17) 

where PPMSG is the pole pairs. 

Then the calculated electrical torque is used to calculate the motion equation. 

)(
1

eWT
WG

WT TT
Jdt

d
−=ω    (5.18) 

 

5.3.5 AERODYNAMIC MODEL     

 

The power extracted from the blowing wind can be expressed by the following 

equation [12, 35]:  

3
),(

2
),,( wpwtwpmwtm vCAPCTuP βλ

ρ
ωβλ ===   (5.19) 

where ρ is the air density, λ is the tip speed ratio, β is the pitch angle, Awt is the area 

covered by the wind turbine rotor, ωwt is the wind turbine rotor angular frequency, Tm is 

the torque from blowing wind and u is the wind speed. The power coefficient, Cp, is 

approximated by the following equation [35]: 

32),(
2

1
wpM VRCP πβλρ= , where 

w

m

V

Rω
λ =     (5.20) 

Γ−−−Γ= 17.02
)6.502.0(5.0),( eC p ββλ ,

1609

3600
.

λ
R

=Γ    (5.21) 

By adjusting the pitch angle, β, the power extracted from the blowing wind can be 

effectively controlled.  
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5.3.6 MAXIMUM POWER POINT TRACKING (MPPT) METHOD     

 

Comparing to the FSWT, higher energy generation at low wind speed can be 

achieved in VSWT by means of MPPT control. In MPPT control, according to the 

characteristics of wind turbine, active power generation reference is set based on the 

wind speed (vw) and associated rotational speed (ωm_op) to achieve the optimal output 

power. For the pitch angle of zero, the optimal rotational speed can be expressed in 

equation (5.22) by differentiation the equation (5.21) with respect to the (ωm) and 

equating to zero. According to the reference [35], optimal output power of turbine can 

be defined according to the wind speed and per unit of rotational speed. The following 4 

operation points  

1. (5.16 m/s, 0.4 p.u.),  

2. (7 m/s, 0.54 p.u.),  

3. (10 m/s, 0.78 p.u.),  

4. (12 m/s, 0.93 p.u.) are optimal operation points of wind turbine used in this study 

[35].  

Those optimal operation points can be tracked by the following equations: 

wopm V0775.0_ =ω                                 (5.22) 

219.0057.01_ −= wREF VP             (5.23) 

613.01133.02_ −= wREF VP     (5.24) 

38.119.03_ −= wREF VP             (5.25) 

The method of determination in generator power control reference is shown in Figure 

5.7. As shown in (A) portion, PG_ref is selected from one of the equations of (5.23, 5.24, 
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5.25) according to the 3 operation points of wind speed. Rotational speed variation from 

the operation point is controlled as shown in (B) portion.  PG_ref is also adjusted not to 

decrease beyond the lower limit of rotational speed (0.4 p.u.), as shown in portion (C).   

 

s2.0

1
5 +
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selector
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Figure.5.7: Determination method of PG_ref 
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5.3.7 INTERFACING THE 3 PHASE TRANSMISSION SYSTEM WITH PMSG 

MODEL IN D-Q AXIS  

 

The d-q-axis control systems for converter and inverter require that the phase angle of 

the AC voltage must be measured. This can be done using reference frame 

transformation or with a phase locked loop (PLL). In this study, the reference frame 

transformation is used. Positive sequence voltage at PCC can be transformed by 

))240exp()120exp((
3

1
1 cba VjVjVV

••••
°+°+=    (5.26) 

Then, based on the Euler identity and using the positive sequence as a reference 

voltage, real and imaginary parts of V1 are transformed as d-axis and q-axis voltage of 

V1, respectively. 

The output current of PMSG in d-q axis can be transformed in to complex phase A 

current, 
•

aI , by using the Euler identity. Then the other phase currents can be 

calculated. 

••
= ab IjI )240exp( o     (5.27) 

•••
−=+ cba III     (5.28) 
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5.3.8 BLOCK DIAGRAM OF GENERATOR SIDE INVERTER CONTROL 
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Figure 5.8: Block diagram of inverter control 

 

In the Figure 5.8, the block diagram of inverter control is illustrated. The aim of this 

control is to maintain the DC link voltage and reactive power. These control parameters 

are adopted form the reference [12]. 
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5.4 POWER SYSTEMS MODEL 

 

Figure 5.9: Power system model 

 

By using Matlab/Simulink SimPowerSystem Toolbox, the behavior of PMSG and 

countermeasure are studied. Figure 5.9 shows the single line diagram of power system 

used in this study [35]. Zth is chosen in order to be the Short Circuit Capacity of 100, 

500, 1000(MVA) and X/R ration of 10. The transmission lines are represented by means 

of nominal π distributed network model. The line parameters R, L, and C are specified 

as positive and zero sequence parameters that take into account the inductive and 

capacitive couplings between the three phase conductors as well as ground parameters. 
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This method of specifying line parameters assumes that the three phases are balanced. 

