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Chapter 1

Introduction

String theory has attracted much attention for the last several decades as a promising candidate

for the unified theory describing all fundamental interactions.

All interactions except the gravity are formulated as the gauge theory with gauge group SU(3)×
SU(2)×U(1). In addition to these gauge fields, some fermionic fields of elementary particles called

quarks and leptons and a scalar field of Higgs boson altogether form the Standard Model of par-

ticle physics. The Standard Model provides a consensual understanding of particle physics at this

moment, together with the description of microscopic physics based on quantum theory of fields.

However, the rest of the fundamental interactions, gravity, is missing from the Standard Model,

despite the fact that we experience it in everyday life.

The theory of gravity was proposed by Einstein 99 years ago [1]. It is described by the general

theory of relativity which is constructed from Einstein’s brilliant insight into the covariance of the

physical laws under the general coordinate transformations (the principle of general relativity). To

realize his insight, the Riemannian geometry plays a crucial role. The general theory of relativity

leads us to recognize that the space-time is no longer the static stage where physical phenomena

occur, but itself is a dynamical object described by the space-time metric.

The general theory of relativity has great beauty in its theoretical formalism and still no inconsistent

experimental observation with it has been reported. Hence, an application of the field quantization

procedure to the metric, that is a field describing the dynamics of the space-time, would be naively

expected to provide the quantum theory of gravity. However, this program is known to fall down

due to the problem of non-renormalizability caused by the dimensionful Newton constant GN .

If the quanta mediating the gravitational interaction are described by closed strings rather than

point particles, the problem of non-renormalizability can be avoided. This is because a closed

string can not shrink to a single point topologically, and hence weakens the ultraviolet divergence

stemming from interaction points approaching each other. Indeed, it was recognized that there are

oscillation modes which can be interpreted to be gravitons in the closed string spectrum [2,3].

Furthermore, not only the quanta of gravity but also gauge interactions were dramatically discov-

ered to exist in string theory consistently [4–7]. Ever since this first superstring revolution it has

been widely expected that string theory will provide the unified theory of all fundamental interac-

tions, especially including quantum gravity.
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2 CHAPTER 1. INTRODUCTION

Since the Riemannian geometry provides us with an intuition about the classical gravity, some

kind of geometric notion would be helpful in order to deepen an understanding of the theory of

quantum gravity. As above, string theory is expected to provide a description of quantum gravity,

and hence the corresponding notion of geometry on the space-time would be “stringy” geometry

which could be different from the Riemannian geometry, because the fundamental objects which

probe the space-time are strings rather than point particles.

Among various observations concerning stringy geometry, T-duality is one of the most significant

features which are distinctive of string theory and one of the main subjects in this dissertation.

T-duality concerns the backgrounds in which strings propagate. The backgrounds are specified by

a configuration of the space-time metric and the Kalb-Ramond field (B-field) which is a 2nd-rank

antisymmetric tensor gauge field.

A typical example of T-duality is given by the case where one of the spacial directions of the space-

time is compactified on a circle of radius R 1. Since the coordinate along the compactified direction

has periodicity 2πR, a closed string allows the periodic boundary condition

X(σ, τ) = X(σ + 2π, τ) + 2πRW, W ∈ Z , (1.1)

where X is an embedding function from the point on the string’s world-sheet parametrized by

(τ, σ) to the coordinate value of the compactified direction, and W denotes a winding number

which counts how many times the closed string coils around the circle. Since strings have tension

α′ called the Regge slope parameter, a closed string with non-zero winding number carries energy.

On the other hand, due to the periodicity, the string momentum associated with the compactified

direction is discretized as

P =
K

R
, K ∈ Z , (1.2)

just like quantum mechanics of point particle. The integer K is called the Kaluza-Klein number.

As the string’s winding mode and Kaluza-Klein mode carry energy, both of them contribute to the

mass formula for the string as

M2 =

(
K

R

)2

+

(
WR

α′

)2

+ (contribution from other direction). (1.3)

From this analysis one immediately recognizes that the mass spectrum is invariant under the

interchange

R ←→ R̃ =
α′

R
. (1.4)

This example suggests that the circles of radii R and R̃ = α′/R are physically equivalent for a

string, and actually so it is [8]. This equivalence between the radii R and R̃ = α′/R is never

observed by a point particle, because the appearance of the winding number is a peculiarity of a

string.

