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Chapter 1

Introduction

In this paper, we study Girsanov transformations of symmetric Markov processes.
Let { B;}4>0 be the Brownian motion in R¢. We consider a transformation of { B} by
the multiplicative functional
2
(Bs)ds |.

t 1 t
LY = exp / E(Bs)-dBS——/
o P 2 Jo

Here p is a nonnegative function in the 1-order Sobolev space. This transformation is

Vp

p

called a Girsanov transformation. It is known that the transformed process is a symmetric
diffusion process in R¢ with generator, %A + % - V. When p decreases to 0 near infinity,
the drift Zpe forces the transformed process to move back inward. Thus, it is expected
that the new process hardly approaches to the infinity and the zero set of p. Indeed, the
non-attainability to the set {p(z) = 0} and the recurrence of the transformed process are
shown in [31, 34]. We treat transformations of general symmetric Markov processes by
multiplicative functionals of this type and investigate properties of transformed processes.

Let E be a locally compact separable metric space and m a positive Radon measure on
E with full topological support. Let Ml = (X, P,)) be an m-symmetric Hunt process on
E. (£, D(£)) denotes the regular Dirichlet form on L?(E; m) generated by M. Let p be a
nonnegative function belonging to the space D}..(£) (for the definition of D} (&), see the
next chapter). It is shown in [25, 26] that p(X;) — p(Xo) has the following Fukushima’s

decomposition:
p(X0) = p(Xo) = M + N},

where M is a local martingale additive functional locally of finite energy and N is
a continuous additive functional locally of zero energy. Let L{ be the solution to the



following stochastic differential equation:

t
1
Ly =1+ / L dMP,
! 0 p(Xs—>

Then LY is a positive supermartingale multiplicative functional and defines a family of
probability measures {P, } by dP, := LYdP,. It is known that under new measures {P, },
X, is a symmetric right Markov process on {p(z) > 0}. We denote this transformed

process by M”.

Girsanov transformations of symmetric Markov processes have been considered by
many authors (for example, see [6, 8, 13, 18, 22, 31, 34]). It is shown in [18, §6.3] that
if (£,D(€)) is a strong local Dirichlet form and p has a finite energy measure, then the
process M is also conservative and never attains to the set {p(z) = 0 or p(z) = co}.
We prove that the same result holds without assuming the local property (Theorem 3.12).
Note that M is conservative if and only if the exponential martingale L} is a martingale.
Novikov’s condition is well known as a sufficient condition for an exponential martingale
to be a martingale. However, we cannot apply Novikov’s condition when M has jumps. We
overcome this problem by checking the criterion for uniform integrability of exponential
martingales due to Chen [4]. For more general symmetric Markov processes, Chen et
al. [6] showed that M is recurrent for all positive p € D(E). Using ideas from [6], we
extend this result to an element p of the extended Dirichlet space D, (&) (Theorem 3.9).

Let M be a transient Markov process with strong Feller property. As an application of
Girsanov transformation, we consider Hardy’s inequality:

/ w dp < E(u,u), forallu € D(E), (1.1)
E

where p is a Green-tight measure (see Definition 4.1). Let A(x) be the bottom of the
spectrum of the time changed process of M by A/, a positive continuous additive functional
whose Revuz measure is u:

A(p) = inf {5(u, u)|ue D(S),/qudu - 1}.

If A(11) > 1, then the gauge function E.[exp(A{)] is bounded ([3, Theorem 5.1]). If
A(p) = 1, then the ground state of the operator £ + p exists in the extended Dirichlet
space D. (&), where L is the generator of M ([39]). Assume A(u) > 1 (resp. A(u) = 1)
and let p be the gauge function (resp. ground state). Then p is in DITOC(E ), and thus the
Girsanov transformed process M by Lf can be defined. Then by using Itd’s formula, L{



can be expressed by

p(Xo)
This expression tells us that the Girsanov transformed process M coincides with the
process generated by the composition of Doob’s h-transform and the Feynman-Kac mul-

exp (A}').

tiplicative functional e, Asa corollary, we have the identity

E(u,u) — / wldp = E° (27 E) for all u € D(E),
E P p

where 7 is the Dirichlet form generated by the process M. Applying the results above on
the Girsanov transformation, we can precisely express the right-hand side, which implies
an improvement of the inequality (1.1). Improvements of Hardy-type inequalities are
studied by many authors with analytical methods (for example, see [15, 16, 27]). We think
that our probabilistic method gives an interpretation to Hardy’s inequalities.

A probability measure ;4 on £ is said to be a quasi-stationary distribution of M if for
allt > 0,

u() = Bu(X, €|t < Q).

where [P, denotes the probability of the process with initial distribution y and ( is the life-
time of M. In [23], they prove that if a Markov semigroup is intrinsically ultracontractive,
then a measure v on £ defined by

is a unique quasi-stationary distribution. Here p is a ground state of (£, D(€)). We will
give another proof of this fact by applying Fukushima’s ergodic theorem to the Girsanov
transformed process M? (Corollary 5.5).



Chapter 2

Preliminaries

Let £ be a locally compact separable metric space and m a positive Radon measure
with full topological support on E. Let M = (Q,.%,0;, X;,P,) be an m-symmetric
Hunt process with a state space E. Here {.#; }+>¢ is the minimal (augmented) admissible
filtration and 6,, ¢ > 0 is the shift operator satisfying X (6;) = X, identically for
s,t > 0. Let O be a one point added to £ so that £y := E U {0} is the one point
compactification of £. The point O also serves as the cemetery point for M, that is,
¢ :=inf{t > 0: X, = 0} is the lifetime of M. For each measure . on E, we denote by IP,
(resp., E,,) the probability (resp., the expectation) of the process with initial distribution
w. Forany z € E, we simply write P, and E, for Ps_ and E;,. We define the semigroup
{Pi}i>0 by
Pif (@) =Ea[f(Xe)it <C], f € By(E),

where B, (F) is the space of bounded Borel functions on F. By the right continuity of
paths of M, { P}~ can be extended to an L*( E; m)-strongly continuous semigroup ([18,
Lemma 1.4.3]). Let (£, D(€)) be the Dirichlet form on L*(E; m) generated by M:

t10

D) = {u € L*(E;m) lim%(u — P, u)y, < oo} :

1
E(u,v) = lggl E(u — Pu,v)y, u,veDE),

where (-, -),,, denotes the inner product on L?(E;m). For any 3 > 0, set
Es(u,v) == E(u,v) + B(u, v)m, u,v e DE).

Then D(&) becomes a Hilbert space with inner product £ for any 5 > 0.
For a closed subset F' of E, we define

DE)p:={ueDE)|u=0 m-ae.on E\ F}.



An increasing sequence { I, },,> of closed sets of £ is said to be an E-nest if |, -, D(E)r,
is &1-dense in D(E). A subset N of E is said to be E-exceptional if there is an E-nest
{Fo}n>1suchthat N C (-, (£ \ F,). A statement depending on x € E is said to hold
E-quasi-everywhere (S-q.e.gn abbreviation) on F if there exists an £-exceptional set NV
such that the statement is true for every z € E'\ N. A function u is said to be E-quasi-
continuous if there exists an E-nest { £}, },>1 such that u|p, is finite and continuous on
F,, for each n: we denote this situation briefly by writing v € C({F,}). When we deal
with a fixed Dirichlet form (€, D(E)), for convenience we drop “£-" from the terminology
“€-q.e.” and “E-quasi-continuous” and will simply call them g.e. and quasi-continuous,
respectively.

Let D, (&) be the family of m-measurable functions « on E such that |u| < co m-a.e.
and there exists an £-Cauchy sequence {u,, } of D(E) such that lim,, ,, u,, = u m-a.e. We
call {u,, } an approximating sequence for u € D, (). Foru,v € D.(€) and approximating
sequences {u, }, {v,}, the limit £(u, v) = lim,,_, € (uy, v,,) exists and does not depend
on the choices of the approximating sequences for u,v. We call D.(€) the extended
Dirichlet space of (£, D(£)). For u,v € D.(£), the following Beurling-Deny formula
holds:

E(u,v) = £ (u,) +/ \ (u(x) —uly) (@(x) —v(y))J (dz, dy)
ExE\d (21)

+ [E ()3 () w(dx).

Here u denotes a quasi-continuous m-version of u, that is, v = u m-a.e. Here £ © js a
symmetric form possessing the strong local property, i.e., £(¢) (u,v) = 0 whenever u has a
compact support and v is constant on a neighborhood of supp[u]. J is a symmetric Radon
measure on F X F \ d, where d denotes the diagonal set, and « is a Radon measure on
(see [18, Theorem 4.5.2]). J and k are called the jumping measure and the killing measure
of M, respectively. We define the family © of finely open sets by

© = {{G,}| G, is finely open for all n, G,, C Gnt1, Upe, G = E qe.}

(the definition of a finely open set can be found in [18]). A function v on E is said to be
locally in D(E) in the broad sense (u € Dio(E) in notation) if there exist {G,} € © and
{u,} € D(E) such that u = u,, m-a.e. on G,, for each n € N. It is shown in [24, Theorem
4.1] that D.(€) C DIOC(E) and u € Zjloc(g‘f ) admits a quasi-continuous m-version . In
the sequel, we always take a quasi-continuous m-version for every element of DIOC(E ).

A positive Borel measure ;o on E is said to be smooth if it satisfies the following two
conditions:



(i) p charges no £-exceptional set,

(ii) there exists an E-nest { F},} such that u(F),) < oo for each n.

A stochastic process A = {A; }1>0 is said to be an additive functional (AF in abbrevi-
ation) if it satisfies the following conditions:

(i) Ai(+) is F-measurable for all ¢ > 0,

(ii) there existsaset A € F, = 0 (Ut>0 ﬁt) such that P,(A) = 1 forq.e. x € E,
0,A C A for all t > 0, and for each w € A, A.(w) is a function satisfying:
Ap(w) =0, Ay(w) < oofort < ((w), Ay(w) = A¢(w) fort > ((w), and A4 s(w) =
A(w) + Ag(Gw) for s,t > 0.

An AF A is said to be a continuous additive functional (CAF in abbreviation) if ¢ — A;(w)
is continuous on [0, 00| for each w € A. A [0,00[-valued CAF is called a positive
continuous additive functional (PCAF in abbreviation). We call A an AF on [0, ([ if A
is {-#;}-adapted and satisfies (i) and the property (ii)’ in which (ii) is modified so that
additivity condition is required only for ¢ + s < (. From [5, Remark 2.2], any PCAF A
on [0, ¢[ can be extended to a PCAF by setting

A(w) = lsi%As(w), if t>(¢(w)>0,
0, if t>C(w)=0.

The family of all smooth measures and the set of all PCAF’s are in one-to-one
correspondence as follows: for each smooth measure p, there exists a unique PCAF
A = {A;}+>0 such that for any nonnegative Borel function f and ~y-excessive function A
(v > 0), that is, e 7" P,h < h,

i B { /0 tf(Xs>dAs] - /E F(@)h(@)u(da) 22)

([18, Thorem 5.1.4]). Here B, [ -] = [, Eq[ - |h(2)m(dx). We say that a smooth measure
w1 and an AF A are in the Revuz correspondence if they satisfy the relation (2.2). In this
case, (. is called the Revuz measure of A and denoted by fi4.

Let (N, H) = (N(z,dy), H;) be a Lévy system for M that is, N (z, dy) is a kernel on
(Ey, B(Ey)) with N(z,{xz}) = 0 and H is a PCAF of M such that for any nonnegative
Borel function f on Ey x Ej vanishing on the diagonal and for any = € Fy,

E. | Y f(Xe, X)

s<t

_E, [ / F(Xoy)N(Xo dy)dH| |
0o JE,



Let gy be the Revuz measure of the PCAF H. Then the jumping measure J and the
killing measure x of M are given by

J(dz,dy) = %N(a:,dy)uH(dx) and k(dx) = N(z,{0})pu(dx). (2.3)

For an AF A, the energy of A is defined by

1
e(A) = lgfgl 2_t]Em [47]

if the limit exists. We then define

M is a finite AF, E,[M?] < 0o, E,[M,] = 0 }

=9 M ={M,
M { {Mi}i>0 forqe.x € Fandallt > 0,

M :={M e M|e(M) < o},

N isaCAF, E,[|N,]] <ooqe.z € E
. =< N =1N, )
N { {Nihezo foreacht >0, and e(N) =0

An element of M is called a martingale additive functional (MAF in abbreviation) of
finite energy and an element of N, is called a continuous additive functional (CAF in
abbreviation) of zero energy. For M € M, there exists a unique PCAF (M) such that
M? — (M) is an MAF. (M) is called the sharp bracket of M. Let M€ be the continuous
part of M € M and define the square bracket [M| by

[M]y == (M), + ) AMZ,
s<t
where AM, := M, — M,_. Then [M]? = (M). Here for an AF A of integrable variation,
AP denotes the dual predictable projection of A so that A — AP is an MAF (see [18, section
A.3.3]). For L, M € M, we put

(L, M) == 5 ((L, M) — (L) — (M),

N~ DN~

(L. M] := o ([L, M] = [L] — [M]).

We set

there exist {G,,} € © and {M ™} C M such that
M, = Mt(") forallt < 74, andn € N, P,-as. q.e. x '

-/\G/lloc = {{Mt}tZO



Here 7¢, := inf{t > 0: X; ¢ G,} and lim,,_,, 7, = ¢ P,-a.s. for q.e.x € E by [18,
Lemma 5.5.2]. The space NV, o is defined similarly. An element of /\;lloc is called an MAF
locally of finite energy and an element of ., is called a CAF locally of zero energy. For
every M € Mige, its sharp bracket process (M) can be defined to be a PCAF by setting

(MM, if t < 7q,
ling(M>5, if t>¢

st

(M) =

([5, Proposition 2.8]).
We introduce the subclass D} (E) of Dyoe(€) as follows:

Dl(E) = {u € Dioc(€) ‘ /y OR u(@))2J(dz, dy) is a smooth measure} .

By [5, Remark 3.9], we see D.(€) U (Dioc(€)), C DL(€). Here (Dioe(€)), = {u €
Dioc(€) | u is bounded}.

Remark 2.1. For any u € D} (&), there exists an E-nest {F,, } of compact sets such that
u e C{F,}) and

/F E(u(x) —u(y))*J(dz, dy) < oo (2.4)

for each n. Then we can define £(u, v) by

£(u,v) = £ (u,v) + / (u() — u(y))(v(z) — v(y))J (de, dy)

ExE\d
+/E(u(x) —u(@))v(m)/{(dm)

for any v € Un21 D(E)F,, To see this, we have only to check the jumping part is finite,
that is,

[ )~ ) o2) o)) ) < o0
For v € D(E),, the left-hand side is decomposed as
/FME(“(@ —u(y))(v(z) — v(y))J (dz, dy)
o)~ ) ote) (o) ).