 

5.4.1 FAULT MODEL     

Three-phase-to-ground fault model [38] is used in this study. The fault in the 

transmission network depresses the network voltage and thereby weakens the power 

transfer capacity of the wind farm to power system across the network. Then the WTGs 

are in over speeding and trip from the network in consequence. Therefore, one of the 

serious network faults, three-phase-to-ground fault, is used as a worst-case for 

evaluating the proposed pitch control for LVRT. 
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5.5 VERIFICATION THE EFFECTIVENESS OF POWER 

CURTAILMENT CONTROL  

 

The behavior of PMSG under faulted network condition is evaluated by simulation 

studies. By assuming the three-phase-to-ground fault points between node #A and #B 

(at 1km of 19km long sub-transmission line from the node #A) in Figure 5.9, the 

voltage along the sub-transmission line is depressed until the faulted line is isolated. The 

fault sequence used in the simulation is the three-phase-to-ground fault occurred in one 

of the 66kV sub-transmission lines. The fault is occurred at 500 ms and the faulted line 

is isolated at 700 ms from the start point of simulation. Due to the relatively short 

duration of fault continuation, the rated wind speed of 12 m/s is used throughout the 

study. 

 

5.5.1 EFFECTS OF DIFFERENT SCC   

 

To examine the effects of different SCC, voltage at PCC and DC-link voltage of 

PMSG without countermeasure are studied. The Figure 5.10 shows the comparison of 

voltage dip behavior at PCC with the SCC of 100MVA, 500MVA and 1000MVA. The 

voltage at PCC is started to depress at 500 ms. The magnitude of voltage at PCC is 

depressed to the 0.2 p.u. level. Then the voltage is recovered at 700 ms. 

The transient recovery voltage is found in all cases. In the case of 100MVA SCC, and 

this transient recovery voltage is raised around 1.2 p.u. In generally, all the voltage dip 

behaviors are similar in all cases; 100 MVA, 500MVA and 1000MVA. 

In Figure 5.11, the comparison of DC link voltage is shown. Voltage rise in all cases 
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show the similar trend. Once the fault is occurred at 500 ms, the DC link voltage starts 

to rise until the fault is cleared at 700 ms. For the lesser the SCC, the larger the DC link 

voltage rise is observed.  

 

 

 

Figure 5.10: Comparison of voltage at PCC 

 

 

 

Figure 5.11: Comparison of DC link voltage 
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5.5.2 EVALUATION WITH DIFFERENT SHORT CIRCUIT CAPACITY 

 

PMSG Behavior with the 100MVA SCC 

PMSG behaviors with the short circuit capacity of 100MVA are shown in this section. 

The Figure 5.12 shows the DC-link voltage, active power, reactive power and rotation 

speed of the PMSG in the case of no countermeasure for fault impact. The DC-link 

voltage raises continuously during fault period, from 500 ms to 700 ms. Due to the 

voltage dip at PCC, the active power cannot inject during fault period. However, the 

reactive power injection is observed due to the energy exchanged by the DC capacitor at 

DC link, behaving like STATCOM. Rotational speed increases around 0.5 rpm.  

By using the PC control, the voltage rise in DC-link can be reduced only up to 3200V. 

As the PC control starts to initiate at 600 ms, the voltage rise is start to reduce at 610 ms 

until the 730 ms.  This is shown in figure 5.13. 
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Figure 5.12: PMSG behavior (100MVA SCC, without PC control) 
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Figure 5.13: Comparison between the DC link voltage with PC control and without 

PC control 

 

PMSG Behavior with the 500MVA SCC 

PMSG behaviors with the short circuit capacity of 500MVA are shown in this section. 

The Figure 5.14 shows the DC-link voltage, active power, reactive power and rotation 

speed of the PMSG in the case of no countermeasure for fault impact. The DC-link 

voltage raises continuously during fault period, from 500 ms to 700 ms. Due to the 

voltage dip at PCC, the active power cannot inject during fault period. However, the 

reactive power injection is observed due to the energy exchanged by the DC capacitor at 

DC-link, behaving like STATCOM. Rotational speed increases around 0.5 rpm. 

