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Abstract
In this thesis, we develop and evaluate a new tomographic wave-front reconstruc-
tion method for wide-field adaptive optics (WFAO) systems, called multi time-step
wave-front reconstruction, to solve the lack of information in tomographic recon-
structions and expand the field of regard (FoR) of WFAO systems. Also, we
evaluate a method to estimate wind speeds and directions at multiple altitudes
using the measurements from multiple wave-front sensors. This wind estimation
method is required to implement the multi time-step reconstruction. The basic
idea of the multi time-step reconstruction is to increase the information using the
measurements at both the current and previous time-steps, which requires wind
speeds and directions of wind and the frozen flow assumption.

First, we demonstrate the influence of the lack of information in the tomo-
graphic reconstruction. Then, we present that the multi time-step tomographic
reconstruction method is effective to reduce the tomographic error due to the lack
of information.

Second, we show the result of the numerical simulation of the tomographic
reconstruction on a multi-object adaptive optics (MOAO) system on a future
extreme large telescope. The numerical simulation shows that the multi time-step
reconstruction increases Strehl ratio (SR) over a field of regard of 10 arcminutes
diameter by a factor of 1.5–1.8 if we know the wind speeds and directions.

Third, we evaluate the multi time-step reconstruction and the wind estimation
method in the laboratory experiment on RAVEN, which is a MOAO demonstrator.
We can successfully measure the wind speeds and directions in the laboratory
experiment. Also, the multi time-step reconstructor can increase an ensquared
energy (EE) in a 140 mas box by 0.03–0.05.

Finally, we present the on-sky performance of the multi time-step reconstruc-
tion and the wind estimation with RAVEN on the Subaru telescope. Unfortu-
nately, there is no clear improvement by the multi time-step reconstruction be-
cause of the error of the wind estimation. With the off-line analysis with the
on-sky measurements of the wave-front sensors, we improve the wind estimation
method and re-evaluate the multi time-step reconstruction. We conclude that the
multi time-step reconstruction can reduce the WFE compared with the normal to-
mographic reconstruction if the decay ratio of the cross-correlation of WFS slopes
is more than 0.7 and there is no dome seeing.
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Chapter 1

Introduction to Wide-Field AO
Systems and Tomographic
Reconstruction

1.1 Background

In ground-based observations for astronomy, we suffer from the turbulence in the
Earth’s atmosphere, especially in the optical and near infrared (NIR) wavelengths.
Due to the atmospheric turbulence, the phase of the light propagating from space
to a telescope through the atmosphere is disturbed and the image produced by the
telescope is blurred. As a result, we lose the sensitivity and the spatial resolution
for the astronomical observation. Adaptive optics (AO) is a system which cor-
rects the phase distortion due to the atmospheric turbulence. Now, most of large
ground-based telescopes, which have a primary mirror of 8–10 meters diameter,
have a classical AO system, called single-conjugate adaptive optics (SCAO). These
SCAO systems successfully achieve the high spatial resolution close to the diffrac-
tion limit of these telescopes and allow us to observe fainter objects and smaller
structures in galaxies. AO systems are considered as an essential technique for
future extreme large telescopes (ELTs), which have a primary mirror of diameter
larger than 30 meters, to maximize their spatial resolution and sensitivity.

Classical SCAO systems have a critical limitation. It is a limitation that the
correction of SCAO is effective only within a limited angle from a guide star (GS).
Wide-field AO (WFAO) concepts, involving tomographic wave-front reconstruc-
tion to estimate the atmospheric volume, come out from requirements to apply
AO correction into a wide field and to increase the efficiency of AO assisted obser-
vations. The developments for WFAO system have already started and actually,
some WFAO systems are working on the current large telescopes as a facility

1
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instrument or demonstrator. However, there are many new techniques and diffi-
culties for realizing WFAO systems on the future ELTs. One of the new techniques
not used in SCAO systems is tomographic wave-front reconstruction. In this the-
sis, we develop a tomographic wave-front reconstruction algorithm to expand the
field in which the WFAO correction is effective, called field of regard (FoR), and
to maximize the efficiency of WFAO systems.

We will start this chapter with explaining a basic theory of the atmospheric
turbulence. Since the atmospheric turbulence is a non-stationary random phe-
nomenon, we need to understand and characterize the atmospheric turbulence
statistically. This statistical theory of the atmospheric turbulence is an important
basis to design and evaluate AO systems. We will then present the principle of
SCAO systems and their limitations. Then, we will outline three WFAO concepts
and the challenging points to realize these WFAO systems especially for future
ELTs. We will provide more introduction about the tomographic wave-front re-
construction. At the end of this chapter, we will summarize the object of this
thesis.

1.2 Atmospheric Turbulence

This section is based on Hardy (1998) [24].

1.2.1 Kolmogorov Theory

Kolmogorov[30] investigated the statistical structure of turbulence, which is the
velocity fluctuations in a fluid medium. In his theory, when energy is injected to
the fluid medium, it forms a large length-scale disturbance. The length-scale
at which the energy injection occurs is referred to as outer scale, L0. Then,
the injected energy is broken down into smaller length-scale, forming an energy
cascade, until a small scale where the energy is dissipated by viscosity, called inner
scale ℓ0.

In Earth’s atmosphere, the main energy input is solar heating during the day-
time, which causes turbulences on the length-scale of L0 by the local convection.
In the night time, the air masses of different altitudes and temperatures are mixed
by wind shearing and the turbulences break down into smaller scale until the inner
scale ℓ0. This process causes temperature fluctuations in the atmosphere, which af-
fect the density of the air and therefore result in refractive index fluctuations. The
phases of light rays from space are disturbed by the refractive index fluctuations
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in the atmosphere. In the remainder of this thesis, we use a term of atmospheric
turbulence for the turbulence of the refractive index in the atmosphere.

1.2.2 Structure Function

In order to describe a non-stationary random variation of the atmospheric vari-
ables, such as velocity, temperature, and refractive index, structure function[30]
Df for the non-stationary random variable f at two different points is defined as

Df (ρ) = ⟨[v(r)− v(r + ρ)]2⟩, (1.1)

where r = (x, y, z) is a vector of a three-dimensional coordinate, ρ is a spatial
separation between two points, and ⟨⟩ represents an ensemble average. The struc-
ture function corresponds to the intensity of the fluctuations in f(r) over scales
equal to or less than ρ. The turbulences of the atmospheric variables are a non-
stationary random variables, that is, their mean value varies over time. However,
in fact, this change occurs rather smoothly and therefore the structure function
Df can be considered a stationary random function, if ρ is not too large. The
turbulences of the atmospheric variables are also considered to be isotropic and
homogeneous in small scales. Therefore, the structure functions of these variables
only depend on a separation distance ρ = |ρ|. The structure function Df can be
represented by the correlation function Bf as

Df (ρ) = 2[Bf (0)−Bf (ρ)], (1.2)

where Bf (ρ) = ⟨f(r)f(r+ ρ)⟩ and Bf (0) is a mean-square value of the variable f .

Kolmogorov found that a two-thirds power law for the velocity structure func-
tion Dv(ρ) ∝ ρ2/3. Obukhov [41] showed that Kolmogorov’s law can be applied
to the temperature structure function, i.e. DT (ρ) = C2

Tρ
2/3, where CT is the tem-

perature structure constant. Similarly, the refractive index structure function is
given by

DN(ρ) = C2
Nρ

2/3, (1.3)

where C2
N is the structure constant of the refractive index with a unit of m−2/3.

This constant C2
N represents the strength of the atmospheric turbulence and varies

with altitude and time. The vertical profile of this constant, C2
N(h), is commonly

used to characterize the condition of the atmospheric turbulence. The C2
N profile

is measured at many places. From the profiling of the C2
N with balloons [37], it is
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found that the C2
N profile has peaks at several altitudes and therefore the atmo-

spheric turbulence can be considered as the multiple discrete layers. In good sites
for astronomical observations, it is known that more than 60% of the turbulence
is concentrated in the ground layer [16], which is the turbulence lower than 0.5
km, and additional turbulence layers are often within 4–10 km.

Tatarski [47] showed that the three-dimensional power spectrum of refractive
index can be expressed as

ΦN(κ) = 0.033C2
Nκ

−11/3 (1.4)

where κ is a spatial wave number κ = 2π/ρ. This expression is only valid within
the range of L0 > ρ > ℓ0, which is called inertial range.

1.2.3 The Near-Field Approximation

In the remainder of this thesis, we use the near-field approximation for the light
propagation through the atmosphere turbulence, in which the diffraction is ne-
glected and light rays propagate straight through the atmospheric turbulence.
Under this approximation, the phase distortion of the wave-front propagating to
an aperture can be considered as the sum of phase distortions along the optical
path of the light ray in the atmosphere. This approximation is valid for weak
turbulence found at good sites for astronomical observations.

With a characteristic size of the turbulence ℓ and a wavelength λ, the first-
order diffracted angle is given as θ = λ/ℓ. Diffracted rays interfere when the travel
distance is comparable to L ≈ ℓ/θ. From the turbulence profile at the top of the
Maunakea measured by Thirty Meter Telescope project [16], the characteristic size
of the turbulence ℓ is 0.25 m at altitude of 16 km in the worst case, which assuming
75 %ile model and low observation elevation of 30 degrees. This corresponds to
a travel distance L = 130 km, which is much larger than the maximum of the
atmospheric turbulence altitude. Therefore, the interference effect is negligible at
good sites such as the top of Maunakea and the effect due to the atmospheric
turbulence can be described based on the near-field approximation.

1.2.4 Effect of Turbulence

Let us consider that there is nlayer turbulence layers. In the near field approx-
imation, the shift of the phase due to the refractive index fluctuations of i-th
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turbulence layer at altitude hi with a thickness of δhi is

ϕi(x) = k

∫ hi+δhi

hi

dz n(x, z), (1.5)

where ϕi(x) is a phase aberration at a two-dimensional coordinate x on i-th tur-
bulence layer, k is a wave number k = 2π/λ, and n(x, z) is a refractive index
minus 1.

The total aberration due to nlayer layers is given simply by

ϕ(x) =

nlayer∑
i=1

ϕi(x). (1.6)

The phase structure function for the Kolmogorov turbulence is represented by
substituting Eq.(1.5) into Eq. (1.1) as f = ϕ and using Eq. (1.4) as

Dϕ(ξ) = 6.88

(
ξ

r0

)5/3

, (1.7)

where ξ is a separation distance on a two-dimensional plane and r0 is Fried pa-
rameter [17] in unit of meter as

r0 =

[
0.423k2 sec ζ

∫
dhC2

N(h)

]−5/3

, (1.8)

where ζ is a zenith angle. Fried parameter r0 is also referred to as a turbulence
coherence length and is the diameter over which a mean-square value of the phase
distortion corresponds to 1 rad2 at a wavelength of λ. Fried parameter r0 is
convenient measure of the strength of turbulence. The typical size of r0 is 0.15
m at the visible length of 0.5 µm in good sites at night. Fried parameter varies
with wavelength as λ1.2. This means that shorter wavelength is more affected
by the turbulence compared with longer wavelength at the same C2

N . Similarly,
a coherence angle, which represents an angular separation within which a mean-
square value of the phase difference between two wave-fronts propagating different
path in the atmosphere corresponds to 1 rad2 at a wavelength of λ, is defined as

θ0 =

[
2.914k2(sec ζ)8/3

∫
dhC2

N(h)h
5/3

]
. (1.9)
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This coherence angle is referred to isoplanatic angle. The isoplanatic angle is
represented by r0 as

θ0 = 0.314(cos ζ)
r0
h̄

(1.10)

where h̄ is a weighted mean turbulence height,

h =

∫
dhC2

N(h)h
5/3. (1.11)

The power spectrum for the phase fluctuation is given by

Φϕ(κ) = 0.023r
−5/3
0 κ−11/3. (1.12)

1.2.5 Limitation of the Kolmogorov Model

As stated in 1.2.2, the Kolmogorov turbulence model is valid only within the
inertial range, that is, for L0 > ξ > ℓ0. In the astronomical imaging, the inner
scale has only negligible effect because the turbulence power is weak at the inner
scale, but the outer scale has a major impact when the size of a telescope aperture
D is comparable to the outer scale. The turbulence with the spatial scale larger
than the aperture diameter of the telescope contributes the tip-tilt modes of the
phase distortion over the aperture. This tip-tilt modes causes image motion on
the focal plane. In the case of long exposure, The size of point spread function
(PSF), which is equal to the image of a point-like source, depends on this motion.
If the atmospheric turbulence follows the von Karman model and the outer scale
is finite, the PSF size affected by the atmospheric turbulence become smaller than
the size expected by the Kolmogorov model.

The modified model including the outer scale was proposed by von Karman.
Using the von Karman model, the power spectrum Eq.(1.12) and the structure
function Eq.(1.7) for phase fluctuations are given as [9]

Φϕ(κ) = 0.023r
−5/3
0

[
κ2 +

(
2π

L0

)2
]−11/6

, (1.13)

Dϕ(ξ) = 0.172

(
r0
L0

)−5/3
[
1− 2π5/6

Γ(5/6)

(
ξ

L0

)5/6

K5/6

(
2πξ

L0

)]
(1.14)

where Γ is the gamma function and K denotes the modified Bessel function of the
second kind. Fig.1.1 shows the power spectrum and the structure functions of the
phase fluctuations with the Kolmogorov model and the von Karman model. In
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Figure. 1.1: The power spectrum (the left panel) and the structure function (the right
panel) for phase fluctuations with the Kolmogorov model (the red solid lines)
and the von Karman model as L0=100 m (the blue dashed lines) and L0=30
m (the green dotted lines). Fried parameter is set to r0=0.2 m.

both figures, the von Karman model shows a flatter spectra in spatial scales larger
than the size of the outer scale.

The full width at half maximum (FWHM) is a diameter at which the intensity
of PSF is a half of its peak value. With assuming the Kolmogorov model, FWHM
of long-exposure PSF, θKolmogorov, at a wavelength of λ is computed numerically by
a fourier transform of the optical transfer function exp[−0.5Dϕ(λf)] [48], where f

is the spatial frequency,

θKolmogorov = 0.98
λ

r0
. (1.15)

Tokobinin [48] simulated the effect of the outer scale on the seeing size numerically.
The FWHM of the PSF for the von Karman turbulence is approximated as

θvonKarman ≈

√
1− 2.183

(
r0
L0

)0.356

θKolmogorov. (1.16)

This approximation is obtained by fitting to the numerical results and shows good
agreement with numerical results for L0/r0 > 22. Fig.1.2 shows the seeing size
difference between the Kolmogorov and the von Karman model. The seeing size
of the von Karman model becomes much smaller because there is no turbulence
which spatial scale is larger than L0 in the von Karman model. This feature is
measured at 6.5 m Magellan telescopes [13].

A dome seeing, which occurs in a telescope dome, do not follow the Kolmogorov
turbulence. The dome seeing is difficult to be modeled because it depends on the
dome and telescope structure, temperature, and observation site. This dome seeing
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Figure. 1.2: The seeing size for the Kolmogorov model (the red solid lines) from Eq.
(1.15) and the von Karman model as L0=100 m (the blue dashed lines) and
L0=30 m (the green dotted lines) computed by Eq. (1.16). Fried parameter
is set to r0=0.2 m at λ=0.5 µm.

turbulence increases the turbulence power at ground and sometimes has a large
effect on astronomical observations.

1.2.6 Taylor Hypothesis

The time evolution of the atmospheric turbulence can be expressed by two effects :
the boiling due to the energy cascade and the shifting due to wind. The first effect
can be considered to be neglected within a short time scale and this assumption is
well known as Taylor’s hypothesis of frozen flow. In this condition, the atmospheric
turbulence can be modeled simply by multiple turbulence layers moving due to
winds with time. Furthermore, the frozen flow assumption allow us to predict the
time evolution of the atmospheric turbulences, i.e., the spatial displacement of a
turbulence layer with wind v during time duration ∆t is v∆t. Many studies verify
the frozen flow assumption on-sky and suggest that the time scale in which the
frozen flow assumption is valid is range from a few ms to 100 ms, which depends
on conditions [21, 42, 46].

1.3 Principle of SCAO system

1.3.1 Single-Conjugate Adaptive Optics

Fig.1.3 shows a schematic view of a SCAO system. In principle, an AO system
consists of a guide star (GS), wave-front sensor (WFS), controller, and deformable
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Figure. 1.3: The schematic view of a SCAO system.

mirror (DM). The process of AO correction is basically performed by the following
steps. First, the light from a GS is observed by a WFS to measure the wave-front
distortion in the direction of the GS. Second, a shape of a deformable mirror is
computed from the measurement in order to compensate the wave-front distortion
when the DM reflects the light. Third, DM shape is controlled and the correction is
applied to the wave-front of the light from a science target. In most of the current
AO system, the wave-front distortion is measured in the optical wavelength and
the correction is done in NIR wavelength. This is because the AO correction works
better in longer wavelength than shorter wavelength, which is more sensitive to
the residual of the correction of the atmospheric turbulence. The optical light
from the GS is split by a beam splitter and fed to WFS.

Guide star
GS is required as wave-front reference. Although the best case is that science
target itself is a bright point source and can be used as a GS, the science
target is usually a faint and extended object, such as an extra-galaxy, and
therefore we have to find a bright star around the science target, which can
be used as a GS, it is called natural guide star (NGS). In this case, the
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AO correction is performed based on the wave-front distortion in the NGS
direction. If the science target is far from the NGS, the light of the science
target propagates through different path from the path of the NGS at high
altitude in the atmosphere, as shown in Fig.1.3. This difference makes the
performance of the SCAO correction worse. Therefore, the performance of
the SCAO correction decreases with the angular separation from NGS. The
permissible separation from the NGS is characterized by the isoplanatic an-
gle θ0, which is roughly 10 arcseconds in H -band even at good observing
sites. The limitation is known as angular anisoplanatism. Due to the angu-
lar anisoplanatism, the shape of corrected PSF varies increasingly with the
angular separation from the NGS. In addition, sufficiently bright stars are
not available in all parts of the sky, and therefore, the sky-coverage of NGS
based AO system is very limited. Related to the sky-coverage, however, we
can improve by using artificial guide star, that is, laser guide star (LGS).

Wave-front sensor
The most used WFS is Shack-Hartmann WFS (SH-WFS). The SH-WFS
divides the image of the telescope aperture into the sub-apertures by a
micro-lens-array and measures a wavefront gradients in each subaperture.
The wave-front propagating into SH-WFS can be reconstructed from the
measurement of the local gradients. This process is called wave-front recon-
struction.

Deformable mirror
The correction is done by a DM. In general, tip-tile modes, which are the
strongest mode, are corrected by another tip-tilt mirror to relax the require-
ments for the stroke of the DM. The size of the element of a DM determines
the smallest spatial size which we can correct by an AO system. The tur-
bulence with the spatial scale below the element size of the DM can not be
corrected by the system, known as fitting error.

Control
For the real-time compensation, the AO loop needs to be controlled faster
than the coherence time of the atmospheric turbulence [24] given by

τ0 = 0.134/fG, (1.17)
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where fG is the Greenwood frequency given by

fG =

[
0.102k2 sec(ζ)

∫ ∞

0

C2
N(h)v(h)

5/3dh

]3/5
. (1.18)

where v(h) is a wind speed at altitude h. The typical value of the coherence
time τ0 is a few ms even at good observation sites. It means that the required
frequency for the AO control is order of hundreds Hz. Therefore, the required
computation time for the wave-front reconstruction is around 1 ms.

In order to optimize and stabilize the performance of AO system, we have to
consider the temporal control of AO system. The SCAO system is performed
in closed loop, in which the WFS is put behind of a DM and measures
the residual wave-front distortion corrected by the DM, that is, there is
feedback from WFS into DM. The simplest controller is an integrator, but
more optimized controls are proposed. This temporal control is not in the
scope of this thesis, but it is very important for an AO system.

1.3.2 Laser Guide Star AO System

LGS can improve the sky-coverage of an AO system. It is an artificial star created
by a laser beam. There are two kinds of the LGS system : Rayleigh LGS and
sodium LGS. The first one uses Rayleigh scatter in the atmosphere and is created
at altitude of 10–20 km. The other one is created in the sodium layer at altitude
of around 90 km by exciting the state of sodium with a laser at wavelength of 589
nm. In this thesis, we focus on the sodium LGS, which is mainly used in the AO
systems of the current large telescopes.

Although using LGS allows us to create GS anywhere we want, there are some
difficulties and limitation of LGS.

Insensitivity for the overall tip-tilt modes
Even if we use a LGS, another NGS is required to measure overall tip-tilt
modes, which is called tip-tilt NGS (TT-NGS). Since the light of LGS prop-
agates through the atmosphere twice, going up from a laser launch telescope
and going down from the LGS, the effect of the overall tip-tilt due to the at-
mospheric turbulence is cancelled out and therefore we can not measure the
overall tip-tilt modes by LGS. The TT-NGS can be fainter than the NGS.
In the case of NGS, the limit-magnitude is determined by the size of the
subapertures of SH-WFS. On the other hand, since the overall tip-tilt can
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Figure. 1.4: The schematic images for the cone effect and the spot elongation due to the
LGS.

be measured from the image motion in only one aperture, the magnitude
limit of TT-NGS is determined by the size of the telescope aperture. In
addition, since overall tip-tilt modes have relatively large isoplanatic angle
compared with high order modes, the angular anisoplanatism for the overall
tip-tilt modes, known as tilt anisoplanatism, has weaker dependence on the
separation than angular anisoplanatism. Therefore, the permitted separa-
tion of TT-NGS from the LGS is larger than the one for NGS. Thus, using
the LGS can improve the sky-coverage compared with NGS AO system even
though we need another TT-NGS.