By Schwarz’s inequality and (2.4), the integrals are finite.



We see from [18, Theorem 5.2.2] and [26, Theorem 1.2] that for u € D.(&) (resp.
u € D} (£)), the additive functional u(X;) — u(X,) admits the following Fukushima
decomposition:

w(X,) — u(Xo) = MM + NM. - fort € [0, 00[ (resp. t € [0,¢]), (2.5)

where M € M and N ¢ N, (resp. M [ e Mloc and N ¢ Nloc)- Moreover, for
u € D.(€) (oru € D} (E)), MM can be decomposed as

MM = pplule 4 ppluld 4 pplubk,

where M e, M7 and M™* are the continuous, jumping and killing parts of martingale
M, Mt and MM+ are defined by

el0
¥ 0<s<t

- /ot (/{yeE: fu(y)—u(Xs)[><) () — RN dy)) st}7

t
MME = / w(Xs)N (X, {0})dHs — u(X¢-) Ly
0

My = lim{ D (w(Xo) = (X ) M) —ugx, e} Ds<qy

Let fuuy, 17, i ) and u’fw be the smooth Revuz measures associated with the PCAF’s

(u

(MM, (Mltebey (M) and (MM*), respectively. Then

c j k

and
;ﬂ@(dm) =2 /EE(U(ZL‘) —u(y))*J(dz,dy), and ulfw(da:) = u(z)*k(dr). (2.6)

For t > 0, let r; denote the time-reversal operator on the path space € as follows: for

w e {t < ¢},

w((t—s)—), it 0<s<t,

r(w)(s) = _

w(0), if s>t
Here w(r—) := limgy, w(s) for > 0. The symmetry of M implies that the restriction of
the measure P,,, to .%, is invariant under r, on Q N {¢ < (}, that is, for every nonnegative
random valuable £ € %,

En[&;t < =Ep[Eor;t <(]. 2.7)
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An additive functional A, is said to be even if A, ory = A; P,,-a.s. on {t < (} for each
t > 0. From [12], CAFs of bounded variation (or of zero energy) are even (although it was
proved in [12] for symmetric diffusion processes, the proof works for general symmetric
Markov processes).

For u € Df.(£), u(X,) — u(X,) has Fukushima’s decomposition:

loc
w(Xy) —u(Xo) = MM+ NM.teo,¢].

By the definition of Dy, (&), there exist {G,,} € © and {u,} C D(E) such that u = u,,
m-a.e. on G, for each n € N. Then we have for ¢ € [0, 74, |,

u(Xy) — w(Xo) = un(X;) — un(Xo) = M 4 N
P,-a.s. for g.e. x € E. By the uniqueness of the decomposition,
MM = M and N = Nt < 16, Py-as. forge. z € E.

Hence, by the calculation similar to that in the proof of [18, Theorem 5.7.1], we can show
that

Lemma 2.2. Forany u € D} (§) and T > 0, P,-a.s. on {T < ¢}

loc
N (rp)y = NM - N for t € [0, 7).

In particular, N is even.

2.1 CAF’s locally of zero energy

An AF {A,},>¢ is said to be of bounded variation if A, can be expressed as a difference
of two PCAF’s:
A=A0 AP <

A sufficient condition for Nt[“} in (2.5) being of bounded variation is given in [18, §5].
Our first aim in this section is to extend it and this result is used in Chapter 4.

We say that a function u is locally in D(E) (u € Dy,(€) in notation) if for any relatively
compact open set D C E, there exists a function v € D(E) such that u = v m-a.e.on D.
For u € Djo.(€) and a Borel set B, define

o (B)i= [ (ulw) = utu)* . dy).
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Note that ,uJ@ is not necessarily a Radon measure. We introduce a subclass DITOC (&) of
Dloc(g ): )
Dl(E) = {u € Dine(E) | ;ﬂ is a Radon measure on E'}.

Itis noted in [25] that D(E)U (Diec(€) ), € DL (€), where (Dioc(€)), = Dioc(E) By (E).
For u € D} (£) and ¢ € D(E) with compact support ,
1
Sl =5 [ difup + [ (o)~ u)ele) - o) I(dod) + [ updn
E ExE E

is well-defined ([ 14, Theorem 3.5]).
Recall that for a closed subset F' of E, D(E) is the space defined by

DE)r={ueDE)|u=0qe. onE\ F}.

The spaces D, (€)r and D, (E)r are defined similarly, where D, (€) is the set of bounded
functions in D(&). For f € B,(E) and a Borel set A C FE, define

Haf(z) = E.[f(Xs,); 0a < 0.

Lemma 2.3. Let u € D} (€) and F a compact set. It holds that
(i) u — Hpeu € D(E)F and

E(u— Hpeu,u — Hpeu) <

l\:)li—

© (F) + /F (ule) = uly)*de, dy)
+ Q/FXF(u(x) —u(y))?J(dz, dy) + /Fu2 dk.

(ii) Hpeu € D} (E) and E(Hpeu,v) = 0 for any v € Dy(E) .

(2.8)

Proof. The proof is similar to that of [7, Lemma 6.2.10]. Note that Hpcu = u g.e. on
E\F.

First suppose that v € D.(€). Then by [18, Lemma 4.6.5], Hpcu € D.(E) and
E(Hpeu,v) = 0 forall v € D.(€)r. Hence,

E(u— Hpeu,u — Hpew) = E(u,u) — E(Hpew, Hpeu).
Since

1
E(Hpeu, Hpeu) > 3 tpeny (F€) —|—/ (Hpeu(z) — HFcu(y))QJ(dx, dy)

FexFe
/ HFCU

i (F) + /F o) = ) dy) + [

_I_

l\DIH

c
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we have (2.8).

Suppose next that u € (Dioe(E ))b = Dioc(€) NB,(E). Take an increasing sequence
of relatively compact open sets { Dy} with | J;-, Dy = E and F' C Dj, for each k. Then
there exists {gx} € D(&) such that u = g q.e. on Dy. We may assume |gx(z)| < ||u||oo-
By applying (2.8) to gi, we have

E(gr — Hpegr, gx — Hpegr) < 1#( (F) +/F F(gk( ) — gr(y))?*J (dz, dy)

-2
Lo / (g0(x) — gu(y))2 T (de, dy) + / gk dr
FxFc¢ F

— L)+ / F(u(w) ~ u(y))2 I (dz, dy)

2
vz f — uly))?J (de, dy)

Fx FCﬂDl

+2/ z) — g(y ))QJ(dx,dy)—i—/qum.
Fx( FCﬁDC F

Since J(F x Df) < oo,
[ (o) - o) P dndy) (u(e) — u(y) P (dr. dy)
Fx(FenDS) Fx(FenDS)

as k — oo by the dominated convergence theorem. Therefore we have

. 1 C
limsup E(gx — Hpegr, gx — Hpegr) < 3 [y (F) + / (u(z) — u(y))?J (dz, dy)
FxF

k—o0
+ Q/F Fc(u(:v) —u(y))*J(dx, dy) + /Fu2 dk.

Since the right-hand side is finite, we see from the Banach- Saks theorem ([7, Theorem
A.4.1]) that there exists a subsequence {g;C };>1suchthate); == z 1 (g,w Hchk,_,) is an
E-Cauchy sequence. Noting that ||gx||co < ||u||c and gr, — uq e.,wesee); — u— Hpeu
g.e. Hence u — Hpeu belongs to D.(€)r N By (E) = Dy (E)r and satisfies the inequality
(2.8) because

E(u— Hpeu,u — Hpeu) = hm 5(%,%) < limsup E(gx — Hregr, g — Hpegi).

k—o0

We next show (ii). For the subsequence {g, };>1 above, we put g, := %ZZZI k-
Then it holds that for v € Dy(&)

OZS(Hchj,U) :€(§j,v)—5(wj,v). (29)
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Since g; = uq.e.on Dy D F', we have

£(0,00) = b (B)+ [ (ule) — ul)(v(o) — v(u) I(d, )

FxF

2 / (u(x) — () (v(z) — v(y))J(dr, dy)
Fx(FenDy)

i U =5 v(@) —vly))J(dz,d uv dk.
" /FX(W@( (@) = 9,(0)(0(a) = o)) (o dy) + [

E

Thus lim;_,. £(g,,v) = £(u,v) by the dominated convergence theorem. Therefore, by
letting 7 — oo in (2.9), we have

0=2~E(u,v) — E(u— Hpeu,v) = E(Hpeu, ).

We finally treat the general case that u belongs to DITOC(S ). By considering a decom-
position u = (uV 0) — ((—u) V 0), we may assume that u is nonnegative. Put uy := u A k.
Then uy, is a normal contraction of u and Hpcuy tends to Hpeu as k — oo by the mono-
tone convergence theorem. Applying the result in the last paragraph to wu, we see that
uy, — Hpeuy, € Db(g)p and

1

E(up — Hpeug, up — Hpeuy,) < 3 [y (F) + / (u(z) — u(y))?J (dz, dy)
FxF

+2/FXFC(u(:E) —u(y))?J(dx, dy) + / u? dk.

F

Hence, by repeating the argument above, we can prove the lemma. [

_I.

loc

On account of Lemma 2.3, we see that for any v € D} .(€) and compact set F,

Hpeu(Xy) — Hpeu(Xp) has Fukushima’s decomposition:
Hpeu(X;) — Hpeu(Xo) = Mrew) 4 Nredl -y < ¢
Lemma 2.4. Let F be a compact set. Then for any u € D}..(E),
P, (N =0, t <75) =1 qe.z€E.

Proof. This lemma can be shown by the argument similar to that in [7, Lemma 5.5.5].
(F©)" denotes the set of all regular points of F°. Since F'°\ (F°)" is semi-polar by
[18, Theorem A.2.6], we can choose a properly exceptional set N D F°\ (F)" by [18,
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Theorem 4.1.3, Theorem 4.1.1]. Then it follows that X, € (F)"U{0} and 7p060,,. =0
P,-a.s. for x € E'\ N. Hence, by the strong Markov property,

HFCU(XN\TF) = EXt/\TF [U(XTF)] =E, [u(XTF(et/\TF) © etATF)l gt/\TF}
= E, [w(X:)|Finrn] Peras.,z € E\N,
namely, Hpcu(Xinr,) — Hreu(Xy) is a martingale relative to {.%a., }+>0 under P, for
re E\N.
Let C; := Hpeu(Xiprp) — Hpeu(Xo) — Mipze™l. Then C; = N7 and {C}is0 is
a local martingale relative to {.%;,, }+>o under P, for q.e. x € E. Since Hpeu € ijoc(g ),

there exist a sequence {G, } € © and a sequence {v,} C D(E) such that Hpcu = v,
g.e. on GG,,. Then by the uniqueness of decomposition,

P,.(Cy = ]t<7'p/\7'(;) 1, qe.ze€kF.

Since N7l has zero energy, we have for each fixed ¢ > 0,

k 2
: [vn] [vn] )
klgIolo E (th/k — N(jfl)t/k) it < TR NTq,
1

k
ol _ vl N g
Z (Ngt/k G- 1)t/k> =0.

Hence, by letting n — oo, we see that (C'), = 0Py -ae. on {t < 7p} forevery ¢ > 0.
Thus on {¢t < 7}, C; = 0, namely, Nt[HFcu] =0. O

]E]lp-m [<C>t < TR AN TGn] = E]lp-m

Theorem 2.5. Let v = vV — 1@ be a difference of positive smooth measures on E. If
u € D} (&) satisfies

E(u,v) :/vdu, forall v e | Dy(E)p, (2.10)
E

k=1

for an E-nest { F},} of compact sets associated with v, then
P (NM = —A® + A® 6n[0,()) =1 qe.z€E,
where A" is a PCAF with Revuz measure v\, i = 1, 2.

Proof. If u € D} (£) satisfies the equation (2.10), then for each ,

E(u— Hpeu,v) = / vdy, forall v e Dy(E)p,
B



15

by Lemma 2.3 (ii). Note that u — Hpeu € D.(€)r, by Lemma 2.3 (i). By applying [18,
Lemma 5,4,4] and Lemma 2.4, we have

B,(NM = —AM + AP ¢ < 1) =1, qe.z € E.
Therefore, we have the assertion by letting £ — oo. 0

By the same argument as in the proof of [18, Corollary 5.4.1], we have the next
corollary.

Corollary 2.6. Let v = vV — 12 be a difference of positive smooth measures on E.
Suppose u € D} (&) satisfies

loc
E(u,v) = /Evdl/ forall ve DE)NCy(E),
where Cy(F) := {u € C(F) | supplu| is compact}. Then
P, (NW = —AD 4+ A® on [0,¢)) =1 qe.z€E,

where A% is a PCAF with Revuz measure v\, i = 1, 2.
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Chapter 3

Girsanov transformations

3.1 Girsanov’s transformed processes

An increasing sequence { F,, } of closed sets of E is said to be a strict E-nest if
Tim Capy g, (E\ F) =0,

where Cap,  , is the weighted capacity defined in [28, Chapter V, Definition 2.1] and a
family { £}, } of closed sets is a strict £-nest if and only if

P,(lim op\p, <00) =0 qe.x ekl
n—oo

in view of [28, Chapter V, Proposition 2.6]. A function v defined on Ej is said to be
strictly E-quasi-continuous if there exists a strict £-nest { £}, } such that u is continuous on
each I, U {0}. Denote by QC(Ejy) the totality of strictly £-quasi-continuous functions
on Ej.

Throughout this chapter, we assume that p is a nonnegative function in DITOC(E )
N QC(Ey) such that m({p > 0}) > 0and 0 < p(J) < oo. Set

N:={zx e E|p(x)=0 or p(z)= o0}
and define a stopping time oy by oy := inf{t > 0|X; € N}. From Fukushima’s
decomposition,

p(X)) — p(Xo) = MF + NP t€[0,¢),P,-as. forqe. z € E,

where M ¥l is an MAF locally of finite energy and N is a CAF locally of zero energy.
Define a local martingale M on the random interval [0, on A ([ by

t

1

M ::/ dMl. (3.1)
! 0 p<Xsf)
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Note that
AM, = ——— (M = M) = —L—(p(X,) - (X, )
p(Xi-) ' ' p(Xi-)
_ p(Xy) B
—P(Xt—> 1. (3.2)

Let L? be the Doléans-Dade exponential of M;, that is, the unique solution of
t
Ly =1 —I—/ LY_dM,, Pgas., x€ E\N. (3.3)
0
It is known from the Doléans-Dade formula ([20, Theorem 9.39]) that for t < ony A (

1
L? = exp (Mt — —<Mc>t) H (1+ AM,)e~ M

2
0<s<t

— exp (Mt — (M) ) H p (1 _ pp((;(is_))> . (3.4)

O<s<t

Since LY is a positive local martingale on the random interval [0, on A ([, so is a positive
supermartingale. Consequently, the formula

dP, = LPdP,  on Z,N{t <oy A(} for z € E\ N, (3.5)

uniquely determines a family of probability measures on (€2,.#). It follows from [35,
(62.19)] that under these new measures, {Xt} is a right Markov process on the finely open
set £\ N. We denote by MP = (Q, F, X, P, ¢ ) the transformed process of M by L7.
Here for w € €,

% () Xi(w), 0<t<op,
W) =
' aa ON S t S 0,

((w) = on(w) A ¢(w).

