
Girsanov transformation of symmetric Markov
processes and its applications

著者 MIURA  YUSUKE
学位授与機関 Tohoku University
学位授与番号 11301甲第16718号
URL http://hdl.handle.net/10097/64116



博 士 論 文

Girsanov transformation of symmetric
Markov processes and its applications

(対称マルコフ過程のギルサノフ変換とその応用)

三浦 佑介

平成 27年



Girsanov transformation of symmetric
Markov processes and its applications

A thesis presented
by

Yusuke Miura

to
The Mathematical Institute

for the degree of
Doctor of Science

Tohoku University
Sendai, Japan

March 2016



i

Acknowledgments

First I would like to express my gratitude to Professor Masayoshi Takeda for his helpful
advice and warm encouragement. He also had a discussion with me at a seminar. Without
his help, this thesis would not have been possible.

I want to thank Professor Shigeki Aida for his generous support. I am deeply grateful
to Professor Yuu Hariya for his constructive comments.

I would particularly like to thank Professors Yasuhito Nishimori and Nobuaki Na-
ganuma for their encouragement and support.

I would like to show my appreciation to all the members of Probability Seminar in
Tohoku University.

Special thanks to my parents for watching over me with care.



ii

Contents

1 Introduction 1

2 Preliminaries 4
2.1 CAF’s locally of zero energy . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Girsanov transformations 16
3.1 Girsanov’s transformed processes . . . . . . . . . . . . . . . . . . . . . 16
3.2 Non-attainability to zero sets . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Hardy-type inequalities 34
4.1 Schrödinger forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Hardy-type inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Existence of excessive functions . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 The case λ(µ) > 1 . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 The case λ(µ) = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Hardy’s inequalities for Green-tight measures . . . . . . . . . . . . . . . 52
4.4.1 The case λ(µ) = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.2 The case λ(µ) > 1 . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Quasi-stationary distributions 56
5.1 Quasi-stationary distributions . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 QSD’s of one-dimensional diffusion processes . . . . . . . . . . . . . . . 59



1

Chapter 1

Introduction

In this paper, we study Girsanov transformations of symmetric Markov processes.
Let {Bt}t≥0 be the Brownian motion in Rd. We consider a transformation of {Bt} by

the multiplicative functional

Lρ
t = exp

(∫ t

0

∇ρ
ρ

(Bs) · dBs −
1

2

∫ t

0

∣∣∣∣∇ρρ
∣∣∣∣2(Bs) ds

)
.

Here ρ is a nonnegative function in the 1-order Sobolev space. This transformation is
called a Girsanov transformation. It is known that the transformed process is a symmetric
diffusion process in Rd with generator, 1

2
∆+ ∇ρ

ρ
· ∇. When ρ decreases to 0 near infinity,

the drift ∇ρ
ρ

forces the transformed process to move back inward. Thus, it is expected
that the new process hardly approaches to the infinity and the zero set of ρ. Indeed, the
non-attainability to the set {ρ(x) = 0} and the recurrence of the transformed process are
shown in [31, 34]. We treat transformations of general symmetric Markov processes by
multiplicative functionals of this type and investigate properties of transformed processes.

LetE be a locally compact separable metric space andm a positive Radon measure on
E with full topological support. Let M = (Xt,Px) be an m-symmetric Hunt process on
E. (E ,D(E)) denotes the regular Dirichlet form on L2(E;m) generated by M. Let ρ be a
nonnegative function belonging to the space Ḋ†

loc(E) (for the definition of Ḋ†
loc(E), see the

next chapter). It is shown in [25, 26] that ρ(Xt) − ρ(X0) has the following Fukushima’s
decomposition:

ρ(Xt)− ρ(X0) =M
[u]
t +N

[u]
t ,

where M [u] is a local martingale additive functional locally of finite energy and N [u] is
a continuous additive functional locally of zero energy. Let Lρ

t be the solution to the
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following stochastic differential equation:

Lρ
t = 1 +

∫ t

0

Lρ
s−

1

ρ(Xs−)
dM [ρ]

s .

Then Lρ
t is a positive supermartingale multiplicative functional and defines a family of

probability measures {P̃x} by dP̃x := Lρ
tdPx. It is known that under new measures {P̃x},

Xt is a symmetric right Markov process on {ρ(x) > 0}. We denote this transformed
process by M̃ρ.

Girsanov transformations of symmetric Markov processes have been considered by
many authors (for example, see [6, 8, 13, 18, 22, 31, 34]). It is shown in [18, §6.3] that
if (E ,D(E)) is a strong local Dirichlet form and ρ has a finite energy measure, then the
process M̃ρ is also conservative and never attains to the set {ρ(x) = 0 or ρ(x) = ∞}.
We prove that the same result holds without assuming the local property (Theorem 3.12).
Note that M̃ρ is conservative if and only if the exponential martingale Lρ

t is a martingale.
Novikov’s condition is well known as a sufficient condition for an exponential martingale
to be a martingale. However, we cannot apply Novikov’s condition whenM has jumps. We
overcome this problem by checking the criterion for uniform integrability of exponential
martingales due to Chen [4]. For more general symmetric Markov processes, Chen et
al. [6] showed that M̃ρ is recurrent for all positive ρ ∈ D(E). Using ideas from [6], we
extend this result to an element ρ of the extended Dirichlet space De(E) (Theorem 3.9).

Let M be a transient Markov process with strong Feller property. As an application of
Girsanov transformation, we consider Hardy’s inequality:∫

E

u2dµ ≤ E(u, u), for all u ∈ D(E), (1.1)

where µ is a Green-tight measure (see Definition 4.1). Let λ(µ) be the bottom of the
spectrum of the time changed process ofM byAµ

t , a positive continuous additive functional
whose Revuz measure is µ:

λ(µ) = inf

{
E(u, u)

∣∣∣u ∈ D(E),
∫
E

u2dµ = 1

}
.

If λ(µ) > 1, then the gauge function E·
[
exp(Aµ

ζ )
]

is bounded ([3, Theorem 5.1]). If
λ(µ) = 1, then the ground state of the operator L + µ exists in the extended Dirichlet
space De(E), where L is the generator of M ([39]). Assume λ(µ) > 1 (resp. λ(µ) = 1)
and let ρ be the gauge function (resp. ground state). Then ρ is in Ḋ†

loc(E), and thus the
Girsanov transformed process M̃ρ by Lρ

t can be defined. Then by using Itô’s formula, Lρ
t
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can be expressed by

Lρ
t =

ρ(Xt)

ρ(X0)
exp

(
Aµ

t

)
.

This expression tells us that the Girsanov transformed process M̃ρ coincides with the
process generated by the composition of Doob’s h-transform and the Feynman-Kac mul-
tiplicative functional eA

µ
t . As a corollary, we have the identity

E(u, u)−
∫
E

u2dµ = Ẽρ

(
u

ρ
,
u

ρ

)
for all u ∈ D(E),

where Ẽρ is the Dirichlet form generated by the process M̃ρ. Applying the results above on
the Girsanov transformation, we can precisely express the right-hand side, which implies
an improvement of the inequality (1.1). Improvements of Hardy-type inequalities are
studied by many authors with analytical methods (for example, see [15, 16, 27]). We think
that our probabilistic method gives an interpretation to Hardy’s inequalities.

A probability measure µ on E is said to be a quasi-stationary distribution of M if for
all t ≥ 0,

µ(·) = Pµ(Xt ∈ · | t < ζ),

where Pµ denotes the probability of the process with initial distribution µ and ζ is the life-
time of M. In [23], they prove that if a Markov semigroup is intrinsically ultracontractive,
then a measure ν on E defined by

ν(B) =

∫
B
ρ dm∫

E
ρ dm

is a unique quasi-stationary distribution. Here ρ is a ground state of (E ,D(E)). We will
give another proof of this fact by applying Fukushima’s ergodic theorem to the Girsanov
transformed process M̃ρ (Corollary 5.5).
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Chapter 2

Preliminaries

Let E be a locally compact separable metric space and m a positive Radon measure
with full topological support on E. Let M = (Ω,Ft, θt, Xt,Px) be an m-symmetric
Hunt process with a state space E. Here {Ft}t≥0 is the minimal (augmented) admissible
filtration and θt, t ≥ 0 is the shift operator satisfying Xs(θt) = Xs+t identically for
s, t ≥ 0. Let ∂ be a one point added to E so that E∂ := E ∪ {∂} is the one point
compactification of E. The point ∂ also serves as the cemetery point for M, that is,
ζ := inf{t ≥ 0 : Xt = ∂} is the lifetime of M. For each measure µ onE, we denote by Pµ

(resp., Eµ) the probability (resp., the expectation) of the process with initial distribution
µ. For any x ∈ E, we simply write Px and Ex for Pδx and Eδx . We define the semigroup
{Pt}t≥0 by

Ptf(x) = Ex[f(Xt); t < ζ], f ∈ Bb(E),

where Bb(E) is the space of bounded Borel functions on E. By the right continuity of
paths of M, {Pt}t>0 can be extended to an L2(E;m)-strongly continuous semigroup ([18,
Lemma 1.4.3]). Let (E ,D(E)) be the Dirichlet form on L2(E;m) generated by M:

D(E) =
{
u ∈ L2(E;m)

∣∣∣ lim
t↓0

1

t
(u− Ptu, u)m <∞

}
,

E(u, v) = lim
t↓0

1

t
(u− Ptu, v)m, u, v ∈ D(E),

where (·, ·)m denotes the inner product on L2(E;m). For any β > 0, set

Eβ(u, v) := E(u, v) + β(u, v)m, u, v ∈ D(E).

Then D(E) becomes a Hilbert space with inner product Eβ for any β > 0.
For a closed subset F of E, we define

D(E)F := {u ∈ D(E) | u = 0 m-a.e. on E \ F}.
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An increasing sequence {Fn}n≥1 of closed sets ofE is said to be an E-nest if
∪

n≥1D(E)Fn

is E1-dense in D(E). A subset N of E is said to be E-exceptional if there is an E-nest
{Fn}n≥1 such that N ⊂

∩
n≥1(E \ Fn). A statement depending on x ∈ E is said to hold

E-quasi-everywhere (E-q.e. in abbreviation) on E if there exists an E-exceptional set N
such that the statement is true for every x ∈ E \ N . A function u is said to be E-quasi-
continuous if there exists an E-nest {Fn}n≥1 such that u|Fn is finite and continuous on
Fn for each n: we denote this situation briefly by writing u ∈ C({Fn}). When we deal
with a fixed Dirichlet form (E ,D(E)), for convenience we drop “E-” from the terminology
“E-q.e.” and “E-quasi-continuous” and will simply call them q.e. and quasi-continuous,
respectively.

Let De(E) be the family of m-measurable functions u on E such that |u| <∞ m-a.e.
and there exists an E-Cauchy sequence {un} of D(E) such that limn→∞ un = u m-a.e. We
call {un} an approximating sequence for u ∈ De(E). For u, v ∈ De(E) and approximating
sequences {un}, {vn}, the limit E(u, v) = limn→∞ E(un, vn) exists and does not depend
on the choices of the approximating sequences for u, v. We call De(E) the extended
Dirichlet space of (E ,D(E)). For u, v ∈ De(E), the following Beurling-Deny formula
holds:

E(u, v) = E (c)(u, v) +

∫
E×E\d

(ũ(x)− ũ(y))(ṽ(x)− ṽ(y))J(dx, dy)

+

∫
E

ũ(x)ṽ(x)κ(dx).

(2.1)

Here ũ denotes a quasi-continuous m-version of u, that is, u = ũ m-a.e. Here E (c) is a
symmetric form possessing the strong local property, i.e., E (c)(u, v) = 0 whenever u has a
compact support and v is constant on a neighborhood of supp[u]. J is a symmetric Radon
measure on E ×E \ d, where d denotes the diagonal set, and κ is a Radon measure on E
(see [18, Theorem 4.5.2]). J and κ are called the jumping measure and the killing measure
of M, respectively. We define the family Θ of finely open sets by

Θ =
{
{Gn} |Gn is finely open for all n, Gn ⊂ Gn+1,

∪∞
n=1Gn = E q.e.

}
(the definition of a finely open set can be found in [18]). A function u on E is said to be
locally in D(E) in the broad sense (u ∈ Ḋloc(E) in notation) if there exist {Gn} ∈ Θ and
{un} ⊂ D(E) such that u = un m-a.e. onGn for each n ∈ N. It is shown in [24, Theorem
4.1] that De(E) ⊂ Ḋloc(E) and u ∈ Ḋloc(E) admits a quasi-continuous m-version ũ. In
the sequel, we always take a quasi-continuous m-version for every element of Ḋloc(E).

A positive Borel measure µ on E is said to be smooth if it satisfies the following two
conditions:
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(i) µ charges no E-exceptional set,

(ii) there exists an E-nest {Fn} such that µ(Fn) <∞ for each n.

A stochastic process A = {At}t≥0 is said to be an additive functional (AF in abbrevi-
ation) if it satisfies the following conditions:

(i) At(·) is Ft-measurable for all t ≥ 0,

(ii) there exists a set Λ ∈ F∞ = σ
(∪

t≥0 Ft

)
such that Px(Λ) = 1 for q.e. x ∈ E,

θtΛ ⊂ Λ for all t > 0, and for each ω ∈ Λ, A·(ω) is a function satisfying:
A0(ω) = 0, At(ω) <∞ for t < ζ(ω), At(ω) = Aζ(ω) for t ≥ ζ(ω), andAt+s(ω) =

At(ω) + As(θtω) for s, t ≥ 0.

An AFA is said to be a continuous additive functional (CAF in abbreviation) if t 7→ At(ω)

is continuous on [0,∞[ for each ω ∈ Λ. A [0,∞[-valued CAF is called a positive
continuous additive functional (PCAF in abbreviation). We call A an AF on [[0, ζ[[ if A
is {Ft}-adapted and satisfies (i) and the property (ii)′ in which (ii) is modified so that
additivity condition is required only for t + s < ζ . From [5, Remark 2.2], any PCAF A
on [[0, ζ[[ can be extended to a PCAF by setting

At(ω) :=

lim
s↑ζ

As(ω), if t ≥ ζ(ω) > 0,

0, if t ≥ ζ(ω) = 0.

The family of all smooth measures and the set of all PCAF’s are in one-to-one
correspondence as follows: for each smooth measure µ, there exists a unique PCAF
A = {At}t≥0 such that for any nonnegative Borel function f and γ-excessive function h
(γ ≥ 0), that is, e−γtPth ≤ h,

lim
t↓0

1

t
Ehm

[∫ t

0

f(Xs)dAs

]
=

∫
E

f(x)h(x)µ(dx) (2.2)

([18, Thorem 5.1.4]). Here Ehm[ · ] =
∫
E
Ex[ · ]h(x)m(dx). We say that a smooth measure

µ and an AF A are in the Revuz correspondence if they satisfy the relation (2.2). In this
case, µ is called the Revuz measure of A and denoted by µA.

Let (N,H) = (N(x, dy), Ht) be a Lévy system for M; that is, N(x, dy) is a kernel on
(E∂,B(E∂)) with N(x, {x}) = 0 and H is a PCAF of M such that for any nonnegative
Borel function f on E∂ × E∂ vanishing on the diagonal and for any x ∈ E∂ ,

Ex

[∑
s≤t

f(Xs−, Xs)

]
= Ex

[∫ t

0

∫
E∂

f(Xs, y)N(Xs, dy)dHs

]
.
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Let µH be the Revuz measure of the PCAF H . Then the jumping measure J and the
killing measure κ of M are given by

J(dx, dy) =
1

2
N(x, dy)µH(dx) and κ(dx) = N(x, {∂})µH(dx). (2.3)

For an AF A, the energy of A is defined by

e(A) := lim
t↓0

1

2t
Em

[
A2

t

]
if the limit exists. We then define

M :=

{
M = {Mt}t≥0

∣∣∣∣∣ M is a finite AF, Ex[M
2
t ] <∞, Ex[Mt] = 0

for q.e. x ∈ E and all t ≥ 0,

}
,

M̊ := {M ∈ M| e(M) <∞},

Nc :=

{
N = {Nt}t≥0

∣∣∣∣∣ N is a CAF, Ex

[
|Nt|

]
<∞ q.e. x ∈ E

for each t ≥ 0, and e(N) = 0

}
.

An element of M̊ is called a martingale additive functional (MAF in abbreviation) of
finite energy and an element of Nc is called a continuous additive functional (CAF in
abbreviation) of zero energy. For M ∈ M, there exists a unique PCAF ⟨M⟩ such that
M2 − ⟨M⟩ is an MAF. ⟨M⟩ is called the sharp bracket of M . Let M c be the continuous
part of M ∈ M and define the square bracket [M ] by

[M ]t := ⟨M c⟩t +
∑
s≤t

∆M2
s ,

where ∆Ms :=Ms −Ms−. Then [M ]p = ⟨M⟩. Here for an AF A of integrable variation,
Ap denotes the dual predictable projection ofA so thatA−Ap is an MAF (see [18, section
A.3.3]). For L,M ∈ M, we put

⟨L,M⟩ := 1

2

(
⟨L,M⟩ − ⟨L⟩ − ⟨M⟩

)
,

[L,M ] :=
1

2

(
[L,M ]− [L]− [M ]

)
.

We set

M̊loc :=

{
{Mt}t≥0

∣∣∣∣∣ there exist {Gn} ∈ Θ and {M (n)} ⊂ M̊ such that
Mt =M

(n)
t for all t < τGn and n ∈ N, Px-a.s. q.e. x

}
.
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Here τGn := inf{t > 0 : Xt ̸∈ Gn} and limn→∞ τGn = ζ Px-a.s. for q.e. x ∈ E by [18,
Lemma 5.5.2]. The space Nc,loc is defined similarly. An element of M̊loc is called an MAF
locally of finite energy and an element of Nc,loc is called a CAF locally of zero energy. For
every M ∈ M̊loc, its sharp bracket process ⟨M⟩ can be defined to be a PCAF by setting

⟨M⟩t :=

⟨M (n)⟩t, if t < τGn ,

lim
s↑ζ

⟨M⟩s, if t ≥ ζ

([5, Proposition 2.8]).
We introduce the subclass Ḋ†

loc(E) of Ḋloc(E) as follows:

Ḋ†
loc(E) :=

{
u ∈ Ḋloc(E)

∣∣∣∣ ∫
y∈E

(u(y)− u(x))2J(dx, dy) is a smooth measure
}
.