By using the Power Curtailment control, the voltage rise in DC-link can be reduced 

up to 3100V. As the PC control starts to initiate at 600 ms, the voltage rise is then start 

to reduce at 610 ms until the 730 ms, as shown in Figure 5.15. 
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Figure 5.14: PMSG behavior (500MVA SCC, without PC control) 
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Figure 5.15: Comparison between the DC link voltage with PC Control and without PC 

control 

 

PMSG Behavior with the 1000MVA SCC 

PMSG behaviors with the short circuit capacity of 500MVA are shown in this section. 

The Figure 5.16 shows the DC link voltage, active power, reactive power and rotation 

speed of the PMSG in the case of no countermeasure for fault impact. The DC-link 

voltage raises continuously during fault period, from 500 ms to 700 ms. Due to the 

voltage dip at PCC, the active power cannot inject during fault period. However, the 

reactive power injection is also observed due to the energy exchanged by the DC 

capacitor at DC-link, behaving like STATCOM. Rotational speed increases around 0.5 

rpm. 

By using the Power Curtailment control, the voltage rise in DC-link can be reduced 

only up to 3000V. As the PC control starts to initiate at 600 ms, the voltage rise is then 

start to reduce at 610 ms until the 730 ms. This is shown in Figure 5.17. 
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Figure 5.16: PMSG behavior (1000MVA SCC, without PC control) 
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Figure 5.17: Comparison of the DC link voltage with PC Control and without PC 

control 
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By using the BR, the voltage rise in DC-link can be reduced at the designed voltage 

level. In this section, for 1000MVA SCC, the simulation results of PMSG with the use 
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network condition results are shown in Figure 5.18 and 5.19. The simulation studies are 
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power cannot inject during fault continuation time. However, the reactive power 

injection can be also observed due to the energy exchanged by the DC capacitor at 

DC-link, behaving like STATCOM. Increase in rotational speed of around 0.5 rpm is 

also observed. 

The Figure 5.19 shows the DC-link voltage, active power, reactive power and rotation 

speed of the PMSG with the use of PC. The continuous voltage rise in DC link up to 

3000V level is observed from 500 ms to 600 ms. This voltage rise can be reduced by PC 

control from 610 ms to 700 ms. The PC control method only tries to balance the 

extracting power from the wind by means of pitch control and converter control. 

Therefore, there is no reduction of the reactive power injection during the voltage dip 

which is necessary for system voltage recovery. Rotational speed increases around 0.5 

rpm.  

The comparison of DC-link voltages are shown in Figure 5.20. Without any 

countermeasure case, the DC-link voltage continuously increases during fault period; 

from 500ms to 700ms. Once the fault is clear, the transient in voltage recovery is 

occurred. Then the DC-link voltage is returned back to nominal voltage level of 2000V 

at 750ms. By using BR, the voltage rise in DC-link can be kept constant at 3000V 

during fault period. Once the fault is isolated, the voltage transient is observed at 700 

ms. Then the DC-link voltage is returned back to nominal voltage level of 2000V at 

740ms. By using PC, the voltage rise in DC-link can be reduced until 2750V during 

fault period. As the PC control starts to initiate at 600ms; i.e. with the 100ms delay after 

the voltage dip detection, the DC-link voltage is continuously increased up to 3000V. 

Once the fault is isolated, the voltage transient is observed at 700 ms. Then the DC-link 

voltage is returned back to nominal voltage level of 2000V at 730ms.  
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Figure 5.18: PMSG behavior (100MVA SCC, use of braking resistor case) 
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Figure 5.19: PMSG behavior (1000MVA SCC, with PC control) 
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Figure 5.20: Comparison of the DC link voltage with BR, with and without of PC 

control 
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5.6. Effect of Pitch Angle Control  

 

The reason of using pitch control is explained in the section. To illustrate the role of 

pitch control, the simulation studies is carried out under 4 situations; 1) with MPPT 

control, 2) with PC control, 3) with PC control by using only converter, 4) with PC 

control by using only pitch control. The simulation results in this section are considering 

in the case of SCC is 500MVA and fault is occurred at 1km from #A. Comparing to the 

converter control, pitch angle control is less effective in reduction of DC-link voltage 

rise due to the slower response than that of converter control, as shown in Figure 5.21. 

However, co-ordination with pitch control to converter control can reduce over speed as 

shown in Figure 5.22 and 5.23.  Therefore, co-ordination of pitch control is also 

desired. 