Cone effect
The LGS is created at finite altitude and its light propagates in the atmo-
sphere with a conical optical path as shown in the left panel of Fig.1.4. As
a result, the volume of the atmospheric turbulence measured by the LGS is
different especially at high altitudes from the turbulence volume in which
the light of the science target propagates. This result in the deterioration
of the SCAO performance. This is known as cone effect or focal anisopla-
natism. The effect increases with the size of the telescope aperture and will
be severe in the future ELTs.

Spot elongation of sodium laser on SH-WFS
From on-sky lidar measurements of sodium layer [5], it is observed that the
sodium layer has a vertical thickness of roughly 10 km. Due to this thickness,
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the angular size of the LGS spot is elongated in radial direction on the SH-
WFS as shown in the right panel of Fig.1.4. The degree of the elongation,
θel, increases with the horizontal distance on the aperture plane between the
subaperture and the laser launch telescope, rsa, and is approximated as

θel ≈
rsaσNa

h2
Na

(1.19)

where hNa is the altitude of the sodium layer and σNa is the thickness of the
sodium layer. If it is assumed that hNa=90 km, σNa=10 km, zenith direction,
and the center launch system, in which the laser is launched from the back of
the secondary mirror, the elongation at the outermost subaperture is roughly
1 arcseconds for a 8 m telescope and 4 arcseconds for a 30 m telescope. This
elongation causes spot position estimation errors for outer subapertures [19].
In reality, the vertical profile of the sodium layer has complex structure and
varies with time, and the spot elongation pattern also varies.

1.3.3 Performance Metrics

There are different metrics to evaluate the performance of AO correction. One is a
wave-front error (WFE) which is computed from WFS telemetry data. Others are
FWHM, Strehl ratio (SR), and ensquared energy measured from observed PSF.

Wave-front error
WFE is defined as the root mean square (rms) value of the residual wave-
front distortion. If the residual phase distortion of the wave-front is denoted
by φ, the WFE σ is expressed as

σ =

√
1

S

∫
(φ(x)− φ̄)2 dx (1.20)

where S is the telescope pupil area and φ̄ is an average of the residual
distortion over the telescope pupil.

Full width at half maximum
FWHM is a diameter at which the intensity of PSF is a half of its peak
value. The FWHM affected by the atmospheric turbulence is represented
by Eq.(1.15) and Eq.(1.16). It is noted that the FWHM is often measured
by fitting two-dimensional gaussian or moffat function to the observed PSF
for convenience, but, to be exact, the gaussian and moffat function are not
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good approximation of the PSF corrected by an AO system because the AO
corrected PSF has two components, which are a corrected bright core and
uncorrected diffuse halo.

If there is no turbulence, the PSF is determined by the diffraction due to op-
tics, which is called diffraction-limited, and have diffraction pattern, known
as airy disk for circular aperture. The radius of the innermost dark ring of
the diffraction-limited PSF is given by

θdif = 1.22
λ

D
(1.21)

where D is aperture diameter. The FWHM of the diffraction-limited PSF is
given by 1.03λ/D. The FWHM of the uncorrelated PSF is represented by
Eq.(1.15) or Eq. (1.16) depending the turbulence model.

Strehl ratio
Strehl ratio (SR) is the ratio of peak intensity of observed PSF to the peak
intensity of the diffraction-limited PSF, has a value from 0 to 1. The goal of
AO system is maximizing the SR by the correction. The SR can be estimated
from the WFE by using Mareshal approximation [24],

SR ≈ e−σ2

. (1.22)

Although this expression is very useful, it is accurate to a couple of percent
for rms errors of 1/10λ.

Ensquared energy (EE)
The ensquared energy (EE) is a fraction of intensity within a defined square,
which is used to evaluate AO performance for spectroscopic observation by
setting a square size to the width of a slit.

1.4 Wide-Field Adaptive Optics

While SCAO systems with both NGS and LGS are well-established and provides
near diffraction-limited spatial resolution in NIR wavelength on the current large
telescopes, there are scientific demands to apply AO correction to wide FoR to
increase an observation efficiency or/and PSF uniformity over the wide FoR. As
mentioned in the previous section, the size of FoR of a SCAO system is limited
by the angular anisoplanatism. In order to overcome the angular anisoplanatism,
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Figure. 1.5: The schematic views of WFAO systems.
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three WFAO concepts with using multiple LGSs are proposed: multi-conjugate
adaptive optics (MCAO), multi-object adaptive optics (MOAO), and ground-layer
adaptive optics (GLAO). The schematic views of these systems are shown in Fig.
1.5. Each WFAO system is design for different purposes. In this section, we
introduce principle, advantage, disadvantage, and current/future systems of each
WFAO concepts briefly.

1.4.1 Multi-Conjugate Adaptive Optics

MCAO system was proposed by Beckers [6]. MCAO system requires the tomo-
graphic wave-front reconstruction to reconstruct a three-dimensional structure of
the phase distortion due to the atmospheric turbulence with using multiple LGSs.
Then, MCAO system compensates for the phase distortion three-dimensionally by
multiple DMs based on the reconstructed phase distortion. The number of DMs
is usually 2–3, which are put in series and conjugated at different heights in the
atmosphere (the blue planes in the Fig.1.5(a)). MCAO system provides a uniform
correction over a wide field of view (FoV) of 1–2 arcminutes. This is a main ad-
vantage of MCAO system and good for the precise photometry and astrometry. In
addition, using multiple LGSs can reduce the cone effect of LGSs, which however
is not limited to a MCAO system. This is important for future ELTs, where the
cone effect will be severe. As shown in Fig.1.5(a), the measurement of wave-fronts
is done in closed-loop in MCAO system, in which WFSs are put after DMs and
measure the residual wave-front distortions.

MCAO system suffers from generalized fitting error due to the discrete number
of DMs [43]. Consider the case of three turbulence layers and two DMs conjugated
to different altitude from the turbulence layers, as Fig.1.5(a). Even if the tomog-
raphy perfectly estimates the turbulence layers, it is impossible to provide the
perfect correction for all direction by the two DMs. This is known as the gener-
alized fitting error. Increasing the number of DMs is a solution of this problem,
but it requires additional optical surfaces, which decreases throughput, and com-
plexity of the control. Another difficulty associated with a MCAO system is the
requirement of large DMs to compensate the phase distortions at high altitudes.
These difficulties limit the size of FoV size of a MCAO system to the diameter of
1–2 arcminutes, which is smaller than other WFAO concepts.

At this moment, one MCAO system works as a facility instrument for Gemini-
South 8 meters telescope, named the Gemini Multi-conjugated adaptive optics
System (GeMS) [40, 44]. The GeMS computes the tomography by using 5 Na
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LGSs and 1–3 TT-NGSs, which measure unseen modes of the LGS, and corrects
the phase distortion over the wide FoV more than 1 arcminutes by three DMs
conjugated to 0, 4.5, 9 km. Another MCAO system is developed for the Large
Binocular Telescope (LBT) [26]. MCAO systems are also designed as first light
instruments for future ELTs, for example, NFIRAOS [27] for Thirty Meter Tele-
scope (TMT) and MAORY [14] for European ELT (E-ELT). The NFIRAOS on
TMT will do the tomographic wave-front reconstruction using six LGSs and pro-
vide the best correction for 30 arcseconds diameter FoV and the mild correction
for 2 arcminutes FoV by three DMs.

1.4.2 Multi-Object Adaptive Optics

MOAO system was proposed originally by Hammer et al. [23] and also requires
the tomographic wave-front reconstruction. MOAO system provides the optimized
correction for multiple small patches in the large FoR of 5–10 arcminutes diam-
eter. As shown in Fig.1.5(b), there are multiple science pick-off arms on science
targets. After each pick-off arm provides the light from the science targets for
each science channel, a DM contained in each science channel makes the optimal
correction in its science direction. This parallel approach can increase an efficiency
of the observation. In addition, since each DM in a MOAO system corrects the
phase distortion in one direction, there is no generalized fitting error in MOAO
systems, and the size of each DM can be comparable to the size of DM in SCAO
systems. Therefore, MOAO systems can realize larger FoR, which is considered
5–10 arcminutes diameter, compared with MCAO systems. The multiplicity of
MOAO systems is suited for multi-object observations of galaxies in high redshift
universe because these high redshift galaxies have a small apparent angular size
and a low number density.

However, MOAO is still considered as very challenging system. The most
challenging point of a MOAO system is open-loop control. MOAO system corrects
the phase distortion in different directions from WFSs and therefore, we need the
open-loop control. In the open-loop control, since there is no feedback fed to the
WFSs from the DMs, it is required excellent calibration and stability of all DMs
and WFSs compared with closed-loop AO systems. Moreover, open-loop WFSs
observe the raw phase distortions not corrected by DMs. It means that WFSs
with the large dynamical range are required. We have to construct the optical
and mechanical design of future MOAO systems with considering how we calibrate
and control the system. The complexity of MOAO system is the other challenging
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point. Because the FoV of each science path is small and the optical design of
each science path can be simple, there can be science channels as many as 10 in
future MOAO systems [3, 45]. Therefore, and the number of moving elements,
such as DMs and pick-off arms, is much larger than other WFAO concepts.

In order to identify technical readiness and difficulties associated with an
MOAO system, there are several projects to develop an MOAO demonstrator
and to test it on-sky. Here, we introduce two projects : CANARY [18] for William
Herschel Telescope (WHT) of 4.2 meters diameter and RAVEN [32] for Subaru
telescope of 8 meters diameter. The CANARY is the first on-sky demonstrator
of an MOAO system, which works with three NGSs, four Rayleigh LGSs, and
one on-axis science channel in the phase B, and is developed as a pathfinder for
EAGLE, which is MOAO system on E-ELT [45]. RAVEN is the first MOAO tech-
nical and science demonstrator on 8-m class telescope. RAVEN is developed and
tested for the Subaru telescope on Maunakea in Hawaii. RAVEN provides MOAO
correction for two science targets simultaneously by using three NGSs and one Na
LGS installed in the Subaru telescope. We will explain the system of the RAVEN
later.

1.4.3 Ground Layer Adaptive Optics

GLAO system can be considered as a variation of the MCAO system with only
one DM conjugated to the ground, as shown in Fig.1.5(c). As mentioned above,
more than half of the atmospheric turbulence are caused in the ground layer.
GLAO provides the correction only for the ground layer and improves the seeing
rather than achieves near diffraction-limited resolution. The ground layer is a
common component to wide range of directions. Therefore, GLAO system provides
moderate correction over the wide FoV, which is possibly more than 10 arcminutes
diameter. This is useful to survey observations over large field. Mostly, an adaptive
secondary mirror is considered as a DM for a GLAO system, then we can perform
GLAO correction without any additional optical component. In a GLAO system,
a tomographic reconstruction is not necessary since the ground layer turbulence
can be computed by averaging measurements from multiple WFSs.

A GLAO system is working in LBT [22], named ARGOS. This is a GLAO
system with three Rayleigh LGSs and an adaptive secondary mirror. ARGOS
provides 0.3 to 0.4 arcsecond images in J, H and K with GLAO correction from
0.7 to 1 arcsecond uncorrected seeing. Furthermore, other large telescopes plan a
GLAO system with adaptive secondary mirror.
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Value

Telescope aperture 30 m
Total system throughput 30 %

Dark 0.006 e−/pixel/s
Readout 5 e−/pixel/read

Integration Time 10, 20, and 30 hours
FoR 5, and 10 arcminutes diameter

AO performance 50 % EE

Aperture for EE
50 mas box for point source

300 mas box for extended source
Signal to noise ratio (SNR)

5
for detection

Spectral Resolution 3000
Observed wavelength J-band (1250 nm)

Tab. 1.1: Parameters used in the estimation of the number of detected high redshift
LBGs in 1.4.4. The dark count and readout noise is referenced from the TMT
IRIS simulation [51].

1.4.4 Importance of Wide Field

The key parameters of WFAO systems are the performance of AO correction and
the FoR size. We show the importance of these parameters with respect to multi-
object spectroscopy of lyman-break galaxies (LBGs) in high redshift universe,
z > 5.

From deep imaging surveys by the Hubble Space Telescope (HST), many candi-
dates of galaxies in high redshift universe z > 5 are detected by the lyman-break
method [7]. It is known that these high redshift LBGs are star-forming galax-
ies. In order to understand the star formation in the early universe, multi-object
spectroscopy of rest-frame UV continuum, emission lines, and absorption lines for
large number of high redshift LBGs is required. Such a observation is considered
as the main science of a MOAO instrument in the future ELTs [1]. As the low
number density of high redshift LBGs, the large FoR is required to maximize the
multiplicity of the MOAO for high redshift LBGs.

Here, we estimate the number of high redshift LBGs expected to be detected by
a multi-object spectroscopy with a MOAO system on the 30 m aperture telescope
and compare the achieved number density with the observed luminosity function.
The parameters used in this estimation are summarized in Table1.1. The total



Chapter 1. Introduction to Wide-Field AO Systems and Tomographic
Reconstruction 20

10−6

10−5

10−4

10−3

25 25.5 26 26.5 27 27.5 28 28.5 29

−23 −22.5 −22 −21.5 −21 −20.5 −20 −19.5

FoR=5′φ

FoR=10′φ

N
u
m
b
er

D
en

si
ty

[M
p
c−

3
]

mJ [mag]

M1600 [mag]

10−6

10−5

10−4

10−3

25 25.5 26 26.5 27 27.5 28 28.5 29

−23.5 −23 −22.5 −22 −21.5 −21 −20.5 −20

FoR=5′φ

FoR=10′φ

N
u
m
b
er

D
en

si
ty

[M
p
c−

3
]

mJ [mag]

M1600 [mag]

Figure. 1.6: Observed number density and the number density achieved by the multi-
object spectroscopy with the future MOAO system at z ∼ 5 (the left panel)
and z ∼ 6 (the right panel). The gray curve indicates the observed cumu-
lative luminosity function of high redshift LBGs as a function of an appar-
ent magnitude at J-band. The observed luminosity functions are modeled
with a Schechter function [7], and the parameters of the Schechter function
are M∗

UV = −21.17, ϕ∗ = 0.74 × 10−3, and α = −1.76 for z ∼ 5, and
M∗

UV = −20.94, ϕ∗ = 0.50 × 10−3, and α = −1.87 for z ∼ 6. The redshift
range for each redshift is assumed to 4.5 < z < 5.5 for z ∼ 5 LBGs and
5.5 < z < 6.5 for z ∼ 6. The vertical lines indicate the limit magnitude
achieved by the future instrument for the point source (solid) and extended
source (dotted) as an integration time of 10 hours (red), 20 hours(blue),
and 30 hours (green). The horizontal lines represent the cumulative number
density required to detect 10 (solid) and 5 (dotted) LBGs over the FoR of
5 (magenta) and 10 (black) arcminute diameter.

system throughput, including the telescope, the AO system, and the science in-
strument, is assumed to be 30 %. We consider a point source and an extended
source as a intensity profile of LBGs. For the point source, the performance of
the MOAO system is assumed to be 50 % EE in a 50 mas box over the FoR. For
the extended source, the MOAO performance is 50 % EE in a 300 mas box to
maximize the signal to noise ratio (SNR). The background and transmittance of
the sky are referenced from the measurement by GEMINI observatory1. The dark
count and readout noise of the detector are referenced from [51]. The observa-
tion is performed at J-band, which is close to the redshifted wavelength of the
rest-frame UV continuum. The criteria for the detection is set to SNR=5.

Fig.1.6 shows a relation between the observed cumulative luminosity function
and the number of LBGs detected by the multi-object spectroscopy with the future
MOAO system at z ∼ 5 (the left panel) and z ∼ 6 (the right panel). The gray curve
indicates the observed cumulative luminosity function of high redshift LBGs. The

1http://www.gemini.edu/sciops/telescopes-and-sites/observing-condition-constraints/ir-
background-spectra
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vertical lines indicate the limit magnitude achieved by the future instrument for
the point source (solid) and extended source (dotted) as an integration time of 10
hours (red), 20 hours(blue), and 30 hours (green). The horizontal lines represent
the cumulative number density required to detect 10 (solid) and 5 (dotted) LBGs
over the FoR of 5 (magenta) and 10 (black) arcminute diameter. For example, at
z ∼ 5, an intersection point of the red vertical solid line and the magenta horizontal
solid line is above the observed cumulative luminosity function of LBG, and it
means that the future instrument can not detect the rest-frame UV continuum of
10 LBGs at z ∼ 5 within the FoR of 5 arcminutes diameter with a SNR of 5 and
an integration time of 10 hours, if the LBGs are point sources. On the contrast,
since an intersection point of the red vertical solid line and the black horizontal
solid line is below the observed cumulative luminosity function, the rest-frame UV
continuum of 10 LBGs at z ∼ 5 can be detected by the future instrument within
the FoR of 10 arcminutes diameter with a SNR of 5 and an integration time of 10
hours. Similarly, if the LBG is extended object, while 5 LBGs can not be detected
with a 5 arcminutes FoR and the integration time of 30 hours, it will be possible
with a 10 arcminutes FoR. This trend is also seen at z ∼ 6. These estimates show
that in order to maximize the multiplicity for the high redshift LBGs, expanding
the FoR without reducing the AO performance is important.

1.5 Tomographic Wave-Front Reconstruction

In this section, we provide more introduction about the tomographic wave-front
reconstruction, which is main interest of this thesis. As mentioned in subsection
1.4.4, the key parameters of WFAO systems are the performance of AO correction
and the FoR size. The AO performance and the size of FoR depend strongly on
the accuracy of the tomographic wave-front reconstruction.

The tomographic wave-front reconstruction has already been demonstrated on
sky by some instruments and actually it works on sky[32, 40]. However, the esti-
mation error due to the tomographic wave-front reconstruction causes a significant
WFE, called tomographic error, and the tomographic error is a one of major er-
ror term in WFAO systems. Therefore, improving the tomographic wave-front
reconstruction directly results in the enhancement of the WFAO performance.

In this section, we will explain the principle of the tomographic wave-front
reconstruction briefly. Then, we will explain the problem associated with the to-
mographic wave-front reconstruction, which limits the the performance and the
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FoR size of WFAO system. Finally, we will explain the computational complex-
ity, which is the other challenging point especially for future ELT-scale WFAO
systems.

1.5.1 Tomography Step and Fitting Step

The goal of the tomographic wave-front reconstruction is reconstructing a three-
dimensional structure of the phase distortion due to the atmospheric turbulence
and computing the shapes (or commands) of DMs from the reconstructed phase
distortion. The first part of the tomographic reconstruction is often referred to as
a tomography step and the second part is a fitting step.

The measurements from multiples WFSs contain the information of the phase
distortion in corresponding GS directions. In order to overcome the angular aniso-
planatism, we have to consider the optical path difference at high altitude depend-
ing on the direction. This is achieved by converting the measurements from WFSs,
which probes the phase distortion in each direction, into the phase distortion at
each altitudes using the tomographic technique. In the case of SH-WFSs, this
process is equal to solving an inverse problem for a linear equation between the
measurements from SH-WFSs and the phase distortion due to the atmospheric
turbulence as

s = Hϕ+ η (1.23)

where s and η are a vector of the measurements and measurement noises of mul-
tiple SH-WFSs, ϕ is a vector of phase values on a discrete grid of points on the
atmospheric turbulence layers, and H is an influence matrix between measure-
ment s and the phase distortion ϕ. The influence matrix H is created based
on the GSs direction, the altitudes and strengths of the atmospheric turbulence
layers, and SH-WFS parameters. The altitudes and strengths of the atmospheric
turbulence layers vary with time. Therefore, it is required to measure these in-
formation during observation and update the influence matrix H to optimize the
performance of the tomographic wave-front reconstruction.

The fitting step depends on with the WFAO concepts. In MCAO system,
the correction is performed by the series of DMs, which conjugated at different
altitudes. The commands of DMs are determined to provide the uniform correction
over the FoV. On the other hand, in MOAO system, the phase at each DM-plane
is optimized for each direction and the fitting step is performed for each DMs in
parallel.
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In a simple case, these steps are performed with one matrix-vector multipli-
cation as u(t) = Es(t), where u is a vector of the commands of DMs and E is
a matrix performing the tomography step and the fitting step. The matrix E is
called reconstructor or reconstruction matrix. With following the update of the
influence matrix H, the reconstruction matrix E needs to be updated.

1.5.2 Lack of Information in Tomographic Reconstruction

The performance of the tomographic wave-front reconstruction depends strongly
on the number of GSs. However, the number of GS is limited in astronomical
AO systems. From the limited number of GSs, we can not get information of the
phase distortion in a volume of the atmosphere corresponding to the FoR from
the WFS measurements. This lack of information limits the performance of the
tomographic wave-front reconstruction and also makes it difficult to expand the
FoR size of WFAO systems.

Fig.1.7 shows the schematic view of this problem. There are three turbulence
layers and three GSs. The footprints of the optical path of GSs on the turbulence
layers are indicated with orange circles. In the figure, the some parts of turbulence
layers are not covered by the GS optical paths. Namely, we can not get information
of the phase distortion of this uncovered area from WFSs. The uncovered area
causes a significant tomographic error mostly on the outer area of the FoR. This
is one of the lack of information in the tomography.

The other lack of information is caused by the area referred to as unoverlapped
area. In Fig.1.7, most of area on the atmospheric turbulence at high altitude is
covered by only one GS optical path. The WFSs probes the integrated phase
distortion in its GS direction. In other words, the phase distortions from multiple
turbulence layers are degenerated in the WFS measurement. In order to solve this
degeneracy and reconstruct the phase distortion on each atmospheric turbulence
screens by the tomographic wave-front reconstruction, the information from mul-
tiple directions is necessary, that is, all areas should be covered by two or more GS
optical paths. This degeneracy due to the unoverlapped area results in a significant
tomographic error even in the direction within the GS asterism.