By [5, Remark 3.9], we see De(E) ∪
(
Ḋloc(E)

)
b
⊂ Ḋ†

loc(E). Here
(
Ḋloc(E)

)
b
:= {u ∈

Ḋloc(E) | u is bounded}.

Remark 2.1. For any u ∈ Ḋ†
loc(E), there exists an E-nest {Fn} of compact sets such that

u ∈ C({Fn}) and ∫
Fn×E

(u(x)− u(y))2J(dx, dy) <∞ (2.4)

for each n. Then we can define E(u, v) by

E(u, v) = E (c)(u, v) +

∫
E×E\d

(u(x)− u(y))(v(x)− v(y))J(dx, dy)

+

∫
E

(
u(x)− u(∂)

)
v(x)κ(dx)

for any v ∈
∪

n≥1 D(E)Fn , To see this, we have only to check the jumping part is finite,
that is, ∫

E×E

(u(x)− u(y))(v(x)− v(y))J(dx, dy) <∞.

For v ∈ D(E)Fn , the left-hand side is decomposed as∫
Fn×E

(u(x)− u(y))(v(x)− v(y))J(dx, dy)

+

∫
Fn×F c

n

(u(x)− u(y))(v(x)− v(y))J(dx, dy).

By Schwarz’s inequality and (2.4), the integrals are finite.
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We see from [18, Theorem 5.2.2] and [26, Theorem 1.2] that for u ∈ De(E) (resp.
u ∈ Ḋ†

loc(E)), the additive functional u(Xt) − u(X0) admits the following Fukushima
decomposition:

u(Xt)− u(X0) =M
[u]
t +N

[u]
t , for t ∈ [0,∞[ (resp. t ∈ [0, ζ[ ), (2.5)

where M [u] ∈ M̊ and N [u] ∈ Nc (resp. M [u] ∈ M̊loc and N [u] ∈ Nc,loc). Moreover, for
u ∈ De(E) ( or u ∈ Ḋ†

loc(E)), M [u] can be decomposed as

M [u] =M [u],c +M [u],j +M [u],k,

whereM [u],c,M [u],j andM [u],k are the continuous, jumping and killing parts of martingale
M [u]. M [u],j and M [u],k are defined by

M
[u],j
t = lim

ε↓0

{∑
0<s≤t

(u(Xs)− u(Xs−))1l{|u(Xs)−u(Xs−)|>ε}1l{s<ζ}

−
∫ t

0

(∫
{y∈E : |u(y)−u(Xs)|>ε}

(u(y)− u(Xs))N(Xs, dy)

)
dHs

}
,

M
[u],k
t =

∫ t

0

u(Xs)N(Xs, {∂})dHs − u(Xζ−)1l{t≥ζ}.

Let µ⟨u⟩, µ
c
⟨u⟩, µ

j
⟨u⟩ and µk

⟨u⟩ be the smooth Revuz measures associated with the PCAF’s
⟨M [u]⟩, ⟨M [u],c⟩, ⟨M [u],j⟩ and ⟨M [u],k⟩, respectively. Then

µ⟨u⟩ = µc
⟨u⟩ + µj

⟨u⟩ + µk
⟨u⟩

and

µj
⟨u⟩(dx) = 2

∫
y∈E

(u(x)− u(y))2J(dx, dy), and µk
⟨u⟩(dx) = u(x)2κ(dx). (2.6)

For t > 0, let rt denote the time-reversal operator on the path space Ω as follows: for
ω ∈ {t < ζ},

rt(w)(s) :=

{
ω ((t− s)−) , if 0 ≤ s < t,

ω(0), if s ≥ t.

Here ω(r−) := lims↑r ω(s) for r > 0. The symmetry of M implies that the restriction of
the measure Pm to Ft is invariant under rt on Ω ∩ {t < ζ}, that is, for every nonnegative
random valuable ξ ∈ Ft,

Em[ ξ ; t < ζ] = Em[ ξ ◦ rt ; t < ζ]. (2.7)
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An additive functional At is said to be even if At ◦ rt = At Pm-a.s. on {t < ζ} for each
t > 0. From [12], CAFs of bounded variation (or of zero energy) are even (although it was
proved in [12] for symmetric diffusion processes, the proof works for general symmetric
Markov processes).

For u ∈ Ḋ†
loc(E), u(Xt)− u(X0) has Fukushima’s decomposition:

u(Xt)− u(X0) =M
[u]
t +N

[u]
t , t ∈ [0, ζ[.

By the definition of Ḋloc(E), there exist {Gn} ∈ Θ and {un} ⊂ D(E) such that u = un
m-a.e. on Gn for each n ∈ N. Then we have for t ∈ [0, τGn [,

u(Xt)− u(X0) = un(Xt)− un(X0) =M
[un]
t +N

[un]
t

Px-a.s. for q.e. x ∈ E. By the uniqueness of the decomposition,

M
[u]
t =M

[un]
t and N

[u]
t = N

[un]
t , t < τGn , Px-a.s. for q.e. x ∈ E.

Hence, by the calculation similar to that in the proof of [18, Theorem 5.7.1], we can show
that

Lemma 2.2. For any u ∈ Ḋ†
loc(E) and T > 0, Pm-a.s. on {T < ζ}

N
[u]
t (rT ) = N

[u]
T −N

[u]
T−t for t ∈ [0, T ].

In particular, N [u] is even.

2.1 CAF’s locally of zero energy
An AF {At}t≥0 is said to be of bounded variation if At can be expressed as a difference
of two PCAF’s:

At = A
(1)
t − A

(2)
t , t < ζ.

A sufficient condition for N [u]
t in (2.5) being of bounded variation is given in [18, §5].

Our first aim in this section is to extend it and this result is used in Chapter 4.
We say that a function u is locally inD(E) (u ∈ Dloc(E) in notation) if for any relatively

compact open set D ⊂ E, there exists a function v ∈ D(E) such that u = v m-a.e. on D.
For u ∈ Dloc(E) and a Borel set B, define

µj
⟨u⟩(B) :=

∫
B×E

(u(x)− u(y))2J(dx, dy).
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Note that µj
⟨u⟩ is not necessarily a Radon measure. We introduce a subclass D†

loc(E) of
Dloc(E):

D†
loc(E) := {u ∈ Dloc(E) |µj

⟨u⟩ is a Radon measure on E}.

It is noted in [25] thatD(E)∪
(
Dloc(E)

)
b
⊂ D†

loc(E), where
(
Dloc(E)

)
b
= Dloc(E)∩Bb(E).

For u ∈ D†
loc(E) and φ ∈ D(E) with compact support ,

E(u, φ) = 1

2

∫
E

dµc
⟨u,φ⟩ +

∫
E×E

(u(x)− u(y))(φ(x)− φ(y))J(dx, dy) +

∫
E

uφdκ

is well-defined ([14, Theorem 3.5]).
Recall that for a closed subset F of E, D(E)F is the space defined by

D(E)F = {u ∈ D(E) | u = 0 q.e. on E \ F}.

The spaces De(E)F and Db(E)F are defined similarly, where Db(E) is the set of bounded
functions in D(E). For f ∈ Bb(E) and a Borel set A ⊂ E, define

HAf(x) := Ex[f(XσA
) ; σA <∞].

Lemma 2.3. Let u ∈ D†
loc(E) and F a compact set. It holds that

(i) u−HF cu ∈ De(E)F and

E(u−HF cu, u−HF cu) ≤ 1

2
µc
⟨u⟩(F ) +

∫
F×F

(u(x)− u(y))2J(dx, dy)

+ 2

∫
F×F c

(u(x)− u(y))2J(dx, dy) +

∫
F

u2 dκ.

(2.8)

(ii) HF cu ∈ Ḋ†
loc(E) and E(HF cu, v) = 0 for any v ∈ Db(E)F .

Proof. The proof is similar to that of [7, Lemma 6.2.10]. Note that HF cu = u q.e. on
E \ F .

First suppose that u ∈ De(E). Then by [18, Lemma 4.6.5], HF cu ∈ De(E) and
E(HF cu, v) = 0 for all v ∈ De(E)F . Hence,

E(u−HF cu, u−HF cu) = E(u, u)− E(HF cu,HF cu).

Since

E(HF cu,HF cu) ≥ 1

2
µc
⟨HFcu⟩(F

c) +

∫
F c×F c

(
HF cu(x)−HF cu(y)

)2
J(dx, dy)

+

∫
F c

(
HF cu

)2
dκ

=
1

2
µc
⟨u⟩(F

c) +

∫
F c×F c

(u(x)− u(y))2J(dx, dy) +

∫
F c

u2 dκ,
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we have (2.8).
Suppose next that u ∈

(
Dloc(E)

)
b
= Dloc(E) ∩Bb(E). Take an increasing sequence

of relatively compact open sets {Dk} with
∪∞

k=1Dk = E and F ⊂ Dk for each k. Then
there exists {gk} ∈ D(E) such that u = gk q.e. on Dk. We may assume |gk(x)| ≤ ∥u∥∞.
By applying (2.8) to gk, we have

E(gk −HF cgk, gk −HF cgk) ≤
1

2
µc
⟨gk⟩(F ) +

∫
F×F

(gk(x)− gk(y))
2J(dx, dy)

+ 2

∫
F×F c

(gk(x)− gk(y))
2J(dx, dy) +

∫
F

g2k dκ

=
1

2
µc
⟨u⟩(F ) +

∫
F×F

(u(x)− u(y))2J(dx, dy)

+ 2

∫
F×(F c∩D1)

(u(x)− u(y))2J(dx, dy)

+ 2

∫
F×(F c∩Dc

1)

(u(x)− gk(y))
2J(dx, dy) +

∫
F

u2 dκ.

Since J(F ×Dc
1) <∞,∫

F×(F c∩Dc
1)

(u(x)− gk(y))
2J(dx, dy) →

∫
F×(F c∩Dc

1)

(u(x)− u(y))2J(dx, dy)

as k → ∞ by the dominated convergence theorem. Therefore we have

lim sup
k→∞

E(gk −HF cgk, gk −HF cgk) ≤
1

2
µc
⟨u⟩(F ) +

∫
F×F

(u(x)− u(y))2J(dx, dy)

+ 2

∫
F×F c

(u(x)− u(y))2J(dx, dy) +

∫
F

u2 dκ.

Since the right-hand side is finite, we see from the Banach-Saks theorem ([7, Theorem
A.4.1]) that there exists a subsequence {gkj}j≥1 such thatψj :=

1
j

∑j
ℓ=1

(
gkℓ−HF cgkℓ

)
is an

E-Cauchy sequence. Noting that ∥gk∥∞ ≤ ∥u∥∞ and gk → u q.e., we see ψj → u−HF cu

q.e. Hence u−HF cu belongs to De(E)F ∩Bb(E) = Db(E)F and satisfies the inequality
(2.8) because

E(u−HF cu, u−HF cu) = lim
j→∞

E(ψj, ψj) ≤ lim sup
k→∞

E(gk −HF cgk, gk −HF cgk).

We next show (ii). For the subsequence {gkj}j≥1 above, we put gj := 1
j

∑j
ℓ=1 gkℓ .

Then it holds that for v ∈ Db(E)F

0 = E(HF cgj, v) = E(gj, v)− E(ψj, v). (2.9)
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Since gj = u q.e. on D1 ⊃ F , we have

E(gj, v) =
1

2
µc
⟨f,u⟩(E) +

∫
F×F

(u(x)− u(y))(v(x)− v(y))J(dx, dy)

+ 2

∫
F×(F c∩D1)

(u(x)− u(y))(v(x)− v(y))J(dx, dy)

+ 2

∫
F×(F c∩Dc

1)

(u(x)− gj(y))(v(x)− v(y))J(dx, dy) +

∫
E

uv dκ.

Thus limj→∞ E(gj, v) = E(u, v) by the dominated convergence theorem. Therefore, by
letting j → ∞ in (2.9), we have

0 = E(u, v)− E(u−HF cu, v) = E(HF cu, v).

We finally treat the general case that u belongs to D†
loc(E). By considering a decom-

position u = (u∨0)− ((−u)∨0), we may assume that u is nonnegative. Put uk := u∧k.
Then uk is a normal contraction of u and HF cuk tends to HF cu as k → ∞ by the mono-
tone convergence theorem. Applying the result in the last paragraph to uk, we see that
uk −HF cuk ∈ Db(E)F and

E(uk −HF cuk, uk −HF cuk) ≤
1

2
µc
⟨u⟩(F ) +

∫
F×F

(u(x)− u(y))2J(dx, dy)

+ 2

∫
F×F c

(u(x)− u(y))2J(dx, dy) +

∫
F

u2 dκ.

Hence, by repeating the argument above, we can prove the lemma.

On account of Lemma 2.3, we see that for any u ∈ D†
loc(E) and compact set F ,

HF cu(Xt)−HF cu(X0) has Fukushima’s decomposition:

HF cu(Xt)−HF cu(X0) =M
[HFcu]
t +N

[HFcu]
t , t < ζ.

Lemma 2.4. Let F be a compact set. Then for any u ∈ D†
loc(E),

Px(N
[HFcu]
t = 0, t < τF ) = 1 q.e. x ∈ E.

Proof. This lemma can be shown by the argument similar to that in [7, Lemma 5.5.5].
(F c)r denotes the set of all regular points of F c. Since F c \ (F c)r is semi-polar by

[18, Theorem A.2.6], we can choose a properly exceptional set N ⊃ F c \ (F c)r by [18,
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Theorem 4.1.3, Theorem 4.1.1]. Then it follows thatXτF ∈ (F c)r ∪{∂} and τF ◦ θτF = 0

Px-a.s. for x ∈ E \N . Hence, by the strong Markov property,

HF cu(Xt∧τF ) = EXt∧τF
[u(XτF )] = Ex

[
u
(
XτF (θt∧τF

) ◦ θt∧τF
)
|Ft∧τF

]
= Ex [u(XτF )|Ft∧τF ] Px-a.s., x ∈ E \N,

namely, HF cu(Xt∧τF ) − HF cu(X0) is a martingale relative to {Ft∧τF }t≥0 under Px for
x ∈ E \N .

Let Ct := HF cu(Xt∧τF )−HF cu(X0)−M
[HFcu]
t∧τF . Then Ct = N

[HFcu]
t∧τF and {Ct}t≥0 is

a local martingale relative to {Ft∧τF }t≥0 under Px for q.e. x ∈ E. SinceHF cu ∈ Ḋ†
loc(E),

there exist a sequence {Gn} ∈ Θ and a sequence {vn} ⊂ D(E) such that HF cu = vn
q.e. on Gn. Then by the uniqueness of decomposition,

Px(Ct = N
[vn]
t , t < τF ∧ τGn) = 1, q.e. x ∈ E.

Since N [vn] has zero energy, we have for each fixed t > 0,

E1lF ·m [⟨C⟩t ; t < τF ∧ τGn ] = E1lF ·m

[
lim
k→∞

k∑
j=1

(
N

[vn]
jt/k −N

[vn]
(j−1)t/k

)2
; t < τF ∧ τGn

]

≤ lim
k→∞

Em

[
k∑

j=1

(
N

[vn]
jt/k −N

[vn]
(j−1)t/k

)2]
= 0.

Hence, by letting n → ∞, we see that ⟨C⟩t = 0 P1lF ·m-a.e. on {t < τF} for every t > 0.
Thus on {t < τF}, Ct = 0, namely, N [HFcu]

t = 0.

Theorem 2.5. Let ν = ν(1) − ν(2) be a difference of positive smooth measures on E. If
u ∈ D†

loc(E) satisfies

E(u, v) =
∫
E

v dν, for all v ∈
∞∪
k=1

Db(E)Fk
(2.10)

for an E-nest {Fk} of compact sets associated with ν, then

Px(N
[u] = −A(1) + A(2) on [0, ζ)) = 1 q.e. x ∈ E,

where A(i) is a PCAF with Revuz measure ν(i), i = 1, 2.

Proof. If u ∈ D†
loc(E) satisfies the equation (2.10), then for each k,

E(u−HF c
k
u, v) =

∫
E

v dν, for all v ∈ Db(E)Fk
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by Lemma 2.3 (ii). Note that u − HF c
k
u ∈ De(E)Fk

by Lemma 2.3 (i). By applying [18,
Lemma 5,4,4] and Lemma 2.4, we have

Px(N
[u]
t = −A(1)

t + A
(2)
t , t < τFk

) = 1, q.e. x ∈ E.

Therefore, we have the assertion by letting k → ∞.

By the same argument as in the proof of [18, Corollary 5.4.1], we have the next
corollary.

Corollary 2.6. Let ν = ν(1) − ν(2) be a difference of positive smooth measures on E.
Suppose u ∈ D†

loc(E) satisfies

E(u, v) =
∫
E

v dν for all v ∈ D(E) ∩ C0(E),

where C0(E) := {u ∈ C(E) | supp[u] is compact}. Then

Px(N
[u] = −A(1) + A(2) on [0, ζ)) = 1 q.e. x ∈ E,

where A(i) is a PCAF with Revuz measure ν(i), i = 1, 2.
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Chapter 3

Girsanov transformations

3.1 Girsanov’s transformed processes
An increasing sequence {Fn} of closed sets of E is said to be a strict E-nest if

lim
n→∞

Cap1,G1φ
(E \ Fn) = 0,

where Cap1,G1φ
is the weighted capacity defined in [28, Chapter V, Definition 2.1] and a

family {Fn} of closed sets is a strict E-nest if and only if

Px( lim
n→∞

σE\Fn <∞) = 0 q.e. x ∈ E

in view of [28, Chapter V, Proposition 2.6]. A function u defined on E∂ is said to be
strictly E-quasi-continuous if there exists a strict E-nest {Fn} such that u is continuous on
each Fn ∪ {∂}. Denote by QC(E∂) the totality of strictly E-quasi-continuous functions
on E∂ .

