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Chapter 1

Introduction

String theory has attracted much attention for the last several decades as a promising candidate
for the unified theory describing all fundamental interactions.

All interactions except the gravity are formulated as the gauge theory with gauge group SU(3) x
SU(2) x U(1). In addition to these gauge fields, some fermionic fields of elementary particles called
quarks and leptons and a scalar field of Higgs boson altogether form the Standard Model of par-
ticle physics. The Standard Model provides a consensual understanding of particle physics at this
moment, together with the description of microscopic physics based on quantum theory of fields.
However, the rest of the fundamental interactions, gravity, is missing from the Standard Model,
despite the fact that we experience it in everyday life.

The theory of gravity was proposed by Einstein 99 years ago [1]. It is described by the general
theory of relativity which is constructed from Einstein’s brilliant insight into the covariance of the
physical laws under the general coordinate transformations (the principle of general relativity). To
realize his insight, the Riemannian geometry plays a crucial role. The general theory of relativity
leads us to recognize that the space-time is no longer the static stage where physical phenomena
occur, but itself is a dynamical object described by the space-time metric.

The general theory of relativity has great beauty in its theoretical formalism and still no inconsistent
experimental observation with it has been reported. Hence, an application of the field quantization
procedure to the metric, that is a field describing the dynamics of the space-time, would be naively
expected to provide the quantum theory of gravity. However, this program is known to fall down
due to the problem of non-renormalizability caused by the dimensionful Newton constant G .

If the quanta mediating the gravitational interaction are described by closed strings rather than
point particles, the problem of non-renormalizability can be avoided. This is because a closed
string can not shrink to a single point topologically, and hence weakens the ultraviolet divergence
stemming from interaction points approaching each other. Indeed, it was recognized that there are
oscillation modes which can be interpreted to be gravitons in the closed string spectrum [2,3].
Furthermore, not only the quanta of gravity but also gauge interactions were dramatically discov-
ered to exist in string theory consistently [4-7]. Ever since this first superstring revolution it has
been widely expected that string theory will provide the unified theory of all fundamental interac-
tions, especially including quantum gravity.
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Since the Riemannian geometry provides us with an intuition about the classical gravity, some
kind of geometric notion would be helpful in order to deepen an understanding of the theory of
quantum gravity. As above, string theory is expected to provide a description of quantum gravity,
and hence the corresponding notion of geometry on the space-time would be “stringy” geometry
which could be different from the Riemannian geometry, because the fundamental objects which
probe the space-time are strings rather than point particles.

Among various observations concerning stringy geometry, T-duality is one of the most significant
features which are distinctive of string theory and one of the main subjects in this dissertation.
T-duality concerns the backgrounds in which strings propagate. The backgrounds are specified by
a configuration of the space-time metric and the Kalb-Ramond field (B-field) which is a 2nd-rank
antisymmetric tensor gauge field.

A typical example of T-duality is given by the case where one of the spacial directions of the space-
time is compactified on a circle of radius R'. Since the coordinate along the compactified direction
has periodicity 27 R, a closed string allows the periodic boundary condition

X(o,7) = X(0+2m,7)+2nRW, W €L, (1.1)

where X is an embedding function from the point on the string’s world-sheet parametrized by
(1,0) to the coordinate value of the compactified direction, and W denotes a winding number
which counts how many times the closed string coils around the circle. Since strings have tension
o’ called the Regge slope parameter, a closed string with non-zero winding number carries energy.
On the other hand, due to the periodicity, the string momentum associated with the compactified
direction is discretized as

K
P=", KecZ 1.2
R’ Y ( )

just like quantum mechanics of point particle. The integer K is called the Kaluza-Klein number.
As the string’s winding mode and Kaluza-Klein mode carry energy, both of them contribute to the
mass formula for the string as

2 2
M2 = <I}§> + <WO//R> + (contribution from other direction). (1.3)
From this analysis one immediately recognizes that the mass spectrum is invariant under the
interchange
~ a/
R +— R= 7 (1.4)

This example suggests that the circles of radii R and R=d /R are physically equivalent for a
string, and actually so it is [8]. This equivalence between the radii R and R = &//R is never
observed by a point particle, because the appearance of the winding number is a peculiarity of a
string.

!The argument here is a rough sketch and we omit a careful introduction of some terminology and we do not make
a precise statement.



The invariance under an interchange of the compactfication radii is also explained from the world-
sheet point of view. The action for a string compactified on a circle with radius R is given by
R2

S = /deU,anX, (1.5)
a

where 0 = 0, — 9, and 0 = 9, + 0,. This action has another expression written as
R?> _ -
S =— / d’/"dO’(O/LL —0YL — 8YL), (1.6)

where L and L are the Lagrange multipliers. Taking a variation with respect to Y yields the
equation of motion 0 = L + L which is solved by

L=0X, L=-0X, (1.7)

for any function X. Substituting this solutions into (1.6) reproduces the original action (1.5). On
the other hand, the auxiliary fields L and L yield constraints

/ /

a - o =

leading another action

Oé/

= N
S = /deUJO%/@XéX, with R = 7 (1.9)

This action S’ describes a string propagating on a circle of radius R=d /R. Since both S (1.5) and
S" (1.9) are derived from the same action S” (1.6), the physical equivalence for a string between
the radii R and R = o /R would be understood.

The extensions of the argument above based on the world-sheet analysis to the cases where a string
propagates in more general metric and B-field are studied by Buscher [9,10]. The relations between
backgrounds which are physically equivalent for a string are summarized as the Buscher rule. That
is, the Buscher rule gives the backgrounds in the dual description in terms of the original metric
and B-field. The caveat is that the Buscher rule is applicable only when there is a direction of
isometry which requires the invariance of both the metric and B-field under translations along its
direction.

Although T-duality provides us with amazingly rich subjects of string theory, in this dissertation
we identify T-duality transformation with the Buscher rule. This is because we are focusing only
on the metric and B-field, and hence it is sufficient for our discussions.

A brief summary so far: T-duality is a special feature of considering a string as a probe exploring
the space-time. It provides physically equivalent backgrounds for a string. The relation between
those backgrounds are given by the Buscher rule which is applicable only when there is an isometry
direction.
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For a string to propagate consistently under backgrounds, the corresponding configuration of back-
ground fields are required to satisfy some conditions [11,12]. The preferred configurations of those
fields are given by the solutions of the ten-dimensional supergravity theory. The part of supergrav-
ity action concerning both the metric and B-field (Neveu-Schwarz-Neveu-Schwarz sector fields) is
given by?

1
LsuGra = /ddl‘vg<R 12H2) o (1.10)

Here R denotes the Ricci scalar constructed from the space-time metric g;; as usual, and H does
the field strength of the B-field called H-flux. As the B-field is a 2nd-rank tensor B;;, the H-flux
is a 3rd-rank tensor, explicitly given by in components

Hijk = 82'Bjk + 8]‘B]m' + 8szg (1.11)

String theory requires the space-time dimension to be d = 10 for its consistency, and hence there
are extra six spatial dimensions compared to our empirical observation.

One approach to relate the higher dimensional supergravity theories to four-dimensional physics is
to compactify the extra six-dimensional space [13]. In general, compactifying the internal space in
the presence of fluxes yields the four-dimensional effective theories described by gauged supergrav-
ities with gauge algebras

[ea7 eb] = f;bec + Habcecv
[eq, "] = Q%€ + f2.e°, (1.12)
[ea7 eb] — ]%abceC + ngec7
called the Kaloper-Myers algebra [14]. Here e, and e® are generators associated with the metric
9ua and the B-field B,,,, where = 0,1,---,3 denotes the four-dimensional space-time component

and a = 4,---,9 does that of the internal space. The algebras above are understood by noticing
hat the metric and B-field are decomposed into

IMN — Guvs Gua, Gab,
Byn — Buzxa B,uaa Bab»

where M = u,a, and then, that the supergravity action contains

SsUGrRA = V=gg"NgKLgPO e pHypg + -+ -
MyxlIg

= \/—79('"+Habc9“ag”bng(9uByd+"')v (113)
My

indicating that Hgp. plays a role of structure constants.

2Here we assume that the scalar field of dilaton to be constant and do not care about the overall constant.



Although algebras associated with coefficients H and f are realized by compactifying on ordinary
internal space with conventional fluxes [14, 15|, algebras concerning @) and R have never been
obtained by such a procedure. Indeed, such algebras have been introduced heuristically, however,
it has been expected that they appear from compactifying on “non-geometric backgrounds” which
are introduced bellow.

It has been observed that ill-defined “non-geometric” backgrounds are obtained by formal applica-
tions of T-duality transformation to well-defined configurations of background fields [16-22].

Here we illustrate an example. Starting with a three-torus with non-zero constant H-flux, a se-
quence of successive applications of T-duality transformation converts the H-flux into the fluxes of
different tensor type, schematically summarized as

c be abc
Habc < ab Qa R )

which are fluxes of tensor type (0,3), (1,2), (2,1) and (3,0), respectively, and which could be the
origins of the missing pieces in the Kaloper-Myers algebra (1.12). Whereas the second flux, called
f-flux, can be interpreted as a kind of structure constant [16,17], the third flux referred to as Q-
flux can not be comprehended by such ordinary notion of geometry. Besides, the metric associated
with such @-flux becomes multi-valued. This configuration of the multi-valued metric as well can
not be understood by ordinary notion of geometry, but be done by introducing the notion of T-
folds which admits T-duality transformations in addition to diffeomorphisms when local patches
are glued [18]. As the initial configuration has three manifest periodicities, the third T-duality
transformation might be considered and the existence of the flux of tensor type (3,0), named R-
flux, is speculated [19]. The nature of R-flux of tri-vector field has hardly been understood and only
its existence has been suggested by formal arguments. These are why the latter two configurations
associated with Q- and R-fluxes are referred to as “non-geometric” in literatures.

Although such ill-defined configurations of backgrounds had hardly been considered in the analysis
of supergravity theory, there is a priori no reason to forbid them. Moreover, as mentioned above,
the non-geometric backgrounds are expected to provide a new variety of supergravity theories
which could never have been obtained by dimensional reductions of well-defined configurations of
the background fields [16-22].

As it has been mentioned so far, the non-geometric backgrounds are introduced by theoretical
considerations and might play roles in both theoretical and phenomenological issues. Nevertheless,
neither clear interpretations nor appropriate formulations of such non-geometric objects have been
established yet.

Generalized geometry is one of the frameworks which capture some features of string’s backgrounds,
especially H-flux in mathematical manner. It is a variant of differential geometry, firstly proposed
by Hitchin [23] and further developed by Gualtieri [24] and Cavalcanti [25]. Since the metric and
B-field are treated on the same footing in generalized geometry, not only the metric but also B-field
are regarded as geometrical objects. As a result, the construction of an analogue of Riemannian
geometry based on generalized geometry naturally provides the NSNS supergravity action (1.10)
with geometric intuition [26,27]. A brief review on this point is given in this dissertation.
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The main part of this dissertation is devoted to the considerations of non-geometric fluxes. A
new variant of generalized geometry is proposed, in order to formulate one of the non-geometric
fluxes [28]. This novel framework is a kind of dual of the ordinary generalized geometry, and indeed
it has analogous structures in mathematical aspects. Since its formulation is based on the Poisson
structure of the target space, it is sometimes referred to as Poisson generalized geometry throughout
this dissertation. Poisson generalized geometry enables a consistent definition of a tri-vector field
fluz: [28]. This flux of tri-vector field would be identified with the R-flux which has been neither
understood nor formulated in the conventional frameworks, including generalized geometry.

As mentioned above, Poisson generalized geometry is analogous to generalized geometry in math-
ematical structures. Hence, many objects considered in the ordinary generalized geometry can be
transferred to those constructed in Poisson generalized geometry. The latter main part of this
dissertation develops investigation in this direction further. A construction of an analogue of Rie-
mannian geometry based on the Poisson generalized geometry is investigated. It is found that the
analogues of the connection and the curvature are consistently defined. As the Poisson structure
is a fundamental object in the formulation, the resulting geometry is eventually found to be com-
patible with this Poisson structure in addition to the positive-definite metric. The compatibility
condition demands the anti-symmetric part of the connection to be proportional to the derivative
of the Poisson tensor.

This dissertation is organized as follows. In chapter 2 we give an overview of string theory. The
sigma model which provides an action for a string is studied. Then we see a sigma model has a dual
description given by another sigma model. This duality between sigma models is summarized as
the Buscher rule which concludes physical equivalence for a string between different backgrounds,
referred to as T-duality. We shortly discuss that applications of T-duality transformation to geo-
metric backgrounds provide non-geometric backgrounds. In chapter 3 we present some notion of
generalized geometry. We give definitions of the algebraic structures called the Lie algebroid and
the Courant algebroid. Then, we introduce the generalized tangent bundle as an example of the
Courant algebroid, and shortly discuss its properties. We review on the construction of an analogue
of Riemannian geometry in the framework of generalized geometry. Chapter 4 is devoted to the
definition of a new variant of generalized geometry, which we call Poisson generalized geometry [28].
The significant objects in this framework are the Lie algebroid and the Courant algebroid both of
which are based on the underlying Poisson structure. We briefly discuss how Poisson generalized
geometry enables a consistent definition of tri-vector flux. In chapter 5, we construct an analogue
of Riemannian geometry based on Poisson generalized geometry. We show that an analogue of a
connection and a curvature are consistently defined, even in the presence of the tri-vector flux. The
geometrical meaning of this connection is intensively investigated. In chapter 6 we give a summary
of results and discussions. We especially discuss a construction of the gravity theory based on the
analogue of Riemannian geometry based on Poisson generalized geometry and its relation to the
supergravity theory. We give a brief review on differential geometry, introducing notations used
throughout this dissertation in appendix A. In appendix B, we present some details on calculation.



Chapter 2

String Theory

This chapter gives an overview of string theory, focusing only on what are needed in this disserta-
tion. For more details, see reviews and textbooks [29-33].

Firstly, we review on the sigma model which provides an action for a string propagating in back-
ground fields. We give a little analysis of sigma models. In the analysis, we see that the current
associated with the gauge transformation of the backgrounds forms the algebra called the Dorfman
bracket and the Courant bracket which are introduced mathematically in the next chapter.

Then, we see that a sigma model has another description which is given by another sigma model.
The alternative sigma model corresponds to the action for a string propagating in different back-
grounds from the original backgrounds. The duality between backgrounds of these sigma models is
formulated as the Buscher rule [9,10]. This duality is referred to as T-duality, see review [34]. We
see that there are natural actions of O(n,n) transformation which includes the T-duality transfor-
mation as its special case. The O(n,n) transformation is as well one of the main subject in the
next chapter.

Finally, we discuss that applications of T-duality transformation to geometric backgrounds yield
“non-geometric” backgrounds [18-20].

2.1 Sigma model

In this section, we give actions for a string and for a (charged) particle for comparison, and inves-
tigation into them briefly.

2.1.1 Action for point particle

Before introducing the action for a string, we shall recall the action for a point particle, since the
point particle’s action is analogous to that of string’s in some points.

7
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Point particle in curved spacetime

In curved space background characterized by the spacetime metric g,,, it is well known that the
action for a point particle is given by the proper length of its trajectory

Spp = —m / A7/~ gu (X)X XV, (2.1)

Here m is the particle’s mass, 7 parameterizes the world-line, g, (X) is the background metric
and X* (4 =0,1,---,n) denotes dX*/dr. The function X*(7) is an embedding of the world-line
into the (n + 1)-dimensional spacetime. In other words, X*(7 = 79) gives the coordinate value of
particle’s position in (n + 1)-dimensional spacetime referred at 7 = 79. The (n + 1)-dimensional
spacetime is often referred to as the target space.

A variation of the action with respect to the field X* yields the equation for geodesic

0= X" +1%,X1X", (2.2)
which minimizes the length of the particle’s trajectory. Here we introduce the Christoffel symbol
as usually defined by

1
F,’Z,l/ = igp/\(aug)\l/ + ayg)\u - a)\gp,u)- (23)

Since the all indices of the target space are contracted, it is manifestly invariant under the diffeo-
morphism of the target space
0XP 0X°

X/# = X/#(X)) g:u/(X/) = WWQPU(X)

(2.4)

Charged particle in background fields

In general, a point particle has electric charge. In the presence of the external electromagnetic field,
i.e. the U(1) gauge field A, the corresponding action for a point particle with electric charge e is
given by

Scpp = —m / dT\/ —gu (X)XHXY te / drX*A,(X). (2.5)

Especially for the case with flat metric g,,, (X) = 1., the equation of motion reads

d( my > = eX"0,A, — XD, A, (2.6)
dr _ X2

If we make a world-line gauge choice as 7 = X? and take the non-relativistic limit, we easily see
that this equation reduces to the familiar equation of motion for charged particle under the action
of the Lorentz force

mXZ =e0;Ag — eOpA; + eX’ (8ZA] - 8]141)
= ¢E; + e€;j1,X;By, = ¢[E+V x BJ;. (2.7)
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The physics should be independent of the gauge choice of external gauge field A,. Under making
another gauge choice of gauge field A, as

Ay — Ay + 90, (2.8)

the action only changes by total derivative
. d
dScpp = e/dTX“al)\(X) = e/de)\(X), (2.9)
T

which has no effect on the equation of motion. Hence the physics is actually independent of the
gauge choice at least in classical level.

2.1.2 Action for string

The action for a string is formulated as an extension of the action for a point particle. This is
given by the Nambu-Goto action which measures the area swept by the string. Though its physical
interpretation is clear, it seems hard to be quantized. By introducing the auxiliary field, the problem
is avoided for the Polyakov action, which is shown to be equivalent to Nambu-Goto action at least
classically. The sigma model is introduced as an extension of the Polyakov action. We give brief
analysis of the string action in some special cases.

Nambu-Goto action

Since a string extends along one-spacial direction, it sweeps a two-dimensional surface called world-
sheet in the (n + 1)-dimensional spacetime. The action for a string is given by the area of the
world-sheet

1

2ma/

Sna = / @0\ = det(g, (X)0a XFO5X¥), (2.10)
which is referred to as the Nambu-Goto action. Here 0% (a = 0, 1) is the world-sheet’s coordinate.
The variation principle extremizes the area of the world-sheet. Although this action has a clear
physical interpretation, it is difficult to handle and especially quantize this action, since it involves
the square root and hence it is a non-polynomial of the dynamical field X*.

Polyakov action

An alternative action equivalent to the Nambu-Goto action is given by the Polyakov action. The
Polyakov action has more tractable form than that of the Nambu-Goto action. As a price of
its tractability, the Polyakov action requires to introduce the Lorentzian world-sheet metric hgp
(a,b=0,1) as the auxiliary field:

1
4ol

Sp / 2oV —hh® g, (X)0, X 9 X", (2.11)
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where h denotes the determinant of the auxiliary world-sheet metric, h = det hqy,
Taking the variation with respect to the auxiliary field h% with using 6h = —hhe,d0h®™ , we have
the following equation as a constraint
_ 4ma 6Sp
- /], Shab

Taking the determinant of both sides, we obtain

1
= 90 X X" — 5habhcdgwac)madx”. (2.12)

1
—Zh<hcdgwaCXMadX”)2 = —det (g, 0u X 0 X"). (2.13)

Finally, taking the square root of both sides, we find that the Lagrangian density of the Polyakov
action is equal to that of the Nambu-Goto action:

1

VR g,,0,X10,X" = V= det(g (X) 00 X710, X7). (2.14)
It convinces ourselves that the Polyakov action is actually equivalent to the Nambu-Goto action at
least classically.
Sigma model

Just like a charged particle couples to the 1-form gauge field A, a string can electrically couple
to the 2-form gauge field B, referred to as the Kalb-Ramond field, or simply the B-field. In the
presence of non-trivial B-field background, the corresponding string action is written as

1
S =

iV e%

/ o[V —=hh®g,, (X)0, X X" + ¢ B, (X)0, X" 0, X"], (2.15)

where €% is the anti-symmetric tensor with ¢! = 1. The rest of this chapter is intensively involved
in this action.