In particular, the tomographic error due to these areas becomes more severe
when one considers to expand a FoR of WFAO systems with the wide configuration
of GSs. In addition, using LGS increases the geometric error compared with using
NGS due to its conical optical path. This means that the tomographic error will
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Figure. 1.7: Geometric relation between positions of GSs and regions in the atmosphere
measured by WFSs. Left: The solid orange circles show the footprint of
GS optical paths at the current time-step. There are areas covered by no
or only one GS, referred to as uncovered area or unoverlapped area. These
areas cause significant tomographic errors. Right: The blue arrows indicate
wind direction at each altitude. The GS footprints measured at a previous
time-step move due to the wind with time, which are dashed orange circles
in the figure.

be more severe in WFAO systems for the future ELT with multiple LGSs because
the cone effect gets larger with increasing the size of aperture.

Some approaches are proposed to overcome this issue[2, 11]. These methods
are based on the frozen flow hypothesis. Under the frozen flow assumption, the
time evolution of the atmospheric turbulence can be computed as the shift due
to the wind. In this case, as shown in the right panel of Fig.1.7, the areas in the
atmospheric turbulence measured at previous time-steps also moves with time.
This means that the estimation and the measurement at previous time-steps can
be considered as the information of displaced areas at the current time-step. Am-
mons et al. [2] propose the multi-layer shift-and-average technique. They averaged
the reconstructed phase distortions over multiple time-steps for each turbulence
layer with considering the shift due to the wind. Their method can reduce the
tomographic error due to the uncovered and unoverlapped areas successfully in the
numerical simulation. Moreover, predictive linear quadratic gaussian (LQG) con-
trol probably can reduce the tomographic error due to the lack of information[11].
The predictive LQG is proposed mainly for reducing the time lag error. In the
LQG control, the estimations at multiple time-steps are integrated. Therefore,
the LQG may works not only for the time lag error, but also for the tomographic
error due to the lack of information.
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However, It is noted that in the methods above, an estimate at each time-step
is already affected by uncovered and unoverlapped areas. In order to solve the lack
of information directly, we should use information from multiple time-steps in the
tomographic reconstruction, not after the tomographic reconstruction such as the
multi-layer shift-and-average technique and the LQG.

Estimating wind speeds and directions at different altitudes is essential for
our tomography method. Several methods to estimate wind speeds and directions
from measurements of Shack Hartmann WFS (SH-WFS) are proposed and tested
by using on-sky measurements[21, 42]. These methods successfully detect the wind
at multiple altitudes and start to be applied to the real-time operation.

1.5.3 Computation Complexity

The computation complexity of the tomographic reconstruction is the other prob-
lem especially for future ELT-scale WFAO system. For the real-time compensation
of the phase distortion, we have to compute the tomographic reconstruction within
1 ms as mentioned in 1.3.1. Furthermore, the tomographic reconstructor should
be updated every from a few ten seconds to a few minutes to follow the change of
atmospheric condition.

For example, consider MOAO systems on a current large telescope with 8 m
diameter and a future ELT with 30 m diameter. The number of GSs and sci-
ence channels are assumed to be 5 and 10, respectively. The size of subapertures
of SH-WFSs and elements of DMs are 0.5 m, that is, there are 16times16 sub-
apertures in a SH-WFS and 16×16 elements in a DM for the MOAO system on
the current MOAO system and there are 60×60 subapertures and elements for
the future MOAO system. The total number of measurements from 5 SH-WFSs
is 2560 and 36000, respectively, where it is noted that each subaperture mea-
sures local gradients along x and y direction. The total number of estimates of
the tomographic reconstruction, i.e. the number of elements of 10 DMs, is 2560
and 36000, respectively. The size of the tomographic reconstructor for the future
ELT-scale MOAO system is roughly 200 time larger than the size for the MOAO
system for the current large telescopes. The complexity for computing the to-
mographic reconstructor with simply inversing the influence matrix, H , scales as
O(n3), where n is a dimension of the reconstructor matrix. Also, the complexity of
the matrix-vector multiplication for the tomographic reconstruction scales O(n2).
Thus, the complexity of the tomographic reconstruction increase largely with the
size of the aperture. In the ELT-scale WFAO systems, we can not achieve the
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required control speeds with the standard computation method. Therefore, more
efficient methods are required.

There are a lot of effort to reduce the computation time of the ELT-scale tomo-
graphic reconstruction. In the ELT-scale tomographic reconstruction, we can not
compute the tomographic reconstructor directly because it is too large. Therefore,
the iterative methods, such as a conjugate gradient method, are proposed, which
solves the inverse problem for the tomographic reconstruction iteratively at every
time-step. Ellerbroek [15] proposed the sparse matrix technique, which uses the
sparseness of the matrix and can reduce the computation time of the matrix-vector
multiplication. The most of matrices in the tomographic reconstruction are known
as a sparse matrix, and therefore, the sparse technique allows us to reduce the com-
putation time for the iterative method. Also, the conjugate gradient method with
an efficient preconditioning technique [49] and a warm start technique [36] is pro-
posed to reduce the number of iterations. Recently, the distributed Kalman filter
is developed as a fast non-iterative spatially invariant controller [38]. In addition,
the general purpose computing on GPU (GPGPU) can be powerful computing
engines of those algorithms.

1.6 Object of This Thesis

In this work, we will develop a new algorithm for the tomographic wave-front
reconstruction, which reduces the tomographic error due to the lack of informa-
tion and to extend the size of FoR of WFAO systems without reducing the AO
performance, and the method to estimate wind speeds and directions at multi-
ple altitudes, which is essential for the new tomography algorithm. The basic
idea of the new tomographic reconstruction algorithm is to solve the tomographic
wave-front reconstruction by using measurement from multi time-steps based on
the frozen flow assumption. The main goal is to demonstrate and evaluate the
performance of the new tomographic reconstruction by analytical method, numer-
ical simulation, laboratory test, and on-sky observation. Also, we will discuss the
GPGPU capability for the future-ELT scale tomographic reconstruction.
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Methodology

2.1 Tomographic Wave-Front Reconstruction

Fig.2.1 shows a schematic of geometry for a MOAO system with multiple LGSs
and SH-WFSs. The goal of tomographic reconstruction is reconstructing DM
commands of each science direction from the measurements of multiple SH-WFSs.
We consider that the atmospheric turbulence consists of Nlayer thin layers located
at different altitudes. The tomography is computed from Nlgs LGSs for Nobj

science objects. The directions of each LGS and each science target are indexed by
α = (αx, αy) and β = (βx, βy), respectively. The command, or voltage, provided
to the elements of DM for kth science object is indicated by a column vector uβk

.

In the near-field approximation, the phase distortion of the aperture-plane
wave-front φθ(x, t) in the science target direction βk at time t is represented as
the sum of the phase distortion caused by the turbulence layers,

φβk
(x, t) =

Nlayer∑
i=1

ϕi(x+ hiβk, t), (2.1)

where x is two-dimensional spatial coordinate vector x = (x, y), hi is an altitude of
ith turbulence layer, and ϕ(x, t) is a phase distortion at a point x on ith turbulence
layer at time t. In the case of LGS in direction αj at altitude hNa, the scaling of
the optical footprint at high altitudes due to the cone effect should be considered
as

φαj
(x, t) =

Nlayer∑
i=1

ϕi

(
x
hNa − hi

hNa
+ hiαj , t

)
. (2.2)

In the later discussion, wave-fronts and turbulence layers are discretized spa-
tially and denoted by column vectors, this is, φ(t) for wave-fronts and ϕ(t) for

27
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Figure. 2.1: Image of a MOAO model with multiple turbulence screens, LGSs, and SH-
WFSs. β and α indicate directions of science targets and LGSs. The index
i, j, k is used for the turbulence screens, LGSs and SH-WFSs, and science
targets and DMs, respectively. The goal of the tomographic reconstruction
is to estimate DM command uβ from the measured slope sα.

turbulence layers. We define a ray-tracing matrix P i
θ , which extracts phase dis-

tortion within a optical path footprint in the direction θ from i-th atmospheric
turbulence by using a bilinear interpolation. Using the ray-tracing matrix, Eq.
(2.1) and Eq.(2.2) are rewritten with considering all phase points in the aperture
as

φβk
(t) =

Nlayer∑
i=1

P i
βk
ϕi(t) = Pβk

ϕ(t), (2.3)

φαj
(t) =

Nlayer∑
i=1

P i
αj
ϕi(t) = Pαj

ϕ(t), (2.4)

where P i
αj

is a ray-tracing matrix including the scaling effect due to the cone
effect, ϕ(t) = [ϕT

1 (t) · · ·ϕT
Nlayer

(t)]T , and Pβk
and Pαk

are a concatenation of all
submatrices P i

βk
and P i

βk
, respectively.
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We define the relation between the DM commands reconstructed by the to-
mography and the wave-front made by the DM for kth science direction as

φ̂βk
(t) = Nβk

ûβk
(t) (2.5)

where the hat symbol indicates estimated quantities and Nβk
is a interaction

matrix for kth DM. The interaction matrix is determined experimentally.

The phase variance of the aperture-plane residual wave-front for science direc-
tion βk is defined as

ϵβk
= ⟨||φβk

− φ̂βk
||2⟩. (2.6)

In MOAO system, a tomographic reconstructor is determined to minimize the
residual phase variance ϵβk

[10],

Eβk
= argmin

Eβk

ϵβk
, (2.7)

where Eβk
is the tomographic reconstructor for the direction βk and ⟨⟩ indicates

ensemble average over time. This reconstructor is known as minimum variance
reconstructor [15], which provides the solution to minimize the variance of the
residual phase at on aperture-plane. The DM commands uβk

is reconstructed
from the measurements sα by the reconstructor Eβk

as uβk
= Eβk

sα.

2.1.1 Measurement Model

The slope sαj
(t) measured by the j-th SH-WFS aiming the direction αj at time

t is defined as

sαj
(t) = Γαj

φαk
(t) + ηj(t) = Γαj

Pαj
ϕ(t) + ηj(t), (2.8)

where Γαj
is a discrete phase-to-slope operator which converts phases into slopes

and ηj(t) is a column vector of the noise in measurements of j-th SH-WFS.

We use Fried geometry to define Γαj
. In the Fried geometry, slopes for x and

y direction in a subaperture are defined by surrounding 4 phase points (Fig.2.2)
as (

sxi,j

syi,j

)
=

1

2dsa

(
−1 1 −1 1

−1 −1 1 1

)
φi,j

φi+1,j

φi,j+1

φi+1,j+1

 (2.9)
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Figure. 2.2: Fried geometry to define slopes for SH-WFS.

where φi,j and s
x(y)
i,j are a phase value and x(y)-slope at a discrete point indexed i

and j. Eq. (2.8) is concatenation of Eq. (2.9) for all subapertures.

Concatenating Eq.(2.8) of Nlgs SH-WFSs, we can obtain a equation connecting
the phase distortion on Nlayer atmospheric layers and the slope provided by Nlgs

SH-WFSs as follows.

sα(t) =


sα1(t)

...
sαNlgs

(t)

 = ΓαPαϕ(t) + η(t) (2.10)

where Γα is a block diagonal matrix, Γα = diag[Γα1 , · · · ,ΓαNlgs
], Pα is a ray-

tracing matrix concatenating Pαj
for 1 ≤ j ≤ Nlgs, and η(t) is a column vector

including measurement noises from all SH-WFSs.

2.1.2 Minimum Variance Reconstructor

The minimum variance reconstructor can be obtained by minimising Eq.(2.6). As
shown in Appendix A.1 , the final formula is given as

Eβk
=(NT

βk
Nβk

)−1NT
βk
Pβk

(P T
αΓT

αΣ
−1
ηηΓαPα −Σ−1

ϕϕ)
−1P T

αΓT
αΣ

−1
ηη (2.11)

=Fβk
Eϕ. (2.12)

where Σηη is a noise covariance matrix, Σϕϕ is a covariance matrix of the phase
distortion of the atmospheric turbulence, Eϕ is a estimation matrix, and Fβk

is a
fitting matrix. If it is assumed that the measurement noise from jth WFS is zero-
mean gaussian noise with a variance of σ2

η,j and noises of all WFS subapertures are
independent of each other, the noise covariance matrix becomes a block diagonal
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matrix as Σηη = diag[σ2
η,1I, · · · , σ2

η,Nlgs
I]. Furthermore, under the assumption

that all WFSs have same noise with a variance σ2
η, the noise covariance matrix

becomes Σηη = σ2
ηI and the estimation matrix Eϕ can be rewritten as

Eϕ = (P T
αΓT

αΓαPα + σ2
ηΣ

−1
ϕϕ)

−1P T
αΓT

α. (2.13)

Then, the DM commands for science direction βk(t) is reconstructed from mea-
surements as ûβk

(t) = Eβk
sα(t) = Fβk

Eϕsα(t).

The term of σ2
ηΣ

−1
ϕϕ works as a regularization matrix, which smooths the to-

mographic errors of high spatial frequencies due to the measurement noise. The
effect of the regularization matrix is scaled by the balance between the measure-
ment noise σ2

η and the turbulence power C2
N . The phase covariance Σϕϕ can be

computed based on the turbulence powers, altitudes, and the Kolmogorov or the
von Karman power spectra, and is a block diagonal matrix including the phase
covariance matrix at each altitude as Σϕϕ = diag[Σϕϕ,1, · · · ,Σϕϕ,Nlayer ].

This reconstructor is constructed based on the model of the turbulence struc-
ture and SH-WFSs, which is known as model-based reconstructor. The turbulence
altitude, C2

N values, measurement noise are required to create the model-based
reconstructor. We will explain the method to estimate the C2

N profile in . In ad-
dition, the DM commands is estimated from the measured slopes at one time-step
by this reconstructor. Therefore, Eβk

is referred to as single time-step tomographic
reconstruction in the remainder of this thesis.

2.1.3 Discrete Laplacian Approximation

As mentioned, the off-line and on-line computation complexity of the tomographic
reconstructor is one of the problem for the future ELT-scale WFAO systems. The
sparse matrix technique can reduce the complexity. However, the phase covariance
matrix Σϕϕ is a dense matrix and can not be incorporated into the sparse matrix
computation.

The sparse approximation is proposed by Ellerbroek [15], which assumes the
turbulence follows κ11/3 ≈ κ4. Under the approximation, the inverse of the phase
covariance matrix for ith turbulence layer can be rewritten by using Laplacian or
curvature operator as

Σ−1
ϕϕ,i ≈ LT

i Li = c2i L̄
T
i L̄i (2.14)

where L̄i is a discrete normalized Laplacian matrix, ci is a scaling constant for L̄i,
and Li = ciL̄i. The derivation of the scaling constant is given in Appendix A.2
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based on [20]. The discrete Laplacian for all turbulence layers is a block diagonal
matrix similar to Σϕϕ.

While this approximated regularization matrix is fully sparse and can be incor-
porated into efficient sparse-matrix techniques, it is known that the approximated
matrix does not regularize tip-tilt modes and other modes that are curvature-
free[35]. The unregularized modes, mainly tip-tilt modes, may affect the tomo-
graphic error especially in the case with LGSs, where tip-tilt modes can not be
measured by LGS.

2.1.4 Multi Time-Step Tomographic Wave-Front Reconstruc-

tion

In this section, we will introduce our idea to reduce the tomographic error due
to the uncovered and unoverlapped areas by increasing information of the at-
mospheric turbulence using the measurements at both of the previous and the
current time-steps simultaneously. As mentioned in Chapter 1, the frozen flow
assumption allows us to consider the evolution of the atmospheric turbulence as
the movements of the turbulence layers due to the winds. Under this assumption,
it can be considered that the areas measured by WFSs at a previous time-step
shift due to the wind with time, which is indicated in Fig.1.7. Thanks to the spa-
tial displacement due to the wind, the areas corresponding to the measurements
at the previous time-step cover the uncovered and the unoverlapped areas at the
current time-step. An important point is using multi time-step measurements in
the tomography.

If an atmospheric turbulence layer moves with a constant speed v = (vx, vy),
the movement of the phase distortion pattern with a position x at ∆t previous
time-step is written by

ϕ(x, t−∆t) = ϕ(x+ v∆t, t). (2.15)

Using Eq.(2.15), we can rewrite Eq. (2.2) and Eq.(2.4) into equations between the
aperture-plane wave-front at the previous time-step t−∆t and the phase distortion
due to the turbulence layers at the current time-step t as

φαj
(x, t−∆t) =

Nlayer∑
i=1

ϕi

(
x
hNa − hi

hNa
+ hiαj + vi∆t, t

)
, (2.16)

φαj
(t−∆t) = P∆t

αj
ϕ(t), (2.17)
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where P∆t
αj

is a ray-tracing matrix considering the movement of the phase distor-
tion pattern within the optical path footprint of LGS in direction αj during the
duration time ∆t. Similarly, using Eq. (2.17) allows us to create a measurement
model connecting measurements at the previous time-step (t−∆t) with the phase
distortion due to the atmospheric turbulence at current time-step t,

sα(t) = ΓαP
∆t
α ϕ(t) + η(t) (2.18)

where, P∆t
α is a concatenation of all submatrices P∆t

αj
for j = 1, . . . , Nlgs.

In order to use the measurements from both of the current and previous time-
steps simultaneously to increase information and to improve the performance of
the tomography, the final measurement model is a concatenation of Eq. (2.10)
and Eq.(2.18). The reconstructor can be given as well as the single time-step
reconstructor.

Ẽβk(∆t) =Fβk
(P̃ T

α(∆t)Γ̃
T
α(∆t)Σ̃

−1
ηη(∆t)Γ̃α(∆t)P̃α(∆t) +LTL)−1P̃ T

α(∆t)Γ̃
T
α(∆t)Σ̃

−1
ηη(∆t)

(2.19)

=Fβk
Ẽϕ(∆t) (2.20)

where

P̃α(∆t) =

[
Pα

P∆t
α

]
, Γ̃α(∆t) =

[
Γα 0

0 Γα

]
, Σ̃η(∆t) =

[
Σηη 0

0 Σηη

]
. (2.21)

The wave-front in the science direction is derived from the measurements at
the current and the previous time-step as φ̂βk

(t) = Ẽβk(∆t)s̃α(∆t)(t), in which
s̃α(∆t)(t) = [sα(t)

T sα(t−∆t)T ]T . We refer to this reconstructor as multi time-
step tomographic reconstruction . Although the multi time-step reconstructor
Ẽβk(∆t) uses measurements only from two time-steps, it is easily to expand the
reconstructor to use multi time-step measurements more than two time-step, for
example, Ẽβk(∆t1,∆t2,...,∆tn). The wind speed and direction at each altitude should
be measured before the reconstruction. We will discuss the method to estimate
the wind speed and direction at each altitude in .

2.1.5 Time Difference ∆t

The time difference between the current and the previous time steps, ∆t, is an
important parameter for the multi time-step reconstructor. Although we assume
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the frozen flow assumption, in reality, the time scale in which the frozen flow
assumption is valid is limited. In order to improve the performance of the tomo-
graphic reconstruction by the multi time-step reconstructor, ∆t should be chosen
to be shorter than the time scale within which the frozen flow assumption holds.
There are several studies to investigate the time scale of the frozen flow. Schöck
et al. [46] investigated the temporal decay of the intensity of the auto-correlation
of the WFS slope measured on sky, and found that a value t50, which is the times
for which the cumulative auto-correlation decreases to 50 % of its initial value,
is of order of 50–100 ms. If we use this time scale, t50, as an index for ∆t, ∆t

should be equal to or shorter than t50. However, it is noted that it is not clear
how the decay ratio of the auto-correlation and t50 relate to the performance of
the multi time-step reconstructor. Also, the result from Schöck et al. consider
the total auto-correlation decay and they did not investigate the temporal decay
of each turbulence screen. In order to understand the effect of the frozen flow
assumption, more on-sky experiments are required. We will discuss the influence
of the frozen flow assumption on the multi time-step reconstructor in Chapter 4,
again.

2.1.6 Iterative Computation for ELT-scale Tomography

In the case of WFAO systems on the current large telescopes, since we can compute
the reconstructor matrix directly with inversing matrices of Eq. (2.11), the DM
commands are estimated by multiply the measured slope by the reconstructor.
However, on future ELT-scale WFAO system, computing Eq.(2.11) directly is
hard because the matrices are too large. Therefore, iterative method is used to
compute the tomographic reconstruction. In this thesis, we use the conjugate
gradient method (CGM) for the tomographic reconstruction on the ELT-scale
WFAO system.

The CGM solves an equation of Ax = b for x iteratively, where x is a col-
umn vector of unknown estimate, A is a coefficient matrix, and b is a known
measurements. The coefficient matrix A should be a positive definite symmetric
matrix. In the case of the tomographic wave-front reconstruction, we need the
CGM for both of the estimation step and the fitting step. In the estimation step,
an equation to be solved by the CGM is given as

(P T
αΓT

αC
−1
ηηΓαPα +LTL)ϕ̂(t) = P T

αΓT
αC

−1
ηηsα(t) (2.22)

where ϕ̂(t) is a column vector of the phase distortion of the atmospheric turbulent
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layers and this is a x in this case. We use the sparse approximation for the phase
covariance matrix. Then, in the fitting step, we solve the following equation by
the CGM for the DM commands ûβk

.

(NT
βk
Nβk

)ûβk
(t) = NT

βk
Pβk

ϕ̂(t) (2.23)

The convergence of the CGM is decided by the relative error ||b − Axk||/||b||,
where xk is the estimates at k-th iteration.

Each iteration of the CGM consists of matrix-vector multiplications. Thanks
to the sparse approximation for the phase covariance matrix, all matrices in the
tomographic reconstruction are sparse. Therefore, we use sparse matrix computa-
tion for all matrix-vector multiplications in the CGM to reduce the computation
time of each iteration.