 

 

Figure 5.21: DC-link Voltage 
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Figure 5.22: Pitch Angle 

 

 

Figure 5.23: Rotational Speed 
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5.7. CONCLUSIONS 

 

The use of Power Curtailment is effective to mitigate the faulted network impact on 

PMSG. The effectiveness of proposed PC control is compared with that of braking 

resistor. Although the use braking resistor gives more flexible and simple in control of 

voltage level, the Power Curtailment Control can be used as an additional 

countermeasure. Therefore, we can conclude that the additional use of PC control can 

give the guarantee for LVRT capability of PMSG as a backup control system in the case 

of BR failure.  

There are many ways to improve our study in this chapter. Firstly, it should be taken 

in to account of converter blocking, which may be occurred to avoid the damage of 

power electronic device due to over current. Secondly, loss of synchronism phenomena 

of energy conversion systems during the post-fault period is desired to study as a future 

work.  
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CHAPTER 6 

SUMMARY AND CONCLUDING REMARKS 

 

 

In this dissertation, we discussed wind energy integration impacts of stability of power 

system and proposed the control method for LVRT improvement of wind energy 

generation systems which is one of the requirements in high wind energy integration to 

power systems. The conclusions of each chapter are summarized at the end of 

associated chapter. In order to study the effectiveness of proposed control method, we 

did simulation studies in which the dynamics of wind turbine generators and power 

systems are modeled in fundamental frequency. Then the LVRT behaviors of wind 

generation systems are discussed with respect to the three-phase short circuit fault under 

different locations of fault and stiffness of power system. Based on the type wind energy 

generation systems, this dissertation can be categorized into two parts, generally. 

In the first part, we have used the fixed-speed wind turbine (FSWT) model including 

a Squirrel-Cage Induction Generator (SCIG). As the LVRT behavior is related to 

short-term transient stability, we used the instantaneous time domain models of wind 

turbine generators and three-phase power transmission network which are relevant to 

the phenomenon of short-term transients.  

In the second part, we have used the variable-speed wind turbine (VSWT) model 

including a Permanent Magnet Synchronous Generator (PMSG). In order to analyze the 

LVRT behavior, the instantaneous time domain models of PMSG, converter, inverter 

and three-phase power transmission network are used. 
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The simulation results shown in both parts confirmed that the LVRT requirements can 

be achieved by the proposed control method. In the case of FSWT, it is obvious that the 

proposed control method can mitigate the local impact on the system voltage; 

improvement of voltage recovery during the post fault period. However, the proposed 

control method is based on the feed-forward control method approach which has 

disadvantage in output power oscillations during the post-fault period. According to the 

power system size and generation mix, there is a possibility to propagate through the 

system causing synchronous generator to exhibit speed oscillations phenomenon. In the 

case of VSWT, confirmation of proposed control method with Doubly Fed Induction 

Generator (DFIG) is not yet included. Moreover, the phenomenon of the rising inrush 

current in power electronic devices and blocking the inverter/converter are not 

considered as they are not the scope of this dissertation.  

There would be many ways to improve our proposed method presented in this 

dissertation as follows: 

1) Considering as a co-operate control system with the FACT devices and/or control 

systems with conventional generators in power systems. 

2) Designing in such a way of the adaptive control according to the operation states 

of wind farm with respect to power systems. 

3) Development of detailed design approach of control system to get the least output 

power oscillations during the post-fault period. 

4) Consideration the influence of wind farm internal structure for performance 

evaluation. 

5) The study for unbalance fault condition. 
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In conclusion, we have proposed the conceptual consideration of controlling the wind 

power generation systems for LVRT capability improvement. The analysis of the LVRT 

behavior of wind farm is presented. To achieve the low-carbon and green society, 

electricity generation from wind energy is the one of the key players in all over the 

world. LVRT requirement is the most challenging issues of high wind energy 

penetration into the power systems. The proposed method contributes not only the 

fulfillment of LVRT requirements in wind energy integration but also in improvement of 

the transient stability of conventional synchronous generator in power systems.  In any 

case, the studies presented in this dissertation provide a good starting point to consider 

the grid stiffness and carry out the operation coordination with WTGs’ protection 

systems for LVRT capability of wind farm.  
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Appendix 

 

A  Simulation Models Parameters 

A.1. Proposed pitch controller parameters: KP=8, KI=50 

A.2 Synchronous Generator Parameters 

Rated Power (Base MVA for impedances) =100MVA 

Rated kV (line-to-line voltage) = 13.8kV 

Unsaturated d-axis sub-transient reactance: xd”=0.145 (pu) 

Unsaturated d-axis transient reactance: xd’=0.220 (pu) 

Unsaturated d-axis synchronous reactance: xd=1.180 (pu) 