Since the all indices of the target space are contracted, it is manifestly invariant under the diffeo-
morphism of the target space

0Xr 0X° 0Xr 0X°
X/ — X/N(X)’ g:“/ = 8X’H ngo—7 ;/“/ = mpro—7 (216)

analogous to the case of a point particle.

H-flux

The field strength of the B-field, called H-flux, is given by an exterior derivative of 2-form B giving
a 3-form H = dB, in components

Hyyp=0,By,+ 0,Bp, + 0,B,.. (2.17)

The B-field also has the gauge transfomations as transformations which preserve the H-flux. It
allows us to shift the B-field B — B + dA, in components

B,uu — B,uu + 8,uA1/ - &JA,u ) (218)
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with any 1-form gauge parameter A.
In this string case, the physics again should not depend on the gauge choice of the external B-field.
Under another gauge choice of the B-field, say B — B + dA, the difference of the action reads

4ra’5S =2 / d?00, (A, 0, X 7). (2.19)

If we assume the world-sheet to be a cylinder and thus assume a closed string, this term becomes
trivial, since the (infinitely long) cylinder has no boundary. If we consider the case of open string,
due to the existence of the world-sheet’s boundaries, we need to introduce the 1-form gauge field
on the boundaries to cancel the above boundary term.

2.1.3 A bit of analysis

For simplicity let us consider that g,, = 1., = diag(—1,+1,--- ,+1), By, = 0 and make a world-
sheet gauge choice as hgp, = 145 = (—1,41). Then the sigma-model reduces to

S

= I / d*00,X"0"X . (2.20)

Here raising and lowering of the target space indices are understood to be done by the (inverse of
the) flat-Minkowski metric 7, (n*), as usual. The resulting action is the same as the action for
the (n + 1) Klein-Gordon free-fields defined on two-dimensional Minkowski spacetime {c“}.

Equation of motion and boundary condition

Since the variation of the action with respect to the field X*# yields

05 = —5 / Lo (3°0,X")5X,, + 2730/ / o0 X1 X, |71 _, (2.21)
the equation of motion turns out to be the wave equation
00, XH = (0101 — 0p0p) XH = 0. (2.22)
The solution is given by a sum of any functions of ¢ 4+ ¢! and ¢° — o'
XH(0%) = Xt(0” + o') + Xh(o” — o). (2.23)

The half of the solution X7, (Xg) is referred to as left-mover (right-mover). The boundary term
implies the boundary conditions for X*.
The boundary term vanishes by imposing the periodic boundary condition on X*

XM o' 4 21) = XP (a0, o), (2.24)

which corresponds to a closed string, or by imposing boundary conditions
§XH(00,21) = §XH(°,0) =0, (2.25)
X0, 21) = 01 XH(6%,0) = 0, (2.26)

corresponding to an open string with the Dirichlet and Neumann boundary condition, respectively.
For later convenience, we note that the Dirichlet condition can be rewritten as

D XM (00, 21) = 9 XH(c%,0) = 0. (2.27)
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Closed-string solution

For the case of a closed string, the field X* can be expanded by the plane wave as'

oo
1 . )
XH(o?) =zt 4 pto® + i E - [aﬁe_m(”%”l) + dge—Z”(O’O—”l)], (2.28)
n#0

where o}, and &}, represent the Fourier coefficients. The left-mover and the right-mover are decom-

posed into
I | >~ 1 A
X" + o) = % + ip“(ao +ob) +i Z Eozﬁe_m("o'“’l), (2.29)
n#0
X#(UO - Ul) _ '%i _{_1 u( 0 1) + 'il'*ﬂ —in(c®—al) (2 30)
R =3 2p o —0 ) nane . .
n#0

Light-cone coordinates
It is often convenient to use the light-cone coordinates o and ¢~ defined by

ot =040, o7 =00 (2.31)

By definition we see

o 00 & a0t o 1
O = 5 = 50T 800 T BoT BT = 200+ ), (2.32)
0 1
= = — — 2
0= = 5= — 30— %), (2.33)

giving 1ot = 1 and 10T = 0. For a general contravariant vector v*(a = 0,1), with paying
attention to the world-sheet metric being diag(—1,+1), we define

v =" ol v =0 —ol, (2.34)
and

(Uo — ’Ul) = *%(’UQ + Ul). (235)

N =

1 1
vy = §(U0+U1) = 75(0071)1), v_ =

From (2.34) and (2.35) we can easily read off the components of the world-sheet metric in the
light-cone coordinates {oT,07} as

1
Mt =7N—=0, =1 =-2, (2.36)
ntt=n""=0, ntT=n""=-2. (2.37)

We do not care about both the normalization and the mass dimension of the Fourier components to avoid
notational complexity.
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Using the light-cone coordinates, the Lagrangian density of the action becomes

- 80X“80XM + O Xt X, =4 8+X“8_XM. (2.38)
Noting the world-sheet measure becomes d?c = do%do! = —1/2dotdo~, we see the action is
rewritten as
1 _
S = S / dotdo™ 04 X"0_X,,. (2.39)

The equation of motion, the Dirichlet and Neumann boundary conditions for open string are also

rewritten as

0.0_X" =0, (2.40)
(8+ + 6_))(M|g:0727T =0, (2.41)
(01 — 0_) X |o—g.2r = 0, (2.42)

respectively. Acting onto the solution X*, the derivative operator d; (0_) projects out the right-
mover (left-mover):

O XM =0, X! 9_XP=0 X (2.43)

2.2 Current algebra

As we see in the previous section, the string action (2.15) has symmetries, consisting of the diffeo-
morphism (2.16) and the B-field gauge transformation (2.18). In this section we examine the current
algebra associated with these symmetries. The resulting algebra forms the Dorfman bracket, or
equivalently Courant bracket, defined in generalized geometry in the next chapter. The discussion
here follows that given by Alekseev and Strobl [35].

The current associated with the infinitesimal diffeomorphism and the B-field gauge transformation
is given by

Tu,e)(0) = u? (X(a))pi(a) + oy (X(U))agXi(O'), (2.44)

where u is any vector field and « is any 1-form. The first term gives the translation when u’
is constant. Hence it is reasonable that the first term generates an infinitiesmal diffeomorphism.
From (2.19), it is understood that the second term is the current associated with the B-field gauge
transformation.

Since the Poisson bracket is defined by

([ OF 4G 5G OF
{F.G}= / do <5Xi(a/) 5Pi(0")  6Xi(o) (5Pi(a’)>’ (245)
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for any functionals F' and G, the bracket for the currents is calculated as

{t7(u,a) (U)a \-7(1),5) (7—)}
= {u" (X (0))pi(0) + i (X (0)) 0o X" (o), 0" (X (7)) pi(7) + Bi (X (7)) 0- X" (1)}
= —(ukakvi - vkﬁkui)pi(a)é(a —7)— (ukﬁkﬁi - Ukakoq)&,Xi(a)(S(a —7)

+ / do’ (X (0))950(c — o' )F (X (7))d(1 — o)
_ / do'd" (X (0))5(0 — ') (X (1)) 0,6(r — o).
With paying attention to 9,8(c — 7) = —8,0(c — 7), we can rewrite the integrals as
/ 4o’y (X(0))055(0 — o')o* (X(1))8(r — o) = — Bt 8y X (0)5(0 — 7) + gt ()0, 5(0 — 7),
and
/ do'u? (X (0))d(0 — ') Br (X (7)) 0,6(7 — ') = 0" 0y X" B (0)d (0 — T) — uF Bi(7)0pd (0 — 7).
Then the bracket reads

{t7(u,a) (O-)a t7(v,6)(7_)} = - (ukakzvZ - 'Ukak:ui)pi(a-)é(a - T)
— (ukakﬁl + 8,uk5k — Ukakai + 8iakvk)8,,Xi(a)5(a - 7')
+ (agt® + uF L) (1)056 (0 — 7), (2.46)

here again using 0,0(17 — o) = —0,0(1 — o) = —9,6(c — 7). With a use of notations widely used in
differential geometry?, we can rewrite the terms above as

(uF o’ — P Out)9; = [u, 0], (2.47)
(ukakﬁi + 9k By, — v Oy + 8Z‘Oék’[)k)dﬂfi = L8 — Lya + iyda, (2.48)
apvf + uF By = iuB + iva, (2.49)

and then the algebra is rewritten as
{Ttwe)(0), Tw,8)(T)} = =Tjw,a),0,81(0)8(0 = 7) + (iuf + iva) ()06 0(0 — 7). (2.50)
Here we introduced a bracket |, | defined by
[(u, @), (v, B)] = ([w,v], Lo — Lo + ipdar). (2.51)

This bracket is the Dorfman bracket (3.48) used in generalized geometry. Its properties are men-
tioned in the next chapter. Here we only comment that it is not skew-symmetric.

In the curent algebra (2.50), the left-hand side is manifestly skew-symmetric, while the skew-
symmetric property of the right-hand side is not manifest due to the choice of the expression for

2 A brief introduction for the notation is given in appendix.
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the anomalous term.
To rewrite the current algebra in manifestly skew-symmetric manner, notice that the following
formula is valid for any function f

F(P)0y(0 — 7) = % F(F)0sb(0 — 1) — % F(0)0:0(0 — 1) + %ag F(@)5(o — 7).

With making use of this formula, the current algebra is re-expressed as

{T1,0)(0), Tw,8)(T)} = =T(w,a),(v,8))(0)0(0 — 7) + (anomalous), (2.52)

with
(4, @), (v, B)) = <[u, o], Luf = Loa — %d(iuﬁ _ W)), (2.53)
(anomalous) — %(z’uﬁ i) ()00 8(0 — ) — %(iuﬂ +i00)(0),6(0 — 7). (2.54)

As desired, both the bracket (, ) and the anomalous term are manifestly skew-symmetric. The
bracket (, ) defined here is referred to as the Courant bracket (3.25) which is also used in generalized
geometry. Its properties are intensively studied in the next chapter.

2.3 The Buscher rule

In this section we give a derivation of the Buscher rule which provides the duality for sigma-
models [Buscher|[Duff]. We see that the duality transformation is applicable only when there is a
direction of isometry. The existence of the direction of isometry means that the background fields
are invariant under transformations along this direction. In the duality transformations, there exist
natural actions of O(n,n) transformation group.

2.3.1 One direction of isometry

As a worming-up, we consider the case of both g and B being independent of X°. Though we assume
X0 as the direction of isometry, there is no intension for “0” to denote the temporal component of
the target space. It can be replaced with some other character, say “n”, which indicates in general
a spacial direction.

As we shall see in a moment, the following action is classically equivalent to (2.15)

1 . . ,
S = g / o[V =hh® gV Vi + 2V —=hh® go; Vudp X + vV —hh® g;;0, X 9, X7
+ 2 B Va0 X' + € B0, X0, X7 + 2 X°9, V3], (2.55)
with 4,5 =1,--- ,n. Here X0 is the Lagrange multiplier leading a constraint

€9,V = 0. (2.56)
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Following the Poincaré lemma, locally we can find a function X° which satisfies V, = 0,X°.
Substituting this into (2.55), we can reproduce the original action (2.15).
On the other hand, we find that the equations of motion for V, reads

65

7 2/~ hh®goo Vi + 2/ —hh®go;0p X * + 26" By X + 2¢*09, X . (2.57)

0 =4nrd

Eliminating V, from (2.55) with a use of the solution of this equation of motion

1 ; hap 4, i hab 4, % 0)
Vo= —| —g0i0a X" — —€"B; 0. X' — —€"0.X" |, 2.58
g0 ( ” v=h V=h -

we find that the Lagrangian density becomes

1 5, IS B 7 5 ; i 5 — B 7,B 5 . .
V=hh® —3,X°9,X° + 2/ —hh®* =% 9, X0, X + /—hh® <gl-j _ 90i90; — 20 Oﬂ)aaxzabxu

goo 9oo 9oo
PN . iBo; — g0 Boi ; ;
+ 260 0% 5 X009, X7 4 e <Bij — S0 — 90i >8aX‘8bXJ. (2.59)
goo goo

Thus the action (2.55) reduces to the sigma-model

1

4o

S = / o[V =hh®§,, (X )0, X X" + € B, (X)0, X" 0p X "] (2.60)

with the backgrounds given by

.1 . Boi . 90i90; — BoiBoj
goo=—, Goi=—, Gij = Gij — ;
900 900 9oo
. , . Bo: — a0: B
By =% By =B, — 2020~ 905200 (2.61)
goo goo

Since both sigma models (2.15) and (2.60) are obtained from the same action (2.55), the physics
described by them should be equivalent. The relations among the background fields (2.61) are
referred to as the Buscher rule.

2.3.2 All directions of isometry

As a more special case, let us assume that the background fields g and B are independent of all of

the spacetime coordinates X* (4 = 1,--- ,n). The action which corresponds to (2.55) in this case
is
1 -
S = yr— / d*o[V=hh™ g, VIV + € B, VIV + 20, X, V), (2.62)

where X u are the Lagrange multipliers leading constraints

9,V = 0. (2.63)
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These constraints are solved by VJ' = 9,X* with some functions X* due to the Poincaré lemma.
Then the action (2.15) is reproduced.
On the other, taking the variations of V' yields

68// R
0 = 2ma/ ST = V=hh®g,, Vi + B, VY — e, X, (2.64)
and thus
X, = V—hh®g,, VY + €PB,, VY. (2.65)

We would like to algebraically solve this equation with respect to VJ'. Making an ansatz

1 5 .
Vi = ﬁpﬂwabebcacxy + ¢ 0, X, (2.66)

and then eliminating V' from (2.65)
eababX# = Gab(gwpyp + Bqu”l’)abf(p Y _hhab(B;prp + guvqyp)abf(pa (2.67)
we find the simultaneous equations

55 = g,uzlpyp + Bquup’ (2'68)
0= B,p""+ guq"". (2.69)

They are solved by (here the equations are understood as matrix equations)

p=(9—Bg 'B), (2.70)
¢=—9g 'B{(yB~'g—~B)g B} ' =(B-gB g)"". (2.71)
Note that the matrix p (¢) is a(n) (anti-)symmetric matrix. These matrices satisfy the following
relations
p+a=(g+B)7", (2.72)
p=—q9B~' = -Bgq, (2.73)
q=-g 'Bp=—pBg . (2.74)
Thus the action (2.62) reduces to
1 A A N N
S’ = gy /d20 [\/ —hh“bpf’”aaX,,ang + eabquaapr)bXa . (2.75)

Hence we have another sigma model which is physically equivalent to (2.15).

The relations between the fields X# and X* which appear in the action (2.15) and (2.75), respec-
tively, are given by

e X, = V—hh®g,,0,X" + ¢’ B,,0,X", (2.76)
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6ab

from(2.65).Introducing the anti-symmetric tenor €, := —e%’, we can rewrite these relations as

ePOXH = V=hhPp 9, X, + €P¢ 9, X,,. (2.77)
By substituting (2.77) into (2.76) and using the formulae for p and ¢, we obtain
ey X, = V—hh®((g — Bg 1 B) 23y X* + BngV 0, X,,). (2.78)
Similarly, substituting (2.76) into (2.77), we equivalently have
PO XH = /—hh®(—(g7IB). 9y XY + g™ 8, X,). (2.79)

2.3.3 O(n,n)-transformation

Let us introduce a 2n-dimensional column vector

XH
zM = ( %, ) , (2.80)

01
Q:(l 0), (2.81)

where 1 denotes n X n unity matrix. Then the relations between the fields (2.78) and (2.79) can

and 2n x 2n matrix €2

be simply represented as

QN ZYN = V=hh®G N ZV, (2.82)
with
g—Bg™'B Bg!
Gun = B ” ) 2.83
( —g7'B g7 (259)

Since the matrix € is an invariant matrix under actions of any element S in O(n,n) transformation
which satisfies STQS = Q, there is a natural action of this transformation on the column vector Z,
defined by Z’ = S~'Z. The action of ST on (2.82) gives

e (ST) EQ 0,25 = QN (SN0, 25 = QN0 2, (2.84)
V=hh®(ST) G L0y 2" = V=hh®(ST) fG LSS 0,2, (2.85)

i.e.
€0 k0,2 = V=hh®(ST) L GprSK 0,2 (2.86)

Thus the action of an O(n,n) matrix S on the backgrounds are given by
Gun — Gy = (ST 1GLr STy (2.87)

Making the gauge choice as hg, = diag(—1,+1), we find

O _ -1 -1 o
X\ _(9-Bg B By DXV ) (2.88)
81X“ —g B g aOXu
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Relation to the Buscher rule

Especially for

01
S:Q:<1 0>, (2.89)

the condition STQS = Q is satisfied and (2 is an element of O(n, n) transformation group, indeed

QTQQ:<0 1)(0 1)(0 1>:<1 o)(o 1)29‘ (290)
10 10 10 0 1 10

Corresponding to S = (), the metric transforms into

_ -1 -1 _ -1 -1
G_(Q Bg~"B By >_>G/_QT<9 Bg— B Bg_l )Q

_g—lB g—l
—1 _ le
= 9 77 . (2.91)
By g—Bg™— B

following the rule (2.87). Recalling (2.70), (2.71), (2.72), (2.73) and (2.74), we find the resulting
metric can be represented as

-1 -1
pP—ap—q qp
G = ( o L ) : (2.92)

We easily see that in this transformation the following replacements take places

-1

g—p=(9—Bg'B)"', B—q=—-g 'Bp. (2.93)

This is the same relations as (2.75) obtained in the dual descriptions of the sigma-models. Hence
O(n,n) transformations include the Buscher rule and provide transformations of wider class. The
meaning of the other elements in O(n,n) is discussed below.

SO(n,n) generators

We end this section with a few comments on O(n, n) transformations. Let us consider infinitesimal
transformations. Since their successive actions defines an element which is continuously connected
to the unity, the resulting element is of SO(n,n). For an infinitesimal transformation S =1+ X,
the definition for it to be an element of SO(n,n), STQS = Q, gives

Q=01+XD01+X)~ 0+ X704+ 0X. (2.94)
Hence the generators X must satisfy the condition

XTO=-QXx. (2.95)
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Recalling the definition of €2 and parameterizing the matrix X as

(A
X_<b a), (2.96)

the condition (2.95) reads
a=-AT bl =-b gl =-n (2.97)

The number of the parameter tells us the number of the generators being

1) 2m@2n—1
n2+2><n(n2 ) _ n(g ). (2.98)

The finite transformation are classified into the following of three types

A0 1 0 1 B
(0 e—AT>’<Bl>’<0 1)’ (2.99)

where B and [ are finite skew-symmetric matrices.
The interpretations of these transformations are as follows. For simplicity taking ¢ =7, B = 0
and infinitesimal transformations parametrized by A", = d,u* and by, = 00y, their actions onto

Gy read
700 ) g e+ i+ Oy 0 , (2.100)
0 n 0 Nt — OHuY — OYut
n 0 ) b (= (A0 () —(d)™ ) (2.101)
0 7 0 (dar) "

which correspond to the diffeomorphism generated by the vector field u and the B-field gauge
transformation induced by 1-form gauge parameter «, respectively. The S-transformation has
no such clear interpretation. The actions of SO(n,n) transformations, especially corresponding
to diffeomorphisms and B-field gauge transformations, play important roles as well in the next
chapter.