Throughout this chapter, we assume that ρ is a nonnegative function in Ḋ†
loc(E)

∩ QC(E∂) such that m({ρ > 0}) > 0 and 0 ≤ ρ(∂) <∞. Set

N := {x ∈ E | ρ(x) = 0 or ρ(x) = ∞}

and define a stopping time σN by σN := inf{t > 0 |Xt ∈ N}. From Fukushima’s
decomposition,

ρ(Xt)− ρ(X0) =M
[ρ]
t +N

[ρ]
t , t ∈ [0, ζ),Px-a.s. for q.e. x ∈ E,

where M [ρ] is an MAF locally of finite energy and N [ρ] is a CAF locally of zero energy.
Define a local martingale M on the random interval [[0, σN ∧ ζ[[ by

Mt :=

∫ t

0

1

ρ(Xs−)
dM [ρ]

s . (3.1)
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Note that

∆Mt =
1

ρ(Xt−)
(M

[ρ]
t −M

[ρ]
t−) =

1

ρ(Xt−)
(ρ(Xt)− ρ(Xt−))

=
ρ(Xt)

ρ(Xt−)
− 1. (3.2)

Let Lρ
t be the Doléans-Dade exponential of Mt, that is, the unique solution of

Lρ
t = 1 +

∫ t

0

Lρ
s−dMs, Px-a.s., x ∈ E \N. (3.3)

It is known from the Doléans-Dade formula ([20, Theorem 9.39]) that for t < σN ∧ ζ

Lρ
t = exp

(
Mt −

1

2
⟨M c⟩t

) ∏
0<s≤t

(1 + ∆Ms)e
−∆Ms

= exp

(
Mt −

1

2
⟨M c⟩t

) ∏
0<s≤t

ρ(Xs)

ρ(Xs−)
exp

(
1− ρ(Xs)

ρ(Xs−)

)
. (3.4)

Since Lρ
t is a positive local martingale on the random interval [[0, σN ∧ ζ[[, so is a positive

supermartingale. Consequently, the formula

dP̃x = Lρ
tdPx on Ft ∩ {t < σN ∧ ζ} for x ∈ E \N, (3.5)

uniquely determines a family of probability measures on (Ω,F ). It follows from [35,
(62.19)] that under these new measures, {Xt} is a right Markov process on the finely open
set E \N . We denote by M̃ρ := (Ω, Ft, X̃t, P̃x, ζ̃) the transformed process of M by Lρ

t .
Here for ω ∈ Ω,

X̃t(ω) :=

{
Xt(ω), 0 ≤ t < σN ,

∂, σN ≤ t ≤ ∞,
ζ̃(ω) := σN(ω) ∧ ζ(ω).

The semigroup {P̃t} of M̃ρ equals

P̃tf(x) = Ẽx

[
f(X̃t) : t < ζ̃

]
= Ex[L

ρ
t f(Xt) ; t < σN ∧ ζ]. (3.6)

We introduce the space Ḋ++
loc (E) defined by

Ḋ++
loc (E) :=

{
u ∈ Ḋloc(E)

∣∣∣∣∣ there exists a constant a ∈ (1,∞)

such that a−1 ≤ u ≤ a

}
. (3.7)

Since each element of Ḋ++
loc (E) is bounded, we see Ḋ++

loc (E) ⊂ Ḋ†
loc(E).
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Lemma 3.1. The operator P̃t defined by (3.6) is symmetric on L2(E \N ; ρ2m).

Proof. For f, g ∈ B+
b (E), we have by the time reversal property (2.7)

(P̃tf, g)ρ2m = Em[L
ρ
t f(Xt)g(X0)ρ(X0)

2 ; t < σN ∧ ζ]
= Em[L

ρ
t ◦ rt f(X0)g(Xt)ρ(Xt)

2 ; t < σN ∧ ζ].

For the proof of symmetry,

(P̃tf, g)ρ2m = (f, P̃tg)ρ2m = Em[L
ρ
t f(X0)g(Xt)ρ(X0)

2 ; t < σN ∧ ζ],

it suffices to prove the following identity:

Lρ
t ◦ rt = Lρ

t

ρ(X0)
2

ρ(Xt)2
, Pm-a.s. on {t < σN ∧ ζ}. (3.8)

We first consider the case ρ ∈ Ḋ++
loc (E). Then ζ̃ equals ζ . The function log ρ is

bounded and in Ḋloc(E) by [24, Corollary 6.2], and thus log ρ belongs to Ḋ†
loc(E). Hence

log ρ admits the following decomposition:

log ρ(Xt)− log ρ(X0) =M
[log ρ]
t +N

[log ρ]
t t < ζ, Px-a.s. for q.e. x ∈ E.

Moreover,M [log ρ] is decomposed toM [log ρ] =M [log ρ],c+M [log ρ],d ([20, Theorem 8.23]),
where M [log ρ],c (resp. M [log ρ],d) is the continuous (resp. purely discontinuous) part of
M [log ρ]. By Itô’s formula ([24, Theorem 7.2] and [25, Corollary 4.4]), it holds that for
t ∈ [0, ζ[ Px-a.s. for q.e. x ∈ E

M
[log ρ],c
t =

∫ t

0

1

ρ(Xs−)
dM [ρ],c

s = M c
t ,

M
[log ρ],d
t =

∫ t

0

1

ρ(Xs−)
dM [ρ],d

s +
∑
s≤t

(
log

ρ(Xs)

ρ(Xs−)
+ 1− ρ(Xs)

ρ(Xs−)

)
−
∫ t

0

∫
E∂

(
log

ρ(y)

ρ(Xs)
+ 1− ρ(y)

ρ(Xs)

)
N(Xs, dy)dHs.

Thus we get

M
[log ρ]
t =Mt +

∑
s≤t

(
log

ρ(Xs)

ρ(Xs−)
+ 1− ρ(Xs)

ρ(Xs−)

)
−
∫ t

0

∫
E∂

(
log

ρ(y)

ρ(Xs)
+ 1− ρ(y)

ρ(Xs)

)
N(Xs, dy)dHs.
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By this expression and (3.4), we have for t ∈ [0, ζ[

Lρ
t = exp

(
Mt −

1

2
⟨M [log ρ],c⟩t +

∑
s≤t

(
log

ρ(Xs)

ρ(Xs−)
+ 1− ρ(Xs)

ρ(Xs−)

))
= exp

(
M

[log ρ]
t + At

)
,

(3.9)

where

At :=

∫ t

0

∫
E∂

(
log

ρ(y)

ρ(Xs)
+ 1− ρ(y)

ρ(Xs)

)
N(Xs, dy)dHs −

1

2
⟨M [log ρ],c⟩t.

Hence we have Pm-a.s. on {t < ζ}

Lρ
t ◦ rt = exp

(
M

[log ρ]
t ◦ rt + At ◦ rt

)
= exp

(
log ρ(X0)− log ρ(Xt)−N

[log ρ]
t ◦ rt + At ◦ rt

)
.

Since At is a CAF of bounded variation, At is even, At ◦ rt = At. Moreover, N [log ρ]
t is

also even by Lemma 2.2. Thus the right-hand side is equal to

exp
(
log ρ(X0)− log ρ(Xt)−N

[log ρ]
t + At

)
= exp

(
2(log ρ(X0)− log ρ(Xt)) +M

[log ρ]
t + At

)
= Lρ

t

ρ(X0)
2

ρ(Xt)2
.

Therefore (3.8) holds for ρ ∈ Ḋ++
loc (E).

For a general nonnegative ρ ∈ Ḋ†
loc(E), we define En := {x ∈ E | 1

n
< ρ(x) < n},

τn := inf{t > 0 |Xt ̸∈ En} and ρn :=
(
1
n
∨ ρ
)
∧ n. Then, on {t < τn}, ρ(Xs) = ρn(Xs)

for s ∈ [0, t] and thus Lρ
t = Lρn

t . By applying the result above to ρn ∈ Ḋ++
loc (E), we have

Lρ
t ◦ rt = Lρn

t ◦ rt = Lρn
t

ρn(X0)
2

ρn(Xt)2
= Lρ

t

ρ(X0)
2

ρ(Xt)2
Pm-a.s. on {t < τn}.

Since τn → σN ∧ ζ as n→ ∞, we get (3.8) by letting n to infinity.

The next theorem is proved in [13, Lemma 4.4] for symmetric diffusion processes.
However, its proof works for general symmetric right Markov processes.

Theorem 3.2. If A is a PCAF of M with Revuz measure µ, then the Revuz measure for A
as a PCAF of M̃ρ equals ρ2µ.
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Lemma 3.3. For u ∈ D(E), the inequality

lim
t→0

1

t
Ẽρ2m

[(
u(X̃t)− u(X̃0)

)2
; t < ζ̃

]
≤
∫
E

ρ(x)2µc
⟨u⟩(dx) + 2

∫
E×E

(u(x)− u(y))2ρ(x)ρ(y)J(dx, dy)

+ ρ(∂)

∫
E

u(x)2ρ(x)κ(dx).

(3.10)

holds, whenever the integrals on the right-hand side exist.

Proof. Our proof is similar to that of [6, Thorem 2.6]. We give the details here for the
reader’s convenience.

Take u ∈ D(E) such that the right-hand side of (3.10) is finite. Then u(Xt) −u(X0)

can be decomposed as

u(Xt)− u(X0) =M
[u]
t +N

[u]
t , t > 0, Px-a.s. for q.e. x ∈ E,

where M [u] ∈ M̊ and N [u] ∈ Nc. Moreover, the sharp bracket process ⟨M [u]⟩ is given by

⟨M [u]⟩t = ⟨M [u],c⟩t +
∫ t

0

∫
E∂

(u(y)− u(Xs))
2N(Xs, dy)dHs (3.11)

for all t > 0.
By the Girsanov transform,

M̃
[u]
t :=M

[u]
t −

∫ t

0

1

Lρ
s−
d⟨M [u], Lρ⟩s =M

[u]
t − ⟨M [u],M⟩t, t < ζ̃,

is a local MAF under P̃x for x ∈ E \N and[
M̃ [u]

]
t
(P̃) = [M [u]]t(P), P̃m-a.s. on {t < ζ̃} (3.12)

(see [20, Chapter 12]). Here
[
M̃ [u]

]
(P̃) is the square bracket of the martingale M̃ [u]

under P̃x, and [M [u]](P) is the square bracket of martingale M [u] under Px. Then
⟨M̃ [u]⟩(P̃) =

[
M̃ [u]

]p
(P̃) and ⟨M [u]⟩(P) = [M [u]]p(P), that is, ⟨M̃ [u]⟩(P̃) and ⟨M [u]⟩(P)

are dual predictable projections of [M̃ [u]](P̃) and [M [u]](P) under P̃x and Px, respectively.
It follows from (3.12) and [20, Corollary 12.18] that for t < ζ̃ ,

⟨M̃ [u]⟩t(P̃) =
[
M̃ [u]

]p
t
(P̃) = ⟨M [u]⟩t(P) +

∫ t

0

1

Lρ
s−
d⟨[M [u]], Lρ⟩s

= ⟨M [u]⟩t(P) + ⟨[M [u]],M⟩t.
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Noting that[
[M [u]],M

]
t
=
∑
s≤t

∆[M [u]]s∆Ms =
∑
s≤t

(u(Xs)− u(Xs−))
2

(
ρ(Xs)

ρ(Xs−)
− 1

)
we have by (3.11)

⟨M̃ [u]⟩t(P̃) = ⟨M [u]⟩t(P) +

(∑
s≤·

(u(Xs)− u(Xs−))
2

(
ρ(Xs)

ρ(Xs−)
− 1

))p

t

(P)

= ⟨M [u]⟩t(P) +
∫ t

0

∫
E∂

(u(y)− u(Xs))
2

(
ρ(y)

ρ(Xs)
− 1

)
N(Xs, dy)dHs

= ⟨M [u],c⟩t(P) +
∫ t

0

∫
E

(u(y)− u(Xs))
2 ρ(y)

ρ(Xs)
N(Xs, dy)dHs

+ ρ(∂)

∫ t

0

u(Xs)
2

ρ(Xs)
N(Xs, {∂})dHs.

Therefore, the Revuz measure of the PCAF ⟨M̃ [u]⟩(P̃) for M is

µc
⟨u⟩(dx) + 2

∫
y∈E

(u(y)− u(x))2
ρ(y)

ρ(x)
J(dx, dy) + ρ(∂)u(x)2ρ(x)−1κ(dx)

by (2.3) and (2.6). We see from Theorem 3.2 that the Revuz measure of the PCAF
⟨M̃ [u]⟩(P̃) for M̃ρ is

ρ(x)2µc
⟨u⟩(dx) + 2

∫
y∈E

(u(x)− u(y))2ρ(x)ρ(y)J(dx, dy) + ρ(∂)u(x)2ρ(x)κ(dx). (3.13)

Noting that N [u] and ⟨M (n),M⟩ are even, we have

u(X̃t)− u(X̃0) =
1

2
(M

[u]
t −M

[u]
t ◦ rt)

=
1

2

(
M̃

[u]
t − M̃

[u]
t ◦ rt

)
Pm-a.s. on {t < ζ̃}.

It holds from this equality and the reversibility of the measure P̃ρ2m that

lim
t→0

1

t
Ẽρ2m

[(
u(X̃t)− u(X̃0)

)2
; t < ζ̃

]
≤ lim

t→0

1

2t

(
Ẽρ2m

[(
M̃

[u]
t

)2
; t < ζ̃

]
+ Ẽρ2m

[(
M̃

[u]
t ◦ rt

)2
; t < ζ̃

])
= lim

t→0

1

t
Ẽρ2m

[(
M̃

[u]
t

)2
; t < ζ̃

]
= lim

t→0

1

t
Ẽρ2m

[
⟨M̃ [u]⟩t

]
.

Since the right-hand side equals (3.13), we have the assertion.



22

Recall that the transformed process M̃ρ by Lρ
t is a ρ2m-symmetric right process by

Lemma 3.1. We denote by (Ẽρ,D(Ẽρ)) the Dirichlet form on L2(E \N, ρ2m) associated
with M̃ρ. It is known that (Ẽρ,D(Ẽρ)) is quasi-regular (see [28]).

Lemma 3.4. Define Ñ(x, dy) := ρ(y)
ρ(x)

· N(x, dy). Then (Ñ(x, dy), Ht) is a Lévy system
of M̃. Consequently, by Theorem 3.2,

J̃(dx, dy) := ρ(x)ρ(y)J(dx, dy), κ̃(dx) := ρ(∂)ρ(x)κ(dx)

are the jumping and killing measure of (Ẽρ,D(Ẽρ)), respectively.

Proof. Let f be a nonnegative bounded function on E∂ × E∂ such that f(x, x) = 0 for
each x ∈ E∂ and put fn := f1l{f >1/n}. Then

F n
t :=

∑
s≤t

fn(Xs−, Xs)−
∫ t

0

∫
E∂

fn(Xs, y)N(Xs, dy)dHs

is a Px-martingale. By the Girsanov theorem,

F n
t − ⟨F n,M⟩t =

∑
s≤t

fn(Xs−, Xs)−
∫ t

0

∫
E∂

fn(Xs, y)
ρ(y)

ρ(x)
N(Xs, dy)dHs

is a P̃x-martingale, and thus

Ẽx

[∑
s≤t

fn(Xs−, Xs)

]
= Ẽx

[∫ t

0

∫
E∂

fn(Xs, y) Ñ(Xs, dy)dHs

]
.

We then see by the monotone convergence theorem

Ẽx

[∑
s≤t

f(Xs−, Xs)

]
= Ẽx

[∫ t

0

∫
E∂

f(Xs, y) Ñ(Xs, dy)dHs

]
.

For a closed subset F of E, Db(E)F is the space defined by

Db(E)F = {u ∈ Db(E) |u = 0 q.e. on E \ F},

where Db(E) is the set of bounded functions in D(E).
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Theorem 3.5. Suppose that ρ > 0 q.e. Then there exists an E-nest {Fn} of compact sets
such that

∪
n≥1 Db(E)Fn ⊂ D(Ẽρ) and for u ∈

∪
n≥1 Db(E)Fn ,

Ẽρ(u, u) =
1

2

∫
E

ρ(x)2µc
⟨u⟩(dx) +

∫
E×E

(u(x)− u(y))2ρ(x)ρ(y)J(dx, dy)

+ ρ(∂)

∫
E

u(x)2ρ(x)κ(dx).

(3.14)

Proof. There exist {Gn} ∈ Θ and {ρn} ⊂ D(E) such that ρ = ρn m-a.e. on Gn for each
n. Take f ∈ L2(E;m) with 0 < f ≤ 1 on E and set

RGn
1 f(x) := Ex

[∫ τGn

0

e−sf(Xs)ds

]
.

Then RGn
1 f(x) > 0 on Gn and RGn

1 f is E-quasi-continuous for each n. Take a common
E-nest {Km} such that all RGn

1 f , n ≥ 1 are continuous on each Km. We set F (1)
n :=

{x ∈ Kn : RGn
1 f(x) ≥ 1/n}. Then since An := {RGn

1 f ≥ 1/n} is increasing and
E \

∪
n≥1An is E-exceptional, {F (1)

n } is an E-nest by [24, Lemma 3.3]. For each n,
(E \Gn)

r ⊂ E \ F (1)
n , where (E \Gn)

r = {x ∈ E : RGn
1 f(x) = 0} is the set of regular

points for E \Gn. Therefore we have

F (1)
n \Gn ⊂ F (1)

n ∩
(
(E \Gn) \ (E \Gn)

r
)
.

Since
(
(E \Gn) \ (E \Gn)

r
)

is E-exceptional, F (1)
n ⊂ Gn q.e. and thus ρ = ρn m-a.e. on

F
(1)
n .