Unsaturated q-axis sub-transient reactance: xq”=0.145 (pu) 

Unsaturated q-axis synchronous reactance: xq=1.050 (pu) 

Armature resistance: ra=0.0035 (pu) 

Leakage reactance: xl= 0.075 (pu) 

d-axis sub-transient open circuit time constant: Td0”=0.042 (s) 

d-axis transient open circuit time constant: Td0’=5.9 (s) 

q-axis sub-transient open circuit time constant: Tq0”=0.092(s) 

d-axis sub-transient short circuit time constant: Td”=0.023 (s) 

d-axis transient short circuit time constant: Td’=1.28 (s) 

q-axis sub-transient short circuit time constant: Tq”=0.023 (s) 

 

A.3 Parameters of wind turbine model:  

Nominal rotor speed: 17 RPM,  Shaft stiffness:0.3pu/el.rad,  

Rotor diameter: 75m,         Area covered by rotor: 4418m
2
,  

Nominal power: 2 MW,  Nominal wind speed: 14m/s,  
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Gear box ratio: 1:89,  Inertia constant: 2.5s,   

Approximation in Aerodynamic Power: 
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C1=0.73, C2=151, C3=0.58, C4=0.002, C5=2.14, C6=13.2, C7=18.4, C8=-0.02, 

C9=-0.003, 

 

A.4. Parameters of induction generator model:  

Number of poles: 4,   Generator speed: 1500 RPM,  

Mutual inductance: 3.0p.u, Stator leakage inductance: 0.1p.u, Rotor leakage inductance: 

0.08p.u, Stator resistance: 0.01p.u, Rotor resistance,: 0.01p.u. 

 

A.5. Parameters of permanent magnet synchronous generator model:  

Number of poles: 48,   Stator Winding Resistance Ra: 0.002887 [],  

d-axis Exicitation Inductance Ld:0.002393 [H], Flux Linkage of Rotor f:9.4755 [Wb]  

q-axis Exicitation Inductance Lq:0.001675 [H], Inertia JWG: 1899980 [kg/m2] 

 
A.6. Parameters of power converter and transmission line 
 

Capacity of DC-Capacitor: 3000 [F], Switching Frequency of Converter: 400 [Hz], 

Switching Frequency of Inverter: 1000 [Hz], Cable Resistance Rlins: 7.96x10
-3

[]  

Cable Inductance Llins: 7.63x10
-5

[H]  
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B. LVRT Impact on Frequency Stability of Power System ( based on the 

Generation Mix of Hokkaido Power System)  

 

Fig. B.1 Frequency deviation due to the loss of wind power generation 

(Impact of loss of 200MW generation (e..g due to the lack of wind power LVRT) in 

power system (based on the Hokkaido Power System Generation Mix)) 
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Model and Parameters in simulation study 

 

 

 

Fig.B.2 LFC Control Block Diagram for Power System with Wind Power Generation 
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TableB.1. Parameters for Power System with 200MW Wind Energy Generation 

Base Frequency 50 [Hz] 

Installed Capacity 4 [puMW] 

Installed Capacity of Thermal 
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2.92 [puMW] 

Installed Capacity of Thermal 

Power Plants without LFC 
1.08 [puMW] 

Based Capacity 1000 [MW] 
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TableB.2. Parameters for Block Diagram  

GAK  0 [puMW/Hz]   

GAT  2.5 [s] 

FAK  1.46 [puMW/Hz] 

FAT  2 [s] 

GMACA TK /  2.0  

PAK  0.01  

DAT  1 [s] 

AD  0.08 [puMW/Hz] 

BAK  1  

AM  0.56 [puMWs/Hz] 

 

Percent Change in Load divided by Percent Change in Frequency for 1.0％ 

]/[08.04
5001.0

01.0
HzpuMWDA 


        

 (B.1) 
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C. Influence of Proposed Pitch Control on Conventional Generation in 

Power System 

 

The LVRT behavior of WTG is closely related to the rotor over-speeding during the 

voltage dip. The rotational speed of the WTG with a directly grid-connected SCIG is 

considered to operate at fixed speed. Therefore, the wind turbine rotor over-speeding 

behavior can be figured out by means of the power imbalance between mechanical input 

power and electrical output power which is proportional to a square of its terminal 

voltage. SCIG requires large reactive power to recover the air gap flux when a short 

circuit fault occurs in the power systems [41]. Therefore, the reactive power supply is 

necessary for voltage recovery of SCIG. Moreover, the rate of voltage recovery after the 

fault is closely related to the voltage controllability of power network.   