2.4 T-duality

For simple argument, setting B, = 0 and g,, = 1, = diag(—1,+1,--- ,+1), furthermore taking
a gauge choice as h® = n%® = diag(—1,+1), we find the relations between the fields (2.78) and
(2.79) reduces to

e X, = 0°X,, (2.102)
ePoXH = 9O XM (2.103)
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Since € is the anti-symmetric tensor, these equations indicate that the derivative of X* with
respect to 0%(o!) is converted to the derivative with respect to o'(c?) for X#. To be more specific,
noting that €' = —¢'® = —1 and h® = diag(—, +), we find

hX,=—01X, =-8"X, = 9 X,, (2.104)
X, =9 X, = ' X, = 0 X,. (2.105)

These equations mean the duality which interchanges the roles of derivatives
d — O, (2.106)
implying for a closed string the duality between
0. X1 +— 0.X, O_Xp «— —0_Xg, (2.107)

by (2.43), or equivalently, from more physical point of view

momentum <— winding, (2.108)
and for an open string
(04 + 0 )X |gmp2r =0 <— (0p — )X |y—0.2x =0, (2.109)
Dirichlet boundary condition Neumann boundary condition

by (2.26) and (2.27), or (2.41) and (2.42).

The Dp-branes are characterized as p-dimensional extended objects, to which open strings can
attach. This is equivalent to that the D-branes are characterized as hypersurfaces on which open
strings have the Dirichlet boundary conditions. Since the duality interchanges the boundary con-
ditions for open strings, its actions on D-branes are summarized as

wrapped Dp-brane <— unwrapped D(p — 1)-brane. (2.110)

These dualities are what the T-duality tells us.
Thus the Buscher rule obtained in the previous section is understood to provide a general rule for
T-duality transformation with the general metric and B-field.

2.5 Non-geometric backgrounds

In this section we give a brief discussion on how the successive applications of T-duality trans-
formation to the coventional backgrounds provide odd configurations referred to as non-geometric
in literatures. For simplicity, the observations here starts with a three-torus with a constant H-
flux, for more details and general discussions under general set-up, see [ref]. Since we regard the
three-torus as a two-torus fibered over S', we firstly review on how a two-torus is characterized
geometrically.
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2.5.1 Two-torus

This section provides some notions on two-torii. A two-torus 72 is known to be one of the simplest
examples of the Calabi-Yau manifolds. In general, a Calabi-Yau n-fold is a Kéhler manifold having
n complex dimensions and vanishing the first Chern class. The two-torus is the only compact
Calabi-Yau one-fold.

Consider a rectangular torus 72 = S x S with periodicity z1 ~ z1 + R; and 2o ~ 29 + Ry. It is
convenient to introduce two complex parameters 7 and p defined by

(2.111)
p = iR\ Ra, (2.112)

which describes the complex structure and the size of the torus, respectively. A complex-structure
deformation of the torus changes the value of the parameter 7, while a Kéhler-structure deformation
does p.

The rectangular torus is not the most general. There can be an angle 6 between one cycle and the
other of the two-torus. In general a T2 is characterized by

2 2
1
2 _ I J _ I J
ds —IJE_lGUdX 79, G B—2IJE_IBUdX ANdX“. (2.113)

Hence its moduli are given by the following four real parameters

G Gz 0 B
Gry = . By — . 2.114
7 < Gz G2 ) 7 ( —Biz 0 ) ( )

These four real parameters can be traded for two complex parameters 7 and p, as an extension

above:
r ey iy = G2 VAt G (2.115)
G2 G2
p=p1+ip2 = Bio+ivdetG. (2.116)

The relations between these parameters can be inverted yielding

2 2
G+B:p2<71+72 Tl>+p1< 0 1). (2.117)

T2 T1 1 -1 0

As is well known, the complex modulus 7 determines an equivalent torus when it is replaced with

at+b ) a b

which is obtained by successive applications of discrete transformations

1
T—7+1 and T — ——. (2.119)
T
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Although it is not so obvious, so does the other modulus p. One circumstantial evidence for p
transforming as an SL(2,7Z) modulus is given by noting that they altogether provide the symmetry

SL(2,Z) x SL(2,Z) = SO(2,2: Z.), (2.120)

i.e. the invariance under (discrete version of) SO(2,2) transformations. As discussed in preceding
sections, the invariance under SO(2,2) is realized when there exist two directions of isometry. And
indeed the discussion here is the case.

Especially for the case of the rectangular torus with vanishing B-field, since the metric becomes

Grs = R oy, (2.121)

and VG = Ry Ry, the parameters 7 and p reduce to those mentioned above, (2.111) and (2.112).
This is equivalent to 71 = p; = 0 and then

G+B= ( pzorz p;m ) , (2.122)

2.5.2 T-duality and non-geometric backgrounds
This section explains how T-duality transforms the conventional backgrounds into the configura-
tions called non-geometric. We consider a three-torus with a constant H-flux as a starting point.
Three-torus with H-flux Consider the rectangular three-torus

ds? = R2(dX")? + R3(dX?)? + R2(dX?)?, (2.123)
in the presence of a constant H-flux

H=NE¢cZ (2.124)
T3

The periodicities are given by identifications
Xr~Xr+1, I=1,2and 3, (2.125)
for each direction. The H-flux can be denoted as
H=NdXy NdXy NdX3. (2.126)
By choosing a gauge choice of the B-field as
B = NX1dXs NdXs, (2.127)

we can conveniently regard this three-torus as a two-torus (Xa, X3) fibered over S'(X;). Then the
complex structure and the Kéhler structure read

T= 2&
= R3’
p=NX; +iRsRs3, (2.129)

(2.128)
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respectively, yielding monodromy of the Kéahler structure
p—p+ N, (2.130)

under a translation X; — X; + 1. This is absorbed by an SL(2,Z) transformation of the moduli
parameter p with monodromy matrix

My(X1) = ( (1) fol ) : (2.131)
p

First T-duality transformation We apply the Buscher rule

.1 . Boi . 90i90; — BoiBoj
goo = —» 90i=——» YGij = Gij —
goo goo goo
- : - Bn: — an:Bos
Boi = @7 Bij = Bij — S = ) =, (2.132)
goo goo
regarding Xo-direction as an isometry. Then we find that the metric reads
1
ds®* = R¥(dX,)* + ﬁ(dxg + NX1dX3)? + R3(dX3)?, (2.133)
2
and the B-field vanishes
B=0. (2.134)

The periodicities are understood as follows: for X3-direction is unchanged X3 ~ X3 + 1, while
(X1, X2) ~ (X1 +1, Xy — NX3), (2.135)

which defines a twisted torus or nilmanifold.

Taking a basis of 1-forms {n‘}, i = 1,2 and 3 as
n' =dX1, n’=dX;+NX1dXs, n®=dX;, (2.136)

and its dual basis of vector fields {n;}, i = 1,2 and 3 as

m = 81, 2 = 62, n3 = 83 — NX182, with 8] = =< (2.137)
0X;
we have
n'(n;) = o5, (2.138)
by construction. Then the metric can be rewritten as
ds® = (dn')* + (dn*)? + (dn®)*. (2.139)
They satisfy the following algebra
(1, m3] = [01,03 — NX102) = =Ny = fismp, (2.140)
%, m] = [dYs + NX1dX3,01] = —NdX3 = f&n’, (2.141)
% ms] = — fisn' (2.142)

with 2 = —N.
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Second T-duality transformation Since both the metric (2.133) and the B-field (2.134) are
independent of any shift along X3-direction. This z-direction is left as a direction of isometry. By
performing the Buscher rule, we find that the resulting metric reads

ds® = dX7 + (dX3 +dX3), (2.143)

1+ N2X?
and the B-field does

—NX1dXo NdX3
B —
1+ N2X?

(2.144)

Though the isometry with respect to Xi-coordinate is no longer manifest, introducing the notion
of T-fold [18] enables to restore the notion of periodicity in the resulting geometry.

2.5.3 O(d,d)-invariant action

A construction of an O(d, d)-invariant action has been investigated [36-42] and [43-46]. Their
resulting gravity theory is shown to be physically equivalent to the original low-energy supergravity
theory of the Neveu-Schwarz-Neveu-Schwarz (NSNS) sector

Lnsns = V9] (R

1 .

— mHiij”k) (2.145)
Although their considerations are done in the framework of doubled field theory (DFT), giving an
introduction to DFT is beyond the scope of this dissertation, see [47-51] for more details about
DFT. In [36-42], the dynamical variables are given by two doublets®

(95, Bij) and (Gij,BY). (2.146)

The former doublet (g;5, B;j) consists of the conventional NSNS sector fields. The latter doublet is
related to the former by

5;1 = &i; = gij + Bij, (2.147)

)

9 =G 4 Y. (2.148)

These relations are realized as a T-duality transformation (2.70) and (2.71) .

DFT treats not only the conventional coordinate ¢ but also a dual coordinate #; to accomplish
an invariant theory under O(n,n) transformations which include T-duality transformations. The
doubled coordinates X are introduced by X™ = (#;,2%). To remove the redundancy of these
doubled coordinate dependence in the formulation, the “strong constraint” or “section condition”
should be imposed

1
A U] s

3 To be precise, there is the dilation field in addition to the metric and the B-field.
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on any fields, gauge parameters and etc. where dy; = (5Z, 0;). Imposing this condition is equivalent

to imposing
9;0" = 0. (2.150)
The gauge transformation in DFT is parametrized by ¢¥ = (£;,¢) as

(551']‘ Zﬁg&‘j + (91‘5]‘ — 8j£i

+ L€ — En (0" = 0'¢M)Ey, (2.151)

where
Leij = EPOLE + 06 & + 0,65 &, (2.152)
Leij = §:07Eij — OF&lry — OFE;n. (2.153)

The difference of the signs in front of the gauge parameters are chosen to make &;; a covariant
tensor with respect to ' whereas to make &;j a contravariant tensor with respect to ;.
In [36-42], a construction of an invariant theory under these gauge transformations is accomplished

in somehow a heuristic manner. A derivative operator is defined by
D' =9' - BY9;, (2.154)

with the anti-symmetric tensor 8. This derivative operator has a non-trivial commutator

[Di7 D]] _ _Rijkgk _ Qkijﬁk7 (2.155)

giving
Rk = 3Dligikl = 3(3ligikl 1 gllig, gikly, (2.156)
Qk:ij _ 8]4:5” (2.157)

A covariant derivative with upper indices is introduced by
VVI = D'VI —TPVF, V'V, = D'V + T'*. (2.158)

The connection coefficients are given by

P — 19 _ G (G EN 4 gmatlily, (2.159)
where

I = %sz(DiGﬂ + DG — D'GY), (2.160)

= Lo (2.161)
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Hence, explicitly they read
[ = 26l — B0, G 4+ (B — BTG — (8 — 57 0) G
Y %le(ﬁimamc;ﬂ b A, G — gma,, G (2.162)
il = —%akﬁif, (2.163)
where fzj is introduced by
I = %le(éieﬂ + &G - da). (2.164)
Thus the connection coefficients read
IR %le(ﬁimameﬂ + A0, G — BM8,GY — GO, B — T8, BN, (2.165)
Pl — —%ak/j’ij. (2.166)

Since the construction of this connection is based on the doubled gauge transformations and the
requirement that the theory should be covariant, so far the geometrical meaning of the connection
has been less clear. Eventually, the meaning of the connection will be demystified in this dissertation
from the viewpoint of the algebroid.






Chapter 3

Generalized geometry

In the previous chapter, we observed that the algebra of the currents associated with the gauge
transformations of the background fields forms the Dorfman bracket, or equivalently Courant
bracket and there are natural actions of O(n,n) transformations on background fields. Gener-
alized geometry provides a framework that formulates these observations in mathematical manner.
In this chapter, we present some notion of generalized geometry, focussing only on what are needed
in this dissertation. For systematic introduction, see [24], for review on mathematical aspects,
see [27], and review for physical applications, see [52,53]. Firstly, we give definitions of the al-
gebraic structures, called the Lie algebroid and the Courant algebroid. Then we introduce the
generalized tangent bundle as an example of the Courant algebroid on which generalized geometry
is defined. We briefly discuss some properties of the generalized tangent bundle. Finally, we re-
view on the construction of an analogue of Riemannian geometry in the framework of generalized
geometry.

3.1 Lie algebroid

In this section, we introduce the notion of Lie algebroid [54,55]. The Lie algebroid is the most
fundamental structure to define (analogue of) generalized geometry.

Definition

A Lie algebroid is defined by a triple (E, [, ]g,p). Here E denotes a vector bundle 7 : E — M
over a base manifold M. We represent the set of the sections of this vector bundle E as I'(E), as
usual. The bracket [-,-]g is a Lie bracket i.e. a skew-symmetric bi-linear map

[, ]g : T(E) @ I(E) = I'(E), (3.1)

satisfying the Jacobi identity. And p is an anchor map p : F — T'M, such that 1) the induced map
p:T(FE) — T'(TM) defines a Lie-algebra homomorphism and 2) it satisfies the Leibniz rule

(X, fY]e = fIX,Y]e + (p(X) /)Y, (3.2)

29
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for any X, Y € T'(E) and f € C°°(M). Here p(X)f denotes the action of the vector field p(X) €
I'(T'M) on the function f € C°°(M) resulting in the derived function of f along the vector field

p(X).

Tangent bundle as a Lie algebroid

The tangent bundle TM is a trivial example of the Lie algebroid. The identity map id : ['(T M) —
['(T'M) defines the anchor map and the Lie bracket is defined by the commutator

[X,Y]ry = XY —YX, where X,Y € I'(TM), (3.3)

as usual. One can easily show that the triple (T'M, |-, - |7, 1d) actually satisfies the conditions to
be a Lie algebroid mentioned above. We will simply denote this Lie algebroid (T'M, [+, - |rar,id) as
TM.

Lie algebroid of a Poisson manifold

Poisson bivector Let (M,6) be a Poisson manifold equipped with a Poisson bivector 6 €
L(A2TM). In some local coordinate system {z™}, it is represented in components as

1 ..
0= 59”8,’ N (‘9j. (34)
The Poisson bivector defines the Poisson bracket as
{f, g} = 070;£0;9 = 0" 0;(df)0;(dg) = i4gi 0. (3.5)

The Poisson bivector 6 satisfies [0,6]s = 0, where [-,-]g is the Schouten-Nijenhuis bracket, an
extension of the Lie bracket [, - |ras to the bracket acting on poly-vector fields I'(A*T'M). This is
calculated as

0990; A 0;,0% 0y, A D)) s
= [070;, 00k A O; AN Oy — [090;, 8] A O; A OM Oy — [0, 0M0k] A6 0; A D,
= (099,680, — 6" 0,07 0;) AN O; N Oy + 009 0; A D; A Dy — 670;0%0), N D; A D)
J J J
= 49“8{9”82‘ VAN 8j A Of. (3.6)

Thus the condition [, 8] = 0 implies, in terms of components,
0'* 9,0 = 0. (3.7)
This condition guarantees that the Poisson bracket {-,-} satisfies the Jacobi identity

{fa{gah}}+{gv{hvf}}+{h’{fag}}:07 (38)

for any smooth functions f, g, h € C>°(M).
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Lie algebroid A Lie algebroid of a Poisson manifold [56] is defined by a triple (T*M, [-, -]q,0).
Here T* M denotes the cotangent bundle. The anchor map is induced by the Poisson bi-vector
by regarding it as a map 6 : I'(T*M) — I'(TM) i.e.

0(¢) = i, for &€ D(T*M), (3.9)

in components

' : L i ij

159 = lgy dak <29 J0; N 8J> = &0 J8j. (310)
The Lie bracket [-, -]y is defined by the Koszul bracket:

(&m0 = Logeyn — g dE, (3.11)

in components

[€,ml0 = (digee) + io(eyd)n — ig(ydé
= d(&07)) + iggug, (Opm)da® A da' — iy g5, (0x&)dz"™ A da’
= Ok (&0 ;) da® + &0 (i) da® — &6 (Ony)da® — ;6% (0;€k)da® + ni6” (Ok&;)da”
= (&m;Ok0" + £070jmy — 1:60Y ;&) da®. (3.12)

The skew-symmetry is manifest if we rewrite the bracket as
€ nle = Loeyn — Log)& + d(igind). (3.13)

We will often denote this Lie algebroid (T*M, [-, -]y, 0) as (T* M)y for short.

3.2 Courant algebroid

In this section we give the definition of the Courant algebroid. The Courant algebroids constructed
from the Lie algebroid T'M and (T M )y, introduced in the previous section, are the main objects,
which are considered in the generalized geometry and the Poisson generalized geometry, respectively.
We explain the former as an example of the Courant algebroid.

Definiftion

A Courant algebroid is defined by a quadruple (E, [, ]z, p, (,-)E), where E is a vector bundle over
a base manifold M, the bracket [, ]g is a skew-symmetric bi-linear bracket i.e.

[, ]g:T(F)®T(FE) = T(E), (3.14)
p is a bundle map p: E — TM and (-, -) g denotes non-degenerate symmetric product on I'(E),

(Ve :T(E)®T'(E) = C*(M). (3.15)
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They are required to satisfy the following five conditions: 1) for ej,es € I'(E) the induced map
I'(E) — I'(T' M) satisfies

pler, e2lr = [p(e1), ple2)lrnm, (3.16)
2) and for any function f € C*°(M),
le1, fealm = flp(e1), p(e2)lras + (p(er) f)ez — (e1,€2)Df, (3.17)

where the map D : C*®(M) — I'(E) is defined by D = p*d. Since p* is the pull-back of p which
defines a map: I'(T*M) =I*(T'M) — I'(E) and d is the de Rham differential: C*°(M) — I'(T* M),
the map D is defined, which means that
(Df,e) = (pdf,e) = {df, p(e)) = p(e)[- (3.18)
3)The map D is required to satisfy
poD =0, (3.19)

which induces, for any functions f,g € C*>°(M),

(Df,Dg) = (p*df, Dg) = p(Dg)f = 0. (3.20)
And 4) for e, e, e5 € T'(E),
p(e){er, e2) = ([e, e1] + Dle, e}, e2) + (ex, [e; ea] + De, e2)), (3.21)
finally, 5)
DT(e,e1,e2) = T (e, 1, €2). (3.22)
Here T and J are defined, respectively, as follows
T(e,e1,e9) = é(([e, erl,e2) + (er, ea], €) + ([ea, €], e1)), (3.23)
T(eser,e2) = [[e; en), ea] + [ler, e2), €] + [[ez, €], ex)- (3.24)

Generalized tangent bundle as Courant algebroid

Let M be a n-dimensional smooth manifold, 7'M be the tangent and T* M be the cotangent bundle,
respectively. The formal sum of these bundles, M @& 1™ M is referred to as the generalized tangent
bundle. A section of TM & T*M is called a generalized vector field, consists of a sum of a vector
field X € I'(T'M) and a 1-form £ € I'(T"M), X + & € I'(T'M & T*M). So that the dimension of
the fiber is 2n.