The semigroup {P,} of M equals
Pif(@) = B [f(X0) 1t < (] = Bu[L{f(X0) s t <ow A (). (3.6)

We introduce the space D;f+(£) defined by

(3.7

ID++ Doc
loc <5> { < (8) such that Cl_l S [ S a

there exists a constant a € (1, 00) }

Since each element of D;5F (£) is bounded, we see DitF (£) € DI (£).
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Lemma 3.1. The operator P, defined by (3.6) is symmetric on L*(E\ N;p’m).

Proof. For f,g € B, (E), we have by the time reversal property (2.7)

(Pof,9) om = En[L? £(X1)g(Xo)p(X0)?; t < on AC]
= EnlL] o1 f(Xo0)g(X)p(X)*; t < on A

For the proof of symmetry,
(ﬁtfa g)me = (fa ﬁtg)me = ]Em[Lf f(XO)g(Xt)p(XO)2 <oy A dv

it suffices to prove the following identity:

p(Xo)?

LY = L7
t OT¢ t p(Xt)2 ’

P.-as.on {t < on A (}. (3.8)

We first consider the case p € D;F (). Then Z equals (. The function log p is
bounded and in Dy, (E) by [24, Corollary 6.2], and thus log p belongs to D (£). Hence
log p admits the following decomposition:

log p(X;) — log p(Xo) = M5 4+ N5 ¢ < ¢ P,-as. forqe. 2 € E.

Moreover, M[°¢7] is decomposed to M°erl = prlleerle 1 prllogrld ([20, Theorem 8.23]),

where Mogrle (resp. M°grld) js the continuous (resp. purely discontinuous) part of
Mlogr], By It6’s formula ([24, Theorem 7.2] and [25, Corollary 4.4]), it holds that for
t€|0,([P,-as. forqe.x € F

t
1
MeEoe = / dMPe = My,
' o P(Xso) '

s 2o - 59)

s<t

p(y) r(y) )
— log +1-— N(Xs, dy)dH,.
/o /Ea ( p(Xs) p(Xs) ( )
Thus we get

[logp] __ p(Xs p(Xs)
M A *;(1(’%(&) ‘p<Xs_>)

- /ot /Ea 1Og - %) N(X,,dy)dH,.
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By this expression and (3.4), we have for ¢ € [0, (]

1 (X
P = My — (M=), + (1 H1- )
P = exp ( ¢ — Z 5 X, ) p(Xs-) (3.9

s<t

= exp (Mt[logp] + At),

where

Hence we have P,,-a.s. on {t < (}

LY ory = exp (Mt[logp] ory+ Ao Tt)
— exp (log p(Xo) — log p(X;) = N o1y + A, 7,).

Since A, is a CAF of bounded variation, A, is even, A; o r, = A;. Moreover, Nt[log 7l is
also even by Lemma 2.2. Thus the right-hand side is equal to

exp (log p(Xo) — log p(X;) — Nt[logp] + Ay)
= exp (2(10g p(X0> — lOg p(Xt)) + Mt[logp] + At>
p p<X0)2
(X))
Therefore (3.8) holds for p € D\ (E).

For a general nonnegative p € D} _(£), we define E,, := {z € E| L < p(x) < n},
=inf{t > 0| X; & E,} and p, := (2 V p) An. Then, on {t < 7,,}, p(X;) = pn(X,)
for s € [0,t] and thus L? = L. By applying the result above to p,, € DitF (E), we have

pn(Xo)? p(Xo)?
LY ory =L ory = L™ = L7 P,,-a.s.on {t < 7,}.
o T (X2 T p(X)? t J
Since 7, = on A ¢ as n — oo, we get (3.8) by letting n to infinity. 0

The next theorem is proved in [13, Lemma 4.4] for symmetric diffusion processes.
However, its proof works for general symmetric right Markov processes.

Theorem 3.2. If A is a PCAF of M with Revuz measure [, then the Revuz measure for A
as a PCAF of MP equals p?ju.



20

Lemma 3.3. For u € D(E), the inequality

lim %IE 2m[(u()?t) - u()?o))2 it < a

t—0 P

< [E p(x)? g,y (d) + 2 / (u(z) — u(y))’p(x)p(y)J (dx, dy)  (3.10)

ExE
+0(0) [ ulaPpla)n(da).
E
holds, whenever the integrals on the right-hand side exist.

Proof. Our proof is similar to that of [6, Thorem 2.6]. We give the details here for the
reader’s convenience.

Take u € D(E) such that the right-hand side of (3.10) is finite. Then u(X;) —u(Xj)
can be decomposed as

u(Xy) —u(Xg) = MM+ NM t>0, Pyas. forge. z € E,

where M € M and N € .. Moreover, the sharp bracket process (M) is given by

(M), = (M), + /Ot/E (u(y) — w(X,))* N (X, dy)dH, (3.11)

forall ¢ > 0.
By the Girsanov transform,

t

Y u 1 u =

M o= M~ [ a1y, = M= 0y, b <G,
0 s—

is a local MAF under P, for z € E \ N and
(M) (P) = [M!"],(P), P,-as.on {t<C(} (3.12)

(see [20, Chapter 12]). Here []\7 [“]] (IF’) is the square bracket of the martingale MU
under P,, and [M™](P) is the square bracket of martingale M under P,. Then
(MM)(P) = [MM](P) and (M™M)(P) = [MM]P(P), that is, (M")(P) and (M) (P)
are dual predictable projections of [M [4](P) and [M!](PP) under P, and PP,, respectively.
It follows from (3.12) and [20, Corollary 12.18] that for ¢ < E,

1
Lf_
= (M), (P) + ([M"], M)..

(T, (B) = (ST B) = () + [ a1,
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Noting that

(M0, 0], = 3" AMMAM, =Y (u X,))? (pp((j((s)) - 1)

s<t s<t

we have by (3.11)

(T, (B) = (M), (P) + (was) (X, ))? (pp(gf)) - 1)) ®)

+ / t/Ea(u(w ( y) 1) N(X,, dy)dH,

= u(X,))? ()NXS,d dH,
/ / )p(Xs) ( )
Pu(X,)?
+p(0 / N(X,, {8))dH
pl0) | SR N 9))
Therefore, the Revuz measure of the PCAF <M () (P) for M is

o) +2 [ (uly) — u()* 28 J(dr,dy) + p@)utapla) (i)
yer p(m)

byN (2.3)~and (%.6). We see from Theorem 3.2 that the Revuz measure of the PCAF

(MU (P) for M” is

p(x)? 1y (dz) +2 /EE(U(JS) —u(y))*p(x)p(y)J (dz, dy) + p(d)u(x)*p(x)r(dz). (3.13)

Noting that N and (M), M) are even, we have

v v 1 U U
u(Xy) —u(Xo) = (M = M o)
1, — ~
— E(MtM — Mo re) Pp-as.on {t < (}.

It holds from this equality and the reversibility of the measure ﬁ)pzm that

hmlEp m[(U()?t) - U()?O»Q 1< a

t—0t¢

<y (Bon [0 <] B [ 01 <)

t—0 2t

= lim IE [(M[u]) t<C]

t—0 t prm

= lim 1]E [(MM)t] :

t—0 t pm

Since the right-hand side equals (3.13), we have the assertion. [
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Recall that the transformed process MP by Lf is a p*m-symmetric right process by
Lemma 3.1. We denote by (€7, D(E*)) the Dirichlet form on L?(E \ N, p*m) associated

with M”. It is known that (EP,D(EP)) is quasi-regular (see [28]).

Lemma 3.4. Define N(z,dy) := % - N(z,dy). Then (N(z,dy), H,) is a Lévy system
of M. Consequently, by Theorem 3.2,

~

J(dx,dy) == p(x)p(y)J(dz,dy), k(dz):= p(0)p(z)k(dx)
are the jumping and killing measure of (£°, D(E?)), respectively.

Proof. Let f be a nonnegative bounded function on Fy x Ej such that f(x,z) = 0 for
each v € Ep and put f,, := fli;~1/,). Then

=Y e x) - [

t

fo(Xs, y)N(Xs, dy)dH

is a P,-martingale. By the Girsanov theorem,

Ftn - <Fn7 M)t - an(Xs—aXs) - /0 e fn(Xs;y) % N<Xsady>st

isa @x-martingale, and thus
Ee | Y fa(Xeo, Xo)

s<t

_E, [ / Fu(Xa) N(Xs,dwdm} |
0 FEy

We then see by the monotone convergence theorem

E, | f(X.,X,)

s<t

-z t [ xR, ).

For a closed subset F' of E, D, (E)r is the space defined by
Dy(E)r ={u € Dy(€)|u=0 qe.on E\ F},

where D,,(€) is the set of bounded functions in D(E).
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Theorem 3.5. Suppose that p > 0 q.e. Then there exists an E-nest { F,,} of compact sets
such that | J,~, Dy(E)r, C D(EP) and for u € U5, Do(E)F,

&) =5 [ oty ldn)+ [ (ule) = ) *pl)p(o) o, dy)

(3.14)
#9(0) [ ulafpla)n(da).

Proof. There exist {G,,} € © and {p,,} C D(E) such that p = p,, m-a.e. on G,, for each
n. Take f € L*(E;m) with 0 < f < 1 on E and set

#e s =[]

Then R f(x) > 0 on G,, and RY™ f is £-quasi-continuous for each n. Take a common
E-nest { K,,,} such that all R1G" f, n > 1 are continuous on each K,,. We set Fél) =
{r € K, : R{"f(x) > 1/n}. Then since A, := {R{"f > 1/n} is increasing and
E\ U, An is E-exceptional, {FT(LI)} is an E-nest by [24, Lemma 3.3]. For each n,
(E\G,)" C E\ FV, where (E\G,)" ={x € E: RS f(x) = 0} is the set of regular
points for £\ G,,. Therefore we have

FVN Gy BP0 ((B\Go) \ (E\G.)").

Since ((E\ G,) \ (E\ G,)") is E-exceptional, FY c G, qee. and thus p = p,, m-a.e. on
R

By the quasi-regularity of (gp D(EP)), we can choose an EP-nest {F} @ } of compact
sets and a sequence {g,} C D(S”) such that g, = 1 on Jais (see [28]). Note that oy = o0
P.-a.s. for g.e. z € E because p > 0 g.e. Hence, by using probabilistic characterization
of Er-exceptional set and EP-nest, we see that {Fn (2 )} isan &- nest

Since p is an element of DIOC(E ), there exists an £-nest {Fn } of compact sets such
that p € C({F"}) and

/F “ E(p(x) — p(y))2J (dz, dy) < oo

for each n. We put F,, := ();_, F". Then {F,,} is also an E-nest. We first claim that for
any u € U,5, Db(g)Fn’

[ pi+ [ (@) = u) Pt adedy) + p0) [ opan < oo, @15)

E
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Take u € Dy(E)p,. Define C,, = sup,cp. |p(z)| and p™ = ((=C,,) V pn) A Cy,. We then
see that pu = p™wu m-a.e. Thus pu is in D(&) and by the derivation property of yc,

1 1 |
E(pu, pu) = 5 /E u?dp, + /E pu iy + 5 /E prdps,y + E (pu, pu)
—i—/(pu)Qdm,
E

&f.9) = [ (Fa) = Hw)la(o) — 9(w) Iz, dy),
ExE
Note that the value of &(p, pu?) is finite and equal to

5 [ ity [ udit+ € o)+ [ (@) = p@)plo)utaulie)

by Remark 2.1 and the derivation property. Since

E(pu, pu) — £ (p, pui?) = / (ul) — u(y))?p(2)p(y).J (dz, dy),

ExXE

where

it holds that
1
5 [ A+ [ (o) = u) oo Iz, dy) + +9(0) [ ao ds
E ExXE E
= E(pu, pu) — E(p, pu’) < 0.

Therefore (3.15) holds.

Let u € Dy(E)p,. Noting that u = 0 m-a.e. on E \ F,, and g,, € D(gp) with g, = 1
on F},, we have u = u - g,, m-a.e. Thus it follows from [7, Theorem 4.2.1 (ii)] that

1 D 2 g .1 D 2
lim (1= PiL, )y, < JlullZ lim (1= PoL, 7)o

t—0 t
<l | ol R(ds).
E
Hence we have by Lemma 3.3

lim=(u — Pyu, ) p2m

t—01
= tim o (B [(u(K) — u(Z0))% 1 < ) 4+ (1= Bl u?)ye, )
<3 [E P4, (d) + /E (ul@) = u(y)plw)p(y)J (d,dy)

+@/Eu(x)2p(x)n(dx)+%/ gn(2)* F(dz)

E
< OQ.
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Therefore u belongs to D(g #) and u admits Fukushima’s decomposition under P,
u()?t) — U()?()) = Mt* + Nt*7

where M* is a I@x-square integrable MAF of finite energy for M and N* is a CAF of zero
energy for M”.
Recall that by the Girsanov theorem,

M = My — (M, b,

is an MAF under PP,. Hence, Fukushima’s decomposition u(X,) — u(X,) = M 4+ N
under P, leads us to the following decomposition:

u(Xy) — u(Xo) = MM + (NM 4 (M1 M),).

Since N + (M M) is a CAF of zero energy for M?”, we have by the uniqueness of
Fukushima’s decomposition
My = MM,

Now we have

t—0 2t 2

EP(u,u) = limlﬁpzm[(u()?t) - u()zo))Z} —i—l/ u*dri
E
BERT 1~ %\ 2 1 9 g~
= limg o B [(7)7] 4 5 [ wPa
1~ ~ 1
R E il ) [u] - 2 3~
g B [010] 4 [

We see from Lemma 3.4 and (3.13) in the proof of Lemma 3.3 that the right-hand side
equals

3 [P+ [ () = ) Pole)otw) s, d) + p(@) [ ulaPotaiutin)

xFE

Therefore (3.14) holds for u € {J,», Dy(E)F, - O

Suppose that p is bounded. Then we obtain by Theorem 3.5 the following inequality:

Eu.u) < (Il V p()" - &), uwe | Dyl(E)r,, (3.16)
n>1
where £ = €7 + (-, ) p2m- Since | J, 5, Di(€)r, is dense in D(E) with respect to the norm
VEL(-,-), the inequality (3.16) tells us that D(£) is contained in D(E°). By repeating the
computation above, we can extend (3.14) to u € D(E).
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Theorem 3.6. (a) If p is bounded, then D(E) C D(EP) and the formula (3.14) holds for
allu € D(E).
(b) If p € DT (E), that is, there exists a constant ¢ > 1 such that ¢t < p < ¢, then

loc

D(EP) = D(E).

