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Abstract 
 
 
 

Lunar surface topography and subsurface structure are important for understanding the geological 

condition of the lunar surface layer and thermal evolution of the Moon [e.g., Solomon and Head, 1980; 

Namiki et al., 2006; Ishiyama et al., 2013]. In order to investigate lunar subsurface structures, we 

performed analyses of datasets obtained by the Lunar Radar Sounder (LRS) onboard the SELENE 

spacecraft, which radiated the electromagnetic pulse in a frequency range of 4–6 MHz from the 

spacecraft at an altitude of ~100 km. The depth of subsurface reflector in the maria can be obtained from 

the time delay between arrivals of echoes from the surface and subsurface reflectors found in the LRS 

radargram. Using the LRS radargram, we focused on (1) the geological condition (i.e., bulk density and 

porosity) of lunar uppermost basalt layer, and (2) subsurface deflection structures in the nearside maria.  

In Chapter 3, the geological condition of the lunar uppermost basalt layer to depth of a few hundred 

meters was investigated through the estimation of the bulk permittivity by using the SELENE/LRS, MI, 

and TC data [Ishiyama et al., 2013; 2014]. The estimated bulk permittivities of uppermost basalt layer 

were 1.9–7.0 in Unit S15 of Mare Serenitatis, 1.6–14.0 in Unit S28 of Mare Serenitatis, and 1.3–5.1 in 

Unit P10 of Oceanus Procellarum. Since the bulk permittivity of rock depended on its bulk density 

[Carrier et al., 1991], we could obtain the porosity from the estimated bulk permittivity. The estimated 

bulk densities of uppermost basalt layer were 1.0–3.0 g/cm3 in Unit S15 of Mare Serenitatis, 0.7–4.0 

g/cm3 in Unit S28 of Mare Serenitatis, and 0.4–2.5 g/cm3 in Unit P10 of Oceanus Procellarum. The grain 

(i.e., pore-free) densities of uppermost basalt layer were estimated to be ~3.3 g/cm3 in Unit S15 and S28 

of Mare Serenitatis and ~3.2 g/cm3 in Unit P10 of Oceanus Procellarum from the TiO2 and FeO 

abundance derived from the MI data. Based on the ratio of the bulk density and grain density, the 

estimated porosities were 9%–71% in Unit S15 of Mare Serenitatis, 0%–78% in Unit S28 of Mare 

Serenitatis, and 21%–86% in Unit P10 of Oceanus Procellarum. These results were consistent with the 

results of Ishiyama et al. [2013]. We found the common bulk permittivity range was 4.2–5.1, which 

satisfy the all estimated range of bulk permittivity reported in Ishiyama et al. [2013] and this study 

[Ishiyama et al., 2014]. This value was smaller than the bulk permittivity used in several previous studies 

(~8) [e.g., Peeples et al., 1978; Oshigami et al., 2009]. In addition, the estimated porosity was 21%–33%, 

which was higher than typical porosity of Apollo basalt sample (~7%) [Kiefer et al., 2012]. This high 

porosity results mainly from the impact-induced cracks. The voids in the lunar uppermost layers behave 



as an insulator. This result will provide some constrains on the thermal conductivity of lunar surface in 

the discussions on cooling process in lunar mare region. 

On the other hand, based on an effective medium theory, we must consider that the anisotropy of 

crack in rock with respect to the electric field of the radar pulse can change the measured permittivity 

even if their bulk densities are the same [e.g., Kärkkäinen et al., 2000]. In Chapter 4, in order to (1) 

understand the bulk permittivity of the mare basalt layer affected by the macro cracks produced by 

meteorite impacts and (2) verify the validity of the estimation method of porosity and bulk density from 

permittivity measured in radar observation, we performed an impact experiment by using the two-stage 

light-gas (hydrogen) gun at JAXA, and derived the volume fraction of crack, bulk density, bulk 

permittivity, and loss tangent around two artificial impact craters produced by the projectiles with 

velocities of 3.586 km/s and 5.638 km/s. The measured volume fraction of crack decreased with increase 

of the distance from the crater’s center, and showed clear inverse correlation with bulk density, bulk 

permittivity, and loss tangent. In addition, the volume fraction of crack increased with increase of 

projectile's velocity. As a result, the measured bulk permittivity and loss tangent decreased with increase 

of projectile's velocity. The measured bulk permittivity and loss tangent were also affected by the 

characteristic crack distribution (i.e., a concentric crack area and radial crack area) around two artificial 

impact craters. Based on the effective medium approximation theory, we could understand the measured 

permittivity as a result of the anisotropy of crack around impact crater; the cracks of perpendicular and 

parallel directions to the impressed electric field were produced within the concentric crack area, and the 

cracks of isotropic direction to the impressed electric field was mainly produced outside of the concentric 

crack area. The anisotropy of crack around impact crater makes it difficult to derive bulk density from 

the measured bulk permittivity, but this anisotropic crack effect was small. Thus, we could confirm that 

the estimation method of porosity and bulk density from permittivity measured in radar observation 

proposed by Ishiyama et al. [2013] was valid. In addition, we tried identification of anisotropic cracks in 

the LRS data, but we have not found them yet. It suggests that the crack around the actual impact crater 

is more complex than the models used in this study. A further investigation with the Finite-Difference 

Time-Domain (FDTD) method will be needed in future.  

In Chapter 5, we have shown a new evidence of lunar mare deflection derived from basalt loading 

through statistical analysis of the slope angle of subsurface lava flow unit boundaries in five maria based 

on the LRS data. We identified subsurface boundary larger than lunar surface slope angle. The subsurface 

slope angle decreased with time, and we could identify a sudden decrease in slope angle at ~3.5 ± 0.1 Ga. 

The sudden decrease in slope angle at ~3.5 Ga was caused by the sudden decrease in lunar lava eruptive 

flux at ~3.3–3.6 Ga [Weider et al., 2010; Oshigami et al., 2014] without a sudden increase in lithospheric 



thickness. Based on a simple loading model, the large slope angle group can be explained by a large 

deflection of lithosphere due to thick basalt loading. In addition, the radial distribution of observed 

subsurface slope angle suggested that the basin-floor of Mare Imbrium were not similar with that of Mare 

Orientale used in the previous models. We finally pointed out that disappearance of the melt pool at the 

bottom of lithosphere can be a possible cause of sudden decreases of lava flow eruption flux and 

subsurface slope angle at ~3.5 ± 0.1 Ga. This melt pool is formed by a pressure reduction due to the 

excavation of lunar crust at basin formation [Melosh et al., 2013; Freed et al., 2014]. If the lithospheric 

thickness was enough thin, the melt pool kept providing magma to the lunar surface by buoyancy 

[Wieczorek et al., 2001]. But, the melt pool became unable to provide magma to lunar surface when the 

lithospheric thickness gradually increased through cooling process and reached a critical thickness. 

Therefore, the lunar loading-induced deflection becomes smaller steeply with time. As in the above 

discussion, the discovery of lunar loading-induced deflection structure would be provide some new 

constraints in discussion on tectonic processes in the maria and lunar thermal evolution. 


