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Summary

1.1 System of nonlinear Schrodinger equations

The Schrodinger equation is classified as a dispersive equation by its linear principal part
and with adding nonlinear interaction term it is called nonlinear Schrodinger equation.
Nonlinear Schrodinger equations arise in various fields of applications such as nonlinear
optics, quantum mechanics, and a simplified model in fluid mechanics and they have been
developed largely by means of mathematical analysis. In this thesis, we consider systems
of nonlinear Schrédinger equations and study the asymptotic behavior of solutions and
ill-posedness issue taking the relation between the nonlinear interactions and the effect of
coefficients of the linear part into account. Let ui(t,z) : R x R" — C (k = 1,2, 3) be the
unknown functions. We consider the system with a particular nonlinear interaction

1
10 + —Auy = Yujug, t€R, z € R,
2m1

1
i0yug + ——Auy = u?, teR, reR",
2m2

(1.1.1)

and as a generalization the three-components system

(
1
i@tul + —Aul = Usugz, tE R, T € Rn,
le
1
(1.1.2) 10y + —— Aus = uquz, t € R, z € R,
ng
1
i@tu;), + —Au3 =UjUy, tE R, T € Rn,
\ 2m3

where my, > 0 (k = 1,2, 3) are constants and v = £1.

1.2 Mass resonance of a scattering problem for a two-components
system

The asymptotic behavior of the solutions to the nonlinear Schrodinger equations is de-
scribed by the scattering theory, namely, we consider whether nonlinear interaction is
negligible or not as time tends to infinity. In particular, we consider the final state prob-
lem. Let e2n® denote the free Schrodinger evolution group. We seek the solution of the
nonlinear Schrodinger equation

1
(1.2.1) iOu+ —Au= f(u), teR, zeR",
2m
satisfying the final state condition

lim ||u(t) — G%AUJPH =0

t—oo



for a given function u, belonging to L?. In the case of the gauge invariant nonlinearity
f(u) = |u[P~ u, Tsutsumi-Yajima [28] proved that the solution for (1.2.1) converges to a
solution of the free Schrodinger equation as t — +oo if 1 +2/n < p < 14 4/n. When
1 <p <1+ 2/n, Barab [1] showed that the solution u for (1.2.1) does not converge to a
solution of the free Schrédinger equation as t — 4oo. Hence, the exponent p = 1+2/n is
the threshold between the existence and the nonexistence of the scattering state. When
the exponent is the critical case p = 1 + 2/n, Ozawa [24] showed that there exists a
modified scattering solution of (1.2.1) which satisfies

; o2
Hu(t) — e A F e iuT logt]:u+H ,—0
L

as t — oo (cf. Ginibre-Ozawa [7] for higher dimensional cases). We here denote by ]/C\or F
the Fourier transform of f. Hence, when we consider the equation (1.2.1), the quadratic
nonlinearity A|u|u is critical in two dimensions. For the nonlinear Schrédinger equation
with non-gauge invariant nonlinearities such as u?, %2, |u|?, the asymptotic behavior of the
solution is classified in the case of the final state problem (cf. [21, 25]).

Hereafter, we consider the final state problem for (1.1.1) imposing a final state condi-
tion:

Definition 1.2.1. The final state problem for (1.1.1) is the system
: 1 _
10y + ——Auy = Yuug, tE€R, x € R",
2m1

1

104Uy + —— Aug = u%, teR, xeR"
2777,2

together with a specified behavior of the unknown function (uq,us), called the final state

condition

HUk(t) - U’k’a(t)HLQ —0

as t — 00, where ug,(t) is determined by a time-independent function ugy belonging to
L*R™) and k = 1,2.

As a typical case, we take ug,(t) = eﬁAuH for u,, € L*(R"). Compared with the
single nonlinear Schrédinger equations, the asymptotic behavior of solutions to the system
(1.1.1) is not yet clear. For higher dimensional cases n > 3, Hayashi-Li-Ozawa [10] showed
the small data scattering for the system (1.1.1). Hayashi-Li-Naumkin [8] showed that the
small global solution of (1.1.1) has the same decay rate as the free Schrodinger equation
under the mass resonance condition 2m; = msy when n = 2, while the whole view of the
asymptotic behavior of solutions to (1.1.1) mostly remains open. In the case of the final
state problem for n = 2, Hayashi-Li-Naumkin [9] showed that the three cases occur due to
relations between m; and my when v = 1. If 2my % my and m; # mo, they showed that
there exists a solution of (1.1.1) which converges to a free solution as t — oco. If m; = mo,
they proved that there exists a solution which converges to a free solution as t — oo.
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However, in most cases, the asymptotic behavior of solutions is not a free solution. For
the case 2m; = my, under the condition |ty (§)] = |ua1(€)| and 2arguy, (&) = arg s (€)
for a.e. & € R?, they showed that there exists a solution (1.1.1) satisfying

