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Abstract

In early 80’s, the notion of the GIT stratification of reductive group actions was studied
by Kirwan and Ness. If the group is split over k, their works tell us that these stratifica-
tions are rationally defined over a perfect ground field £. In this thesis, we extend these

stratifications for all (not necessarily split) reductive algebraic groups over k.



Notation

The symbols Q, R, C and Z denote respectively the set of rational, real and complex
numbers and the rational integers. The set of positive real numbers will be denoted by
R.g. If V' is a vector space defined over a field k, we define P(V)) = (V' \ {0})/ ~, where
v~ X for all A € k\ {0}. The map 7y : V \ {0} > v — 0 € P(V) is the natural
projection.

For any field k, the symbol k and k%P denote an algebraic closure of k and a separable
closure of k respectively. If K/k is an extension of fields, Aut, K denotes the set of all
isomorphisms of K as a k-algebra. Then Gal(k*P/k) = Auty k°P is the absolute Galois
group of k (endowed with Krull topology).

For natural numbers m, n, M,, ,(R) denotes the set of all m x n matrices whose entries
in a ring R. The unit matrix of the size n x n is denoted by I,,. For any n x n matrix A,
tr A and det A denote the trace of A and the determinant of A respectively.

For any ring R with 1, X denotes the set of R-points of a scheme X.

For any natural number n, the symbol GL, denotes the general linear group. The
special linear group will be denoted by SL,,.

For any algebraic group G defined over a field k and S C G, the symbol Zg(.S) (resp.
N¢(S)) stands for the centralizer of S in G (resp. the normalizer of S in ). The symbol
|G, G| denotes the commutator subgroup of G.

For any algebraic group G defined over a field k, a homomorphism from G,, = GL; to
G is called a one parameter subgroup (which will be abbreviated as 1-PS from now on).
Let X*(G) = Hom(G,G,,) and X,(G) = Hom(G,,, G) be the group of characters of G
and the group of 1-PS’s of G (defined over the algebraic closure k) respectively. Also let
X;(G) = Homi (G, G,,) and X, x(G) = Homy(G,,, G) be the group of rational characters
of G and the group of rational 1-PS’s of G respectively.

Suppose that L/Fk is a finite separable extension. Then 9y, X denotes the restriction

of scalar of a L-variety X.



1 Introduction

In this thesis, we discuss a result concerning an extension of the notion of the GIT
(geometric invariant theory) stratification for the non-split case which A.Yukie and the
author have proved in [24]. In this section, we state the main result of [24] and discuss
historical backgrounds.

Let G be a connected reductive algebraic group and V' a representation of G both
defined over a field k.

The GIT stratification is a stratification of V' \ V* where V* is the set of semistable
points of V' which is defined by geometric invariant theory. In the split case, the main
result of this thesis was proved in principle by Kirwan [13], Ness [17]. But, the construction
of the GIT stratification is complicated, so we are going to explain it by an example at
first.

Let G = SLy, V = Sym?® Aff>. We regard V as the space of homogeneous polynomials
in two variables v = (v1,v9) of degree three. The group G acts on V by gz(v) = z(vg)
for g € G,z € V. Then S = {(gagl) la € k;X} is a maximal k-split torus of G. Put
sp = X*(S) ® R. We identify s with R. We express elements of V as z(v) = zqv} +
33'11}%1}2 + :EQUIUS + :cgvg. We use the coordinate (zg,x1,x2,23) on V, by which S acts

diagonally. Since

t=1 0
< 0 t) (20, 71, T2, m3) = (t 2o, t 2y, tag, P3),

the set weights of coordinates respect to S is identified with {—3,—1,1,3} C R. We only
consider positive weights, such as 51 = 1,85 = 3. Note that §; (resp. () is the closest
point of the convex hull of the set of weights {1} (resp. {3}) to the origin.

We define

Zﬂ1k = {(0707I270) | Ty € k}» ZﬂQk = {(0707071:3) | T3 € ]{3},
ngk = {(0,0,0,%3) | XT3 € k}, Wng = {0}

Zgy, is a subspace of V' with coordinates corresponding to the weights which are on
“the edge” of the convex hull of the weights. Wjy is a subspace of V' with coordinates
corresponding to the weights which are on “the outside” of the convex hull of the weights.
We also define

Zsslk = {(0,0,1‘2,0) ‘ To € l{f,l’g 7é O}, 2)52’“ = {(0,0,0,1’3) ’ T3 € k‘,xg 7& O}

Zg, 1s defined as the set of semistable points of Zg,; with respect to the action of a

reductive subgroup G, C Gy for i« = 1,2. In this case, the group Gg, is trivial for
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1 =1,2. Define
Yﬁslsk = {(0,0,372,333) | To,T3 € k,l’g §£ 0}, Bstk = {(0,0,0,$3) | T3 € ]{7,1’3 7é O}

Put Sg = GrY5, and Sp,p = GY35,. In this case, applying the main result of this
thesis, we have
Vi \ {O} =V, S/Blk il SBQIC'

Furthermore, Sg, 1 = G, Xp,, Y5, and Say e = G X Py, Y 1, hold, where Py, = Pg, i, =

k 1
{(29) |a,e,d € kya,d # 0} C Gy is the standard Borel subgroup of Gy, (for the precise
definition of Pg, see (1.1)) .

Now we return to the general settings and give a precise definition of the GIT strati-
fication.

Choose a maximal k-split torus S of G and a maximal torus T of G defined over k

containing S ([1, 18.2 Theorem, p.218]). We put

sp = Xu(S) @R =X, 1 (S) @R, 53 = X*(S) @R = X;(5) @R,
tp = X,(T)®R, £, = X*(T)®R.

Since T is defined over k, the Galois group Auty k (= Gal(k*P/k)) acts on tg and t;. The
action of the Galois group Auty, k on t is defined by x7(t) = o(x(c71(t))) for o € Auty k
and x € t; (we define the action on tg similarly). We also put s = X,.(S) ® Q, etc. Let
W = Ng(T)/T, W = Ng(5)/Zc(S) be the Weyl group of G and the relative Weyl group
of GG respectively.

There is a natural pairing ( , )7 : X*(T) x X,(T) — Z defined by t*X* = y(\(t)) for
X € X*(T),\ € X, (T). This is a perfect paring ([1, pp.113-115]). Similarly, there is a
perfect pairing (, )g: X*(5) x X.(5) — Z.

There exists an inner product ( , )i, on tg which is invariant under the action of W.
Since Auty, k leaves Ng(T') invariant, we may assume that this inner product is invariant
under the action of Aut,k. We may assume that this inner product is rational, i.e.,
(A, v)y € Q for all \,v € tg. We denote the inner product on sg obtained by restricting
(, )ig to SR by (, )sp. It is easy to see that (, )s, is also rational. Any element of ;W
is represented by an element of Ng(7) (Lemma 8.1). In fact ;W can be regarded as a
subgroup of W ([2, 5.5.Corollaire.]). Therefore, ( , )
Let || |lsg (resp. || |lx) be the norm on sg (resp. tg) defined by (, )& (resp. (, )g). We

sy 1s invariant by the action of ,;W.
choose a Weyl chamber s . C sg (resp. tg+ C tg ) for the action of ;W (resp. W).

For A\ € sg, let 5 = B(\) be the element of s such that (5,v)s = (A, V), for all
v € sg. The map A — (()\) is a bijection and we denote the inverse map by A = A(f3).

We have a similar bijection between tg and ;. We use the same notation 3(\), A(8) for



this bijection. There is a unique positive rational number a such that aA(8) € X.(S) or
X.(T) and is indivisible. We use the notation Ag for aA(5).

Identifying sg (resp. tg) with s; (resp. t%), we have a W-invariant (resp. W-
s (resp.

i) determined by (, )sz (vesp. (, )e ) and a Weyl chamber sp | (resp. t; , ).

invariant) inner product ( , )s (resp. (, )g ) on sp (resp. tg), the norm ||

Since S is a split torus, its action is diagonalizable over the ground field k. So we
choose a coordinate system v = (vg,vy,...,vy) on V by which S acts diagonally. Let
vi € s and e; be the weight and the coordinate vector which corresponds to the i-th
coordinate. For a subset 3 C {~;|i = 0,1,..., N}, we denote the convex hull of J by
ConvJ. If v € V'\ {0} and 2 = my(v) then we put J, = T, = {v; |v; # 0}.

For 3 C {7;]i=0,1,..., N} such that 0 ¢ Conv J, let 3 be the closest point of Conv J
to the origin. Then f lies in s3. Note that (£, 8)s: = (53, 8)s; holds for all £ € ConvJ
since Conv J is convex. Let B be the set of all such § which lies in 5 .

We define

Y,B = Span{ei | (7@'75)5& 2 (675)5]&}’ Z,B = Span{ei | (’Yiaﬁ)sﬁi - (B?B)sﬁi}v
W = span{e; | (%‘,5)55@ > (B, ﬁ)s]}i}-

Clearly Y3 = Zs @ Ws and P(Zg), P(Yp) can be regarded as subspaces of P(V).
If A is a non-trivial 1-PS of GG, we define

P\ = {p e ) lim A(£)pA(t) exists} S M) = Za(N),
U\ = {p X, ) lim A(£)pA(1) ™! = 1}.

The group P()) is a parabolic subgroup of G ([22, p.148]) with Levi part M () and
unipotent radical U(X). We put Pz = P(A\g), Mg = Zg(Ag) and Ug = U(Ag).
Let xs be the indivisible rational character of Mg such that the restriction of xj to .S

(1.1)

coincides with bf for some positive integers a,b. We define Gg = {g € Mz | x5(g) = 1}°
(the identity component). Then Gg acts on Zz. Note that Mg and G are defined over
k, and since (x3,Ag)s is a positive multiple of ||B||sz, Mz = GgAg. Moreover, if v is any
rational 1-PS in G, then (v, Ag)s, = 0.

Let P(Z3)* be the set of G g-semistable points of P(Zg). We regard P(Z5)* as a subset
of P(V). Put

7y = W‘}l(IP’(Zﬁ)SS), Y ={(z,w) |z € Z5,w € Wg},
P(Y5)™ = {mv((z,w)) | (z, w) € Y5°}.
We define Sg = GYj®. Note that S can be the empty set. We denote the set of k-rational

points of S, etc., by Say, etc.
The following theorem is the main result of this thesis.
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Theorem 1.2. Suppose that k is a perfect field. Then we have

Vi\ {0} = V> L [ ] Sss-
peB

~ SS
Moreover, Sgr = Gk X p,,, Y55

We remind the reader that Gy xp,, Y33 means (Gy x Y§3)/ ~ where (g,v), (g'v') €
Gy X Y3, are equivalent if there exists an element p € Psj such that ¢’ = gp~t and
v" = pv. In Theorem 1.2, the bijection S = G\ X p,, Y3} is induced from the canonical
map Gy Xp,, Y55 2 (9,v) = gv € Sp.

If G is a split reductive group, Theorem 1.2 was proved in principle by Kirwan [13],
Ness [17]. The main purpose of [13] was to calculate equivariant cohomology groups by
using the equivariant morse stratification. Kirwan used the inductive structure of the
strata for that purpose. On the other hand, in [17], Ness studied the stratification of the
null cone depending more on geometric invariant theory. She studied the stratification of
the null cone by the convexity of the moment map. The rationality of the stratification
is basically due to the earlier work of Kempf [12]. In this thesis, we call the stratification
of the null cone which was introduced in their works “the GIT stratification of the null
cone”.

We intend to study zeta functions associated to prehomogeneous vector spaces using
the stratification as in [26]. For that purpose, we need a completely algebraic approach
and the rationality of the inductive structure. Also in number theoretic situations, there
are interesting non-split groups such as orthogonal groups, unitary groups, restrictions
of scalars, etc. So even though our proof is fairly easy if we assume the split case, it is
probably worth pointing out how the non-split case is reduced to the split case. This is
the main purpose of this thesis.

We fix a perfect field k. The representation of G = GLy on V = Sym*Aff*> (over
k) is an example of what we call a “prehomogeneous vector space”, where Aff? denotes
the two dimensional affine space which is regard as a vector space of dimension two
(similarly, we use the notation Aff" for the n dimensional affine space). For the notion
of prehomogeneous vector spaces, we summarized various definitions and properties in
section 3 (see also [14] or [21]). In this situation we are interested in Gy-orbits in V.
However, if we are to use Theorem 1.2 in this situation, we have to consider the action of
SLs on V instead of GLsy. So we would like to modify Theorem 1.2 so that it is applicable
to the action of the groups which correspond to GLy in this situation.

Let G be a reductive group and V a representation of G both defined over k. We
assume that there is a reductive subgroup G of G, a torus Ty C Zg(G) (the center of G)
with positive split rank and a rational character ¥ of Tj such that Ty N Gy is finite and
that G = ToG as algebraic groups (i.e., G = TyG15). We also assume that the action
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of t € Ty on V is given by the scalar multiplication by (t). Let S be a maximal split
torus of G (this is the difference from the situation of Theorem 1.2) and we define s,
Sk 1, B, etc., with respect to the group Gi. For § € B, we define Zg, Wp, Yp, Y55, etc., as

in Introduction with respect to GG; also. Then we have the following corollary.
Corollary 1.3. In the above situation, the statement of Theorem 1.2 holds.

Let (G,V,x) be a prehomogeneous vector space defined a perfect field &k (see section
3). For simplicity, we assume that V' is an irreducible representation of G. Then, x is
essentially unique (Proposition 3.6). Thus, we can say that “(G, V) is a prehomogeneous
vector space”. Let A € k[V] be a relative invariant polynomial of (G,V] ), that is
A(gv) = x(9)A(v) for all g € G and v € V. Put G; = ker x C G. Then there is a torus
T C Zg(G) such that G, = T;G,; and G; NT is finite. By Schur’s lemma, the action of
t € T on V is given by the scalar multiplication by () for some 1 € X*(Z5(G)°). We
put V' = {v € V| A(v) # 0}. The set V' does not depend on the choice of A (Proposition
3.3). The purpose of using our formulation is to define the notion of a generic point from
the viewpoint of geometric invariant theory (see section 4). In fact, our definition of
V' coincides with V* = 7,;'(P(V)**) where P(V)* is the set of semistable point respect
to the action of Gy (not G). In the global theory of prehomogeneous vector spaces,
the set Vi \ V;® is called the singular set of V. Corollary 1.3 applies to this situation,
in particular, we obtain a stratification of the singular set Vi \ V;*. There are several
interesting prehomogeneous vector spaces with non-split groups, and our result provides
basic information of the singular orbits for those prehomogeneous vector spaces. This
is useful for studying the global zeta function associated with a prehomogeneous vector
space.

This thesis is organized as follows.