The quadruple (TM ®T*M,[-,-], p, (-,-)) defines a Courant algebroid, where the bracket, the anchor
map and the bilinear form are given, respectively, by for X + &, Y +n € I'(TM & T*M),

X &Y +0] = [X,Y] + Lxn — Ly€ — Ldlixn — iv€). (3.25)
X+ =X, (3.26)

(X4EY +n) = S(ixn +ive). (3.27)
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Since the anchor map p acts as a projection p : I'(TM & T*M) — I'(TM) , the induced map
p* defines an injection p* : I'(T*M) — T'(T'M & T*M). Thus, the condition 1) and 3) are easily
understood. Following the definitions, straightforward calculations yield, for u,v,w € T'(TM @
M),
[uv f’U] = f[uv ’U] + (,O(U)f)U - (u,v>df, (328)
p(u){v,w) = (Ju,v] + d{u, v), w) + (v, [u, w] + d{u, w)). (3.29)
They correspond to the conditions 2) and 4), respectively. Finally, the condition 5) is shown as

follows. With noting that
DT (X1 + &1, Xo + &2, X5+ &3)
ity i, (£, i) (25, L)
+(1=2=3->1)+(1-=3—=2-=1),

while

T (X1 + &1, Xo + &, X3 +&3)
1 . . . . 1 . 1.
=3 [ —difx, x,) + Lx,dix, — Lx,dix, +dix, (ﬁXQ - 2d2X2> — dix, (ﬁxl - 2le1>:|§3

+1—-2-3-1)+(1—-3—-2-1),

thus what we have to show is A = B, where

1., . 1. . 1.
A= g I:dZ[XhXQ] + dZXl <£X2 - 2d1X2> - dZXQ <£X1 - 2dZX1>:| ’

. . . . 1. ‘ 1.
B = _dZ[Xl,XQ} + EdeZXQ — EngZXl + dZX1 (EXQ — 2dZX2> — d2X2 <£X1 — 2dZX1),

or equivalently, A = B, with

A= 4di[X17X2]
B = 3£X1diX2 - 3ﬁx2din + dixl(Q,CXQ — diXQ) — d’iXQ(Q,CXl — din).
Thus it is actually shown to be valid:

A= Qdi[xl,xz} - Qdi[X2’X1] = Qd(ﬁXli)Q — iXQ,CXI)Q - d(»CXgin - in,CXQ)
= 2dix,dix, — 2dix, (dix, +ix,d) — 2dix,dix, + 2dix, (dix, +ix,d)
= 4diX1diX2 — 4diX2diX1 + 4diX1iX2d,

B = 3dix, dix, — 3dix,dix, + 2dix,ix,d + dix,dix, — 2dix,ix,d — dix,dix, = A.

3.3 Generalized geometry

In the rest of this chapter, we are denoted in the generalized tangent bundle, i.e. the Courant
algebroid TM @T* M defined as above: Its sections consist of the sum u+¢ of vector field u € T'(T'M)
and 1-form & € I'(T* M), equipped with the Courant bracket, the bilinear form, and the anchor
map p: TM®T*M — TM.
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3.3.1 Some properties
Bilinear form under SO(n,n)-transformation

The bilinear form (3.27) can be represented as

T
<U+£,v+n>:;<z> (? é)(:;) (3.30)

Thus the action of SO(n,n) is naturally considered. Since

u u ) i u

(f%(g,)_s <§> 33)
(01)%@(01)5:(01), 3.3
10 10 10

the bilinear form is invariant under SO(n,n) transformation

W+ v +n0)={u+&v+n). (3.33)

The SO(n,n) transformation can be classified as (2.99)

ed 0 1 0 1 B
(0 e—AT>’<B 1)’(0 1)' (3:34)

The actions of these transformations on generalized vectors are represented as,
(Z’,>:<1+O£v 1fﬁv><g>:<g:r§:§:§5> (3.35)
(2)-(51)(2) ()
(e)-Go)(e)- () o

respectively. The first is surely a diffeomorphism generated by a vector field v. The second is
understood to correspond to the B-transformation as follows: recalling that the generalized tangent
vector is a parameter of the current, we find

T(ug) = v'pu + §u0s XH
= ! (pu + Bu0o X") + 0, X = w11, + £,0, X" (3.38)

And the last one can be understood to yield

T(ue) = WPy + §u0s X"
— u'upu + gu(aaXu + /Buypu)a (339)

but it does not have clear interpretation.
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Courant bracket under SO(n,n)-transformation

Here we investigate responses of the Courant bracket to SO(n, n)-transformations.

Diffeomorphism In the ordinary differential geometry T'M, a diffeomorphism ¢ : M — M
induces an automorphism ¢, : TM — TM, so that the symmetry of the Lie algebroid T'M
consists of diffeomorphisms, Diff(M). An infinitesimal diffeomorphism generated by a vector field
w = whd), and its action on I'(T'M) is represented by the Lie derivative L, as Lyu = [w,u] for
ue I'(TM).
For the generalized tangent bundle TM & T* M, a diffeomorphism ¢ : M — M induces an auto-
morphism ¢, & * : TM & T*"M — TM & T*M. Its infinitesimal form can again be represented
by the Lie derivative. Under an infinitesimal diffeomorphism the bracket responds as

[(1+ Lu)(u+€), (14 L) (v +n)]

= [u+&v+n| + [Lyu,v] + [u, L,v] + Loyun + LoLwn — Lrywé — LoLwé

1. . . .
— §d<lﬁwu7] + Zuﬁwn - Zﬁwvf - Zvﬁwg)

=u+&v+n]+ [w, [u,v]] + LoLun — Ly Lun — %Ewd(éun — i)
= (14 Lu)u+&v+n), (3.40)

with using the Cartan formulae. Thus the Courant bracket closes under diffeomorphisms.

B-transformation One of the significant properties of the Courant bracket is that it is isomorphic
under the B-transformation e with closed 2-form, dB = 0: For arbitrary generalized tangent
vectors u = X + & and v =Y + 7,

[ (u),e®(v)] = [u+ B(X), v+ B(Y)]
= [u,v] +ixy)B — ixiydB
= " ([u,v]) + ivixdB. (3.41)

For later convenience and actually we will be interested in the case of dB # 0, we retain here the
term involving dB.
Note that an H-twisted bracket is defined by

[u,v]g = [u,v] +iyixH. (3.42)
Using this bracket, for the case with dB # 0 the B-transformed bracket is represented as

e BleP(u), P (v)] = [u, v]ap. (3.43)

B-transformation The S-transformation yields, foru =X +and v =Y +n,

[¢” (), €7 ()] = [u+ B(£),v + B(n)]
= [u, v] + [u, Bm)] + [B(§), v] = [B(£), B(n)]
= [u, U] — ‘65(7}) (X + 5) + ﬁﬂ(g) (Y + 77) — ﬁﬁ(g)ﬁ(n), (3.44)
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while
e (fuso]) = fu o]+ 8( Lxn — L€ - Jalixn = i) (3.45)
So that

[e” (u), ¢’ (v)] = & ([u, v])
= =L (X +&) + L) (Y +n) — Loe)Bn) — ﬁ(ﬁxn —Ly& — %d(ixn — @5)). (3.46)

This bracket can not close only using the choice of the bi-vector field 3. However, we can do it by
selecting the form of generalized vectors, as mentioned later.

Generalized Lie derivative As mentioned above, the symmetry of the Courant algebroid TM @
T*M turns out to be a semi-direct product Diff (M) x Q2___ (M), of the diffeomorphism and the
B-field transformations. We call an element of this group as generalized diffeomorphism.

An infinitesimal generalized diffeomorphism is represented by a generalized Lie derivative L, ),

which acts on u +& € I'(TM @ T*M) as
Lwpy(u+8) = Lu(u+ &)+ iub. (3.47)

Especially when b is exact, b = —dA, it reduces to the Dorfman bracket. We represent the gener-
alized Lie derivative of such a case as L4x,

Loin(t+€) = Lop(u+€) —igdA = [w+ A, u+ €] p. (3.48)

3.3.2 Dirac structure

A Dirac structure is a subbundle L C T'M @ T*M satisfying the following three- conditions: 1) it
is involutive under the Dorfman bracket [u + &,v+n] € L for u+&,v+n € I'(L), 2) it is isotropic
under the canonical inner product, which means (u+¢&,v+n) =0 for u+&,v+n € I'(L) and 3) it
has the maximal rank i.e. the fibre dimension of L is n, half of that of TM & T*M.

Since the Dorfman bracket on I'(L) beceoms skew-symmetric, a Dirac structure defines a Lie
algebroid by definition.

It is immediately understood that a generalized diffeomorphism (3.48) by an element of L is a
symmetry of the Dirac structure L. Indeed, the action L, p for w + A € T'(L) on a section
u+ ¢ € I'(L) results in again on L due to the involutiveity Ly, ia(u+E&) = [w+ A, u+E&]p € L. We
call it as a L-diffeomorphism.

Trivial examples of the Dirac structure are TM and T*M. Another examples are obtained by
B-transformation of TM and S-transformation of T* M, which we describe below.

B-transformation of T'M

Given an arbitrary 2-form w € ['(A2T*M), B-transformation of TM with w defines a subbundle
L, = e¥“(T'M), which is denoted by

Ly ={e*(u) =u+w(u)|u € N(TM)}. (3.49)
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Here the 2-form w is regarded as a map I'(T'M) — I'(T*M). It is defined by
w(u) == w(u, ) = iw = wyude”, (3.50)

where the last expression is the representation in some local coordinates. There the 2-form w is
represented as w = %wwdm“ A dx”.

The subbundle L, defines a Dirac structure if and only if w is a closed 2-form, dw = 0. This
is because the B-transformation generated by a closed 2-form is a symmetry of the generalized
tangent bundle.

f-transformation of 7% M

Given an arbitrary bi-vector § € I'(A2T'M), a S-transformation of T*M defines a subbundle Ly =
0
8(TAM),

Ly = {e’(&) = €+ 0(8)|€ e T(T*M)}. (3.51)
Here, the bivector 6 is considered as a map I'(T*M) — I'(T'M), defined by
(€)= 0(E.) = 160 = 0€,). (3.52)

where the last expression is a local expression written in local coordinates.

The subbundle Ly defines a Dirac structure if and only if 0 is a Poisson bivector i.e. [0, 0]s = 0 where
[+, ]s is the Schouten-Nijenhuis bracket. We again mention that this condition to be a Poisson
bivector is the same condition for the Jacobi identity of the Poisson bracket {f, g} = 6(df,dg) for
f,9 € C>®(M) to be satisfied.

Two ways to describe the same Dirac structure

In the last two examples, the assumptions are equivalent to the requirement that the spacetime
(M, w) is equipped with a symplectic form w. In the generalized geometry, there are two possibilities
Ly and L, which define the same Dirac structure, as we discuss in the following.

As mentioned above, any element of L,, can be represented by using a vector u € I'() as u + w(u),
and any element of Ly can be represented by using 1-form & € T'(T*M) as £ +6(&). If the two Dirac
structures define the same subbundle Ly = L,, there must be one to one correspondence between
these two representations:

E+0(&) =u+ w(u). (3.53)
Comparing the vectors and forms in both sides, we get

E=w(u), u=_~0(0¢). (3.54)
Substituting the first relation into the second equation yields

u=0(w(u)). (3.55)
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Since wu is arbitrary, we have a relation between matrices
O = (W)t (3.56)

This relation is also pointed out in [57]. In this example, it gives a rather trivial statement that a
symplectic structure defines a Poisson bivector as its inverse. With this setting we have the two
descriptions of the same Dirac structure, the one is by TM and the other is 7*M. In [58] the
Dirac structure is identified with the D-brane, and in [59] the semiclassical Seiberg-Witten map is
constructed.

3.4 Generalized Riemannian geometry

In this section we give a review on the construction of an analogue of Riremannian geometry based
on the Courant bracket. The discussion here follow along [27].

3.4.1 Positive definite subbundle

Since the bilinear form has the signature (n,n), we can decompose the space of generalized tangent
vectors into a maximally positive definite subbundle C. C TM @& T*M and a maximally negative
definite subbundle C_ C TM & T*M. The elements in C; are defined by a graph of a map
g+ B:T(TM) —T(T*M),

C.={X+(g+B)(X) | X eT(TM)}. (3.57)

Here g denotes the positive-definite Riemannian metric and B denotes any 2-form. Similarly, the
orthogonal complement C_, which has negative definite inner product, is given by

C_={X+(—9g+B)(X)| Xel(TM)}. (3.58)
Especially for the case with B = 0, we define an extension map * : I'(TM) — Cy as
Xt =X4+g(X)eC.. (3.59)
So that we have
Xt — X~ =2¢(X). (3.60)
Then we define a projection operator 7y : '(TM) @ T'(T*M) — Cy as
+(29(X)) = £ X+ (3.61)
To get the formula for an arbitrary 1-form £, we rewtire the 1-form g(X) as £ = ¢g(X), then we find

21 (€) = £(X £ g(X)) = £(g7 () £
=ttg (¢ =& (3.62)
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For the consistency to be the projection operators, they should satisfy

Te(XE) = X, (3.63)
(X)) = 0. (3.64)

From the latter condition we can read off how we should define the actions of the projection
operators onto a vector field X as

0=mp(XT)=ms(X) Fre(9(X))

= 7 (X) F 5 (9(X) £ 97 (9(X))), (3.65)
i (X) = %(X + g(X)) € Ca. (3.66)

For a consistency check, we calculate the left-hand side of the former condition:

T2 (XF) = 12 (X) £ 72 (9(X))

1 1
= S (X £ g(X)) & (i 2Xi> = X+, (3.67)
Here we use the (3.66) and (3.61). Thus the projection operators are well-defined.
To extend the discussion in the case of B # 0, we successively apply a B-transformation e? in
addition to the extension map * :
X eBX*F = X + (49 + B)(X) € Cy, (3.68)
Er— ePeF =L g7 () £ B(g7'(€) = £l () + (g + B) (g )] € . (3.69)

3.4.2 (Generalized connection

To construct Riemannian geometry, we are devoted in the positive-definite subbubdle C; defined
in the previous subsection. Firstly, we define a connection on C. Since a connection V is induced
by a vector field, it should be defined as a map

A connection V : Cy — T*M ® C. is defined by
Vxu=m (e BlePX™,ePul) = n (X, ulap), (3.71)

for X € T(TM) and u = Y + g(Y) = Yt ie. eBu =Y + (g+ B)(Y) € C;. Notice that the
property of the Courant bracket under a B-transformation leads, for u =Y + g(Y) =Y,

Vxu =7, (X", Y] +iyixdB), (3.72)
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as explained in the above. We can check for this connection satisfying the Leibniz rule: For an
extension X~ = X — ¢g(X) and a positive definite generalized vector u = Y + ¢g(Y) = YT, and
arbitrary functions f and h, with noting (3.28) and (X~,Y ™) = 0, we have

Vix(hu) = 7 ([fX,hY ] + fhiyixdB)
=my (fRIX T, YT+ f(XR)YT —h(Y )X~ + fhiyixdB)
=1y (fR[X 7, Y] + fhiyixdB + f(Xh)Y ™)
= fhVxu+ f(Xh)u. (3.73)

From the second line to the third we use a property that the operator 74 projects out X .

3.4.3 Generalized curvature

A curvature on is constructed by taking a commutator of the connection. A curvature on the
positive-definite subbundle C. is defined by

R(X,Y)U = (VXVY - VyVX — V[ny])u, (3.74)

where X, Y € I'(TM) and u = Z + g(Z) = Z* with some vector field Z € T'(TM). We mention
that [X,Y] denotes the usual Lie bracket, or equivalently we can say it as the Courant bracket,
because by definition it reduces to the Lie bracket with the case of both X and Y being vector
fields. We can easily show that this curvature satisfies the tensor property,

R(fX,g9Y)hu = fghR(X,Y )u, (3.75)

see appendix B.1.

3.4.4 Local expressions
In terms of components in some local coordinates {z'}, we have
Vo, (05)F = ([(8:)7,(8;) ] + ia,i9,dB). (3.76)
With some calculations
[(8:)7,(9;)T] = [0; — gud=', 9; + gjudz"]
= (0igjk + 0jgik — Orgij)da”, (3.77)
1
iajiaidB = 19,1, <28kBlmd$k A dzt A dl‘m>
= (9;Bj1, + 9; By; + Oy, Bij)da", (3.78)
we find that the coefficient of the connection is

Va.(aj)+ = 7T+([2sz‘j + ka]dl‘k) (3.79)

K3
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Here we define this coefficients as

1
Drij = 5(8¢g]~k + 0jgik — Okgij), (3.80)
Hyij = 0iBj), + 0;Byi + O Bij.- (3.81)

These are very the Christoffel symbol constructed by the positive-definite Riemannian metric g,,,,
and the H-flux, which is the 3-form field strength of the 2-form B-field, respectively.

For the case with B=0

We would like to calculate the connection and the curvature in components of local coordinates
{x'}. Firstly we set B = 0 for simplicity. From the above calculation, we have

Vo, (0;)T = 14 (2T ijda®) = Ty (da® + gMoy)
= g’“leij(al + glmdxm) = Fﬁj(81)+. (3.82)

To obtain the curvature we have to compute
(ViV; — vjvi)(ak)f (3.83)
Here we denote V; = Vp, and use Vy, 5,1 = 0. By using (3.73) and (3.82) we obtain
ViV;(0k)T = Vz’( ﬂ((‘%)*)
= (0I7) Om) T + THTY (0p)F = (0T + T4 (0m) (3.84)
and then
(ViV; = V;Vi)(@) ' = (0L, — O;Ti + Tyl = Tl (0m) * =2 Ry (0m) (3.85)
Here the coefficient turns out to the celebrated Riemann curvature tensor:
o= O — 0T + T4, Ty — TLT. (3.86)

For the case with B # 0

Under the situation with B # 0 the discussion above is also applicable. Since we have (3.79),
performing the projection operator gives

Vlc’?]* = T4 <[2Fkij + szj}d$k> = (21_‘]%‘]' + Hkij)ﬂ'+(dxk)
1 k km 1 km l
= 5(2Fk,’j + Hkij)(d:c +g 8m) = 5(2Pkij + Hkij)g (8m + gpudx )

1 m m. —m
= §<2sz +9g k];[lcz‘j)(am)Jr =2y (Om) ™, (3.87)



42 CHAPTER 3. GENERALIZED GEOMETRY

l

where we define Z;; as an extended object of the Christoffel symbol by

1
‘:‘ij = F:'; + §gm H]ﬁ] (388)

Then the curvature is calculated straightforwardly,

(ViV; = V;Vi)(0)T = (0], — 055 + E5E0 — ERE) (0m) "
= TP (Om) (3.89)

: m _ 9=m _a=m_ =l =m _ =l =m [ :
where we introduce T,“.j = 81ij 0,20 + el — SaS Explicitly, in terms of the components,
see appendix B.1, we obtain a tensor expression of this curvature as

1 1 1 1
Wi = Bl + 79" Hujrg™ Hyit = 59" Hyigg™ Hyjo + 59™ ViHyje = 5g™ ViH. (3.90)

The Ricci tensor is obtained by taking a contraction between an upper index and a lower index

_ pm _1_1 in g H _1 In mpHA_‘_l mlv H _1 leH
— kmyj 49 njkd pml 49 nmkd pjl 29 mAjk 29 FHmk
1 1
= R?mj - ZglanmkgmpHpjl + igmlvaljk' (3.91)

Furthermore the Ricci scalar is given by contracting between the metric and the Ricci scalar

T = g%y = gN YT,

25 (3.92)

1 - 1, 1 -
=R - Zglngk]HnmkgmpHpjl + ingQWVmHz]’k =R - ZHlp]Hpjl =R -
where R denotes the usual Ricci scalar constructed by the Riemannian metric g. The generalized
Ricci scalar Y involves the term squared of the H-flux and is the same as the Einstein-Hilbert
action of the supergravity.



Chapter 4

Poisson generalized geometry

In this chapter we define a new Courant algebroid [28]. This algebroid is a dual of the algebroid
used in generalized geometry in a sense that the roles of the tangent and the cotangent bundles are
interchanged. We discuss some properties of the new Courant algebroid, which provide the bases
of the next chapter.