By the quasi-regularity of (Ẽρ,D(Ẽρ)), we can choose an Ẽρ-nest {F (2)
n } of compact

sets and a sequence {gn} ⊂ D(Ẽρ) such that gn = 1 on F (2)
n (see [28]). Note that σN = ∞

Px-a.s. for q.e. x ∈ E because ρ > 0 q.e. Hence, by using probabilistic characterization
of Ẽρ-exceptional set and Ẽρ-nest, we see that {F (2)

n } is an E-nest.
Since ρ is an element of Ḋ†

loc(E), there exists an E-nest {F (3)
n } of compact sets such

that ρ ∈ C({F (3)
n }) and ∫

F
(3)
n ×E

(ρ(x)− ρ(y))2J(dx, dy) <∞

for each n. We put Fn :=
∩3

k=1 F
(k)
n . Then {Fn} is also an E-nest. We first claim that for

any u ∈
∪

n≥1 Db(E)Fn ,∫
E

ρ2dµc
⟨u⟩ +

∫
E×E

(u(x)− u(y))2ρ(x)ρ(y)J(dx, dy) + ρ(∂)

∫
E

u2ρ dκ <∞. (3.15)



24

Take u ∈ Db(E)Fn . Define Cn = supx∈Fn
|ρ(x)| and ρ(n) = ((−Cn) ∨ ρn) ∧Cn. We then

see that ρu = ρ(n)u m-a.e. Thus ρu is in D(E) and by the derivation property of µc,

E(ρu, ρu) = 1

2

∫
E

u2dµc
⟨ρ⟩ +

∫
E

ρu dµc
⟨ρ,u⟩ +

1

2

∫
E

ρ2dµc
⟨u⟩ + E j(ρu, ρu)

+

∫
E

(ρu)2dκ,

where
E j(f, g) :=

∫
E×E

(f(x)− f(y))(g(x)− g(y))J(dx, dy).

Note that the value of E(ρ, ρu2) is finite and equal to
1

2

∫
E

u2dµc
⟨ρ⟩ +

∫
E

ρu dµc
⟨ρ,u⟩ + E j(ρ, ρu2) +

∫
E

(
ρ(x)− ρ(∂)

)
ρ(x)u(x)2κ(dx)

by Remark 2.1 and the derivation property. Since

E j(ρu, ρu)− E j(ρ, ρu2) =

∫
E×E

(u(x)− u(y))2ρ(x)ρ(y)J(dx, dy),

it holds that
1

2

∫
E

ρ2dµc
⟨u⟩ +

∫
E×E

(u(x)− u(y))2ρ(x)ρ(y)J(dx, dy) + +ρ(∂)

∫
E

u2ρ dκ

= E(ρu, ρu)− E(ρ, ρu2) <∞.

Therefore (3.15) holds.
Let u ∈ Db(E)Fn . Noting that u = 0 m-a.e. on E \ Fn and gn ∈ D(Ẽρ) with gn = 1

on Fn, we have u = u · gn m-a.e. Thus it follows from [7, Theorem 4.2.1 (ii)] that

lim
t→0

1

t
(1− P̃t1, u

2)ρ2m ≤ ∥u∥2∞ lim
t→0

1

t
(1− P̃t1, g

2
n)ρ2m

≤ ∥u∥2∞
∫
E

gn(x)
2 κ̃(dx).

Hence we have by Lemma 3.3

lim
t→0

1

t
(u− P̃tu, u)ρ2m

= lim
t→0

1

2t

(
Ẽρ2m

[(
u(X̃t)− u(X̃0)

)2
; t < ζ̃

]
+ (1− P̃t1, u

2)ρ2m

)
≤ 1

2

∫
E

ρ(x)2µc
⟨u⟩(dx) +

∫
E×E

(u(x)− u(y))2ρ(x)ρ(y)J(dx, dy)

+
ρ(∂)

2

∫
E

u(x)2ρ(x)κ(dx) +
∥u∥2∞
2

∫
E

gn(x)
2 κ̃(dx)

<∞.
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Therefore u belongs to D(Ẽρ) and u admits Fukushima’s decomposition under P̃x :

u(X̃t)− u(X̃0) =M∗
t +N∗

t ,

whereM∗ is a P̃x-square integrable MAF of finite energy for M̃ρ andN∗ is a CAF of zero
energy for M̃ρ.

Recall that by the Girsanov theorem,

M̃
[u]
t =M

[u]
t − ⟨M [u],M⟩t

is an MAF under P̃x. Hence, Fukushima’s decomposition u(Xt)− u(X0) =M
[u]
t +N

[u]
t

under Px leads us to the following decomposition:

u(Xt)− u(X0) = M̃
[u]
t +

(
N

[u]
t + ⟨M [u],M⟩t

)
.

Since N [u] + ⟨M [u],M⟩ is a CAF of zero energy for M̃ρ, we have by the uniqueness of
Fukushima’s decomposition

M∗
t = M̃

[u]
t .

Now we have

Ẽρ(u, u) = lim
t→0

1

2t
Ẽρ2m

[(
u(X̃t)− u(X̃0)

)2]
+

1

2

∫
E

u2dκ̃

= lim
t→0

1

2t
Ẽρ2m

[(
M∗

t

)2]
+

1

2

∫
E

u2dκ̃

= lim
t→0

1

2t
Ẽρ2m

[
⟨M̃ [u]⟩t

]
+

1

2

∫
E

u2dκ̃.

We see from Lemma 3.4 and (3.13) in the proof of Lemma 3.3 that the right-hand side
equals

1

2

∫
E

ρ2dµc
⟨u⟩ +

∫
E×E

(u(x)− u(y))2ρ(x)ρ(y)J(dx, dy) + ρ(∂)

∫
E

u(x)2ρ(x)κ(dx).

Therefore (3.14) holds for u ∈
∪

n≥1Db(E)Fn .

Suppose that ρ is bounded. Then we obtain by Theorem 3.5 the following inequality:

Ẽρ
1 (u, u) ≤

(
∥ρ∥∞ ∨ ρ(∂)

)2 · E1(u, u), u ∈
∪
n≥1

Db(E)Fn , (3.16)

where Ẽρ
1 = Ẽρ+(·, ·)ρ2m. Since

∪
n≥1 Db(E)Fn is dense in D(E) with respect to the norm√

E1(·, ·), the inequality (3.16) tells us that D(E) is contained in D(Ẽρ). By repeating the
computation above, we can extend (3.14) to u ∈ D(E).
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Theorem 3.6. (a) If ρ is bounded, then D(E) ⊂ D(Ẽρ) and the formula (3.14) holds for
all u ∈ D(E).
(b) If ρ ∈ Ḋ++

loc (E), that is, there exists a constant c > 1 such that c−1 < ρ < c, then
D(Ẽρ) = D(E).

Proof. (a) is already shown above.
Suppose ρ ∈ Ḋ++

loc (E). Then 1/ρ and log ρ are in
(
Ḋloc(E)

)
b
, and so in

(
Ḋloc(Ẽρ)

)
b

by
(a). Hence, we have

1

ρ
(Xt)−

1

ρ
(X0) = M̃

[1/ρ]
t + Ñ

[1/ρ]
t ,

log ρ(Xt)− log ρ(X0) = M̃
[log ρ]
t + Ñ

[log ρ]
t , P̃x-a.s.

Let L̃[1/ρ]
t be the solution of

L̃
[1/ρ]
t = 1 +

∫ t

0

L̃
[1/ρ]
s− ρ(Xs−) dM̃

[1/ρ]
s

and M∗ =
(
Ω,P∗

x, Xt

)
the transformed process of M̃ρ by L̃[1/ρ], dP∗

x := L̃
[1/ρ]
t dP̃x. Denote

by
(
E∗,D(E∗)

)
the Dirichlet form generated by M∗. Since 1/ρ is bounded, we see

D
(
Ẽρ
)
⊂ D(E∗) by (a). Hence, it is enough to prove D(E∗) = D(E). Owing to (3.9) and

Lemma 3.4, L̃[1/ρ]
t is expressed by

L̃
[1/ρ]
t = exp

(
−M̃ [log ρ]

t + Ãt

)
,

where

Ãt :=

∫ t

0

∫
E∂

(
log

ρ(Xs)

ρ(y)
+ 1− ρ(Xs)

ρ(y)

)
ρ(y)

ρ(Xs)
N(Xs, dy)dHs +

1

2
⟨M̃ [log ρ],c⟩t.

Noting that

M̃
[log ρ]
t =M

[log ρ]
t − ⟨M [log ρ],M⟩t

=M
[log ρ]
t −

∫ t

0

∫
E∂

log
ρ(y)

ρ(Xs)

(
ρ(y)

ρ(Xs)
− 1

)
N(Xs, dy)dHs

and ⟨M̃ [log ρ],c⟩t = ⟨M [log ρ],c⟩t, we see L̃[1/ρ]
t = 1/L

[ρ]
t by (3.9). This implies M∗ = M,

and thus D(E∗) = D(E).

Let us recall the definitions of transience and recurrence of Dirichlet forms.
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Definition 3.7. (1) A Dirichlet space (E ,D(E)) on L2(E;m) is said to be transient if the
extended Dirichlet space De(E) is a Hilbert space with inner product E .
(2) (E ,D(E)) is said to be recurrent if the constant function 1 belongs to De(E) and
E(1, 1) = 0. Namely, there exists a sequence {un} ⊂ D(E) such that limn→∞ un = 1

m-a.e. and limn,m→∞ E(un − um, un − um) = 0.

Corollary 3.8. Suppose ρ ∈ Ḋ++
loc (E). If (E ,D(E)) is a transient (or recurrent) regular

Dirichlet form, then so is
(
Ẽρ,D(Ẽρ)

)
.

Proof. If c−1 < ρ < c, then it follows from Theorem 3.6 that D(Ẽρ) = D(E) and

c−2E(u, u) ≤ Ẽρ(u, u) ≤ c2E(u, u), u ∈ D(Ẽρ).

Hence, if (E ,D(E)) is transient (or recurrent), then so is
(
Ẽρ,D(Ẽρ)

)
.

Moreover, since E1-norm and Ẽρ
1 -norm are equivalent by the inequality above, it holds

that
D(Ẽρ) ∩ C0(E)

Ẽρ
1

= D(E) ∩ C0(E)
E1

= D(E) = D(Ẽρ).

Here D(Ẽρ) ∩ C0(E)
Ẽρ
1

and D(E) ∩ C0(E)
E1denote closures of sets D(Ẽρ) ∩ C0(E) and

D(E) ∩ C0(E) with respect to Ẽρ
1 - and E1-norm, respectively. Clearly, D(Ẽρ) ∩ C0(E) is

dense in C0(E) with respect to the uniform norm. Therefore
(
Ẽρ,D(Ẽρ)

)
is regular.

We now obtain an extension of [6, Thorem 2.6].

Theorem 3.9. Let ρ ∈ De(E) with ρ > 0 q.e. Then the Dirichlet form (Ẽρ,D(Ẽρ)) is
recurrent.

Proof. We see from [18, Lemma 1.6.7] that there exists a strictly positive bounded function
g in L1(E;m) such that ρ ∈ De(Eg), where Eg is a perturbed form on L2(E;m) defined
by

Eg(u, v) = E(u, v) + (u, v)g·m, u, v ∈ D(E).

Then (Eg,D(E)) is a transient Dirichlet form and thus its extended Dirichlet space De(Eg)

is a Hilbert space with inner product Eg ([18, Theorem 1.6.2]). By Theorem 3.5, we can
take an E-nest {Fn} of compact sets such that ρ ∈ C({Fn}) and

∪
n≥1Db(E)Fn ⊂ D(Ẽρ).

Let Kn := {x ∈ Fn | ρ(x) ≥ 1/n}. Then {Kn} is an E-nest because E \
∪

n≥1{ρ ≥ 1/n}
is E-exceptional. Since the norm

√
Eg
1 (·, ·) is equivalent to

√
E1(·, ·), {Kn} is an Eg-

nest as well. We set De(Eg)Kn := {u ∈ De(Eg) |u = 0 m-a.e. on E \ Kn}. Then
De(Eg)Kn is a closed subspace of the Hilbert space (De(Eg), Eg) and by [7, Corollary
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3.4.4],
∪

n≥1De(E)Kn is dense in De(E). Let ρKn be the Eg-orthogonal projection of ρ
onto De(Eg)Kn . Then ρKn converges to ρ in (De(Eg), Eg). Let ρn := (0∨ ρKn)∧ ρ. Then
we easily see that ρn ∈ Db(E)Kn for each n and ρn → ρ m-a.e. as n → ∞. Noting that
ρ− ρn = (ρ− ρKn)

+, we have by the contraction property

E(ρ− ρn, ρ− ρn) ≤ Eg(ρ− ρn, ρ− ρn)

≤ Eg(ρ− ρKn , ρ− ρKn) → 0 as n→ ∞.

By taking subsequence if necessary, we may assume ρn converges to ρ E-q.e. on E (cf.
[7, Theorem 2.3.4]). For n ≥ 1, define a function hn by

hn(x) :=

{
ρn(x)/ρ(x) if ρ(x) > 0,

0 if ρ(x) = 0.

Then 0 ≤ hn ≤ 1 and hn → 1 E-q.e. on E as n→ ∞. Moreover, for (x, y) ∈ Kn ×Kn,

|hn(x)| ≤ n|ρn(x)|,

|hn(x)− hn(y)| ≤
|ρn(x)− ρn(y)|

ρ(x)
+

|ρn(x)− ρn(y)|
ρ(y)

+
|ρ(x)ρn(x)− ρ(y)ρn(y)|

ρ(x)ρ(y)

≤ 2n|ρn(x)− ρn(y)|+ n2|ρ(x)ρn(x)− ρ(y)ρn(y)|.

By noting that ρn and ρ ·ρn belong to Db(E)Kn , this inequality and [18, Theorem 1.5.2 (ii)]
tell us that hn is also in Db(E)Kn . Hence, since ρ ∈ De(E) ∩QC(E∂) and thus ρ(∂) = 0,
it follows from Theorem 3.5 that hn ∈ D(Ẽρ) and

Ẽρ(hn, hn) =
1

2

∫
E

ρ(x)2µc
⟨hn⟩(dx) +

∫
E×E

(hn(x)− hn(y))
2ρ(x)ρ(y)J(dx, dy).

By a calculation found in the proof of [18, Theorem 6.3.2], we can show that the right-
hand side of the equality above tends to 0 as n → ∞. Therefore hn → 1 q.e. and
Ẽρ(hn, hn) → 0 as n→ ∞, which implies that the constant function 1 belongs to De(Ẽρ)

and Ẽρ(1, 1) = 0. Hence, (Ẽρ,D(Ẽρ)) is recurrent.

Theorem 3.9 is interesting in the sense that for ρ ∈ De(E), the transformed process
M̃ρ always becomes recurrent (in particular, conservative) even if M is transient.

3.2 Non-attainability to zero sets
In this section, we assume that (E ,D(E)) is conservative, Pm(ζ <∞) = 0, and that ρ is a
nonnegative function in Ḋ†

loc(E) with finite energy measure, µ⟨ρ⟩(E) < ∞. It is shown in
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[18, §6.3] that under assumption of the strong local property, the transformed process M̃ρ

never approaches in finite time to the set {x ∈ E | ρ(x) = 0 or ρ(x) = ∞}. The objective
of this section is to obtain the non-attainability without assuming the local property. We
use ideas from [18, §6.3] but modifications are needed because M is allowed to have
jumps.

Lemma 3.10. Let ρ ∈ Ḋ++
loc (E) with µ⟨ρ⟩(E) <∞, where Ḋ++

loc (E) is the space defined in
(3.7). Then the transformed process M̃ρ is conservative in the sense that

P̃ρ2m(ζ <∞) = 0. (3.17)

Proof. Let M be a local martingale defined by (3.1). Let {Tn} be a sequence of {Ft}-
stopping times defined by

Tn := inf{t > 0 | ⟨M⟩t ≥ n}.

Since the Revuz measure of the PCAF ⟨M⟩ for M is (1/ρ)2µ⟨ρ⟩, that for M̃ρ is µ⟨ρ⟩ by
Theorem 3.2. Hence, we get

P̃ρ2m(Tn ≤ t) ≤ 1

n
Ẽρ2m[⟨M⟩t] ≤

t

n
µ⟨ρ⟩(E).

By letting n to infinity, we obtain limn→∞ Tn = ∞ P̃ρ2m-a.s.
Put MTn

t := Mt∧Tn and L(n)
t := Lρ

t∧Tn
. Then for each n, L(n) is a solution to the

following SDE:

L
(n)
t = 1 +

∫ t

0

L
(n)
s− dM

Tn
s , t > 0.

From the definition of Ḋ++
loc (E), there exists a constant a > 1 such that a−1 ≤ ρ ≤ a.

Hence we have by (3.2)

∆MTn
t =

ρ(Xt∧Tn)

ρ(X(t∧Tn)−)
− 1 ≥ 1

a2
− 1, t ≥ 0.

Moreover, it holds that
Ex

[
[MTn ]∞

]
= Ex

[
⟨M⟩Tn

]
≤ n.

By the same argument as that in the proof of [4, Theorem 4.3.2], we can show that there
exists a constant C > 0 such that L(n)

t ≤ C Ex

[
L

(n)
∞ |Ft

]
for every x ∈ E and t > 0.

ThereforeL(n) is of class (D), that is, {L(n)
τ | τ is a stopping time} is a uniformly integrable

family. Thus L(n) is a uniformly integrable martingale by [20, Theorem 7.12]. Hence we
have by (3.5)

P̃x(t ∧ Tn < ζ) = Ex

[
L

(n)
t

]
= 1, t > 0
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for each n. Therefore we have for all t > 0

P̃x(t < ζ) = lim
n→∞

P̃x(t ∧ Tn < ζ) = 1 ρ2m-a.e.,

which leads to (3.17).

Let ρ ∈ Ḋ++
loc (E) with µ⟨ρ⟩(E) < ∞. Then there exist {Gn} ∈ Θ and {ρn} ⊂ D(E)

such that ρ = ρn m-a.e. on Gn. Then by LeJan’s formula ([18, Thorem 3.2.2]), we see
that ∫

E

ρ2 dµc
⟨log ρ⟩ = lim

n→∞

∫
Gn

ρ2n dµ
c
⟨log ρn⟩ = lim

n→∞

∫
Gn

dµc
⟨ρn⟩ = µc

⟨ρ⟩(E).

On the other hand, substituting ρ(y)/ρ(x) for the inequality

t(log t)2 ≤ (1− t)2, t ∈ (0,∞),

we have

2

∫
E×E

(log ρ(x)− log ρ(y))2ρ(x)ρ(y)J(dx, dy) ≤ 2

∫
E×E

(ρ(x)− ρ(y))2J(dx, dy)

= µj
⟨ρ⟩(E).