In section 2, we recall elementary results of algebraic groups. The notion of prehomo-
geneous vector spaces is discussed in section 3. In section 4, we recall the main theorem
of geometric invariant theory which we call “the Hilbert-Mumford criterion of stability”.
In section 5, we recall Kempf’s result which will be used in sections 6, 8. The rational-
ity property of Kempf’s result will be used mainly in section 8. In section 6, we give a
proof of Theorem 1.2 in the case where the ground field is algebraically closed (and so
the group is split). This case is in principle known. However, we are interested in the
rationality question and we use a formalization which is a combination of methods in [17],
[13] so that it is easier to deduce the rationality result. Therefore, we included the proof
of this case (inductive structure of the strata is proved in section 7). We give a proof of
Theorem 1.2 and Corollary 1.3 in the non-split case in section 8. Finally, in section 9, we
give two series of prehomogeneous vector spaces which have the same sets of weights with

respect to the action of maximal split tori. One is similar to the space of pairs of ternary



quadratic forms and the other is slightly easier and similar to the space of pairs of binary

quadratic forms.
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2 Notion regarding algebraic groups

Let k be an arbitrary field and G an algebraic group defined over k. We say that G is
solvable (resp. milpotent) if G is solvable (resp. nilpotent) as an abstract group. If G is
a solvable (resp. nilpotent, abelian) algebraic group, then its Lie algebra g = LieG (=
the tangent space T,(G) of G at the identity) is solvable (resp. nilpotent, abelian). For
a closed subgroup H C G, we denote the normalizer and the centralizer of H by Ng(H)
and Zg(H). If h C g is a Lie subalgebra, we define

ng(h) ={X eg|[X.Y]ehforall Y € h}
) ={Xeg|[X,Y]=0foral Y € p}.

The subalgebras ng(h), 34(h) are called the normalizer and the centralizer of b respectively.
An algebraic group T over k is called a torus if T is isomorphic to GL? over k for

some positive integer n. If T'= GL} over K (D k), we say that T is split (over K).

Example 2.1. Consider the torus

5
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The characteristic polynomial of the matrix (% %) is X? —2aX +a? +b* = (X —a)* + b?
and so its eigenvalues are A = a £ by/—1. Therefore, T is split over K if and only if

vV—-1leK.

It is known that if T is a torus, T' x}, k is split (see 8.11 Proposition [1, p.117]). If T
splits over the ground field k, then X*(7T") = Z™ for some m. So any character is of the
form (ti,... tm,) — t*, ... #Pm. Since this is the case over k also, X*(T) = X*(T x; k).

A torus T is said to be anisotropic if X*(T') = {0}. If G is an algebraic group and a
closed subgroup T' C G is isomorphic to a torus, it is called a subtorus. If T is a torus,
then there exist subtori T,,7T; C T such that T, is anisotropic, Ty is split, T' =T, - Ty and
T, NTy is finite. Moreover, T, = Nyex+(r) ker x. Also T/T, is a split torus.

The following proposition is proved in 8.2 Proposition [1, pp.111,112].

Proposition 2.2. (1) If T is a torus and H C T is a closed connected subgroup, then H

18 a torus.

(2) If p: T — GL, is a finite representation, then there exists g € GL,(k*P) such that
gp(T)g~! consists of diagonal matrices.

Considering the dimension, there always exists a maximal torus. The following theo-
rem is proved in 18.2; 19.2 Theorems [1, pp.218-220,223).

Theorem 2.3. Let G be connected. Then G contains a mazximal torus T such that

T % k C G x4 k is also a mazimal torus. Any two of them are conjugate by an element

Of Gk

Suppose G is connected and S C G is a subtorus. It is known that the centralizer
Z(S) is connected (see 11.2 Corollary [1, p.152]). Let T' C G be a maximal torus as in
Theorem 2.3. Then Z;(T) is called a Cartan subgroup. Also by 19.2 Theorem [1, p.223],
any two Cartan subgroup are conjugate by an element of Gy.

For an algebraic group G over k, G° denotes the connected component of the identity
of G, and we call it the identity component of G.

We have a natural pairing ( , g : X*(G) x X,(G) — Z such that y(\(t)) =t for
all x € X*(G), XA € X.(G). It is known that this pairing is perfect if G = T is a torus ([1,
pp.113-115]).

A maximal connected solvable closed subgroup of G x, k is called a Borel subgroup.
Note that G may not have a Borel subgroup defined over k and if it does, G is said to be

quasi-split.

Example 2.4. Let B be the set of upper triangular matrices which are contained in GL,,
(resp. SL,). Then B is a Borel subgroup of GL,, (resp. SL,).
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For a while, we assume k is algebraically closed. The following theorem is proved in
10.4 Theorem [1, p.137].

Theorem 2.5 (Borel’s fixed point theorem). Let G be a connected solvable group acting

on a non-empty complete variety V. Then G has a fized point in V.

Suppose G = GL,. Let B C G be the subgroup of upper triangular matrices, and
B’ be another Borel subgroup. Since GG/B is complete, B’ has a fixed point B in G/B.
This implies that B’z B = zB or equivalently, B’ C xBz~!. By the maximality of Borel
subgroups, B’ = xBx~!. Therefore, all Borel subgroups of GL,, are conjugate.

Let G be an connected algebraic group again. The above argument can be generalized

to prove the following theorem. For the proof, see 11.1 Theorem [1, p.147].

Theorem 2.6. Let B C G be a Borel subgroup. Then G/B is a projective variety.

Moreover, all Borel subgroup of G are conjugate.

A closed group P C G is called a parabolic subgroup if it contains a Borel subgroup.
By Theorem 2.5, it is easy to see that P is parabolic if and only if G/P is complete.
The following theorem is proved in [1, pp.154, 155].

Theorem 2.7. If P C G is a parabolic subgroup, it is connected and Ng(P) = P.

Let % be the set of all Borel subgroups of G. Then, the group R(G) = ((\zep B)° is
called the radical of G. R(G) is the maximum connected solvable normal subgroup of G,

and its unipotent part R, (G) is called the unipotent radical of G.

Definition 2.8. A connected algebraic group G is said to be semi-simple (resp. reductive)

if R(G) ={e} (resp. R.(G) = {e}).

Suppose G is reductive and that k is algebraic closed. It is known that R(G) = Zg(G)°

1S a torus.

Definition 2.9. A Levi subgroup of G is a connected subgroup L such that G is the
semi-direct product of L and R, (G).

A Levi subgroup maps isomorphically onto G/R,(G), hence it is reductive.

If X is a 1-PS of G, we denote by P()) the closed subgroup formed by the g € G such
that lim; o A(¢)gA(t) ! exists. The group P(\) was already introduced in Introduction.
As was shown in 8.4.5 Proposition [22, p.148], P()\) is a parabolic subgroup of G. We
denote by U(A) the normal subgroup of P(\) formed by the g € P()) for which the limit
equals 1. The centralizer of im A is denoted by Z(\). It is a closed subgroup of P()\).

The following theorem is proved in 13.4.2 Theorem [22, p.234].

11



Theorem 2.10. Assume that k is an arbitrary field. Let A € X, (G). Then P(X),U(N)
and Z(\) are connected k-subgroups and U(X) is a unipotent normal subgroup of P(X).
Moreover, the product morphism Z(X) x U(X) — P(X) is a k-isomorphism of varieties.

We put C = Z5(G)°. Then G = C - (G, G), (G,G) is semi-simple, and C'N (G, G) is
finite. If 7" is a maximal torus with Lie algebra t, then Z(T') = T and 34(t) = t, where

34(t) denotes the centralizer of .

Definition 2.11. Let T be a maximal torus of G and S a maximal k-split torus of G.
We call dim T (resp. dim7 N [G,G]) the rank (resp. semi-simple rank) of G. Also, we
call dim S the split rank or k-rank of G.

Let p: T — GL(V) be a finite dimensional representation. Since k = k, T is split and

so this representation is diagonalizable. For a € X*(7T'), we define
Vo={veV|plt)v=oa(t)vforall t € T}.

If V,, # {0}, v is called a weight of T in V. We consider the adjoint action of T on g. Let
® be the set of non-zero weights of 7" in g. Then

(2.12) g=ta <@ga> .

acd

It is known that dim g, = 1 for all « € ®.
Definition 2.13. The group W(T',G) = Ng(T)/T is called the Weyl group of G.

Example 2.14. Let G = GL,, and T be the set of diagonal matrices which are contained
in G. If 0 € G,,, we denote by E, the matrix whose (i,0(7)) entry is 1 and other entries
are 0. Then such E,’s form set of representatives for the set Ng(T')g/T). Thus, we have
W(T,G) = &,

Let n € Ng(T) and let o € X*(T). We define a”(t) = a(n"'tn). This defines a left
action of W = W(T,G) on X*(T), and hence t; = X*(T) @ R. If v € g,, then

Ad(ntn 1)Ad(n)v = a(t)Ad(n)v.

Replacing ¢t by n~ttn, we have Ad(n)g, C gan. So if a € @, then o™ € ®. Therefore, W
leaves ® stable.

Let a € . Then there exists a unique closed T-invariant subgroup U, such that
LieU, = go. Moreover, U, = G,. Let T, = (kera)°,G, = Zg(T,). Then G, is a
reductive subgroup of semi-simple rank one. Moreover, GG, is generated by U,,U_, and
T. Since

W(T, Ga) = (Na(T) N Zo(T))/T © W(T, G),

12



we regard W(T', G,,) as a subgroup of W(T',G). The order of this group is two and if we
denote the generator by r,, then r,(a) = —a.
If a, f € @, it turns out that

To(B) = 8 — ngac

with ng, € Z. Moreover, n, o = 2.
Let V be a vector space over R with inner product (, ). r € GL(V) is called a

reflection with respect to o € V' if r(a) = —« and r fixes each point of the hyperplane

{8eV|(B,a)=0}

Definition 2.15. A root system is a pair (V,®) where V is a vector space over R, and
® C V is a subset satisfying.

(1) @ is finite, spans V, and does not contain zero.
(2) For each a € @ there is a reflection 7, with respect to o which leaves ® stable.
(3) If o, B € ® then r,(5) = B —ng oo with ng, € Z. The elements of ® are called roots.

The notion of isomorphism of root system is defined in the obvious manner. We will
usually denote the root system by ®, and say that “® is a root system in VV”. In particular,
we have Aut ® C GL(V). The subgroup W(®) of Aut ® generated by the r, (a € D) is
called the Weyl group of ®.

Let a € ® be an element such that the only roots, ac, proportional to « are such that

la| < 1. If a« is such a root, then
—aq = 14(aa) = aq — Ngg 0 Q,

which implies that 2a = ngq,o € Z. Thus the roots proportional to « are either {—a, a}
or {—a,—a/2,a/2,a}. If the latter case never occurs, then the root system is said to be
reduced.

A subset A of @ is called a basis if the two conditions are hold.
(1) A is a basis of V.

(2) Each root 8 can be written as = Y k,a (o € A) with integral coefficients k, all

non negative or all non positive.

The roots in A are called simple. If all k,, are non negative (resp. all k, are non positive),
we call B positive (resp. negative) and write 5 > 0 (resp. 8 < 0). The collection of

positive and negative roots (relative to A) will usually just be denoted by ®* and ®~.
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Clearly &~ = —®™ holds. It is known that any root system has a basis (see 14.7 Theorem
1, p.188]).

The root system (V, ®) is irreducible if one cannot write V =V} @& V4 as a non-trivial
direct sum so that & = (®N V) U (PN V3).

Let (,):V x V* = R be the natural pairing between V' and V*. We call

WC(A)={ e V" |{a,\) >0 for all o € A}

the Weyl chamber of A or ®*. Call A\ € V* regular if (o, \) # 0 for all &« € ®. For

example, a Weyl chamber clearly consists of regular elements. If A is regular, we write
P\ ={a € ®|(a,\) >0}

and
A(N) = {a € T ()\) | a is not the sum of two elements of ®*(\)}.

The following theorem is 14.7 Theorem [1, p.188].
Theorem 2.16. Let ® be a root in V.

(1) If x € V*, then A(X) is a basis of . It is the unique basis contained in ®*(\). Thus,
A — WC(A) is a bijection from the set of bases to the set of Weyl chambers.

(2) The group W(®) acts simply transitivity on the set of bases of ®, and on the set of
Weyl chambers.

(3) Reflexions ro (o € A) generate W(P).
(4) We have @ = |J,,cpa) WA.

We can identify V = X*(T/Z5(G)°) @R canonically with a subgroup of tf = X*(T)®
R. Then & = (7T, G) is a reduced root system in V', with Weyl group W = W(T,G)
(14.8 Theorem [1, p.189]).

Let %7 be the set of all Borel subgroups of G containing 7. Let B € £’ with Lie
algebra b. Then t C b C g and the set ®(B) of non-zero weights of 7" in b may be
identified with a subset of ®. Let A = A(B) be the set of & € ®(B) which are not sums
of two elements in ®(B). Then A(B) is a basis of ® and G, (o € A(B)) generate G (14.8
Corollary 1 [1, p.189]). We call A(B) the set of simple roots associated with B.

If we identify V* with tg = X, (T') ® R, then the Weyl chambers in tg of bases of ® are
obtained form Borel subgroups B € % by Theorem 2.16. The Weyl chamber in tz which
corresponds B € BT is WC(B) = {\ € tg | (o, \)r > 0 for all a € ®(B)}. Moreover, W

acts simply transitively on these Weyl chambers.
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Let k be an arbitrary field again. Suppose G is a connected reductive group over k.
For the rest of this section, we consider the structure of X*(G).

If G is semi-simple, then Z5(G)° = R(G) = {e}. So dim G = dim(G,G). Therefore,
G = (G, G). This implies that X*(G) = {0}.

In general, we put G; = (G, G) and T' = G/G,. We denote the natural homomorphism
G — T by Let Gy = 7 YT,). Put T = G/Gy 2 T/T,. Then T is a split torus. If
X € X*(G), then it is trivial on G5 and so it is induced by a character of T.. This implies
that X*(G) =2 Z™ for some m.

A character x of an algebraic group is said to be primitive (or indivisible) if 1 is
another character and x = ¢? for an integer p, then p = +1. If T is a torus, x € X*(T)

is primitive if and only if it is a primitive vector in X*(7T") = Z™.

Proposition 2.17. Suppose G is connected reductive. If x € X*(G) is primitive, then it
is primitive in X*(G x, k).

Proof. Suppose ¢ € X*(G x;, k) and ¢ = ¢P. Since x|q, is trivial, (¢|g,x,z)? is trivial.
Since X*(Ga xy k) is torsion free, 1|q, 7 is trivial. So ¢ is induced by a character of T.
Since T is split, X*(T) = X*(T xy k). Since  corresponds to a primitive integer point,
p must be +1. O

3 Notion of prehomogeneous vector spaces

In this section, we summarize the notion of prehomogeneous vector spaces. This mainly
due to unpublished note [28].
Let k be an arbitrary field. Let G' be a connected reductive group, V' a representation

of GG, and x a non-trivial rational character of GG, all defined over k.

Definition 3.1 (M.Sato). A triple (G,V, x) is called a prehomogenous vector space if the

following two conditions are satisfied:

(1) There exists a Zariski open orbit. More precisely, there exist an open set U C V and
v € Uj, such that Gjv = Uy.