The other thing to consider for reducing computation time is reducing the
number of iteration of the CGM. The number of the iteration of the CGM de-
pends on the condition number of a coefficient matrix A. The condition number,
κ(A), is used to measure how sensitive a equation is to error of measurements,
b, and is defined as κ(A) = σmax(A)/σmin(A), where σmax(A) and σmin(A) are a
maximum and a minimum singular value of a matrix A, respectively. If condition
number is large, the estimate is affected strongly by the measurement error and the
number of the iteration required for the convergence increases. In general, before
computing the CGM, we multiply the equation by a matrix M , which reduces the
condition number of the matrix, so-called pre-condition matrix, as MAx = Mb or
MAMT (MT )−1x = Mb in order to reduce the number of iteration. It is noted
that MA or MAMT should be a symmetric matrix to use the CGM. Several
pre-conditioners are proposed for the CGM of the tomographic reconstruction. In
this thesis, we use a diagonal-scaling matrix as the pre-conditioner matrix, which
transforms the diagonal elements of a matrix to 1. This is known as the simplest
pre-condition matrix.

Since the atmospheric turbulence may change smoothly with time, the estimate
at the one time-step before is a good initial condition for the CGM at current
time-step. This technique is called warm start, and can reduce the number of
iteration largely. We also use this technique out computation for future ELT-scale
tomographic reconstruction.
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Figure. 2.3: Principle of SLODAR. The lights from two star with an angular separation θ
cross at altitude h with a spatial displacement of hθ and propagate into [i, j]
subaperture of WFS1 and [i+ δi,æ; δj] subaperture of WFS2, respectively.
The cross-correlation between these subapertures have a correlation power
proportional to the turbulence power at altitude h.

2.2 Pre-Estimation Method for Required Parame-

ters

For implement the tomographic reconstruction, we need knowledge of the mea-
surement noise, turbulence height and strength, this is, C2

N profile. In addition,
wind speed and direction at each altitude are also required to perform the multi
time-step reconstruction. Since these quantities vary with time, we should esti-
mated these parameters and update the reconstructor based on the new estimates
in each minute. In this section, we describe the method to estimate the required
parameter from the measurement of multiple SH-WFSs.

2.2.1 SLODAR for Estimating the C2
N Profiles

Slope detection and ranging (SLODAR) is a well-studied method to estimates
the C2

N(h) profile with the measurement from two SH-WFSs. The SLODAR was
proposed originally by [50], and is updated by some studies [8, 12]. The basic
idea of SLODAR is shown in Fig.2.3. Consider that there are two stars with
an angular separation of θ and there is a turbulent layer at an altitude h. The
lights from the two stars cross at altitude h, and reach a telescope aperture with
a spatial displacement of hθ. Therefore, if we observe these stars with different
SH-WFSs and computes a spatial cross-correlation of the measurements from two
SH-WFSs, there is a peak in the spatial cross-correlation map, corresponding to
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the spatial offset of hθ. The intensity of the peak is proportional to the strength
of the turbulent layers, that is, C2

N value. In the case of multiple turbulent layers,
there are several peaks corresponding to each turbulent layers and measuring the
location and intensity of each peak provides us the vertical profile of C2

N(h). In this
study, we use a method proposed by [8]. They determined the C2

N(h) by fitting the
theoretical spatial cross-correlation maps to the observed cross-correlation map.

We denote a measured slope in x direction of a subaperture indexed [i, j] at
time t for the first star as sx[1]i,j (t) and the x slope for the second star as sx[2]i+δi,j+δj(t),
where δi and δj are an offset of subapertures. In general, the C2

N estimation by
SLODAR is computed with using 1–3 minutes time series of the slope. We subtract
tip-tilt modes over the aperture from the measured slope to avoid the influence
from the vibration or tracking error. In the slope space, this is equal to subtract
the spatial average over subapertures from the measurement.

s′x[1]i,j(t) = s
x[1]
i,j (t)− 1

nvalid

∑
valid i,j

s
x[1]
i,j (t) (2.24)

where s′ is the tilt subtracted slope and nvalid is a number of the illuminated
subaperture. We also subtract a temporal average in the slope measurement from
the measured slope before computing the spatial cross-correlation. The average
subtracted slope are computed as

s′′x[1]i,j(t) = s
′x[1]
i,j (t)−

⟨
s
′x[1]
i,j (t)

⟩
(2.25)

where s′′ is a slope after the tilt and average pattern subtraction and ⟨⟩ is a
temporal average over 1–3 time series.

The spatial cross-correlation with subaperture offset of [δi, δj] is defined as

Cobs
xx (δi, δj) =

⟨∑
valid i,j s

′′x[1]
i,j (t)s

′′x[2]
i+δi,j+δj(t)

⟩
N(δi, δj)

, (2.26)

where ⟨⟩ indicates averaging over time and N(δi, δj) is the number of the pair with
the separation [δi,δj]. The cross-correlation of y–y, x–y, and y–x can be defined
by Cobs

yy , Cobs
xy , and Cobs

yx similar to Eq. (2.26). However, since the cross-correlations
between x and y slopes, Cobs

xy and Cobs
yx , have a very week correlation, we use only

Cobs
xx and Cobs

yy for the SLODAR. The cross-correlation map, Cobs
xx and Cobs

yy , can
be obtained to compute Cobs

xx and Cobs
yy for all possible subaperture offset (δi, δj).

The theoretical cross-correlation maps are computed for each altitude bin based
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Figure. 2.4: Examples of theoretical slope cross-correlation. The outer scale is 30 m.
The only areas surrounding by the red lines are used for the fitting.

on the turbulence model, as shown in Fig.2.4. The optimal altitude resolution dh

is given as dh = dsa/θ, namely the spatial offset is an integral proporional to the
subaperture size dsa. In the case of WFAO with multiple GSs, we can compute the
SLODAR for all GS pairs. Since each GS pair has a different angular separation θ,
the optimal resolution in the height direction is also different. To avoid averaging
profiles with different resolution, we set to a same altitude resolution for all GS
pairs. The maximum altitude measured by SLODAR also depends on the angular
separation of two stars, which is given by hmax = (nsa − 1)dsa/θ, where nsa is a
number of subaperture across a telescope pupil. Thus, smaller angular separation
gives us the information at higher altitudes with lower altitude resolution. It is
noted that the estimates of the C2

N value at higher altitude becomes noisier. The
high altitude turbulence makes the correlation peak at large spatial offset [δi, δj].
The number of subaperture pair with the large offset is limited compared with
the number of the subaperture pair with small offset. In addition, if we have
GSs more than two, the high altitude is covered by GS pairs with large angular
separation. Therefore, the estimated C2

N value becomes statistically noisy. In the
later discussion, we remove the correlation between largest spatial offset from the
fitting to avoid the influence from the noisy estimates.

Here, we consider the case of npair pair of GSs. The theoretical spatial cross-
correlation maps of altitude hi for kth GS pair are denoted as Ctheo[k]

xx and C
theo[k]
yy ,

where the theoretical correlation maps are normalized so that C2
N(hi) = 1. The

observed spatial cross-correlation maps for kth pair are represented as Cobs[k]
xx and

C
obs[k]
yy . If the turbulence at multiple altitudes are independent from each other,

the observed cross-correlation maps can be represented by a linear combination
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of the theoretical spatial correlation maps for different altitudes as C
theo[k]
xx ≈∑

i aiC
obs[k]
xx . The coefficient ai for the normalized theoretical correlation map is

equal to C2
N value at altitude hi. Considering all GS pairs, we can estimate C2

N

profile by minimizing the following equation.

min
ai

npair∑
k

W k

([
C

obs[k]
xx

C
obs[k]
yy

]
−

n∑
i

ai

[
C

theo[k]
xx (hi)

C
theo[k]
yy (hi)

])
(2.27)

where W k is a masking matrix for the spatial cross-correlation for kth GS pair to
extracts the area along the direction of the GS baseline on the cross-correlation
map, which is the red area in Fig.2.4. Since the peaks due to the turbulence
layers lie along the direction of the GS baseline, we use only the areas for the
SLODAR. The minimization of Eq. (2.27) is done with using non-negative least
square method [34] because C2

N value should be more than 0 at all altitudes. This
method provides better solution than the normal least square method without any
constraint.

2.2.2 Estimation of SH-WFS measurement noise

The measurement noise can be estimated by a method similar to SLODAR [12].
On , we use the auto-correlation of the slope measured by SH-WFSs, which is
defined as

Aobs
xx (δi, δj) =

⟨∑
i,j s

′′x[1]
i,j (t)s

′′x[1]
i+δi,j+δj(t)

⟩
N(δi, δj)

. (2.28)

The auto-correlation has a peak at the center, [δi, δj] = [0, 0], as shown in the
left panels of Fig.2.4. The central peak is enhanced by the measurement noise
since the noise has a correlation power with no spatial offset for the auto corre-
lation. Therefore, fitting the theoretical auto-correlations, Atheo

xx and Atheo
yy , to

the observed auto-correlations, Aobs
xx and Aobs

yy , with removing the central point,
[δi, δj] = [0, 0], from the fitting and measuring the difference at the center provide
us an estimate of the noise averaged over all subapertures. This fitting also gives
us estimate of total turbulence of C2

N value including high altitude turbulence
which can not be measured by the SLODAR. Comparing the total C2

N value mea-
sured by the auto-correlation fitting with the value from the SLODAR provides
the residual turbulence power at high altitude not covered by SLODAR.

We note that this noise measurement gives us the averaged noise and can not
be applied for the LGS system since the noise of each subaperture is not same due
to the spot elongation and the outer subaperture has systematically a larger noise.
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In order to optimise the tomographic reconstruction for the WFAO system with
multiple LGSs, the noise difference due to the spot elongation should be taken
into account, especially for future ELTs, in which the spot elongation will be more
severe.

2.2.3 Wind Speeds and Directions Estimation

In this section, we present the method to estimate wind speeds and directions
at multiple altitudes by using the result of tomographic reconstruction. If there
are Nl atmospheric layers, the tomographic reconstruction provides the phase
distortion on Nl atmospheric turbulence layers, ϕ̂(t) = [ϕ̂T

1 (t) · · · ϕ̂T
Nl
(t)]T . The

reconstructed phase distortion pattern on the atmospheric layers at each altitude
moves with time due to the wind. Tracking this movement allow us to estimate
wind speeds and directions at multiple altitudes separately. In order to detect this
movement due to wind, we use temporal correlation.

After reconstructing the phase distortion at each altitude by the tomographic
reconstruction, we extract aperture-size wavefront at each altitude in the direction
of the center of a GS asterism from the reconstructed phase distortion because the
size of the turbulence layers are too large to compute temporal correlation. In
addition, it is better to use only areas reconstructed accurately for estimating
wind speeds and directions. Although the GS directions has smaller integrated
WFE or better SR than other direction because the tomographic reconstruction
is computed based on the measurements from the GS direction, it is possible that
the most areas at high altitude in GS directions are covered by only own optical
path, as shown in the left panel of Fig.1.7, and affected by the degeneracy due to
the unoverlapped area. This is because the reconstructed phase distortion at each
altitude in the GS direction can be cancelled each other to reduce total WFE in
this direction. Therefore, the reconstructed phase distortion in the GS directions
may not reflect the real phase distortion pattern, and using GS direction for the
wind estimation is not optimal. As shown in Fig.1.7, the direction of the center
of the GS asterism are covered by multiple GS footprints, and the reconstructed
phase distortion at each altitude is more accurate compared to the other directions.

We define a matrix P i
c as the cropping matrix, which extracts the wave-front in

the direction of the center of the GS asterism from the estimated phase distortion
ϕ̂i of the ith turbulent layer.

ϕ̂i
c(t) = P i

c ϕ̂i(t). (2.29)
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where ϕ̂i
c(t) is the wave-front at time t extracted from ith turbulence layer. Before

computing the temporal correlation, the extracted wave-front is converted into the
slope by a discrete phase-to-slope operator Γc.

ŝic(t) = Γcϕ̂
i
c(t), (2.30)

where ŝic(t) is a reconstructed slope vector corresponding to a phase distortion of
i-th atmospheric turbulence layer in the direction of the center of the GS asterism
at time t. A peak of a slope correlation is sharper than the peak of a wavefront
correlation, and can be detected easier than the peak of the wavefront correlation.
This is because the slope measured by SH-WFS corresponds to a differential of the
phase distortion and the differential play a role of a high-pass filter. Therefore,
the small-scale and weak phase distortion is more weighted than large-scale strong
distortion by converting to slope, and the movement of the distortion pattern is
made clearer on the temporal correlation.

Temporal correlation of the reconstructed slope at i-th turbulence layer can be
computed by the same way as SLODAR.

T obs[i]
xx (δp, δq, δt) =

⟨∑
p,q ŝ

′′x,i
p,q (t)ŝ′′x,ip+δp,q+δq(t+ δt)

⟩
N(δp, δq)

. (2.31)

where δt is the time delay for the temporal correlation. The temporal correlation
map T

obs[i]
xx can be obtained by computing Eq. (2.31)for all possible pairs of δp and

δq. The correlation for y-direction slope is represented as similar to Eq. (2.31). In
order to increase signal to noise, the correlations of x and y-direction slopes are
averaged, T obs[i] = (T

obs[i]
xx + T

obs[i]
yy ).

The movement of the correlation peak on the correlation map T obs[i] with δt

corresponds to the wind speed and direction of ith turbulence layers. We use the
centroid algorithm to detect the peak. When a subaperture size of SH-WFS is dsa

and the peak position is (δp, δq), the wind speed is computed by vx = dsaδu/δt

and vy = dsaδv/δt. By computing vx and vy and averaging it over different δt, the
wind speed and direction at each altitude can be estimated.
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Analytical Evaluation

3.1 Analytical Tomographic Error

The tomographic error in direction βk is defined as σβk
= (ϵβktomo/np)

1/2, where
ϵβk

is the residual phase variance at an aperture plane defined in Eq. (2.6) and
np is the number of phase point at aperture plane. Here, we assume that the all
subaperture has a same measurement noise variance σ2

η. In this case, the covariance
matrix of the measurement noise Σηη become σ2

ηI, where I is an identity matrix.
We also assume that the DM interaction matrix Nβk

for βk direction is an identity
matrix for simplicity, which means the DM command is equal to the phase caused
by the DM. Using this assumption and Eq.(A.2), the tomographic error can be
represented as

σ2
βk,tomo =

Tr
[
Rpiston(Pβk

−Eβk
ΓαPα)Σϕϕ(Pβk

−Eβk
ΓαPα)

TRT
piston

]
np

+ σ2
η

Tr
[
RpistonEβk

ET
βk
RT

piston

]
np

=σ2
βk,geo + σ2

βk,noise. (3.1)

where Rpiston is a matrix removing a piston mode from the residual wave-front. If
you would like to compute the tomographic error without piston and tilt modes,
it is achieved by the replacing Rpiston to Rtip-tiltRpiston, where Rtip-tilt is a matrix
removing tip-tilt. This tomographic error can be computed by the matrix calcu-
lation, so-called analytical tomographic error. The first term σ2

βk,geo represents the
tomographic error determined by the geometry such as GS configuration, turbu-
lence structure, and reconstructor, and we refer to σ2

βk,geo as geometric error. The
influence from the uncovered and the unoverlapped areas are included in the first
term. The second term σ2

βk,noise is a noise propagation of the measurement noise
ση. The purpose of the multi time-step reconstructor is to reduce the geometric
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Parameters Values

Diamter of an telescope aperture 30 m
Fried parameter r0 0.156 m

outer scale L0 30 m
Altitudes of the turbulence layers 0 km, 5 km, and 10 km

Fraction of C2
N 50, 25, and 25 %

Wind speeds 5 ms−1, 10 ms−1, and 20 ms−1

Wind directions 90◦, 0◦, 0◦

Number of NGSs 3
NGS asterism radius rast 20–200 arcseconds

WFS
Shack-Hartmann WFS

with 30×30 subapertures
Diameter of subaperture 1 m

Measurement noise 0.01 arcsecond

Tab. 3.1: Parameters used for the analytical evaluation.

error.

3.2 Model

The model for the analytical evaluation is as follows. We consider a simple MOAO
model on a 30 m circular aperture telescope with three NGSs. The NGSs are put
on a ring of a radius rast, which is a range of 20–200 arcseconds, indicated as the red
plots in Fig.3.2. We evaluate the tomographic error in the direction of the center
of FoR and in the outer directions, shown as the blue and green plots in Fig.3.2.
Fig.3.1 shows a footprints of the NGS optical paths and the evaluated directions at
10 km as rast = 20 arcseconds (the left panel) and rast = 200 arcseconds (the right
panel). Fried parameter r0=0.156 m and the outer scale is 30 m, which are typical
value at Maunakea. The atmospheric turbulence consists of three turbulence layers
at 0 km, 5 km and 10 km. The C2

N fractions are [50 %, 25 %, 25 %], the wind
speeds are [5 ms−1, 10 ms−1, 20 ms−1], and the wind directions are [90◦, 0◦, 0◦]
at 0, 5, and 10 km, respectively. The size of subaperture of SH-WFSs is 1 m on
the aperture-plane and all subapertures have a same measurement noise with a
variance of σ2

η. The spatial sampling of discrete grids on the turbulence layers and
the aperture-plane is 1 m. The parameters used for this analysis are summarized
Table3.1. Over this chapter, the temporal lag error and the fitting error are not



Chapter 3. Analytical Evaluation 44

−30

−20

−10

0

10

20

30

−30 −20 −10 0 10 20 30

Y
[m

]

X [m]

Footprints of NGS optial paths

Footprint of the central direction

Footprints of the outer directions

−30

−20

−10

0

10

20

30

−30 −20 −10 0 10 20 30
Y

[m
]

X [m]

Footprints of NGS optial paths

Footprint of the central direction

Footprints of the outer directions

Figure. 3.1: Footprints of the NGS optical paths (red) and the evaluated central direc-
tion (blue) at altitude of 10 km for rast=20 arcseconds (left) and rast=200
arcseconds (right).

−200

−100

0

100

200

−200 −100 0 100 200

Y
[a
rc
se
co
n
d
s]

X [arcseconds]

NGSs	

Central evaluated 
direction	

Outer evaluated 
directions	

Figure. 3.2: The NGS asterism (red) and the evaluated directions. The blue plot is
the central evaluated direction. The green plots are the outside evaluated
directions.



Chapter 3. Analytical Evaluation 45

included in this analysis and we assume that we have the perfect knowledge of the
turbulence altitudes, powers, and wind speeds and directions.

3.3 Effect of Lack of Information

First we demonstrate the influence from uncovered and unoverlapped area. Fig.
3.3 show the geometric error σgeo, the noise propagation σnoise, and the total to-
mographic error σtomo as a function of the asterism radius rast. The red solid lines
in Fig.3.3 indicate the result with the errors of the single time-step reconstructor
evaluated in the central direction and the red dotted lines are the errors of the sin-
gle time-step reconstructor averaged the values evaluated in the outer directions.
Those errors are computed with removing tip-tilt errors.

When rast is small, the geometrical error of the central direction (solid red line)
is small because the central direction is covered densely by the multiple footprints
of the NGS optical path in the atmosphere as the left panel of Fig.3.1. In the outer
directions, the geometric error (dashed red line) is large due to the uncovered area
at small rast. Then, as the asterism radius increases, the geometric error in the
central direction also increases rapidly. At rast = 200 arcseconds, the geometric
error in the central direction is 538 nm, which is ten times larger than the value
at rast = 20 arcseconds. This is due to the unoverlapped area. At rast = 200

arcseconds, all area of the footprint in the central direction is covered by the NGS
optical paths, as shown in the right panel of Fig.3.1. However, some parts of
footprints in the central direction are covered by only one footprint of the NGS.
The unoverlapped area increases with the asterism radius and results in the large
geometric error. Although the geometric error in the outer directions decreases
because of decreasing the uncovered area, the geometric error is still large, which
is 408 nm, since most of the footprints in the outer directions is unoverlapped
area. The noise propagation, which are indicated by the red lines in Fig.3.3(b),
is much smaller than the geometric error for both directions. Therefore, the total
tomographic error of the single time-step reconstructor in Fig.3.3(c) is dominated
by the geometric error.

This result suggests the difficulty of expanding the FoR size of the tomographic
WFAO systems. In order to expand the FoR size, we have to measure and recon-
struct a large volume of the atmospheric turbulence corresponding to the large
FoR by expanding the NGS asterism. However, it involves the large tomographic
error as we show. This effect become more severe with using LGSs because of



Chapter 3. Analytical Evaluation 46

0

100

200

300

400

500

600

700

20 40 60 80 100 120 140 160 180 200

T
ip
-t
il
t
re
m
ov
ed

σ
g
e
o
[n
m
]

rast [arcseconds]

Single,Center

Multi,Center

Single,Outer

Multi,Outer

(a) Tip-tilt removed geometric error σgeo

0

50

100

150

200

250

300

350

20 40 60 80 100 120 140 160 180 200

T
ip
-t
il
t
re
m
ov
ed

σ
n
o
is
e
[n
m
]

rast [arcseconds]

Single,Center

Multi,Center

Single,Outer

Multi,Outer

(b) Tip-tilt removed noise propagation σnoise

0

100

200

300

400

500

600

700

20 40 60 80 100 120 140 160 180 200

T
ip
-t
il
t
re
m
ov
ed

σ
t
o
t
a
l
[n
m
]

rast [arcseconds]

Single,Center

Multi,Center

Single,Outer

Multi,Outer

(c) Tip-tilt removed tomographic error σtomo

Figure. 3.3: The analytical geomatric error σgeo (top), the noise propagation σnoise (mid-
dle), and the total tomgoraphic error σtomo (bottom) as a function of the
asterism radius rast. The all values are computed with removing tip-tilt
modes from the residual wave-fronts. The red lines show the result with
the single time-step tomographic reconstruction and the blue lines are the
results of the multi time-step reconstruction. The solid lines indicate the
value evaluated in the direction of the center of the FoR. The dashed lines
are the results averaged over outer directions.
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its smaller footprints at high altitudes due to the cone effect. This is a critical
problem at future ELT-scale WFAO system.