Since log ρ ∈
(
Ḋloc(E)

)
b
, it is in

(
Ḋloc(Ẽρ)

)
b

as well by Theorem 3.6. Thus log ρ(Xt) −
log ρ(X0) admits Fukushima’s decompositions under Px and P̃x, respectively:

log ρ(Xt)− log ρ(X0) =M
[log ρ]
t +N

[log ρ]
t , Px-a.s.

log ρ(Xt)− log ρ(X0) = M̃
[log ρ]
t + Ñ

[log ρ]
t , P̃x-a.s.

By the same argument as in the proof of Theorem 3.5, M̃ [log ρ] and Ñ [log ρ] are expressed
as

M̃
[log ρ]
t =M

[log ρ]
t − ⟨M [log ρ],M⟩t, Ñ

[log ρ]
t = N

[log ρ]
t + ⟨M [log ρ],M⟩t.

Moreover, in a similar way to the proof of Lemma 3.3, we can show that

lim
t↓0

1

t
Ẽρ2m

[
⟨M̃ [log ρ]⟩t

]
≤
∫
E

ρ2 dµc
⟨log ρ⟩ + 2

∫
E

(log ρ(x)− log ρ(y))2ρ(x)ρ(y)J(dx, dy).

Noting that µ⟨ρ⟩ = µc
⟨ρ⟩ + µj

⟨ρ⟩ because of the conservativeness of M, we get

Ẽρ2m

[
⟨M̃ [log ρ]⟩t

]
≤ t µ⟨ρ⟩(E), t > 0. (3.18)

Since µ⟨ρ⟩(E) < ∞, this inequality implies that M̃ [log ρ] is a P̃x-square integrable martin-
gale for ρ2m-a.e. x.
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Lemma 3.11. It holds that for λ > 0 and ρ ∈ Ḋ++
loc (E) with µ⟨ρ⟩(E) <∞,

P̃ρ2m

(
sup
0≤s≤t

(
ρ(Xs)

ρ(X0)
∨ ρ(X0)

ρ(Xs)

)
≥ eλ

)
≤ 8t

λ2
µ⟨ρ⟩(E). (3.19)

Proof. By Lemma 2.2, it holds that

Ñ [log ρ]
s ◦ rt = Ñ

[log ρ]
t − Ñ

[log ρ]
t−s , 0 ≤ s ≤ t, P̃ρ2m-a.s.

Moreover, we can show in the same way as in the proof of [18, Thorem 5.7.1] that

log ρ(Xs)− log ρ(X0) =
1

2
M̃ [log ρ]

s +
1

2

(
M̃

[log ρ]
t−s ◦ rt − M̃

[log ρ]
t ◦ rt

)
,

0 ≤ s ≤ t, P̃ρ2m-a.s.

Hence, the left-hand side of (3.19) is equal to

P̃ρ2m

(
sup
0≤s≤t

| log ρ(Xs)− log ρ(X0)| ≥ λ

)
= P̃ρ2m

(
sup
0≤s≤t

∣∣M̃ [log ρ]
s + M̃

[log ρ]
t−s ◦ rt − M̃

[log ρ]
t ◦ rt

∣∣ ≥ 2λ

)
and the right-hand side is dominated by

P̃ρ2m

(
sup
0≤s≤t

∣∣M̃ [log ρ]
s

∣∣ ≥ λ

)
+ P̃ρ2m

(
sup
0≤s≤t

∣∣M̃ [log ρ]
t−s ◦ rt − M̃

[log ρ]
t ◦ rt

∣∣ ≥ λ

)
≤ P̃ρ2m

(
sup
0≤s≤t

∣∣M̃ [log ρ]
s

∣∣ ≥ λ

2

)
+ P̃ρ2m

(
sup
0≤s≤t

∣∣M̃ [log ρ]
s ◦ rt

∣∣ ≥ λ

2

)
= 2 P̃ρ2m

(
sup
0≤s≤t

∣∣M̃ [log ρ]
s

∣∣ ≥ λ

2

)
.

Here the last equality is derived from the reversibility of the measure P̃ρ2m. We have by
Doob’s inequality and (3.18)

P̃ρ2m

(
sup
0≤s≤t

∣∣M̃ [log ρ]
s

∣∣ ≥ λ

2

)
≤ 4

λ2
Ẽρ2m

[
⟨M̃ [log ρ]⟩t

]
≤ 4t

λ2
µ⟨ρ⟩(E).

Theorem 3.12. Let ρ ∈ Ḋloc(E) such that ρ ≥ 0m-a.e., m({ρ(x) > 0}) > 0 and µ⟨ρ⟩(E)

<∞. Then the transformed process M̃ρ is conservative in the sense of (3.17) and it never
attains to the set N = {x ∈ E | ρ(x) = 0 or ρ(x) = ∞} in the following sense:

P̃ρ2m(σN <∞) = 0, (3.20)

where σN = inf{t > 0 : Xt ∈ N}.
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Proof. Our proof is quite similar to that of [18, Thorem 6.3.4]. For the reader’s conve-
nience, we spell out the details. The assertion holds for ρ ∈ D++

loc (E) because of Lemma
3.10. We assume that E \ En ̸= ∅ for any n ≥ 1, where En := {x ∈ E | 1

n
≤ ρ(x) ≤ n}.

We set ρn :=
(
1
n
∨ ρ
)
∧ n and define stopping times τn by τn := inf{t > 0 | Xt ̸∈ En}.

Then ρn ∈ Ḋ++
loc (E) and ρ = ρn on En. Moreover, it holds that µ⟨ρn⟩(E) ≤ µ⟨ρ⟩(E) for

each n because of the following inequality:

|ρn(x)− ρn(y)| ≤ |ρ(x)− ρ(y)| for all x, y ∈ E.

Let us denote by M̃(n) := (Ω,F , Xt, P̃(n)
x , {P̃ (n)

t }) the transformed process by Lρn
t . Then

we see from Lemma 3.10 that M̃(n) is conservative, P̃ (n)
t 1 = 1, ρ2m-a.e.

Note that Lρ
t = Lρn

t on {t < τn}, and thus

P̃(n)
x (t < τn) = Ex

[
Lρn
t ; t < τn

]
= Ex

[
Lρ
t ; t < τn

]
= P̃x(t < τn). (3.21)

Hence, for any 1 < ℓ < n and t > 0, we have

P̃ρ2m

( 1

ℓ
≤ ρ(X0) ≤ ℓ, τn ≤ t

)
=

∫
{ 1

ℓ
≤ ρ≤ ℓ}

P̃x (τn ≤ t) ρ(x)2m(dx)

=

∫
{ 1

ℓ
≤ ρ≤ ℓ}

P̃(n)
x (τn ≤ t) ρ(x)2m(dx).

Since
{

1
ℓ
≤ ρ ≤ ℓ

}
⊂ {ρ = ρn}, the right-hand side is equal to∫

{ 1
ℓ
≤ ρn ≤ ℓ}

P̃(n)
x (τn ≤ t) ρn(x)

2m(dx) = P̃(n)

ρ2nm

(
1

ℓ
≤ ρn(X0) ≤ ℓ, τn ≤ t

)
. (3.22)

Since M̃(n) is conservative, we see that Xτn ∈ E \En P̃(n)

ρ2nm
-a.s. on {τn ≤ t} and thus the

value of ρn(Xτn) is either n or 1/n. Therefore (3.22) is dominated by

P̃(n)

ρ2nm

(
sup
0≤s≤t

(
ρn(Xs)

ρn(X0)
∨ ρn(X0)

ρn(Xs)

)
≥ n

ℓ

)
.

By applying Lemma 3.11, this is dominated by

8t
(
log

n

ℓ

)−2

µ⟨ρn⟩(E) ≤ 8t
(
log

n

ℓ

)−2

µ⟨ρ⟩(E).

Consequently, we have by letting n to infinity

P̃ρ2m

(
1

ℓ
≤ ρ(X0) ≤ ℓ, σN ≤ t

)
= 0.
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Since the left-hand side tends to P̃ρ2m(σN ≤ t) as ℓ→ ∞, we attain (3.20). Now we have
for any t > 0 and f ∈ Bb(E),

lim
n→∞

P̃
(n)
t f = P̃tf ρ2m-a.e. (3.23)

Indeed, we see from (3.21) and (3.20) that for ρ2m-a.e. x,

Ẽ(n)
x

[
f(Xt) ; τn ≤ t

]
≤ ∥f∥∞ P̃(n)

x (τn ≤ t)

= ∥f∥∞ P̃x(τn ≤ t) → 0 as n→ ∞.

Hence, noting that Lρ
t = Lρn

t on {t < τn}, we get

lim
n→∞

Ẽ(n)
x

[
f(Xt)

]
= lim

n→∞
Ẽ(n)

x

[
f(Xt) ; t < τn

]
= lim

n→∞
Ex

[
Lρ
t f(Xt) ; t < τn

]
= Ex

[
Lρ

t f(Xt) ; t < σN
]
,

which implies (3.23). Since M̃(n) is conservative for each n, so is M̃ρ by (3.23).
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Chapter 4

Hardy-type inequalities

4.1 Schrödinger forms
From this section, we impose the next assumptions on M:

Irreducibility: If a Borel set A is Pt-invariant, i.e., Pt(1lAf) = 1lAPtf m-a.e. for any
t > 0 and any f ∈ L2(E;m) ∩Bb(E), then the set A satisfies either m(A) = 0 or
m(E \ A) = 0.

Strong Feller Property (SF): For each t, Pt(Bb(E)) ⊂ Cb(E), where Cb(E) is the
space of bounded continuous functions on E.

We remark that (SF) implies

Absolute Continuity Condition (AC): The transition probability of M is absolutely
continuous with respect to m, pt(x, dy) = pt(x, y)m(dy) for each t > 0 and x ∈ E.

For β > 0, we define the β-order resolvent kernel by

Rβ(x, y) =

∫ ∞

0

e−βtpt(x, y)dt, x, y ∈ E.

If M is transient, we can define the 0-order resolvent kernel R(x, y) := R0(x, y) <∞ for
x, y ∈ E with x ̸= y. R(x, y) is called the Green function of M. For a measure µ, we
define the β-potential of µ by

Rβµ(x) :=

∫
E

Rβ(x, y)µ(dy).

We introduce two classes of measures.
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Definition 4.1. Suppose that µ is a positive smooth Radon measure on E.
(i) A measure µ is said to be in the Kato class (µ ∈ K in abbreviation), if

lim
α→∞

∥Rαµ∥∞ = 0.

(ii) Suppose that M is transient. A measure µ ∈ K is said to be Green-tight (µ ∈ K∞ in
abbreviation), if for any ε > 0 there exists a compact set K = K(ε) such that

sup
x∈E

∫
Kc

R(x, y)µ(dy) < ε.

By [1, Theorem 3.9], µ ∈ K if and only if

lim
t↓0

sup
x∈E

Ex[A
µ
t ] = lim

t↓0
sup
x∈E

∫ t

0

∫
E

ps(x, y)µ(dy)ds = 0. (4.1)

We see from [22, Lemma 4.1] that the class K∞ is the same as that defined in [3,
Definition 2.2 (1)] under (SF). We denote the Green-tight class by K∞(R) if we would
like to emphasize the dependence of the Green kernel. We see from the Stollmann-Voigt
inequality (4.11) below that for α ≥ 0 and µ ∈ K∫

E

u2dµ ≤ ∥Rαµ∥∞ · Eα(u, u), u ∈ D(E).

Let µ ∈ K. We define the Schrödinger form byD(Eµ) = D(E),

Eµ(u, v) = E(u, v)−
∫
E

uv dµ.

Denoting by Lµ = L + µ the self-adjoint operator generated by the closed symmetric
form (Eµ,D(Eµ)), (−Lµu, v)m = Eµ(u, v). Let {P µ

t } be the semigroup generated by Lµ,
P µ
t = etL

µ . By the Feynman-Kac formula, P µ
t is expressed by

P µ
t f(x) = Ex[exp (A

µ
t )f(Xt) ; t < ζ].

It is known from [1] that {P µ
t } has the strong Feller property.

For µ ∈ K, we set a function space:

H+(µ) := {h ∈ D†
loc(E) ∩ C(E∂) |h > 0 and P µ

t h ≤ h}. (4.2)
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Suppose H+(µ) ̸= ∅. For h ∈ H+(µ), we define the bilinear form (Eµ,h,D(Eµ,h)) by{
D(Eµ,h) = {u ∈ L2(E;h2m) |hu ∈ D(Eµ)},
Eµ,h(u, v) = Eµ(hu, hv), u, v ∈ D(Eµ,h).

The closedness of (Eµ,h,D(Eµ,h)) follows from that of (Eµ,D(E)). Then the semigroup
{P µ,h

t } generated by (Eµ,h,D(Eµ,h)) is h2m-symmetric and expressed as

P µ,h
t f(x) =

1

h(x)
P µ
t (hf)(x)

=
1

h(x)
Ex[exp(A

µ
t )h(Xt)f(Xt) ; t < ζ], f ∈ Bb(E). (4.3)

Moreover, by the definition of H+(µ), {P µ,h
t } is a Markovian semigroup and this implies

that (Eµ,h,D(Eµ,h)) is a Dirichlet form on L2(E;h2m).

Lemma 4.2. For φ ∈ D(E) ∩ C0(E), the function φ/h belongs to D(E) ∩ C0(E).

Proof. LetK be the support of φ and put c = (infx∈K h(x))
−1. Then, for (x, y) ∈ K×K∣∣∣φ

h
(x)
∣∣∣ ≤ c|φ(x)|,∣∣∣φ

h
(x)− φ

h
(y)
∣∣∣ ≤ |φ(x)− φ(y)|

h(x)
+

|φ(x)− φ(y)|
h(y)

+
|h(x)φ(x)− h(y)φ(y)|

h(x)h(y)

≤ 2c|φ(x)− φ(y)|+ c2|h(x)φ(x)− h(y)φ(y)|.

Since φ and hφ belong to D(E), the function φ/h also belongs to D(E) by [18, Theorem
1.5.2 (ii)].

Lemma 4.3. D(Eµ,h) ∩ C0(E) = D(E) ∩ C0(E).

Proof. By the definition of D(Eµ,h), u ∈ D(Eµ,h) ∩ C0(E) if and only if hu ∈ D(E) ∩
C0(E). On the other hand, it follows from Lemma 4.2 that hu ∈ D(E) ∩ C0(E) if and
only if u ∈ D(E) ∩ C0(E).

Lemma 4.4. The Dirichlet form (Eµ,h,D(Eµ,h)) is regular.

Proof. We see from Lemma 4.3 and the regularity of (E ,D(E)) that D(Eµ,h) ∩ C0(E) is
dense in C0(E) with respect to the uniform norm.

Suppose u ∈ D(Eµ,h). Then by the definition of D(Eµ,h), hu ∈ D(E) and by the
regularity of (E ,D(E)) and (4.11), there exists a sequence {φn} ⊂ D(E) ∩ C0(E) such
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that Eµ(hu − φn, hu − φn) converges to 0 as n → ∞. Then the function φn/h is in
D(E) ∩ C0(E) by Lemma 4.2, and

Eµ,h
(
u− φn

h
, u− φn

h

)
= Eµ(hu− φn, hu− φn) → 0 as n→ ∞,

which implies the the regularity of (Eµ,h,D(Eµ,h)).

Let us denote by Mµ,h the Hunt process generated by the regular Dirichlet form
(Eµ,h,D(Eµ,h)). Then by (4.3), the irreducibility of Mµ,h follows from that of M because
exp(Aµ

t )h(Xt) > 0 for t < ζ Px-a.s.

Remark 4.5. The process Mµ,h possesses the following property:

(LSC): For γ > 0, every γ-excessive function is lower-semi-continuous.

Indeed, let Rµ,h
γ be the γ-resolvent of Mµ,h. Then for g ∈ Bb(E),

1

h(x)
Rµ

γ(g (h ∧ n))(x) ↑ Rµ,h
γ g(x), as n→ ∞.

The function Rµ
γ(g (h ∧ n)) is continuous on E by the strong Feller property of P µ

t ,
and thus Rµ,h

γ g is lower-semi-continuous. By [18, Lemma A.2.8], for any γ-excessive
function u, there exists a sequence {gn} of bounded nonnegative Borel functions such that
Rµ,h

γ gn(x) ↑ u(x) as n→ ∞. Hence (LSC) holds.

De(Eµ) denotes the family of functions u on E such that |u| < ∞ m-a.e. and there
exists an Eµ-Cauchy sequence {un} of D(Eµ) such that limn→∞ un = u m-a.e. For
u ∈ De(Eµ) and the sequence {un}, define

Eµ(u, u) := lim
n→∞

Eµ(un, un).

Lemma 4.6. Let De(Eµ,h) be the extended Dirichlet space of (Eµ,h,D(Eµ,h)). Then{
De(Eµ,h) = {u |hu ∈ De(Eµ)},
Eµ,h(u, u) = Eµ(hu, hu), u ∈ De(Eµ,h).

Proof. Suppose that hu ∈ De(Eµ). Then there exists an Eµ-Cauchy sequence {φn} ⊂
D(Eµ) such that limn→∞ φn = hu m-a.e. Hence, the sequence {φn/h} ⊂ D(Eµ,h)

satisfies the following condition: limn→∞ φn/h = u h2m-a.e. and

Eµ,h
(φn

h
− φm

h
,
φn

h
− φm

h

)
= Eµ(φn − φm, φn − φm) → 0
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as m,n→ ∞, which implies u ∈ De(Eµ,h).
For any u ∈ De(Eµ,h), there exists an Eµ,h-Cauchy sequence {un} ⊂ D(Eµ,h) such

that limn→∞ un = u m-a.e. Then we have

Eµ(hun − hum, hun − hum) = Eµ,h(un − um, un − um) → 0

as m,n→ ∞. Therefore hu ∈ De(Eµ). Moreover, it holds that

Eµ,h(u, u) = lim
n→∞

Eµ,h (un, un) = lim
n→∞

Eµ(hun, hun) = Eµ(hu, hu).

4.2 Hardy-type inequalities
We next consider the following Hardy-type inequality:∫

E

u2 dµ ≤ E(u, u), u ∈ D(E), (4.4)

where µ is a positive smooth measure. We set a function space:

H̃+(µ) :=

{
h

∣∣∣∣∣ h ∈ D†
loc(E) ∩ C(E∂) is strictly positive and

Eµ(h, φ) ≥ 0 for all φ ∈ D(E) ∩ C+
0 (E)

}
.