(2) There exists a non-constant polynomial A € k[V] such that A(gv) = x(g9)A(v).

The polynomial A(v) is called the relative invariant polynomial.

We are mainly interested in irreducible representations. However, if chark = p > 0,
we sometimes have to consider reducible representations which are obtained by reducing
irreducible representations modulo p. Those representations can be handled more or less
in the same manner as irreducible representations. Therefore, we consider the following

condition for that purpose.
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Let Z be the identity component of the center of G. Since G is reductive, Z is a torus.
Condition 3.2. There exist 1) € X*(Z) such that if t € Z, then tv = ¢(t)v for allv € V.

Note that because of Schur’s lemma, Condition 3.2 is satisfied if V' is a irreducible
representation.

Now we put V= = {v € V| A(v) # 0} and call it the set of semistable points of V.
We show the set V*° does not depend on the choice of A.

Proposition 3.3. If Ay, Ay are relative invariant polynomials, then Aq(v)/Aq(v) is a

constant.

Proof. By definition, we have

Ai(gv) = x(9)A1(v),  Aa(gv) = x(g)A2(v).

Then Ay (v)/A»(v) is invariant by the action of G. Since V" has an open G-orbit, A (v)/As(v)

1S a constant. O

Lemma 3.4. If A(v) is a relative invariant polynomial, it is a homogeneous polynomial.

Proof. Suppose A(gv) = x(g)A(v). Let t € GL;. Then A(tgv) = A(gtv) = x(g9)A(tv).
So by the proof of Proposition 3.3, there exists ¢(tf) € GL; such that A(tv) = c(t)A(v).
Obviously, t +— ¢(t) is a character of GL; and so there exists an integer N such that
c(t) = tV. Since A(v) is a non-constant polynomial, N > 0. So A(v) is a homogeneous

polynomial. O

Lemma 3.5. Suppose F C V is a G-invariant closed subset and F = UN|F; is the

wrreducible decomposition. Then each F; is G-invariant.

Proof. Without loss of generality, it suffice to prove that F} is G-invariant. Let U; =
Fi \ (UX,F;). Then U, is an open set of Fy and so is irreducible.

Let p: G xV — V be the group action, U, = w(G x Uy), and F} be the closure of U.
Since G is irreducible also, [71, ﬁl are irreducible. Since U; C [71 C ]:;1 CF,F C ﬁl C F.
This implies that F; = ﬁl and so Fj is a G-invariant subset. ]

Suppose F; in the above lemma is the zero set of an irreducible polynomial A; (this
is the case if the codimension of F; is one). By Hilbert’s Nullstellensatz, there exists a
character x; of G such that A;(gv) = x;(g)A;(v).

If (G,V,x) satisfies Condition 3.2, we will prove that the choice of y is essentially

unique.
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Proposition 3.6. Suppose that V' is a representation of G satisfying Condition 3.2. If
X1, X2 are primitive rational characters of G and (G,V,x1), (G, V, x2) are prehomogeneous

vector space, then x1 = Xa.

Proof. We may assume that k = k. Let G = [G, G]. By assumption, G is semi-simple
and so has no non-trivial character. Also G' contains a torus 7" which is contained in the
center of G such that G = T'G;.

By Condition 3.2, there exists v € X*(T") such that tv = ¢(t)v for all t € T,v € V.
Suppose that Aj(v), As(v) € k[V] and

Ai(gv) = x1(9)A1(v), Az(gv) = x2(9)As(v).

If g=tg, witht € T, g, € Gy, then

Ai(g) = x1(9)A1(v) = x1(t)Ar(v) = Aq(tv)
= A (g(t)v) = ()2 A (v).

This implies that x;(tg;) = ()4 21. Similarly, x1(tgs) = ()22, Therefore x; (tg; )42

= x2(tg2)% A1, Since both x; and Y, are primitive, we have y; = xa. O]

By this proposition, if a triple (G, V, x) satisfies Condition 3.2, we may use the notation
(G,V) instead of (G, V, x).

Corollary 3.7. Let (G,V) be a prehomogeneous vector space satisfying Condition 3.2,
and A(x) a relative invariant polynomial of the lowest degree. Then A(x) is irreducible
over k. Moreover, the zero set of A(v) is the only G-invariant irreducible codimension

one closed subset of V.

Proof. We assume that k = k (we omit the proof of the general case). Let
Av) = Ay ()P - Ay (v)?™
be the prime decomposition, and
F={veV|Aw) =0}, F,={veV]|A;v)=0}

for all i. More precisely, F' = Spec k[V'|/(A(v)), etc. By Hilbert’s Nullstellensatz, F; ¢ F;
if § £ ;.

By the comment after Lemma 3.5, for each 7, there exists a character x; of G such that
A;(gv) = xi(g)Ai(v). Suppose x; = ¥;" where 1; is primitive and n; is a positive integer
for all i. By Proposition 3.6, ¢; = x for all i. Therefore, A;(x) is a relative invariant

polynomial (corresponding to x). Since the degree of A(v) is smallest, N = 1,p; = 1 and

so A(v) is irreducible.
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If F C V is any irreducible codimension one closed subset, it is the zero set of an
irreducible polynomial A(v). Then by Hilbert’s Nullstellensatz, there exists a character
X of G such that A(gv) = X(9)A(v). Then by Proposition 3.6 again, A(v) is a relative
invariant polynomial. Since both A(v) and A(x) are irreducible, A(v) must be a constant
multiple of A(v). O

Suppose that (G, V) is a prehomogenous vector space satisfying Condition 3.2. In
general, V55, is not a single Gyseo-orbit. However, if (G, V') satisfies a condition called
reqularity, then V%, becomes a single Gjsep-orbit.

The notion of regularity was introduced by Sato—Kimura in § 4 in [21]. We use the
property of Proposition 25 ([21, p.72]) as the definition of regularity. Note that we only
consider prehomogeneous vector spaces which satisfy Condition 3.2 in this thesis.

We recall Sato-Kimura’s original definition of the notion of regularity for the conve-
nience of readers. Let (G, V') be a (reductive) prehomogeneous vector space defined over
the complex number field C. Then the set Sing(V) =V \V® = {v € V|A(v) = 0} is
called the set of unstable points (or singular set) of (G, V).

The next definition is Definition 7 in [21, p.60].

Definition 3.8 (Sato-Kimura). A prehomogeneous vector space (G,V) is called reg-
ular if there exists a relative invariant polynomial f(v) such that the Hessian Hy =

2
det (328];] </U))i7j of f(x> is not identically zero.

In the book by T. Kimura, there is a proof of the following theorem ([14, p.43, Theorem
2.28]).

Theorem 3.9. Let (G,V) be a (reductive) prehomogeneous vector space defined over C.

Then the following conditions are equivalent.

(1) A pair (G,V) is a reqular prehomogeneous vector space.

(2) The singular set Sing(V') is a hypersurface.

(3) The open orbit Gv =V \ Sing(V') is an affine variety.

(4) Each generic isotropy subgroup G, (v € V '\ Sing(V')) is reductive.

(5) Each generic isotropy subalgebra Lie(G,) (v € V' \ Sing(V')) is reductive in Lie G.

The statement of Proposition 25 ([21, p.72]) is a part of Theorem 3.9 (i.e. (1) follows
form (4)).

Now we return to the general situation. Let (G,V) be a (reductive) prehomogeneous
vector space defined over an arbitrary field k. Assume that there exists w € V) such that

U = Guw is Zariski open. In this situation, A.Yukie proved the following theorem ([27]) .
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Theorem 3.10. Suppose that G, is reductive. Then, the following conditions are hold.
(1) V\U is a hypersurface.
(2) Ugser is a single Gyseo-orbit set-theoretically.

Corollary 3.11. If the assumption of Theorem 3.10 is satisfied, there exits a relative

invariant polynomial and so (G, V') is a prehomogenous vector space. Moreover, V55, =

Gksepw.

Proof. Let U = Gw and Fi, ..., F, be the irreducible codimension one components of
VANU,F =FRU---UF,,and W = V \ F. Then W is affine, U C W, and the
codimension of W\ U in W is greater than one. Suppose W = Spec A and U = Spec B.
Then A C B and A is a normal ring because W is smooth over k. Since the codimension
of U in W is greater than one, any regular function on U (i.e., an element of B) extends
to a regular function on W. Therefore, A= B and so W = U.

Clearly, the orbit of the origin 0 consists of 0 itself. Since U is a single G-orbit, 0 ¢ U.
This implies that V' \U # (). We have shown that any irreducible component of F' = V\U
is of codimension one.

Since F' is a G-invariant closed subset of V', by Corollary 3.7, F' is irreducible and
is the zero set of a relative invariant polynomial of the lowest degree. This shows that
V3 =U and so V&, is a single Gyseo-orbit by Theorem 3.10. O

In this thesis, we define the notion of regularity as follows.

Definition 3.12. A prehomogeneous vector space (G, V') satisfying Condition 3.2 is said
to be regular if there exists a point w € V}, such that U = Gw is Zariski open and G, is

reductive (and so smooth as a group scheme).

We shall prove a proposition which is convenient for verifying the assumption of The-

orem 3.10 for actual examples.

Proposition 3.13. If there exists a point w € V' such that
dimT,(G,) = dim G — dim V,
then Gw 1is open in V. Moreover, G, is smooth over k.

Proof. We may assume that k = k. Consider the map G — V defined by ¢ — gw. Then
the image Gw is a constructible set. Since G is irreducible, F = Gw is irreducible. If
Gw = Ul_,(F; N U;) where Fj is closed and U; is open for all 4, then there must exists i
such that F; = F'. Hence Gw contains an open set of F. Since GG acts on Gw transitively,

Gw itself is an open set of F. Therefore, Gw is a variety.
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Note that for any y € Gw, the fibre over y is isomorphic to G,,. Then,

dim G = dim G, + dim Gw
< dim 7. (Gy) + dim Gw
=dimG — dimV + dim Gw.

Therefore, dim Gw = dimV and so Gw C V is open and dimT,(G,) = dim G,,. This

implies that G, is smooth over k. 0

Next we discuss the notion of the castling transform (see [21, pp.37-39]). If p: G —
GL(V) is a representation, we define a representation of G on the dual vector space V*
by (p*(9)f)(v) = f(p(g~')v) for g € G, f € V*. This is also a left action and is called the
contragredient representation of V.

To explain the castling transform, we have to discuss the notion of the Grassmann
varieties. Let V = Aff" be the n-dimensional affine space, regarded as a vector space of
dimension n. If 0 < m < n, there is an algebraic variety (which is not affine) called the
Grassmann variety Grass,, ,,, = Grass,, (V') of m-planes in V' whose points are in one-to-one
correspondence with m-dimensional subspaces of V.

We propose to put on the set Grass,, (V') of m-dimensional subspaces of V' the projec-
tive variety. Define f : Grass,,(V) — P(A™V) by sending W to the point in the structure
of a projective space corresponding to the line AW C A™V. It is easily verified that f
is injective, so we need only to show that its image is closed. This fact is proved in 10.3
(1, pp.135, 136].

If W C V is an m-dimensional subspace,
W={feV*|fv)=0foralveW}

is an (m — n)-dimensional subspace of V*. Therefore, there is a map Grass,,(V) —
Grass,_m(V*). It is easy to see that this is set-theoretically bijective, and it is known
that this map is in fact an isomorphism of algebraic varieties.

Now let p : G — GL(V) be a representation of a reductive group G, and p* : g —

GL(V™*) its contragredient representation. Consider the following two representations.
(1) G x GL,, acting on V ® Aff™.
(2) G x GL,_,, acting on V* & Aff"™™.

Note that we are regarding Aff™, Aff"™™ as a set of column vectors and so GL,,,, GL,,_,,
acts on them respectively.

The following proposition is Proposition 7 [21, p.37].
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Proposition 3.14. The representation (1) has an open orbit if and only if the represen-

tation (2) has an open orbit. If so, their generic stabilizer are isomorphic over k.

Proof. We may assume that k is algebraically closed. Let

U={v=(v1,...00)|V 3 uv1,...,v,are linearly independent},

U*={v=(v1,...0—m) |V Dv1,...,0,_m are linearly independent}.

Note that U C V @ Af™, U* C V* @ Aff"™™ are Zariski open subsets.
If v=(vy,...,u,) €U, let (v) € Grass,,(V) be the m-dimensional subspace spanned
by v1,...,vn. Then G acts on Grass,,(V'), Grass,_,,(V*) and the maps

m:U3v— (v) € Grass,(V), 7 :U">0v+— (v) € Grass,_, (V")

are equivariant with respect to the action of G. Moreover, points in Grass,, (V') (resp.
Grass,_,(V*)) are in one-to-one correspondence with GL,,-orbits in U (resp. GL;,_,-
orbits in U*). So there is an open orbit in U if and only if there is an open orbit in
Grass,, (V) = Grass,_n(V*). Therefore, this is the case if and only if there is an open
orbit in U*.

Suppose that the orbit of w € U is open and corresponds to the orbit of w* € U*.
Note that the action of GL,, on U does not have a fixed point (in other words the action
is free). Therefore, the stabilizer of w in G x GL,, and the stabilizer of w(w) in G are
isomorphic. Similarly, the stabilizer of w* in G x GL,_,, and the stabilizer of 7*(w*) in
G are isomorphic. Since the stabilizers of m(w),7*(w*) are isomorphic, this proves the

second assertion. O

Corollary 3.15. The representation (1) is a reqular prehomogeneous vector space if and

only if the representation (2) is a reqular prehomogeneous vector space.

Definition 3.16. Two prehomogeneous vector spaces which are related as the two pre-
homogeneous vector spaces (1), (2) as above are called the castling transform of each

other.

If £ is an algebraically closed field of characteristic zero, by monumental work, Sato
and Kimura classified irreducible reduced regular prehomogeneous vector spaces in [21]
into 29 classes.

We review an important method to construct prehomogeneous vector spaces. Let k
be a field, and E a simple algebraic group defined over k. We choose a maximal parabolic
subgroup P of E. Then we have the Levi decomposition P = GU where G is the Levi
part of P and U is the unipotent part of P. Since G acts on U by conjugation, G acts
on U™ & U /IU,U]. The latter action can be regarded as a representation of G' defined
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over k. Vinberg proved the couple (G, U?") has a Zariski open orbit (see [19]). Therefore,

(G,U?) is a prehomogeneous vector space. Prehomogeneous vector spaces of such type

are calld prehomogeneous vector space of parabolic type.

The following table is the list of spaces which was treated in [25].

type of B P=GU G VvV =U»®
& X === 0 GL; Sym? Aff?
D, o X o GL% Aff? @ Aff? @ Aff?
o
Ds X o o GLy x GLy Aff2 @ AZ AfFY
O
G X =—=o0 GL, Sy1113 Aff?
Eg o X o o GL; x GL? Aff @ Aff? @ AfF3
O
E7 o o o GL@ X GLQ A2 Affﬁ 039 Affz
o
F4 X o o GL3 X GL2 Syn12 Aﬁ3 ® Aﬁ2
ES o X o o GL5 X GL4 /\2 Aﬁ5 [ Aﬁ4
o

Now, we give examples of prehomogeneous vector spaces.

