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Summary

1.1 System of nonlinear Schrödinger equations

The Schrödinger equation is classified as a dispersive equation by its linear principal part

and with adding nonlinear interaction term it is called nonlinear Schrödinger equation.

Nonlinear Schrödinger equations arise in various fields of applications such as nonlinear

optics, quantum mechanics, and a simplified model in fluid mechanics and they have been

developed largely by means of mathematical analysis. In this thesis, we consider systems

of nonlinear Schrödinger equations and study the asymptotic behavior of solutions and

ill-posedness issue taking the relation between the nonlinear interactions and the effect of

coefficients of the linear part into account. Let uk(t, x) : R × Rn → C (k = 1, 2, 3) be the

unknown functions. We consider the system with a particular nonlinear interaction

(1.1.1)


i∂tu1 +

1

2m1

∆u1 = γu1u2, t ∈ R, x ∈ Rn,

i∂tu2 +
1

2m2

∆u2 = u2
1, t ∈ R, x ∈ Rn,

and as a generalization the three-components system

(1.1.2)



i∂tu1 +
1

2m1

∆u1 = u2u3, t ∈ R, x ∈ Rn,

i∂tu2 +
1

2m2

∆u2 = u1u3, t ∈ R, x ∈ Rn,

i∂tu3 +
1

2m3

∆u3 = u1u2, t ∈ R, x ∈ Rn,

where mk > 0 (k = 1, 2, 3) are constants and γ = ±1.

1.2 Mass resonance of a scattering problem for a two-components

system

The asymptotic behavior of the solutions to the nonlinear Schrödinger equations is de-

scribed by the scattering theory, namely, we consider whether nonlinear interaction is

negligible or not as time tends to infinity. In particular, we consider the final state prob-

lem. Let e
it
2m

∆ denote the free Schrödinger evolution group. We seek the solution of the

nonlinear Schrödinger equation

(1.2.1) i∂tu+
1

2m
∆u = f(u), t ∈ R, x ∈ Rn,

satisfying the final state condition

lim
t→∞

∥∥u(t) − e
it
2m

∆u+

∥∥ = 0
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for a given function u+ belonging to L2. In the case of the gauge invariant nonlinearity

f(u) = |u|p−1u, Tsutsumi-Yajima [28] proved that the solution for (1.2.1) converges to a

solution of the free Schrödinger equation as t → ±∞ if 1 + 2/n < p < 1 + 4/n. When

1 < p ≤ 1 + 2/n, Barab [1] showed that the solution u for (1.2.1) does not converge to a

solution of the free Schrödinger equation as t→ ±∞. Hence, the exponent p = 1+2/n is

the threshold between the existence and the nonexistence of the scattering state. When

the exponent is the critical case p = 1 + 2/n, Ozawa [24] showed that there exists a

modified scattering solution of (1.2.1) which satisfies∥∥∥u(t) − e
it
2m

∆F−1e−i|bu+|
2
n log tFu+

∥∥∥
L2

→ 0

as t→ ∞ (cf. Ginibre-Ozawa [7] for higher dimensional cases). We here denote by f̂ or F
the Fourier transform of f . Hence, when we consider the equation (1.2.1), the quadratic

nonlinearity λ|u|u is critical in two dimensions. For the nonlinear Schrödinger equation

with non-gauge invariant nonlinearities such as u2, u2, |u|2, the asymptotic behavior of the

solution is classified in the case of the final state problem (cf. [21, 25]).

Hereafter, we consider the final state problem for (1.1.1) imposing a final state condi-

tion:

Definition 1.2.1. The final state problem for (1.1.1) is the system
i∂tu1 +

1

2m1

∆u1 = γu1u2, t ∈ R, x ∈ Rn,

i∂tu2 +
1

2m2

∆u2 = u2
1, t ∈ R, x ∈ Rn

together with a specified behavior of the unknown function (u1, u2), called the final state

condition

‖uk(t) − uka(t)‖L2 → 0

as t → ∞, where uka(t) is determined by a time-independent function uk+ belonging to

L2(Rn) and k = 1, 2.