A —1\ _ —|t1y|logt
s () = €2 S F D (my eva ™ G, — 0,

itA

(1.2.2) o
||u2(t) — e?m2 f‘lD*(mgl)e“/E'”Q*'logtﬂ%”LQ -0

as t — oo, where D*(m) f(xz) = —(m/i) f(mz) for m > 0. Namely, there exists a modified
free solution of (1.1.1) under the mass resonance condition 2m; = ms. They also showed
that the dissipative structure appears under the mass resonance condition 2m; = msy
when v = —1, namely, L? norm of both components of a solution of (1.1.1) converges to
0 ast— oo.

We show the existence of a solution to (1.1.1) whose asymptotic behavior is different
from (1.2.2) under the mass resonance condition 2m; = my when v = 1. When the
parameter v = 1, the L? conservation law becomes

(1.2.3) Q(u1,uz) = [lur (B[ 72 + lu2()]172,

that is, the L? conservation law is given by the sum of each component. Therefore, L?
norm of each component is not necessarily conserved. Indeed, it possibly occurs that
the L? norm of the each component may be interact with each other. As a result, one
may expect that the each component of the solution has different L? norm along the time
trajectory. We call this the L? transition phenomenon for the system (1.1.1). We see from
the proof of [9] that the asymptotic behavior of solutions of (1.1.1) is determined by the
system of ordinary differential equations

{ i0-¢1 = @1 o,

1.2.4
(124 i0- 2 = 7.

We here use the particular solution of (1.2.4)

61(7) = sech(r),  o(r) = %tanh(T)

to describe the L? transition phenomenon. To state our result, we introduce several
notations. For s € R, we denote by H*(R") the inhomogeneous Sobolev spaces

H = H'(R") = {f € 8" | fllus = (1 + |£*)*Fll 12 < o0}
and by H*(R™) the homogeneous Sobolev spaces

H = HR") = {f €S'/P; ||fllge == ] Fll 2 < o0}

We state the asymptotic behavior of a solution to the two-components system (1.1.1).



Theorem 1.2.2. Let 2m; =mgy, v =1,1 < s <2 and 1/2 < a < s/2. For some small
n >0, let (ury, uzy) € (H™(R*)* with |[[tx || + ||+ ]|

\@H(f)’ = \@z+(€)!,
2argu4 (&) = arg usy (€),

gs < mn. Assume that

for a.e. € € R?,

and argy,, argiy, € H*(R?) N L®(R?). Then there exists T > 0 and (1.1.1) has a
unique solution (uy,uy) € (C([T,00); L*) N LY(T, 00; LP))?* satisfying

uy () — e S F1D* (mi") sech(|ti4|log t) Fury || =O0@E") as t— oo,

L2

it 1
us(t) — ez F1D* (my") = tanh(|ta4 | log t) Fuay
i

=0({t™) as t— oo,

L2

where 2/q=1—2/p, 2 < q¢ < o0.

Finally, we mention to a related result. Katayama-Matoba-Sunagawa [16] studied the
following system of nonlinear wave equations

0*wy — Awy = — , teR, zeR?,
(125) { t W1 w1 w1 W2 x

Otwy — Awy = w3, teR, r € R®.

They showed the global existence of the solution to (1.2.5). Moreover, they proved that
the energy of the first component w; converges to 0 and the second component w, obtain
the total energy as time tends to infinity by using the secant and tangent hyperbolic
functions.

1.3 Mass resonance of a scattering problem for a three-components
system

We consider the three-components system (1.1.2), which is a generalization of the two-
components system (1.1.1). In the previous section, we discussed the asymptotic behavior
of solutions to the two-components system (1.1.1). Combining the L? conservation law of
the system (1.1.1)

|lur(#)[|32 + ||lua(t)]|32 = constant,

we constructed a solution of (1.1.1) whose second component uy obtains the total charge
of the system (1.1.1) as ¢ — oo. Although we expected that (1.1.1) admits a solution
(u1,u2) which have transition of the L? norm between the first and the second component
of the solution periodically in time, it was not clear that such a solution to the system
(1.1.1) actually exists.