Example 3.17. Let G = GL; x GL, and V = Sym? Aff? or V = Sym?® Aff>. We regard
V' as a space of homogeneous polynomials in two variables v = (v1,v2) of degree two or

three. We regard v as a row vector. We express elements of V' as
2 2 3 2 2 3
r =x(v) = Tou] + T101V2 + T2V  or = = x(v) = TV} + T1V[V + T2U1V5 + T3V5.

The group G acts on V by gz(v) = tz(vgy) for g = (t,91) € G,x(v) € V. This is an
irreducible representation unless chark = 2 in the case V = Sym? Aff%2. Define T =
{(t72,t,) |t € GLy)} (resp. T = {(t73,tL,)|t € GL;}). Then T = ker(V — GL(V)) =
GL; in both cases. Put w = vjvg or w = v1v9(v7 — vy).

We show that (G, V) is a regular prehomogenous vector space (Moreover, G = GL]
or G, = GL; holds). Note that char k can be 2.

We first determine 7.(G,,). Consider the action of

a b
(1+5t,]2+5< >>
c d
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where k[e]/(£?) is the ring of dual numbers. We write w as w(v). Since v is replaced by

(avy 4 cvg, buy + duvg), w(v) is replaced by
(3.18) w(v) = etw(v) + w(vy + e(avy + cvy), vy + (bvy + dvy))
We first consider in the case V' = Sym? Aff>. Then (3.18) equals

w(v) +e(bvy + (t + a + d)vyvs + cv3).

So if this is w(v), then b = ¢ = 0,t = —(a + d). This implies that 7.(G,,) consists of

elements of the form
a 0
—(a+d), )

Therefore, dim7,(G,) = 2 = dimG — dimV. So (G,V) is a regular prehomogenous
vector space defined over k.

Let
H = { ((tltz)‘l, (tol Z))

Then obviously H = GL] is contained in G,,. Since we have already shown that dim G, =
2, Gy = H. So G, is reductive.
We next consider in the case V = Sym® Aff%. Then (3.18) equals

tl,tQGGLl}.

w(v) 4+ e(bvd + (t +2a — 2b + d)vivy — (t + a — 2¢ + 2d)vyv3 — cvd).

So if this is w(v), b = ¢ = 0,a = d,t = —3a. This implies that T.(G,,) consists of elements
of the form

(—3a, aly).
Therefore, dimT.(G,) = 1 = dimG—dim V. So (G, V) is a regular prehomogenous vector
space defined over k. It is obvious that T C Gy. Since dimG,, =1, G}, = T = GL;.

Example 3.19. Suppose that chark # 2,G = GL; x GL3, V = Sym? Aff>. We regard V
as a space of ternary quadratic forms. The group G acts on V' by gz(v) = tx(vg;) for
g=(t,q1) € G,z(v) € V.

Now we consider the action p, of GLy on Sym? Aff2. We express z,y € Sym? Aff* as

2
z(v) = Tov1V2 + T1V1Vy + ToV5

y(v) = Yov1v9 + Yy1v1v2 + y2U§

where vy, vy are the variables. Note that regarding x as a polynomial z(v) of v = (v; v2),
g € GLy acts on Sym? Aff? by py(g)z(v) = z(vg).
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Define

2\ ! 2\ ! 1
(z,y) = Toya — ) mut (o) T = Toye — STy + Tao.

It is easy to show that {ps(g)x, p2(g9)y) = (det g)*(z,y) for all g € GLg, 2,y € Sym? Aff%,
We choose {v?, v1vy,v2} as a basis for Sym? Aff>. Then with respect to this basis, the

matrix of the bilinear form (, ) is

0 0 1
w=|0 —-1/2 0
1 0 0

Regard w as an element of Sym? Aff?,
Consider the representation p defined by p(g) = (det g) ' p2(g). Then (p(g)x, p(g)y) =
(z,y) for all z,y € Sym? Aff>. We regard z,y as column vectors and p(g) as a 3 x 3

matrix. Since the matrix of (,) is w, ‘a’p(g)wp(g)y = 'zwy for all x,y. Therefore,

‘p(g)wp(g) = w.

Let
a 26 0
L, = 0O,lc O b a,byc €k p, Ly={(=2ttl;)|t € k}.
0 2¢ —2a

Let A = (a;;) € GL3(k). Then A € T.(G,) if and only if Aw + w'A = 0. Writing down
this condition explicitly,

1

aiz —3012 a1l a3 Q23 ass
1 1 1 1 _

a3 —5G Az | + | —5a12 —5a22 —zazp | =0.
1

az3 —50a32 (31 aii 21 asy

So
2a13, 2a31, —age, a1+ ass, —§a12—|—a23, —§a32+a21

are all zero. Since char k # 2, this is equivalent to the condition A € L@ Ly. This follows
that T.(G,) = L1 ® Ly. Since dimT,(G,) = 4 = dim G — dim V', Gw is open and G,, is

smooth over k. So, (G, V) is a regular prehomogeneous vector space.

Example 3.20. Let G; = GL3, Gy = GL,,G = G; x Gy and V = Sym? Aff® @ Aff%
We regard elements of V' either as pairs x = (21, x9) of ternary quadratic forms or as
forms x(u,v) in two sets of variables which are quadratic in v = (v, ve,v3) and linear in
u = (uy, uy) where u,v are regarded as row vectors. The action of g = (g1, g2) € G where

g2 = (CCL Z) is given either as

(3.21) (21(v), 22(v)) = (az1(vg1) + bxa(vgr), cx1(vgr) + dza(vgr))
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or by x(u,v) — x(vgy, ugs). This action is compatible with the action of GL3 on Sym? Aff®
which is defined in Example 3.19. This is an irreducible representation unless char k = 2,
and even so, it is obvious that Condition 3.2 is satisfied.

We express a ternary quadratic form as
2 2 2
(3.22) x(V) = T110] + T120102 + T130103 + TV + TazUaUs + T3303.

If char k # 2, we identify Sym? Aff* with the space of symmetric 3 x 3 matrices by the

map

211 T2 T3
(3.23) v(v) = Sy = | T2 2w w93

x13 Tog 233

Then the action of g € GL3 is given by M — gM'g.

For x(v), we define
(3.24) P(x) = 4211292733 + T12T13T03 — x11x§3 - 33323:33 - xfgxgz.
Easy computation shows that P(z) = (1/2)det S,. Therefore,

P(gz) = (1/2)det Sy, = (1/2)(det g)* det S, = (det g)*P(z).
For z € V, we define a binary cubic form F,(u) by the map
x = F(u) = —P(u1z1 + ugzs).
It is easy to see that if g = (g1, g2)
Fya(u) = (det g1)* F, (uga).

Let A(z) be the discriminant of F,. Then A(z) is a polynomial with degree 12 and it
satisfies a relation A(gr) = x(g)A(x) where x(g) = (det g;)®(det go)".
We define w = (wq, wy) where

Wy = VgU3 — VU3, Wg = V1V — Ugls3.
By the definition of F,,(u),
Fy(u) = wjus(uy —us), A(w)=1#0.
Let T = ker(G — GL(V)). Then it is easy to see that
T = {(tls,t7%L,) |t € GL,}.
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Let

11 Aaiz2 i3
A= B— b1 b2
= | G21 Q22 Q23 |, = .
ba1 Do
31 Aaz2 as33

Suppose g(A,B) = (I3 + €A, I, + €B) fixes w where k[¢]/(¢?) is the ring of dual

numbers. Then
Fyanpw = (det(ls + A))*Fy(u(ly +eB)) = (L + e - tr A)F, (u(ls + £B)).

Note that F,, = ujus(u_us) and we have already determined the stabilizer of this element
in GL; x GLy in Example 3.17. So B must be a scalar matrix of the form b/, and
2(a11 + a9y + asz) = —3b. Writing down the action explicitly,

(A, bLy)(wy,we) = ((1 + eb)wy (v(Is +A)), (1 4 eb)wa(v(Is + cA))).

If this is w,
(14 eb)w;(v(Iz +eA)) = w;

for i = 1,2. We simplify the above equation for i = 1 as follows

(14 eb)wi(v(I3 +cA)) = wy + eb(vavs — v1v3)
+ e(v3(aiavy + agve + asqvs))
+ e(vo(a13v1 + agsve + assvs))
— e(v3(av1 + agvs + asvs))
— e(v1(aizv1 + ag3ve + assvs))
= w; + e(a13v] + (a13 — ags)vivy))
+ e((—an + a1z — ass — b)vivs + axvy)

+ 6((—(121 + a2 + ass + b)UgUg + (—CL31 + CL32)U§).
Similarly,

(14 eb)ws(v(I3 + eA)) = wsy + eb(vivy — vavs3)
— e(v3(a12v1 + agvy + assvs))
— e(va(a13v1 + aggve + assvs))
+ e(va(arv1 + azve + asvs))
+ e(v1(a12v1 + agvs + asavs))
= wy + e(a1ov} + (a1 — ayz + agy + b)vivy))
+ e((—a12 + az2)v1vs + (@21 — as)v3)

+ 8((&22 — as1 + ass + b)vgvg + a32v§).
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So we get the following system of linear equations

@13 = 13 — A3 = a1 — 12 +azz +b =0,
a3 = —ag1 + Qg2 + a3z +b = az; —aszy = 0,
(13 = Q11 — Q13 + A92 + b = a2 — azy = 0,

(g1 — Qg3 = G2y — A3 + a3z +b = az = 0.
Solving these equations, a;; = 0 if ¢ # j, @11 = age = ass, and b = —2ay;. Therefore,
T.(Gy) = {(tI3, —2tl,) |t € k}.

Since T C G2 and dim G, £ dimT.(G,,) = 1, G, must be smooth over k and G, = T =
GL;. Since dim7,(Gy) =1 =dim G —dim V, (G, V) is a regular prehomogeneous vector

space.

4 Review on Geometric Invariant Theory

We recall the definition of stability over k. Let my : V \ {0} — P(V) be the natural
projection map. Let k[V]% be the ring of polynomials invariant under the action of
G%. Suppose that P € E[V]% \ k is a homogeneous polynomial. We define P(V)p =

{m(v) | P(v) # 0}.
Definition 4.1. Let = € P(V);.

(1) z is semistable if there exists a homogeneous polynomial P € k[V]% \ k such that
T € P(V)p

(2) x is properly stable if exists a homogeneous polynomial P € k[V]%k \ k such that
x € P(V)p, all the orbits in P(V')p are closed, and the stabilizer of z in G, is finite.

(3) x is unstable if it is not semistable.

We use the notation P(V)$ and IP’(V)?O) . for the set of semistable points and properly
stable points respectively These are Auty k-invariant open subsets in P(V);. Also if z =
mv(v) € P(V), NP(V)3* then there exists P € k[V]% N (k[V]\ k) such that P(v) # 0.
Therefore, the notion of semistability is rational over the ground field.

Let A be a non-trivial 1-PS of G over k. Suppose that v € V' \ {0}, 7y (v) = z and
v =" v is the eigen decomposition with respect to \, i.e., A(t)v = > o | t"v;, v; # 0
for all ¢, and r; # r; if i # j. Then we define a numerical function by p(x, \) of 112i<nn ;.
For later purposes, we would like to define pu(x, A) for A € tg\ {0}. For that, if m > 0 is a

positive integer and v = mA\ (written additively) is an element of X,(7"), then we define

w(x, N) = (1/m)p(z,v). This definition is apparently well-defined.
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Theorem 4.2 (Hilbert-Mumford criterion of stability [16]). Let © € P(V)z, then x is
semistable if and only if p(z,\) £ 0 for all non-trivial 1-PS’s \.

Note that the above statement is equivalent to the statement that = is unstable if and
only if p(z, ) > 0 for a non-trivial 1-PS A.
The notion of “properly stable” will not be need in this thesis. However, we point out

without proof how the notions of stability and quotients are related.

Definition 4.3. An algebraic group G is geometrically reductive (resp. linearly reductive)
if for any rational representation p : G — GL(V') and any non zero invariant vector v there
exists a G-invariant homogeneous polynomial f on V' with deg f = 1 (resp. deg f = 1)
such that f(v) # 0.

Nagata and Miyata (1963) proved that all geometrically reductive groups are reductive.
Furthermore, Weyl’s unitary trick shows that all reductive groups are linearly reductive if
char k£ = 0. But, this is not true for reductive groups defined over a field of characteristic
p > 0. However, it turns out that “all reductive groups are geometrically reductive”. This
was known as the Mumford conjecture. The Mumford conjecture was proved by Habush
in 1975 ([5]).

Theorem 4.4 (Nagata). Let G be a geometrically reductive group which acts rationally
on an affine variety Spec A. Then A® is a finitely generated k-algebra.

For the proof of Theorem 4.4, see [18, p.43-50].

Let k£ be an algebraic closed. Let GG an algebraic group and X a variety both defined
over k. Assume G acts on X rationally. The action of G on X is determined by a
k-morphism p: G X X — X.

Let Y be a k-scheme. A k-morphism f: X — Y is G-invariant if the diagram

Gxp Xt X
)
X Y

commutes.

Definition 4.5. A scheme Y of finite type over k£ and a k-morphism f : X — Y is called
a categorical quotient if f is G-invariant and any G-invariant morphism X — Z factors

through Y uniquely.

By universal property, categorical quotients are uniquely determined up to isomor-

phisms.
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Definition 4.6. A scheme Y of finite type over k£ and a k-morphism f : X — Y is called

a geometric quotient if the following condition (1)—(4) are hold.

(1) f is G-invariant.

(2) For any y € Y, the geometric fibre f~1(y) Xy k(y) consists of a single orbit set-
theoretically (this implies that f is surjective).

(3) A subset U C Y is open if and only if f~}(U) is open (i.e. f is submersive).
(4) The structure sheaf 0y is the subsheaf of &y consisting of invariant functions.
The following proposition is Proposition 0.1 in [16, p.4].

Proposition 4.7. Suppose f : X — Y is a geometric quotient. Then it is a categorical

quotient.
The following theorem is Theorem 1.10 in [16, p.38].

Theorem 4.8. Let X be an algebraic variety over k, and G a reductive algebraic group
acting on X . Then categorical quotient (Y, f) of X* by G exists. Moreover, the following
conditions hold.

(1) f is affine and submersive.

(2) There is an open subset Y' C'Y such that f~1(Y') = X{o) and such that (Y7, f|x )

18 a geometric quotient.

5 Kempft’s result

Let S be a maximal k-split torus of G and T" a maximal torus of G with S C T'. In this
section, we assume k is a perfect field.