As a typical case, we take uka(t) = e
it

2mk
∆
uk+ for uk+ ∈ L2(Rn). Compared with the

single nonlinear Schrödinger equations, the asymptotic behavior of solutions to the system

(1.1.1) is not yet clear. For higher dimensional cases n ≥ 3, Hayashi-Li-Ozawa [10] showed

the small data scattering for the system (1.1.1). Hayashi-Li-Naumkin [8] showed that the

small global solution of (1.1.1) has the same decay rate as the free Schrödinger equation

under the mass resonance condition 2m1 = m2 when n = 2, while the whole view of the

asymptotic behavior of solutions to (1.1.1) mostly remains open. In the case of the final

state problem for n = 2, Hayashi-Li-Naumkin [9] showed that the three cases occur due to

relations between m1 and m2 when γ = 1. If 2m1 6= m2 and m1 6= m2, they showed that

there exists a solution of (1.1.1) which converges to a free solution as t→ ∞. If m1 = m2,

they proved that there exists a solution which converges to a free solution as t → ∞.
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However, in most cases, the asymptotic behavior of solutions is not a free solution. For

the case 2m1 = m2, under the condition |û1+(ξ)| = |û2+(ξ)| and 2 arg û1+(ξ) = arg û2+(ξ)

for a.e. ξ ∈ R2, they showed that there exists a solution (1.1.1) satisfying∥∥u1(t) − e
it

2m1
∆F−1D∗(m−1

1 )e
i√
2
|bu1+| log t

û1+

∥∥
L2 → 0,∥∥u2(t) − e

it
2m2

∆F−1D∗(m−1
2 )ei

√
2|bu2+| log tû2+

∥∥
L2 → 0

(1.2.2)

as t→ ∞, where D∗(m)f(x) = −(m/i)f(mx) for m > 0. Namely, there exists a modified

free solution of (1.1.1) under the mass resonance condition 2m1 = m2. They also showed

that the dissipative structure appears under the mass resonance condition 2m1 = m2

when γ = −1, namely, L2 norm of both components of a solution of (1.1.1) converges to

0 as t→ ∞.

We show the existence of a solution to (1.1.1) whose asymptotic behavior is different

from (1.2.2) under the mass resonance condition 2m1 = m2 when γ = 1. When the

parameter γ = 1, the L2 conservation law becomes

(1.2.3) Q(u1, u2) = ‖u1(t)‖2
L2 + ‖u2(t)‖2

L2 ,

that is, the L2 conservation law is given by the sum of each component. Therefore, L2

norm of each component is not necessarily conserved. Indeed, it possibly occurs that

the L2 norm of the each component may be interact with each other. As a result, one

may expect that the each component of the solution has different L2 norm along the time

trajectory. We call this the L2 transition phenomenon for the system (1.1.1). We see from

the proof of [9] that the asymptotic behavior of solutions of (1.1.1) is determined by the

system of ordinary differential equations

(1.2.4)

{
i∂τφ1 = φ1φ2,

i∂τφ2 = φ2
1.

We here use the particular solution of (1.2.4)

φ1(τ) = sech(τ), φ2(τ) =
1

i
tanh(τ)

to describe the L2 transition phenomenon. To state our result, we introduce several

notations. For s ∈ R, we denote by Hs(Rn) the inhomogeneous Sobolev spaces

Hs = Hs(Rn) := {f ∈ S ′ ; ‖f‖Hs := ‖(1 + |ξ|2)s/2f̂‖L2 <∞}

and by Ḣs(Rn) the homogeneous Sobolev spaces

Ḣs = Ḣs(Rn) := {f ∈ S ′/P ; ‖f‖Ḣs := ‖|ξ|sf̂‖L2 <∞}.