Proof. (a) is already shown above.
Suppose p € DEF (). Then 1/p and log p are in (Dyoe(€)),. and so in (Die(£7)), by

loc

(a). Hence, we have
1 1

) = Loty = 3 4

log p(X;) — log p(Xo) = M + NJ°##1 P as.

Let L!"/” be the solution of
o~ t ~ —~—
Tl — g +/ FWel p(x, ) dni/e
0

and M* = (Q, P%, X;) the transformed process of M? by LI/7l, dP% .= L}Y? dP,. Denote
by LE*,D(E*)) the Dirichlet form generated by M*. Since 1/p is bounded, we see
D(&) C D(E) by (a). Hence, it is enough to prove D(E*) = D(£). Owing to (3.9) and
Lemma 3.4, ’Lvl[fl/ ?Lis expressed by

A — exp (—NI#7 4 A),

where

i [ oo X)L p(X)Y p(y) 1 ~lhog plc
A /0 /Ea (1 5w T W ) /)(XS)N(XS’dy)stJr A

Noting that

]/\\4;[1ng] — Mt[k)gp} _ <M[logp}’ M)t

=M /ot /E@ o2 pp(()gz) (52(53) - 1> N(Xs, dy)aH,

and (MUosele), = (Mfloerle), we see LIY/7 = 1/LF by (3.9). This implies M* = M,
and thus D(E*) = D(E). O

Let us recall the definitions of transience and recurrence of Dirichlet forms.
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Definition 3.7. (1) A Dirichlet space (£, D(€)) on L?(E;m) is said to be transient if the
extended Dirichlet space D, (&) is a Hilbert space with inner product £.

(2) (£,D(€)) is said to be recurrent if the constant function 1 belongs to D.(£) and
E(1,1) = 0. Namely, there exists a sequence {u,} C D(E) such that lim,, o u, = 1
m-a.e. and liny, ;00 € (Uy, — Uy, Uy, — Uyy) = 0.

Corollary 3.8. Suppose p € DT (E). If (E,D(E)) is a transient (or recurrent) regular

Dirichlet form, then so is (£, D(E)).
Proof. If ¢ < p < ¢, then it follows from Theorem 3.6 that D(E°) = D(E) and
28 (u,u) < EP(u,u) < AE(u,u), u e D(EP).

Hence, if (£, D(£)) is transient (or recurrent), then so is (g” , D(gp)).
Moreover, since £ -norm and £-norm are equivalent by the inequality above, it holds
that

gr

D(E)NCy(E)  =DE)NCo(E)" = D(E) = D(E).

_ g . _
Here D(E7) N Co(E)  and D(E) N Co(E) “ denote closures of sets D(&7) N Co(E) and

D(E) N Cy(F) with respect to £7- and &;-norm, respectively. Clearly, D(EP) N Cy(E) is
dense in Cy(E) with respect to the uniform norm. Therefore (£7, D(E?)) is regular. [

We now obtain an extension of [6, Thorem 2.6].

Theorem 3.9. Let p € D.(E) with p > 0 q.e. Then the Dirichlet form (¢, D(EP)) is
recurrent.

Proof. We see from [18, Lemma 1.6.7] that there exists a strictly positive bounded function
g in L'(E;m) such that p € D.(£9), where £Y is a perturbed form on L?(E;m) defined
by

Eu,v) = E(u,v) + (U, 0) gom, u,v € D(E).

Then (£9,D(€)) is a transient Dirichlet form and thus its extended Dirichlet space D.(E9)
is a Hilbert space with inner product £9 ([18, Theorem 1.6.2]). By Theorem 3.5, we can
take an E-nest { £}, } of compact sets such that p € C({F},}) and |J,~, Dy(E)r, C D(EP).
Let K, := {x € F, | p(x) > 1/n}. Then {K,} is an E-nest because E \ |J, ., {p > 1/n}
is £-exceptional. Since the norm /&Y (,-) is equivalent to /& (+,+), {K,} is an £9-
nest as well. We set D.(£9)k, = {u € D(E9)|u = 0 m-ae.on E\ K,}. Then
D.(E9)k, is a closed subspace of the Hilbert space (D.(E£9),E9) and by [7, Corollary
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3.4.4], U,>; De(€)k, is dense in D.(E). Let pk, be the £9-orthogonal projection of p
onto D, (£9), . Then pg, converges to p in (D, (E9),£9). Let p, := (0V px,) A p. Then
we easily see that p, € Dy(€)k, for each n and p,, — p m-a.e. as n — oo. Noting that
p— pn = (p— pk,)t, we have by the contraction property

E(p—pn,p—pn) <ENP— pn,p— pn)
<&p—pr,,p—pr,) =0 as n— oo.

By taking subsequence if necessary, we may assume p,, converges to p £-q.e.on E (cf.
[7, Theorem 2.3.4]). For n > 1, define a function h,, by

() = pn(@)/p(z)  if p(z) >0,
o if p(xz)=0.

Then 0 < h,, < 1l and h,, — 1 £-q.e. on E as n — oco. Moreover, for (z,y) € K,, X K,,

[ ()| < 1l pn ()],

() — ()] < 122 = Pa@] | 1Pn(®) = pn(y)]
R )

)p . n [p(2)pn(z) — p(y) P ()]

P(y) p(z)p(y)
< 2n|pn(x) — pu(y)] + 2% p(2) pu(x) — p(y) P (y)].

By noting that p,, and p- p,, belong to D,(€) k,,, this inequality and [18, Theorem 1.5.2 (ii)]
tell us that h,, is also in D, (E)k,,. Hence, since p € D.(E) N QC(Es) and thus p(d) = 0,
it follows from Theorem 3.5 that h,, € D(E”) and

& (i) = 5 [ 2@y e+ [ (hale) = () Pola)pl) T (d, ).

ExXE

By a calculation found in the proof of [18, Theorem 6.3.2], we can show that the right-
hand side of the equality above tends to 0 as n — oo. Therefore h, — 1 q.e. and

EP(hy, hy,) — 0 as n — oo, which implies that the constant function 1 belongs to D, (E”)
and £7(1,1) = 0. Hence, (€7, D(E”)) is recurrent. O

Theorem 3.9 is interesting in the sense that for p € D, (&), the transformed process
M always becomes recurrent (in particular, conservative) even if M is transient.

3.2 Non-attainability to zero sets

In this section, we assume that (£, D(£)) is conservative, P,,(¢ < oo) = 0, and that p is a
nonnegative function in D} .(£) with finite energy measure, ey (E) < oo. It is shown in
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[18, §6.3] that under assumption of the strong local property, the transformed process M
never approaches in finite time to the set {x € E'| p(x) = 0 or p(x) = co}. The objective
of this section is to obtain the non-attainability without assuming the local property. We
use ideas from [18, §6.3] but modifications are needed because M is allowed to have
jumps.

Lemma 3.10. Let p € D} () with p,y (E) < 0o, where Dt (E) is the space defined in

3.7). Then the transformed process M is conservative in the sense that
p

P2 (¢ < 00) = 0. (3.17)

Proof. Let M be a local martingale defined by (3.1). Let {T},} be a sequence of {.%,}-
stopping times defined by

T, :=inf{t > 0| (M), > n}.

Since the Revuz measure of the PCAF (M) for M is (1/p)?f,, that for M is Loy bY
Theorem 3.2. Hence, we get

1~
]PPQW(TH < t) < _EpmeM)t] <
n

By letting n to infinity, we obtain lim,, ., 7;, = 00 fppzm-a.s.
Put M/ := M.z, and LE") := L7 ;. Then for each n, L™ is a solution to the
following SDE:

t
L§”>:1+/ L™ dMT, t>0.
0

From the definition of Dﬁ(;j (€), there exists a constant @ > 1 such that a=! < p < a.

Hence we have by (3.2)

X 1
p(Xint,) 1> =1,

AM/™ =
! (Xt -) a?

t>0.
Moreover, it holds that
E.[[M™]s] =E.[(M)r,] <n.

By the same argument as that in the proof of [4, Theorem 4.3.2], we can show that there
exists a constant C' > 0 such that LE") < CE, [ng) |,§5t] for every x € F and t > 0.
Therefore L™ is of class (D), that is, {Lg") | 7 is a stopping time} is a uniformly integrable
family. Thus L(™ is a uniformly integrable martingale by [20, Theorem 7.12]. Hence we
have by (3.5)

P,(t AT, < () =E,[L{"] =1, t>0
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for each n. Therefore we have for all ¢ > 0
Pyt <¢) = lim P,(,AT, < () =1 p’m-ae.,
n—oo
which leads to (3.17). ]

Let p € Dy (E) with p,)(E) < oo. Then there exist {G,,} € © and {p,} C D(€)
such that p = p,, m-a.e. on GG,,. Then by LeJan’s formula ([18, Thorem 3.2.2]), we see
that

P* diifiog ) = lim / P Wiog ) = lim / Atipn) = 1) (E)-
E n—oo G n— oo G
On the other hand, substituting p(y)/p(x) for the inequality
t(logt)® < (1 —1t)*, t€(0,00),

we have

2 /E E(logp(x) —log p(y))?p(x)p(y)J (dz, dy) < 2 /E (p(x) — p(y))*J (dx, dy)

xE
- “?m(E)'

Since log p € (Dloc(g))b, it is in (Dloc(gp))b as well by Theorem 3.6. Thus log p(X;) —
log p(X) admits Fukushima’s decompositions under P, and ]T”x, respectively:

log p(X;) — log p(Xo) = M5 + NI°5#1 P __as.
log p(X;) — log p(Xo) = M5# + NJ°5#1 P as.

By the same argument as in the proof of Theorem 3.5, MUosel and Nlogrl are expressed
as

]"\Zt[logp] _ Mt[logp] . <M[logp]’ M>t7 Nt[bgp] — Nt[l‘)gp] + <M[10gp]7 M>t
Moreover, in a similar way to the proof of Lemma 3.3, we can show that

ltlf(l)l [(M [log p]> }

/ P* Aifiog ) + / (log p(x) —log p(y))*p(x)p(y)J (de, dy).
E E
Noting that ji(,) = Iy T 1) o) because of the conservativeness of M, we get
E e [(MI2),] <ty (E), t>0. (3.18)

Since ju(,y(E) < 00, this inequality implies that Mlogrl js g I@x—square integrable martin-
gale for p>m-a.e. .



31

Lemma 3.11. It holds that for \ > 0 and p € Dy () with ) (E) < oo,

loc
(p(Xs) y PXo)

p(Xo) ~ p(X)
Proof. By Lemma 2.2, it holds that

pozm < sup

0<s<t

8t
> > e)‘) < pmm(E). (3.19)

Ns[logp] ory = Nt[logp] _ Nt[li)fp]’ 0<s< t, Pme-a.S.
Moreover, we can show in the same way as in the proof of [18, Thorem 5.7.1] that

1~ 1 /— o 3 7o
log p(X) — log p(Xo) = §Ms“°gp] +35 (Mt[l_f”} o — M o n) ,

0<s<t, Pppy-as.
Hence, the left-hand side of (3.19) is equal to

B sup 10p(X.) ~logp(60)] 2 )

0<s<t

= ﬁDme < sup |J/\\4'/8[10gp} + ]/\>[/15[1_O§p] oTy — J/\\I/t[logp} o Tt| Z 2)\)
0<s<t
and the right-hand side is dominated by

Iﬁpzm (sup ‘mlogp]‘ > )\) +IF’pzm (Sup |]\A4Jt[l_°§p] ory — ]/\Zt[logp} om! > )\)

0<s<t 0<s<t

< ﬁpﬂm (sup ‘]’\\js[logp]} > %) +I’§>p2m <Sup |]/_\Zs[10gp} OTt| > )\)

0<s<t 0<s<t 2

= 2P, (sup ]]\75“0”]‘ > %) .

0<s<t

Here the last equality is derived from the reversibility of the measure I?’pzm. We have by
Doob’s inequality and (3.18)

0<s<t

~ o A 4 ~ A 7llo
P2 <sup | ploeel] > 5) < 13 Epem {(M“ gpM < 3 e (B)-
O

Theorem 3.12. Let p € Dioc(E) such that p > 0 m-a.e., m({p(z) > 0}) > 0 and p,)(E)
< 00. Then the transformed process M is conservative in the sense of (3.17) and it never
attains to the set N = {x € E'| p(x) = 0 or p(x) = 0o} in the following sense:

P om0 < 00) =0, (3.20)
where oy = inf{t > 0: X; € N}.
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Proof. Our proof is quite similar to that of [18, Thorem 6.3.4]. For the reader’s conve-
nience, we spell out the details. The assertion holds for p € D;iF(£) because of Lemma
3.10. We assume that £\ E,, # () for any n > 1, where E,, := {z € E | 1 < p(z) < n}.
We set p, := (= V p) A n and define stopping times 7, by 7,, := inf{t > 0 | X, & E,}.
Then p, € DS (€) and p = p,, on E,. Moreover, it holds that /1, (E) < 1,y (E) for
each n because of the following inequality:

pn(2) = pu(y)] < |p(x) — p(y)| forallz,y € E.

Let us denote by M := (Q,.7, X, , P, {P(n)}) the transformed process by L;". Then
we see from Lemma 3.10 that M(") is conservative, P( 1 =1, p*m-ae.
Note that LY = L{" on {t < 7,,}, and thus

Bt < ) =B (It <] =B (L5t <m] =B <m). 62D

Hence, for any 1 < ¢ < n and ¢ > 0, we have

Bon( 7 <p(X0) <6 mst) = /{ -y P 0 S 00t )

= P (7, z)*m(dz).
/{%M}ﬂz (5 < 1) pla)m(d)

Since {% <p< E} C {p = pn}, the right-hand side is equal to
~ ~n 1
/ P™ (1, < t) pp(x)*m(dx) = P(z)m (— < pu(Xo) <L, 0 < t) . (322
{[<Pn <€} P l

Since M(™ is conservative, we see that X, € E \ E, f”ﬁ)ﬁln-a.s. on {7, <t} and thus the
value of p, (X, ) is either n or 1/n. Therefore (3.22) is dominated by

~(n n XS) pn(XO) n
o) ( (P( v > ).
Pt os’glilg)t pn(Xo)  pa(Xs))

By applying Lemma 3.11, this is dominated by

-2

8t (log %) - Lony (E) < 8t (log %) oy ().