First we assume that k = k and so S = T. Let K be a field and X a variety over K
and f : G,, — X a K-morphism . We embed G,, to the one dimensional affine space Aff!
in the usual manner. We say that 11_{% f(t) = y if there exists a K-morphism g : Aff* — X
such that g|g,, = f and g(0) = v.

Let v € V' \ {0} and = = my(v) € P(V). We define

[V, v| = {)\ € X.(G) ‘ lgré A(t)v exists in V} :

Vool = {X € X.(G) ‘ lim A(t)v = 0}
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If A is any 1-PS of G then it is conjugate to an element v of X, (7). If 4 is another
such element of X,(T') then 7, are conjugate by an element of W. Since the norm is
invariant by the action of W, |||, depends only on A. So we define ||| = ||7]]¢-

The following theorem is Theorem 3.4 in Kempf [12].

Theorem 5.1 (Kempf [12] ). (1) The function p(z, N)/|||A|| has a mazimal value (which
we denote by M(x)) on the set |V, v| if it is not empty.

(2) The condition Gv > 0 is equivalent to the condition that |V, |0y s not empty.

(3) Suppose that |V, vl is not empty, and let A, be the set of indivisible 1-PS X’s such
that p(x, A) = M(x)||Al].

(a) The set A, is non empty, and there exists a parabolic subgroup P, of G such that
P, = P()\) forall A € A,.

(b) The set A, is a principal homogeneous space under the action of the unipotent
radical of P,.

(c) Any mazimal torus of P, contains a unique element of A,.
Remark 5.2. The condition Gv 3 0 holds if and only if x is unstable.

Next we assume that k is an arbitrary perfect field. Now we recall the rationality
property of Kempf’s result. This property of Kempft’s result will be used mainly in
section 8. The next theorem is Theorem 4.2 (and Corollary 4.4) in Kempf [12].

Theorem 5.3 (Kempf [12]). Suppose that v € Vi, and that |V, v|yy 5 is not empty. Put
Let A, be the set of indivisible 1-PS \’s of X.(G X k) which are defined over k such that
w(x, N) = M(x)||\||, where x = 7y (v).

Then all elements in A, are defined over k, P, is rationally conjugate to a standard
parabolic subgroup, and A, is a principal homogeneous space under the action of the k-

points of the unipotent radical of P,.

This theorem implies that if v € V; and |V, 0| (0} % 1s not empty, v is conjugate to
v' € Vi, by an element of Gy, and A, contains a split 1-PS of T', where y = my (/).

Finally, we introduce the terminology of “adapted 1-PS” which we will be use in
section 6, 8.

Definition 5.4. We say that a 1-PS X\ is G-adapted (or adapted, simply) for z if
M ()Ml = p(z, A).
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Now we prove Kempf’s theorem. We first introduce the concepts of a state and
its associated numerical function. A state = is the assignment of a non-empty subset
=(T) c X*(T) of characters to every torus T of G such that, if 73 C 15 are two tori of
G, the image of =(75) under the restriction X*(7y) — X*(11) is =Z(T1).

Let g € G, and T be a torus of G. We have an isomorphism g, : X*(¢~'Tg) — X*(T),
where gix(r) = x(g~'rg) for each character of g~'Tg. If Z is any state, we may define a
conjugate state g * = by the equation g * =(T) = g=(g 'Tg). Tt is trivial to verify the
restriction property for g *x =. Hence, g x = is a state.

A state = is called bounded if, for any torus 7" of G, the union UgGGE g*Z(T) is a finite
subset of X*(T'). The numerical function u(=Z,x*) of a state = is the function on X,(G)
with values in Z U {—o0} given by

=,\) = min JA
pEN = min (v

for any A € X, (G).

A state = is called admissible if its numerical function has the property,
p(E,p*xA) = u(=,A) for all A € X,.(G) and all p € P(\)z,
where px A = p~t\p.
Theorem 5.5. Let = and T are two bounded states.

(a) The function p(T,N)/||A|| has a mazimum value M(Z,T) for \ in
{\ € X.(G) | A is non trivial, u(=,Y) =2 0},
if this set is not empty.

(b) If M(Z,Y) is defined and positive, and if = and T are admissible, then the set

A(Z,T) = {/\ € X.(G)

A s non trivial and indivisible, }

U(E ) 2 0,1u(T,\) = ME 1)
has the following properties.

(1) A(Z,7) is not empty.

(2) There is a parabolic subgroup P(Z,YT) of G such that P(E,T) = P()\) for any
AEAET).

(3) A(Z,Y) is a principal homogeneous space under conjugation by the k-points of
the unipotent radical of P(Z,7).
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(4) Any maximal torus of P(Z,T) contains a unique element of A(Z, 7).

To prove Theorem 5.5, we need following lemma.

Lemma 5.6. Let V' be a finite dimensional real vector space with an inner product ( , ).
Let F and G be two non-empty finite set consisting of real-valued linear functions on V.
Set f(v) = gleilrwloz(v) and g(v) = gleiéloz(v). Assume that ¥ = {v # 0| f(v) 2 0} is a
non-empty subset of V. Then, we have the following (a), (b).

(a) The function g(s)/||s|| on 7 has a maximum value M.
(b) If M >0, then Z = {s € .| g(s) = M||s||} is an open ray.

Furthermore, if the above inner product and functions in F and G are integral valued on
a lattice L of V', then the following (c), (d) holds.

(¢) LNZ is not empty.
(d) If M >0, LNZ consists of all positive integral multiples of its unique element.

Proof of Lemma 5.6. The set . is a semi-cone, i.e. a union of open rays. Since the
elements of G are linear, the function g(s)/|/s|| is constant on open rays in .. Any
continuous function on a non-empty compact space is continuous. In particular, any
continuous function on the intersection of . and the unit sphere of V', must obtain a
maximum value. So (a) follows from these facts.

To prove (b), we consider the set .7 = {s € .7 | g(s) =2 1}. Then, .7 is a closed convex
subset of V' which does not contain the origin. When M > 0, .7 is not empty. Thus,
there is a unique point t of .7 which is closest to the origin. Since there is ty € .7 such
that g(ty) = 1 and ¢ is the closest point of 7 to the origin, g(¢) must be 1. Therefore,
g(s)/||s|| reaches its maximum value, 1/||¢||, only on the ray through ¢. Thus, Z = Ryt
and (b) holds.

The proof of (¢) must be done by an honest calculation. Let s be a point of Z. If we
replace (L, V) by (LNV' V"), where

V':{UEV

a(v) =0 for all @ in F such that a(s) = 0 and
B(v) = y(v) for all 3 and v in G such that B(s) = M||s|| = v(s) |’

then we may assume that . contains a neighborhood of s in V' on which g(v) is the
restriction of a linear function h(v) on V', where h has integral values on L.

There are three cases. When M < 0, then V' is a one-dimensional subspace spanned
by s. When M =0, g(v)/||v|| has constant value 0 in a neighborhood of s. When M > 0,
s spans the line N orthogonal to the hyperplane h(v) = 0 on V. Here, NN L is an infinite
cyclic group as (, ) and h are both integral on L. The proof of (c¢) and (d) follows directly

from the above facts. O
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Proof of Theorem 5.5. We first prove the case where G is a torus 7. The only relevant
statements are (a), (b) (1) and (b) (2). Lemma 5.6 is exactly what we need. To apply
Lemma 5.6, we put V = X,.(G) ® R, L = X,(G), where V is given the extended inner
product from the length on X, (G). Set F = Z(T) and G = Y(T') equal to the subsets
linear functions on V', obtained by extending =(7") and Y(7") in X*(T") = Hom(X.(T), Z).
Both F' and G are finite because Z(7") and Y(T') are, by the boundedness assumption.
Further, u(Z, ) = f(A) and p(Y,\) = g(\) for A in X, (T) in the notation of Lemma 5.6.
Therefore, the proof for this case follows from Lemma 5.6.

In the general case, we need to find a maximum value for the function p(Y,s)/||s|| on
all of ¥ = {\ € X,(G) |\ is non trivial, u(=,T) = 0}. We know that it has a maximum
value on any non-empty subset of the form . N X, (g7 'Tg), where T is a maximal torus
of G and ¢ is a k-point of G. As these subsets cover .7, it will be enough to see that
there are only finite numbers of maximum values on such subset. The boundedness of =
and T implies that there are only finitely many possibilities for g «x Z(T") and g * Y (7).
This implies (a).

For (b), let T' be any torus of G containing a non-trivial subgroup A such that u(=, ) =
0 and u(YT,\) = M(Z,T)||A|l. By the case G = T, we know that there is a unique Ar
in T such that Ay € A(E,T). Hence, (1) holds because M(Z,T) exists. Let A be any
element of A(Z,Y). For any p € P(\)j, p* A is also contained in A(Z,T) as = and Y are
admissible. As any maximal torus of P(\) contains some p* \, it possesses a unique such
member of A(Z,T) by the above argument.

Let A\; and Ay be two members of A(Z,Y). The intersection P(A;) N P(\y) of these
parabolic subgroups contains a maximal torus 7" of G. This is the crucial point of the
proof. Then p; * Ay = Ap = pa * Ag for some p; € P(\;) (i = 1,2). Therefore,

P(A1) = P(p1* M) = P(Ar) = P(p2 x A2) = P(\a),

and Aj, Ay are conjugate in this parabolic subgroup. Thus we have proved that P()\) has
a fixed value on A(Z,7T), i.e., (2) holds. We have already noted that (4) must hold. (3)
follows from the description of P(\) * A. O

Next we recall the eigen decomposition of V' as a representation of 7', where T is a
torus of G. Explicitly, V = @ V,, where V, is the non-zero subspace of V' on which T
acts by multiplication via the character x of T". The finite set of characters x which occur
in this decomposition is called the set of T-weights of V.

The state =, assigns to each torus 1" of G the set of T-weights x of V such that v
has non zero projection on the weight space V,. As v is not zero, =, v (1) is a non empty

subset of X*(T"). The restriction property is trivial. Therefore, =, 1 is a state.
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Lemma 5.7. Let u(Z, v, ) be the numerical function of the state =,y of the vector
v eV \{0}. Then, the following conditions are hold.

(a) |[V,o] = {A € X.(G) [ (v, A) 2 0}
(8) Vool = {1 € X.(G) | (v, \) > 0},
(c) For any g € Gy, g (Euv) = Egu,v-
(d) =,y is an admissible bounded state.
(e) u(v,A\) = pu(E,v,A) for all X € |V, v|.

Proof. Let v =Y, v; be an eigen decomposition respect to A, i.e., A(t)v = Y, ; t'v;, v; # 0,
where I C Z is a finite and non-empty subset. If A is a 1-PS of T, then I = {(\, x)|x €
E,v(T)}. Since p(v, \) =min 1, (a), (b) hold.

Let v = Zx vy, be an eigen decomposition respect to 7', where x runs through all
elements of =, (T). Then gv =" gv,. Put T" = gTg~*. Since

(97 "tg)vy = g - x(g~ "tg)vy

t(g?)x) =g
= x(g7"tg9)g - vy,

we have
Egov(T) = g(Euv(g7'T'g)) = g x Ep v (T").

This shows (c).
By definition, the set =, is a subset of the set of T-weights. Let ®(7") be the set of
T-weights. By (c), we have

g*xE,v(T) =Z5,v(T) C ®(T).

Since ®(7T') is a finite set, g * =,/ (T) is also finite. Therefore, =, is a bounded state.
We also have to check the admissibility. Let A be a 1-PS, and p a k-point of P()). As
P(\) = P(p* A), it will suffice to show that (v, ) < AMv,p* A). By (a), u(v, ) is the
largest integer m such that lim; .ot~ \(¢)v exists in V. Therefore, we need to show the

following claim.

Claim 1. If limy o A(#) - p~ - A(t) 7! = py ! exists in G and lim;_,0t™™\(t) - v = vy, exists

in V, then lim,_,o¢~™p * A(t)v exists and equals ppy "’ - V.

In fact,
T px Aty =t pA)p o = p(AB)pT A T (ETTA(H)v).
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Passing to the limit, we have lim;_,ot™™p * A(t)v = p- py* - Uyn. This proves the fact, and
therefore (d) is true.

Finally, we have to prove (e). But this follows from (a) and (d). O

Proof of Theorem 5.1. By Lemma 5.7, (1) and (3) follow from Theorem 5.5. (2) follows
from Lemma 5.7 (b) and (e). O

Since k is perfect, k%P = k holds. We denote the Galois group Gal(k*®/k) = Auty, k
by I

Let V be a vector space with k-structure Vj,. Then I' operates on Vi = V, @y k
through the second factor, and it is clear that V} is the set VkF of fixed point under
the action of I". If W is another vector space with k-structure, then I' operates on
Hom(V, W); = Homg(Vi, W3) by (f)(v) = o(f(c7'v)). Here o € T, f : V. — W is

defined over k and v € V;. Then the following conditions on such f are equivalent.

(i) f is defined over k.
(i) f: Vs — W is I-equivariant.

(iti) f € Hom(V,W);.

Note that || || is T-invariant i.e. ||7A]| = [|A]| for all A € X,.(G X, k) and 0 € T.

Lemma 5.8. Suppose that v € V.

(1) |Vi,v| and |Vg, v|qoy are I'-invariant subsets of X, (G xy k).
(2) For X\ in |V,v|, p(z,\) = p(z,°N) for all 0 € I', where x = my(v).

Proof of Lemma 5.8. Let A be in X, (G x k). As the action of G on V and v are rationally
defined over k, we have °\(t) - v = o(AMo7(t))) - v = o(Mo7(t)) - v) for any o € T.
Therefore, for any o € T, limy_,0 “A(¢) - v exists if and only if lim; o A(¢) - v exists. This
shows (1). Furthermore, as in the proof of Lemma 5.7, we have p(z, A) = p(z,7\) for all
o € I'. Therefore, (2) is true. O

Proof of Theorem 5.3. The function p(z, A)/||A|| has a positive maximum value M (z) on
|Vi,v| by Theorem 5.1 (2). To show that P, is defined over k, we must see that it is
invariant under I'. By Theorem 5.1 (3), it will suffice to note that A, is invariant under
['. The invariance of A, follows from Lemma 5.8 because the norm || || is Galois invariant.
Therefore, any A € A, is defined over k.

For g € Gy, we have |V, gv|qoy = g * |V, v|{oy and p(gz, g * A) = p(z, A) for A € |V, v|.
As the length satisfy |\|| = ||lg * All, g * Ay = A,. Hence, gP.g' = P, i.e. P(gx\) =
gP(M\)g~!. This follows P, is rationally conjugate to a standard parabolic subgroup.

The rest follows formally from the analogue results in Theorem 5.1. O
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6 Proof of the main theorem in the split case

We first assume that k = k (so S = T') and so we shall not use the subscript ; until we
consider the rationality questions.
The next lemma is proved in [16, p.57, Proposition 2.7].

Lemma 6.1. Let £ be a 1-PS of G. Then u(qx, &) = p(z,§) holds for all ¢ € P(§).