For the three-components system (1.1.2), the corresponding mass resonance condition
is given by m; + my = mg3. The two-components system (1.1.1) can be considered as a



degenerate system of the three-components system (1.1.2). Indeed, regarding u; = wus
and m; = mg, we see that (1.1.2) corresponds to (1.1.1). Hence, we may expect that
the asymptotic behavior of the solution in Theorem 1.2.2 is a degenerate situation from
the three-components system (1.1.2). Along their idea, we construct a solution to (1.1.2)
which has the charge transition among the three-components of the solution due to the
L? conservation laws

Qu(ur, uz,uz) = us(O)l|7> + lus(t)l72,  Qalur, uz,us) = [[ua(t)l|7> + llus(t)]Z-.

As we saw for the two-components system (1.1.1), the system of ordinary differential
equations (1.2.4) plays an important role. We see that the asymptotic behavior of solutions
to (1.1.2) can be approximated by the system of ordinary differential equations

a7’¢1 - —(1252@537
(1.3.1) O0r 3 = — 0,03,
Orp3 = 102

We use a particular solution of (1.3.1), namely, the Jacobi elliptic functions. To state our
main result, we recall the definition of the Besov spaces.

Definition. Let {¢;};cz be the Littlewood-Paley dyadic decomposition of unity. Namely,
let $ € S(R™) be a radial non-negative function satisfying supp g/b\ Cc{{eR; 271 <

€] < 2} and )
> ()

JEZ
for all £ # 0, where &Ej(ﬁ) = ¢(£/29) for j € Z. We set O(¢) =1 — > is0 g/b\j(ﬁ). Then for
s € R, 1 < p,0 < oo, the inhomogeneous Besov spaces B, , is defined by

Il
—_

1/o
B, (R") = {f € 8| flss, = (H@ e Flg+ 3 2%, fuzp) - oo}.

Jj=0
We state the asymptotic behavior of a solution to the three-components system (1.1.2).

Theorem 1.3.1. Letn =2, my+mo =m3, s > 1 and 0 < a < 1. Assume that w,
0 € By, N B, and lwll gy, < 10, where 1g is sufficiently small. Then there exists T > 0

such that the system (1.1.2) admits a unique solution (ui,us,us) satisfying

up € C(IT,00); L7), Y- 2|l e ™ uy(1) |2 € C([T, 00))
JEZ
for k =1,2,3 and the following asymptotic behavior
ur(t) = e S F D i) du(fins | log o) | — 0.
L

(1.3.2) us(t) — e FID* (my V) en(a oy | log t, )Tiay

P
L2

us(t) — =5 F D"y )i~ sn(a” i |log @) | =0,
L
as t — oo, where Uy (§) = W(f)ew(@; Uz (§) = aw(@@w@); and Uz, (§) = @w(f)em(@-
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Since the Jacobi elliptic function sn(7, ) has the period 4K («) which is given by
the elliptic integral of first kind, Theorem 1.3.1 shows that we are able to construct a
solution which has the mass transition phenomenon with the period 4K («) given by a
parameter « € [0,1). In the study of the two-components system, the hyperbolic secant
function sech(t) and the hyperbolic tangent function tanh(t) are used to describe the
asymptotic behavior of the solution. These hyperbolic functions are special cases of the
Jacobi elliptic functions sn(¢, ), en(t, o), dn(t, ), since en(t, 1) = dn(t, 1) = sech(t) and
sn(t,1) = tanh(¢). Indeed, the asymptotic profile (1.3.2) for a solution to (1.1.2) corre-
sponds to those of (1.1.1) in Theorem 1.2.2 by putting a = 1 and m; = ms. Hence, we see
that the three-components system (1.1.2) actually describes a generalized situation from
the two-components system (1.1.1). This gives a justification to the formal observation
in [12] from the view point of the asymptotic behavior of solutions of (1.1.2).