Consequently, we have by letting n to infinity

1
]P)p2m (Z < p(XO) < g; oy < t) = 0.
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Since the left-hand side tends to I@pzm(a N < t)as{ — oo, we attain (3.20). Now we have

forany t > 0 and f € B,(F),

lim P f =PBf p*m-ae.

n—o0

Indeed, we see from (3.21) and (3.20) that for p?m-a.e. z,

E [f(X0) 570 < t] < || flloo P& (1, < 1)

= ”fHooﬁ’x(Tn <t) —0 as n— oc.
Hence, noting that L = L{" on {t < 7,,}, we get

lim B [£(X,)] = lim EM[f(X,);t < 7]

n—o0 n—o0

= lim E,[LYf(X;)t < 7]
n—oo
=E, [Lff(Xt) it < 0N:|7

which implies (3.23). Since M(™ is conservative for each n, SO is M by (3.23).

(3.23)
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Chapter 4

Hardy-type inequalities

4.1 Schrodinger forms

From this section, we impose the next assumptions on M:

Irreducibility: If a Borel set A is P-invariant, i.e., P,(14f) = 14 P, f m-a.e. for any
t > 0and any f € L?(E;m) N B,(F), then the set A satisfies either m(A) = 0 or
m(E\ A) =0.

Strong Feller Property (SF): For each t, P,(*8,(F)) C Cy(E), where Cy,(F) is the
space of bounded continuous functions on E.

We remark that (SF) implies

Absolute Continuity Condition (AC): The transition probability of M is absolutely
continuous with respect to m, p;(x, dy) = p(x,y)m(dy) foreacht > 0 and x € E.

For 5 > 0, we define the S-order resolvent kernel by

Ro(z,y) = / e Ppi(ey)dt, € E.
0

If M is transient, we can define the 0-order resolvent kernel R(z,y) := Ro(x,y) < oo for
z,y € E with z # y. R(z,y) is called the Green function of M. For a measure p, we
define the S-potential of 11 by

Rop(z) = /E R, y)uldy).

We introduce two classes of measures.
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Definition 4.1. Suppose that ;. is a positive smooth Radon measure on .
(i) A measure y is said to be in the Karo class (i € K in abbreviation), if

lim [ Rapelloo = 0
a—00

(ii) Suppose that M is transient. A measure p € K is said to be Green-tight (1 € K, in
abbreviation), if for any £ > 0 there exists a compact set X = K (¢) such that

sup/cR(fc,y)u(dy) <e

zeE JK

By [1, Theorem 3.9], € K if and only if

limsup E,[A —hmsup/ /pS x,y)pu(dy)ds = 0. 4.1)

t}0 zcE tl0 zeE

We see from [22, Lemma 4.1] that the class K., is the same as that defined in [3,
Definition 2.2 (1)] under (SF). We denote the Green-tight class by K. (R) if we would
like to emphasize the dependence of the Green kernel. We see from the Stollmann-Voigt
inequality (4.11) below that for « > 0 and u €

[ < [ Ropl - Eafu), w e DEE)
E
Let 1 € K. We define the Schrodinger form by

D(&") = D(€),
EM(u,v) = E(u,v) — /Euv d.

Denoting by £# = L + p the self-adjoint operator generated by the closed symmetric
form (E#,D(EM)), (—LFu,v)ym = EF(u,v). Let { P}'} be the semigroup generated by L*,
P! = ¢**". By the Feynman-Kac formula, P/ is expressed by

Pl f(x) = Eqo[exp (AF) f(Xe) 5t < (]

It is known from [1] that { P/'} has the strong Feller property.
For 11 € KC, we set a function space:

H(u) = {h e D} (E)NC(Ey)|h > 0and Ph < h}. (4.2)
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Suppose H* (1) # 0. For h € H*(u), we define the bilinear form (£#", D(E#")) by
D(EMM) = {u € L*(E;h®m) | hu € D(EM)},
Erh(u,v) = EX(hu, ), u,v € D(EXN).

The closedness of (£#", D(E#M)) follows from that of (£#,D(£)). Then the semigroup
{P!"} generated by (E*", D(EM)) is h2m-symmetric and expressed as

Pt f(a) = ﬁpf‘(hf)(x)

= %Ez[exp(Af)h(Xt)f(Xt) t< (], feBy(E). 43)

Moreover, by the definition of H* (u), { P/ ’h} is a Markovian semigroup and this implies
that (£#", D(E*")) is a Dirichlet form on L?(E; h*m).

Lemma 4.2. For ¢ € D(E) N Cy(E), the function ¢ /h belongs to D(E) N Cy(E).

Proof. Let K be the support of ¢ and put ¢ = (inf,cx h(x))~. Then, for (z,y) € K x K

2(@)| < ele(@)]
PP lp(z) —eW)| | le(@) —ely)| | [h(z)e(z) — h(y)e(y)|
H0) - 50| <50 Ry h(@)h(y)

Since ¢ and hy belong to D(E), the function ¢/h also belongs to D(E) by [18, Theorem
1.5.2 (ii)]. 0

Lemma 4.3. D(£4") N Cy(E) = D(E) N Cy(E).

Proof. By the definition of D(EXM), u € D(EHM) N Cy(E) if and only if hu € D(E) N
Co(E). On the other hand, it follows from Lemma 4.2 that hu € D(E) N Cy(E) if and
only if u € D(E) N Cy(E). O

Lemma 4.4. The Dirichlet form (E*h, D(EXN)) is regular.

Proof. We see from Lemma 4.3 and the regularity of (£, D(£)) that D(E#") N Cy(E) is
dense in Cy(F) with respect to the uniform norm.

Suppose u € D(EMM). Then by the definition of D(E£#"), hu € D(E) and by the
regularity of (£,D(€)) and (4.11), there exists a sequence {¢,,} C D(E) N Cy(E) such
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that £#(hu — ¢,, hu — ,,) converges to 0 as n — oo. Then the function ¢, /h is in
D(E) N Cy(F) by Lemma 4.2, and

Erwh (u— %,u— %) = &' (hu — @, hu — @,) = 0 asn — oo,
which implies the the regularity of (E4" D(E1)). O

Let us denote by M*" the Hunt process generated by the regular Dirichlet form
(Ewh D(EMM)). Then by (4.3), the irreducibility of M*" follows from that of M because
exp(AY)h(X;) > 0fort < ( P,-ass.

Remark 4.5. The process M/*" possesses the following property:
(LSC): For v > 0, every ~y-excessive function is lower-semi-continuous.

Indeed, let " be the ~y-resolvent of M. Then for g € B(E),

1

h(z) Ri(g (h An))(z) T Rﬁ’hg(x), as n — o0o.

The function R%(g (h A n)) is continuous on F by the strong Feller property of P/,
and thus Rﬁ’hg is lower-semi-continuous. By [18, Lemma A.2.8], for any y-excessive
function u, there exists a sequence { g, } of bounded nonnegative Borel functions such that
R gy () 1 u(x) as n — oo. Hence (LSC) holds.

D.(EM) denotes the family of functions u on E such that |u| < oo m-a.e. and there
exists an E#-Cauchy sequence {u,} of D(E*) such that lim,,_ ., u, = u m-a.e. For
u € D.(E") and the sequence {u,, }, define

EM(uyu) == lm E*(uy, uy).

Lemma 4.6. Let D,(E4") be the extended Dirichlet space of (E*", D(EFN)). Then

D (E+") = {u|hu € D(EM)},
Erh(u,u) = E*(hu, hu), u € D (EFM).

Proof. Suppose that hu € D.(E*). Then there exists an E#-Cauchy sequence {p,} C
D(&EH) such that lim,, o @, = hu m-a.e. Hence, the sequence {p,/h} C D(EHN)
satisfies the following condition: lim,, .., ©,/h = u h*m-a.e. and

7 T T ___>:5M(90n_90ma90n_90m)_>0
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as m,n — oo, which implies u € D (EMM).
For any u € D (EM"), there exists an £*"-Cauchy sequence {u,} C D(EM") such
that lim,,_,., u,, = u m-a.e. Then we have

EM(Rttyy, — Mgy, Bty — hty) = EPM (U — Upyy Uy — Uy ) — 0
as m,n — oo. Therefore hu € D.(E*). Moreover, it holds that

EFMu,u) = lim EPM (up, u,) = lim E*(huy,, huy,) = E*(hu, hu).

n—oo n—oo
[
4.2 Hardy-type inequalities
We next consider the following Hardy-type inequality:
/quMSE(u,u), u € D(E), 4.4)
E

where 1 is a positive smooth measure. We set a function space:

loc

7'Nl+(,u) = {h Er(h,) >0 forall ¢ € D(E)NCH(E)

h € D} () N C(Ey) is strictly positive and }

As an application of Girsanov’s transformations, we shall show that the inequality (4.4)
holds whenever H* (1) # 0.

Lemma 4.7. For h € H*(u), there exists a positive smooth measure v such that

t
N = — / h(X)dA* — AY, t < (, Py-as.qe .z € E.
0

Proof. Let L :=D(E)NCy(E). Then L is a Stone vector lattice,i.e., fAg € L, fAl € L
forany f,g € L. For h € H* (), define the functional I by

f(w)zﬁ(h,so)—/Ehsodu, peL.

Then I(yp) is pre-integral, that is, /(¢,) J 0 whenever ¢,, € £ and ¢, (z) J 0 for all
x € E. Indeed, let ) € D(E)NCY (E) such that ¢) = 1 on supp|p1]. Then v, < ||@n oot
and

I{pn) < llenlloo - I(1) L 0 as n — o0
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Noting that the smallest o-field generated by L is identical with the Borel o-field, we see
from [10, Theorem 4.5.2] that there exists a Borel measure v such that

I(p) = / wdv, @€ L. 4.5)
E

We shall prove that the measure v is smooth. Let K be a compact set of zero capacity
and take a relatively compact open set D such that X' C D. Then there exists a sequence
{pn} € D(E) N CJ (D) such that ¢, > 1 on K and &;(pn, ¢n) — 0as n — oo ([18,
Lemma 2.2.7]). Take ¢» € D(E) N Cy(E) withp = 1on D and 0 < ) < 1 on E. Noting
that hi) = hon D and hvy) < h, we have

Ehion) = 5 [ b+ [ (@) = B0 o0(a) = 000 T )
2 [ (hta) = o) on(a) I dn,dy) + [ o
5 e [ ()= @) o0) = pal0)) T )

w2 ()= b)) o dy) + [ o
= E(h, vn).

v

Consequently,

W(K) < [ pudv = E(hgn) = [ hpudu < G,
E E
and the right-hand side is dominated by
g(h¢7 hw)l/Q : g(@?ﬂ @n)1/2 — 0 asn — 0.

Therefore v is smooth.
The equation (4.5) is equivalent to

E(h,ap):/gohdu+/g0dl/:/g0(hdu+dy).
E B E

Therefore, we have the lemma by Corollary 2.6. [l

Suppose H* () # () and let h € H*(n). Define a local martingale on the random
interval [0, ([ by M; = fo )~ td M " and let L be the solution to the following
stochastic differential equatlon

t
Lf}:1+/ L dM,, t<Z¢.
0
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Define
dP, = L'dP, on .7 N{t<(} for x € E.

As we have shown in §3, M" := (Q, F, Xy, IF)I) is an h*m-symmetric right process on E.
On the other hand, on account of Lemma 4.7, there exists a positive smooth measure
v such that

t
h(X,) = h(Xo) + MM — / h(X,)dA* — AY, t<(, Pias.qe.x € E. (4.6)
0

By It6’s formula applied to the semimartingale /(.X;) with the function log =, we have
log h(X,) =1 h(X)+M+/t L 1<MC>
Og t) — Og 0 t 0 h(Xsi> s 2 t

h(X) h(X)
+ Z (log h(X. ) +1-— h(XS_)) P,-a.s.

for g.e. x € E, which leads to

Zg; P (‘ / h()is_)dNih])

1 . h(Xs) h(X,)
= exp (Mt - §<M = (log h(X,_) 1 h(Xs—))>

0<s<t

=L!

P,-a.s. for q.e. x € E/, and thus for all z € E. Therefore we see from (4.6) that L? has the
following expression:

h(X) ( /t 1 )
L = exp [ AY + dA” ).
) TP T RX)
Hence, a transition semigroup {Eh} of M" is expressed as

Blu(z) = E, [Lhu(X,) 5t < (] = %Pﬁ(hu}(m), weEBy(E), @47

where 7 := p+ v and P/ f(z) = E, [exp(A}) f(X,);t < ¢]. The identity (4.7) implies
that

%(u — Pu,u),, = % (E - ﬁth (%) , %)th. (4.8)
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Let (E", D(EM)) be the Dirichlet form on L2(E; h2m) generated by M". On account of
Theorem 3.5, there exists an E-nest { F} } such that (-, Dy(€)r, C D(&EM) and

&) =5 [ Wiy + [ (ule) = un)PGa)h(o) (o, dy)

+ h(0) /E w(@)?h(z)r(dz)

for u € Uz Do(E) . If wis in Js) Dy(E)p,» then so is u/h by the same argument as
in the proof of Lemma 4.2. Thus, we see from (4.8) that the identity

02
5(u,u)—/u2d,u—/zdu
E E

=5 [+ [ (G- 5w) HorwIdnd) @)

U2
+ h(0) / — () k(dx)
g h
holds for u € | J;~, Dy(€)F,. Now we obtain the next theorem.

Theorem 4.8. The identity (4.9) holds for all u € D(E).