3.4 Analytical Performance of Multi Time-Step Re-

construction

The blue lines in Fig.3.3 show the results of the multi time-step reconstructor
with using the measurement from two time-steps. We set the time difference ∆t

for the previous time-step to 50 ms. This value is determined by considering
temporal de-correlation of the atmospheric turbulence. In [46], they investigated
the temporal decay of the auto-correlation intensity of the slope measured by a
SH-WFS and defined the time t50, which is the times for which the intensity of the
auto-correlation decreases to 50 % of its initial value. In Fig.3.3(a), the difference
of the geometric error in the central direction between the single and the multi
time-step reconstruction is small as the asterism radius is small. This means
that the single time-step reconstructor is not affected by the unoverlapped area in
the central direction with the small asterism radius. In the outer directions, the
geometric error of the multi time-step is smaller than the error of the single time-
step reconstruction for the outer directions, but is much larger than the geometric
error of the multi time-step reconstruction for the central direction. Here, we use
the measurement at 50 ms previous time-step. The spatial displacement due to
the wind between the current and the previous time-steps is 0.25 m, 0.5 m, and
1.0 m at 0 km, 5 km, and 10 km, respectively. Since these offset is not enough
to fill the uncovered area in the outer directions, the geometric error in the outer
directions are not improved so much by the multi time-step reconstruction.

As the asterism radius large, the difference of σgeo can be seen clearly. The
multi time-step reconstructor can reduce dramatically the geometric error in both
the central and outer directions. The geometric error in the outer directions are
comparable to the value in the central direction. This result demonstrates that
using the measurements from multi time-steps is effective to solve the degeneracy
due to the unoverlapped area. The σgeo of the multi time-step reconstructor is
158 nm at rast=200 arcseconds and is much smaller than the value of the single
reconstructor.

The noise propagations of the multi time-step reconstruction is a bit larger than
the noise propagation of the single time-step reconstructor in both the central and
outer directions. At large asterism radius, the error due to the noise propagation
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is roughly comparable to or larger than the geometric error. As result, the total
tomographic error is affected by the both effects, as shown in Fig.3.3(c). How-
ever, the tomographic error is much smaller than the value of the single time-step
reconstructor. As the asterism radius is 200 arcseconds, the multi time-step recon-
structor achieves the tomographic error σgeo ∼220 nm. This is corresponding to
the tomographic error in the central direction of the single time-step reconstructor
at the asterism radius of rast=80 arcseconds. Although this result is based on the
optimal condition, where the turbulence altitudes, powers, and wind speeds and
directions are given, the multi time-step reconstructor has a possibility to reduce
the geometric error and expand the FoR size dramatically.

3.5 Dependency on Time Difference ∆t

Fig.3.4 shows the geometric error σgeo, the noise σnoise, and the total tomographic
error σtomo as a function of the time difference ∆t for the multi time-step recon-
structor. Those errors are also computed with removing tip-tilt errors and we use
two time-step measurements for the multi time-step reconstruction. The asterism
radius is assumed 200 arcseconds and therefore the main problem is the degen-
eracy due to the unpverlapped area. The used colors are same as Fig.3.3. The
horizontal red lines in Fig.3.4 are results from the single time-step reconstructor,
which doesn’t depend on the time difference ∆t.

In Fig.3.4(a), an interesting point is that the multi time-step reconstructor
can reduce the geometric error compared to the single time-step reconstructor
even with very small ∆t such as 10 ms. The spatial displacement due to the wind
during 10 ms are 0.05 m, 0.1 m, and 0.2 m at 0 km, 5 km, and 10 km, respectively.
These displacement is much smaller than the size of subaperture of 1 m. While the
geometric error of the multi time-step error decreasing with ∆t, it looks saturated
as ∆t =60–80 ms, where the spatial displacements are 0.4 m, 0.8 m, 1.6 m at
each altitude, respectively. This results suggests that the spatial displacement
equal to the subaperture size may be enough to solve the degeneracy due to the
unoverlapped area.

With respect to the noise propagation, the multi time-step reconstructor is
affected more by the measurement noise compared with the single reconstructor
as shown in Fig.3.4(b). The WFE due to the noise propagation has a similar trend
to the Fig.3.4(a) and is comparable to the WFE due to the geometric error.

As a result, the total tomographic error of the multi time-step reconstruction is
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affected by both σgeo and σnoise. However, it is much smaller than the tomographic
error of the single time-step reconstructor. This difference of σtomo becomes larger
with ∆t.
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Figure. 3.4: The analytical geomatric error σgeo (top), the noise propagation σnoise (mid-
dle), and the total tomgoraphic error σtomo (bottom) as a function of the
asterism radius rast. The all values are computed with removing tip-tilt
modes from the residual wave-fronts. The color and line type are same as
Eq. (3.3)
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Numerical Simulation

4.1 Simulation Setting

In this chapter, we show the results based on the numerical simulation with as-
suming ELT-scale MOAO system and investigate the expected performance of the
multi time-step reconstruction on these future ELT. We assume a circular aperture
with 30 m diameter. The MOAO system has a FoR of 10 arcminutes diameter
and does the tomographic reconstruction with eight sodium LGSs at altitude of
88 km. Two LGS asterisms are used in this simulation, which are shown in Fig.
4.1. One is a narrow asterism indicated as open squares in Fig.4.1, and the other
is a wide asterism indicated as filled squares. As mentioned in Chapter 1, tip-tilt
modes in wave-front can not be sensed by the LGS and therefore, TT-NGSs are
required in a FoR to measure the tip-tilt modes. In this simulation, however, we
assume that we can measure the low-order modes of the phase distortion from
the LGSs for simplicity. The cone effect and the spot elongation on SH-WFS are
considered in the simulation. The vertical sodium-layer profile is approximated to
reproduce the lidar measurements [19] as

Na(h) =

{
exp

(
− (h−hNA)2

2σ2
Na

)
(for |h− hLGS| < σNa

0 (for |h− hLGS| > σNa

(4.1)

where hNA = 88 km is an altitude of a sodium layer from the telescope, and σNa=5
km is a half width of the sodium-layer. The vertical profile of the sodium layer
is presented in Fig.4.2. We use SH-WFSs with 60×60 subapertures and DMs
for science targets with 60×60 elements. The spatial sampling of atmospheric
turbulence is 0.05 m. The WFE is also evaluated with this spatial sampling to
simulate the fitting error. We assume that the MOAO system is controlled with
800 Hz and there is two frames delay between the measurement by WFSs and
correction by DMs, that is, 2.5 ms delay on a frame rate of 800 Hz.
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Figure. 4.1: LGS asterisms used in the numerical simulation. A narrow asterism is in-
dicated with the red filled squares. The blue open squares show a wide
asterism. The black solid lines show the 2.5 arcminutes and 5 arcminutes
radius from the center of a FoR. The dashed lines are directions where the
performance is evaluated.
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Figure. 4.2: Vertical profile of normalized intensity of Sodium layer used in the simula-
tion. This is approximated based on the lidar on-sky measurements [19].
The altitude and of sodium layer are 88 km and 10 km.

We assume the top of Maunakea as the observation site in the simulation and
use a seven-layer model used in [4] for the C2

N profile. This model is created based
on image-quality measurements from the Subaru Observatory [39] and differential
image motion monitor (DIMM) and multiple aperture scintillation sensor (MASS)
measurements by Thirty Meter Telescope Project at Maunakea [16]. The model
takes into account for additional dome seeing in the Subaru telescope, thus the
ground layer has a strong turbulence power, which is 60 % of the total turbulence
power. Fried parameter r0 is 50 %ile value of the seeing measurements, r0 = 0.156
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m, and an outer scale is assumed to be 30 m. The C2
N values at each altitude

are summarized in Table4.2. We assume a gaussian model for the wind speeds on
each layer based on [24]. The assumed wind speeds and directions are also listed
in Table4.2. The performance is evaluated at wavelength of 1650 nm (H-band).

For the computation of the tomographic reconstruction, we use the iterative
CGM with the simple diagonal scaling preconditioner. Also, we use Tesla K40
GPU for the parallel computation of the tomographic reconstruction. The codes
for GPGPU are made with CUDA 6.0, which is C++ like language for GPGPU.
However, all results shown in this chapter are computed with assuming that the
computation time is negligible. With respect to the computational efficiency with
GPGPU, we will discuss it at end of this chapter.

4.2 Simulation Results

4.2.1 Performance of Multi Time-step Wave-Front Recon-

struction

First, we simulated an optimal performance of the single and the multi time-
step reconstructors for both of the narrow and the wide LGS asterisms with an
assumption that the turbulence profile, wind speeds and directions are known
a priori. The results are illustrated in Fig.4.3. SR values are measured from
simulated point spread function (PSF) images by comparing the peak intensities
of the PSF images to the peak intensity of a diffraction-limited PSF image created
by the simulation. All PSF images from the simulation are normalized by the total
intensity with in a 1 arcsecond box. The top and the bottom panels in Fig.4.3
show the simulated maps of the Strehl ratio (SR) across the FoR of 10 arcminutes
diameter with the single (top) and the multi time-step (bottom) reconstructors.
We use ∆t of 50 ms for the multi time-step reconstructor as well as Chapter 3. The
bottom panels in Fig.4.3 show SR profiles as a function of an angular distance from
the center of the FoR. The profiles are computed by averaging over six directions
shown as dashed lines in Fig.4.1.

With the narrow asterism, the single time-step reconstructor, which is indi-
cated as red filled squares in the left panels of Fig.4.3, achieves the averaged SR
values of ∼0.5 within the inner LGS radius at 75 arcseconds from the center. The
averaged SR value decreases slowly with an angular separation from 75 arcseconds
to 150 arcseconds because of increasing the unoverlapped area as shown in the left
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Parameters Values

Diameter of aperture 30 m
FoR 10 arcminutes

Zenith angle 0◦

Number of LGSs 8
Height of LGSs 90 km

Number of turbulence layers 7
r0 at 500 nm 0.156 m

L0 30 m
WFS SH-WFS

Number of WFS subapertures 60×60
Number of DM elements 60×60

Frame rate 800 Hz
Time lag 2 frames

count per a subaperture 700 electrons
readout noise 3 electrons

evaluate wavelength 1650 nm (H-band)

Tab. 4.1: Parameters used in the numerical simulation.

Altitude
∫
C2

Ndh Fraction wind speed wind direction
[km] [10−14 m1/3] of C2

N [ms−1] [degree]

16 2.734 0.0826 7.0 0
8 2.264 0.0684 33.0 45
4 2.879 0.0869 19.7 90
2 1.233 0.0372 11.6 135
1 1.074 0.0325 9.0 180

0.5 3.190 0.0963 8.0 225
0 19.737 0.5960 7.0 270

Total r0 [m] 0.156

Tab. 4.2: Atmospheric turbulence profile used in the numerical simulation.



Chapter 4. Numerical Simulation 55

−300

−200

−100

0

100

200

300

−300 −200 −100 0 100 200 300

Y
[a
rc
se
co
n
d
]

X [arcsecond]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
tr
eh
l
R
at
io

0
.0
2 0

.0
2

0.02
0.0

2

0
.0
5

0.
05

0
.0
5

0.0
5

0.1

0.
1

0
.1

0.1

0
.2

0.2

0.2

0
.3

0.3

0.
3

0
.4

0.4

0
.4

0
.5

0
.5

0
.5

−300

−200

−100

0

100

200

300

−300 −200 −100 0 100 200 300

Y
[a
rc
se
co
n
d
]

X [arcsecond]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
tr
eh
l
R
at
io

0
.0
5

0
.0
5

0.05

0
.0
5

0.15

0
.1
5

0.15

0
.1
5

0
.1
5

0
.2
5

0
.2
5

0
.2
5

0
.2
5

0
.2
5

0
.2
5

0
.2
5

0.25

0
.3
5

0.35
0.35

−300

−200

−100

0

100

200

300

−300 −200 −100 0 100 200 300

Y
[a
rc
se
co
n
d
]

X [arcsecond]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
tr
eh
l
R
at
io

0
.0
4

0
.0
4

0.04
0.
04

0
.1
2

0.
12

0
.1
2

0.1
2

0.22

0
.2
2

0
.2
2

0.2
2

0
.3
2

0.32

0.3
2

0
.4
2

0.42

0.
42 0.52

0.52

0.
52

0
.6
2

−300

−200

−100

0

100

200

300

−300 −200 −100 0 100 200 300

Y
[a
rc
se
co
n
d
]

X [arcsecond]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
tr
eh
l
R
at
io

0
.0
80

.0
8

0
.0
8

0
.0
8

0
.1
8

0.18

0
.1
8

0
.1
80.

18

0.28

0
.2
8

0.28

0.28

0
.2
8

0.38
0.38

0.38

0
.3
8

0
.3
8

0.
38

0.38

0.48

0.48

0.48

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300

S
tr
eh
l
R
at
io

Angular sparation [arcsecond]

Single

Multi

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300

S
tr
eh
l
R
at
io

Angular sparation [arcsecond]

Single

Multi

Figure. 4.3: Top and middle : Simulated SR maps within the 10 arcminutes FoR com-
puted by using the single time-step reconstructor (top) or the multi time-
step reconstructor with ∆t=50 ms (middle). The right panels are the results
with the narrow LGS asterism, and the left panels are computed with the
wide LGS asterism. The multi time-step reconstructor improves SR values
over the FoR for both of the asterisms. Bottom : SR profiles as a function of
an angular separation from the center direction of the FoR. The profiles are
averaged over directions shown as the dashed lines in Fig. 4.1. The red filled
squares show the averaged SR profile with the single time-step reconstructor,
and the blue open squares is the result by the multi time-step reconstructor
with ∆t=50 ms. The dashed black lines show the radii of LGS positions.
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Figure. 4.4: The footprints of the LGS optial paths on the highest turbulence screen
at altitude of 16 km The left panal shows the footprints with the narrow
asterism and the right is for the wide asterism. The dashed black circle
indicates the radius of 150 arcseconds and 300 arcseconds from the center
of the FoR.

panel of Eq. (4.4). In the outer region than 150 arcseconds radius, the averaged
SR values decrease steeply because there is no LGS and these areas are affected by
uncovered area. The multi time-step reconstructor with ∆t =50 ms, represented as
the blue open squares, can increase the SR value over the FoR. The improvement
of the averaged SR value is approximately 0.1 at 150 arcseconds, even though
there is no uncovered area at r ≤ 150 arcseconds. This suggests that the single
time-step reconstructor is affected by the degeneracy due to the unoverlapped area
even with the narrow asterism.

In the case of the wide asterism, illustrated in the right panels of Fig.4.3, the
SR value at the outer region than 200 arcseconds radius is better than the value
of the narrow asterism because the wider area is covered by the LGSs as shown in
the right panel of Eq. (4.4). In the contrast, the larger separation between LGSs
causes a larger unoverlapped area at high altitudes. Hence, the SR value at inside
area becomes smaller than the narrow asterism, and there are valley areas between
LGSs on the SR map (the left top panel of Fig.4.3). From the bottom right panel
of Fig.4.3, the averaged SR value is 0.24 with the single time-step reconstructor
at maximum. This is affected strongly by unoverlapped area. Using the multi
time-step reconstructor with ∆t = 50 ms can double the averaged SR over the
FoR for the wide asterism. At 300 arcseconds from the center, the SR value from
the multi time-step reconstructor with the wide asterism is 3 times larger than
the result of the narrow asterism.



Chapter 4. Numerical Simulation 57

4.2.2 Dependency on Time Difference ∆t and Frozen Flow

Assumption

The performance of the multi time-step reconstructor depends on the spatial dis-
placement between the areas measured by the current and the previous time-steps
at each altitude, which we refer as d(h) in the paper. This displacement d(h)

corresponds to the movement of the atmospheric turbulence layer at an altitude
h during ∆t, d(h) = v(h)∆t, if the wind speed is v(h) at an altitude h. The
dependence of the multi time-step reconstructor on the ∆t is presented in Fig.
4.5. The vertical axis in Fig.4.5 is the SR improvement ratio, kSR, which rep-
resents the ratio of the SR value achieved by the multi time-step reconstructor
to the SR value from the single time-step reconstructor and is averaged over the
angular separation from the center of the FoV. The multi time-step reconstructor
achieves larger kSR for the wide asterism than the narrow one. This suggests the
wide asterism is affected more by the unoverlapped area than the narrow asterism.
However, the trend of the dependence of the kSR on ∆t looks similar for the both
asterisms. This suggests that the dependence on ∆t doesn’t depend the asterism
of GSs. The multi time-step reconstructor improves the SR even with small ∆t.
There is 23 % increase in the SR value as ∆t=20 ms for the narrow asterism.
The improvement ratio kSR is maximized at ∆t ∼ 100 ms, where kSR ∼1.8 and
∼2.1 for the narrow and the wide asterism, respectively. The displacements d with
∆t=100 ms are 3.3 m and 0.7 m for the fastest and slowest layer in the model.
While, as ∆t is larger than 100 ms, kSR is almost no or very week dependency on
∆t. This suggests that only small displacement between the areas measured at
the current and the previous time-step is enough to solve the degeneracy due to
the unoverlapped area.

As mentioned before, the time scale of the frozen flow assumption is valid
only within a short time. After the time scale of the frozen flow assumption,
the phase distortion pattern of the atmospheric turbulence varies. If the time
scale of the frozen flow is smaller than ∆t for the multi time-step reconstructor,
the measurement at previous time step can not be used for the information of the
current time step because the phase distortion pattern is no longer kept. Guesalaga
et al. [21] also investigated the time evolution of the atmospheric turbulence by
using spatio-temporal cross-correlations of the measurements from multiple SH-
WFSs installed in the GeMS, which is a MCAO system on the Gemini South.
They found that the decay ratio of the correlation intensity for an individual
layer, fdecay, decreases with the time delay for the correlation, ∆t, and depends
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Figure. 4.5: Dependence of the multi time-step reconstructor on the ∆t is presented in
Fig. 4.5. The vertical axis in Fig. 4.5 is the SR improvement ratio, kSR,
which represents the ratio of the SR value achieved by the multi time-step
reconstructor to the SR value from the single time-step reconstructor and is
averaged over the angular separation from the center of the FoV. The result
with the narrow asterism is indicated as the red filled squares, and the blue
open squares shows the result with the wide asterism. The vertical dashed
lines indicate the time duration that the decay ratio fdecay of the temporal
correlation of SH-WFS measurements becomes 90 %, 80 %, and 70 %, that
is, t90, t80, and t70, wind assuming the wind speed is 33 ms−1, which is
maximum value in the wind model.

on the distance travelled by the layer, dtravel. In their paper, the decay ratio are
approximated as a function of ∆t and v.

fdecay = (−0.157v − 0.365)∆t+ 1 (4.2)

By using this equation, we can estimate ∆t to keep the decay ratio fdecay to 90 %,
80 %, and 70 %, that is, t90, t80, and t70, respectively. The dashed vertical lines in
Fig.4.5 show t90, t80, and t70 with assuming the fastest wind speed in the model,
v = 33 ms−1. The time t70 is 54 ms for the fastest layer and 200 ms for the slowest
layer with wind speeds of 7 ms−1. In order to keep the decay ratio of more then
70 % for all altitudes, ∆t should be equal to or shorter than 54 ms. It is noted
again that the effect of the decay ratio on the performance of the multi time-step
reconstructor is still not quantitative. On-sky experiments and validations are
necessary to evaluate the influence of the frozen flow assumption.
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Figure. 4.6: SR improvement ratio, kSR, achieved by multi time-step tomographic re-
construction with different wind speed errors e∥ (the filled symbols) or wind
direction errors e⊥ (the open symbols). The results with the narrow aster-
ism are represented as the red squares and the results with the wide asterism
are the blue circles. The SR ratio less than 1 means that the performance of
the multi time-step reconstructor is poorer than the performance achieved
by the single reconstructor due to the wind estimation error.

4.2.3 Effect of Uncertainty of Wind Speeds and Direction

We discuss an effect from uncertainties of wind speed and direction. The errors
of wind speed and direction result in an error of the spatial displacement between
the areas measured by the current and the previous time-step. Here, we represent
the wind error as e = (e∥, e⊥). The first one, e∥, is an error parallel to the
wind direction and referred to as wind speed error. The second, e⊥, is an error
perpendicular to the wind direction and referred to as wind direction error. Fig.
4.6 shows the improvement ratio kSR achieved by the multi time-step reconstructor
comparing to the single time-step reconstructor with different errors of wind speed
and direction, with both of the narrow (red symbols) and wide (blue symbols)
asterisms. We assume the same wind error for all atmospheric layers and ∆t=50
ms for the multi time-step reconstructor. The curve of kSR with the wind direction
error e⊥ is symmetric with respect to the point e⊥ = 0. The multi time-step
reconstructor has the advantage comparing to the singe time-step reconstructor,
kSR > 0, as −7 ms−1 ≤ e⊥ ≤ 7 ms−1 for the condition we use for both asterisms.
This corresponds that the error of the spatial displacement is less than 0.35 m
and that the error of angle of wind direction is less than 12 degrees for the fastest
layers with 33 ms−1 wind and 45 degrees for the slowest layer with 7 ms−1 wind.
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Figure. 4.7: Ensqured energy profiles with the narrow (left) and wide (right) asterism.
As the target intensity profile, the point source and extended source are
considered. The extended source is assumed to be an exponential profile
with an effective radius of 0.1 arcsecond. The EE values are measured from
the simulated PSF images (red) with a 50 mas box for the point source,
and the exponential profile convolved with the simulated PSF (blue) with
with a 300 mas box for the extended source. The solid lines indicate the
results with the single time-step reconstructor, and the dotted lines are the
EE profiles of the multi time-step reconstruction with ∆t=50 ms.