We state the asymptotic behavior of a solution to the two-components system (1.1.1).
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Theorem 1.2.2. Let 2m1 = m2, γ = 1, 1 < s ≤ 2 and 1/2 < α < s/2. For some small

η > 0, let (u1+, u2+) ∈ (H0,s(R2))2 with ‖|û1+|‖Hs + ‖|û2+|‖Hs < η. Assume that

|û1+(ξ)| = |û2+(ξ)|,
2 arg û1+(ξ) = arg û2+(ξ),

for a.e. ξ ∈ R2,

and arg û1+, arg û2+ ∈ Ḣs(R2) ∩ L∞(R2). Then there exists T > 0 and (1.1.1) has a

unique solution (u1, u2) ∈ (C([T,∞);L2) ∩ Lq(T,∞;Lp))2 satisfying∥∥∥∥u1(t) − e
it

2m1
∆F−1D∗ (

m−1
1

)
sech(|û1+| log t)Fu1+

∥∥∥∥
L2

= O(t−α) as t→ ∞,∥∥∥∥u2(t) − e
it

2m2
∆F−1D∗ (

m−1
2

) 1

i
tanh(|û2+| log t)Fu2+

∥∥∥∥
L2

= O(t−α) as t→ ∞,

where 2/q = 1 − 2/p, 2 < q <∞.

Finally, we mention to a related result. Katayama-Matoba-Sunagawa [16] studied the

following system of nonlinear wave equations

(1.2.5)

{
∂2

tw1 − ∆w1 = −w1w2, t ∈ R, x ∈ R3,

∂2
tw2 − ∆w2 = w2

1, t ∈ R, x ∈ R3.

They showed the global existence of the solution to (1.2.5). Moreover, they proved that

the energy of the first component w1 converges to 0 and the second component w2 obtain

the total energy as time tends to infinity by using the secant and tangent hyperbolic

functions.

1.3 Mass resonance of a scattering problem for a three-components

system

We consider the three-components system (1.1.2), which is a generalization of the two-

components system (1.1.1). In the previous section, we discussed the asymptotic behavior

of solutions to the two-components system (1.1.1). Combining the L2 conservation law of

the system (1.1.1)

‖u1(t)‖2
L2 + ‖u2(t)‖2

L2 = constant,

we constructed a solution of (1.1.1) whose second component u2 obtains the total charge

of the system (1.1.1) as t → ∞. Although we expected that (1.1.1) admits a solution

(u1, u2) which have transition of the L2 norm between the first and the second component

of the solution periodically in time, it was not clear that such a solution to the system

(1.1.1) actually exists.

For the three-components system (1.1.2), the corresponding mass resonance condition

is given by m1 + m2 = m3. The two-components system (1.1.1) can be considered as a
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degenerate system of the three-components system (1.1.2). Indeed, regarding u1 = u2

and m1 = m2, we see that (1.1.2) corresponds to (1.1.1). Hence, we may expect that

the asymptotic behavior of the solution in Theorem 1.2.2 is a degenerate situation from

the three-components system (1.1.2). Along their idea, we construct a solution to (1.1.2)

which has the charge transition among the three-components of the solution due to the

L2 conservation laws

Q1(u1, u2, u3) := ‖u1(t)‖2
L2 + ‖u3(t)‖2

L2 , Q2(u1, u2, u3) := ‖u2(t)‖2
L2 + ‖u3(t)‖2

L2 .

As we saw for the two-components system (1.1.1), the system of ordinary differential

equations (1.2.4) plays an important role. We see that the asymptotic behavior of solutions

to (1.1.2) can be approximated by the system of ordinary differential equations

(1.3.1)


∂τφ1 = −α2φ2φ3,

∂τφ2 = −φ1φ3,

∂τφ3 = φ1φ2.

We use a particular solution of (1.3.1), namely, the Jacobi elliptic functions. To state our

main result, we recall the definition of the Besov spaces.

Definition. Let {φj}j∈Z be the Littlewood-Paley dyadic decomposition of unity. Namely,

let φ̂ ∈ S(Rn) be a radial non-negative function satisfying supp φ̂ ⊂ {ξ ∈ Rn ; 2−1 ≤
|ξ| ≤ 2} and ∑

j∈Z

φ̂j(ξ) ≡ 1

for all ξ 6= 0, where φ̂j(ξ) = φ̂(ξ/2j) for j ∈ Z. We set Φ̂(ξ) = 1 −
∑

j≥0 φ̂j(ξ). Then for

s ∈ R, 1 ≤ p, σ ≤ ∞, the inhomogeneous Besov spaces Bs
p,σ is defined by

Bs
p,σ(Rn) =

{
f ∈ S ′; ‖f‖Bs

p,σ
≡

(
‖Φ ∗ f‖σ

Lp +
∑
j≥0

2jsσ‖φj ∗ f‖σ
Lp

)1/σ

<∞
}
.