Proof. For u € D(E), there exists a sequence {u,} C > Do(€)p, such that u, — u
g.e. and & (uy, u,) — E(u,u) as n — oo ([18, Theorem 2.1.4]). Then we have by Fatou’s

lemma . .
/ u? (du + —dV) < lim inf/ u? <du + —du) .
. h vy h

From (4.9), the right-hand side is bounded by

liminf & (u,, u,) = €(u,u) < 0o,
n—oo

and thus u € L*(E; p + 3v).
On the other hand, by using (4.9) again, we have
2

i (tn ) _ Y R
E <h’h) E(Un, up) /Eundu /Ehdv

< sup E(up, u,) < 0.
Since u,, /h — u/h q.e., u/h belongs to D, (EM) N LA(E; h*m) = D(EM) by [36, Definition
1.6] and [18, Theorem 1.5.2]. Therefore, on account of the relation (4.8), we see that the
equation (4.9) holds for all u € D(E). N
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Theorem 4.8 tells us that if ’}?ﬁ(,u) # (), then Hardy’s inequality (4.4) holds and the

remainder term is given by
2
<, (U U u
&h (—,—) /—d.
wn) L

Example 4.9. Denote by S the family of finite energy measures of finite energy integral
with bounded potentials. For i € Sy and « > 0, the a-potential R,y is in D(E) and

Ea(Ratt, p) — / pdp =0 forall p € D(E)NCyH(E).
E

Since [, du = [ Rapt - ¢ - dp, the potential Rqpu is in the space Ht (RL -u)

al
associated with (£,,D(E)). Thus, we see from Theorem 4.8 that

u? 1
Ealu,u) > /—du > —/ urdp (4.10)
S A T vy

forall u € D(E).
Let ;1 be a smooth measure. Then by [18, Theorem 2.2.4], there exists a compact
E-nest { F,,} such that y,, := 1, - u € Sy for each n. By the inequality (4.10), we have

/ wldptn < || Raptnlloc - Ealu, w).
E
Hence, by letting n — oo, we obtain
/ wdp < ||Rofillo - Ealu,u) forall u € D(E). (4.11)
E

This inequality is well-known as the Stollmann-Voigt inequality ([37]).

Recall that Ht () is the space of P}'-excessive functions defined by (4.2). We next
show that the space H " (u) coincides with ™ (1) under the condition x = 0. Here k is
the killing measure of M.

Lemma 4.10. " (1) is contained in H* (). If k = 0, then the opposite inclusion holds.

Proof. Take h € H*(y) and let {P},~, be the transition semigroup of the Girsanov

transformed process M" defined in pp. 40. We see from the identity (4.7) that
Pl'h(x) < h(z) - PM(x) < h(z)

and thus A is in H*(u).
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We next suppose x = 0. Take h € H(u) and p € D(E)NCY (F). Let K := supp[y)].
Then for any u € D(E) N Cy(E) withu = 1 on K and 0 < u < 1 on E, it holds that

E(hu, ) — / hup dp > 0.
E

Indeed, the left-hand side is equal to

1 o1
ltlﬁ)l ;(hu - Pt”(hu)u So)m = ltl&)l ; ((h, QO)m — (Pt‘u(hu), gp)m>

Since P/'(hu) < P['h < h, the right-hand side is nonnegative. Take a sequence of
relatively compact open sets { D,, } such that D,, 1 E and K C D,, for each n. Then there
exists a sequence {u, } C D(E) N Cy(F) such that u,, = 1 on D,, and 0 < w,, < lon E.
Since u,, = 1 on K = supp|p], we have

E(huy, @)

- % [Edﬁ‘?hun,@ + [E XE(’wn(fL‘) — hun(y))(p(2) — @ (y))J (dz, dy)

+ / hu,p dk
- %/Ed%m + /Kxx(h(m) — h(y)(e(z) — o(y))J (dz, dy)
T 2/ (h(x) = h(y))(p(z) — @(y))J (dz, dy)
Kx(DinKe¢)
+ 2/ (h(x) = hun(y)) (o(z) — @(y))J (dz, dy).
Kx(D{NnKe)

Since |h(y)u,(y)p(x)| < h(y)e(x) and fo(DfﬂKC) h(y)p(z)J(dz,dy) < oo, the fourth
term on the right-hand side tends to

2/ (h(z) = h(y))(e(z) —(y))J (dz, dy)
Kx(D$NK®)

as n — oo by the Lebesgue convergence theorem. Consequently, we have

E(h, w)—/}ﬂhsoduzr}L% (5(hun,<p)—/Ehung0d,u) > 0.
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4.3 Existence of excessive functions

Let 1 € K, the set of Green-tight measures. In this section, we consider the existence of
a function in # " (u). Define

M) = inf {g(u,u> )u e D(EM), /Eu2du — 1}. 4.12)

Note that the condition A(x) > 1 is equivalent to Hardy’s inequality (4.4). Hence, we see
from Theorem 4.8 that the next result holds.

Lemma 4.11. If \(1) < 1, then H* (p) = 0.

4.3.1 The case \(11) > 1

In this subsection we treat the case that A(x1) > 1. For a smooth measure y, let g, be a
so-called gauge function defined by

gu(z) =E, [exp(Ag)].
It is known in [3, Thoerem 5.1] that g, is a bounded function if and only if A(x) > 1.

Lemma 4.12. Assume that \(11) > 1. Then the gauge function g 1s excessive with respect
to {P{'}, Pl'gu(z) 1 gu(x)ast | 0.

Proof. Noting that E, [ )‘ } Ex, [e C] by the Markov property,

Plg,(z) =E, [eAggu(Xt); t< C] =E, [ ‘Ey, [e C] t< C}
_E, []E [A“+A” Oy | 7 t”

Since A} +A{(0;) = A on {t < (}, the right-hand side equals E,, [eA?; t< C} . Therefore

Plgu(n) = B [et < ¢ 1 B[] = gu(a) as L0,

Lemma 4.13. It holds that

g“(x) =1+ R(gu ) ,u)(x)
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Proof. Fix x € E and define a uniformly integrable martingale { M, } by
M, = E, [exp(A¥)|.7].
Since A} + A7 (0;) = A; on {t < (}, we have
MMl = e VE, [eAg Liegy| 7 t} = VE, [6A?+Ag(9t)ﬂ{t<<}\y t}
=E, [6’45(9” |7 t] By
By the Markov property, the right-hand side equals
Ex, [‘EA?} Licey = 9u(Xi) Dy,
and thus

t t
/ 9u(Xs)dAL = / e~ M dA".
0 0

Hence by 1t6’s formula,

t t
e M, = My + / e~ dM, — / e~ M dA»
0

0

t t
:M0+/ eA?dMs—/ gu(X,)dA",
0 0

Since f(f e~ A% dM, is a P,-martingale, E, [fot €_A5dMs] = 0 and thus

E,[M] = E, [B—Az”MC} +E, [ /O C gM(XS)dA‘;} .

I

Noting that B, [M] = g,(z), e < M, = e~ A = 1 and

¢
B, | [ o (x)at] = rig, ),
0
we have the lemma. O]

Theorem 4.14. The gauge function g, belongs to H* (1) N Cy(Ey).

Proof. First note that g, - u € K. Hence, on account of Lemma 4.12 and 4.13, we have
only to prove that Rv is in Coo(E) N Dy (€) for any v € K. Here Co(F) is the set
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of continuous functions vanishing at infinity. Since Rv € B,(FE) by [3, Proposition 2.2],
P, (RV) € Cy(E) by the strong Feller property. We have by the Markov property

|Rv — P,(Rv) |l = sup (E. [4¢] — E.[4{(6))])

=supE, [A:‘,/]

zeFE

Since the right-hand side tends to 0 as ¢ | 0 by (4.1), Rv belongs to C,(E).
We take an increasing sequence of compact sets { K, } such that K, T E and

|R(Igev)||oo $ 0 asn — oo.

The existence of such {K,,} follows from the definition of a Green-tight measure. Note
that for each n, a measure v,, := lg, v is also Green-tight, and thus Rv,, € C,(FE) by the
argument above. Since

/E/ER(I’»?J)Vn(dx)yn(dy) < o0,

it follows from [38, Lemma 3.1] that Rv,, € D.(€), and thus Ry, (x) — 0as z — 0.
Thus Ry, belongs to C,(F) and

sup |Rv(x) — Ruy ()| = sup [R(lgev)(x)| L 0 asn — oo.
z€E z€E
Therefore Ry is in Coo (E).

The function Rv is an element of Dy, (€) because a bounded excessive function with
respect to { P;} belongs to Dy,(€). Indeed, take a bounded excessive function u and set
Up = u A ||[ul|so(nR1f A 1) for a strictly positive bounded function f € L?(E;m). We
further set £, := {z € E': R, f(x) > 1/n}. Then E,, is an open set by the strong Feller
property and (J,,.y En = E. Since u,, < [Jul|oo(nRyf A1), u, € D(E) by [18, Lemma
2.3.2] and u = u,, on E,,. Therefore u is in D}y (E). O

On account of Theorem 4.14, we can define the Dirichlet form (£#9+, D(E#9+)) by

D(EM9n) = {u € L*(E; g2m) | guu € D(EM)},
£1(u,0) = E(gu,9,),  u,v € D(EN).

Lemma 4.15. The Dirichlet form (E/9+, D(EM9+)) is transient.
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Proof. From the definition of (1),

E(u,u) > )\(,u)/ w*dp,  u € D(EW),

E
and thus

EM(u,u) = E(u, u) —/

wldp > (M> E(uu), uweDEY). (4.13)
E

A(w)

Take v € D, (EM9+) with EF9+ (v, v) = 0, where D, (E#9+) denotes the extended Dirichlet
space of (E#9+ D(EM9+)). Then there exists a sequence {v,} C D(E*9) such that
v, — v m-a.e. and EM9% (v, v,) — 0 as n — co. We have by (4.13)

E(9uvn, gutn) < <%) - EM(gun, guvn)
= (%) - EMI (v, v,) — 0 as m— oo.

Therefore g,v € D.(£) and £(g,v, g,v) = 0, which implies that g, v = 0 m-a.e. because
of the transience of (£,D(£)) and [18, Theorem 1.6.2]. Since the function g,, is strictly
positive, v = 0 m-a.e. and thus (£#9+, D(EM9+)) is transient. O

Let I?); be the 3-resolvent of LF,

00 ¢ u
wpe) = [Cerrrsa - | [ xga] e nim

We write R* for R simply. Denote by B, (E) the set of nonnegative bounded functions
on [/ with compact support. Next lemmas are used to show the existence of an excessive
function when A(p) = 1.

Lemma 4.16. Let j1 € Koo with \(11) > 1. Then for ¢ € B ((E), R*p is bounded.

Proof. Put K := supp|p|. Note that P/ is a transient semigroup with (LSC) by
Lemma4.15 and Remark 4.5. Hence, we see from [19, Corollary 2.3] that R*9+ 1 is a
bounded function. Here R~ is the Green operator of (E9x D(EHIx)):

1
R = L RA(g, - ).
9u

Noting that ¢ < ||¢|oc 1k g,, we have

Rio(z) < [l B (1 gu) (@) = [l@lloc gu(x) - Bk ().

Since g, and R*9" 1 are bounded, the lemma holds. O]
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Lemma 4.17. Let ji € Ko with (1) > 1. Then for ¢ € B ((E), R'¢ € D(E*) and

EF(RFp,u) = / pudm, u € DJ(EY).

E
Proof. Put K := supp[y|. Then we have by Lemma 4.16

/ ¥ . pugn (ﬁ) g2 dm = / o Riodm < m(K) ||l - | R |l
E 9u Iu E
< 0Q.

Thus [18, Theorem 1.5.4] and Lemma 4.6 tell us that R*yp = g, R*%(¢/g,) € D.(EV)
and for any u € D,(E),

EM9u (Rﬂvgu (£> ’E) = (ﬁ, 3) = (Soau)m
Iu m Iu Y gZm

Noting that the left-hand side above equals

o
g (—R z 3) = £"(Rip,u),
Iu  Yu

we have the lemma. O]

4.3.2 The case \(u) =1

In this subsection, we treat the case that i € I, and (1) = 1. We see from [40, Theorem
2.1] that there exists a minimizer i) € D, (&) in (4.12):

>0, E@1,¥)=1 and / vidp = 1. (4.14)
E

Lemma 4.18. The measure v - v is of 0-order finite energy integral with respect to .
Consequently, by [18, Theorem 2.2.5], R(vu) € D.(E) and

E(R(p),u) = / wpdp, u € De(E).
B
Proof. Since \(u) = 1, it holds that for u € D,(E),

/ uidp < E(u,u).
E

Then by Schwarz’s inequality and (4.14), we obtain

[ = (/szdu)% (/Em)zgm,u) |

N



49

The function v is also characterized by

025(1/1,u)—/1/)udu, u € D(E). (4.15)
E
Hence we see from Lemma 4.18 that

E(,u) = E(R(Yp),u),  u € De(€),

and thus )

o) = Ron)(a) = B | [ o], mae @16
Now we define X

h(z) = E, [ / w(Xt)dAf} | (4.17)

By the arguments in [42] and [39], we wi(l)l show that the function % is in H*(u) and
P!'-invariant, that is, P/'h = h.
Lemma 4.19. The function h is finely continuous.

Proof. By the Markov property,

nx) =, | [Cvxoiat] =2 [ [ ocaane

_E, [ /0 " p(X)dAr 3}} - C(X)dAL

Since the first term of the right-hand side is right continuous in s because of the right
o

continuity of .#,, h is finely continuous by [18, Theorem A.2.7]. 0

Note that h = ¢ q.e. by (4.16) and [18, Lemma 4.1.5]. Hence by [18, Theorem 4.1.2],
there exists a nearly Borel set B D {z € E : h(x) # ¢ (x)} such that P,(o0p < 00) =0
for every x € I, where o is the hitting time of B. Therefore, the next lemma follows
from (4.17).

Lemma 4.20. The function h is strictly positive and satisfies
¢
h(z) = E, {/ h(Xt)dAf] forall x € E.
0

Lemma 4.21. For w € B, ((E) with [, wdm >0, let v =y —w - m. Then

Av) == inf{8(u,u)+/Eu2wdm’u€D(5),/

wrdp = 1} > 1.
E
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Proof. Ttis clear that A(v) > A(u) = 1. Suppose A(v) = 1. Then by the argument above,
there exists a strictly positive function hy € D, () such that

E(ho,ho)—l—/hg-wdm:l and /h%d,uzl.
E E
Thus we have

g(ho,ho):f;(ho,ho)+/hgwdm—/hgwdm
E E

:1—/h§wdm<1.
E
This implies A(x) < 1, which is contradictory. O

Lemma 4.22. The function h is bounded.

Proof. Since h is quasi-continuous, there exists a compact set K, with m(Ky) > 0 on
which A is continuous. Put v = p — lig, - m. Then A\(r) > 1 by Lemma 4.21. Recall that
for o € B, ,(E) and 3 > 0, R and R” are functions defined by

¢
Riple) =B | [ o) and mo(e) = i)

The function Ry belongs to D(E) and Rip t R"¢p as ] 0. On account of Lemma
417, R"¢ € D.(E") and

EY (R p,u) = / poudm, u € D(E). (4.18)
B
Noting that £#(h, Rj¢) = 0 by (4.15), we have
E"(h, Rgp) = E"(h, Rip) + / h- Rjpdm = h - Rjpdm.
Ko Ko

By letting 3 | 0, we get
EY(h,R"p) = / h-R'¢pdm = / R (1g,h) - ¢ dm.
Ko E
Since the left-hand side above equals (h, ), by (4.18), it holds that

h = R’(lg,h) m-ae.z € F.