1The argument here is a rough sketch and we omit a careful introduction of some terminology and we do not make

a precise statement.
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The invariance under an interchange of the compactfication radii is also explained from the world-

sheet point of view. The action for a string compactified on a circle with radius R is given by

S =

∫
dτdσ

R2

α′ ∂X∂̄X, (1.5)

where ∂ = ∂τ − ∂σ and ∂̄ = ∂τ + ∂σ. This action has another expression written as

S′′ = −
∫

dτdσ

(
R2

α′ LL̄− ∂Y L̄− ∂̄Y L

)
, (1.6)

where L and L̄ are the Lagrange multipliers. Taking a variation with respect to Y yields the

equation of motion 0 = ∂L̄+ ∂̄L which is solved by

L = ∂X, L̄ = −∂̄X, (1.7)

for any function X. Substituting this solutions into (1.6) reproduces the original action (1.5). On

the other hand, the auxiliary fields L and L̄ yield constraints

L =
α′

R2
∂X, L̄ =

α′

R2
∂̄X, (1.8)

leading another action

S′ =

∫
dτdσ

R̃2

α′ ∂X∂̄X , with R̃ =
α′

R
. (1.9)

This action S′ describes a string propagating on a circle of radius R̃ = α′/R. Since both S (1.5) and

S′ (1.9) are derived from the same action S′′ (1.6), the physical equivalence for a string between

the radii R and R̃ = α′/R would be understood.

The extensions of the argument above based on the world-sheet analysis to the cases where a string

propagates in more general metric and B-field are studied by Buscher [9,10]. The relations between

backgrounds which are physically equivalent for a string are summarized as the Buscher rule. That

is, the Buscher rule gives the backgrounds in the dual description in terms of the original metric

and B-field. The caveat is that the Buscher rule is applicable only when there is a direction of

isometry which requires the invariance of both the metric and B-field under translations along its

direction.

Although T-duality provides us with amazingly rich subjects of string theory, in this dissertation

we identify T-duality transformation with the Buscher rule. This is because we are focusing only

on the metric and B-field, and hence it is sufficient for our discussions.

A brief summary so far: T-duality is a special feature of considering a string as a probe exploring

the space-time. It provides physically equivalent backgrounds for a string. The relation between

those backgrounds are given by the Buscher rule which is applicable only when there is an isometry

direction.



4 CHAPTER 1. INTRODUCTION

For a string to propagate consistently under backgrounds, the corresponding configuration of back-

ground fields are required to satisfy some conditions [11,12]. The preferred configurations of those

fields are given by the solutions of the ten-dimensional supergravity theory. The part of supergrav-

ity action concerning both the metric and B-field (Neveu-Schwarz-Neveu-Schwarz sector fields) is

given by2

LSUGRA =

∫
ddx
√
−g
(
R− 1

12
H2

)
+ · · · . (1.10)

Here R denotes the Ricci scalar constructed from the space-time metric gij as usual, and H does

the field strength of the B-field called H-flux. As the B-field is a 2nd-rank tensor Bij , the H-flux

is a 3rd-rank tensor, explicitly given by in components

Hijk = ∂iBjk + ∂jBki + ∂kBij . (1.11)

String theory requires the space-time dimension to be d = 10 for its consistency, and hence there

are extra six spatial dimensions compared to our empirical observation.

One approach to relate the higher dimensional supergravity theories to four-dimensional physics is

to compactify the extra six-dimensional space [13]. In general, compactifying the internal space in

the presence of fluxes yields the four-dimensional effective theories described by gauged supergrav-

ities with gauge algebras

[ea, eb] = f c
abec +Habce

c,

[ea, e
b] = Qbc

a ec + f b
ace

c, (1.12)

[ea, eb] = Rabcec +Qab
c ec,

called the Kaloper-Myers algebra [14]. Here ea and ea are generators associated with the metric

gµa and the B-field Bµa, where µ = 0, 1, · · · , 3 denotes the four-dimensional space-time component

and a = 4, · · · , 9 does that of the internal space. The algebras above are understood by noticing

hat the metric and B-field are decomposed into

gMN → gµν , gµa, gab,

BMN → Bµν , Bµa, Bab,

where M = µ, a, and then, that the supergravity action contains

SSUGRA =

∫
M4×I6

√
−ggMNgKLgPQHMKPHNLQ + · · ·

=

∫
M4

√
−g(· · ·+Habcg

µagνbgcd∂µBνd + · · · ), (1.13)

indicating that Habc plays a role of structure constants.