We state the asymptotic behavior of a solution to the three-components system (1.1.2).

Theorem 1.3.1. Let n = 2, m1 + m2 = m3, s > 1 and 0 < α ≤ 1. Assume that ω,

θ ∈ Ḃ1
2,1 ∩ Ḃs

2,1 and ‖ω‖Ḃ1
2,1
< η0, where η0 is sufficiently small. Then there exists T > 0

such that the system (1.1.2) admits a unique solution (u1, u2, u3) satisfying

uk ∈ C([T,∞);L2),
∑
j∈Z

2j‖e
it

2mk
∆
φ̂je

− it
2mk

∆
uk(t)‖L2 ∈ C([T,∞))

for k = 1, 2, 3 and the following asymptotic behavior∥∥∥u1(t) − e
it

2m1
∆F−1D∗(m−1

1 ) dn(|û1+| log t, α)û1+

∥∥∥
L2

→ 0,∥∥∥u2(t) − e
it

2m2
∆F−1D∗(m−1

2 ) cn(α−1|û2+| log t, α)û2+

∥∥∥
L2

→ 0,∥∥∥u3(t) − e
it

2m3
∆F−1D∗(m−1

3 )(i−1) sn(α−1|û3+| log t, α)û3+

∥∥∥
L2

→ 0,

(1.3.2)

as t→ ∞, where û1+(ξ) = ω(ξ)eiθ(ξ), û2+(ξ) = αω(ξ)eiθ(ξ), and û3+(ξ) = αω(ξ)e2iθ(ξ).
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Since the Jacobi elliptic function sn(τ, α) has the period 4K(α) which is given by

the elliptic integral of first kind, Theorem 1.3.1 shows that we are able to construct a

solution which has the mass transition phenomenon with the period 4K(α) given by a

parameter α ∈ [0, 1). In the study of the two-components system, the hyperbolic secant

function sech(t) and the hyperbolic tangent function tanh(t) are used to describe the

asymptotic behavior of the solution. These hyperbolic functions are special cases of the

Jacobi elliptic functions sn(t, α), cn(t, α), dn(t, α), since cn(t, 1) = dn(t, 1) = sech(t) and

sn(t, 1) = tanh(t). Indeed, the asymptotic profile (1.3.2) for a solution to (1.1.2) corre-

sponds to those of (1.1.1) in Theorem 1.2.2 by putting α = 1 and m1 = m2. Hence, we see

that the three-components system (1.1.2) actually describes a generalized situation from

the two-components system (1.1.1). This gives a justification to the formal observation

in [12] from the view point of the asymptotic behavior of solutions of (1.1.2).

1.4 Mass resonance and ill-posedness issue for a two-components

system

We investigate how the mass resonance influences the critical regularity of solutions of

a system of nonlinear Schrödinger equations. We consider the ill-posedness issue for the

initial value problem of the system

(1.4.1)


i∂tu1 +

1

2m1

∆u1 = u1u2, t ∈ R, x ∈ R2,

i∂tu2 +
1

2m2

∆u2 = u2
1, t ∈ R, x ∈ R2,

u1(0, x) = ψ1(x), u2(0, x) = ψ2(x), x ∈ R2.

The notion of the well-posedness consists of the existence, uniqueness, and continuous

dependence on the initial data of the solution. We particularly focus on the failure of the

continuous dependence on the initial data to show the ill-posedness result.