In the equality above we can replace “m-a.e. 2’ by “all 27 by the same argument as after
the proof of Lemma 4.19. Since R”(1lk,h) is bounded by Lemma 4.21 and 4.16, we have
the lemma. u
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Lemma 4.23. The function h satisfies P/'h = h.

Proof. By (4.15), h satisfies
E(h,v) = / v(h-du) forany v € D(E)NCy(E).
B

Thus, it follows from [18, Theorem 5.4.2] that

h(X,) = h(Xo) + M — / t h(X,)dA"

£ Pgas.forqe x € I, 4.19)
0

where M is the martingale part of Fukushima’s decomposition. Hence we have by Itd’s
formula

t t t
e h(X,) = h(Xy) + / e dMI — / h(X,)e™ dA" + / h(X,)e™ dA"
0 0 0
t
= h(Xo) + / e am
0

n A\t I3 hl .
T A dMLE } is a

P,-as.qe. v € E. Let 7, := inf{t > 0; A} > n}. Then since |,

martingale, we have
u Tn AT u u
h(:]j) = El‘ |:eAT7LAth(XTnAt)] — Ex |:/ €AS dMS[h]:| = ]ECC |:€A7—n/\th<XTn/\t):| .
0

Note that by Lemma 4.22 and the strong Feller property of P/,
eMnnth(Xone) < Bl - € € L' (By)

and that 7,, — oo as n — oo P,-a.s. We then see that by the dominated convergence
theorem

h(z) = lim E, [eAfnh(X, M)] ~E, [eAé‘ h(Xt)} — P'h(z) forqe.xz € E,

n
n—oo

and thus forall z € £. [
Theorem 4.24. The function h is in H* ().

Proof. Note that h € C,(F) by Lemma 4.22, Lemma 4.23 and the strong Feller property
of P/'. Hence, the function h is an element of ™ (1) because a bounded function u in
D.(€) belongs to Dy (€). Indeed, let {u,} C D(E) be an approximating sequence for
u € D(E) NBy(E), that is, lim,,_,o, u,, = v m-a.e. and sup,, & (uy,, u,) < co. We may
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assume that |u,(z)| < ||ul| for all n and z. Let G be a relatively compact open set and
take a function ¢ in D(E) N Cy(E) such that ¢ = 1 on G. Then u,,p — up m-a.e. and

sup & (ung, un‘P)l/Q < Jlulleo - E(, 90)1/2 + llelloo - €(un, un)l/Q < 0.
Hence, ug belongs to D.(€) N L*(E;m) and so to D(E) by [18, Theorem 1.5.2 (iii)].
Since u = up on G, u belongs to Dy, (E). O
Define the Dirichlet form (E#" D(E~M)) by

D(EFM) = {u € L*(E; h®m) | hu € D(€)},
EWl(u,v) = EX(hu, hv), u,v € D(EFN).

Recall that {u|hu € D.(E*)} = D.(E*") by Lemma 4.6. Since the function h is
in D,(€#) and E#(h,h) = 0, the constant function 1 = h/h belongs to D.(E*") and
EMWM(1,1) = 0; this implies that the Dirichlet form (£ D(E*")) is recurrent. Therefore
we have the next result.

Lemma 4.25. The Dirichlet form (E*h, D(EFN)) is recurrent.

4.4 Hardy’s inequalities for Green-tight measures

We discuss the relation between Schrodinger forms and Girsanov transformed Dirichlet
forms treated in Chapter 3.

4.4.1 The case \(u) =1

Suppose that ;1 € K, and A(u) = 1. Then we see from arguments in the previous
subsection that there exists a strictly positive function h € D.(€) N Cy(E) such that

E(h,h) =1, /h2du:1 and P/'h=h.
E

Let h(X}) — h(Xy) = Mt[h] + Nt[h] be Fukushima’s decomposition. Then we see from
(4.19) that

t
NP = _/ h(X,)dA", TP,-as.forqe. z € E. (4.20)
0
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Let L! be the unique solution of

t
1
Lt =1 +/ L' ———dm
' 0 h(X-)

and M" = (€, X;,P") the transformed process by multiplicative functional L”, i..,
dP! .= L} - dP, on Z, N {t < C}. Let (E*, D(E™)) be the Dirichlet form on L2(E; h*m)
generated by M. Since h is bounded, we see from Theorem 3.6 that D(E) C D(EM). By
the computation similar to that in pp. 40-41, we can show that

b= P o a)

h(Xo)
and
P, u) = EM(u, u)

for u € D(E). Consequently, we get the following representation.

Theorem 4.26. Let ji € K, with \(p1) = 1. Then D(E) C D(E") and

e tu,n) = 5 [ aPuiy(dn) + [ (ula) = ulo) PGah(o) o, dy)

ExXE

foru e D(E).

4.4.2 The case \(11) > 1
dA

Suppose that 1 € Ko (R) and A(r) > 1. Then we see from the argument in §4.3.1 that
the gauge function g,(z) = E, [exp(A’g)] is in H* () N Cy(E). Note that g,(0) = 1
because Py(A; =0) = 1.

Lemma 4.27. Define
M = eAggu(Xt) — 9u(Xo).

Then M*"9 is a martingale with respect to IP,.

Proof. From the proof of Lemma 4.13,

e g, (X)) l<gy = Ex [eAg ecey| 7]
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and
Pl'g.(z) = Ey[e st < (]. 4.21)

Noting that ¢,,(0) = 1, we have
E.[e* g,(X))] = Bo[e* gu(X0) 3t < (] +Ba [ 51 > (]
= Pl'g,(z) + E, [eAg ot > C].
The right-hand side equals g, () by (4.21), and thus E, [M;"*] = 0. Since
M-S = €A§‘+tgﬂ(xs+t) — g,(Xo)

= M () g, (Xots) = 9u(X0)) + € 9u(X,) — 9u(Xo)

= NP (0,) + Mo
we have by the Markov property

E,[ML5Z,) = e Bx [M]"%] + M9 = M9

s

]

Since the gauge function g, is in Dy, (€) N Cy(Ey) by Theorem 4.14, g, (X¢) — g,.(Xo)
has Fukushima’s decomposition:

9u(Xy) — 9.(Xo) = Mt[g“] + Nt[g“], t €0,¢[, P,-as. forqe. x € E.
Then by Itd’s formula, we have

9u(Xe) = € (gu(Xo) + M)

t t
= gu(Xo0) + / e A AP / e g, (X, )e ™ (—dAr)
0 0

t t
:g#(XO)—i-/ e~ A% AN 9 —/ gu(Xs)dAL.
0

0
Thus we get

t t
wp = [ anpa, P~ g, x)aa
0 0

Define a local martingale by M; = fot(gu(XS_))*ldMlg“} and let L}* be the unique
solution of L{* = 1 + fot L% dM,. (£9%,D(E%)) denotes the Girsanov transformed
Dirichlet form by L{*. Then by the same argument as that in §4.4.1,

{13@) =D(er) = {u € LX(E;g},-m) : gu € D(E)},
E9(u,u) = EM9 (u,u), u € D(EM).
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Moreover, since 1 < g, < ||g,||o0. We see from Theorem 3.6 that D(E%) = D(E) and

&) = 5 [ 0 iy (o) + [ (ulo) = ulw)Pou ()0, (0) (. do)

ExXE

+/ u(x)zgu(:v)/f(d:v), u € D(E).
E
Therefore we obtain the next conclusion.

Theorem 4.28. Suppose that i € K, and \(p1) > 1. Then D(EM9*) = D(E) and

et =5 [ giuty + [ (ua) =00, 0) (o d)

xXE

+ /Eu(x)2gu(a:)/£(da:)

foru e D(E).
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Chapter 5

Quasi-stationary distributions

5.1 Quasi-stationary distributions

A probability measure v on E is said to be a quasi-stationary distribution (QSD in
abbreviation) of M if for all £ > 0 and any Borel set B,

P,(X; € B,t < ()
P, (t <)
QSDs capture the long-time behavior of the process that will be surely killed when this

v(B) =

process is conditioned to survive (for more informations on QSDs, we refer the recent
survey [29]). In this section, we consider the existence of QSDs. The next limiting
conditional distribution, so-called Yaglom limit is useful to find QSDs.

Definition 5.1. A probability measure v on F is said to be a Yaglom limit of M if for any
x € F and any Borel set B,

P,(X, € B,t

We can easily show that Yaglom limit is always a QSD. However, it is known that

5.1

the existence of a Yaglom limit does not always guarantee the uniqueness of QSDs. In
[23], Knobloch and Partzsch proved that for a (not necessary symmetric) Markov process,
the intrinsic ultracontractivity (see Definition 5.4 below) is a sufficient condition for the
uniqueness of QSDs. We will give another proof of this fact for symmetric Markov
processes.

Let \g be the bottom of the spectrum:

Ao = inf{g(u,u) :u € D(E), /Eu2dm:1}.
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A function ¢, on E is called a ground state of the L?-generator of & if

(/250 € D((‘:), / gbg dm = 17 and 8<¢07¢0) = /\0.
E
Suppose that there exists a strictly positive ground state ¢y. Then since
E(po, u) = Ao(¢o, u),, forany u € D(E) N Cy(E),

it follows from [18, Theorem 5.4.2] that ¢o(X;) — ¢o(Xo) is decomposed as

60(X) — do(Xo) = M — \ / bo(X)ds, Pyeas.
0

Here M is the martingale part in Fukushima’s decomposition. By the calculation
similar to that in §4.4.1, we can show that

$o(Xt)

Lfoze’\ot— t <,

Po(Xo)’

where Lfo be a multiplicative functional defined by (3.3) with p = ¢,. Denote by
M% = (Q, X,,P,) the Girsanov transformed process by L%, i.e., dP, := L{° dP,. Its
transition semigroup { P} on L?(E; $?m) equals

1
o(x)

The process M is conservative, ]3;7’0 1 = 1. Now, we obtain the result on the existence of
QSDs. The next theorem due to Fukushima [17] plays a key role for the proof.

PP f(z) = et E. [¢0(X:) f(X4);t < ¢]. (5.2)

Theorem 5.2. Assume that m(E) < oo and M is conservative, P.1 = 1. Then for
f e LY(E;m),

. 1 -
tligloPtf(x) = W/Efdm, m-a.e. and in L*(E;m).

Note that the process M satisfies the assumption in Theorem 5.2.

Theorem 5.3. Assume that there exists a ground state ¢, of (€, D(E)) belonging to
LY(E;m) N By(E). Then a measure v on E defined by

- fB¢0dm

v(B) = T Godm

(5.3)

is a unique QSD of M.
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Proof. The proof is based on an idea in [41]. Note that 13/¢, belongs to L*( E; ¢2m) for
any Borel set B. By applying Theorem 5.2 to M, we have

~ 1
lim P (—B) (z) = / Podm, ¢om-a.e. (5.4)
Po B
Hence it follows from (5.2) and (5.4) that
peo (1
. P(X,eBit<¢) . b (7?) ()
thm P i = 1thm N v(B).

—00 2(t <¢) oo pfo (%) (z)

Therefore v is a Yaglom limit, and thus, a QSD.
Secondly, we prove the uniqueness. Let 1« be a QSD of M. By the definition of QSD,
we have for ¢ > 0 and any Borel set B

> 1
Jy Plpdn e oo P (32) du

[, Pldp fE%ﬁf@(%) "

1(B)

By using (5.4) again, we see that the right-hand side tends to

Sy Godps J5 o dm
fE¢0dﬂfE¢0dm

which implies the uniqueness of a QSD. 0

v(B) as t— oo,

Theorem 5.3 requires that ¢y belongs to L*(E;m). If m is a finite measure, this is
always satisfied. However when m(E) = oo, ¢y does not always belong to L'(E; m). We
now give sufficient conditions for ¢ being in L*(E;m).

Definition 5.4. Assume that there exists a ground state ¢o. We say that a Markov semigroup
{ P, }+>0 has the intrinsic ultracontractivity (IU in abbreviation) if for any ¢ > 0, there exist
positive constants «y, (3; such that

ardo(x)po(y) < pe(z,y) < Bido(x)o(y) forallz,y € E. (5.5)

The notion of IU was introduced by Davies and Simon [9], and investigated extensively
because of its important consequences (see [23, 30, 43] and references therein). Note that
the TU implies that ¢ belongs to L' (E; m) N B, (E). Indeed, by integrating the left-hand
inequality of (5.5) with respect to y over £, we have

o) / boly) m(dy) < /E pila,y) mldy) < 1.

Hence, the next result follows from Theorem 5.3.
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Corollary 5.5. Assume that { P} has the IU. Then a measure v defined by (5.3) is a unique
QSD of ML

5.2 QSD’s of one-dimensional diffusion processes

By applying the previous result, we give an example of one-dimensional diffusion processes
that has a quasi-stationary distribution.
We consider the stochastic differential equation:

dZt — \/ Zt dBt + (Zt - Zf)dt, ZO > 0,

where { B, };>¢ is a standard one-dimensional Brownian motion. The solution Z = {Z;}
is a diffusion process on I = (0, 00) with lifetime ¢ = inf{t > 0 : Z, = O or oo}. The
process Z is called a logistic Feller diffusion process, which is derived from biological
models. It is proved in [2] that a unique QSD of the process Z exists. We would like to
give another proof of this fact.

We firstly make a change of variable and introduce the process Y = {Y;} defined by
Y, = 2v/Z,. Y is still absorbed at 0 and a QSD of Z is easily deduced from a QSD of Y.
From now on, we focus on the process Y and prove that it has the IU. By 1t6’s formula,

1 1
S ——
vz, 3

NG
1 , |
"/ <\/ZdBt (2, 7 )dt) - 17

t

dY, =

Hence, Y is a solution of the following stochastic differential equation:

U3

u
2

dY; = dB, — q(Yi)dt, q(u):= X

1
2u
We define
Q) =2 [ gl
1
_q x? N xt N 7
I W AT

Since the constant term does not affect further arguments, we may replace Q(z) :=
Q(x) — 7/16. We define functions on I by

m(x) ::/ e W,  s(x) ::/ W duy.
1 1
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Then m and s are the speed measure and the scale function of Y respectively. Note that
m is a symmetrization measure of the process Y and m(/) = oc.

Generally, a one-dimensional diffusion process on an open interval (¢, r) has the irre-
ducibility and the strong Feller property, and its boundary points ¢ and r are classified into
four classes: regular boundary, exit boundary, entrance boundary and natural boundary
(see [11] or [21]).

Lemma 5.6. For the process Y, its boundary point 0 is exit and oo is entrance.