Proof. Let x = my(v). We choose a coordinate system v = (v(, v{,...,vy) so that £(t)v =

(t%v]) and a9 < -+ < ay. Let €] be the i-th coordinate vector. We put

(6.2) Z = ke, W= P ke
) i >pu(2,6)

Then Z & W is a subspace of V| and by the definition of u(z,£), v € Z® W. So we
express v in the form v = (z,w) where z € Z,w € W according to the decomposition
(6.2).

We remind the reader that P(§) = M(§)U() is the Levi decomposition of P(&).
We write ¢ = mu for m € M(§) and u € U(§). Then gz is in the form (mz,w’)
where w' € W. Since z # 0, we have mz # 0. Since the weights of the non-zero

coordinates of w’ are strictly greater than ju(z,¢) and £(t)mz = t*®8mz, this proves that
gz, ) = pl(x, §). O

The next lemma is proved in [17, Lemma 9.2]. However, since there are minor inac-

curacies in the proof, we give a full proof here.

Lemma 6.3. Let v = my((z,w)) € P(Ys) where z € Zg \ {0} and w € Ws. We put
M = p(z,2g)/|| sl > 0. Then my(2) is Gg-unstable if and only if p(x,&)/||E|| > M for
some £ € X,(Pg).

Proof. We first show that if my(2) is Gg-semistable then p(z,&)/||€|| < M for all £ €
X.(Pg).

Since & is conjugate to a 1-PS of Mg, there exists p € Ps such that & &f pép~t €
X.(Mjg). If we write p = muy where m € Mg and u; € Ups then

&= p_lflp = uflm_lflmul = m_lflmu

where u = (m~t&m) " tuy (m~1Em)uy € Ug. If we put n = m~1&m, then n € X,.(Mp)
is conjugate to £ by an element of Ps. Therefore, ||£]| = ||n]|-

Since u(t)((z,w)) = (z,w'), where w' = w'(t) € Wy, {((z,w)) = (nz,nw'). There exist
m,n € Z and v € X,(Gp) such that m > 0 and n™ = vA}. Now A\s(t) acts on Zg by scalar
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multiplication, say \s(t)z = t*z where a > 0. We choose a coordinate system z = (z;) of
Zg so that v(t)z = (t%z). Since my(2) is Gg-semistable, there is i such that z; # 0 and

b; < 0. Then the i-th component of 7™ (¢)z is t"**%z;. Since A\g and v are orthogonal,

™ = \/||V||2 + [n[[|Agll* > |n[[[As]].
So,

w(x, &) plz,n™) <na+bi< na  _ a

el Al =l = nlliAsll = sl

Conversely we assume that u(z,v) > 0. As above we assume v(t)z = (t%z;). We

M.

choose a coordinate system w = (w;) so that A\g(t)w = (tw;) and v(t)w = (t%w;). Then
c; > a and

() (tw = (" wy), (WAG) ()2 = ("),
Since there are finitely many possibilities for 7, j, if n is sufficiently large, then nc; +d; >

na + b; for all 4, j. Therefore, u(z,v\}) = p(r,v) +na = p(z,v) + nu(z, Ag). So,

M(%V/\g) M(m,y) +n:u(x7 /\B)

b5l VP + TP

Put b = p(z,v) > 0. Then, we would like to prove

b+ na - a Y
VIVIE+nPIxs? Al

for sufficiently large n > 0. Clearly the inequality

(6.4)

IAs|I*(6% + 2abn + n*a®) — a*([[v]| + n*[|As]*)
= || As|I*(b* + 2abn) — a*||v||* > 0
is valid for sufficiently large n > 0, and so

b? + 2nab + n2a? - a?
V2 +n2[[Asll® ~ (IAsl1*

Therefore, (6.4) follows. O

(6.5)

Proposition 6.6. Assume that v € P(Ys). Then x € P(Y3)™ if and only if A5 is adapted
for x and p(z, Ag)/[|As]l = 118

Proof. We show the “if” part first. Suppose that z = 7 (v) and v = (v, ...,vN) = (z,w)

e

where z € Zz and w € Wp. Since () = aAs for a positive rational number a,

(6.7) (@, Ag) _ ming2o(yi Ag)r _ mine, 20y, AB))r _ minuzo(vi; Ag

sl sl N A N 181l
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By assumption, min,, o(7i, 8)e = |8
by Lemma 6.3.

%ﬁi' So z # 0. Since Ag is adapted for x, x € P(Y3)*

We next show the “only if” part. Suppose that z = 7((z,w)) € P(Y3)* where z €
Zg, w € Wy, Since z # 0, by (6.7), M = u(z,75)/|Asll = [I8]lc. By Lemma 6.3,
(i, €)/ [l M holds for all € € X, (Py).

We want to prove that Az is adapted for x. So we must show that

A
_uled) ()
Pl ~ cexter T

Since z is unstable, there exists an adapted 1-PS £ for « by Theorem 5.1 (1). Since the
intersection of any two parabolic subgroups contains a maximal torus, there is a maximal
torus 7" C Pg N P(&). Since any torus in either Pz or P(&) is conjugate to a subtorus of
T’, there exist p € Pg and ¢ € P(&) such that pAgp™! = N and g€q~! = & are both in
X.(T").

Since ¢~! € P(§) = P(¢'), by Lemma 6.1,

w(x,&) = gz, q€q™") = plg gz, ¢€q™") = (=, €).

Therefore, ¢ is also adapted for z, and so M(z) = u(x,£)/||€']]. Also & is a 1-PS in
P(&), and so M(x) = u(z,&)/||€'|| £ M by Lemma 6.3. Clearly M(z) = M holds, and
so M(xz) = M. Therefore, \g is adapted for z. O

Proof of Theorem 1.2 (split case). Let v € V'\ {0} and = 7y (v) be unstable. We would
like to show that there is § € B such that © € GP(Y3)*. There is a 1-PS A for which z is
adapted. We choose g € G so that v = gA(t)g~" is a 1-PS in T and that v € tg . Then
gz is v-adapted. So we may assume that A is a 1-PS in 7" such that A\ € tg . to begin
with.

Let a = M(z)/||A|]. Then

plaad) _ p(ed)
@I~ M@

So by replacing A by a\, we may assume that u(z, \) = |[|A||*>. This A may no longer be
a 1-PS, but is an element of tg. Let 8 = B(\) € ty. Then M(x) = [[A]| = ||B]¢ and
p(z, A) =18 tzﬂg-

As before, let v = (v;) be the coordinate of v and ~; the weight of the i-th coordinate.
Since pu(x,\) = |8

2*
R

(Vi N1 = (73, B)gg 2 118
for all i and there exists i such that (v;, )¢ = [|8 fi. So v € Yz and if we write v = (2, w)
where z € Zz and w € Wy, then z # 0. Since M(z) = p(x, N)/||A||, mv(2) is Gg-semistable
by Lemma 6.3. This implies that z € P(Yjs)*. Also u(x, Ag)/||Asll = pu(z, \)/I|A]| = [|8]]e-

2
tR

38



We show that this 3 belongs to B. Put T = T'N Gj. Define t; = X*(T) ® R. Let
Bt ={y et | (7,8)g = 0}. Then S+ = t}; by the natural homomorphism t; — tj and
th = 8L B RE.

Let z = (z;) be a coordinate system of Zz such that the action of 7" is diagonalized.

Let d; be the weight of the j-th coordinate of z. Since (65, 8)e, = (8, B¢, 9 o 6;— B € B+

J
for all j. Also, let w = (w;) be a coordinate system of Wy such that the action of 7" is

diagonalized. Let ¢; be the weight of the [-th coordinate of w.

Let v = (z,w), I, ={j | 2; # 0} and I,, = {l | w; # 0}. Since my(z) is Gg-semistable
and B+ = t5, the convex hull of {0 | j € I.} contains the origin. This means that there
isa; € Rforallj €I, suchthat 0=a; =1, ., aj=1and ), ; a;6; =0. Therefore,

Zajéj = 6

J€l,

So 3 belongs to the convex hull of {0, | j € I,}. Obviously, 8 belongs to the convex hull
of {6; | je L}U{e |l € 1,}.
Suppose that b e R (j € I.),q e R(l€1,),0=b=1,0= ¢ =1, Zjelz b; +

> ier, ¢ = 1 and
a = ijéj + ZC[&Z.
j I
Since (&1, B)e > (B,B)e;, (61, 8)e = di(B, B)g, where d; > 1. We put ¢ = & — d8.
Then &) € 8+. We put
o = ij(;; + 20152-
] I
Then o' € f+ and
o= (ij —l—chdl) B+
j I
We put C = Zj bj + Zl Cldl Z Zj bj + Zl Cc; — 1. Then

(o, ) = 2(@5)5}; + (o, )e 2 (B, B)e + (o, a')e 2 (B, Bz

Therefore, S is the closest point to the origin of the convex hull of weights of non-zero
coordinates of v = (z,w). Since 8 € t; ., 8 € B. This proves that

(6.8) vA{o}=Vv=u ] Ss
BeB
Suppose that gi,g0 € G, 81,82 € t , and that gz is A\g,-adapted for i = 1,2. Then
x is adapted for g; *Ag.g; for i = 1,2. By Theorem 5.1 (3) (b), As,, As, are conjugate.
Since Mg, A\g, € try, Ag, = Ag,. So By = afy for a positive rational number a. Since
w(z, Ag,) = |5 %ﬁi for i = 1,2, By = 5. Therefore, the union in (6.8) is disjoint.
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Suppose that g1, g2 € G,v1,v2 € Y§® and that gvy = gove. Then g1y (v1) = gamy (v2).
Kirwan [13, 13.5.Theorem.| proved the following theorem.

Theorem 6.9 (Kirwan). m(S5) = G xp, P(Ys)™ holds.

Therefore, there exists p € Pg such that g; = gop, Ty (v2) = my(pv1). So, there exists
c € k* such that vy = cpvy. Since g1v1 = GaUa, GaPU = GaCPU1 = Cgopvy. Since vy # 0,
g2pv1 # 0. Therefore, ¢ = 1. This implies that S = G X p, Y3°. O]

7 Proof of Theorem 6.9

We fix a coordinate system x = (g : x2 : - -+ : ) on P(V) (so x = my(v) holds) by which
G acts diagonally. Define a morphism pg : P(Y3)® — P(Z3)® by pg(xg : 22 -+ 1 xn) =
(g :ahy: -+ ay) where

7 = Lj Zf (f}/jaﬁ)tﬁi = (ﬁ)ﬁ)tﬂ*{a
’ 0 otherwise.

Lemma 7.1. P(Y3)® is invariant under the action of Pg.

Proof. It A : G,,, — T is any 1-PS which is a positive scalar multiple of A\(3) in tgp then
limy; 0 A(#)gA(¢) ™! exists in Pg, and if y € P(Y;3)* then ps(y) = lim;_,0 A(¢)y for any such
A. The result follows from these facts. O

Note that we have already proved that my(S3) = GP(Y3)* holds. By Lemma 7.1,
there is a morphism o : G xp, P(Y3)* — P(V) whose image is 7y (S3). In the following,
we want to prove that this o is injective.

Suppose that G, acts linearly on P(V'). Then the set of fixed points is a finite disjoint
union of closed connected nonsingular subvarieties of P(V'). Let Z be one of these. For
every x € P(V), the morphism G,, — P(V) given by t — tz extends uniquely to a
morphism k£ — P(V'). The image of 0 will be denoted by lim,_,otz. Let Y consist of all
x € P(V) such that limy;_,o ¢tz lies in Z. Then Y is a connected locally-closed nonsingular
subvariety of P(V) and the map p : Y — Z defined by p(x) = lim;_,otx is an locally

trivial fibration with fibre some affine space over k.

Proposition 7.2. For each 8 € ‘B, the subvarieties P(Y3)* and P(Zz)* of P(V) are
non-singular. The morphism pg : P(Y3)* — P(Z3)* is an locally trivial fibration whose

fibre at any point is an affine space.

Proof. Let B € 8. The definition of P(Z3) and P(Yj) shows that the subvarieties P(Y3)*
and P(Z3)* of P(V) are non-singular.
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Let z € Zs. By definition, the fibre of pg at 7, ((0, 2,0)) is {my((0, z,w)) |w € Ws}
and therefore is isomorphic to Wip. O

Now we want to prove Theorem 6.9. For simplicity, we shall assume that the ho-
momorphism ¢ : G — GLy4; which defines the action of G on P(V) is faithful. Note
that such ¢ always exists by Ado—Iwasawa’s theorem. The general result follows immedi-
ately from this except that Ps must be replaced by ¢~*(4(Ps)), which is also a parabolic
subgroup of G.

Lemma 7.3. Suppose that G is a subgroup of GLyy1. If © € P(Y3)™ then
(7.4) {9€Glgx e P(Ys)*} = Ps.

Proof. Since P(Y3)™ is invariant under Pg, we have Ps C {g € G| gz € P(Y3)*}. Now we

want to prove that
(7.5) Ps D {g € Glgx € P(Ys)*}.

Bruhat’s lemma (see [22, 8.3.8 Theorem]) tells us that W is a system of representatives
of the set of double cosets B\G/Ps of G, where B denotes the Borel subgroup of G. This
implies that an element g € G can be written as g = bvp, where b € B,v € Ng(T) and
p € Ps. Since P(Yp)* is invariant under the action of B and Pg, it suffices to show that if
ve € P(Y3)® then v € Ps. We fix v € V\{0} such that x = 7y (v). We write v = (0, 2z, w),
where z € Zg and w € Wp.

Let v = (v;) be a coordinate system of V' such that the action of 7" is diagonalized.
Let e; be the coordinate vector which corresponds to v;. Let ~; be the weight of v;. Since
v; is the weight of v;, we have te; = 7;(t)e; for all ¢ € T. Removing the duplication, we
put {yo,..., v} ={e1,...,en} where g; # ¢; if i # j. Let E; be the eigen space of ¢;. If
v € E;, then tv = ¢;(t)v for all t. We define E, ;) = vE;. Since

tvv = vt'v = vel (t)v = &7 (t)vv,

the map p : E; — E,u)) is bijective. Without loss of generality, we can assume that
Zs C DL B, Ws C @i, Ei for some m. We write v = 377" 2z + 370 w;
where z; € E,,,w; € By Then we have vv = Z;”:l vz + Z?:m 41 Yw; where z; €
Ep)(my), Wi € Epwymy). Since my # mf;, p(v)(my) # p(v)(mj). Since E; # {0} for all
J € I., we have E,,y;) # {0}. Therefore, vz; # 0 for j € I.. Also if j € I, then for
J# g, ey #e5. Sovzy (L5 Sm,j' #7), vwy (m+ 1= j° < n) do not cancel out
with vz; and so the €; component of vv is not zero.

Let z = (z;) be a coordinate system of Zz such that the action of T" is diagonalized.
Let 0; be the weight of the j-th coordinate of z. Put I, = {j | 2z; # 0}. Then there is

aj € Rforallj€l,suchthat 0=a; = 1,37, aj=1and 8=}, a;d;.
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Now we assume that v ¢ Ps. Then ” # 3. Since tvz = vtz = vtz, 07 is the
weight of vz;. By definition, 87 =3, a;07. Note that ||3”|¢ = |3
the orthogonal projection to 8 of 57, we have (8", 8)e < (83, 8)¢ .