As an application of Girsanov’s transformations, we shall show that the inequality (4.4)
holds whenever H̃+(µ) ̸= ∅.

Lemma 4.7. For h ∈ H̃+(µ), there exists a positive smooth measure ν such that

N
[h]
t = −

∫ t

0

h(Xs)dA
µ
s − Aν

t , t < ζ, Px-a.s. q.e. x ∈ E.

Proof. LetL := D(E)∩C0(E). Then L is a Stone vector lattice, i.e., f ∧g ∈ L, f ∧1 ∈ L
for any f, g ∈ L. For h ∈ H̃+(µ), define the functional I by

I(φ) = E(h, φ)−
∫
E

hφdµ, φ ∈ L.

Then I(φ) is pre-integral, that is, I(φn) ↓ 0 whenever φn ∈ L and φn(x) ↓ 0 for all
x ∈ E. Indeed, let ψ ∈ D(E)∩C+

0 (E) such that ψ = 1 on supp[φ1]. Then φn ≤ ∥φn∥∞ψ
and

I(φn) ≤ ∥φn∥∞ · I(ψ) ↓ 0 as n→ ∞.
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Noting that the smallest σ-field generated by L is identical with the Borel σ-field, we see
from [10, Theorem 4.5.2] that there exists a Borel measure ν such that

I(φ) =

∫
E

φdν, φ ∈ L. (4.5)

We shall prove that the measure ν is smooth. Let K be a compact set of zero capacity
and take a relatively compact open set D such that K ⊂ D. Then there exists a sequence
{φn} ⊂ D(E) ∩ C+

0 (D) such that φn ≥ 1 on K and E1(φn, φn) → 0 as n → ∞ ([18,
Lemma 2.2.7]). Take ψ ∈ D(E) ∩ C0(E) with ψ = 1 on D and 0 ≤ ψ ≤ 1 on E. Noting
that hψ = h on D and hψ ≤ h, we have

E(hψ, φn) =
1

2

∫
E

dµc
⟨h,φn⟩ +

∫
D×D

(h(x)− h(y))(φn(x)− φn(y))J(dx, dy)

+ 2

∫
D×Dc

(h(x)− hψ(y))φn(x)J(dx, dy) +

∫
E

hφn dκ

≥ 1

2

∫
E

dµc
⟨h,φn⟩ +

∫
D×D

(h(x)− h(y))(φn(x)− φn(y))J(dx, dy)

+ 2

∫
D×Dc

(h(x)− h(y))φn(x)J(dx, dy) +

∫
E

hφn dκ

= E(h, φn).

Consequently,

ν(K) ≤
∫
E

φn dν = E(h, φn)−
∫
E

hφn dµ ≤ E(hψ, φn)

and the right-hand side is dominated by

E(hψ, hψ)1/2 · E(φn, φn)
1/2 −→ 0 as n→ ∞.

Therefore ν is smooth.
The equation (4.5) is equivalent to

E(h, φ) =
∫
E

φh dµ+

∫
E

φdν =

∫
E

φ (h dµ+ dν).

Therefore, we have the lemma by Corollary 2.6.

Suppose H̃+(µ) ̸= ∅ and let h ∈ H̃+(µ). Define a local martingale on the random
interval [[0, ζ[[ by Mt =

∫ t

0
(h(Xs−))

−1dM
[h]
s and let Lh

t be the solution to the following
stochastic differential equation:

Lh
t = 1 +

∫ t

0

Lh
s− dMs, t < ζ.
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Define
dP̃x = Lh

t dPx on Ft ∩ {t < ζ} for x ∈ E.

As we have shown in §3, M̃h := (Ω,Ft, Xt, P̃x) is an h2m-symmetric right process onE.
On the other hand, on account of Lemma 4.7, there exists a positive smooth measure

ν such that

h(Xt) = h(X0) +M
[h]
t −

∫ t

0

h(Xs)dA
µ
s − Aν

t , t < ζ, Px-a.s. q.e. x ∈ E. (4.6)

By Itô’s formula applied to the semimartingale h(Xt) with the function log x, we have

log h(Xt) = log h(X0) +Mt+

∫ t

0

1

h(Xs−)
dN [h]

s − 1

2
⟨M c⟩t

+
∑
0<s≤t

(
log

h(Xs)

h(Xs−)
+ 1− h(Xs)

h(Xs−)

)
Px-a.s.

for q.e. x ∈ E, which leads to

h(Xt)

h(X0)
exp

(
−
∫ t

0

1

h(Xs−)
dN [h]

s

)
= exp

(
Mt −

1

2
⟨M c⟩t +

∑
0<s≤t

(
log

h(Xs)

h(Xs−)
+ 1− h(Xs)

h(Xs−)

))
= Lh

t

Px-a.s. for q.e. x ∈ E, and thus for all x ∈ E. Therefore we see from (4.6) that Lh
t has the

following expression:

Lh
t =

h(Xt)

h(X0)
exp

(
Aµ

t +

∫ t

0

1

h(Xs)
dAν

s

)
.

Hence, a transition semigroup {P̃ h
t } of M̃h is expressed as

P̃ h
t u(x) = Ex

[
Lh

t u(Xt) ; t < ζ
]
=

1

h(x)
P η
t (hu)(x), u ∈ Bb(E), (4.7)

where η := µ + 1
h
ν and P η

t f(x) = Ex [exp(A
η
t )f(Xt); t < ζ]. The identity (4.7) implies

that
1

t
(u− P η

t u, u)m =
1

t

(u
h
− P̃ h

t

(u
h

)
,
u

h

)
h2m

. (4.8)
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Let (Ẽh,D(Ẽh)) be the Dirichlet form on L2(E;h2m) generated by M̃h. On account of
Theorem 3.5, there exists an E-nest {Fk} such that

∪
k≥1 Db(E)Fk

⊂ D
(
Ẽh
)

and

Ẽh(u, u) =
1

2

∫
E

h2 dµc
⟨u⟩ +

∫
E×E

(u(x)− u(y))2h(x)h(y)J(dx, dy)

+ h(∂)

∫
E

u(x)2h(x)κ(dx)

for u ∈
∪

k≥1 Db(E)Fk
. If u is in

∪
k≥1Db(E)Fk

, then so is u/h by the same argument as
in the proof of Lemma 4.2. Thus, we see from (4.8) that the identity

E(u, u)−
∫
E

u2 dµ−
∫
E

u2

h
dν

=
1

2

∫
E

h2 dµc
⟨u/h⟩ +

∫
E×E

(u
h
(x)− u

h
(y)
)2
h(x)h(y)J(dx, dy)

+ h(∂)

∫
E

u2

h
(x)κ(dx)

(4.9)

holds for u ∈
∪

k≥1 Db(E)Fk
. Now we obtain the next theorem.

Theorem 4.8. The identity (4.9) holds for all u ∈ D(E).

Proof. For u ∈ D(E), there exists a sequence {un} ⊂
∪

k≥1 Db(E)Fk
such that un → u

q.e. and E(un, un) → E(u, u) as n→ ∞ ([18, Theorem 2.1.4]). Then we have by Fatou’s
lemma ∫

E

u2
(
dµ+

1

h
dν

)
≤ lim inf

n→∞

∫
E

u2n

(
dµ+

1

h
dν

)
.

From (4.9), the right-hand side is bounded by

lim inf
n→∞

E(un, un) = E(u, u) <∞,

and thus u ∈ L2(E;µ+ 1
h
ν).

On the other hand, by using (4.9) again, we have

Ẽh
(un
h
,
un
h

)
= E(un, un)−

∫
E

u2n dµ−
∫
E

u2n
h
dν

≤ sup
n

E(un, un) <∞.

Since un/h→ u/h q.e., u/h belongs toDe(Ẽh)∩L2(E;h2m) = D(Ẽh) by [36, Definition
1.6] and [18, Theorem 1.5.2]. Therefore, on account of the relation (4.8), we see that the
equation (4.9) holds for all u ∈ D(E).
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Theorem 4.8 tells us that if H̃+(µ) ̸= ∅, then Hardy’s inequality (4.4) holds and the
remainder term is given by

Ẽh
(u
h
,
u

h

)
+

∫
E

u2

h
dν.

Example 4.9. Denote by S00 the family of finite energy measures of finite energy integral
with bounded potentials. For µ ∈ S00 and α > 0, the α-potential Rαµ is in D(E) and

Eα(Rαµ, φ)−
∫
E

φdµ = 0 for all φ ∈ D(E) ∩ C0(E).

Since
∫
E
φdµ =

∫
E
Rαµ · φ 1

Rαµ
dµ, the potential Rαµ is in the space H̃+

(
1

Rαµ
· µ
)

associated with (Eα,D(E)). Thus, we see from Theorem 4.8 that

Eα(u, u) ≥
∫
E

u2

Rαµ
dµ ≥ 1

∥Rαµ∥∞

∫
E

u2dµ (4.10)

for all u ∈ D(E).
Let µ be a smooth measure. Then by [18, Theorem 2.2.4], there exists a compact

E-nest {Fn} such that µn := 1lFn · µ ∈ S00 for each n. By the inequality (4.10), we have∫
E

u2dµn ≤ ∥Rαµn∥∞ · Eα(u, u).

Hence, by letting n→ ∞, we obtain∫
E

u2dµ ≤ ∥Rαµ∥∞ · Eα(u, u) for all u ∈ D(E). (4.11)

This inequality is well-known as the Stollmann-Voigt inequality ([37]).

Recall that H+(µ) is the space of P µ
t -excessive functions defined by (4.2). We next

show that the space H+(µ) coincides with H̃+(µ) under the condition κ = 0. Here κ is
the killing measure of M.

Lemma 4.10. H̃+(µ) is contained in H+(µ). If κ = 0, then the opposite inclusion holds.

Proof. Take h ∈ H̃+(µ) and let {P̃ h
t }t≥0 be the transition semigroup of the Girsanov

transformed process M̃h defined in pp. 40. We see from the identity (4.7) that

P µ
t h(x) ≤ h(x) · P̃ h

t 1(x) ≤ h(x)

and thus h is in H+(µ).
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We next suppose κ = 0. Take h ∈ H+(µ) and φ ∈ D(E)∩C+
0 (E). LetK := supp[φ].

Then for any u ∈ D(E) ∩ C0(E) with u = 1 on K and 0 ≤ u ≤ 1 on E, it holds that

E(hu, φ)−
∫
E

huφdµ ≥ 0.

Indeed, the left-hand side is equal to

lim
t↓0

1

t

(
hu− P µ

t (hu), φ
)
m
= lim

t↓0

1

t

((
h, φ

)
m
−
(
P µ
t (hu), φ

)
m

)
.

Since P µ
t (hu) ≤ P µ

t h ≤ h, the right-hand side is nonnegative. Take a sequence of
relatively compact open sets {Dn} such that Dn ↑ E and K ⊂ Dn for each n. Then there
exists a sequence {un} ⊂ D(E) ∩ C0(E) such that un = 1 on Dn and 0 ≤ un ≤ 1 on E.
Since un = 1 on K = supp[φ], we have

E(hun, φ)

=
1

2

∫
E

dµc
⟨hun,φ⟩ +

∫
E×E

(hun(x)− hun(y))(φ(x)− φ(y))J(dx, dy)

+

∫
E

hunφdκ

=
1

2

∫
E

dµc
⟨h,φ⟩ +

∫
K×K

(h(x)− h(y))(φ(x)− φ(y))J(dx, dy)

+ 2

∫
K×(D1∩Kc)

(h(x)− h(y))(φ(x)− φ(y))J(dx, dy)

+ 2

∫
K×(Dc

1∩Kc)

(h(x)− hun(y))(φ(x)− φ(y))J(dx, dy).

Since |h(y)un(y)φ(x)| ≤ h(y)φ(x) and
∫
K×(Dc

1∩Kc)
h(y)φ(x)J(dx, dy) < ∞, the fourth

term on the right-hand side tends to

2

∫
K×(Dc

1∩Kc)

(h(x)− h(y))(φ(x)− φ(y))J(dx, dy)

as n→ ∞ by the Lebesgue convergence theorem. Consequently, we have

E(h, φ)−
∫
E

hφ dµ = lim
n→∞

(
E(hun, φ)−

∫
E

hunφdµ

)
≥ 0.
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4.3 Existence of excessive functions
Let µ ∈ K∞, the set of Green-tight measures. In this section, we consider the existence of
a function in H+(µ). Define

λ(µ) := inf

{
E(u, u)

∣∣∣u ∈ D(Eµ),

∫
E

u2dµ = 1

}
. (4.12)

Note that the condition λ(µ) ≥ 1 is equivalent to Hardy’s inequality (4.4). Hence, we see
from Theorem 4.8 that the next result holds.

Lemma 4.11. If λ(µ) < 1, then H+(µ) = ∅.

4.3.1 The case λ(µ) > 1

In this subsection we treat the case that λ(µ) > 1. For a smooth measure µ, let gµ be a
so-called gauge function defined by

gµ(x) := Ex

[
exp(Aµ

ζ )
]
.

It is known in [3, Thoerem 5.1] that gµ is a bounded function if and only if λ(µ) > 1.

Lemma 4.12. Assume that λ(µ) > 1. Then the gauge function gµ is excessive with respect
to {P µ

t }, P µ
t gµ(x) ↑ gµ(x) as t ↓ 0.

Proof. Noting that Ex

[
eA

µ
ζ (θt)

∣∣Ft

]
= EXt

[
eA

µ
ζ

]
by the Markov property,

P µ
t gµ(x) = Ex

[
eA

µ
t gµ(Xt); t < ζ

]
= Ex

[
eA

µ
t EXt

[
eA

µ
ζ

]
; t < ζ

]
= Ex

[
Ex

[
eA

µ
t +Aµ

ζ (θt)1l{t<ζ}
∣∣Ft

]]
.

SinceAµ
t +A

µ
ζ (θt) = Aµ

ζ on {t < ζ}, the right-hand side equalsEx

[
eA

µ
ζ ; t < ζ

]
. Therefore

P µ
t gµ(x) = Ex

[
eA

µ
ζ ; t < ζ

]
↑ Ex

[
eA

µ
ζ
]
= gµ(x) as t ↓ 0.

Lemma 4.13. It holds that

gµ(x) = 1 +R(gµ · µ)(x).



45

Proof. Fix x ∈ E and define a uniformly integrable martingale {Mt} by

Mt = Ex

[
exp(Aµ

ζ )|Ft

]
.

Since Aµ
t + Aµ

ζ (θt) = Aµ
ζ on {t < ζ}, we have

e−Aµ
tMt1l{t<ζ} = e−Aµ

t Ex

[
eA

µ
ζ 1l{t<ζ}

∣∣Ft

]
= e−Aµ

t Ex

[
eA

µ
t +Aµ

ζ (θt)1l{t<ζ}
∣∣Ft

]
= Ex

[
eA

µ
ζ (θt)

∣∣Ft

]
1l{t<ζ}.

By the Markov property, the right-hand side equals

EXt

[
eA

µ
ζ
]
1l{t<ζ} = gµ(Xt)1l{t<ζ},

and thus ∫ t

0

gµ(Xs)dA
µ
s =

∫ t

0

e−Aµ
sMsdA

µ
s .

Hence by Itô’s formula,

e−Aµ
tMt =M0 +

∫ t

0

e−Aµ
s dMs −

∫ t

0

e−Aµ
sMsdA

µ
s

=M0 +

∫ t

0

e−Aµ
s dMs −

∫ t

0

gµ(Xs)dA
µ
s .

Since
∫ t

0
e−Aµ

s dMs is a Px-martingale, Ex

[∫ t

0
e−Aµ

s dMs

]
= 0 and thus

Ex[M0] = Ex

[
e−Aµ

ζMζ

]
+ Ex

[∫ ζ

0

gµ(Xs)dA
µ
s

]
.

Noting that Ex[M0] = gµ(x), e−Aµ
ζMζ = e−Aµ

ζ eA
µ
ζ = 1 and

Ex

[∫ ζ

0

gµ(Xs)dA
µ
s

]
= R(gµ · µ)(x),

we have the lemma.

Theorem 4.14. The gauge function gµ belongs to H+(µ) ∩ Cb(E∂).

Proof. First note that gµ · µ ∈ K∞. Hence, on account of Lemma 4.12 and 4.13, we have
only to prove that Rν is in C∞(E) ∩ Dloc(E) for any ν ∈ K∞. Here C∞(E) is the set
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of continuous functions vanishing at infinity. Since Rν ∈ Bb(E) by [3, Proposition 2.2],
Pt

(
Rν
)
∈ Cb(E) by the strong Feller property. We have by the Markov property

∥Rν − Pt

(
Rν
)
∥∞ = sup

x∈E

(
Ex

[
Aν

ζ

]
− Ex

[
Aν

ζ (θt)
])

= sup
x∈E

Ex[A
ν
t ].

Since the right-hand side tends to 0 as t ↓ 0 by (4.1), Rν belongs to Cb(E).
We take an increasing sequence of compact sets {Kn} such that Kn ↑ E and

∥R(1lKc
n
ν)∥∞ ↓ 0 as n→ ∞.

The existence of such {Kn} follows from the definition of a Green-tight measure. Note
that for each n, a measure νn := 1lKnν is also Green-tight, and thus Rνn ∈ Cb(E) by the
argument above. Since ∫

E

∫
E

R(x, y)νn(dx)νn(dy) <∞,

it follows from [38, Lemma 3.1] that Rνn ∈ De(E), and thus Rνn(x) → 0 as x → ∂.
Thus Rνn belongs to C∞(E) and

sup
x∈E

|Rν(x)−Rνn(x)| = sup
x∈E

|R(1lKc
n
ν)(x)| ↓ 0 as n→ ∞.

Therefore Rν is in C∞(E).
The function Rν is an element of Dloc(E) because a bounded excessive function with

respect to {Pt} belongs to Dloc(E). Indeed, take a bounded excessive function u and set
un := u ∧ ∥u∥∞(nR1f ∧ 1) for a strictly positive bounded function f ∈ L2(E;m). We
further set En := {x ∈ E : R1f(x) > 1/n}. Then En is an open set by the strong Feller
property and

∪
n∈NEn = E. Since un ≤ ∥u∥∞(nR1f ∧ 1), un ∈ D(E) by [18, Lemma

2.3.2] and u = un on En. Therefore u is in Dloc(E).