4.1 New Courant algebroid

In this section, after recalling some notions of the Lie algebroid (T*M )y of a Poisson manifold
introduced in the beginning of the previous chapter, we give a definition a new Courant algebroid
(TM)o @ (T*M)p. The corresponding bracket is different from that of the Courant algebroid
TM @ T*M. Here we investigate some properties of the new Courant algebroid.

4.1.1 Lie algebroid of a Poisson manifold

Let (M,#) be a Poisson manifold equipped with a Poisson bivector § € A?TM. The Poisson
bivector 6 satisfies [0, 0]s = 0, where [, -|g is the Schouten-Nijenhuis bracket. A Lie algebroid of a
Poisson manifold [56] is defined by a triple (T*M, 0, [-,-]p), where T*M is the cotangent bundle, 0
is the anchor map, and [, ]9 denotes the Lie bracket defined by the Koszul bracket as

[€,nlo = Loy — o) dE, (4.1)

for £,m € I'(T*M). We denote this Lie algebroid as (1M )y for short.

we can define the Cartan differential calculus on the space of polyvectors I'(A*T'M). The “exterior
derivative” dy : T(APTM) — T(APTITM) is defined as dp = [,-]s. In particular, for a function
f e C®(M)=T(A"TM), its action is defined by

dof =10, fls = —0(df). (4.2)

And the “interior derivative” is defined by the contraction between 1-form and poly-vectors. Then
we can defined the “Lie derivative” as follows. The actions of the Lie derivative L., where ¢ €

43
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[(T*M), on a function f, a 1-form £ and a vector field X are given by

Lef ==vicdyf,
'C'Cg = [Ca€]9>
ﬁCX = (dgic + icdg)X, (4.3)

respectively. They are shown to satisfy following Cartan relations on the space of polyvectors
L(A*TM),

{ig,in} =0, {do,ic} = Le, [Leyiy] =iy, (Lo Lol = Ligy),, [do, Le] = 0. (4.4)

4.1.2 Courant algebroid (T'M), & (T*M),

Let us consider a vector bundle T'M & T*M equipped with a canonical inner product

(X +&Y +n) = 5(ixn + ive), (4.5)

anchor map p: TM & T*M — TM,

p(X +€) =0(), (4.6)

and a skew-symmetric bracket
1. .
X +EY + 1] = [€nlo + LeY — L X = Sdo(icY — inX). (4.7)

Then we can show that the quadruple (TM & T*M, (-,-), p,|-,-]) defines a Courant algebroid. To
show this, note that a Lie bialgebroid A @ A* is always a Courant algebroid [54], and the above
Courant algebroid is of this type. This means that the first Lie algebroid (T'M )y := (TM, a =
0, [-,-] = 0) is a tangent bundle with the vanishing Lie bracket and the vanishing anchor map, while
the second (T*M )y = (T*M, 6, [-,-]p) is the Lie algebroid of a Poisson manifold explained in the
previous subsection. We denote this Courant algebroid as (T'M)o @ (1 M)y for short.

We can show, see appendix B.2, that the bracket (4.7) satisfies the following equations

[U, f’U] = f[u,v] + (‘Cff)v - (d@f)<u, U>7 (48)
Le(v,w) = ([u,v] + do(u,v), w) + (v, [u, w] + dg(u, w)),

where u =X+ v=Y+nw=2+¢€ (TM)y® (T*M)y, and f is a smooth function. These
properties are crucial in defining a connection which is compatible with O(d, d)-invariant inner
product (-,-) as we shall see in the following section. Note that in the second equation, while the
left-hand side depends only on &, the right-hand side seems to depend on X as well. Despite of its
appearance, we can check that the cancellation between the terms involving X does occur in the
right-hand side. Thus its appearance is really dummy and the right-hand side is indeed independent
of X.
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To make a comparison between the new Courant algebroid (T'M )o@ (T*M)g and TM & T* M used
in generalized geometry, we give some comments. In the standard case TM & T*M, the anchor
map is given by p(X + £) = X and the Courant bracket [-,-]¢ is defined by

[X + &Y + n]c = [X, Y] + £X77 - Eyf - %d(ixﬁ — Zy{) (4.10)

The Courant algebroid T'M & T*M can be considered as an extension of the Lie algebroid T'M,
and in fact it is a Lie bialgebroid (T'M, id, [, ]ram) & (T*M, 0, 0).

In our new Courant algebroid (T'M)o & (T*M )p, the roles of TM and T*M are interchanged: the
underlying Lie bialgebroid is (T*M, 0, |-, ]g) ® (T'M, 0, 0), the anchor map (4.6) picks up only
T*M-part, the Courant bracket (4.7) is written in terms of the operators defined by (7™M )y only.
In this way, our Courant algebroid (T'M )¢ @ (T*M )y can be considered as an extension of the Lie
algebroid (T*M ).

As a consequence, in the Courant algebroid (T'M)g & (T M )g, the Poisson Lie algebroid (TM )y
governs the differential geometry, and the resulting differential geometry is quite different from the
one governed by the Lie algebroid T'M. However, we can proceed to formulate an analogue of the
generalized geometry exactly in the same manner as the standard generalized tangent bundle.
Some comments are in order: First, the standard Courant bracket (4.10) and the new bracket (4.7)
can be considered as complementary parts in the Roytenberg bracket [55,60]:

[X +§7Y +77]R0y = [X,Y] + £X77 — Eyf — %d(l){ﬁ — Zyg)

1. .
+[&mlo + LY — Ly X + §d9(2X"7—ZY§)- (4.11)

Note that the Roytenberg bracket is the bracket for a Lie bialgebroid TM @ (T*M)y and not for
the present Courant algebroid (T'M)o @ (T*M)g.

Secondly, in general, an anchor map p : £ — TM of a Courant algebroid F induces a natural
differential operator D : C*°(M) — I'(E) defined by (Df, A) = 1/2p(A)f, for arbitrary function
f € C®(M) and section A € I'(E). In our case,

(DIX +8) = 30(6) - T = 20(6,df) = —5ichld), (112)

implies that Df = dpf = —0(df) € T(TM).
Finally, in [59], the same Lie algebroid (77%M)g is used but in a different context. It appears as a
Dirac structure in the standard generalized tangent bundle TM & T M.

4.1.3 Symmetry of (T'M),® (T*M),

As is mentioned in the previous chapter, the symmetry of the generalized tangent bundle T'M &T* M
consists of diffeomorphisms generated by vector fields and B-transformations induced by closed 2-
forms. Here we investigate the symmetry of the new Courant algebroid (T'M )o@ (T*M)g. It turns
out to be a direct product of S-diffeomorphisms and S-transformations.
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Let us define the following two transformations acting on a section X + ¢ € I'((T'M )o & (T*M)p):
1) pB-diffeomorphism: for a 1-form ¢ € I'(T* M), we define

Lo(X +6) = LcX + Lt (1.13)

by the diagonal actions of the Lie derivative £¢ given by (4.3).
2) S-transformation: for a bivector 3 € I'(A2T'M), we define

(X +€) =X +€+ieb. (4.14)

The B-transformation here follows a widely-used definition in the context of TM @ T*M. As is
mentioned in the previous chapter, it turns out not to be a symmetry of the Courant bracket of
TM @ T*M. However, the g-transformation is indeed a symmetry of the new Courant bracket
(TM)o @ (T*M)p as we shall see in a minute.

The B-diffeomorphism is a natural object for the Courant algebroid (T'M)g & (T*M )y as follows.
It is instructive to rewrite (4.3) following [43-46] as

Lef = Loyt
L€ = Lo¢)€ — ta(e)dC,
ECX = ﬁg(C)X + 0(ixdC). (4.15)

The third equation of (4.15) is proven in the appendix B.2. In the above expressions, the terms
of the ordinary Lie derivative Ly¢) represent a diffeomorphism generated by a vector field 6(().
The term ig(¢)dC in the second equation is a B-transformation with d¢ of a S-transformed vector
0(¢), while the term 0(ixd(¢) in the third equation is a S-transformation of a B-transformation with
d¢. Therefore, the §-diffeomorphism is a rather complicated combination of a diffeomorphism, a
B-transformation and a §-transformation from the viewpoint of TM & T*M. And it is no longer
a symmetry of the Courant bracket of TM & T* M.

It is worth mentioning that if the parameter ( is an exact 1-form, say ¢ = dh, the g-diffeomorphism
(4.3) reduces to the ordinary diffeomorphism generated by the Hamilton vector field X} = 6(dh):

LanX =Lx, X, Lané = Lx,E. (4.16)

Such exact 1-forms form a subgroup of the group of S-diffeomorphisms.
We are now ready to study the symmetry of the new Courant algebroid. For an infinitesimal
B-diffeomorphism L., we can show that

(LcA,B) + (A, L¢B) = L(A, B),

p(LcA) = Lep(B),

The first and the third equations are satisfied by an arbitrary {, while the second equation holds
when the vector field 6(() is dg-closed. The proofs of the above relations are given in the appendix
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B.2. And for a B-transformation e”, we can also show that

(eﬁA, eﬁB) = (A, B),

p(e’A) = p(B),
[P A, e’B] = °[A, B]. (4.18)

Here the first and the second equations are satisfied by an arbitrary 3, while the last holds when
the bivector field 3 is dy-closed. First two equations are obvious to hold. We give the proof of the
third equation in the appendix B.2.

In summary, a 3-diffeomorphism L is a symmetry if £:0 = 0 and a S-transformation e? is a symme-
try if dg8 = 0. In particular, for construction of R-fluxes, it is essential that the S-transformations
are the symmetry of the new bracket, as we shall see in the next section.

We end this section with a few remarks. As in the case of B-transformation, we call the particular

case of a f-transformation e?? with a dg-exact bivector f = dpZ, a B-gauge transformation.

Similar to the Courant bracket of TM @ T*M, the action of a pair ((,5) = ({,—dpZ) can be
written as

Li¢—dgzy(X +8) = [(,€lo + LcX —igdoZ
=+ 2)o (X +9), (4.19)

where in the last line, the symbol o denotes the analogue of the Dorfman bracket !. Hence, a
[B-gauge transformation is an inner transformation.

It is also worth to note that the S-transformation does not yield a naive shift § — 6 + 5 of
the bivector §. Here the situation is different from the case in the paper [59], where (T%M)y is
regarded as a Dirac structure in TM @& T*M, and the S-transformation is required to preserve the
Dirac structure. In that case the p-transformation indeed results in a shift # — 6 + 3, and the
Maurer-Cartan type condition for 5 has to be satisfied.

4.1.4 Dirac structure

A Dirac structure L is defined in the same manner as in the standard generalized geometry. That
is, a Dirac structure L C (T'M)o @ (T* M)y is a maximally isotropic subbundle, and is involutive
with respect to the new bracket [L, L] C L. There are always two Dirac structures independent of
the choice of a Poisson bivector 6:

1. L =(T*M)y. Its bracket [-, -]y is a Lie bracket. because of p(L) = 0(T*M), the dimension of
the leaf equals to the rank of 6.

2. L = (TM)y. Its bracket vanishes, and p(L) = 0. All leaves are 0-dimensional.

Contrary to the standard generalized geometry, even a simple subbundle such as L = span{d,, dz'}
is not necessarily a Dirac structure, depending on the choice of the Poisson bivector. Nevertheless,
we can say some general statements analogous to those given in the standard generalized geometry:

!The skew-symmetrization of o gives the new bracket (4.7)
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1. Let A C T*M be a subbundle of T*M such that it is involutive [A, Alg C A with respect to
the Koszul bracket. Then, L = A & Ann(A) is a Dirac structure of (T'M)o & (7% M)y.
Proof. L is apparently maximally isotropic. The involutive condition [L, L] C L reduces to
[A, Ann(A)] € Ann(A), because [A,A]y € A and [Ann(A), Ann(A)] = 0. This condition
means for arbitrary £,n7 € A and X € Ann(A)

0= <[§7X]777>7 (4'20)

but it is rewritten as

0 = ([&, nle, X), (4.21)
which is automatically satisfied by definition. (End of the proof)

2. Given a Dirac structure L, its deformation Lr = e/ L by a L-2 form F € A2L* is still a
Dirac structure iff the Maurer-Cartan type equation dpF + £[F, F|r- = 0 is satisfied [54].
For L = (T*M)g, F is a bivector such that dgF = 0. For L = (T'M)o, F is a 2-form such
that [F, Flp = 0 ([, -]o is the Gerstenhaber bracket extending the Koszul bracket.).

In the papers [58,59], Dirac structures are identified with D-branes (with fluctuations). It is
interesting to investigate the Dirac structures here in this context.

4.2 Proposal of R-flux

In this section, we propose a definition of R-fluxes by a set of data (R, f3;, ov;;), where R € N3T M,
Bi € N’TU; and a;j € TU;j, such that

R|y, = dgfi,
ﬁj — 5i|Ui]- = dgaij. (4.22)

Here {U;} denotes a good open covering of M and U;; = U; N U;. It follows from (4.22) that R is
a global 3-vector on M and is dg-closed: dyR = 0. Local bivectors {3;} are gauge potentials for
the R-flux, the analogue of B-fields for H-fluxes, and correspondingly, there is the local S-gauge
symmetry of the form

Bi = Bi +do;, iy agy + Ny — Ay, (4.23)

for an arbitrary gauge parameter A; € TU;. In particular, since the R-flux is invariant under the
gauge symmetry, it is Abelian.

This proposal is based on the mathematical correspondence between the standard generalized
tangent bundle TM @ T*M and our new Courant algebroid (TM )o@ (T*M)g. In the following we
show that this R-flux is exactly the (T'M)o & (T M )g-analogue of an H-flux in TM & T*M. We
give a review on the global definition of the H-flux in the appendix B.2.
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Recall that in the new Courant algebroid (T'M )o & (T M )g, comparing with TM & T*M, (T*M )y
play the role of TM. Thus, an H-twisting of TM & T*M (B.34) corresponds to a twisting of
(TM)o @ (T*M )y satistying the exact sequence

0= (TM)g 25 E 5 (T*M)g — 0. (4.24)

We emphasize that the bundle map 7 is not an anchor map, thus the meaning of the exactness of
(4.24) is different from the standard exact Courant algebroid.
In the following subsection we show

1. Given a data (R, [, «) in (4.22) we can construct a Courant algebroid E that satisfies the
exact sequence (4.24). It is classified by Poisson cohomology [R] € H3(M).

2. E is isomorphic to the untwisted Courant algebroid (T'M)g @ (T*M )y with the R-twisted
bracket.

3. E is a quasi-Lie bialgebroid ((T'M)o,d =0,¢ = R).

Each statement has its analog in the case of H-fluxes [61,62], here our logic follows in part along
with the presentation by [62].

4.2.1 Gluing by local -gauge transformation

We follow the argument of [62] for H-fluxes, by replacing the role of TM with that of T*M, and
B-transformations with S-transformations.

Let (M, 0) be a d-dimensional Poisson manifold with a dg-closed 3-vector R € AST M. We assume a
trivialization of R, that is, an open cover {U;} of M equipped with local bivectors 3; € A2TU; and
vectors o € TU;; such that (4.22) is satisfied. Given such a trivialization, a Courant algebroid
FE is constructed in the following way. First, over each open set U;, we can consider a Courant
algebroid E; = (TU;)o @ (T7*U;)p, equipped with the anchor map p;, the inner product (-,-); and
the bracket [-,-]; defined by

piE) = 0€), (X +EY +n)i = Jlixn —ive)
(X +&Y +nli = nfo+ LY — LyX + %de(ixﬁ —iy§), (4.25)

for X + &Y +n € (TU;)o ® (T*U;)g. On the intersection U;j, E; and E; are glued by a [-gauge
transformation generated by «;;, that is the transition function is

Gij : Uij — O(d, d),

Gij(x) = ( (1) —dGOIij(x) > ’ (4.26)

It defines the equivalence relation ~ between X + ¢ € Ej|y,; and

Gij(X + &) = X +§ — dyeij(§) € Eilu,;- (4.27)
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Such G;; satisfies the cocycle condition
Gijij = Gik; (4.28)
on Ujji, due to (4.22). Therefore, it defines the vector bundle over M by

E= ] @ve (TUo/ ~. (429)
zeM

Since a (-gauge transformation preserves the anchor map, the inner product and the bracket (see
(4.18)), they all are globally well-defined on the quotient. For example, the bracket on U; and U;
are related by

[Gij (X +&),Giz(Y +n)]i = Gi ([X + &Y +1l). (4.30)

Therefore, the vector bundle E is in fact a Courant algebroid.

It is apparent that F satisfies the exact sequence (4.24). Here the map 7 is induced by the projection
(TU;)o @ (T*U;)g — (T*U;)p to the second factor and 7* is the inclusion.

As in the case of H-twist, the set of bivectors {5;} induces a bundle map s : (T*M)g — E, locally
defined by a S-transform as

s(§) = €7 (&) = £+ Bi(¢) (4.31)

for € € T*U;. 1t follows form (4.22) that s((7%M)g) is globally well-defined as a vector bundle over
M. This map s is in fact an isotropic splitting, since it satisfies 7o s(§) = £ and (s(£),s(n)) =0
for all £,m € (T"M)p. Therefore, s induces the isotropic splitting E = 7*((T'M)o) @& s((T*M)g) of
E, and any section A € E can be uniquely expressed for X € TM and £ € T*M as

A=X +5(¢). (4.32)

4.2.2 R-twisted bracket

From this splitting, the structure of the Courant algebroid in E = 7*((T'M)o) & s((T*M)p) is
translated to that in (TM)o @ (T*M)y. Since s is a S-transformation e’ locally, the anchor map
and the inner product is unchanged from (T'M)o @ (T*M)g (see (4.18)):

p(X +5(8) =0(&) = p(X +£), (X +5(),Y +s(n) =(X+EY +0). (4.33)

The bracket on 7*((T'M)o) & s((T*M)gp) is our bracket of sections of the form (4.32). We compute
it locally as (see (4.18))

[X +5(),Y +s(n)] = [¥(X + &), 5 (Y +n)]
= HX +EY +0) + [0, 8]s(&,m)

= s([Emlo) + LeY — £, + Ldolixy —ivE) + (@doB)(E ). (434
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Hence, if we define the R-twisted bracket by
(X +&Y +nlr = [X +&6Y +n]+ R, P), (4.35)
then we have
(X +5(),Y +s(n)] = (7" @ s)([X + &Y +1]r). (4.36)

Therefore, as a Courant algebroid, E' = 7*((T'M )o) & s((T*M)p) is equivalent to (T'M )o & (T* M)y
but with the R-twisted bracket.






Chapter 5

Poisson Generalized Riemannian
geometry

In this chapter we construct an analogue of Riemannian geometry based on the new Courant
algebroid. Firstly, we define positive-definite subbundle. Since the inner product in the Courant
algebra (T'M)o @ (T*M)y is the same as that in TM @ T*M, the positive-definite subbundle in
(TM)o @ (T*M)g is so too. We shall show that a connection and a curvature are consistently
defined on the positive-definite subbundle, even in the presence of the R-flux. The final section
provides a construction of the gravity theory based on the framework defined and investigated in
the other part of this chapter.

5.1 Positive-definite subbundle

As in the standard Courant algebroid, we define a generalized Riemannian structure as a maximal-
positive definite subbundle Cy C (T'M )¢ & (T*M)g. Since this definition depends only on TM &
T* M as a vector bundle, and the bilinear form is independent of the bracket, a generalized Rieman-
nian structure Cy of the standard tangent bundle becomes automatically that of the new Courant
algebroid. In other words, two Courant algebroids share the same C,. Therefore, Cy is given by
a graph of amap g+ B:TM — T*M,

Cy={X+(g+B)(X)| XeTM}. (5.1)

As is emphasized in our previous papers [58,59], however, there are various ways to represent Cy
as graphs. In particular, C; can be seen from T*M as

Cy = {E+(G+B)(E) | € € T"M}, (5.2)

where G + 3 = (g+ B)™' : T*M — TM is the inverse map. Two representations (5.1) and (5.2)
of C are equivalent if the fluxes are absent.