2Here we assume that the scalar field of dilaton to be constant and do not care about the overall constant.
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Although algebras associated with coefficients H and f are realized by compactifying on ordinary

internal space with conventional fluxes [14, 15], algebras concerning Q and R have never been

obtained by such a procedure. Indeed, such algebras have been introduced heuristically, however,

it has been expected that they appear from compactifying on “non-geometric backgrounds” which

are introduced bellow.

It has been observed that ill-defined “non-geometric” backgrounds are obtained by formal applica-

tions of T-duality transformation to well-defined configurations of background fields [16–22].

Here we illustrate an example. Starting with a three-torus with non-zero constant H-flux, a se-

quence of successive applications of T-duality transformation converts the H-flux into the fluxes of

different tensor type, schematically summarized as

Habc ←→ f c
ab ←→ Qbc

a ←→ Rabc,

which are fluxes of tensor type (0, 3), (1, 2), (2, 1) and (3, 0), respectively, and which could be the

origins of the missing pieces in the Kaloper-Myers algebra (1.12). Whereas the second flux, called

f -flux, can be interpreted as a kind of structure constant [16, 17], the third flux referred to as Q-

flux can not be comprehended by such ordinary notion of geometry. Besides, the metric associated

with such Q-flux becomes multi-valued. This configuration of the multi-valued metric as well can

not be understood by ordinary notion of geometry, but be done by introducing the notion of T-

folds which admits T-duality transformations in addition to diffeomorphisms when local patches

are glued [18]. As the initial configuration has three manifest periodicities, the third T-duality

transformation might be considered and the existence of the flux of tensor type (3,0), named R-

flux, is speculated [19]. The nature of R-flux of tri-vector field has hardly been understood and only

its existence has been suggested by formal arguments. These are why the latter two configurations

associated with Q- and R-fluxes are referred to as “non-geometric” in literatures.

Although such ill-defined configurations of backgrounds had hardly been considered in the analysis

of supergravity theory, there is a priori no reason to forbid them. Moreover, as mentioned above,

the non-geometric backgrounds are expected to provide a new variety of supergravity theories

which could never have been obtained by dimensional reductions of well-defined configurations of

the background fields [16–22].

As it has been mentioned so far, the non-geometric backgrounds are introduced by theoretical

considerations and might play roles in both theoretical and phenomenological issues. Nevertheless,

neither clear interpretations nor appropriate formulations of such non-geometric objects have been

established yet.

Generalized geometry is one of the frameworks which capture some features of string’s backgrounds,

especially H-flux in mathematical manner. It is a variant of differential geometry, firstly proposed

by Hitchin [23] and further developed by Gualtieri [24] and Cavalcanti [25]. Since the metric and

B-field are treated on the same footing in generalized geometry, not only the metric but also B-field

are regarded as geometrical objects. As a result, the construction of an analogue of Riemannian

geometry based on generalized geometry naturally provides the NSNS supergravity action (1.10)

with geometric intuition [26,27]. A brief review on this point is given in this dissertation.
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The main part of this dissertation is devoted to the considerations of non-geometric fluxes. A

new variant of generalized geometry is proposed, in order to formulate one of the non-geometric

fluxes [28]. This novel framework is a kind of dual of the ordinary generalized geometry, and indeed

it has analogous structures in mathematical aspects. Since its formulation is based on the Poisson

structure of the target space, it is sometimes referred to as Poisson generalized geometry throughout

this dissertation. Poisson generalized geometry enables a consistent definition of a tri-vector field

flux [28]. This flux of tri-vector field would be identified with the R-flux which has been neither

understood nor formulated in the conventional frameworks, including generalized geometry.

As mentioned above, Poisson generalized geometry is analogous to generalized geometry in math-

ematical structures. Hence, many objects considered in the ordinary generalized geometry can be

transferred to those constructed in Poisson generalized geometry. The latter main part of this

dissertation develops investigation in this direction further. A construction of an analogue of Rie-

mannian geometry based on the Poisson generalized geometry is investigated. It is found that the

analogues of the connection and the curvature are consistently defined. As the Poisson structure

is a fundamental object in the formulation, the resulting geometry is eventually found to be com-

patible with this Poisson structure in addition to the positive-definite metric. The compatibility

condition demands the anti-symmetric part of the connection to be proportional to the derivative

of the Poisson tensor.