On account of Theorem 4.14, we can define the Dirichlet form (Eµ,gµ ,D(Eµ,gµ)) by{
D(Eµ,gµ) = {u ∈ L2(E; g2µm) | gµu ∈ D(Eµ)},
Eµ,gµ(u, v) = Eµ(gµu, gµv), u, v ∈ D(Eµ,gµ).

Lemma 4.15. The Dirichlet form (Eµ,gµ ,D(Eµ,gµ)) is transient.
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Proof. From the definition of λ(µ),

E(u, u) ≥ λ(µ)

∫
E

u2dµ, u ∈ D(Eµ),

and thus

Eµ(u, u) = E(u, u)−
∫
E

u2dµ ≥
(
λ(µ)− 1

λ(µ)

)
· E(u, u), u ∈ D(Eµ). (4.13)

Take v ∈ De(Eµ,gµ) with Eµ,gµ(v, v) = 0, where De(Eµ,gµ) denotes the extended Dirichlet
space of (Eµ,gµ ,D(Eµ,gµ)). Then there exists a sequence {vn} ⊂ D(Eµ,gµ) such that
vn → v m-a.e. and Eµ,gµ(vn, vn) → 0 as n→ ∞. We have by (4.13)

E(gµvn, gµvn) ≤
(

λ(µ)

λ(µ)− 1

)
· Eµ(gµvn, gµvn)

=

(
λ(µ)

λ(µ)− 1

)
· Eµ,gµ(vn, vn) → 0 as n→ ∞.

Therefore gµv ∈ De(E) and E(gµv, gµv) = 0, which implies that gµv = 0 m-a.e. because
of the transience of (E ,D(E)) and [18, Theorem 1.6.2]. Since the function gµ is strictly
positive, v = 0m-a.e. and thus (Eµ,gµ ,D(Eµ,gµ)) is transient.

Let Rµ
β be the β-resolvent of Lµ,

Rµ
βf(x) =

∫ ∞

0

e−βtP µ
t f(x)dt = Ex

[∫ ζ

0

e−βt+Aµ
t f(Xt)dt

]
, f ∈ Bb(E).

We write Rµ for Rµ
0 simply. Denote by B+

b,0(E) the set of nonnegative bounded functions
on E with compact support. Next lemmas are used to show the existence of an excessive
function when λ(µ) = 1.

Lemma 4.16. Let µ ∈ K∞ with λ(µ) > 1. Then for φ ∈ B+
b,0(E), Rµφ is bounded.

Proof. Put K := supp[φ]. Note that P µ,gµ
t is a transient semigroup with (LSC) by

Lemma4.15 and Remark 4.5. Hence, we see from [19, Corollary 2.3] that Rµ,gµ1lK is a
bounded function. Here Rµ,gµ is the Green operator of (Eµ,gµ ,D(Eµ,gµ)):

Rµ,gµf =
1

gµ
Rµ(gµ · f).

Noting that φ ≤ ∥φ∥∞1lKgµ, we have

Rµφ(x) ≤ ∥φ∥∞Rµ(1Kgµ)(x) = ∥φ∥∞ gµ(x) ·Rµ,gµ1lK(x).

Since gµ and Rµ,gµ1lK are bounded, the lemma holds.
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Lemma 4.17. Let µ ∈ K∞ with λ(µ) > 1. Then for φ ∈ B+
b,0(E), Rµφ ∈ De(Eµ) and

Eµ(Rµφ, u) =

∫
E

φudm, u ∈ De(Eµ).

Proof. Put K := supp[φ]. Then we have by Lemma 4.16∫
E

φ

gµ
·Rµ,gµ

(
φ

gµ

)
g2µ dm =

∫
E

φ ·Rµφdm ≤ m(K) ∥φ∥∞ · ∥Rµφ∥∞
<∞.

Thus [18, Theorem 1.5.4] and Lemma 4.6 tell us that Rµφ = gµR
µ,gµ(φ/gµ) ∈ De(Eµ)

and for any u ∈ De(Eµ),

Eµ,gµ

(
Rµ,gµ

(
φ

gµ

)
,
u

gµ

)
=

(
φ

gµ
,
u

gµ

)
g2µm

= (φ, u)m.

Noting that the left-hand side above equals

Eµ,gµ

(
Rµφ

gµ
,
u

gµ

)
= Eµ(Rµφ, u),

we have the lemma.

4.3.2 The case λ(µ) = 1

In this subsection, we treat the case that µ ∈ K∞ and λ(µ) = 1. We see from [40, Theorem
2.1] that there exists a minimizer ψ ∈ De(E) in (4.12):

ψ > 0, E(ψ, ψ) = 1 and
∫
E

ψ2dµ = 1. (4.14)

Lemma 4.18. The measure ψ · µ is of 0-order finite energy integral with respect to E .
Consequently, by [18, Theorem 2.2.5], R(ψµ) ∈ De(E) and

E
(
R(ψµ), u

)
=

∫
E

uψ dµ, u ∈ De(E).

Proof. Since λ(µ) = 1, it holds that for u ∈ De(E),∫
E

u2dµ ≤ E(u, u).

Then by Schwarz’s inequality and (4.14), we obtain∫
E

uψ dµ ≤
(∫

E

ψ2dµ

) 1
2
(∫

E

u2dµ

) 1
2

≤ E(u, u)
1
2 .
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The function ψ is also characterized by

0 = E(ψ, u)−
∫
E

ψu dµ, u ∈ De(E). (4.15)

Hence we see from Lemma 4.18 that

E(ψ, u) = E
(
R(ψµ), u

)
, u ∈ De(E),

and thus
ψ(x) = R(ψµ)(x) = Ex

[∫ ζ

0

ψ(Xt)dA
µ
t

]
, m-a.e. (4.16)

Now we define

h(x) := Ex

[∫ ζ

0

ψ(Xt)dA
µ
t

]
. (4.17)

By the arguments in [42] and [39], we will show that the function h is in H+(µ) and
P µ
t -invariant, that is, P µ

t h = h.

Lemma 4.19. The function h is finely continuous.

Proof. By the Markov property,

h(Xs) = EXs

[∫ ζ

0

ψ(Xt)dA
µ
t

]
= Ex

[∫ ζ

0

ψ(Xt+s)dA
µ
t (θs)

∣∣∣Fs

]
= Ex

[∫ ζ

0

ψ(Xt)dA
µ
t

∣∣∣Fs

]
−
∫ s

0

ψ(Xt)dA
µ
t .

Since the first term of the right-hand side is right continuous in s because of the right
continuity of Fs, h is finely continuous by [18, Theorem A.2.7].

Note that h = ψ q.e. by (4.16) and [18, Lemma 4.1.5]. Hence by [18, Theorem 4.1.2],
there exists a nearly Borel set B ⊃ {x ∈ E : h(x) ̸= ψ(x)} such that Px(σB < ∞) = 0

for every x ∈ E, where σB is the hitting time of B. Therefore, the next lemma follows
from (4.17).

Lemma 4.20. The function h is strictly positive and satisfies

h(x) = Ex

[∫ ζ

0

h(Xt)dA
µ
t

]
for all x ∈ E.

Lemma 4.21. For w ∈ B+
b,0(E) with

∫
E
w dm > 0, let ν = µ− w ·m. Then

λ(ν) := inf

{
E(u, u) +

∫
E

u2w dm
∣∣∣u ∈ D(E),

∫
E

u2dµ = 1

}
> 1.
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Proof. It is clear that λ(ν) ≥ λ(µ) = 1. Suppose λ(ν) = 1. Then by the argument above,
there exists a strictly positive function h0 ∈ De(E) such that

E
(
h0, h0

)
+

∫
E

h20 · w dm = 1 and
∫
E

h20 dµ = 1.

Thus we have

E(h0, h0) = E(h0, h0) +
∫
E

h20w dm−
∫
E

h20w dm

= 1−
∫
E

h20w dm < 1.

This implies λ(µ) < 1, which is contradictory.

Lemma 4.22. The function h is bounded.

Proof. Since h is quasi-continuous, there exists a compact set K0 with m(K0) > 0 on
which h is continuous. Put ν = µ− 1lK0 ·m. Then λ(ν) > 1 by Lemma 4.21. Recall that
for φ ∈ B+

b,0(E) and β > 0, Rν
βφ and Rνφ are functions defined by

Rν
βφ(x) = Ex

[∫ ζ

0

e−βt+Aν
tφ(Xt)dt

]
and Rνφ(x) = Rν

0φ(x).

The function Rν
βφ belongs to D(Eν) and Rν

βφ ↑ Rνφ as β ↓ 0. On account of Lemma
4.17, Rνφ ∈ De(Eν) and

Eν(Rνφ, u) =

∫
E

φudm, u ∈ De(Eν). (4.18)

Noting that Eµ(h,Rν
βφ) = 0 by (4.15), we have

Eν(h,Rν
βφ) = Eµ(h,Rν

βφ) +

∫
K0

h ·Rν
βφdm =

∫
K0

h ·Rν
βφdm.

By letting β ↓ 0, we get

Eν(h,Rνφ) =

∫
K0

h ·Rνφdm =

∫
E

Rν(1lK0h) · φdm.

Since the left-hand side above equals (h, φ)m by (4.18), it holds that

h = Rν(1lK0h) m-a.e. x ∈ E.

In the equality above we can replace “m-a.e. x” by “all x” by the same argument as after
the proof of Lemma 4.19. Since Rν(1lK0h) is bounded by Lemma 4.21 and 4.16, we have
the lemma.
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Lemma 4.23. The function h satisfies P µ
t h = h.

Proof. By (4.15), h satisfies

E(h, v) =
∫
E

v (h · dµ) for any v ∈ D(E) ∩ C0(E).

Thus, it follows from [18, Theorem 5.4.2] that

h(Xt) = h(X0) +M
[h]
t −

∫ t

0

h(Xs)dA
µ
s , Px-a.s. for q.e. x ∈ E, (4.19)

where M [h] is the martingale part of Fukushima’s decomposition. Hence we have by Itô’s
formula

eA
µ
t h(Xt) = h(X0) +

∫ t

0

eA
µ
s dM [h]

s −
∫ t

0

h(Xs)e
Aµ

s dAµ
s +

∫ t

0

h(Xs)e
Aµ

s dAµ
s

= h(X0) +

∫ t

0

eA
µ
s dM [h]

s ,

Px-a.s. q.e. x ∈ E. Let τn := inf{t > 0 ;Aµ
t > n}. Then since

∫ τn∧t
0

eA
µ
s dM

[h]
s is a

martingale, we have

h(x) = Ex

[
eA

µ
τn∧th(Xτn∧t)

]
− Ex

[∫ τn∧t

0

eA
µ
s dM [h]

s

]
= Ex

[
eA

µ
τn∧th(Xτn∧t)

]
.

Note that by Lemma 4.22 and the strong Feller property of P µ
t ,

eA
µ
τn∧th(Xτn∧t) ≤ ∥h∥∞ · en ∈ L1(Px)

and that τn → ∞ as n → ∞ Px-a.s. We then see that by the dominated convergence
theorem

h(x) = lim
n→∞

Ex

[
eA

µ
τn∧th(Xτn∧t)

]
= Ex

[
eA

µ
t h(Xt)

]
= P µ

t h(x) for q.e. x ∈ E,

and thus for all x ∈ E.

Theorem 4.24. The function h is in H+(µ).

Proof. Note that h ∈ Cb(E) by Lemma 4.22, Lemma 4.23 and the strong Feller property
of P µ

t . Hence, the function h is an element of H+(µ) because a bounded function u in
De(E) belongs to Dloc(E). Indeed, let {un} ⊂ D(E) be an approximating sequence for
u ∈ De(E) ∩Bb(E), that is, limn→∞ un = u m-a.e. and supn E(un, un) < ∞. We may
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assume that |un(x)| ≤ ∥u∥∞ for all n and x. Let G be a relatively compact open set and
take a function φ in D(E) ∩ C0(E) such that φ = 1 on G. Then unφ→ uφ m-a.e. and

sup
n

E(unφ, unφ)1/2 ≤ ∥u∥∞ · E(φ, φ)1/2 + ∥φ∥∞ · E(un, un)1/2 <∞.

Hence, uφ belongs to De(E) ∩ L2(E;m) and so to D(E) by [18, Theorem 1.5.2 (iii)].
Since u = uφ on G, u belongs to Dloc(E).

Define the Dirichlet form (Eµ,h,D(Eµ,h)) by{
D(Eµ,h) = {u ∈ L2(E;h2m) |hu ∈ D(E)},
Eµ,h(u, v) = Eµ(hu, hv), u, v ∈ D(Eµ,h).

Recall that {u |hu ∈ De(Eµ)} = De(Eµ,h) by Lemma 4.6. Since the function h is
in De(Eµ) and Eµ(h, h) = 0, the constant function 1 = h/h belongs to De(Eµ,h) and
Eµ,h(1, 1) = 0 ; this implies that the Dirichlet form (Eµ,h,D(Eµ,h)) is recurrent. Therefore
we have the next result.

Lemma 4.25. The Dirichlet form (Eµ,h,D(Eµ,h)) is recurrent.

4.4 Hardy’s inequalities for Green-tight measures
We discuss the relation between Schrödinger forms and Girsanov transformed Dirichlet
forms treated in Chapter 3.

4.4.1 The case λ(µ) = 1

Suppose that µ ∈ K∞ and λ(µ) = 1. Then we see from arguments in the previous
subsection that there exists a strictly positive function h ∈ De(E) ∩ Cb(E) such that

E(h, h) = 1,

∫
E

h2dµ = 1 and P µ
t h = h.

Let h(Xt) − h(X0) = M
[h]
t + N

[h]
t be Fukushima’s decomposition. Then we see from

(4.19) that

N
[h]
t = −

∫ t

0

h(Xs)dA
µ
s , Px-a.s. for q.e. x ∈ E. (4.20)
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Let Lh
t be the unique solution of

Lh
t = 1 +

∫ t

0

Lh
s−

1

h(Xs−)
dM [h]

s

and M̃h = (Ω, Xt,Ph
x) the transformed process by multiplicative functional Lh

t , i.e.,
dPh

x := Lh
t · dPx on Ft ∩ {t < ζ}. Let

(
Ẽh,D(Ẽh)

)
be the Dirichlet form on L2(E;h2m)

generated by M̃h. Since h is bounded, we see from Theorem 3.6 that D(E) ⊂ D(Ẽh). By
the computation similar to that in pp. 40-41, we can show that

Lh
t =

h(Xt)

h(X0)
exp (Aµ

t )

and

Eµ,h(u, u) = Ẽh(u, u)

=
1

2

∫
E

h(x)2µc
⟨u⟩(dx) +

∫
E×E

(u(x)− u(y))2h(x)h(y)J(dx, dy)

for u ∈ D(E). Consequently, we get the following representation.

Theorem 4.26. Let µ ∈ K∞ with λ(µ) = 1. Then D(E) ⊂ D(Eµ,h) and

Eµ,h(u, u) =
1

2

∫
E

h(x)2µc
⟨u⟩(dx) +

∫
E×E

(u(x)− u(y))2h(x)h(y)J(dx, dy)

for u ∈ D(E).

4.4.2 The case λ(µ) > 1

Suppose that µ ∈ K∞(R) and λ(µ) > 1. Then we see from the argument in §4.3.1 that
the gauge function gµ(x) = Ex

[
exp
(
Aµ

ζ

)]
is in H+(µ) ∩ Cb(E). Note that gµ(∂) = 1

because P∂(At ≡ 0) = 1.

Lemma 4.27. Define
M

µ,gµ
t := eA

µ
t gµ(Xt)− gµ(X0).

Then Mµ,gµ is a martingale with respect to Px.

Proof. From the proof of Lemma 4.13,

eA
µ
t gµ(Xt)1l{t<ζ} = Ex

[
eA

µ
ζ 1l{t<ζ}|Ft

]
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and
P µ
t gµ(x) = Ex

[
eA

µ
ζ ; t < ζ

]
. (4.21)

Noting that gµ(∂) = 1, we have

Ex

[
eA

µ
t gµ(Xt)

]
= Ex

[
eA

µ
t gµ(Xt) ; t < ζ

]
+ Ex

[
eA

µ
ζ ; t ≥ ζ

]
= P µ

t gµ(x) + Ex

[
eA

µ
ζ ; t ≥ ζ

]
.

The right-hand side equals gµ(x) by (4.21), and thus Ex

[
M

µ,gµ
t

]
= 0. Since

M
µ,gµ
s+t = eA

µ
s+tgµ(Xs+t)− gµ(X0)

= eA
µ
s
(
eA

µ
t (θs)gµ(Xs+t)− gµ(Xs)

)
+ eA

µ
s gµ(Xs)− gµ(X0)

= eA
µ
sM

µ,gµ
t (θs) +Mµ,gµ

s ,

we have by the Markov property

Ex

[
M

µ,gµ
s+t |Fs

]
= eA

µ
sEXs [M

µ,gµ
t ] +Mµ,gµ

s =Mµ,gµ
s .

Since the gauge function gµ is in Dloc(E)∩Cb(E∂) by Theorem 4.14, gµ(Xt)−gµ(X0)

has Fukushima’s decomposition:

gµ(Xt)− gµ(X0) =M
[ gµ]
t +N

[ gµ]
t , t ∈ [0, ζ[, Px-a.s. for q.e. x ∈ E.

Then by Itô’s formula, we have

gµ(Xt) = e−Aµ
t
(
gµ(X0) +M

µ,gµ
t

)
= gµ(X0) +

∫ t

0

e−Aµ
s dMµ,gµ

s +

∫ t

0

eA
µ
s gµ(Xs)e

−Aµ
s (−dAµ

s )

= gµ(X0) +

∫ t

0

e−Aµ
s dMµ,gµ

s −
∫ t

0

gµ(Xs)dA
µ
s .

Thus we get

M
[gµ]
t =

∫ t

0

e−Aµ
s dMµ,gµ

s , N
[gµ]
t = −

∫ t

0

gµ(Xs)dA
µ
s .