1.4 Mass resonance and ill-posedness issue for a two-components
system

We investigate how the mass resonance influences the critical regularity of solutions of
a system of nonlinear Schrodinger equations. We consider the ill-posedness issue for the
initial value problem of the system

1

i@tul + —Au1 = ﬂllLQ, te R, S Rz,
2m1

(1.4.1) 10pus + LAuz = uj, teR, zeR?
2mes

ul(oax) = ¢1(I)7 UZ(Oax) = ¢2($)’ LS RQ'

The notion of the well-posedness consists of the existence, uniqueness, and continuous

dependence on the initial data of the solution. We particularly focus on the failure of the

continuous dependence on the initial data to show the ill-posedness result.

In Section 1.2, we studied the asymptotic behavior of solutions to the two-components
system (1.1.1). It is known that the initial value problem and the final state problem
of the single nonlinear Schrodinger equation correspond to each other by means of the
pseudo conformal transformation. By introducing the pseudo conformal transformation

for (1.4.1) !
implz|2 g
up(t,z) =e 5 t" 21y (?’ %) ,
imglz|2 g 1
ugy(t,z) =e 55, (;, %) ,

we see that the system (1.4.1) is transformed into

. 1 o i(2my—mg)|z|?
Zatulp + %Aulp = tn/2 26 . 2t : ﬂlPUQp, teR \ {0}, T e ]Rn,
1.4.2 !
( ) ¢<—2m12+m2>\z\2 9
t ulp’

te R\ {0}, z € R".

1
Z615“2;:; + %AUQP = "2 2
2



Under the mass resonance condition 2m; = may, the system (1.4.1) is invariant when
n = 4. The system (1.4.1) is not invariant in other cases. However, we may treat
the difference as a small error. Hence, we expect that the mass resonance phenomenon
also appears in the study of the initial value problem, that is, the ill-posedness issue
for (1.4.1). Due to the scaling argument, we see that the Sobolev space H!(R?) is the
critical space for quadratic nonlinear Schrodinger equations. The local well-posedness
and ill-posedness for single nonlinear Schrodinger equations are extensively studied (cf.
2,3,4,6, 13,17, 19, 20, 26, 27]). In Section 1.2, we showed that the parameter m; and my
influence the asymptotic behavior for solutions to (1.1.1). More precisely, the situation
is different in the following three cases: (i) 2m; # mgo and my # mg, (ii) m; = mg, and
(iii) 2my = my. We show the actual threshold of the ill-posedness depends on the relation
between m; and ms as the case of the asymptotic behavior of solutions.
We state the ill-posedness result for the two-components system (1.1.1).

Theorem 1.4.1. Let n = 2. We show the following ill-posedness results depending on
the relations of my and mo:

(1) Let 2my # mg and my # my. For any fized s < —1, there exist a sequence of time
{Tn}nen with Ty — 0 (N — o00) and a sequence of the initial data {n}nen C
L*(R?) with |[¢n]
solution {uin}nen, {uan}nen to (1.4.1) with uin(0,2) = ¢Yn(x) and ugn(0,2) =
Y (z) satisfies

s = 0 (N — o0) such that the corresponding sequence of the

Aim fjuay (Tn) || gs = 00, lim [luon (T) || e = 0.
(2) Letmq =mg, o0 > 4. There exist a sequence of time {Tn} neny with Ty — 0 (N — 00)
and a sequence of the initial data {{n}nen C L*(R?) with |[¢n || z-1/4 — 0 (N — o)
2,0
such that the corresponding sequence of the solution {uiy}nen, {uan}tnen to (1.4.1)
with uyn (0, x) = Yy () and usn (0, ) = Y (z) satisfies
A}E{lm ||U1N(TN>||B£;/4 = Q.
(3) Let 2my =mqy. If s € (=1/2,0), then the data-solution map (11, e) — (uy(t), ua(t))
is not uniformly continuous, where (u1(t),us(t)) is the solution of (1.4.1) with the

initial data (11,15).

In order to prove the first case and second case in Theorem 1.4.1, we modify the
construction of the initial data in [13] and [15]. On the other hand, (1.4.1) has the Galilei
invariance under the mass resonance condition 2m; = mso: If (ui(t, z), us(t,)) solves
(1.4.1), then so does

{ g (t,2) = g (t, 2 — ty) "M I )

sy (t,7) = un(t, @ — tn)e’ @I E),

7



where 1y, 7o € R" denote the moment parameter satisfying 2n; = 1,. Hence, we are able
to adapt the method due to Kenig-Ponce-Vega [18] to show the third case in Theorem
1.4.1.
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