In this regard, by considering the influence of Auto Voltage Regulator (AVR) of 

Synchronous Generator (SG) and SVC at different locations in power systems, we can 

evaluate the performance of proposed pitch control in more practical perspective. In this 

paper, the effects of AVR and SVC locations on performance of pitch control for wind 

farm’s LVRT is investigated by simulation studies. The comparison of the LVRT 

behaviors with the different SG and SVC locations in power systems are included. 

 

C.1 Power Systems with Synchronous Generator Model 

  In order to evaluate the performance of the proposed pitch control for LVRT, 

simulation studies were performed. The single line diagram of a power system including 

a wind farm, as shown in Figure C.1, is modeled in simulation tools of 

MATLAB/Simulink, in which the wind farm of 30MW installed capacity is supplying 
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power to power systems represented by the infinite bus. The wind farm consists of 15 

FSWTs of which each has 2MW rated power capacity. The wind farm is connected to 

the 66kV bus at which SVC of 30Mvar capacity is installed for bus voltage 

stabilization. The parameters of wind turbine transformers, cables and grid transformers 

are taken from the reference [35]. The length of sub-transmission line between the node 

#A and #B, and that of node #B and #C is 19km each. 

The SVC model used in this study is shown in Figure C.2. This model only considers 

observing the impact on voltage stability at the fundamental frequency [38, 40]. The 

SVC has the dynamic performance of 30 MVar, with the average thyristor valves firing 

time delay, Td, of 4ms and the V-I characteristics slope or droop reactance, KSL, of 0.03 

p.u. at 30 MVA base. The reference voltage (Vref) of the voltage regulator with PI 

controller is set at 1.03 p.u. to stabilize the voltage at the Point of Common Coupling 

(Vpcc). In this block diagram, VT is the terminal voltage of SVC. 
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Figure C.1 Power system model including synchronous generator 

 

C.2 Synchronous Generator with AVR Model 

The synchronous generator model is based on the reference [38, 40]. The electrical 

part of the machine is represented by a sixth-order state-space model, and the 

mechanical part is described by the swing equation. All the rotor parameters and 

electrical quantities shown in Appendix A.2 are referred to the stator and the mechanical 

part is described by the following swing equation. 

 
t

em tKddtTT
H

t
0

)()(
2

1
)(       (C.1) 

0)()(   tt                   (C.2) 

where 
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=Speed variation with respect to speed of operation 

H= Constant of inertia 

Tm=Mechanical torque 

Te=Electromagnetic torque 

Kd=Damping factor representing the effect of damper windings 

(t)=Mechanical speed of the rotor 

0=Speed of operation (1pu) 

 

The model takes into account the dynamics of the stator, field, and damper windings. 

The equivalent circuit of the model is represented in the rotor reference frame (dq 

frame). All rotor parameters and electrical quantities are viewed from the stator. They 

are identified by primed variables. The subscripts are defined as follows: 

d,q: d and q axis quantity 

r,s: rotor and stator quantity 

l,m: leakage and magnetizing inductance 

f,k: field and damper winding quantity 

The electrical model of the machine is represented by the following equations: 
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The AVR model used in this study is shown in Figure 4.19. This model is based on 

the excitation control systems with potential-source-rectifier exciter. The static voltage 

regulator generates a control signal by which the SCR gating in the excitation system is 

controlled. This type of control is very fast since there is no time delay in shifting the 

firing angle of the SCR’s [42]. 
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Figure C.2 AVR model 

C.3 Simulation Results 

The LVRT behavior is evaluated by means of simulation studies. By assuming the 

fault points at 18 km from the node #A in 19km long double-circuit sub-transmission 

line in Figure C.1, the voltage along the sub-transmission lines is depressed until the 

faulted line is isolated. The fault sequence used in the simulation is the 

three-phase-to-ground fault occurred in one of the 66kV sub-transmission lines. The 

fault is occurred at 500 ms and the faulted line is isolated at 700 ms from the start point 

of simulation. In addition to these, LVRT behaviors of wind farm are explored by 

considering the different locations of SVC (whether at node #A, node #B or node #C) 

and SG (whether at node #B or node #C). 

C.3.1 SG at node #C  

The LVRT behaviors of wind farm are checked for the far location of SG to wind 

farm. 