This dissertation is organized as follows. In chapter 2 we give an overview of string theory. The

sigma model which provides an action for a string is studied. Then we see a sigma model has a dual

description given by another sigma model. This duality between sigma models is summarized as

the Buscher rule which concludes physical equivalence for a string between different backgrounds,

referred to as T-duality. We shortly discuss that applications of T-duality transformation to geo-

metric backgrounds provide non-geometric backgrounds. In chapter 3 we present some notion of

generalized geometry. We give definitions of the algebraic structures called the Lie algebroid and

the Courant algebroid. Then, we introduce the generalized tangent bundle as an example of the

Courant algebroid, and shortly discuss its properties. We review on the construction of an analogue

of Riemannian geometry in the framework of generalized geometry. Chapter 4 is devoted to the

definition of a new variant of generalized geometry, which we call Poisson generalized geometry [28].

The significant objects in this framework are the Lie algebroid and the Courant algebroid both of

which are based on the underlying Poisson structure. We briefly discuss how Poisson generalized

geometry enables a consistent definition of tri-vector flux. In chapter 5, we construct an analogue

of Riemannian geometry based on Poisson generalized geometry. We show that an analogue of a

connection and a curvature are consistently defined, even in the presence of the tri-vector flux. The

geometrical meaning of this connection is intensively investigated. In chapter 6 we give a summary

of results and discussions. We especially discuss a construction of the gravity theory based on the

analogue of Riemannian geometry based on Poisson generalized geometry and its relation to the

supergravity theory. We give a brief review on differential geometry, introducing notations used

throughout this dissertation in appendix A. In appendix B, we present some details on calculation.



Chapter 2

String Theory

This chapter gives an overview of string theory, focusing only on what are needed in this disserta-

tion. For more details, see reviews and textbooks [29–33].

Firstly, we review on the sigma model which provides an action for a string propagating in back-

ground fields. We give a little analysis of sigma models. In the analysis, we see that the current

associated with the gauge transformation of the backgrounds forms the algebra called the Dorfman

bracket and the Courant bracket which are introduced mathematically in the next chapter.

Then, we see that a sigma model has another description which is given by another sigma model.

The alternative sigma model corresponds to the action for a string propagating in different back-

grounds from the original backgrounds. The duality between backgrounds of these sigma models is

formulated as the Buscher rule [9, 10]. This duality is referred to as T-duality, see review [34]. We

see that there are natural actions of O(n, n) transformation which includes the T-duality transfor-

mation as its special case. The O(n, n) transformation is as well one of the main subject in the

next chapter.

Finally, we discuss that applications of T-duality transformation to geometric backgrounds yield

“non-geometric” backgrounds [18–20].

2.1 Sigma model

In this section, we give actions for a string and for a (charged) particle for comparison, and inves-

tigation into them briefly.

2.1.1 Action for point particle

Before introducing the action for a string, we shall recall the action for a point particle, since the

point particle’s action is analogous to that of string’s in some points.

7



8 CHAPTER 2. STRING THEORY

Point particle in curved spacetime

In curved space background characterized by the spacetime metric gµν , it is well known that the

action for a point particle is given by the proper length of its trajectory

SPP = −m
∫

dτ

√
−gµν(X)ẊµẊν . (2.1)

Here m is the particle’s mass, τ parameterizes the world-line, gµν(X) is the background metric

and Ẋµ (µ = 0, 1, · · · , n) denotes dXµ/dτ . The function Xµ(τ) is an embedding of the world-line

into the (n + 1)-dimensional spacetime. In other words, Xµ(τ = τ0) gives the coordinate value of

particle’s position in (n + 1)-dimensional spacetime referred at τ = τ0 . The (n + 1)-dimensional

spacetime is often referred to as the target space.