However, in the presence of the fluxes, the situation is changed. In the presence of an H-flux,
the representation (5.1) is natural, since an H-twisting requires to replace B with a local 2-form
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B; while it does not affect the symmetric part g. In other words, a Riemannian manifold (M, g)
is unchanged regardless of the presence of H-fluxes. This compatibility of the generalized metric
with H-twisting is emphasized in [27]. On the other hand, in the different representation (5.2),
an H-twisting affects both the symmetric part G and the skew-symmetric part 5, so that G is
non-trivially glued by local B-gauge transformations.

Similarly, in the presence of a R-flux, the representation (5.2) is natural, since now a R-twisting
affects only [, kept fixed the symmetric part G. Here G is a fiber metric on T*M defining a
Riemannian manifold.

In the case with 8 = 0, we make a choice of the positive-definite subbundle C as

Ci={X+G X)X eTM} ={+G(&)|c € T*M}. (5.3)

Recalling some definitions may be helpful: The projection operators m+ and extension maps * give
1 1

ma(X) = (X £ G (X)) = 5 X7, (5.4)

ra(€) = S(£C(E) +8) = 5£%, (5.5)

for every vector field X and 1-form €&.
To make the discussion in the case with 5 # 0, we perform a successive S-transformation to the
positive-definite subbundle of trivial j:

P (ET) =+ (G+B)(€) € Cs. (5.6)

In the rest of this section we assume 8 = 0 for simplicity. We shall discuss about the extension to
the case with § # 0 in the next section.

5.2 In the absence of R-flux

5.2.1 Connection, Torsion and Curvature

Here we shall define a connection, a torsion and a curvature on positive-definite subbundle C’JBFZO.
As mentioned above, here we assume [ = 0 for making the argument simple. The definitions are
based on the algebraic structure of the Courant algebroid (T'M)o & (T M)y.

Poisson generalized connection We define a bilinear map V : Cﬁzo - TM® Cﬁzo as
Veu =y (€, u]), (5.7)
where £ € T*M and u € Cﬁzo. Then this map satisfies the following properties

Vieu = fVeu, (5.8)
Ve(fu) = fVeu + (Lef)u,

where f denotes any smooth function. The proofs of these relations are given in appendix B.2.
Hence the map V defines a connection.
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Furthermore, we can show that this is compatible with the canonical O(d, d)-invariant inner
product (-, -):

Le(u,v) = (Veu,v) + (u, Vev), (5.10)

for u,v € C’ﬁzo, see appendix B.2.

Poisson generalized torsion A torsion can also be defined in a parallel manner with the gen-
eralized geometry:

T(&m) = Ven" = Vy& = ([6:1l0) ", (5.11)

as is easily shown that

T(f€ gn) = fgT'(&,n), (5.12)

with a use of the formula (?7).

Poisson generalized curvature We define a curvature by
R(&n)u= (VeVy = VyVe = Vie 1, )1, (5.13)

for any 1-forms &, n and u € CEZO. Note that the Koszul bracket [-, -]y, which is the Lie bracket of
the Poisson geometry (7% M)y, appears in the third term. We can show that this curvature actually
satisfies the following tensorial property

R(f& gn)hu = fghR(¢,n)u, (5.14)

see appendix B.2.

5.2.2 Local expressions

The definitions above are quite abstract and indeed their proofs are based only on the algebraic
properties of the Courant algebroid (T'M)o @ (T*M)y. In this subsection, we present local expres-
sions of the objects introduced in the previous subsection on some local coordinates {x*}.

Poisson generalized connection Firstly, we shall calculate the connection (5.7)
V gpi (dz) T = 7y ([(dz?) ™, (d2?) 7)) = 7y ([da? — G*Oy, da? + GTL9))). (5.15)
The bracket under the projection operator becomes as follows, see appendix B.2,

[dz® — G*oy, da? + GI19)]
= 07 dz" + [0 (0,,GTY) — 0™ (9, GIM) — 0™ (0, GT) — GIYBH™) — G670, (5.16)
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Notice that the coefficient in front of 1-form dz* is skew-symmetric under an exchange bewteen
the indices i and j, while that of the vector field 0,, is symmetric. We denote these coefficients as

s 1 y . A ) A . A . ,
Tl = S0 (O CT) — 0™ (DG = 67 (0, G™) — GIL(3,6™) — G(9,67)) G (5.17)

a1 . 1 -
Tl — 5 (007) = S G (010) Gl (5.18)
Then the connection can be represented as
Vg (da?)t = (O 4 DIy (aok)yt = T (da*) (5.19)

The meaning of this connection is intensively studied in the next section.

Poisson generalized torsion The local expression for the torsion tensor is obtained by com-
puting

V gpi (d2)) T = V 4 (da) T — ([da®, da?]) T (5.20)

It is worth noting that [dz?, dz?] = 0y dx* # 0 with our Courant algebroid. This is significantly
different point from the standard one, as [0;, 0j]7a = 0. And then

T .= T(da',dz’) = (T = T9' — 6% (da®)t = (2T — 04699 (da®)* = 0. (5.21)
Thus, when 8 = 0, the torsion tensor is identically zero
T =0, (5.22)

which is guaranteed by the multi-linearity (5.21). Although the connection non-trivially has anti-

symmetric part, it is torsion free.

Poisson generalized curvature The local expression for the curvature is obtained by computing
(vd;rivdxj — VaziVagi — V[dzi,dzj])(dxk)+' (523)
Using the Leibniz rule and the linearity of the covariant derivative, we have
ik =
Vi Vigida® = Vg D17 (da' )t = (L g T7" + TIFT™) (dah) T, (5.24)
and, as mentioned above,
V[dmi’dmj](dl’k)-i_ = (8n0ij)f‘?k(d:cl)+. (5.25)
By combining these results, we find that the curvature is
i
Ry (da)* o= (Vari Va = Vaws Vi = Vides aen)(d2*)
= (69, 7% — 79, Tk — 0,09k + DIFTIm™ — TIRTI™) (da!)*
vii
=: 11,V (da") . (5.26)
Here we introduce a symbol Hfij to denote the coefficients
Y = 6™, 17" — 078, T — 8,09T7* + TIFT™ — TIRT]™. (5.27)

This object can be interpreted as an analogue of the Riemann curvature tensor.
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Ricci tensor and Ricci scalar The Ricci tensor is obtained by a contraction between an upper
and a lower indices of the Riemann curvature tensor

RN = RV (5.28)
And the Ricci scalar is constructed by a contraction of the Ricci tensor with the metric
R = Gy;RY. (5.29)

5.2.3 Rewriting in covariant manner

To get more insights into the connection f‘f, we rewrite it in manifestly covariant manner. Using

the ordinary Levi-Civita connection I'%;, defined as usual,

150
k L
Iy = 567 (0iGyy + 9;Gii — 0iGyg), (5.30)
we can rewrite the derivative of the metric G as
OmGY = —T% ,GY —T7 G (5.31)

We introduce the usual Levi-Civita connection as V;. Then the symmetric part of the connection
reads

ol t) = [0 9™ 4 19 6™ G — GIIN,9™ — GV 167G, (5.32)
while the antisymmetric part does
ol — GM[w0% — T 0™ + T 6™G . (5.33)
By summing them up we find that the connection (5.19) is rewritten as
o9} oTll — o1 9 1 740" — I (07 G ) — GIVL(607 G, (5.34)
i.€.
D = 10,0 4 (V47— V(67 Gp) — V(0" Go)] = Th, 0™ + K, (5.35)
where we introduce a tensor K,ij defined as
Kl = %G,m[v"eif — VigIn 4 VI = G, K™ (5.36)

which can be interpreted as an analogue of “contorsion tensor”. Here raising and lowering of indices
are done by the metric G, and pay attention to V! # V .
Thus we can rewrite the connection (5.19) as

Vi (da?) T = (T, 6™ + K7)(da®) T = T (da®) . (5.37)
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After some lengthy computation, see appendix B.2, we obtain the covariant expression of the

curvature as
I = 0™ 0" Ry, — (Va0 KPF + 0"V, K — 0"V, K" + KIFK™ — KIFE]™, (5.38)

where Rfmn and V denote the Riemann curvature tensor and the Levi-Citiva connection constructed
by the metric G, respectively.

An analogue of the Ricci tensor is constructed by contracting an upper index with a lower index
as usual:

% =
= g'mgrIRE — (V.0 KPR+ 07, KE - gy, KTF 4 KIFKI™ - KRR, (5.39)

Notice that
2Kk = 2v,0'* (5.40)
where we used GlpGpl = 0. Hence we obtain an analogue of the Ricci tensor

1+ =
= gmgIRE, — (V0K + 07, V0% — 07, KT+ KRV, — KR KT (5.41)

Finally an analogue of the Ricci scalar is defined by taking the contraction between the metric
G and the Ricci tensor

Il = Gy, 11
= 0™ Ry — Grj (V0K 4+ 07 GV, V0% — G0V, KT 4 Gy KIFV 0™ — Gy KE K™,
(5.42)
Notice that
261K} = —2GuV;(07), (5.43)

where we used ijvleﬂc = Vl(Gk.jij) = 0. Then we find that the analogue of the Ricci scalar

results in
IT = 0""0" Rjjy, + 205 V" V10" — NV"0,,,, V10", (5.44)

Here raising and lowering of indices are done by the metric G.

5.3 Interpretation of the connection

In this section we try to clarify the geometrical meaning of the connection presented in the last two
sections. We investigate here what kind of geometry the connection 1_“;5 defines. To this end, we
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extend the connection to that acting on 1-form {dz’}, not {(dz*)*}! and forget the results above
for a while:

V gpida? = di:nk (5.45)
We define a connection for any 1-forms &, n and any functions f, g,
Vie(gn) == fgVen + f(Leg)n, (5.46)
especially for ¢ = &da’ and 1 = n;dx’
Ven = &m;V auda? + & (Lapiny)da? = (Em; Q] + 60" 0y ) da”. (5:47)

We require that the covariant derivative should be compatible with the metric G in the sense
of what follows:

LG, ¢) = G(Ven, ¢) + G(n, VeQ). (5.48)
We calculate straightforwardly the left-hand side
Le(GInigy) = &0™0(Gni(;), (5.49)
and the right-hand side

= G((Em; Q) + &0 0;mx)da”, ) + G(n, (&7 + €07 9;¢k)da™)
= &G (GO + GIQFY) + 6,GI¢0M o, + .G IR 91¢;. (5.50)

Hence, we impose
OHlO,GY — QFGH — QT Gt = 0. (5.51)
Permuting the indices of (5.51) cyclicly, we have

oo,k — Qf%Gmk _ QfﬁGjm =0, (5.52)
0llo,GM — QIrG™ — QILGP™ = 0. (5.53)

Furthermore, taking a sum —(5.51) 4 (5.52) + (5.53), we have
—0M9,GY 4 01 9,GI* + 9 9,GR = —(QF — QFYG™MI — (QFT — QIMYGT™ + (QF + QIHG™F. (5.54)
We can define an analogue of the torsion tensor as

T(&,m) = Ven — V& — €, 11lo, (5.55)

! For Riemannian geometry, the Christoffel symbol defines the Levi-Civita connection on the basis vectors {0;}

as V;0; = Ffjak. Here we make an analogous discussion.
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for any 1-forms ¢ and 7. Since the right-hand side is manifestly skew-symmetric, T defines a skew-
symmetric map. We can check that this map defines a tensor. As a consistency check, we can
easily show that

T(f& gn) = Vie(gn) — Vgn(f&) — [£€ gnle
= fgVen+ f(Leg)n — 9f Vo€ — g(Lyf)E — fal€,mle — f(Leg)n + g(Ly f)E
= f9(Ven — V€ —[€,ml0) = fgT(&,n), (5.56)

for arbitrary function f and g. Thus T indeed defines a skew-symmetric tensor. Torsion-free

condition claims

T .= T(da',dz’) = V gpeda? — Vgpsda’ — [dat, dzl]y
— (QF — QI — 9,6)dz" = 0, (5.57)

ie.
Q0 — O = 0,67, (5.58)
giving (5.54)
(U, + QG = 07%0,GY — 0™ 0, GT* — 0™10,,G* — G0, 0" — G0, 67 (5.59)

These are very the same as f? Hence, the connection QZJ = f‘g is obtained as the solution of both
the condition for the compatibility with the metric G¥ and the torsion-free.
Note that we obtain an interesting observation about the Poisson bi-vector 6. As we have

V gu 09 = 0510,,09 — Qkigmi _ QFigim (5.60)
permuting the indices cyclicly,

V 4507 = 0"m9,,07F — Qi gk _ Qikgim, (5.61)

V 40i OF = 69m0,,0% — Qikgmi _ Qiighm (5.62)
and then taking a sum we have

V 4k 07 4+ V gi07F + V 1,5 0%

= 07007 + 0" 067" + 670,05 — QO™ — QIO — QU™ — QUEGTT — QIEG™ — QL6
= 0™ (Qop — Q) + 0™ (Q — Q) — 07 - )

= 00,0 + 07 9,,67% — 640,09 = —9™I 9,08 — 9™9,,0F — 4,09 = 0, (5.63)

with a use of the Poisson condition #™9,,67% = 0. Hence, the covariantized Poisson condition
V ui07H = 0 (5.64)

is satisfied.
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5.4 In the presence of R-flux

This section examines the extension of the construction of Riemann geometry in the previous
section to the case in the presence of R-flux. Because the R-flux is found to enter differently from
the metric and the Poisson tensor, the extension is done straightforwardly.

5.4.1 Connection, Torsion and Curvature

Poisson generalized connection In order to incorporate an R-flux into our formalism, we make
a definition of a connection under the presence of 3 as

Veu = my (e PleP(€7), ePu)), (5.65)

with £ € T'(T*M) and u € C’f_zo. Here we introduced extensions * as ¢+ = ¢ £ G(¢) € Cﬁzo, and
hence eP¢+ = €4 (G + B)(€) € C. Recall that our bracket satisfies, for u = X +& and v = Y 41,

[ (u), & (v)] = [u+ B(E), v+ B()] = [u, 0] + iyiedop. (5.66)
Hence we have
Veu = 1 (6, u] + iniedo) = 74 (€7 1)) + 7 (inicdo), (5.67)

where u|1_form = 1. It is noteworthy that the first term in the right-hand side is the same as that
of trivial 8 and the R-flux separately appears as the second term. Thus, using the results of the
case of trivial 3, the Leibniz rule of this connection

Vie(gu) = fgVeu+ f(Leg)u (5.68)

is easily shown to be satisfied.

Poisson generalized torsion A torsion is also defined by

T(€7 77) = VE77+ - vﬁ§+ - ([‘Sa 77]9)+7 (569)

and it is easily shown that
T(f& gm) = fgT(& ). (5.70)
Poisson generalized curvature A curvature is given by
R(&n)u= (VeVy, —V,Ve — Viemls ) s (5.71)
for any 1-forms &, n and u € C. The proof of the tensor property

R(f&, gn)hu = fghR(&,n)u, (5.72)

is done in a parallel manner with the case of 8 = 0, using only the Leibniz property of the connection
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5.4.2 Local expressions
Poisson generalized connection In the local coordinates {2’} the connection reads
Vgoi (A2 = 7 ([(da), (da?)*]) + 7 (i i o). (5.73)
The first term is nothing but (5.16) except for the replacement of g with G:
[(dz®)~, (dz?) ] = [dz® — G0y, da? + G713
= 00 dz® + [0 (8,,GTV) — 0™ (9,,GT™) — 0™ (D,,G™) — GIH ™) — GH(9,67™)]D,.  (5.74)

The different point of the connection from the case with 5 = 0 is the presence of the term involving
dg3. We give explicit form of this term. Note that in our formulation [28] an R-flux is given by a
Poisson exterior derivative with dy of a bi-vector field potential 8. It results in a tri-vector field:

1 1 .. 1
dgf3 = [0, 8] = [0"™" O A\ O, 5 870i A 5] = 5Rabcaa A Oy A 0. (5.75)
Then we find
id:vjid:vidH/B
— [enmamﬁzj + Hzmamﬁjn + ejmamﬁm' + ﬁnmamem + 6im8m0jn + ﬁjmamem]an
= R9"Y,, (5.76)
Here again we define the coefficients of the connection as
oI = G [0 0, G — 0790,G™ — 0710, G — G0, 67 — GI',0™], (5.77)
oTl = 9,07, (5.78)
Then we see that the connection can be written as
. 1
Vi (d2?)T = (sz + QR””Gnk> (dxk)+. (5.80)

Poisson generalized torsion The local expression for torsion is read straightforwardly
TV =V i (d2?)t = V gi (da)t = ([da?, da?]g) T = RI"G i (dz®) T (5.81)

Hence the R-flux appears as the torsion. This is parallel to the H-flux appearing the torsion of
generalized connection.

Poisson generalized curvature In the local coordinates {z'}, the Riemann curvature reads

(vdmivdaﬂ = Vazi Vg — V[dxi,dzj])(dxk)+' (582)
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Using the Leibniz rule and the linearity of the covariant derivative, we have
V i V s d®
= Vi <f{’“ - ;Rj’mGnl) (da)y*
sk Loikn sk Loojkn sim | Looim I+
(it ) + (084 L) (i L) Yy, o
and by definition
Videi dzi] (d2F) T = (0p07)V ggn (da®) T = (0,0 (F;“f + ;R”’fpapl> (dzh)*. (5.84)
Combining these equations, we find that the curvature is
(Var Vaes = Vs Vg = Viagi aon)) (da®) " =2 By (da')
_{Hf”' + %mmam (R7*Ghy) + %Rﬁkncnmf;'m + %fz,fnimp(;pl + iRjk”GnmRimpGpl—
— Lm0, (R Gy) — SRING,, TI™ — Lk RIMPG, — LRibng, RimPG,
27 o "y mmiL T gm Py i o
- ;(aneijm"kpapl}(dzl)ﬂ (5.85)
with
119 = (6", 17 — 6779, Tk — 9,09 T7* 4 DIkDim — TikpI™), (5.86)
as already introduced in the case with § = 0.

Poisson generalized Ricci tensor The Ricci tensor R is obtained by taking a contraction
Y
RY =R/
1 . 1 . _
:ij + §0lmam(RjknGnl) + iR]knGnmrém*

1 . 1_ ) 1 ) 1 )
- ile”Gan{m - 5F£’,§Rﬂmpapl - Zle”Gnijm”Gpl - 5(anelﬂ YR™PG,.  (5.87)

Poisson generalized Ricci scalar Finally, the contraction between the Ricci tensor and the
metric yields the Ricci scalar R

_ . 1
R:=GyjRM =1 — ZRQ, (5.88)
with

I = Gy (08,17 — 677, T — 8,09Tpk 4 TIRTIm — TDI™)) (5.89)
R? = Gy;GrpGrm RN RIP™, (5.90)
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where R;ji; denotes the Riemann curvature tensor constructed of Gj; and R does the R-flux,
defined by R = dpf3. Since the Ricci scalar R is a sum of the Ricci scalar II which is obtained in
the absence of R-flux in the previous section and the square of the R-flux. This result (5.88) is
parallel to that of generalized Riemannian geometry, which is the sum of the ordinary Ricci scalar
and the square of the H-flux (3.92).