In Section 1.2, we studied the asymptotic behavior of solutions to the two-components

system (1.1.1). It is known that the initial value problem and the final state problem

of the single nonlinear Schrödinger equation correspond to each other by means of the

pseudo conformal transformation. By introducing the pseudo conformal transformation

for (1.4.1) 
u1p(t, x) = e

im1|x|
2

2t t−
n
2 u1

(
1

t
,
x

t

)
,

u2p(t, x) = e
im2|x|

2

2t t−
n
2 u2

(
1

t
,
x

t

)
,

we see that the system (1.4.1) is transformed into

(1.4.2)


i∂tu1p +

1

2m1

∆u1p = tn/2−2e
i(2m1−m2)|x|2

2t u1pu2p, t ∈ R \ {0}, x ∈ Rn,

i∂tu2p +
1

2m2

∆u2p = tn/2−2e
i(−2m1+m2)|x|2

2t u2
1p, t ∈ R \ {0}, x ∈ Rn.
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Under the mass resonance condition 2m1 = m2, the system (1.4.1) is invariant when

n = 4. The system (1.4.1) is not invariant in other cases. However, we may treat

the difference as a small error. Hence, we expect that the mass resonance phenomenon

also appears in the study of the initial value problem, that is, the ill-posedness issue

for (1.4.1). Due to the scaling argument, we see that the Sobolev space H−1(R2) is the

critical space for quadratic nonlinear Schrödinger equations. The local well-posedness

and ill-posedness for single nonlinear Schrödinger equations are extensively studied (cf.

[2, 3, 4, 6, 13, 17, 19, 20, 26, 27]). In Section 1.2, we showed that the parameter m1 and m2

influence the asymptotic behavior for solutions to (1.1.1). More precisely, the situation

is different in the following three cases: (i) 2m1 6= m2 and m1 6= m2, (ii) m1 = m2, and

(iii) 2m1 = m2. We show the actual threshold of the ill-posedness depends on the relation

between m1 and m2 as the case of the asymptotic behavior of solutions.

We state the ill-posedness result for the two-components system (1.1.1).

Theorem 1.4.1. Let n = 2. We show the following ill-posedness results depending on

the relations of m1 and m2:

(1) Let 2m1 6= m2 and m1 6= m2. For any fixed s ≤ −1, there exist a sequence of time

{TN}N∈N with TN → 0 (N → ∞) and a sequence of the initial data {ψN}N∈N ⊂
L2(R2) with ‖ψN‖Hs = 0 (N → ∞) such that the corresponding sequence of the

solution {u1N}N∈N, {u2N}N∈N to (1.4.1) with u1N(0, x) = ψN(x) and u2N(0, x) =

ψN(x) satisfies

lim
N→∞

‖u1N(TN)‖Hs = ∞, lim
N→∞

‖u2N(TN)‖Hs = ∞.

(2) Let m1 = m2, σ > 4. There exist a sequence of time {TN}N∈N with TN → 0 (N → ∞)

and a sequence of the initial data {ψN}N∈N ⊂ L2(R2) with ‖ψN‖B
−1/4
2,σ

→ 0 (N → ∞)

such that the corresponding sequence of the solution {u1N}N∈N, {u2N}N∈N to (1.4.1)

with u1N(0, x) = ψN(x) and u2N(0, x) = ψN(x) satisfies

lim
N→∞

‖u1N(TN)‖
B

−1/4
2,σ

= ∞.

(3) Let 2m1 = m2. If s ∈ (−1/2, 0), then the data-solution map (ψ1, ψ2) → (u1(t), u2(t))

is not uniformly continuous, where (u1(t), u2(t)) is the solution of (1.4.1) with the

initial data (ψ1, ψ2).

In order to prove the first case and second case in Theorem 1.4.1, we modify the

construction of the initial data in [13] and [15]. On the other hand, (1.4.1) has the Galilei

invariance under the mass resonance condition 2m1 = m2: If (u1(t, x), u2(t, x)) solves

(1.4.1), then so does {
u1g(t, x) = u1(t, x− tη1)e

i(x·η1−|η1|2 t
2m1

)
,

u2g(t, x) = u2(t, x− tη2)e
i(x·η2−|η2|2 t

2m2
)
,

7



where η1, η2 ∈ Rn denote the moment parameter satisfying 2η1 = η2. Hence, we are able

to adapt the method due to Kenig-Ponce-Vega [18] to show the third case in Theorem

1.4.1.
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