For the wind speed error e∥, the multi time-step reconstructor affected more by
negative e∥, which is an error in opposite direction to the wind, than positive
e∥. This is because e∥ is negative, the covered areas are shorted than if e∥ is
positive. The allowable range for e∥ is −5.5 ms−1 ≤ e∥ ≤ 8 ms−1 for the wide
asterism and −5 ms−1 ≤ e⊥ ≤ 7 ms−1 for the narrow asterism. The dependence
of the multi time-step reconstructor on the wind errors depends on the turbulence
power, wind speed, direction and ∆t for the multi time-step reconstructor. If the
turbulence powers are stronger, the influence from the uncertainty of wind speed
and direction is larger. Using larger ∆t also makes the tomographic error due to
the wind uncertainty larger because the spatial displacement error gets larger.

4.2.4 Detected Number of High Redshift LBGs

We evaluate the gain in multiplicity by the multi time-step reconstruction with
respect to the detected number of high redshift LBGs. The parameters used in
the evaluation are same as Table1.1, except for the AO performance. As the
AO performance for the point source, we use the EE values measured from PSF
images simulated in the numerical simulation. The extended source is assumed
to be an exponential intensity profile with an effective radius of 0.1 arcseconds.
The EE value of the extended source is estimated from the the exponential profile
convolved with the simulated PSF image.
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5 arcminutes 10 arcminutes

single 3.83 (0.83) 5.99 (2.22)

multi 6.40 (2.96) 11.60 (8.06)
(a) z ∼ 5, Point source, 10 hours

5 arcminutes 10 arcminutes

single 1.26 (1.12) 4.29 (4.31)

multi 1.35 (1.26) 4.63 (4.78)
(b) z ∼ 5, Extended source, 20 hours

5 arcminutes 10 arcminutes

single 1.71 (0.32) 2.59 (0.84)

multi 3.00 (1.30) 5.22 (3.43)
(c) z ∼ 6, Point source, 30 hours

5 arcminutes 10 arcminutes

single 0.13 (0.11) 0.41 (0.41)

multi 0.14 (0.13) 0.46 (0.48)
(d) z ∼ 6, Extended source, 30 hours

Tab. 4.3: Detected number of high redshift LBGs at z ∼ 5 and 6. These are computed
with the observed luminosity function from [7], the simulated EE profile shown
in Fig. 4.7, and the parameters used in 1.4.4. The values in and out of the
parenthesis indicates the detected number with the narrow and wide asterism,
respectively.

The simulated EE values at J-band as a function of angular separation from
the center are plotted in Fig.4.7. The time difference for the multi time-step
reconstruction is ∆t = 50 ms. In the figure, the EE values for the point source,
which is defined with a 50 mas box and represented by the red plots in Fig.
4.7, have a similar trend to the SR values at H-band shown in Fig.4.3, but the
absolute values are different due to the difference in the simulated wavelength.
In the case of the extended object, the EE profiles, defined with a 300 mas, box
are flatter than the EE profiles for the point source, and the difference between
the narrow and wide asterism is very small. This is because the effective radius
of 0.1 arcsecond is larger than the FWHM of simulated PSF, and as a result,
the EE values are dominated by the original intensity profile rather than the
convolved PSF. Therefore, the difference between the single and multi time-step
reconstruction is also small for the extended object.

Using the EE values shown in Fig.4.7 and the observed luminosity function
from [7], we compute the detected number of LBGs at z ∼ 5, 6, which are sum-
marized in Table4.3. The values in and out of the parenthesis are the detected
number with the narrow and wide asterism, respectively. If the high redshift LBGs
are point sources, the detected number of LBGs gets 3 times larger by the multi
time-step reconstruction with the FoR of 10 arcminute diameter compared with
the single time-step reconstruction with the 5 arcminutes FoR for both redshift
ranges. In the case of the extended object, as expected from the EE profiles shown
in Fig.4.7, there is almost no difference in the detected number of LBGs between
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5 arcminute 10 arcminute
Single Multi Single Multi

s 45,248 90,496 45,248 90,496
φ 29,768 59,536 29,768 59,536
ϕ 40,616 41,777 60,672 62,059

1.35×109 5.39×109 1.35×109 5.39×109

Γα 180,992 361,984 180,992 361,984
0.013 % 0.007 % 0.013 % 0.007 %

1.21×109 2.49×109 1.81×109 3.70×109

Pα 658,800 1,318,960 658,628 1,318,788
0.055 % 0.053 % 0.036 % 0.036 %

1.65×109 1.75×109 3.68×109 3.85×109

L 200,999 206,774 300,911 307,816
0.012 % 0.012 % 0.008 % 0.008 %

Tab. 4.4: The three rows from the top show the number of WFS measurements, phase
points of the atmospheric turbulence layers, and the phase points on the aper-
ture plane. The assumed parameters are listed in Table4.1. Other rows indi-
cate the number of total elements, non-zero elements, and the number ratio of
the non-zero elements to the total elements of the matrices of Γα, Pα, and L.

the single and multi time-step reconstruction because of the extent of object it-
self. The size of the FoR is more important than the EE values for the extend
case. Furthermore, the multi-object spectroscopy of the extend LBGs at z ∼ 6 is
difficult even if we use the MOAO system and the future ELT.

4.2.5 Computation Efficiency with GPGPU

Until the previous section, we assume that the computational complexity of the
tomographic wave-front reconstruction is negligible. In reality, however, it is the
critical issue in the ELT-scale tomographic reconstruction. At end of this chapter,
we present our result regarding the computation efficiency with GPGPU for the
ELT-scale tomographic reconstruction.

As mentioned in Section 2, the tomographic wave-front reconstruction is solved
iteratively by the CGM with the diagonal-scaling matrix. We use the GPU compu-
tation for this calculation with a graphic board of Tesla K40. The code is written
with C++ for CPU computation and CUDA with a version of 6.0 for the GPU
computation. The CUDA is the C-like programming code for GPU developed
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by the NVIDIA. We use GPGPU packages of CUSPARSE for the sparse matrix
computations and CUBLAS for the vector computations.

The basic parameters and the turbulence profile used for this analysis are the
same as that shown in Table4.1 and Table4.2. We used the narrow asterism with
a FoR of 5 arcminute diameter and the wide asterism with a FoR of 10 arcminute
diameter, which are shown in Fig.4.1. The numbers of all elements of the vectors
and the matrices are summarized in Table4.4. For the matrices, the number and
the sparse rate, which is the number rate of non-zero elements, are also listed.
The all matrices have the sparse rate less than 1 %. We assume that there are 20
science targets.

The process of the CGM is summarized in Table4.5 and Table4.6. First, the
measured slopes are transferred to the memory of the GPU from the memory of
the CPU because the GPU needs to compute in own memory space. The data
transfer between CPU–GPU relatively takes time compared with the data transfers
between CPU–CPU or GPU–GPU.

The matrix A is a coefficient matrix as

A = M(P T
αΓT

αΓαPα + σ2
ηL

TL)MT , (4.3)

where a matrix M is a diagonal scaling matrix. In order to keep the A to be
a symmetric matrix, A is multiplied by M from the both the left and right
sides. In sparse matrix-vector multiplication, the computation time depends on
the number of the non-zero elements in a matrix. If Eq. (4.3) is pre-computed
before the CGM, the number of the non-zero elements gets larger than the sum of
the non-zero elements of the matrices in Eq. (4.3). As a result, using pre-computed
A for a matrix-vector multiplication increases the computation time compared
with multiplying a vector by the matrices in Eq. (4.3) in each a matrix-vector
multiplication. Therefore, we do not pre-compute A. Since all required matrices
are transferred to the GPU off-line and kept in the GPU during the control, the
transfer time for the matrices are not included in this analysis.

The convergence is checked at the process 7 and 17 in Table4.5 and Table4.6.
The criteria for the convergence is determined by the relative error with respect
to the norm of the right-hand-side vector in Eq. (2.22) and the coefficient a (i.e, if
ci < ac0, we consider that the CGM convergences). We set a to 10−3 empirically.
If a is smaller values than 10−3, there is almost no improvement in the residual
WFE and the required number of iteration increases. If a is larger than 10−3, the
number of iteration decreases but the residual WFE increases.
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1. Transfer sα(t) To GPU from CPU
2. b = P T

αGT
αsα(t) the right-hand-side vector

3. ccriteria = a|b| compute criteria for the convergence
a is a relative convergence criteria

4. r0 = b−Ax0 initial residual
5. p0 = r0 initial search direction
6. c0 = |r0|
7. Check convergence
8. for i = 1 . . . Nmax Loop

loop 12–19 in Table4.5
end

9. ϕ̂(t) = MTxest xest is an estimates computed in the loop of step 8.
10. φ̂β(t) = Pβϕ̂(t) Compute the wavefront in the science direction β

11. Transfer φ̂β(t) To CPU from GPU

Tab. 4.5: Computation flow of the CGM.

Process in the loop

12. qi−1 = Api−1

13. γi−1 = pi−1 · pi−1

14. xi = xi−1 + γpi−1 update the estimate
15. ri = r0 + γqi−1 update residual
16. ci = |ri|
17. Check convergence
18. δ = ci/ci−1

19. pi = ri + δpi−1 update search direction

Tab. 4.6: Computation flow in the loop of the CGM.
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The computational time for each process of the CGM is summarized in Table
4.7 and Table4.8. We estimate the computational time with the single and multi
time-step tomographic reconstruction for the narrow and wide asterisms. The ∆t

for the multi time-step reconstruction is 50 ms, and the one previous measurement
is used for the multi time-step reconstruction.

Although the area of the FoR for the wide asterism is 4 times larger than
the FoR area for the narrow asterism, the difference in the computational time
between the narrow and wide asterisms is only 60 µs in and out of the loop. Also,
the multi time-step reconstruction uses the measurements at 2 frames, but the
computational complexity of the multi time-step reconstruction is smaller than
the double of the computational time of the single time-step reconstructor. These
results show that the GPU computation is efficient for the large problem.

The computationally heaviest part is the matrix-vector computation in the
process 2, 4, and 12. The process 12 in the loop takes 459–699 µs, depending on
the case, and accounts for 80–85 % of the total computation time in one loop.
The vector-vector operations in process 3, 6, 13–16, and 19 take a few tens µs,
and these are much faster than the matrix-vector computations. If we assume
that the wavefront in all 20 science directions are computed by one computer,
the computational time at the process 10, in which the wavefronts in the science
directions are computed from the reconstructed atmospheric turbulence layers,
takes 168 µs. If the wavefront in each science direction is computed parallel by a
different computer, it takes only 30 µs.

The data transfer time from CPU to GPU in the process 1 is the same for
the all cases. This is because the data transferred in each computation is only
the measurement at the current time-step, if the previous measurements are saved
in the GPU memory. This data transfer takes 165 µs and is smaller than the
matrix-vector computation, but accounts for around 10 % of the total time out of
the loop. The final data transfer from GPU to CPU in the process 11 takes 211 µs
for the system with one computer and 28 µs for the case of multiple computers.

The total computation times out of the loop are 1409–1760 µs for the case
of one computer, and the total times in the loop are 579–831 µs, depending on
asterism and reconstructor. The total computation time including the iteration is
96–162 ms, even if the diagonal scaling is used, and these are much larger than
the required computational time of 1 ms. It is expected that using the warm
start, in which the estimate at one previous time-step are used as the initial of
the CGM at the current time-step, can reduce the number of iteration largely.
However, if the number of iteration is one, the computational time of 1 ms can
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not be achieved with the current computational time. In order to achieve the
required computational time, accelerating the matrix-vector multiplication and
data transfer between CPU and GPU are necessary, that is, the GPU itself should
be improved.

In this section, we assume that the required computational time is 1 ms to min-
imize the temporal-lag error. However, the required computational time should
be determined with considering not only the temporal-lag error, but also a guide
star brightness and a WFS measurement noise. If the guide stars are faint and the
effect of the measurement noise is larger than the temporal-lag error, the perfor-
mance of the MOAO is improved by controlling the MOAO system more slowly.A
simulation comparing the effect of the temporal lag-error and the measurement
noise is required to determined the computational time to be achieved.
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Narrow Wide
process single multi single multi

1. 165
2. 249 343 251 358
3. 57 67 61 57
4. 484 676 508 724
5. 9 9 8 9
6. 36 37 39 39
7. Check convergence
8. loop

9. 30 30 30 30
10. 168(37) 167(36) 168(37) 167(35)
11. 211 (28)

Total time in one loop 579 773 620 831
Total time out of the loop 1409(1095) 1705(1391) 1441(1121) 1760(1445)

number of
257(165) 224(165) 302(203) 227(194)

required iteration

Tab. 4.7: Computational time and the number of iteration for the convergence of the
CGM. The unit for the computational time is µs. While the value out of the
parenthesis at the processes of 10 and 11 are assumed to compute the wavefront
for 20 science directions by one computer, the values in the parenthesis at these
processes are assumed to compute the wavefront for 20 science directions by 20
computers, i.e, it is the computeion time for one science target direction. The
tital computetinal times follow the same manner as the values at the processes
of 10 and 11. The number of iteration is computed with and without the
diagonal scaling preconditioner, where the values in the parenthesis are with
the diagonal scaling preconditioner.
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Narrow Wide
process single multi single multi

12. 459 652 486 699
13. 13 39 39 40
14.

29 29 32 34
15.
16. 34 34 35 35
17. Check convergence
18. 0 0 0 0
19. 19 19 20 22

Tab. 4.8: Computational time of the processes in the loop of the CGM
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Laboratory Test with RAVEN

5.1 RAVEN

RAVEN is a MOAO demonstrator installed and tested on the Subaru telescope
at Maunakea [32], which is the first MOAO demonstrator at 8 m-class telescope.
The RAVEN is designed not only to demonstrate the technical readiness associated
with MOAO systems, but also to verify scientific capability of MOAO systems.
The RAVEN can apply MOAO correction simultaneously for two science targets
within a field of 2 arcminute diameter. The tomographic reconstruction is com-
puted using the measurements from d by 3 NGSs within a FoR of 3.5 arcminute
diameter and 1 LGS attached to the Subaru telescope [25] located at the center
of the FoR.

There are 4 open-loop SH-WFSs (OL-WFS) for 3 NGSs and 1 LGS in the
RAVEN. The measurements from the OL-WFSs are used for the tomographic
wave-front reconstruction, SLODAR, the wind estimation, and the tracking of
NGSs. There are two science channels each containing a DM to provide AO
correction into its science target. Each science channel also has SH-WFS behind
the DM and it is called closed-loop WFS (CL-WFS). This CL-WFS is used for
the calibration of the system, measuring a raw or residual wave-front in science
direction, providing SCAO mode correction, and tracking the science targets. All
SH-WFSs consist of 10×10 subapertures and an Andor iXon 860 EMCCD. Each
subaperture has a diameter of 0.8 m on the aperture plane and a 4.8 arcseconds
FoV. The DMs are an ALPAO DM with 11×11 actuators. The light rays coming
from NGSs and science targets are picked off by pick-off arms and fed to each
OL-WFS or science channel. The light fed to science path is corrected by a DM.
Then, the light divided into optical light and near infrared light by a beam splitter.
The optical light is fed into the CL-WFS and the infrared light is sent into the
Subaru Infrared Camera and Spectrograph (IRCS)[29]. The RAVEN also has a

69
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Parameters Values

Diameter of aperture 8 m
Number of NGSs 3
Number of LGS 1
FoR for NGS 3.5 arcminutes diameter

FoR for science target 2 arcminutes diameter
WFS SH-WFS

Number of subapertures 10×10
Number of DM elements 11×11
Number of science targets 2

Maximum Frame rate 250 Hz

Tab. 5.1: Parameters of RAVEN.

Altitude
∫
C2

Ndh Fraction of wind speed [ms−1]
[km] [10−14 m1/3] C2

N x y

10.5 5.961 0.180 17.0 0.0
5.5 7.418 0.224 6.0 0.0
0 19.737 0.596 0.0 5.68

Total r0[m] 0.156

Tab. 5.2: Atmospheric turbulence profile and wind profile generated by the RAVEN CU.

Figure. 5.1: Block diagram of the RAVEN system. Figure adopted from Lardière et al.
(2014) [32].
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Figure. 5.2: Expected C2
N fraction generated by the RAVEN CU.

near infrared camera in the optical bench for the laboratory experiment without
the IRCS. These parameters are listed in Table5.1, and Fig.5.1 show the block
diagram of the RAVEN system.

RAVEN has a calibration unit (CU) on the optical bench, which simulates mul-
tiple GSs, multiple science targets, atmospheric turbulence layers, and a telescope
[33]. The CU is used to calibrate and test the AO system. The atmospheric turbu-
lences generated by the CU consist of three layers. Two high layers at altitude of
10 km and 5 km are simulated by phase screens, which can be rotated to simulates
a movement of the turbulence layers due to the wind. The ground layer at 0 km
is generated by a calibration DM with 17×17 actuators. The designed parameters
in the CU are summarized in Table5.2 and Fig.5.2. It should be noted that the
phase distortion patterns generated by the CU are periodic, and the period is 40 s
for the 5 km layer and 19 s for the 10 km layer. Also, the atmospheric turbulence
generated by the CU is 100 % frozen flow layer.

5.2 SLODAR and Wind Estimation

First, we test the SLODAR and the wind estimation method with the CU. An
asterism is shown in Fig.5.3. The NGSs are at approximately 60 arcsecond radius
and the LGS is located at the center of the FoR. The brightness of the NGS is set
to R∼8 mag, which is very bright and the WFS measurement error is minimal.

Fig.5.4 and Table5.3 show a turbulence profile estimated by the SLODAR.
We use the slope for one minute from three OL-WFSs for the SLODAR and
the wind estimation. The estimated profile has three major peaks at the almost
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Figure. 5.3: Asterism of the GSs and the science targets for the laboratory test with the
RAVEN.

Altitude
∫
C2

Ndh Fraction of wind speed [ms−1]
[km] [10−14 m1/3] C2

N x y

10 4.329 0.169 15.4 -0.6
8 0.896 0.035 8.6 -0.2
6 8.222 0.321 6.3 0.1
0 12.140 0.474 0.1 5.0

Total r0[m] 0.182

Tab. 5.3: Atmospheric turbulence profile and wind profile estimated by the SLODAR
and the wind estimation method.
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Figure. 5.4: Profile of atmospheric turbulence of the RAVEN CU estimated by the SLO-
DAR.

same altitudes as the designed profile in Fig.5.2. The smallest turbulence at
8 km in the estimated profile may come from the turbulence layers at 5.5 km
or/and 10.5 km due to the mismatch of the altitude between the SLODAR and
the designed turbulence layers. The largest difference between the designed and
measured profiles is the C2

N value at ground layer, and the estimated value of
12.140×10−14 m1/3 is 60 % of the designed value. As a result, the total power
measured by the SLODAR is smaller than the designed value, i.e., the measured
r0 of 0.182 m is larger than the designed r0 of 0.156 m. The C2

n of the other high
layers are consistent between the measured and the designed values.

This larger r0 than the designed value is already reported in the previous
estimation in the lab on RAVEN, which is estimated by a different SLODAR
method from the one presented in this thesis. The difference between the two
method is that, while the method presented in this thesis uses the correlation
map of the slope form multiple SH-WFSs, which is defined in Eq. (2.26), the other
method uses the covariance matrix of the slopes. The covariance matrix is defined
as

Covobs
xx (i, j, i

′, j′) =

⟨ ∑
valid i,j,i′,j′

s
′′x[1]
i,j (t)s

′′x[2]
i′,j′ (t)

⟩
, (5.1)

where s′′ is a slope after the tilt and average pattern subtraction defined in Eq.
(2.25). Both methods fit the theoretical correlation or covariance matrix to the
measured one to estimate C2

N(h). We refer to the SLODAR presented in this
thesis as a correlaton SLODAR. The other SLODAR method is referred to as a
covariance SLODAR.

The phase distortion at ground layer in the CU is generated by the calibration
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Figure. 5.5: Temporal correlation maps of slope at each altitude estimated by tomo-
graphic reconstruction. The values at the top of each image indicate the time
delay used to drive the temporal correlation. The x and y-axes are δi and
δj with a range of −9 ≤ δi, δj ≤ 9. One pixel on the temporal-correlation
corresponds to one subaperture size, which is 0.8 m in the RAVEN
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DM. Since the actuator size of the calibration DM is roughly 0.47 m, the DM
can not reproduce the phase distortion with spatial scales smaller than 0.47 m.
We conclude that the actuator size causes the discrepancy and that the estimated
value reflects the real turbulence profile on the DM better than the designed value.

By using the estimated profile, we evaluate the wind speed and direction at
each layer. First, we compute the tomographic reconstruction to reconstruct the
phase distortion pattern at each altitude. Then, the temporal correlation map of
the estimated slope are calculated with different delay times, δt. The temporal
correlation maps are illustrated in Fig.5.5. The delay time for the lower layers at
0 km and 6 km are set to larger than the higher layers (Fig.5.5). Generally, the
wind speed at low layer is considered slower than the wind speed at high altitude.
In order to get clear movement of the temporal correlation peak, longer delay time
is preferred for the low altitude layers. For all layers detected by the SLODAR,
the peaks on the temporal correlation maps are detected. The estimated wind
speeds and directions, which are summarized in Table5.3, are consistent with the
designed value. The error of the wind speed is less than 2 ms−1 for all layers, which
is an acceptable wind error computed by the numerical simulation in Section 3.
With this wind estimation error, the multi time-step reconstructor will work with
the future MOAO system (see Fig.4.6).