Chapter 6

Conclusion and Discussion

In this dissertation we addressed the issue of formulating non-geometric fluxes. We proposed a
new variant of generalized geometry to formulate the R-flux which is one of the non-geometric
fluxes [28]. This novel framework, which we referred to as Poisson generalized geometry, was a
kind of dual of the ordinary generalized geometry and was based on the Poisson structure 6 of the
target space. It was a Courant algebroid (T'M )y @ (T*M)g equipped with a new bracket

X &Y 4] = [Enlo + £e¥ — £4X — SdolicY — inX), (6.1)

where the roles of the vector field and 1-form were interchanged compared to the standard gener-
alized geometry which is equipped with the following Courant bracket

(X +&Y +nlc=[X,Y]+ Lxn— LyE - %d(ixn—iY§)~ (6.2)

The relevant symmetries to the novel framework consisted of S-deformations and S-diffeomorphisms,
which terminology is introduced in refs. [36-42]. In our formulation, the R-flux was realized as a
twisting of the Courant algebroid (T'M)o @ (T* M)y via [-transformations:

[€7(X +€), (Y + )] = ’[X + &Y +n] + iyiedof, (6.3)

where the R-flux was given by R = dyf3. These were parallel to those of generalized geometry: the
relevant symmetries to generalized geometry are given by B-transformations and diffeomorphisms
and the H-flux is realized as a twisting of the standard Courant algebroid TM & T*M via B-

transformations:
[€B(X +6),eP(Y +n)]c=el[X +£Y +1n]¢ +iyixdB, (6.4)

where the H-flux is given by H = dB.

In the latter part of this dissertation we constructed an analogue of Riemannian geometry based on
the Poisson generalized geometry. Our construction of Poisson generalized Riemannian geometry
had its basis on the differential geometry of (T*M)g. It was found that the analogues of the
connection and the curvature were consistently defined. The resulting geometry was found to be
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compatible with both the Poisson structure 6 and the positive-definite metric G: The connection

was given by

V i (da?)t = (f,{jﬂ'} + T 4 ;R”"Gnk) (d®)T, (6.5)
with
Tl = %Gnk [678,,GTt — 6™, G — §™9,,,GI" — GI™D,, 67" — GILg,0™), (6.6)
Tl = %akaij , (6.7)
RI" = "0 89 + 0" 0 77 + 07 0 7 4 5700 + B 007" + B0 07 (6.8)

The R-flux, R = dyf3, arose in the connection and was interpreted as a torsion tensor. The analogue
of Ricci scalar = read

1
Z:=1- - R? :
B (6.9)
with
Il = G (00, 17% — 6779, Tk — 9,0Tpk 4 DIkTim _ DIkpI™) (6.10)
= 0""0™ Rt + 200 V" V10" — NV "0y, V10", (6.11)
R? = GyjG1pGpm RFMRIP™, (6.12)

where R;ji; denotes the Riemann curvature tensor constructed of G;; and R™ does the R-flux,
defined by R = dyB. These results were similar to the case of generalized geometry where the
H-flux appears as a torsion tensor and the generalized Ricci scalar is

1
T=R- ZH?, (6.13)

where R is the ordinary Ricci scalar constructed from g;; and H 2 = g¥ gklgm”Hikaﬂn with

H =dB.

We end this dissertation with a few comments on the relation between string theory and the
geometry which was constructed in this dissertation.

In order to write down the Einstein-Hilbert action, we should define an invariant measure. One
natural choice of invariant measure would be

Vdet Gijdat A -+ A da™. (6.14)

As all indices in the quantity = = IT — 1/12R? are contracted, it is apparently a scalar. Hence the
analogue of the Einstein-Hilbert action would be

L= M<H— 112R2>, (6.15)



67

where we rescaled the R-flux and introduced G' = det G;;. Since the R-flux R = dp/3 is an invariant
quantity under gauge transformations induced by S-transformations

B — B+ doA, (6.16)

and both the invariant measure and the Ricci scalar = are invariant under diffeomorphisms, in-
cluding [-diffoemorphisms in particular, the Einstein-Hilbert action defined above is manifestly
invariant under both g-transformations and (S-diffeomorphisms.

In this sense, our construction of gravity theory is closely related to the construction done by
Andriot et.al. [36-42] and Blumenhagen et.al. [43-46], since the construction of the gravity the-
ory in [36-46] is also based on [-diffecomorphisms. Their resulting gravity theory is shown to be
physically equivalent to the original low-energy supergravity theory of NSNS sector

Lysns = Vgl (R —~ EQijHJ’f> (6.17)
They also introduce a covariant derivative with upper indices
VVI =DV -TPVF, V'V = D'V, + T, (6.18)
The connection coefficients are given by
P — 19 _ Gy (Gl 4 gmatlily, (6.19)
where
PO9) _ i %le (B9, G+ im, G — Bme,,GiT — Gmig, A — Gmig,, A1), (6.20)
plil — —%&cﬁij, (6.21)
T — %le(éiGﬂ LG - FG. (6.22)

Comparing with our connection

Q= SCrn (07O GT" + 0O G = 0" O G = GO — G O™, (6.23)
. 1 .
OF = 5007, (6.24)

we find that the connection fg exactly coincides with ours, (Q+ @)Zj, if 8 = (3, except the existence
of the term fzj containing derivatives with respect to the dual coordinate d. Since in our formalism
we do not refer to the dual coordinate z;, we can naturally drop off the term f;ﬁj for comparison.
Hence, the connections exactly coincide.

However, there is a significant difference between the formulation of [36-46] and our formulation
as well. In [36-46] the bi-vector § is allowed to be any bi-vector i.e. the Poisson condition is no
longer imposed. There the violation of the Jacobi identity itself is identified with the R-flux

R=[B,Blsn #0. (6.25)
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On the other hand, our formulation assumes a Poisson bi-vector # which satisfies the Poisson
condition

[0,0]sn = 0. (6.26)
Our R-flux is globally well-defined by
R =[0,Alsn = dgA, (6.27)

with a use of gauge potential A of bi-vector field. This formulation of the R-flux realized to introduce
the notion of (Abelian) gauge transformation A — A + dpA.
In refs. [36-46] the Q-flux

Q.7 = oBY (6.28)

is introduced heuristically, in order to make the curvature tensor covariant, and it confuses ones
due to its non-covariant expression, whereas in our construction it inevitably appeared as the
anti-symmetric part of the connection

| g
O = 3046 (6.29)

by the first principle. It provides us with a definite interpretation on our geometry: our connection
enables the corresponding covariant derivative to be compatible with both the metic G;; and the
Poisson tensor #%. Besides, the anti-symmetric part of the connection guarantees that the torsion
tensor vanishes in the absence of the R-flux. This notion on geometry has hardly obtained without
imposing the Poisson condition.

In this dissertation we used the new Courant algebroid as a fundamental structure, however, there
are many open questions related to the formulation. Along the approach of refs. [63,64], we would
like to define another non-geometric flux, @-flux. It will be important to understand the T-duality
chain in fully geometric way. It also needs more detailed study on the Poisson generalized geometry,
such as a variant of generalized complex structures. The most important question is how the R-flux
is realized in string theory or supergravity. In the case of H-fluxes, H should be quantized, since it
appears in the Wess-Zumino-Witten term in the string world-sheet theory. Similarly, R-flux should
also be quantized when it is realized as a background flux in the string world-sheet theory [60] or
membrane world-volume theory [65]. It is interesting to see whether our R-flux is consistent with
these formulations. There, the U(1) gerbe analogue of R-flux would play a role.

It was observed that the resulting gravity theory is compatible with the Poisson structure. A Poisson
structure potentially provides the non-commutative nature, since a space equipped with it can be
regarded as the semi-classical approximation of a non-commutative space. Hence, by applying
Kontsevich’s deformation quantization formula to the Poisson structure [66,67], the gravity theory
constructed from Poisson generalized geometry is expected to be lifted to a gravity theory on a non-
commutative space. It might be related to matrix models [68-70], since both the non-commutativity
and the gravity must be taken into account in formulating those models.
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Appendix A

Notations for differential geometry

We use the symbols listed here without mention throughout this dissertation.

Cartan differential calculus

We list here the mathematical notations used throughout this dissertation.

C*(M) : set of smooth functions on manifold M, (A.1)
X (M) : set of vector fields on manifold M, (A.2)
QP(M) : set of p-forms on manifold M, (A.3)

as usual. We use the standard notations used in differential geometry: ¢ and d denote the interior
product and exterior derivative, defined in some local coordinate {z*} as

1
ixw = = 1)!X”wy[u2,‘.“p]d:n“2 A ANdat?, (A.4)
_Of 4w
1
dw = ma[uowm..ﬂp]dxuo Adx"M Ao A dx“”, (A6)

respectively, for vector field X € X(M), p-form w € QP(M) and f € C*°(M). The indices under
the square bracket [ | are anti-symmetrized, e.g. f,] = fur — fuu- The exterior derivative is
nilpotent

d* = 0. (A7)

The Lie derivative is defined as

LxY =[X,Y], (A.)
Lxf = ixdf, (A9)
Lxw = (dix +ixd)w. (A.10)
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In terms of local coordinates, they are rewritten as

LxY = (XFO,YY — YF9,X")D,, (A.11)
of
= X' — A12
Lxf Dh’ (A.12)
1 v v
fxw= H(f)[#lX Wyprgopp] T X Oy iy ) AT A o N dh?, (A-13)

by definition. For example, for 1-form 7, the Lie derivative generated by vector field X can be
written as

Lxn = (0uX"ny, + X 0yny)dat, (A.14)

and for 2-form &

Lx&= (0, X Epy) + XY 00y po) ) dt N da? (A.15)

1
2
They satisfy following relations
lix,iy} =0, {dyix}=Lx, [d,Lx]=0, [Lx,iv]=1ixy], [£x,Ly]=Lxy]. (A.16)
They are easily shown as
[d, ,Cx] =dLx — Lxd= d(iXd+ dix) — (diX + iXd)d =0, (A17)

and for any p-form w,

[ﬁx,iy]w
1
= W‘C’X(wau[lul---,u,p,ﬂdx‘ul FANRREIAN dﬂ?ﬂpil)
1 . 1 14 -
— Hly[(a[#OX Wyt - pip—1] + X BVW[”Oyl...#pil])dl'uo Ao Adxtr 1]
1 14 14
- m [a[mXpY Woppz-pp—1] T XP0p(Y wl/[m---up—l]))
— Y’)OPX”wV[MA..MPA] + Ypa[mX”wypm...upfﬂ — Y”X”é?,,wp[m...upﬂﬂdx“l A Adatrt
1 14 v — .
= o) [XP0pY Wyl 1]) — YO X Wy o] At A Adah'r=t =i x yw, (A.18)
and finally,

[Lx,Ly] = [Lx,diy|+ [Lx,iyd]
= [Lx,dliy +d[Lx,iy] + [Lx,iy]d+iy[Lx,d] = di[Xy] + Z'[Xy}d = E[X7y]. (A.19)
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Schouten-Nijenhuis bracket

The Schouten-Nijenhuis bracket is an extension of the Lie bracket of the vector fields to that of the
poly-vector fields. For two poly-vectors of the form V = X; A--- A X and W =Y A--- A Y], with
X;,Y; € X(M), the Schouten-Nijenhuis bracket is defined as

k,l
ViWls= > (DXL YIAXIA - AX A Xg AYIA YA Y (A.20)
i=1,j=1

Here [X;, Y]] denotes the usual Lie bracket mentioned above and the vector fields with the symbol
hat ~ are understood to be removed. Hence, for 1-vectors the Shouten-Nijenhuis bracket reduces to

the usual Lie bracket.
For example, for X,Y, Z, W € X (M)

(XAY, ZAW]=[X,ZINY AW = [ X,WIAYANZ-[Y,ZINX AW +[Y,WIANXANZ (A.21)
Vector bundles

TM : tangent bundle over manifold M, (
I(TM) : set of sections of tangent bundle T'M i.e. set of vector fields, (
T*M : cotangent bundle over manifold M, (A.24
[(T*M) : set of sections of cotangent bundle 7% M i.e. set of 1-forms. (






Appendix B

Computational detalils

B.1 Generalized geometry

Proof of (3.75) We show the following equation
R(fX,gY)hu = fghR(X,Y )u.
Indeed, using the Leibniz rule of the connection, we have

R(fX,gY)hu
= (VixVoy = VoyVix — Vipx gv)hu
= fVx(ghVyu+g(Yhju) — gVy (fAV xu+ f(Xh)u) =V rgx v+ p(xg)y —g(v ) x e =
= fghVxVyu+ fX(gh)Vyu+ fg(Yh)Vxu+ fX(g(Yh))u—
— 9fhVyVxu —gY (fh)Vxu — gf(Xh)Vyu — gX (f(Xh))u—
— f9Vixyihu — f(Xg)Vyhu + g(Y f)Vxhu =
= fgh(VxVyu—VyVxu—Vxyu) + (fX(gh) — gf(Xh) — fh(Xg))Vyu+
+ (fg(Yh) — gY (fh) + gh(Y [))V xu+
+ (fX(g(Yh)) = gY (f(Xh)) — fg([X,Y]h) — f(Xg)(Yh) + g(Y [)(Xh))u =
= fgh(VxVyu - VyVxu — Vix yju)+
+[(f(Xg)(YR)) + fgX(YRh) —g(Y f)(Xh) — gfY(Xh)—
= f9([X,Y]h) = f(Xg)(Yh) + g(Y f)(Xh)]u
= fgh(VxVyu — VyVxu—V(x yju).
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Details of the curvature in generalized geometry
—_ —_l — . .
kij = 0= + 5B — (i < J)
1 1 1 , .
= 81 <F;7]L€ + QQmIHljk> + (Fék =+ 2glanjk> <FZL —+ 2ngHpil) — (Z e j)
lpl mp . }lnH.pm llnH. MpE
92 jkg pil + 29 njkt 41 + 4g njkd pil

1 1 1 1
- §aj(gmlHlik) - §FlikgmpHpjl - §glnHmkF}7 - ZglanikgmpHpjl- (B.3)

1
= RZ:;J' + iai(gmlHljk) +

At a first glance this object TZ;]- is not a covariant quantity because it has terms involving the
partial derivatives, not the covariant derivatives. However, in fact they form covariant tensors:

(terms seeming not to be covariant)

1 1
Th.g™ Hyj — §glnHmkF}7

1 1 1 1
= §3i(9mleJ‘k) — 359 (9™ Hyr) + §F§k9mpsz‘l + §glanijf‘7 —3

1 1 1 1
=3 ig™ Hyjr, + igmlaiHljk - iajgmlﬂuk - igmlajHlik+

1 1 1 1
+ igmprékau + igl"F?[‘ njk — §9mpFékajl - §glnF§?Hm‘k- (B-4)
Note that 0 = Vg™ = 9;g™ + Tjig? + T g™, so that 9;g™ = —gPIT — g"PT". . With making a
use of this relation, we find

(terms seeming not to be covariant)

1 1 1 1
= 5(—9”13}3 — g™, Hji + nglaiHijz - 5(—9”[1% — g"™T,) Hyiy, — nglajHlilﬁ‘
1 1 1 1
+ §gmpP§ka“ + §glnFZL njk — Egmpfékaﬂ - Eglnrﬁ nik
1 1 1 1 1 1
= igmlaz‘Hljk - §9mprélejk - §9mpF§kajl - §9mlajHlik + ggmprépﬂlik + igmpré'kau

1 1 1
= 59" [ViHijn + Tf Hyjie + T Hiphe + i Hygp) — 59" T Hyge — 5 9™ Tig Hyji—
1 1 1
B §9ml (V;Hi, + F?alik: + F?iHlPk: + F?kHlip] + §gmpF§leik + §gmpF§ka“

1 1
= igmlviHljk - §gleszzk- (B.5)

Thus we obtain a tensor expression

| 1 1 |
Wiy = Bily + 79" Hujrg™ Hpit — 59" Hnieg™" Hpjt + 5™ ViHije — Sg™' Vi (B.6)

B.2 Poisson generalized geometry
Proof of the third equation of (4.15) We will prove the third equation of (4.15),

L X = E@(C)X + 0(ixdQ), (B.7)
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in the the components calculation. Because of

[0, X]s = [16#0, A0y, X0a] g
= % [0/1’/8“’ Xaaoc]s A al/ - % [&/,XO‘(%]S A 9‘“’@
= 10M 0, X %00 N Dy — 5010, X0 N Oy — 5X0a0" 0, N O,
= 0" 9, Xy N Dy — LX0,0M9, N\ D, (B.8)

so we have
’icng = iC[Q,X]S

= 0" 0, XCady — 0" 0, X (00 — X 000" (0,
= (0"°0, X (o + 0" 0, X (0 — XO000"°C,,) O, (B.9)

Next, we compute
dpic X = —0(d(ic X))

— —0"0,(Ca XD,
= —0"(0,Ca X + (a0 XD, (B.10)

Therefore, the 1L.h.s. is written as
ﬁCX == igdeX + doiCX
= (070, X%Ca + 0" 0, X", — X¥0a0"°C,) 0p — 0" (0uCa X + (00, X*)0,
= ("0, XPC, — 0"°0,( X — X0,0"°C,) Op. (B.11)
On the other hand, the r.h.s. is computed as follows. The first term is written as
Loy X = [0(C), X]s = [0"C.0v, X" 0u]s

= 0" (0, X 00 — X0 (0",
= (0" Cu0, X7 — X0p0" (s — X 0" 00C,1) O, (B.12)

and the second term is

0(ixdC) = 0 (ix (3(9u¢ — 0y Cu)da” A dz))
= 0 (XH"(0uCy — 0uCu)da”) = 6 (X"(0yCu — Ol )d™)
= 0" X" (0,Cu — 0uCu)0,. (B.13)
Summing up, we obtain
Lo X +0(ixdC) = (B Cu0,XP — X0a07C, — X000, + 0" X¥ (DG — 0,6,)) D,
= (0"Cu0, XP — X“0,0"(, — 0"° XV 0,(,) O
= ("0, XPCu — 0"°0,( X — X¥0,0"°C,) O,,. (B.14)

Thus, the equation is proved.
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Proofs of (4.17)  The proof of the first equation is shown as follows.

(Lo X 46, Y +n0) + (X +&L(Y +n) =5(inLeX +iceY +icleY +igyX)
:%EC(%X +i5Y)
=LA(X +£Y +n), (B.15)

where we used iz.¢ = i|c g, = [L¢, ] given in (4.4). Next, let us prove the third equation. The
r.h.s. is

By using the relations following from (4.4),

L€ mlo = [C, 1€ nlole = [Lc&mlo + €, Lenlo,
LoLeY = LeLoY + ,C[ng]QY, (B.17)

the r.h.s. is further rewritten as

LX+&Y +n = [Lc&mlo+ I[85 Lenlo + LeLeY + L g,Y — LoLeX — Licm, X
+ 3dgicdy(ixn — iy€). (B.18)

On the other hand, the first term in the Lh.s. is
[Lo(X+86).Y +n] = [Le&mlo + Licg,Y — Ly(LeX) + 5do(ic xn — iv(Le€)), (B.19)
and similar for the second term. Thus, the l.h.s gives

[Lo(X +6),Y +n] + [X + & L(Y +n)]
=[Lc& o + Lice,Y — Ly(LeX) + 5do(ic xn — iv(LcE))
+E Lenlo + Le(LeY) = Licy X + 5do(ix (Len) — icvE)- (B.20)

Then except for the dg-exact terms, it is apparent that (B.18) and (B.20) coincide. Moreover, the
dg-exact terms are also the same, since

icexn +ix(Len) = Le(ixn) = icdo(ixn). (B.21)

Here we used the formula of the action of the Lie derivative on a function, L¢f = i¢cdgf.