- If we consider

ﬁl/

Therefore, (67, 3)e. < (B,8)g must hold for some j € I.. This means that vz ¢
Zg ® Wz and so va ¢ P(Ys)®. Thus, we have (7.5). O

We already seen that the canonical map GxP(Y3)* — GP(Y3)*® = my(Sp) is surjective.
Suppose g1, 92 € G,x129 € Ty (Sp) such that gyz1 = goxe. Since z; = gfngxg, there is
p € Py such that g;'gy = p by (7.4). Then g1z = go15 and g; = gop~'. This means that
Ty (S8) = G xp, P(Y3)* set theoretically.

In the following, we want to show that the isomorphism of Theorem 6.9 holds as a
scheme.

We recall the definition of the Zariski tangent space of the variety for convenience for
the readers. Let X be a variety defined over k and Ox, a local ring of X at z € X. We

denote the maximal ideal of Ox , by my,. Then mx ./ mgf’x is a vector space defined over

the residue field k(x) = Ox,/mx, and whose dual T, X def

Zariski tangent space of X at x.
Let g be the Lie algebra of G and for each 8 € ‘B let pg be the Lie algebra of the
parabolic subgroup Ps of G. As a k-vector space g is just the tangent space to the group

(mxq/m%,)* is called the

G at the origin. The action of G on P(V') induces a k-linear map & — &, from g to the
Zariski tangent space T,P(V') for each = € P(V').

Lemma 7.6. Suppose that G is a subgroup of GLy41. If x € P(Y3)™ then

{5 cg | gm € Tx(P(YB)SS)} =Ppg.

Proof. Since P(Y3)® is invariant under Pg, we have ps C {£ € g|& € T.P(Ys)*®}. It
remain to show that {€ € g| &, € T,P(Y3)®} C ps. As in the proof of Lemma 7.1, A\g acts
onVast— diag(tr(ﬂm’ﬂ L T ’B)‘ﬁi) for some rational number r > 0. By definition,
the subgroup Pj consists of all ¢ € G such that lim ,o(rA(8)(¢))g(rA(B8)(t)) " exists.

Hence, an element g € G lies in Py if and only if it is of the form ¢ = (g; ;) with g;; =0
when (vi, 8)e. < (75, 8) -

PR
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Let
g=to <@ ga)

be the root space decomposition of g with respect to the Lie algebra t of the maximal
torus 7. If £ € g, C gly,, has a non zero (¢, j)-entry as an element of GLy; then as
[,&] = a(n)§ for all n € t it follows that a = 7; — ;. So g C pg whenever (a, 8)g = 0.
Hence it suffice to show that if £ € @ 0o and &, € T,P(Y3)® then £ € pg.

(auﬁ)lﬁi<0
Let V. (respectively Vp,V_) be the sum of all subspaces of V' on which T acts as

multiplication by some character v; with (v;, 8)e > (8, 8)e (respectively (v;,8)e =
(8.8)cs (15, B < (B,8) ). Then any clement of @D ga is of block form (‘é )

(a7ﬂ)tﬂ§<0
with respect to the decomposition of V' as V., & V& V_. This follows form the fact that

9oV, C V44 holds for all a, A € ;. To prove this fact, for x € go,v € Vi, t € t, we have

QLOO=E
o o0

trv = ztv + [t, x]v
= At)zv + ot)zv
= A+ a)(t)zv.

If © € P(Z)* then z is represented by a vector of the form (0,v,0)in V=V, & Vo V_.
We have

a 0 0 0 0
b 00 v| =
c d e 0 dv

and so by the definition of P(Yj3)® if £, € T,P(Y3)*® then dv = 0 and hence &, = 0. But
this means that & is contained in the Lie algebra of the stabilizer of z in G, and by (7.4),
the stabilizer of z is contained in Pj. Therefore § € pg as required. O]

Consider the morphisms
G xP(Ys) -1 G x P(V) = (G/P3) x P(V)
given by

g 2) % (g,92), 6(g,2) X (gPs, ).

We define
M =5(/(G x B(Yy)), M’ =8(:(G x B(Yy)™)).

Since P(Yj) is invariant under Pz we have 6 (M) = {(g,y)| g~ 'y € P(Y3)} which is
closed in G x P(V') and is isomorphic to G x P(Y3) via . As § is quotient morphism, M
is therefore closed in (G/P3) x P(V).
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Now GP(Yjp) is the image of M under the projection pry : (G/Ps) x P(V) — P(V).
Since G/ Ps is complete, this shows GP(Y3) is closed. Furthermore, it follows that M’ =
M N pryt(my(Ss)) and hence is an open subset of M.

We have M’ = {(gPs,y)|g 'y € P(Yp)®™} which is isomorphic to G' xp, P(Yj)%.
Since G' x IP(Yj3)* is non-singular and the action of Ps is free, the quotient group G' x p,
P(Yj3)® is also non-singular. Moreover, by Lemma 7.6 the restriction of pry to M’ is a
homeomorphism onto 7y (Ss). Indeed since G/Ps is complete pry, : (G/Ps) x P(V) —
P(V) is a closed map, so that pry : M’ — 7 (Ss) is a homeomorphism because M’ is
locally closed in (G/Pg) x P(V). To show that pry, : M’ — 7w, (Sp) is an isomorphism, we
need the following fact.

Let X,Y be varieties defined over k. Fix z € X and a morphism f : X — Y. By

definition, f induces a homomorphism of local rings

fi: Opyy = im Oy y (V) = lim O, x (f1(V)) = Or x.

zeV zeV

Furthermore, f is an isomorphism if and only if f is a homeomorphism and the induce

map ff on local rings is an isomorphism for all z € X.

Lemma 7.7. Let p : A — B be a local homomorphism of Noetherian rings (i.e. @(my) C
mp). Assume that the following conditions hold.

(1) A/my — B/mp is an isomorphism.
(2) my — mp/m% is surjective.

(8) B is a finitely generated A-module.
Then ¢ s surjective.

Proof. We follow the description of [3, Chap. II Lem.7.4, p.153]. Consider the ideal
a = p(my)B of B. We have a C mp, and by (2), a contains a set of generators for mp/m%.
Hence by Nakayama’s lemma for the local ring B and the B-module mg, we conclude that
a = mp. Now apply Nakayama’s lemma to the A-module B. By (3), B is finitely generated
A-module. The element 1 € B gives a generator for B/myB = B/mp = A/my4 by (1), so

we conclude that 1 also generates B as an A-module, i.e., f is surjective. O]

Clearly, a morphism f induces the x(x)-homomorphism f, , : T, X — T)Y.

Suppose that f is a homeomorphism and f, ; is injective for all z € X. Then the dual
map my,f(x)/mf,’f(x) — my,/m%, is surjective. Furthermore, r(z) = k = k(f(x)) and
Ox, is a finitely generated Oy, j,)-module. Therefore, by Lemma 7.7, f# is a surjective

homomorphism for all z € X. This implies that f is injective and so f is an isomorphism.
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Now we want to show that pry, : M’ — 7 (S5) is an isomorphism. We are already seen
that pry, is a surjective homomorphism. Therefore, we suffice to check that the induce
maps of Zariski tangent spaces (pry )sm : TinM' — Tjy,,

It is necessary to consider the case m = (P3,y) for some y € P(Y3)*. Then an element
of T, M" is of the form (a+pg, ) where a+ps € g/ps, & € T,P(V) and —a,+& € T,P(Yj)%.
So if 0 = (pry )sm(a+ps, &) = & then a, € T,P(Y3)™, and hence by Lemma 7.6 a € pg so

that (a+pg, §) is the zero element of T, M’. It follows that (pry )., is injective everywhere

m)Tv (Sp) are all injective.

on M’ and hence that pry, : M’ — my(S3) is an isomorphism. Therefore, we conclude
that for each 8 € B the stratum my/(Ss) is non-singular and isomorphic to G x p, P(Y}3)*

and so the proof of Theorem 6.9 is complete.

8 Proof of the main theorem in the non-split case

Assume that k is an arbitrary perfect field from now on. Therefore, k = k*P. In this
section S C G is a maximal split torus and S C T' C G is a maximal torus defined over k.

We include the following two lemmas which are basically well-known for the sake of
the reader. As we stated in Introduction, \W can be regarded as a subgroup of W (|2,
5.5.Corollaire.]).

Lemma 8.1. Elements of No(S)/Za(S) are represented by elements of Ng(T).

Proof. Let n € Ng(S); (in fact, it is possible to choose a representative from Ng(S)x).
Then n~'T'n, T are maximal tori containing S. So they are contained in Zg(.S). Therefore,
there exists an element g € Zg(S); such that g~ 'n~'Tng = T. This implies that h aof
ng € Ng(T);. Then n = hg=! € hZg(S);. So elements of Ng(S)/Za(S) are represented

by elements of Ng(T). O

Lemma 8.2. Suppose that \i, Ay are 1-PS’s in S and that \y, Ay are conjugate in Gy,
i.e., there exists h € Gy, such that hA;(t)h™" = Xo(t) (t € k). Then \i, Ay are conjugate
by an element of ;W = Ng(5)/Zc(S).

Proof. Let Si,S5 be the images of \i, Ay respectively. Then hS;h~t = S,. Since hSh™1, S
are both maximal split torus in Zg(Ss), there is hy € Zg(S;) such that hihSh™ h;* = S.
So hih € Ng(S). Since hA(t)h™! = Xy(t) and hy € Zg(Ss), hihAi(t)h~thit = Xo(t).
Therefore, A, Ay are conjugate by an element of the relative Weyl group ,W. O

Proof of Theorem 1.2 in the non-split case. We now prove Theorem 1.2 in the non-split
case.
We choose a coordinate system v' = (v)),...,vl) over k so that the action of T is

diagonalized. Then the action of S is diagonalized also. However, since we chose a
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coordinate system v = (vp,...,vy) so that the action of S is diagonalized over k in
Theorem 1.2, we consider the relation between the two coordinates v' and v.

The inclusion map sg — tg induces a map s — ti, which enables us to identify sp
with a subspace of t;. The restriction to sy induces a map ty — s. We show that this
is the orthogonal projection (see also [22, p.259)]).

If o € 55 then (A(«), V)

the corresponding element of t is the function g on tg such that (A(«a),v)y = (g,v)r for

s = (a, V) for all v € sg. Regarding A(«) as an element of tg,
all v € tg. If we restrict g to sg, we obtain the function sg > v — (A(@),v), = (o, v)s.
So the composition s — t; — s is the identity map. Therefore, if we denote the kernel
of ty — s by U then ty =s; & U.

We show that U is orthogonal to s;. If v € U then (v, \)y = 0 for all A € sg. If A € sp
corresponds to 3(A) € si then 0 = (v, \)r = (v, B(A))¢;. Therefore, v is orthogonal to s.
This implies that t; — sp is the orthogonal projection.

Let v; € si (resp. 71, € t;) be the weight of the i-th coordinate v; (resp. v}). Note
that since S is split, any character of S is defined over k. Let n; € s; be the restriction
of n; to s§. Removing the duplication, we put {no,...,nn} = {01,..., 0} where 6; # J;
if i #j. Let A; = {j | ;; = &;}. Then A; is invariant under the action of Gal(k/k). Let
ej (resp. €}) be the coordinate vector corresponding to the j-th coordinate v; (resp. vj).
Let B C V & k be the subspace spanned by {¢} | j € 4;}. Then E/ is invariant under
the action of Gal(k/k). Since k is a perfect field, there exists a subspace E; C V such
that E] = E; @, k. Since V @i k = @;", El, we have V = @], ;. This implies that
E; is the weight space of §;. Since the set of weights of V' with respect to S does not
depend on the choice of the coordinate, J; must coincides with ~; for some j. So if we
put B; ={0 < j < N |v; = 0;} then E; is spanned by {e; | j € B;}. Therefore, we can
conclude that if 7 is the weight of a non-zero coordinate of v' then 7, is the weight of a
non-zero coordinate of v where v and v’ are related with the change of coordinate.

Suppose that z € P(V),, \ P(V)5® and that = is A-adapted. Then A is a 1-PS defined
over k (by Theorem 5.3). So there exists g € Gy such that gAg™" is a 1-PS in sg . As in
the split case, there is a positive rational number a such that if 8 = a3(A) then gz € Y.
Here we have to make sure that the definition of Y}, is the same whether or not we regard
B € sy or B ety

To distinguish the difference between k, k, let Zy CV @y k be the subspace spanned
by € such that (7}, 8)¢ = |8 t2n’§' We define Wj similarly. Let E;, E} be as above. We
regard 8 € t;. Since ty — si is the orthogonal projection, (1}, 8)e = (n;,8)sz- So Zj
is spanned by Ej such that (d;, B)s; = [IBII&. = [|B[Z:. Also Zj is spanned by E; such
that (0, 8)sx = [|8 zﬁ%' Therefore, Zj = Zg @ k. Similarly we have W} = Ws @ k. We

pointed out earlier that the notion of semistability does not depend on the ground field.

46



Therefore, the set Y3, can be regarded as the set of k-rational points of the set Y* defined
regarding /3 € t.

By these considerations, we can conclude that x € Y3} where the definition of Yz} is
as in Introduction. We have to verify that this g belongs to B.

Put z; = gz. Suppose that x; = 7y (v) where v = (vp, ..., vy) (this is the coordinate
for which the action of S is diagonalized rationally). Let v' = (v}, ..., v} ) be the coordi-
nate of x; for which the action of T is diagonalized. We claim that this [ is the closest
point to the origin of the convex hull of J,, = {v; | v; # 0}. We have already proved
this claim in the split case. So ( is the closest point to the origin of the convex hull of
{m; | v # 0}

We have 1} = n; + ¢; where ¢; is orthogonal to s3. Let pr : t; — s be the natural
map. Since 3 € sg, pr(5) = . Also since pr is a linear map and § is in the convex hull
of {n; | v; # 0}, B8 = pr(B) is in the convex hull of {pr(n}) | v; # 0} = {n; | v; # 0}. Since
B st

So [ is the closest point to the origin of the convex hull of {n; | v; # 0} in sp.

2
* o
Sg

We pointed out earlier that if 7} is the weight of a non-zero coordinate (for which the
action of T is diagonalized over k) of z; then n; coincides with the weight of a non-zero
coordinate (for which the action of S is diagonalized over k) of x1. Since § € 53 ,, 5 € B.

Finally, we have to prove that Sg = G, xp,, Y33 Let v € Sgy and z = 7y (v). Then
any A € A, is split. So there exists g € Gy such that gv € Y5° NV, = Y55, Therefore,
Gr X Y553 — Spi is surjective. If g1, g2 € G, 91,92 € Yj), and v = g1y1 = gayo then there
exists i € Pgy such that g = goh by the split case. But then h = 9195 € Gy, and so
h € ng. Therefore, Sﬁk = Gy X Psy, Yﬂsi ]

Proof of Corollary 1.53. Let G, G4, etc., be as in the situation of Corollary 1.3. We remind
the reader that we are considering the stability with respect to the group G; (not G).