Proof. We define

)= [ sty [“am2). I i= [Camty) [Cdse) fora e 0,00

We first prove that the point 0 is an exit boundary, which is equivalent to 7(0) < oo and
J(0) = oco. By the definition,

1 1
1(0) = / @) (/ e_Q(z)dz) dy.
0 y

Since fyl e~?®)dz and e~ ?W) tend to oo as y — 0, we have by I’'Hopital’s rule

lim —=—— = =
o e QW o Q(y)

This yields that e?) fyl e~ @) dz is bounded in [0, 1], which implies 7(0) < cco. On the

other hand, . .
J(0) = / —QW) ( / eQ(Z)dZ) dy.
0 Y

Since e7?®) = O(y~') and e“®) tend to 0 as y — 0, we see that J(0) = oco. Thus 0 is an
exit boundary.
We next prove that co is an entrance boundary, which is equivalent to I(co) = oo and

J(00) < o0o. Since
00 y
I(c0) > / Q) (/ eQ(Z)dz> dy
2 1

2 00
> / Q) / Q) gy
1 2
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and e“® tends to co as y — oo, we get I(0o) = oo. Finally, we compute the value of
J(00). We have by I’Hopital’s rule

Y oQ(2) g
lim JL €04z (5.6)

Yy—00 y—3€Q(y)

This implies that there exists a constant C' > 0 such that for sufficiently large v,

y C
—QW) / Qs < <
1 )

Therefore, taking M > 0 large enough, we get

o0 y
J(00) = /1 QW) ( /1 eQ(Z)dZ) dy
M Y e
< / e QW (/ eQ(z)dz) dy —I—/ —dy
1 1 MY

< 0Q.

Hence oo is an entrance boundary. 0

Remark 5.7. Let M be a general one-dimensional diffusion process on I = (¢,r). Itis
shown in It6 [21] that

(a) If r is a regular or exit boundary, then lim,,_,, R;1(z) = 0.
(b) If 7 is an entrance boundary, then lim,_,, Sup,¢(,»y F1l(sr) (x) = 0.

(c) If r is a natural boundary, then for s € (¢,r), lim,_,, R11(;,y(«) = 1 and thus
SUD,e(r) Fal(sm(z) = 1.

Hence, neither boundary is natural if and only if M has the tightness property, that is, for
any € > 0, there exists a compact set K of [ such that sup,.; Rilxc(x) < e. Thus it
follows from [18, Lemma 6.4.5] that there exists a ground state ¢ if no natural boundaries
are present.

For diffusion processes with no natural boundaries, a sufficient condition for the TU
was given in [43]. We present this condition in case when / is an exit boundary and r an
entrance one.
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Theorem 5.8 ([43, Theorem 2.11]). Let M be a one-dimensional diffusion process on
I = (¢, r) with speed measure m and scale function s. Assume that { is an exit boundary
and r an entrance one, and there exist points ¢; € 1,1 = 1,2, suchthatm(c;) < 0 < m(ca)
and s(c1) < 0 < s(cy). Further assume that

° “ ()
/z Im(z)|ds(x) < oo and /g |m<x)|dm(x) < 00, (A1)
/ m(z)ds(z) = 00 and / ’ 8 ds(z) < oo, (A2)

where

pla) = sup m(y)|(s(y) = s(0)) and v(x):= sup s(y)(m(r) —m(y)).

l<y<z r<y<r

Then M has the 1U.
By checking this condition, we shall show the next result.

Theorem 5.9. The process Y has the 1U. Consequently, a unique QSD of Y exists by
Corollary 5.5.

Proof. We only need to show that (A1) and (A2) in Theorem 5.8 are satisfied.

The former inequality in (A1): We choose ¢; so that 0 < ¢; < e~ 2. This gives m(cy) <0
and s(c;) < 0. We set

u?  ut . 2t
=g (<5 +5g) g (<54 5g)

Since Q(u) = logu — “2—2 + 1{—;, it follows that for all u € (0, 1),

—M; —M>

€ < e*Q@O <:6

u u

QW < eMlu, and

(5.7)

As aresult, we have

c1 c1 1
/ im(z)|ds(x) = / (/ eQ(y)dy) 9@ dy
0 0 x
c1 1€—Ab
< / (/ dy) eMig da
0 x Yy

:eMlMQ/ (—xlogx) dx
0

< 00.
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The latter inequality in (A1): Noting that s(y) — s(0) = [/ e?)du, we have

“ p(@)
| ey @

c1 1 -1 1 y
:/ (/ e_Q(Z)dz) e Q@) sup (/ e_Q(Z)dz/ eQ(“)du) dzx.
0 T Y 0

O<y<z

By the estimate (5.7), the right-hand side is dominated by

c1 1 —M,; -1 —M> 1 —M> Y
/ (/ ¢ dz) ¢ sup (/ ‘ dz/ eMiy du) dx
0 T < T Y 0

O<y<z z

€2M172MQ Cc1 1
—/ ——— sup (—y*logy)dz.
2 0 —X 10gl‘ O<y<zx

Since —y? log y is increasing on (0, ¢, ), the right-hand side is less than

2M1—2M2 C1
€
_— rdr < oo,
2 0

and thus (A1) holds.

The former inequality in (A2): We choose c; so that 1 < ¢y < oco. This gives
m(cg) > 0 and s(c2) > 0. Then

/ " () ds(z)

Cc2
co+1 T [e's] T
/ : ( / 6—Q(y)dy> 0@ g 4 / ( / e—Q(y)dy> Q@) gy
co 1 co+1 1
0 co+1
> / (/ eQ(y)dy) 9@ dz,
co+1 1

A simple calculation shows that the right-hand side is equal to oco.

The latter inequality in (A2): Noting that m(co) —m(y) = [~ e~ duy, we have

) x -1 y )
/ (/ eQ(Z)dz> e?@)  gup </ eQ(z)dz/ e_Q(”)du) dx. (5.8)
c2 1 1 Yy

r<y<oo
By I’Hopital’s rule, it holds that

oo _ 2 2
o [reeeg: C([Pemant ,
lim - = lim T(y) = lim ﬁ s
Yy—00 (fyoo e_Q(u)du> Y—00 e Yy—00 i y+ L
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and thus
2
Y oo 1
lim yG/ eQ(Z)dz/ e PWdy = lim y° | —— | = 16.
y—ro0 1 y y—r00 :% —y+ yz

By this and (5.6), there exist positive constants C', C’ such that for sufficiently large y,

y -1 y 0o C'
(/ eQ(Z)dZ> QW) < C'yg, / eQ(z)dz/ e QW < —-
1 1 Y Yy

Thus by taking sufficiently large K > 0, the right-hand side of (5.8) is dominated by

K x -1 y S < o
/ (/ eQ(Z)dz) e?®@ sup (/ eQ(Z)dz/ eQ(“)du> dz —i—/ ;dx.
[ 1 r<y<oo 1 y K A

Since the integrals above are finite, the condition (A2) is satisfied.




65

Bibliography

[1] Albeverio, S., Blanchard, P. and Ma, Z. M.: Feynman-Kac semigroups in terms of
signed smooth measures, In: Hornung, U., et al. (eds.) Random Partial Differential
Equations. pp. 1-31. Birkhéuser, Basel (1991).

[2] Cattiaux, P. Collet, P. Lambert, A. Martinez, S. Méléard, S. and San Martin,
J.: Quasi-stationary distributions and diffusion models in population dynamics,

Ann. Probab. 37, no. 5, 1926-1969 (2009).

[3] Chen, Z.-Q.: Gaugeability and conditional gaugeability, Trans. Amer. Math. Soc.
354, no. 11, 4639-4679 (2002).

[4] Chen, Z.-Q.: Uniform integrability of exponential martingales and spectral bounds
of non-local Feynman-Kac semigroups, In: Stochastic Analysis and Applications
to Finance, Essays in Honor of Jia-an Yan. pp. 55-75. World Scientific, Singapore
(2012).

[5] Chen, Z.-Q., Fitzsimmons, P.J., Kuwae, K. and Zhang, T.-S.: Stochastic calculus for
symmetric Markov processes, Ann. Probab. 36, no. 3, 931-970 (2008).

[6] Chen, Z.-Q., Fitzsimmons, P.J., Takeda, M., Ying, J. and Zhang, T.-S.: Absolute
continuity of symmetric Markov processes, Ann.Probab. 32, no.3A, 2067-2098
(2004).

[7] Chen, Z.-Q. and Fukushima, M.: Symmetric Markov Processes, Time Change, and
Boundary Theory, Princeton University Press, Princeton (2012).

[8] Chen, Z.-Q. and Zhang, T.-S.: Girsanov and Feynman-Kac type transformations
for symmetric Markov processes, Ann.Inst. H. Poincaré Probab. Statist. 38, no. 4,
475-505 (2002).



66

[9] Davies, E. B. and Simon, B.: Ultracontractivity and the heat kernel for Schrodinger
operators and Dirichlet Laplacians, J. Funct. Anal. 59, no. 2, 335-395 (1984).

[10] Dudley, R.M.: Real Analysis and Probability, Cambridge University Press, Cam-
bridge (2002).

[11] Feller, W.: The parabolic differential equations and the associated semi-groups of
transformations, Ann. Math. 55, no. 3, 468-519 (1952).

[12] Fitzsimmons, P.J.: Even and odd continuous additive functionals, In: Dirichlet forms
and stochastic processes. pp. 139-154. de Gruyter, Berlin (1995).

[13] Fitzsimmons, P.J.: Absolute continuity of symmetric diffusions, Ann.Probab. 25,
no. 1, 230-258 (1997).

[14] Frank, R.L., Lenz, D. and Wingert, D.: Intrinsic metrics for non-local symmetric
Dirichlet forms and applications to spectral theory, J. Funct. Anal. 266, no. 8, 4765—
4808 (2014).

[15] Frank, R.L., Lieb, E.H. and Seiringer, R.: Hardy-Lieb-Thirring inequalities for
fractional Schrodinger operators, J. Amer. Math. Soc. 21, no. 4, 925-950 (2008).

[16] Frank, R.L. and Seiringer, R.: Non-linear ground state representations and sharp
Hardy inequalities, J. Funct. Anal. 255, no. 12, 3407-3430 (2008).

[17] Fukushima, M.: A Note on Irreducibility and Ergordicity of Symmetric Markov
Processes, Vol. 173 of Springer Lecture Notes in Physics, 200-207, Springer, Berlin
(1982).

[18] Fukushima, M., Oshima, Y. and Takeda, M.: Dirichlet Forms and Symmetric Markov
Processes, 2nd ed., Walter de Gruyter, Berlin (2010).

[19] Getoor, R.K.: Transience and recurrence of Markov processes, vol. 784 of Lecture
Notes in Math., 397-409, Springer, Berlin (1980).

[20] He, S. W., Wang, J. G. and Yan, J. A.: Semimartingale Theory and Stochastic Calcu-
lus, Science Press, Beijing (1992).

[21] 1tS, K.: Essentials of stochastic processes, vol. 231, American Mathematical Society
(2006).



67

[22] Kim, D. and Kuwae, K.: Analytic characterizations of gaugeability for generalized
Feynman-Kac functionals, Trans. Amer. Math. Soc. (to appear).

[23] Knobloch, R. and Partzsch, L.: Uniform conditional ergodicity and intrinsic ultra-
contractivity, Potential Anal. 33, no. 2, 107-136 (2010).

[24] Kuwae, K.: Functional calculus for Dirichlet forms, Osaka J. Math. 35, no. 3, 683—
715 (1998).

[25] Kuwae, K.: Stochastic calculus over symmetric Markov processes without time
reversal, Ann. Probab. 38, no. 4, 1532-1569 (2010).

[26] Kuwae, K.: Errata to: “Stochastic calculus over symmetric Markov processes
without time reversal”, Ann. Probab. 40, no. 6, 2705-2706 (2012).

[27] Lenz, D., Stollmann, P. and Veseli¢, 1.: The Allegretto-Piepenbrink theorem for
strongly local Dirichlet forms, Doc. Math. 14, 167-189 (2009).

[28] Ma, Z. M. and Rockner, M.: Introduction to the Theory of (Non-Symmetric) Dirichlet
Forms, Springer, Berlin (1992).

[29] Méléard, S. and Villemonais, D.:  Quasi-stationary distributions and population
processes, Probability Surveys 9, 340—410 (2012).

[30] Mendez-Hernandez, P.J. and Murata, M.: Semismall perturbations, semi-intrinsic
ultracontractivity, and integral representations of nonnegative solutions for parabolic

equations, J. Funct. Anal. 257, no. 6, 1799-1827 (2009).

[31] Meyer, P. A. and Zheng, W.a.: Construction de processus de Nelson reversibles, In
Séminaire de Probabilités XIX 1983/84, 12-26. Springer (1985).

[32] Miura, Y.: Ultracontractivity for Markov semigroups and quasi-stationary distribu-
tions, Stoc. Anal. Appl. 32, no. 4, 591-601 (2014).

[33] Miura, Y.: The Conservativeness of Girsanov Transformed Symmetric Markov Pro-
cesses, preprint.

[34] Oshima, Y. and Takeda, M.: On a transformation of symmetric Markov process and
recurrence property, In: Lecture Notes in Math., vol. 1250, pp. 171-183. Springer,
Berlin (1987).

[35] Sharpe, M.: General theory of Markov processes, Academic press, San Diego (1988).



68

[36] Silverstein, M. L.: Symmetric Markov Processes, vol. 426. of Lecture notes in Math.
Springer Berlin (1974).

[37] Stollmann, P. and Voigt, J.: Perturbation of Dirichlet forms by measures, Potential
Anal. §, no. 2, 109-138 (1996).

[38] Takeda, M.: Gaugeability for Feynman-Kac functionals with applications to sym-
metric a-stable processes, Proc. Amer. Math. Soc. 134, no. 9, 2729-2738 (2006).

[39] Takeda, M.: Criticality and Subcriticality of Generalized Schrédinger Forms, 1llinois
J.Math. 58, no. 1, 251-277 (2014).

[40] Takeda, M.: A variational formula for Dirichlet forms and existence of ground states,
J. Funct. Anal. 266, no. 2, 660-675 (2014).

[41] Takeda, M. and Tawara, Y.: A large deviation principle for symmetric Markov
processes normalized by Feynman-Kac functional, Osaka J. Math. 50, no. 2, 287—
307 (2013).

[42] Takeda, M. and Tsuchida, K.: Differentiability of spectral functions for symmetric
a-stable processes, Trans. Amer. Math. Soc. 359, no. 8, 4031-4054 (2007).

[43] Tomisaki, M.: Intrinsic ultracontractivity and small perturbation for one-
dimensional generalized diffusion operators, J.Funct Anal. 251, no. 1, 289-324
(2007).