Finally, we check the second equation. The Lh.s is given as p(L(X +§)) = 0(LE), while the
r.hsis Le(p(X +§)) = (L£c0)(&) + 0(LeE), so that the equation is satisfied if

L0 = dgich = dpf(¢) = 0. (B.22)
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Proof of the third equation of (4.18) To this end we will show that
CIX+ &Y+ = [7(X +€). " (Y +0)] + [0, Bls(€. 1) (B.23)
then, a S-transformation is a symmetry if dg5 = [0, 5]s = 0. The L.h.s. is written as
X +EY 0] = [X +&Y +n] + B nlo)- (B.24)
while the r.h.s. is

[”(X +€), " (Y + )] = [X +&+BE),Y +n+ B(n)]
= [X +&Y 4+ 0]+ LeB(n) — LyB(E) + 5do(ipeyn — ipwb)- (B.25)
By using the formula £:X = L)X + 0(ixd(), we have
LeB(n) = Lo B(n) + 0(igydE)
= 10(£), B(n)lo + 0(igmdE), (B.26)

By using dypf = —6(df), we have

doigeyn = do(B(&,n)) = —0(d(B(E,n))) (B.27)

Substituting these, the r.h.s. becomes

[?(X +€), e (Y + )]
=X +&Y +n +[0(8), B(m)]e — [0(n), B(E)]o + 0(igmdé — igeydn — d(B(&,m)))
(X +&Y +n]+[0(8), B(n)]e + [8(E),0(n)]e — 01, ls), (B.28)

where in the last line we define [£, 7|3 by the same formula as the Koszul bracket for an arbitrary

)
)

bivector 8 (It is not a Lie bracket but we do not use this property.). Then, by using

[(0+5)(£), (0+ B)(m]s = [0(£),0(n)]s + [0(5), B(m)]s + [B(E),0(n)]s + [B(£), B(n)ls,  (B.29)

it is further rewritten as

[€7(X +€),e" (Y + )]
=X+ &Y+l + [0+ B)(6), 0+ B) ()]s — [0(5),0(n)]s — [B(E), B(n)]s — 0([¢,n]p),  (B.30)

To rewrite it further, we use a formula

15(6), Bls = A& mls) + 518, Als(E.m) (B.31)
which is valid for any bivector 5. In particular,
[(0+5)(&), (0 + B)(m]s = (60 + B)(€, mle+s) + %[9 + 8,0+ B]s(&,m)

= O+ ) ([Elo +Es) + 510+ 5.0+ Bls(6n).  (B32)
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Then, we finally obtain

(X +€),e" (Y +n)]
=X+ &Y +nl 4+ 0+ B)([€nle + 1§, nls) — 0([& mla) — B(E,nls) — O, n]s)

+ 310+ 8,0+ Bls(&m) — 510.0)s(€n) — 516, Als(€.n)

Review on twisting of TM & T*M with H-flux When there is a H-flux, one can define the
corresponding Courant algebroid (E, p, [+, -]) from TM @& T*M by twist as follows [24,61,62]:

1) Take a good cover {U;} of M. Before twisting, a global section of TM @© T*M satisfies
Xi+& =X, +& onaoverlap U;j = U; NU;.

2) Modify the gluing condition to X; +& = X; +§&; — dA;;(X;) for a set of 1-forms A;; € T*Uj;.
Note that T*M is twisted by local B-gauge transformations.

3) Define a bundle E = II; (TU; @ T*U;) / ~ by a standard clutching construction. Then,

(E,p,|,]) is a Courant algebroid, because the B-gauge transformation preserves both the
anchor p and the bracket [-, -].

This twisting defines an exact Courant algebroid
0= T*M 2 ELTM — 0. (B.34)

with an isotropic splitting s : TM — E. That is £ = s(TM) ® p*(T*M). Locally, the splitting is
given by a local B-transform as

5:(X) = ePi(X) = X + Bi(X), (B.35)

where B; € A*T*U;. In order that it is globally defined, it should satisfy s;(X) = s;(X) on Uj;.
Taking into account the gluing condition 2), it leads to conditions B; = B; 4+ dA;; for local 2-forms.
It also implies that H := dB; on M is a global closed 3-form.

Thus, we need a data (H, B, A;;) to construct E. More specifically, it is known that the
geometric object corresponding to a closed 3-form H flux is a U(1)-gerbe with connection, when its
cohomology class [H] is in the integer cohomology H3(M;Z). It is defined by a set (H, B;, Aij, Aijk)
in the Cech-de Rham double complex, with a set of equations

U;: H=dB;,
Ul" . Bj — BZ == dAl'j,
Uiji + Aij + Ajie + Api = dyji,
Uijkr © Njrr — Mgy + Niji — Nijie = nijg- (B.36)

This H-twisting is also regarded as a change of the Courant bracket of TM & T*M to the

H-twisted Courant bracket. To see this recall that the relation

[€Bi(X +€),ePi(Y + )] =P [X +6Y + 1] +ixiydB; (B.37)
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is still true for local B-transformations. Therefore, if we define an H-twisted Courant bracket

(X +&Y +nlp =[X+&Y +n] +ixiyH, (B.38)
then we have locally
BIX + €Y +nlg = [ePI(X +€), P (Y + 1), (B.39)
and globally
(X +5(8),Y +s(n)] = (p" & s)([X +&Y +n]n). (B.40)

This defines an isomorphism of Courant algebroids

We end this section with a remark about global B-transformations. The another choice of
the splitting s’ should differ from s by a B-transformation with a global 2-form b and change
E =§(TM)® p*(T*M), where s;(X) = X + (B; +b)(X). It leads to the twisted bracket [, ] gtap
but does not change the cohomology class in H3p (M).

Proofs of (4.8) and (4.9) We give the proofs of (4.8) and (4.9). To show them we preliminarily
examine the following stuffs. In this section f,g € C*°(M) and §,{ € T*M and X,Y € TM.
Furthermore, we may use u=X+& v=Y+n w=2+4+( € (TM)y® (T*M)y. By definition, we
trivially see

Lise)g = isedog = fLeg- (B.42)

Similarly, by definition we find

Lse)C = [f&,Clo
= Lo(se)C — o) d(fE)
= ig(se)dC + dig(e)S — to(c) (df NE+ fdE)
= fig(e)dC + d(fioe)C) — fio()d§ — ig(c)(df N E)
= fige)dC + fdige)C + (ige))df — figeyd€ — Eigiydf) + (igi)€)df
= fLeC = Elioydf) + (ige)C)df + (ig)6)df-

Noticing that

(ig(e)Q)df + (ig)§)df = (ig(e)Q)df — (io(e)C)df =0,
—&(ioydf) = —ELo(o) f = —ELc

we obtain

Ly = fLeC — (Lcf)E- (B.43)



82 APPENDIX B. COMPUTATIONAL DETAILS

Next, we have

= (deifg + ifgd@)X
= do(fieX) + figdg X
(Z'gX)d()f + fdgie X + figdgX = fLX + (igX)dgf,

and,
Le(fg) = icdo(fg)
= —i¢0(d(fg))
= —i¢f((df)g + fdg)
=ie(dof)g +ic(fdag) = (Lef)g + fLey,
furthermore,

Le(f¢) =1[& fClo
= —[f¢,&lp
= —L08
= —fLE+ (Lef)C = fLeCH (Lef)C,

where we used (A.2). Finally, we see

Le(fX) = (dgie +iedg)(fX)
=dg(fieX) +ic(dg N X + fdpX)
= (i X)dof + fdgic X + ficdo X +ic(dof N X)
= fLeX + (ie X)dpf + (igdo f)X — dof(ie X) = fLX + (Lef)X,

where we used dg(fX) =dgf N X + fdpX. This is shown as

do(fX) =10, fX]s
= 1[0”@ A 8j,fX’“8k]s
= (1090, X 0K N O; — 07]0;, FXFO) A 0)
= = (090;(fX*)0 N O; — FXF(0r67)0; N Oj — 070;(fXF)O N D)

G0 f)X Ok N O+ f10,X]s
—0(df) N X + f10, X]s = dof N X + fdp X,

Qb w\»—nw\r—n

(B.44)

(B.45)

(B.46)

(B.47)

(B.48)
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where 0(df) = 6Y(0;f)0;. With these preliminaries, we address to showing equations (4.8) and
(4.9):

X +&7(Y + )

= Le(fY + fn) = Ly X + %de(ix(fﬂ) —ipy§)

= FL(Y ) + (Lef)(Y +n) = FLyX = (igX)dof + 3 Fdalixn — iv€) + 5 (dof)ixn — iv€)
— S f)(ixn +ivE) (B.49)
This is (4.8). The equation (4.9) is given by

= fIX+ &Y+ + (L)Y + 1)

([u, v] + do(u, v), w) + (v, [u, w] + do{u, w))

= (Lev — Ly X + %de(ixn —iy§) + %de(ixn +iy€), w) + (v, [u, w] + do(u, w))
= (Lev — indo X — dpinX + dgixn, w) + (v, [u, w] + dg(u, w))

= (Le(Y +1) —indo X, w) + (v, [u, w] + dg(u, w))

1
§(iC£§Y + iz Len —icindgX) + (v, [u, w] + do(u, w))
1 1 1
— §(i§£§Y + iZﬁgT] - icind9X) + §(in££Z + ’L'Yﬁgg - in’igng) = §£§(iCY + iZ77) = £§ <U, w>.
(B.50)
Here we used
icﬁgy + iYﬁgC = Z'C{[,Q(g)y +0(iyde)} + Z'Y{»Cg(g)g — Z'g(odf}
= [:9(5) (24Y) + Z(Q(lydf) — iyl‘g(odf
= ﬁg(g) (ZCY) -+ an(lyd§> — ig(iydé)g = ﬁg(g)(i(Y) = ﬁg(iCY). (B.51)

Proofs of (5.8) and (5.9) In this section we denote £ € T*M, £~ =& — (G + B)(€) € O_,
u= X + ¢ € C;. By definition and (4.8),

Vigeu =m+([f€,u))
= (flE ]~ (LeE + o f (€ w) = my (FIET ) = [V, (B52)
where we used 74 (67) = 0 and (6=, u) = 0. Similarly,
Ve(fu) = m (€7, )
=T (€ o) + (Lefyu— 5daf (€ )
= (fI€7 ul) + (Leflu = fVeu+ (Lefu, (B.53)

where 74 (u) = u. These are what we wanted to prove.
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Proof of the compatibility (5.10) Using the equation (4.9) and the fact mentioned after
(4.9),

Le(u,v) = ([€,u] +do(&,u), v) + (u, [§, 0] + do (&, v))
(€7 ul +do(€7, ), v) + (u, [€7, 0] + do(E, )
€7 ul,v) + {u, [€7, 0]

)
7T+[ yul,v) + (u, i €7, 0]) = (Veu, v) + (u, Vev). (B.54)

{
{
{
=

Proof of (5.14) Firstly notice that by combining the results (B.42), (B.43) and (B.46), we find

(&, gnl = [f€, gnle
= fLe(gn) — (Lgn f)E
= fgLen+ f(Leg)n — g(Lyf)E = fal€,n] + f(Leg)n — g(Lyf)E- (B.55)

Secondly, from (5.8) and (5.9) we obtain

V#eVgn(hu) = fVe(ghVyu + (gLyh)u)
= f(Le(gh)Vyu + ghVeVpu + Le(gLyh)u + (9Lyh)Veu). (B.56)

Hence, on one hand

(V§eVn = VgnVpe) (hu)
= [(Le(gh)Viyu + ghVeVyu + Le(gLyh)u + (9Lyh)Veu)
—9(Ly(fR)Veu + fFRV NVeu+ Ly)(fLeh)u 4 (fLeh)Viyu)
= fgh(VeVy = VpVe)u + fR(Leg)Vyu — gh(Ly f)Veu + fLe(gLyh)u — gLy (fLeh)u.  (B.57)

And on the other hand

Vise,gnhu

= Viglem+f(Legm—a(Ln fehtt

= (Viglen + Viceam = Ve, pe)hu

= (fgViem + [(Leg)Viy — g(Lyf)Ve)hu

= fghV e qu+ f9(Ligmh)u+ [R(Leg)Vyu + f(Leg)(Lnf)u — gh(Ly f)Veu — g(Ly f)(Leh)u

= fghViequ+ fh(Leg)Vyu — gh(Ly f)Veu + f(Leg)(Lyfu — g(Lyf)(Leh)u+ fg(Lieyh)u.
(B.58)

Thus

(VieVay = VouV re = Vige gn) (hu) = fgh(VeVy = Vi Ve = Viey))u. (B.59)
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Proof of (5.16) The bracket under the projection operator is computed as follows:
[da’ — g% 0y, da? + g7'0)]
= [da’, da’)g + Loz (97 0) — Lags (—9”'01) + do(i_gitgdz’ —igig dz’)

= [da’, da]o + (digyi + i4yide) (97 01) + (dgiqus + iazide) (97 0) — dog"”
= [da', d2?)p + i de(g7'0) + igeido (') + dpg™. (B.60)

Each terms results in

[da’, da’] = [da’, da’]g = Ly(gpiyda’ — ig(gpiyd(da’)
= dig(dxi)d:xj = dfV = 9,0V dz*, (B.61)
igpide(g7'0)) = z'dxz[ 00y A O, g7' 0] s

=l ( ; "0y, g7 Ol N O — [0y g Dl)s A 19”"3m>
y 1 mn 1 jl mn mn il
=gz 50™( A O = 567 (D10 )0 N Oy — ,9 (9ng")01 A O,

= gy <9m" 9o A B, — %gﬂ(alem")am A an>

= m"( g’ )00 — 0" (Dng”™ )01 — g1 (D10™) O, (B.62)
idasdo(9"01) = 0" (Omg”)On = 0™ (O 9”)51 g (007" 0n, (B.63)
dog" =—9<ng> = —0(g"”da*) = —6" (D7) L. (B.64)

Hence the bracket reads
[da' — g™y, da? + g7 )]
= [dat, da’)g + i 4,idg(¢710)) + igpidg(¢7L0)) + dgg®
= W07 dzk + 0™ (9,097 — 0™ (Omg”™)On — 71 (816™) 0y,
+ 0" (Omg”) O — 0™ (Dng™ )0 — g™ (D107™) 0y — 0™ (Drng? )
= 007 dz" + [0 (Omg”) — 0™ (Ong”™) = 0™ (Omg™) — "/ (D0) — g™ (A7)0, (B.65)

Proof of (5.38) In order to write down its explicit formula in terms of g and 6, we compute
preliminarily

0" O (2 + ©)]" = 60 (F’:’;ﬁ”j + %Tf k)
, . | ;
= gim <(6mF’£iz)9”J + T50m0™ + 26mTfk>, (B.66)
9,,0% nk ijy [Tk gen o Lk
(0,67)(Q+ O)F" = (9,67 (T + ST ), (B.67)

. . 1 N
(Q+0)ka+0e)m= (rgmem + 2T,3{f> <r;;9m + 2T;m> (B.68)
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Gathering these results we find that the curvature’s explicit form becomes
. , _ 1 . _ , 1 .
H;m] =6 <(6mrlr€zl)0m + Fqlilamen] + 26mlek> — 6 <(6mrﬁl)9m + FﬁzamH"’ + QamTle> -
» 1
(s )
+ (1 g 4 2ok (rmeri 4 2gim ) (pk gri o L (pmgei . Lggm
nm 9~ m pl 9 l nm 9 m pl 92 l
= 0" (O L)0™ — 67 (0 L0 + T 0 TP — T, 07 T 0P +

A . , 1. . 1 . . y 1
+ ezmrﬁlamenj _ ejmrlrcllamgnz + 5ez’rnamTle: _ iajmamlek _ (anez]) (Flglepn + 21-1lnk>+

1 o 1 . 1 1 y 1 ., 1 ., .
+ iFﬁmG”JT;m - QT;fFZ}HW + ETngZ}GI‘" - §Fﬁm9mszm + ZTffﬂm - ZTﬁfj}Jm~
(B.69)
The first line in (B.69) yields the celebrated Riemann curvature tensor:
0" (OmL)0") — 077 (0 T)0™ + T 0™ TP — T 6™ 17167
= 00" [0, 1), — 0pT), + TP Tk — TP TF 1 =0"™m0"Ry,.. (B.70)
Here in our notation the Riemann curvature tensor is defined by
R} = Ol — OpT, + T TK — T TF (B.71)

as usual. The third and fourth terms in the second line in (B.69) and the first four terms in the
last line in (B.69) is

1 . . 1 . ) 1 . 1 . 1 1 o
5ezmamTl]k - 5Qjmamlek + irlgmemlem o iTﬁr’fFZZLem 4 ETrjnkFglbem _ §Fﬁm9mTlJm
1 . . 1 . . 1 . ) 1 . . 1 . . 1 . A

— _gemanT;’“ + 5H"JanT;k + 5ewr’;mTl”” - iamrg;:r’;f + iemrggm’f — §9mrﬁngm

1 . , 1 . . 1 . . 1 . , 1 . , 1 . .
= 50" OnT}* + SO, T — SOMTIT — iemanT,J’“ + 0T — ST, T

1 . . 1 .. 1 . G 1o
— 5anﬂvnT;‘f — §9Wrng,mk — S0V + 5eV“rzmT,Wf. (B.72)

Here we use the fact that the quantity T is a tensor, that is, it is a covariant object. Hence so far
the curvature is summarized as

1" = 670" R,y 4 07T 0™ — 07T, 006™ — (9,6Y) (%0”” + gTz”k> !

L, i
~TikT™,

1 ..
—ikgpim _

l 4 m
(B.73)

1 . . 1 . ) 1 . . 1 . .
+ ienjvnzﬂlzk _ iemvnz}jk o §0n]F:zmT’lmk + §0mF£LmTka + T

This expression still has terms involving the partial derivatives and the Christoffel symbols and
seems not to be covariant. However, the non-covariant-looking part turns out to form a covariant
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tensor

. . 4 4 g 1 1 .. 1 . .
0Tk, 0,,0™ — 07Tk 9,.0m — (0,6 (r’;lelm + 2T["“> = GO T 4 50T, T

= —(0p07)Lk 7" — %(aneij YIF + TF [070,,0 — 679,,6™] — %enfr;mﬂm’“ + %G"iF{LmTka
= —(9.07)TE 6" — %(aneiJ)Tl"k + T3 [0 00" + 0770, 0] — %enjr;mTlm’“ + %emrgmﬂmk
= —T}07"(0,67) — %(&LGU)TF’“ — T30 07" — %enﬂ’rng;’lk + %emrng,mk

= S [@u89)T7* 4 69T, T — T, T

= —%[(aneij) + 0,0 — T omIT = —%(vneij)Tl"k. (B.74)

Here in the third equality we use the Poisson condition on #. Note that the Poisson condition on
the Poisson bi-vector 6

0" ,,07F + 679,05 + 9¥™f,,07 = 0, (B.75)
is equivalent to the one in which the partial derivatives are replaced by the covariant derivatives:
0"V, 0% + 69,0 4 0¥ ,,0 =0, (B.76)

because of the antisymmetric property of the Poisson tensor and the symmetric property of the
Christoffel symbol in their upper and lower indices, respectively. Finally we obtain the covariant
expression of the curvature

1 g 1 . 1 1 1
5 (Vb )T 4 20, T — iamvan’“ + T = (T, (BT)

lek _ vlgjk . Vk(ejpgpl) _ vj(gkpgpl)_ (B.78)

kij _ pimpgnj pk
115 = gimgnigk
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