Define a local martingale by Mt =
∫ t

0
(gµ(Xs−))

−1dM
[gµ]
s and let Lgµ

t be the unique
solution of Lgµ

t = 1 +
∫ t

0
L
gµ
s−dMs. (Ẽgµ ,D(Ẽgµ)) denotes the Girsanov transformed

Dirichlet form by Lgµ
t . Then by the same argument as that in §4.4.1,{

D(Ẽgµ) = D(Eµ,gµ) = {u ∈ L2(E; g2µ ·m) : gµu ∈ D(E)},
Ẽgµ(u, u) = Eµ,gµ(u, u), u ∈ D(Ẽgµ).
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Moreover, since 1 ≤ gµ ≤ ∥gµ∥∞, we see from Theorem 3.6 that D(Ẽgµ) = D(E) and

Ẽgµ(u, u) =
1

2

∫
E

gµ(x)
2 µc

⟨u⟩(dx) +

∫
E×E

(u(x)− u(y))2gµ(x)gµ(y)J(dx, dy)

+

∫
E

u(x)2gu(x)κ(dx), u ∈ D(E).

Therefore we obtain the next conclusion.

Theorem 4.28. Suppose that µ ∈ K∞ and λ(µ) > 1. Then D(Eµ,gµ) = D(E) and

Eµ,gµ(u, u) =
1

2

∫
E

g2µ dµ
c
⟨u⟩ +

∫
E×E

(u(x)− u(y))2gµ(x)gµ(y)J(dx, dy)

+

∫
E

u(x)2gu(x)κ(dx)

for u ∈ D(E).
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Chapter 5

Quasi-stationary distributions

5.1 Quasi-stationary distributions
A probability measure ν on E is said to be a quasi-stationary distribution (QSD in
abbreviation) of M if for all t ≥ 0 and any Borel set B,

ν(B) =
Pν(Xt ∈ B, t < ζ)

Pν(t < ζ)
.

QSDs capture the long-time behavior of the process that will be surely killed when this
process is conditioned to survive (for more informations on QSDs, we refer the recent
survey [29]). In this section, we consider the existence of QSDs. The next limiting
conditional distribution, so-called Yaglom limit is useful to find QSDs.

Definition 5.1. A probability measure ν on E is said to be a Yaglom limit of M if for any
x ∈ E and any Borel set B,

ν(B) = lim
t→∞

Px(Xt ∈ B, t < ζ)

Px(t < ζ)
. (5.1)

We can easily show that Yaglom limit is always a QSD. However, it is known that
the existence of a Yaglom limit does not always guarantee the uniqueness of QSDs. In
[23], Knobloch and Partzsch proved that for a (not necessary symmetric) Markov process,
the intrinsic ultracontractivity (see Definition 5.4 below) is a sufficient condition for the
uniqueness of QSDs. We will give another proof of this fact for symmetric Markov
processes.

Let λ0 be the bottom of the spectrum:

λ0 := inf

{
E(u, u) : u ∈ D(E),

∫
E

u2 dm = 1

}
.
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A function ϕ0 on E is called a ground state of the L2-generator of E if

ϕ0 ∈ D(E),
∫
E

ϕ2
0 dm = 1, and E(ϕ0, ϕ0) = λ0.

Suppose that there exists a strictly positive ground state ϕ0. Then since

E(ϕ0, u) = λ0(ϕ0, u)m for any u ∈ D(E) ∩ C0(E),

it follows from [18, Theorem 5.4.2] that ϕ0(Xt)− ϕ0(X0) is decomposed as

ϕ0(Xt)− ϕ0(X0) =M
[ϕ0]
t − λ0

∫ t

0

ϕ0(Xs)ds, Px-a.s.

Here M [ϕ0] is the martingale part in Fukushima’s decomposition. By the calculation
similar to that in §4.4.1, we can show that

Lϕ0
t = eλ0t

ϕ0(Xt)

ϕ0(X0)
, t < ζ,

where Lϕ0
t be a multiplicative functional defined by (3.3) with ρ = ϕ0. Denote by

M̃ϕ0 = (Ω, Xt, P̃x) the Girsanov transformed process by Lϕ0
t , i.e., dP̃x := Lϕ0

t dPx. Its
transition semigroup {P̃ ϕ0

t } on L2(E;ϕ2
0m) equals

P̃ ϕ0
t f(x) = eλ0t

1

ϕ0(x)
Ex

[
ϕ0(Xt)f(Xt) ; t < ζ

]
. (5.2)

The process M̃ϕ0 is conservative, P̃ ϕ0
t 1 = 1. Now, we obtain the result on the existence of

QSDs. The next theorem due to Fukushima [17] plays a key role for the proof.

Theorem 5.2. Assume that m(E) < ∞ and M is conservative, Pt1 = 1. Then for
f ∈ L1(E;m),

lim
t→∞

Ptf(x) =
1

m(E)

∫
E

f dm, m-a.e. and in L1(E;m).

Note that the process M̃ϕ0 satisfies the assumption in Theorem 5.2.

Theorem 5.3. Assume that there exists a ground state ϕ0 of (E ,D(E)) belonging to
L1(E;m) ∩Bb(E). Then a measure ν on E defined by

ν(B) :=

∫
B
ϕ0 dm∫

E
ϕ0 dm

(5.3)

is a unique QSD of M.
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Proof. The proof is based on an idea in [41]. Note that 1lB/ϕ0 belongs to L1(E;ϕ2
0m) for

any Borel set B. By applying Theorem 5.2 to M̃ϕ0 , we have

lim
t→∞

P̃ ϕ0
t

(
1lB
ϕ0

)
(x) =

∫
B

ϕ0 dm, ϕ2
0m-a.e. (5.4)

Hence it follows from (5.2) and (5.4) that

lim
t→∞

Px(Xt ∈ B, t < ζ)

Px(t < ζ)
= lim

t→∞

P̃ ϕ0
t

(
1lB
ϕ0

)
(x)

P̃ ϕ0
t

(
1
ϕ0

)
(x)

= ν(B).

Therefore ν is a Yaglom limit, and thus, a QSD.
Secondly, we prove the uniqueness. Let µ be a QSD of M. By the definition of QSD,

we have for t > 0 and any Borel set B

µ(B) =

∫
E
Pt1lB dµ∫

E
Pt1 dµ

=

∫
E
ϕ0 P̃

ϕ0
t

(
1lB
ϕ0

)
dµ∫

E
ϕ0 P̃

ϕ0
t

(
1
ϕ0

)
dµ

.

By using (5.4) again, we see that the right-hand side tends to∫
E
ϕ0 dµ

∫
B
ϕ0 dm∫

E
ϕ0 dµ

∫
E
ϕ0 dm

= ν(B) as t→ ∞,

which implies the uniqueness of a QSD.

Theorem 5.3 requires that ϕ0 belongs to L1(E;m). If m is a finite measure, this is
always satisfied. However whenm(E) = ∞, ϕ0 does not always belong to L1(E;m). We
now give sufficient conditions for ϕ0 being in L1(E;m).

Definition 5.4. Assume that there exists a ground stateϕ0. We say that a Markov semigroup
{Pt}t≥0 has the intrinsic ultracontractivity (IU in abbreviation) if for any t > 0, there exist
positive constants αt, βt such that

αtϕ0(x)ϕ0(y) ≤ pt(x, y) ≤ βtϕ0(x)ϕ0(y) for all x, y ∈ E. (5.5)

The notion of IU was introduced by Davies and Simon [9], and investigated extensively
because of its important consequences (see [23, 30, 43] and references therein). Note that
the IU implies that ϕ0 belongs to L1(E;m) ∩ Bb(E). Indeed, by integrating the left-hand
inequality of (5.5) with respect to y over E, we have

αtϕ0(x)

∫
E

ϕ0(y)m(dy) ≤
∫
E

pt(x, y)m(dy) ≤ 1.

Hence, the next result follows from Theorem 5.3.
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Corollary 5.5. Assume that {Pt} has the IU. Then a measure ν defined by (5.3) is a unique
QSD of M.

5.2 QSD’s of one-dimensional diffusion processes
By applying the previous result, we give an example of one-dimensional diffusion processes
that has a quasi-stationary distribution.

We consider the stochastic differential equation:

dZt =
√
Zt dBt + (Zt − Z2

t )dt, Z0 > 0,

where {Bt}t≥0 is a standard one-dimensional Brownian motion. The solution Z = {Zt}
is a diffusion process on I = (0,∞) with lifetime ζ = inf{t > 0 : Zt = 0 or ∞}. The
process Z is called a logistic Feller diffusion process, which is derived from biological
models. It is proved in [2] that a unique QSD of the process Z exists. We would like to
give another proof of this fact.

We firstly make a change of variable and introduce the process Y = {Yt} defined by
Yt = 2

√
Zt. Y is still absorbed at 0 and a QSD of Z is easily deduced from a QSD of Y .

From now on, we focus on the process Y and prove that it has the IU. By Itô’s formula,

dYt =
1√
Zt

dZt −
1

4
√
Z3

t

Zt dt

=
1√
Zt

(√
Zt dBt + (Zt − Z2

t )dt
)
− 1

4
√
Zt

dt.

Hence, Y is a solution of the following stochastic differential equation:

dYt = dBt − q(Yt)dt, q(u) :=
1

2u
− u

2
+
u3

8
.

We define

Q(x) := 2

∫ x

1

q(u)du

= log x− x2

2
+
x4

16
+

7

16

Since the constant term does not affect further arguments, we may replace Q(x) :=

Q(x)− 7/16. We define functions on I by

m(x) :=

∫ x

1

e−Q(u)du, s(x) :=

∫ x

1

eQ(u)du.
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Then m and s are the speed measure and the scale function of Y respectively. Note that
m is a symmetrization measure of the process Y and m(I) = ∞.

Generally, a one-dimensional diffusion process on an open interval (ℓ, r) has the irre-
ducibility and the strong Feller property, and its boundary points ℓ and r are classified into
four classes: regular boundary, exit boundary, entrance boundary and natural boundary
(see [11] or [21]).

Lemma 5.6. For the process Y , its boundary point 0 is exit and ∞ is entrance.

Proof. We define

I(x) :=

∫ x

1

ds(y)

∫ y

1

dm(z), J(x) :=

∫ x

1

dm(y)

∫ y

1

ds(z) for x ∈ [0,∞].

We first prove that the point 0 is an exit boundary, which is equivalent to I(0) < ∞ and
J(0) = ∞. By the definition,

I(0) =

∫ 1

0

eQ(y)

(∫ 1

y

e−Q(z)dz

)
dy.

Since
∫ 1

y
e−Q(z)dz and e−Q(y) tend to ∞ as y → 0, we have by l’Hôpital’s rule

lim
y↓0

∫ 1

y
e−Q(z)dz

e−Q(y)
= lim

y↓0

1

Q′(y)
= 0.

This yields that eQ(y)
∫ 1

y
e−Q(z)dz is bounded in [0, 1], which implies I(0) < ∞. On the

other hand,

J(0) =

∫ 1

0

e−Q(y)

(∫ 1

y

eQ(z)dz

)
dy.

Since e−Q(y) = O(y−1) and eQ(y) tend to 0 as y → 0, we see that J(0) = ∞. Thus 0 is an
exit boundary.

We next prove that ∞ is an entrance boundary, which is equivalent to I(∞) = ∞ and
J(∞) <∞. Since

I(∞) ≥
∫ ∞

2

eQ(y)

(∫ y

1

e−Q(z)dz

)
dy

≥
∫ 2

1

e−Q(z)dz

∫ ∞

2

eQ(y)dy
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and eQ(y) tends to ∞ as y → ∞, we get I(∞) = ∞. Finally, we compute the value of
J(∞). We have by l’Hôpital’s rule

lim
y→∞

∫ y

1
eQ(z)dz

y−3eQ(y)
= 4. (5.6)

This implies that there exists a constant C > 0 such that for sufficiently large y,

e−Q(y)

∫ y

1

eQ(z)dz <
C

y3
.

Therefore, taking M > 0 large enough, we get

J(∞) =

∫ ∞

1

e−Q(y)

(∫ y

1

eQ(z)dz

)
dy

<

∫ M

1

e−Q(y)

(∫ y

1

eQ(z)dz

)
dy +

∫ ∞

M

C

y3
dy

<∞.

Hence ∞ is an entrance boundary.

Remark 5.7. Let M be a general one-dimensional diffusion process on I = (ℓ, r). It is
shown in Itô [21] that

(a) If r is a regular or exit boundary, then limx→r R11(x) = 0.

(b) If r is an entrance boundary, then lims→r supx∈(ℓ,r)R11(s,r)(x) = 0.

(c) If r is a natural boundary, then for s ∈ (ℓ, r), limx→r R11(s,r)(x) = 1 and thus
supx∈(ℓ,r)R11(s,r)(x) = 1.

Hence, neither boundary is natural if and only if M has the tightness property, that is, for
any ε > 0, there exists a compact set K of I such that supx∈I R11lKc(x) ≤ ε. Thus it
follows from [18, Lemma 6.4.5] that there exists a ground state ϕ0 if no natural boundaries
are present.

For diffusion processes with no natural boundaries, a sufficient condition for the IU
was given in [43]. We present this condition in case when ℓ is an exit boundary and r an
entrance one.
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Theorem 5.8 ([43, Theorem 2.11]). Let M be a one-dimensional diffusion process on
I = (ℓ, r) with speed measure m and scale function s. Assume that ℓ is an exit boundary
and r an entrance one, and there exist points ci ∈ I, i = 1, 2, such thatm(c1) < 0 < m(c2)

and s(c1) < 0 < s(c2). Further assume that∫ c1

ℓ

|m(x)|ds(x) <∞ and
∫ c1

ℓ

µ(x)

|m(x)|
dm(x) <∞, (A1)∫ r

c2

m(x)ds(x) = ∞ and
∫ r

c2

ν(x)

s(x)
ds(x) <∞, (A2)

where

µ(x) := sup
ℓ<y≤x

|m(y)|
(
s(y)− s(ℓ)

)
and ν(x) := sup

x≤y<r
s(y)

(
m(r)−m(y)

)
.

Then M has the IU.

By checking this condition, we shall show the next result.

Theorem 5.9. The process Y has the IU. Consequently, a unique QSD of Y exists by
Corollary 5.5.

Proof. We only need to show that (A1) and (A2) in Theorem 5.8 are satisfied.
The former inequality in (A1): We choose c1 so that 0 < c1 < e−

1
2 . This givesm(c1) < 0

and s(c1) < 0. We set

M1 := max
0≤u≤1

(
−u

2

2
+
u4

16

)
, M2 := min

0≤u≤1

(
−u

2

2
+
u4

16

)
.

Since Q(u) = log u− u2

2
+ u4

16
, it follows that for all u ∈ (0, 1),

eQ(u) ≤ eM1u, and
e−M1

u
≤ e−Q(u) ≤ e−M2

u
. (5.7)

As a result, we have∫ c1

0

|m(x)|ds(x) =
∫ c1

0

(∫ 1

x

e−Q(y)dy

)
eQ(x)dx

≤
∫ c1

0

(∫ 1

x

e−M2

y
dy

)
eM1x dx

= eM1−M2

∫ c1

0

(−x log x) dx

<∞.
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The latter inequality in (A1): Noting that s(y)− s(0) =
∫ y

0
eQ(u)du, we have∫ c1

0

µ(x)

|m(x)|
dm(x)

=

∫ c1

0

(∫ 1

x

e−Q(z)dz

)−1

e−Q(x) sup
0<y≤x

(∫ 1

y

e−Q(z)dz

∫ y

0

eQ(u)du

)
dx.

By the estimate (5.7), the right-hand side is dominated by∫ c1

0

(∫ 1

x

e−M1

z
dz

)−1
e−M2

x
sup

0<y≤x

(∫ 1

y

e−M2

z
dz

∫ y

0

eM1u du

)
dx

=
e2M1−2M2

2

∫ c1

0

1

−x log x
sup

0<y≤x
(−y2 log y)dx.

Since −y2 log y is increasing on (0, c1), the right-hand side is less than

e2M1−2M2

2

∫ c1

0

x dx <∞,

and thus (A1) holds.
The former inequality in (A2): We choose c2 so that 1 < c2 < ∞. This gives

m(c2) > 0 and s(c2) > 0. Then∫ ∞

c2

m(x)ds(x)

=

∫ c2+1

c2

(∫ x

1

e−Q(y)dy

)
eQ(x)dx+

∫ ∞

c2+1

(∫ x

1

e−Q(y)dy

)
eQ(x)dx

≥
∫ ∞

c2+1

(∫ c2+1

1

e−Q(y)dy

)
eQ(x)dx.

A simple calculation shows that the right-hand side is equal to ∞.
The latter inequality in (A2): Noting that m(∞)−m(y) =

∫∞
y
e−Q(u)du, we have∫ ∞

c2

ν(x)

s(x)
ds(x)

=

∫ ∞

c2

(∫ x

1

eQ(z)dz

)−1

eQ(x) sup
x≤y<∞

(∫ y

1

eQ(z)dz

∫ ∞

y

e−Q(u)du

)
dx. (5.8)

By l’Hôpital’s rule, it holds that

lim
y→∞

∫ y

1
eQ(z)dz(∫∞

y
e−Q(u)du

)−1 = lim
y→∞

(∫∞
y
e−Q(u)du

e−Q(y)

)2

= lim
y→∞

(
1

1
y
− y + y3

4

)2

,
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and thus

lim
y→∞

y6
∫ y

1

eQ(z)dz

∫ ∞

y

e−Q(u)du = lim
y→∞

y6

(
1

1
y
− y + y3

4

)2

= 16.

By this and (5.6), there exist positive constants C, C ′ such that for sufficiently large y,(∫ y

1

eQ(z)dz

)−1

eQ(y) < Cy3,

∫ y

1

eQ(z)dz

∫ ∞

y

e−Q(u)du <
C ′

y6
.

Thus by taking sufficiently large K > 0, the right-hand side of (5.8) is dominated by∫ K

c2

(∫ x

1

eQ(z)dz

)−1

eQ(x) sup
x≤y<∞

(∫ y

1

eQ(z)dz

∫ ∞

y

e−Q(u)du

)
dx+

∫ ∞

K

CC ′

x3
dx.

Since the integrals above are finite, the condition (A2) is satisfied.
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