5.3 Multi Time-Step Reconstruction

We present the result of the laboratory test of the multi time-step reconstruction
in Fig.5.6 and the top table of Table5.4. Fig.5.6 shows the PSF images of two
science channels taken by RAVEN infrared camera with the MOAO correction.
The pixel scale of the PSF images in Fig.5.6 is 17.5 mas, and the size of the images
are 0.5 arcsecond × 0.5 arcsecond. The maximum wind speed simulated by the
CU , which is 17.0 ms−1, is almost half of the maximum wind speed in the model
that we used for the numerical simulation in Section 3, and the time duration
that the decay ratio fdecay of the temporal correlation of SH-WFS measurements
is more than 0.7 with the wind speed of 17.0 ms−1is ∼100 ms. Therefore, we
use 100 ms for ∆t of the multi time-step reconstructor. The asterism used for
the MOAO experiment in the laboratory is the same as the asterism used for the
SLODAR, which is shown in Fig.5.3.

The performance of the MOAO is evaluated by SR, EE, and improvement
ratios of the SR and the EE at wavelength of 1650 nm (H-band). First, we
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perform a background subtraction to the original image observed by the science
camera in RAVEN. Then, the PSF image of each science channel is cropped with 1
arcsecond × 1 arcsecond box from the original image and normalized by the total
intensity within the cropped box. In parallel, we create a diffraction-limited PSF
image by a simulation with a pixel scale of 1 mas and normalize the diffraction-
limited PSF image within a 1 arcminute box. We estimate a SR by comparing
the peak intensity in the observed PSF image with that in the diffraction-limited
PSF image. Accurately, this SR is an EE within a 1 mas box , but the 1 mas box
is small enough compared with the FWHM of the PSFs and it can be considered
as a SR. The EE is computed within a 140 mas box, which is a size of the slit of
the slope. The measured values are summarized in the top table of Table5.4

Visually, the PSFs become sharper and have higher peak intensity by the multi
time-step reconstruction compared to the single time-step reconstruction for both
of the asterisms, as shown in Fig.5.6. The EEs achieved by the single time-step
reconstructor are 0.268–0290 without the LGS and 0.349–0.365 with the LGS.
The improvement ratio of the EE achieved by the multi time-step reconstruction
is 1.16–1.18 without LGS and 1.05 with LGS. The SR of the single time-step
reconstructor without the LGS is 0.072–0.087 and these values are roughly consis-
tent with the value of 0.10 measured previously in the laboratory experiment on
RAVEN [32]. On the other hand, the SR of the single case with the LGS is 0.125–
0.150, which is much lower than the previous value of 0.23. The improvement ratios
of the SR achieved by the multi-time step reconstructor are 1.32–1.51 without the
LGS and 1.22–1.25 with the LGS. These improvements show the multi time-step
reconstruction works in the lab-test. The improvements in the SR and the EE are
better without the LGS than with the LGS. In this laboratory experiment, since
the part of the tomographic error due to the uncovered and unoverlapped area is
solved with the LGS and the tomographic error would be dominated by the other
components (e.g. the open loop error, the temporal lag-error, the optical error,
and so on) rather than the uncovered and unoverlapped area. Therefore, the im-
provement by the multi time-step reconstruction becomes smaller relatively than
the case without the LGS.

5.4 Comparison with a numerical simulation

We compare the results of the lab-test on the multi time-step reconstructor to
a numerical simulation. We assume the parameters of the RAVEN system and
the turbulence profile generated by the RAVEN CU, listed in Table5.1 and Table
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Lab-test EE (140mas) SR

reconstructor GSs Ch1 Ch2 Ch1 Ch2

single
3NGSs

0.268 0.290 0.072 0.087
multi 0.313 0.343 0.095 0.131

Improvement ratio 1.16 1.18 1.32 1.51

single 3NGSs 0.349 0.365 0.125 0.150
multi +LGS 0.367 0.385 0.153 0.187

Improvement ratio 1.05 1.05 1.22 1.25

Simulation EE (140mas) SR

reconstructor GSs Ch1 Ch2 Ch1 Ch2

single
3NGSs

0.334(0.294) 0.346(0.303) 0.251(0.211) 0.267(0.224)
multi 0.406(0.348) 0.424(0.362) 0.361(0.302) 0.384(0.321)

Improvement ratio 1.21(1.18) 1.23(1.19) 1.44(1.43) 1.44(1.43)

single 3NGSs 0.443(0.379) 0.430(0.367) 0.398(0.333) 0.386(0.324)
multi +LGS 0.477(0.402) 0.477(0.402) 0.465(0.390) 0.465(0.389)

Improvement ratio 1.07(1.06) 1.11(1.10) 1.17(1.17) 1.20(1.20)

Tab. 5.4: SR, kSR, and EE value of each science channel measured in the lab-test (the
top table) compared to those predicted from the numerical simulation (the
bottom table). The EE is defined with a 140 max box. There are two GS
configuration used in the test, one is only three NGSs and the other is three
NGSs+LGS. The values in parenthesis in the lower part is the value accounting
for the implementation errors.
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Figure. 5.6: PSF images of each science channel taken in the lab-test with the single and
the multi time-step reconstructors. The color scale is linear and aligned for
each channel. The wavelength is 1650 nm (H-band). The size of each image
is 0.5 arcsecond × 0.5 arcsecond, and the pixel scale is 17.5 mas.

5.2. The coordinates of the GSs and the targets are also set to the same as the
coordinates used in the lab-test, illustrated in Fig.5.3. The EE values and the
improvement ratio, kSR, predicted by the simulation are summarized in the lower
part of Table5.4. There is a good agreement between the kSR measured in the
lab-test and derived by the simulation, therefore the performance improvement
of the multi time-step reconstructor is as good as predicted for both asterisms
with and without LGS. It is also consistent between the laboratory test and the
simulation that the improvement by the multi time-step reconstruction without
LGS is larger than the improvement without the LGS.

However, the absolute values of the EE and the SR measured in the labora-
tory experiment are much smaller than the values predicted by the simulation for
both of the single and the multi time-step reconstructors. This difference may
be due to the implementation errors not considered in the simulation, which are
calibration error, DM control error, and optical aberration. In the calibration of
RAVEN, there are two steps [28]. The first one is to find the rotation matrices,
which compensate the misalignment between the OL-WFSs and the CL-WFSs.
In particular, in RAVEN, OL-WFSs are rotated respect to the CL-WFSs. The
second one is to determine the command matrices to control the science DMs.
The rotation and command matrices are determined experimentally using the CU
and the CL- and OL-WFSs. Therefore, these include the noise.

The calibration error results from the uncertainties of these matrices. The DM
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control error is regarding to the accuracy and long term stability of the DM, i.e.,
how the DM can reproduce the demanded wave-front. The optical aberration is a
static error caused by the misalignment in the system. The optical aberration in
the science path can not be seen from the OL-WFSs, and therefore, this aberration
can not be corrected by the tomography. This aberration is called non-common
path aberration (NCPA). We set to the reference shape of the DMs to remove the
static optical aberration [31], but the residual aberration may affect the MOAO
performance. Anderson et al. (2012) [4] simulates the performance of the RAVEN
and estimates the error budget of the AO correction of the RAVEN system. They
estimate a wavefront error (WFE) caused by the implementation errors of the
RAVEN to be 107 nm.

In order to evaluate the contribution from the implementation errors, we cal-
culate the total WFE as a quadrature sum of WFE due to the implementation and
tomographic errors. The WFE due to the tomographic error is estimated from the
SR derived from the simulation by using an approximation, SR=exp [−σ2], where
σ = 2πWFE/λ and λ=1650 nm. It is noted that this expression is valid for σ2 < 1

rad2 (this is SR< 0.37), and our result can be biased when SR is lower than 0.37.
The SR, including the tomographic error and the implementation errors, can be
computed with this approximation from the total WFE. Since there is no approx-
imation connecting to EE and WFE, we assume that the absolute loss of the EE
due to the implementation errors is same as the absolute loss of the SR. The per-
formance predicted by the simulation, accounting for the implementation errors,
are listed in the bottom table of Table5.4 as the values in a parenthesis. While the
simulated EE including the implementation errors is slightly higher than the EE
values measured in the laboratory experiment, the simulated SR including the im-
plementation errors is still much higher than the measured SR. This suggests that
there are additional errors, which make a PSF peak blurred and affects mostly SR
values. The improvement ratios does not vary with the implementation errors.

As the additional errors, we examine the effect of the residual tip-tilt compo-
nents. Since the tip-tilt errors change the position of the PSF, the fluctuation of
the tip-tilt errors affects strongly the SR of the long-exposure PSF. On the other
hand, the EE is expected to be less sensitive to the tip-tile error than the SR be-
cause the EE is evaluated within a 140 mas box which is larger than the FWHM
of the corrected PSF. In the simulation, the standard deviations of the residual
tip-tilt errors are roughly 6.5 mas for both of the x and y-direction. The residual
tip-tilt error in the laboratory experiment can be estimated from the CL-WFS
measurements, and the standard deviations of the residual tip-tilt errors is 15 mas
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for x-direction and 20 mas for y-direction in the laboratory experiment. These
are much larger than that of the simulation and suggest that the results in the
laboratory experiment are affected more by the tip-tilt errors than the result of the
simulation. The sparse approximation of the inverse of the phase covariance ma-
trix, L, may contribute the uncorrected additional tip-tilt errors in the laboratory
test because the sparse approximation can not regularize the tip-tilt modes [35].
The standard deviations of the tip-tilt modes of the uncorrected wave-front are 55
mas in the simulation and 50 mas in the laboratory experiment. Therefore, the
additional vibration from the RAVEN does not affect the result in the laboratory
experiment.

In order to evaluate the contribution from the tip-tile errors, we add the tip-tilt
errors to the corrected wave-front in the simulation so that the standard deviation
of the tip-tilt errors in the simulation becomes equal to that of the laboratory
experiment. The re-simulated values with the additional tip-tilt errors are listed
in Table5.5. The values in a parenthesis in Table5.5 is the SR including the effect
of the implementation errors. As expected, while the SR is affected strongly on the
additional tip-tile errors, there is almost no change in the EE due to the additional
tip-tile errors. The simulated SRs including the effect of the uncompensated tip-
tilt and the implementation errors are much closer to the measured values than the
original simulated SRs in Table5.4, but these are still higher than the measured
values.

In this section, we compare the result in the laboratory with the numerical
simulation and discuss the effect of the implementation errors and residual tip-tile
errors to explain the lower SRs and EEs in the laboratory experiment than that of
the simulation. With considering these effects, the difference between the result of
the laboratory experiment and the simulation gets smaller, but the SRs and EEs
of the laboratory test are still lower than the values predicted by the simulation.
In order to understand what makes this difference, more experiments to examine
the implementation errors in detail are required.
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Simulation EE (140mas) SR

reconstructor GSs Ch1 Ch2 Ch1 Ch2

single
3NGSs

0.326 0.337 0.137(0.116) 0.149(0.126)
multi 0.397 0.413 0.194(0.164) 0.204(0.173)

Improvement ratio 1.22 1.23 1.42 1.37

single 3NGSs 0.432 0.418 0.213(0.180) 0.211(0.179)
multi +LGS 0.466 0.464 0.250(0.212) 0.247(0.209)

Improvement ratio 1.08 1.11 1.17 1.17

Tab. 5.5: SR, kSR, and EE value of each channel predicted from the numerical simu-
lation with taking account of the additional tip-tilt errors. The additional
tip-tilt errors are determined by the measurement on the laboratory experi-
ments. The values in a parenthesis in Table5.5 is the SR including the effect
of the implementation errors.



Chapter 6

On-Sky Evaluation with RAVEN

6.1 On-Sky Performance

The on-sky engineering and science observations with RAVEN on the Subaru
telescope are successfully performed on May and August 2014 and June 2015. We
test the multi time-step reconstruction and the wind estimation method on sky
during the third observation on June 2015. In this chapter, we present the on-
sky performance of the SLODAR, the wind estimation, and the multi time-step
reconstruction based on the data from the third on-sky observation.

6.1.1 Engineering Field

The engineering fields of the third run are shown in Fig.6.1. The green points
in the figure indicate the position of the NGSs and its magnitude at R-band are
listed in Table6.1. All NGSs are brighter than R=12.6. The limit magnitude of
OL-WFSs in RAVEN is around 14 mag at R-band. Target objects are selected in
radius of 1 arcminute from the center.

6.1.2 SLODAR

The performance of the SLODAR of RAVEN in the first and second on-sky obser-
vations is reported in [32]. The result of the SLODAR in [32] is computed by the
covariance SLODAR method. The covariance and correlation SLODAR are im-
plemented in RAVEN and provide the almost same results, but the computation
time of the covariance SLODAR is a few seconds faster than the correlation SLO-
DAR, where the covariance SLODAR takes around 5 seconds for its computation
and the correlation SLODAR takes around 10 seconds. Therefore, the covariance
SLODAR is usually used during on-sky observations.

82
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Figure. 6.1: Images of the engineering fields. The red lines indicate the radius of 1.75
arcminute and 1 arcminute from the center of the field. The green points
represent the NGSs position. The brightnesses of the NGSs are summarized
in Table6.1. The information of the engineering field is summarized in Table
6.1. These images comes from the Digital Sky Survey. The position of NGSs
are plotted based on the USNO-A2.0 catalog.
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Field ID RA Dec

Fd38 15:15:30 +5:15:57

NGS Rmag

1 12.2

2 12.5

3 10.2
(a) Fd38

Field ID RA Dec

Fd38 19:45:00 +33:14:41

NGS Rmag

1 11.0

2 10.6

3 11.0
(b) Fd327

Field ID RA Dec

Fd38 20:11:28 +35:51:58

NGS Rmag

1 11.4

2 12.6

3 12.0
(c) Fd406

Field ID RA Dec

Fd38 19:45:26 +33:25:32

NGS Rmag

1 10.9

2 10.6

3 11.4
(d) Fy1

Tab. 6.1: RA, Dec, and NGS magnitudes of the engineering field shown in Fig.6.1. The
NGSs magnitude are referenced from the USNO-A2.0 catalog.

Fig.6.2 shows an example of the C2
N profile and the cross-correlation maps

computed from one minute series of the on-sky measurements by the correlation
SLODAR. The field is Fd38. In the profile, the ground layer has more than 80
% of the total turbulence power and the weak turbulences are at around 12 km.
Only one central peak is seen on the cross-correlation maps, which corresponds to
the ground layer. Fig.6.3 shows another example of a SLODAR result with C2

N

profile with a significant component at high altitudes. The field is Fd406. The
turbulences spread over a wide range of altitudes and 50 % of the total turbulence
power occurs at the altitudes higher than 10 km. On the cross-correlation maps,
there are strong correlations along the base lines of the NGS pairs.

In most of the time during the on-sky observations, we detect a strong ground
layer as expected [16]. Fig.6.4 shows a histogram of the ground layer fraction
measured by the covariance SLODAR during the on-sly observations. The ground
layer accounts for the 50 % of the total turbulence power at 75 %-ile. This strong
ground layer suggests the large contribution from the dome seeing.
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Figure. 6.2: The example of the SLODAR result dominated with a grund layer. The
upper left panel shows the NGS asterism and the dashed circle indicates the
angular separation of 60 arcseconds from the center of the FoR. The upper
right panel shows the C2

N profile estimated by the correlation SLODAR and
the bottom panel shows the corresponding correlation maps. The red arrows
indicate the baseline of the guide stars, and the signals of the correlation are
expected to apper along these arrows. In this case, most of the turbulence is
concentrated in the ground layer and there are weak turbulences at around
12 km.
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Figure. 6.3: Another example of the SLODAR result with a complex profile. The turbu-
lences occur over wide range of altitudes and the turbulences at altitude
higher than 10 km have significant contribution to the total turbulence
power. On the correlation maps, there are strong correlations along the
base lines of the NGS pairs
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6.1.3 Wind Estimation

Fig.6.5 and Fig.6.6 show the wind speeds, wind directions, and the temporal-
correlation maps with different time delays, δt, at each altitudes for the cases of
Fig.6.2 and Fig.6.3, respectively. In Fig.6.5, which is the result of the profile
dominated with a ground layer, a peak on each temporal-correlation map seems
not to move from the center even with increasing the time delay, δt, up to 100
ms. This suggests that there is slow or not moving component at all altitude.
As a result, the measured wind speeds are 1 ms−1at all altitudes. The measured
directions are different between the ground layer and high altitude layers.

On the other hand, in Fig.6.6, which is the case that the turbulences spread
over a wide range of altitudes, the peaks on the temporal correlation maps slowly
move to left with the increase of δt, except for the ground layer. The measured
wind speeds are almost 0 ms−1at 0 km and around 5 ms−1at higher altitudes.

In most of the time during the on-sky observations, we detect temporal-correlation
peak moving slowly or not moving with the time delay δt. These peaks are seen
at all altitudes as shown in Fig.6.5 and Fig.6.6. As a result, the average of the
detected wind speeds are very small, which are equal to or less than 1 ms−1, for
all altitudes.

Although, at low altitudes, this slow wind speeds is not strange because the
average wind speed at low altitudes are generally considered to be slow compared
with wind speeds at high altitudes [24], there would be some contributions from
the dome seeing. The turbulence caused by the dome seeing may be boiling
rather than moving with the wind. As explained in Chapter 2, we subtract the
temporal average over a minute from the reconstructed slopes before computing
the temporal-correlations in order to remove the static pattern in one minute. If
the temporal evolution of the dome seeing is faster than 1 minute, it makes the
correlation peak on the temporal-correlation map of low altitudes, which does not
move with δt. As a result, the estimated wind speeds get small due to the dome
seeing.

For the high altitudes, these slow wind speeds and the temporal correlation
peak without moving are not considered to reflect the real wind speeds, since the
average wind speeds is faster than 10 ms−1[24]. It is possible that the temporal-
correlation peaks due to moving atmospheric turbulence layers are hidden by the
strong peak associated with the additional slow or not moving component. We will
discuss this slow wind speeds and the temporal correlation peak without moving
in the off-line analysis.
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Figure. 6.4: Histogram of ground layer fraction measured by the covariance SLODAR
during on-sky observations from June 23th to July 2nd in 2015 (HST).

6.1.4 On-sky Performance of the Multi Time-step Recon-

struction

We evaluate the performance of the multi time-step reconstruction with the PSF
images taken by IRCS during the on-sky observations. All PSF images which
we use are observed by H-band. The exposure time for each image is roughly
30 seconds. The pixel scale of IRCS corresponds to 0.023 arcseconds, which is
measured from the image of the binary star taken during the on-sky observations.

We use FWHM, SR, and EE in a 140 mas box for the performance evalua-
tion. These metrics are affected strongly on the background subtraction from the
images. Therefore, the same criteria to subtract the background should be used
for all images. We define the count of the background at radius of 10 times of its
FWHM. When the FWHM is larger than 0.3 arcsecond, the radius of 10 times of
its FWHM is out of the FoV because the size of the FoV of each science channel is
4 arcsecond. In this case, we define the back ground count at the radius as large
as possible.

Fig.6.7 shows the FWHM, SR, and EE measured from the on-sky PSF im-
ages. These metrics are plotted as a function of a r0 measured by the covariance
SLODAR. The red and blue points indicate the results of the single and multi
time-step reconstruction, respectively. For the multi time-step reconstruction, we
set ∆t to a time duration corresponding to 20 frames. In most case, the frame
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Figure. 6.5: Top: Temporal-correlation maps with different time delays, δt, at each alti-
tudes for the cases of Fig. 6.2. The x and y-axes are δi and δj with a range of
−9 ≤ δi, δj ≤ 9. One pixel on the temporal-correlation corresponds to one
subaperture size, which is 0.8 m in the RAVEN. The temporal-correlation
maps are normalized by the peak intensity of the map of δt=0 at each al-
titude. The color scale of the maps is set to [0 0.7]. Bottom: Wind speed
(red) and direction profile (blue) as a function of altitude from the telescope.
The wind speed follows the left y-axis, and the wind direction follows the
right y-axis.
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Figure. 6.6: The same figure as Fig. 6.5 with the C2
N profile shown in Fig. 6.3.
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Figure. 6.7: The (a) FWHM, (b) SR, and (c) EE in 140 mas box measured from the
PSF images obtained in the on-sky engineering observations. These metrics
are plotted as a function of a r0. The red squres indicate the results of the
single time-step reconstructor and the blue circles are the result of the multi
time-step reconstructor. The filled and open symbols indeciate the result of
the science channel 1 and 2, respectively. In the enginnering observation,
we set ∆t to a duretion corresponding to 20 frames. In the most case, the
framerate of the control for MOAO system is 150 Hz and ∆t is 133 ms.
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rate of the MOAO control is 150 Hz and therefore ∆t is 133 ms. We achieve the
FWHM of 0.1 arcseconds and EE more than 0.3 when r0=0.3 m. On the other
hand, there is the large variance of the EEs at the same r0 =0.3 m. One reason
is the variation of the NGS asterisms. Another reason is the effect of the DM
instability. The initial command of the DM is set to cancel the phase distortion
due to the optical error. This best flat command is determined experimentally
before the observations and used as the reference command of the DM during the
observation. However, we found that the best flat command changes after we use
the DM continuously over a long time. Therefore, especially in the latter half of
the night, the DMs become unstable and decrease the performance.