Let 8 € B. We put Pig = P3N G1. We have proved that Sgp = Gy Xpy, Y. So
the map Gy X p,, Y3} — Sgi. is surjective. Suppose that g1, g2 € G, v1,v2 € Y3}, and that
g1v1 = gav9. This implies that g;lglvl = vy. Since Gj, = T,;G 1, there exist t € Ty, h €
G5 such that g;'g; = th. Since t € Ty C Z(G)g, thuy = htvy = hx(t)v; = vs. Since
Y;® is invariant under scalar multiplications, we have x(t)v, € Yg% This implies that
h € Pigp C Pgy. Since Ty C Z(G), Ty C Ps. So gy'g1 =th € Pyg. Since g1, g2 € Gy, we
have h € Pgy. Therefore, Sgi, = Gy xp,, Y.

Other statements follow trivially from Theorem 1.2. O
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9 Examples of GIT stratifications

We briefly recall the Cayley—Dickson process in the following (for more detail, see [4,
pp.101-110]). We assume that char k # 2,3. Note that even though it is assumed k£ = R

in [4], the argument for the Cayley—Dickson process works as long as char k # 2, 3.

Definition 9.1. A normed k-algebra is a not necessarily associative finite dimensional k-
algebra A with multiplicative unit 1, equipped with a non-degenerate symmetric bilinear
form (, ) such that the associated square norm ||z| o (x,z) satisfies the multiplicative
property

lzyll = Nz |yl

If A is a normed algebra, then we denote the span of 1 by RA and its orthogonal
complement {z € A|(l,z) = 0} by SA. Any = € A has a unique decomposition = =

1 + xo with 1 € RA, 29 € SA. Then we write Rz = x1, Sz = x5. Also we define the

1
2

Given a normed k-algebra, we make two normed k-algebra A(+) as follows. As a

conjugation by & = 1 — x2. So we have Rz = $(z + z), Sz = (& — z).

vector space, we define A(+) = A @ A. We define the multiplication and the norm by
(a,b)(c,d) = (ac = db,da +be), |(a,b)]| = [lall + [|b]]

Then we define

((a,b),(c,d)) = %(H(a, b) + (¢, d)|| = [l (@, O)]| = l[(e, d)]).

We use the notation a + be for (a,b). Note that if k contains /=1, & — y/—1¢ induces
an isomorphism A(+) — A(—).

For a normed k-algebra A, we define [x,y, 2| = (vy)z — z(yz) for z,y,z € A. This is
called the associator. If the associator is alternative, A is called an alternative algebra.
It is known that if A is commutative, A(+) is associative, and if A is associative, A(=+)
is alternative. Furthermore, it is known that the norm of A(4) is compatible with the
product if and only if A is associative. The above process is called the Cayley—Dickson

process. It easy to see that

S(a+be) = Sa+be, a+be=a— be.
The following lemma is proved in [4, Lemma 6.10, p.104].
Lemma 9.2. (1) 7y = yz.
(2) (z,y) = R(zy).
(3) |lz]| = zz.
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If A, B are normed k-algebras, a homomorphism ¢ : A — B is a k-linear map such that

¢(1) = 1, ¢(xy) = ¢(x)d(y) and [[¢(x)|| = [[z]|. The third condition implies (p(x), $(y)) =
(,y). So p(JA) C IB. Suppose z,y € SA. Then (z,y) = R(zy) = —R(zy). So

|
=
<
—~
=
=
E
I
=
=
=
<
I
=
<
Il
|
=
—

Conversely, ¢ is a homomorphism if the above conditions are satisfied. So we have proved

the following proposition.

Proposition 9.3. A k-linear map ¢ : A — B is a homomorphism if and only if
(1) =1, ¢(S(xy)) = I(o(2)o(y)), (o(x), ¢(y)) = (2,9)
for all z,y € SA.

It is easy to see that

=16

For k(+),e = ('), and the conjugation is

b))

For k(4+)(—),e = (§ %), and the conjugation is

(-0

Therefore, Rz = %tr(:v) in both cases and the norm is the determinant.
We define H = k(+)(+), 0 = H(+) and O = My(k)(+). The normed k-algebra O
is called the non-split octonion algebra (if k does not contain v/—1), and O is called the

split octonion algebra.

R@R?Mn

a,b e k} , k() (=) = Mao(k).

Let k be a perfect field, ki /k a quadratic extension, D a division quaternion algebra

over k, Hs(k;) the space of 3 x 3 Hermitian matrices with entries in k; (with respect to
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the action of Gal(k;/k)), and Hs(D) the space of 3 x 3 Hermitian matrices with entries

in D (with respect to the canonical involution of D). Explicitly,

hi a &
Hs(k1) = a® hy b ||h;€k(i=1,23),a,b,c€kyp,
c b7 hs
hi a ¢
H3(D) = a hy b ||hi€k(i=1,23),a,b,ceD
¢c b hs

where o denotes the generator of Gal(k;/k).

Let O be a non-split octonion. For example, if £ is a number field with a real place v
and D is a division quaternion algebra such that D ® k, is isomorphic to the Hamiltonian
quaternions H, then the algebra D(+) obtained from the Cayley—Dickson process is a
non-split octonion. Let J be the exceptional Jordan algebra of 3 x 3 Hermitian matrices
with entries in 0. Explicitly,

hl a c
J:Hg(@): a hy b hiEk(i:1,273),a,b,C€@
C Z) h3

In particular, dimy J = 27.
Let
Es = {g € GLg(J) | det(gz) = det(z) for all x € J}.

This is a simple group of type Fg with split rank 2 (see [7]).

We first consider the following four prehomogeneous vector spaces.
(a) G = GL3 x GLy, V = Sym?Aff* @ Aff.
(b) G =Ry, 1GLy x GLg, V = Hy(k1) ® Aff*.
(¢) G = GL3(D) x GLy, V = Hs(D) @ Aff?,
(d) G = Fg x GLy, V = H3(0) ® Aff*.

These four representations are prehomogeneous vector spaces of parabolic type coming
from simple groups of types Fjy, Eg, 7, Eg respectively.

Rational orbits for the cases (a)—(c) have interesting arithmetic interpretations. Such
interpretations were discussed in [25], [8], [23] for the cases (a)—(c) respectively. However,
the interpretation for the case (d) is unknown.

They have exactly the same set of weights as follows.
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Let G be SL3x SLy, Ry, /1SL3 x SLy and Eg x SL, respectively for the cases (a), (b), (d).
For the case (c), GL3(D) can be identified with a subgroup of GLjs. Let d : GLjs — G
be the determinant and G; = Ker(d)° x GLy. We use G; for the Gy in Corollary 1.3. In
all four cases, let S; be the set of diagonal matrices of SLg, Ry, /kSL3, SL3(D), Es with
entries in k* respectively and S, the set of diagonal matrices in SLy. Then S = 57 x S; is
a maximal split torus of G;. Let Ty = GL; x GLy, Ry, x GLy x GLy, GL; x GL; and GL;
respectively for the cases (a)—(d). In the cases (a), (d), two factors of GL; are subgroups
of diagonal matrices with entries in k*. The case (b) is similar. In the case (d), Eg is
simple and GL; is the subgroup of diagonal matrices in GL;. Then we are in the situation
of Corollary 1.3.

Let a,(ty,...,t,) be the diagonal matrix with diagonal entries t1,...,t, € k*. We
write in the form ¢ = (¢1,t2) € S with

t1 = ag(ti1, tiz, t13), to = as(tar, ta2), tintiotis = tartey = 1
where t11,t12,t13 € k™ and 91,00 € K. We identify si with
{z = (211, 212, 213; 221, 222) € R* | 211 + 212 + 213 = 0, 291 + 222 = 0}
We use the notation z; = (211, 212, 213), 22 = (201, 292), 2 = (21, 22). For
2= (21,22),2 = (21,25) (21 = (211, 212, 213), 22 = (221, 292) and similarly for 2’)

we define

/ / / !/ !/ /
(2,2)sy = 211211 + 212215 + 213213 + 22129 + Zo2Z5y.

This inner product is Weyl group invariant. Let ||

sz be the metric defined by this bilinear

form. We choose

sp4 = (211, 212, 2135 221, 222) | 211 S 212 S 213, 221 S 230}

gl -

as the Weyl chamber.

We define v; ;i as follows.

no (G5 -Hn-y) en G531
e Gy =5y e G55
V1,13 (%a_§7%7%7_%) V2,13 (%7_§7%a_%7%
V1,22 (—%/é,—%;%,—%) V2,22 (—%%a—%—%,%)
Yo (55553 e (Ch5E53)
nes (=5 =557 s (5555 53)
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V1,11

V1,22 V1,23 V1,33 .
SR+

Then with our metric, we can express ; ji's as above. These are the weights of coordinates
of V. The picture on the right shows the weights of V' and the weights of the upper half
are shown in the picture on the left. In the case (a), 7; i corresponds to the monomial
v;vg of three variables vy, vy, v3. The (211, 212, 213) part of the Weyl chamber Sp . 1S the
lower right region as above. The (221, 202) part of s | is the lower half of the vertical line.
So s . consists of vectors which point down and right and coming toward the reader in
the picture on the right.

The set B corresponds to the following 13 convex hulls. The case (a) is discussed in
26, pp.198-205] and so we do not include the details here. Sg,,, S, and Sg,, are the

empty set in all cases and so the cases (a)—(d) all have 10 unstable strata.
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strata convex hull strata convex hull strata convex hull
I
1
I
5/31 Sﬁa :
- /k ~
I
I
Sﬁ4 Sﬁe I
I
|
S Br S Bo
I
1
I
I
S B1o Sﬂm I
- /k ~
I
I
5513 :
A
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Explicitly, §;’s describe as follows.

ﬁl - (070707 %7 _%) 52 = <_§7 %7 %7 _%7 %)
Bs=(=5-13-22)  A=(5-5300
POE AT S I SR
57: (_ivovi;_iai) /68:<_%7%7%;_1_147ﬁ)
o =(=5035-11)  Ho=(-53300
Bu=(Chob o bD  a= (o hibY
= b b

There are smaller and easier prehomogeneous vector spaces similar to the above exam-
ples which have the same set of weights. Consider the following prehomogeneous vector

spaces.
(a) G = GLy x GLy, V = Sym?Aff* ® Aff?,
(b)) G =Ry, kGLy x GLy, V = Hy(ky) @ AfF%.
(¢') G = GLy(D) x GLy, V = Hy(D) @ Aff2.

There does not seem to be an analogue of the case (d) above, because the case (d) is
based on the “triality”. The case (a’) is essentially the same as the space of (single) binary
quadratic forms by the castling transformation (see [21, p.39]). The global zeta function
for the case (a’) was needed to determine the pole structure of the global zeta function for
the case (a) (see [26]). The global zeta function for the case (b’) was considered in [29].
Note that in [29], the structure of Vj, \ V;** was considered explicitly and by Theorem 1.2,
it can now be replaced by the convex hull consideration in [26, pp.153-154]. The density
theorem related to the case (b’) was proved in [10], [11]. The interpretation of rational
orbits of the case (¢’) was considered in [23].

Let Gy be SLy x SLa, Ry, /xSLa x SLy for the cases (a’), (b’) respectively. GLa(D)
can be identified with a subgroup of GLg. Let d : GLg — GL; be the determinant and
G, = Ker(d)° x GLy. We use G for the G; in Corollary 1.3. In all three cases, let S;
be the set of diagonal matrices with entries in £* of GLg, Ry, /xGLa, GLo(D) respectively
and Sy the set of diagonal matrices of SLy. Then S = 57 x S; is a maximal split torus of
Gy. Let Ty = GL; x GLy, Ry, /i GL1 x GLy, GL; x GL; for the cases (a’)—(c’) respectively
where two factors are the subgroups of diagonal matrices. Then we are in the situation
of Corollary 1.3.

We identify sp with

{z = (211, 212; 221, 222) € R | 211 + 210 = 0, 291 + 220 = 0}
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We choose

5ﬁ§,+ = {(211, 2125 201, 222) | 211 = 219, 201 = 220}

as the Weyl chamber. We use a similar inner product on sg, s; as the cases (a)-(d).

We define v; ;i as follows.

Then with our metric, we can express 7; ji’s as follows.

71,11 V1,12 V1,22
@
V2,11 V2,12 72,22
*
SR+

These are the weights of coordinates of V. The Weyl chamber s; , is the lower right
region as above.
The set B corresponds to the following 4 convex hulls. The stratum Sp, is the empty

set in all cases and so the cases (a’), (b’), (¢’) all have 3 unstable strata.

strata convex hull strata convex hull
S B1 S B2
S B3 S Ba

95



Explicitly, §;’s describe as follows.
br=000-33) B=(-i1-3
63: (_1717070) 64:(_1717_%7 )
We summarize for the GIT stratification in the case (a’) (see [26, pp.152-155]). W =

Sym? Aff? identify with the space of quadratic forms with variable v = (vy,vy).
We consider the space V = Sym? Aff® ® Aff* = Sym? Aff* @ Sym? Aff>. An element

z € V can be written as
r=(r1,22) €V, x;(v) = 371’117]% + T;12v102 + 1?2‘22715 (i=1,2).

Then, we use the coordinate r = (z; ;) on V = Sym* Aff* ® Aff> on which S acts diago-
nally. Then Zg, Wg as follows.

o Zg = {(zin)|v1jn =0 for j,k =1,2}, Ws = {0}.

L4 Z,32 = {(xzﬂc) ‘ T111 = X112 = X211 = X222 = O},Wﬁz = {(iUzgk) |33ijk = 0 for (iaja k) 7’é
(2,2,2)}.

o Zg, = {(wijn)|xi11 = xi12 =0 for i = 1,2}, Ws, = {0}.
o Zs, = {(wi1) | wijn =0 for (i,5,k) # (2,2,2)}, Ws, = {0}

We put Mlg = G1 ﬂMg.

s As M, s
B =1(0,0;—3,13) (ag(t™1,1), 1) {e} x SL,
Po=(—pu—11) | (aa(t™),a(t 1) | {(a2(t™" ), aa(t,t ™))}
Ps = (=1,1;0,0) (I, ax(t7",1)) SL, x {e}
Bi=(—1L1—5.5) | (a2(t™¢*),aa(t™", 1)) | {(az(t™,1),a2(t*, t7%))}

By the above table, Z3 = {(%i;r) € Zs, | 122, 7212 # 0}. We identify Zs, with WW.
Then Z% = {(zijr) € Zp, | 7515 — 4x2112290 # 0}. Since Mg, acts trivially on Zg,,
75 = Zg, \ {0}. The vector space Zg, is a standard representation of M z,. Therefore,

z5 = 0.
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