C.3.1.1 Case 1 (without SVC) 

The LVRT behavior of wind farm in this case is shown in Figure C.3. The associated 

SG behavior is also shown in Fig. C.4. In Figure C.3, the generated active power of 

wind farm is lost at 5.68s from the start point of simulation due to the wind farm 

disconnection after isolating the faulted line. When the fault is occurred at the distance 

of 18km from node #A, the generator terminal voltage is depressed suddenly to 0.5 p.u 
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at the 500 ms. The generator terminal voltage continues depressing to the 0.05 p.u. until 

the faulted line is isolated at 700 ms. As explained in section 2, the imbalance between 

mechanical input and electrical output is occurred, which causes the rotor over 

speeding.  
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Figure C.3 Behavior of wind farm (case 1: without SVC) 
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Once the faulted line is isolated at 700 ms, the terminal voltage tends to recover back. 

Consequently, SCIG absorbs more reactive power due to over speeding (not reached to 

the protection system limit of 1.1 p.u. at that instance), and this causes over current in 

the stator of SCIG (not reached to the protection system limit of 2 p.u. for 40ms at that 

instance) as shown in Figure 4.18. However, the terminal voltage of SCIG is collapsed 

and cannot recover back above the 0.4 p.u. level. Due to the continuous over speeding, 

the rotor unfortunately reached to over speed protective relay limits for 40 ms at the 

time of 5.68s from the start point of simulation. Therefore, WTG is disconnected from 

the grid by over speed protection in order to avoid the damaging. 

The behavior of SG is shown in Figure C.4. Due to the fault, the terminal voltage is 

depressed suddenly to the 0.52 p.u. until the fault is isolated. According to the exciter 

field voltage controlled by AVR, SG injected the reactive power during and after the 

voltage dip period. The rotor speed oscillation is decayed at 2.5s and backswing is 

observed due to the decelerating. Although the SG fed the reactive power absorbed by 

the wind farm during and after the fault, the continuous power supply of wind farm is 

cannot be achieved in this case. 
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Figure. C.4. SG Behavior (case 1: without SVC) 
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C.3.2 Case 2 (SVC at node #A) 

The LVRT behavior of wind farm for this case is shown in Figure C.5. The associated 

SG and SVC behavior are also shown in Figure C.6 and C.7. With the use of proposed 

pitch control, the LVRT can be improved. By comparing Figure C.3 with C.5, the over 

speeding of rotor can be reduced during the post-fault period in case 2. The terminal 

voltage of SCIG is gradually recovered from the 0.5 p.u. level. The rotor speed returns 

to pre-fault level (around 1p.u.) at 2.5s. Consequently, the proposed pitch control 

contributes to voltage recovery of SCIG after the fault is isolated as shown in Figure 

C.5.  
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Fig. C.5. Wind Farm Behavior (case 2: SVC at #A)  
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The behavior of SG is shown in Fig. C.6. Due to the fault, the terminal voltage is 

depressed suddenly to the around 0.52 p.u. until the fault is isolated. According to the 

exciter field voltage controlled by AVR, SG injected the reactive power during the 

voltage dip period. The rotor speed oscillation is decayed at 2.5s and backswing due to 

the decelerating is improved by means of SVC and proposed pitch control.  

The behavior of SVC is shown in Figure C.7. Due to the fault, the bus voltage 

controlled by SVC at node #A is depressed to almost 0 p.u. until the fault is isolated. 

According to the reference voltage setting of voltage regulator, SVC injected the 

reactive power of 30Mvar once the voltage at node #A is recovered. The SVC fed the 

reactive power absorbed by the wind farm after the fault until the terminal voltage 

recovers back to the nominal voltage of 1 p.u. Due to the close location to fault, SVC 

cannot feed reactive power during the voltage dip. 
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Fig. C.6. SG Behavior (case 2: SVC at #A) 
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Fig. C.7. SVC Behavior (case 2: SVC at #A) 
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speed returns to pre-fault level (around 1p.u.) at 2.5s. Consequently, the proposed pitch 

control contributes to voltage recovery of SCIG after the fault is isolated as shown in 

Figure C.8. 
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The behavior of SG is shown in Figure C.9. Due to the fault, the terminal voltage is 

depressed suddenly to the around 0.52 p.u. until the fault is isolated. According to the 

exciter field voltage controlled by AVR, SG injected the reactive power during the 

voltage dip period. The rotor speed oscillation is decayed at 2.5s and backswing due to 

the decelerating is improved by means of SVC and proposed pitch control. 

The behavior of SVC is shown in Figure C.10. Due to the fault, the bus voltage 

controlled by SVC at node #B is depressed to around 0 p.u. until the fault is isolated. 