In Fig.6.7, there is no clear improvement due to the multi time-step tomo-
graphic reconstruction. The error of the wind estimation may be a main cause
which degrades the performance of the multi time-step reconstruction. Fig.6.8
shows the PSF images observed with the correction by the single and the multi
time-step tomographic reconstruction alternately with two minutes intervals. The
field is Fd38. Since the PSF images of the science channel 1 are affected by the
DM instability, we focus on the result of the science channel 2. The FWHMs
of the single time-step tomographic reconstructor are a few mas better than the
FWHM of the multi time-step reconstruction, but this difference is much smaller
than the pixel scale of 23 mas. It is difficult to conclude that this difference is due
to the difference of the reconstructor. The values of SR look to depend on the
fried parameter r0. The EEs in a 140 mas box of the multi time-step tomographic
reconstructor is 0.02 larger than that of the single time-step reconstructor. Fig.6.9
shows the C2

N profile the wind speeds and directions used for the reconstruction at
this time. The wind speeds at all altitudes are almost 0 m/s, which is affected by
the slow or not moving component which we mentioned in the previous subsection.
In such a case, the improvement with the multi time-step reconstruction can not
be expected. Therefore, the difference in the EEs may not be due to the difference
of the reconstructor.

Unfortunately, we can not achieve the clear improvement due to the multi
time-step tomographic reconstruction from the on-sky PSF images during engi-
neering observations. In the next section, we improve and evaluate the wind
estimation method and the multi time-step tomographic reconstruction with the
off-line analysis using the on-sky measurements of SH-WFSs.
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Figure. 6.9: The profiles of C2
N values (left panel), wind speeds (right panel), and wind

directions (right panel) measured on sky. The field is Fd38 and the asterism
is same as Fig. 6.2. In the C2

N profile, more than 80 % of the turbulence are
concentrated in the ground layer and there are weak turbulences at around
10 km. On the left panel, the detected wind speeds are almost zero at all
altitudes.
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6.2 Off-Line Analysis

6.2.1 Improvement in the Wind Estimation

First, we improve the wind estimation method. As mentioned in subsection 6.1.3,
the wind speeds are seen to be underestimated due to the additional slow or not
moving component especially at high altitudes. As explained in Chapter 2, we
compute the temporal averaged pattern from the time series of the reconstructed
slopes and subtract the computed averaged pattern from the reconstructed slopes
to remove static pattern. In the revised wind estimation method, we perform
this process for every one second time series of the reconstructed slopes before
computing temporal-correlations, and cancel the additional slow or not moving
component from the temporal-correlation maps to detect only moving turbulence
layers. This process corresponds to remove the component changing slower than 1
Hz or moving slower than ∼0.4 ms−1from the temporal-correlation maps. For the
ground layer, the dome seeing may be removed by this process. Fig.6.10 and Fig.
6.11 are the revised versions of Fig.6.5 and Fig.6.6, respectively. In both of Fig.
6.10 and Fig.6.11, the only moving peaks are successfully extracted. The measured
wind speeds are larger than the value measured during the on-sky observation in
real-time, and thus, the underestimation is solved by the revised wind estimation
method.

Fig.6.12 shows example of of the phase distortion pattern averaged over each
one second at different altitudes. The averaged pattern at 0 km and 4 km change
slowly with time and some distortion patterns remain over several seconds. These
long-lived distortion patterns cause the temporal-correlation peak not moving with
δt and the underestimation of the wind speeds. Although the averaged distortion
pattern at 8 km change more rapidly than that of 0 km and 4 km, sometimes
the adjacent distortion maps have marginally same pattern and it is possible that
these pattern make the temporal-correlation peak not moving.

At the 0 km, the slowly changing distortion pattern can be explained by the
dome seeing, but it is difficult to consider that there are additional components
slowly changing at high altitudes, which are different from the moving turbulence
layer. In Fig.6.12, the similar phase distortion patterns are seen on the aver-
aged phase map for all altitudes. These maps are constructed by the tomographic
reconstruction. In other words, it is possible that the reconstructed phase dis-
tortion or slope is affected by the degeneracy due to the unoverlapped area, the
uncertainty of the turbulence height and strength measured by the SLODAR, and
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the measurement noise. Therefore, these similar patterns, which change slowly as
shown in Fig.6.12, may be caused by the error of the tomographic reconstruction.
In the laboratory experiment, since the magnitude of the NGSs are set to around
8 mag, the tomographic reconstruction is performed more accurately compared
with the on-sky observations, and thus, the slow or not moving correlation peak
is not seen in Fig.5.5. Furthermore, the turbulence layers generated in the labo-
ratory experiment follows perfectly the frozen flow assumption, and therefore, the
temporal-correlation peaks are clearer than the peaks of the on-sky observations.

6.2.2 Atmospheric Turbulence Profile

Here, we summarize the profiles of r0, C2
N(h), wind speeds and wind directions in

the night on June 23–24th, 2015 measured from the on-sky measurements of the
open-loop SH-WFSs with the off-line analysis.

Fig.6.2.2 shows the r0 profiles measured by the correlation SLODAR of RAVEN
(the blue plots), the auto-correlation fitting of RAVEN (the red plots), and the
CFHT DIMM (the gray lines) as comparison. In the later half of the night, the
RAVEN results are better than the result form the CFHT. This is may be due to
the local difference since the CFHT sit on a different ridge from the Subaru tele-
scope. There is a large difference between the result from the SLODAR and the
auto-correlation fitting in 2:30–3:30. In this time, since the NGS asterism is wide,
the SLODAR can measure the turbulence up to around 9 km and the SLODAR
misses the some turbulence at altitude higher than 9 km. On the other hand, the
auto-correlation fitting can measure the total turbulence power including the tur-
bulence missed by the SLODAR. Therefore, there is the large difference between
the result from the SLODAR and the auto-correlation fitting in this period.

Fig.6.14 is the C2
N profile. In this day, the atmospheric turbulence is dominated

by the ground layer in all the time. Also, there are weak turbulences at around
10 km. The C2

N profile of this day looks stable throughout the night.

Fig.6.15 and Fig.6.16 are the profile of the wind speeds and directions. The
ground layer has the wind of 5 ms−1and the higher layers have the wind of 10–15 m
s−1. Similar to the C2

N profile, the wind speed and condition are stable throughout
the night. This stability of the wind speeds and directions is essential for the multi
time-step reconstruction.



Chapter 6. On-Sky Evaluation with RAVEN 96

0ms 33ms 66ms 100ms

0ms 33ms 66ms 100ms

0ms 33ms 66ms 100ms

0ms 33ms 66ms 100ms

0ms 33ms 66ms 100ms

0
k
m

9
k
m

1
0
k
m

1
2
k
m

1
4
k
m

0

5

10

15

20

25

30

0 5 10 15 20 25

−150

−100

−50

0

50

100

150

W
in
d
sp
ee
d
[m

/s
]

w
in
d
d
ir
ec
ti
on

[d
eg
re
e]

Altitude [km]

wind speeds

wind directions

Figure. 6.10: The improved version of Fig. 6.5
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Figure. 6.11: The improved version of Fig. 6.6



Chapter 6. On-Sky Evaluation with RAVEN 98

1s 2s 3s 4s 5s 6s 7s 8s 9s 10s

0km

4km

8km

Figure. 6.12: Example of the phase distortion pattern averaged over each one second at
different altitudes.
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Figure. 6.14: C2
N (h) profile in the zenith direction on June 23–24th, 2015. The y-axis is

altitudes from the telescope.
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Figure. 6.15: Wind speed profile on June 23–24th, 2015. The y-axis is altitudes from the
telescope.



Chapter 6. On-Sky Evaluation with RAVEN 100

20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00

Time in HST, 2015/6/23-6/24

0

5

10

15
A
lt
it
u
d
e
[k
m
]

−150

−100

−50

0

50

100

150

W
in
d
d
ir
ec
ti
on

[d
eg
re
e]

Figure. 6.16: Wind direction profile on June 23–24th, 2015. The y-axis is altitudes from
the telescope.

6.2.3 Off-Line Evaluation of Multi Time-Step Reconstruc-

tion

Finally, we evaluate the performance of the multi time-step reconstruction with the
improved wind estimates. We saved the on-sky measurements both of the OL and
the CL-WFSs without an AO correction. The WFE can be computed by compar-
ing the wave-front in the science direction reconstructed from the measurements
of the open-loop SH-WFSs with the wave-front computed from the measurements
of the closed-loop SH-WFSs.

In this subsection, we show the result of the off-line analysis with two different
data set. The first one is shown in Fig.6.17. Fig.6.17 shows the asterism, C2

N

profile, the wind profile, and the tip-tilt removed residual WFEs. The residual
WFEs are computed from the on-sky measurement of the SH-WFSs with the
single and multi time-step reconstruction. The multi time-step reconstructor is
computed with the revised wind speeds and directions and different ∆t. The
turbulence spreads over the wide range of altitudes. The wind speeds are 1 m
s−1at 0 km, and 8 ms−1at 14 km. In this case, the multi time-step reconstructor
can decrease the WFE compared with the single time-step reconstructior. The
WFE of the multi time-step reconstruction decreases with ∆t up to ∆t=0.16 s,
and this trend is consistent with the results from the analytical model (Fig.3.4)
and numerical simulation (Fig.4.5). When ∆t is larger than 0.16 s, the WFE
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starts to increase. This is because the effect of the turbulence boiling affects on
the multi time-step reconstructor as ∆t > 0.16 s. The expected decay ratio with
∆t = 0.16 s for the fastest layer (7.16 ms−1) is fdecay=0.76. In other words,
the frozen flow assumption is valid when fdecay ≥ 0.76. Furthermore, there is
a gain with the multi time-step reconstruction in this case, even if fdecay ∼ 0.8,
although the boiling of the turbulence affects the performance of the multi time-
step reconstructor. Therefore, our assumption in the previous chapters that the
frozen flow holds as fdecay ≥ 0.7 is valid.

Another case is shown in Fig.6.18. In this case, the ground layer has a large
contribution to the total turbulence power, and it is expected to the gain with
the multi time-step reconstruction would be small compared with the first case,
because the multi time-step reconstruction is more effective to the uncovered and
unoverlapped areas at high altitudes. In Fig.6.18, the WFE of the multi time-
step reconstructor is larger than that of the single time-step reconstructor. This
difference becomes larger with larger ∆t. The considerable reasons is the error of
the wind estimation.

Here, we discuss the effect of dome seeing in the multi time-step reconstructor
as another reason making the difference in the performance of the multi time-step
reconstruction between the two cases. Guesalaga et al (2014) [21] founds that the
dome seeing has a different temporal decay pattern of the cross-correlation peak
of the measured slopes from that of the atmospheric ground layer. They measure
the fraction of the dome seeing in the ground layer by using this temporal decay.
We compute this ground layer temporal decay from the temporal cross-correlation
of the measured slopes for the two cases, and investigate the effect of the dome
seeing. The intensity of the correlation peak is measured by summing correlations
in the central 3×3 pixel on the temporal cross-correlation maps.

Fig.6.19 shows the decay ratio of the ground layer for the first case. This can
be fitted by only one linear line, and it suggests that the temporal decay of the
cross-correlation can be describe with moving turbulence. The fitted line becomes
0 at the time delay of 1 s. Therefore, the ground layer is completely de-correlated
in 1 s or the peak corresponding to the ground layer goes to out of the central
3×3 box in 1s (i.e, the ground layer moves 1.5 pixel on the correlation map or 1.2
m on the aperture plane). The observed wind speeds at the ground layer, shown
in Fig.6.17, is 1.14 ms−1, and the travel distance of the ground layer in 1 s is 1.14
m, which corresponds to ∼1.5 pixel on the correlation map. Thus, the decay ratio
is consistent with the observed wind speeds.

On the contrast, the decay ratio of the ground layer consists of two slopes in
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the second case. This feature is also observed by GEMS [21]. The steeper slope
(blue) represents the temporal decay of the moving turbulence, and the moderate
slope (green) represents the temporal decay of the dome seeing. If the dome seeing
decays linearly as the time delay is smaller than 0.8 s, the initial fraction of the
dome seeing in the ground layer is 64 %. In the multi time-step reconstructor,
these two components moving differently at the same altitude can not be modeled
and, as a result, it causes the tomographic error. The increase in the WFE with
the multi time-step reconstructor in the second case shown in Fig.6.18 is possibly
affected by the dome seeing.

Such a dome seeing effect will affects not only the multi time-step reconstructor,
but also predictive controllers [10, 20]. In order to avoid the effect of the dome
seeing, it is required to monitor the fraction of the dome seeing, for example by
checking the temporal decay of the ground layer, and use the multi time-step
reconstruction in the case without the dome seeing.
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Figure. 6.17: Asterism (top left), C2
N profile (top right), the wind profile (middle), and

the tip-tilt removed residual WFE (bottom). The residual WFEs are com-
puted from the on-sky measurement of the SH-WFSs with the single and
multi time-step reconstruction. The multi time-step reconstructor is com-
puted with the revised wind speeds and directions and different time delay.
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Figure. 6.18: The same figure as the Fig. 6.17 with a different case.
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Figure. 6.20: Decay ratio for the ground layer in the first case shown in Fig. 6.18. The
red, blue and green lines indicate the computed decay ratio, a linear line for
the moving turbulence, and a linear line for the dome seeing, respectively.
The linear lines are computed by the least squares method with the time
delay range of [0 0.6] second for the moving turbulence and [0.8 1.5] second
for the dome seeing.



Chapter 7

Conclusion

In this thesis, we develop and evaluate a new tomographic reconstruction method
for the wide-field adaptive optics (WFAO), called multi time-step reconstruction,
to solve the lack of information in the tomographic reconstruction and expand
the size of the FoR of WFAO systems. Also, we evaluate a method to estimate
wind speeds and directions at multiple altitudes from the measurements of mul-
tiple wave-front sensors. This wind estimation method is required to implement
the multi time-step reconstruction. The basic idea of the multi time-step recon-
struction is increasing the information by using the measurements at both of the
current and previous time-steps with using wind speeds and directions and the
frozen flow assumption.

First, we demonstrate the influence of the lack of information in the tomo-
graphic reconstruction. Then, we present that our tomographic reconstruction
method is effective to reduce the tomographic error due to the lack of informa-
tion. In the case of 3 NGSs and a telescope of 30 m circular aperture, the multi
time-step reconstruction can expand the FoR size from 80 arcseconds diameter
to 200 arcseconds diameter without increasing the tomographic error under the
assumption that the turbulence follows the frozen flow assumption and we fully
know the wind speeds and directions.

Second, we show the result of the numerical simulation of the tomographic
reconstruction on a MOAO system on the future ELT. The numerical simulation
shows that the multi time-step reconstruction increases Strehl ratio (SR) over a
field of regard of 10 arcminutes diameter by a factor of 1.5–1.8 if we fully know the
wind speeds and directions and the turbulence follows the frozen flow assumption.

Third, we present the laboratory of the multi time-step reconstruction method
and the wind estimation method by using RAVEN, which is a MOAO demonstra-
tor. We can successfully measure the wind speeds and directions in the laboratory
experiment. Also, the multi time-step reconstructor can increase an EE in a 140
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mas box by 0.03–0.05. However, absolute value of SR and EE is smaller than
the value expected by the numerical simulation. Some part of the discrepancy
can be explained by the implementation error and the residual tip-tilt errors. In
order to understand what limits the performance of RAVEN, more experiments
are required.

Finally, we present the on-sky performance of the multi time-step reconstruc-
tion and the wind estimation with RAVEN n the Subaru telescope. Unfortunately,
there is no clear improvement with the multi time-step reconstruction because of
the error of the wind estimation. With the off-line analysis using the on-sky
measurement of the wave-front sensors, we improve the wind estimation method
and re-evaluate the multi time-step reconstruction. We conclude that the multi
time-step reconstruction can reduce the WFE compared with the single time-step
reconstructor if fdecay > 0.7 %. Also, we conclude that if there are both of the
moving turbulence and the dome seeing, the multi time-step reconstructor does
not work.



Appendix A

Mathematics

A.1 Minimum Variance Reconstructor and Ana-

lytical Tomographic Error

We drive the tomographic wave-front reconstructor Eq. (2.7). Substituting Eq.
(2.5), uβk

= Eβk
sα, and Eq. (2.10)into Eq. (2.6)

ϵβk
= ⟨||φβk

− φ̂βk
||2⟩

= ⟨||Pβk
ϕ−Nβk

ûβk
(t)||2⟩

= ⟨||Pβk
ϕ−Nβk

Eβk
sα||2⟩

= ⟨||Pβk
ϕ−Nβk

Eβk
(ΓαPαϕ+ η)||2⟩

= ⟨||(Pβk
−Nβk

Eβk
ΓαPα)ϕ+Nβk

Eβk
η||2⟩ (A.1)

A variance of a column vector x is expressed as ||x||2 = Tr[xxT ], where Tr(X)

indicates the trace of a matrix X. By using this expression and putting A =

(Pβk
−Nβk

Eβk
ΓαPα) and B = Nβk

Eβk
, Eq. (A.1) can be transformed into

ϵβk
= Tr

[
⟨(Aϕ−Bη)(Aϕ−Bη)T ⟩

]
= Tr

[
A⟨ϕϕ⟩AT

]
+ Tr

[
B⟨ηη⟩BT

]
= Tr

[
AΣϕϕA

T
]
+ Tr

[
BΣηηB

T
]
, (A.2)

where ⟨ϕϕ⟩ = Σϕϕ and ⟨ηη⟩ = Σηη are covariance matrix for the phase distortion
due to the atmospheric turbulence and a covariance matrix of the measurement
noise, respectively. We assume that the phase distortion is independent from the
measurement noise , this is, ⟨ϕη⟩ = ⟨ηϕ⟩ = 0. We can compute the residual WFE
due to the tomographic error from Eq.(A.2) analytically by matrix calculation.

The reconstructor Eβk
for βk direction is derived by minimizing ϵβk

. This is
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equal to computing Eβk
, which meets ∂ϵβk

/∂Eβk
= 0. The partial differential of

the first term is computed as

∂(AΣϕϕA
T )

∂Eβk

=− ∂
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=− 2NT
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The partial differential of the second term is computed as

∂(BΣηηB
T )

∂Eβk

=
∂

∂Eβk

Nβk
Eβk

ΣηηE
T
βk

=2NT
βk
Nβk

Eβk
Σηη. (A.4)

Then, combining Eq.(A.3) and Eq.(A.4) leads to

∂ϵβk

∂Eβk

= 2NT
βk

[
Nβk

Eβk
(ΓαPαΣϕϕP

T
αΓT

α −Σηη)− Pβk
ΣϕϕP

T
αΓT

α

]
. (A.5)

The reconstructor meeting ∂ϵβk
/∂Eβk

= 0 is given as

Eβk
=(NT

βk
Nβk

)−1NT
βk
Pβk

ΣϕϕP
T
αΓT

α(ΓαPαΣϕϕP
T
αΓT

α −Σηη)
−1 (A.6)

=Fβk
Eϕ. (A.7)

This is the minimum variance reconstructor for MOAO, which compute the DM
commands to compensate the phase distortion in βk direction. The first matrix
Fβk

is a fitting matrix of a DM for βk direction, and the second matrix Eϕ

is a estimation matrix to reconstructs the phase distortion of the atmospheric
turbulence layers. The estimation matrix can be transformed as

Eϕ = (P T
αΓT

αΣ
−1
ηηΓαPα −Σ−1

ϕϕ)
−1P T

αΓT
αΣ

−1
ηη. (A.8)

A.2 The Scaling of Discrete Laplacian Matrix

In this section, we drive the scaling of discrete laplacian introduced in 2.1.3 based
on [20]. The phase covariance matrix of the turbulence layer indexed by i, Σϕϕ,i,
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Figure. A.1: The

is approximated by using the discrete laplacian Li as Eq. (2.14). In the approx-
imation, each row of the discrete laplacian indicates the local curvature of each
phase point on the turbulence layers, which is defined by surrounding four phase
points as the following stencil.

stencil(L̄i) =

 0 ω1 0

ω2 ω3 ω4

0 ω5 0

 . (A.9)

For the phase points which is not on the boundary, the weights are ω3 = −4 and
ω1 = ω2 = ω4 = ω5 = 1. These weights are different for the boundary phase points
as shown in Fig.A.1.

The scaling constant ci for the discrete Laplacian is determined to satisfy
⟨ϕT

i Σϕϕ,iϕi⟩ = ⟨ϕT
i L

T
i Liϕi⟩ = c2i ⟨ϕT

i L̄
T
i L̄iϕi⟩, where ϕi is a phase distortion

vector for ith turbulence layer. If the number of phase points on ith turbulence
layer is denoted by ni

layer, the right term can be computed as ⟨ϕT
i Σϕϕ,iϕi⟩ = ni

layer.
Therefore, the scale constant is given by

c2i =
ni

layer

⟨ϕT
i L̄

T
i L̄iϕi⟩

. (A.10)

Denoting kth row vector of L̄i by {l̄i}k, we have

⟨ϕT
i L̄

T
i L̄iϕi⟩ =

ni
layer∑
k=1

⟨(
ϕT{l̄i}k

)2⟩ (A.11)

Since each row vector of the discrete Laplacian contains no more than 5 non-zero
element, which defined by the stencil,

⟨(
ϕT{l̄i}k

)2⟩ for non-boundary phase point
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is computed as

⟨(
ϕT{l̄i}k

)2⟩
=

⟨(
5∑

j=1

ϕjωj

)2⟩

=− 1

2

5∑
j,j′=1

ωjωj′
⟨
(ϕj − ϕj′)

2
⟩

=− 1

2

5∑
j,j′=1

ωjωj′Dϕ(ξj,j′) (A.12)

where Dϕ is a phase structure function from Eq.(1.7) for the Kolmogorov model
or Eq. (1.14) for the von Karman model and xii,j′ is a spatial separation between
phase point j and j′. Then,

⟨(
ϕT{l̄i}k

)2⟩ for the boundary phase points can be
computed similarly. Finally, the scale constant ci can be obtained by combining
Eq.(A.10), Eq. (A.11), and Eq.(A.12).
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