According to the reference voltage setting of voltage regulator, SVC injected the 

reactive power of 30Mvar once the voltage at node #B is recovered. The SVC fed the 

reactive power absorbed by the wind farm after the fault until the terminal voltage 

recovers back to the nominal voltage of 1 p.u. Due to the close location to fault, SVC 

cannot feed reactive power during the voltage dip. 
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Fig. C.8 Wind Farm Behavior (case 3: SVC at #B)  
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Fig. C.9 SG Behavior (case 3: SVC at #B) 
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Fig. 10 SVC Behavior (case 3: SVC at #B) 
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C.4 Conclusions 
 

We show the influence of synchronous generator and static var compensator locations 

on the performance of proposed pitch control for LVRT. The performance of proposed 

pitch control is satisfied in the case of existing reactive power source in local area. 

According to our study, the LVRT behavior is closely related to the voltage recovery 

after clearing the fault. Therefore, the influence of AVR during the post-fault period and 

location of reactive power source should be taken into account in LVRT studies. In this 

study, we also observed that the back swing phenomenon of SG is improved by the use 

of SVC and proposed pitch control. 

  

Table C.1. LVRT Behaviors for SVC at node #B case 

 SG at node #B 

(about 19km far 

from wind farm) 

SG at node #C 

(about 38km to 

wind farm) 

SVC at node #A 

(close to wind farm) 

 

Success for LVRT 

 

Success for LVRT 

SVC at node #B 

(about 19km far from wind 

farm) 

 

Not considered 

 

Success for LVRT 

SVC at node #C 

(about 38km to wind farm) 

 

Success for LVRT 

 

Not considered 

Without SVC Fail for LVRT at  

6.1s (over speed) 

Fail for LVRT at 

5.68s (over speed) 
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D  Comparison study with control strategy of back-to-back frequency converter 

system from literature [32]  

 

Fig.D.1. Control scheme in the literature [32] 

The countermeasure of LVRT for PMSG is proposed in literature [32].As shown in 

the Fig.5.1, in the conventional control schemes in PMSG, the objective of the 

vector-control scheme for the generator-side PWM converter is to control the optimal 

power tracking for maximum energy capture from the wind by adjusting the speed of 

the wind turbine. The objective of the vector-control scheme for the grid-side PWM 

inverter is to keep the DC-link voltage constant regardless of the magnitude of the 

generator power. To maintain the power factor, the reactive power output is kept to be 

zero. In literature [32], the authors paid special focus on the regulation of the DC-link 

voltage. A new control scheme of is suggested as shown in Fig.D.1. The objective of 

vector-control scheme for the generator-side converter is to maintain the DC-link 

voltage to be constant. At the same time, the grid-side converter controls the optimal 

power tracking for maximum energy capture. The energy imbalance during the voltage 

dip is stored in the kinetic energy of the large rotating masses. To maintain the power 
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factor, the reactive power output is kept to be zero. However, the controllability of 

Grid-side converter is doubtful and the graph of reactive power output is not 

shown in this paper. Therefore, simulation study is carried out by this approach and 

compared to the proposed power curtailment control. 

 

D.1 Simulation Model and Results 
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Fig.D.2. Power System Model 

 

Fig.D.2. shows the single line diagram of power system used in this study. Zth is 

chosen in order to be the Short Circuit Capacity of 500MVA and X/R ration of 10. 

Based on the network and PMSG parameters from reference paper, simulation study 

is carried out. Three phase short circuit fault is assumed to be occurred at 9s and 

isolated at 9.2s. 
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Fig.D.3 DC-link voltage by using the control scheme in literature [32] 

 

Fig.D.4 Active power output by using the control scheme in literature [32] 

 

Fig.D.5 Reactive power output by using the control scheme in literature [32] 
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Fig.D.6 DC-link voltage by using Power Curtailment Control 

 

Fig.D.7 Active power output by using Power Curtailment Control 

 

Fig.D.8 Reactive power output by using Power Curtailment Control 
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By comparing the Figure (D.3~8), the following points can be summarized. 

1) The reactive power and active power control cannot be achieved by the 

control method in literature [32]. As the controller parameters are not shown 

in this literature, the more detailed studies are necessary to achieve reactive 

power output to be zero. 

2) Better performance can be observed by using the power curtailment control 

in reducing the DC-link voltage rise and injecting the reactive power to 

power system during the fault.  

 

D.2 Conclusions 

The comparison of power curtailment control and control scheme in literature [32] is 

presented by using simulation study. Due to this study, the proposed power curtailment 

control is effective for reducing the DC-link voltage while injecting the reactive power 

to power systems for system voltage stability improvement. 
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