A variation of the action with respect to the field Xµ yields the equation for geodesic

0 = Ẍρ + Γρ
µνẊ

µẊν , (2.2)

which minimizes the length of the particle’s trajectory. Here we introduce the Christoffel symbol

as usually defined by

Γρ
µν =

1

2
gρλ(∂µgλν + ∂νgλµ − ∂λgµν). (2.3)

Since the all indices of the target space are contracted, it is manifestly invariant under the diffeo-

morphism of the target space

X ′µ = X ′µ(X), g′µν(X
′) =

∂Xρ

∂X ′µ
∂Xσ

∂X ′ν gρσ(X). (2.4)

Charged particle in background fields

In general, a point particle has electric charge. In the presence of the external electromagnetic field,

i.e. the U(1) gauge field Aµ, the corresponding action for a point particle with electric charge e is

given by

SCPP = −m
∫

dτ

√
−gµν(X)ẊµẊν + e

∫
dτẊµAµ(X). (2.5)

Especially for the case with flat metric gµν(X) = ηµν , the equation of motion reads

d

dτ

(
mẊµ√
−Ẋ2

)
= eẊν∂µAν − eẊν∂νAµ. (2.6)

If we make a world-line gauge choice as τ = X0 and take the non-relativistic limit, we easily see

that this equation reduces to the familiar equation of motion for charged particle under the action

of the Lorentz force

mẌi = e∂iA0 − e∂0Ai + eẊj(∂iAj − ∂jAi)

= eEi + eϵijkẊjBk = e[E+V ×B]i . (2.7)
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The physics should be independent of the gauge choice of external gauge field Aµ. Under making

another gauge choice of gauge field Aµ as

Aµ → Aµ + ∂µλ, (2.8)

the action only changes by total derivative

δSCPP = e

∫
dτẊµ∂µλ(X) = e

∫
dτ

d

dτ
λ(X), (2.9)

which has no effect on the equation of motion. Hence the physics is actually independent of the

gauge choice at least in classical level.

2.1.2 Action for string

The action for a string is formulated as an extension of the action for a point particle. This is

given by the Nambu-Goto action which measures the area swept by the string. Though its physical

interpretation is clear, it seems hard to be quantized. By introducing the auxiliary field, the problem

is avoided for the Polyakov action, which is shown to be equivalent to Nambu-Goto action at least

classically. The sigma model is introduced as an extension of the Polyakov action. We give brief

analysis of the string action in some special cases.

Nambu-Goto action

Since a string extends along one-spacial direction, it sweeps a two-dimensional surface called world-

sheet in the (n + 1)-dimensional spacetime. The action for a string is given by the area of the

world-sheet

SNG =
1

2πα′

∫
d2σ
√
−det(gµν(X)∂αXµ∂βXν), (2.10)

which is referred to as the Nambu-Goto action. Here σa (a = 0, 1) is the world-sheet’s coordinate.

The variation principle extremizes the area of the world-sheet. Although this action has a clear

physical interpretation, it is difficult to handle and especially quantize this action, since it involves

the square root and hence it is a non-polynomial of the dynamical field Xµ.

Polyakov action

An alternative action equivalent to the Nambu-Goto action is given by the Polyakov action. The

Polyakov action has more tractable form than that of the Nambu-Goto action. As a price of

its tractability, the Polyakov action requires to introduce the Lorentzian world-sheet metric hab
(a, b = 0, 1) as the auxiliary field:

SP =
1

4πα′

∫
d2σ
√
−hhabgµν(X)∂aX

µ∂bX
ν , (2.11)
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where h denotes the determinant of the auxiliary world-sheet metric, h = dethab .

Taking the variation with respect to the auxiliary field hab with using δh = −hhabδhab , we have

the following equation as a constraint

0 =
4πα′
√
−h

δSP

δhab
= gµν∂aX

µ∂bX
ν − 1

2
habh

cdgµν∂cX
µ∂dX

ν . (2.12)

Taking the determinant of both sides, we obtain

−1

4
h(hcdgµν∂cX

µ∂dX
ν)2 = − det(gµν∂aX

µ∂bX
ν). (2.13)

Finally, taking the square root of both sides, we find that the Lagrangian density of the Polyakov

action is equal to that of the Nambu-Goto action:

1

2

√
−hhabgµν∂aXµ∂bX

ν =
√
− det(gµν(X)∂αXµ∂αXν). (2.14)

It convinces ourselves that the Polyakov action is actually equivalent to the Nambu-Goto action at

least classically.

Sigma model

Just like a charged particle couples to the 1-form gauge field Aµ, a string can electrically couple

to the 2-form gauge field Bµν referred to as the Kalb-Ramond field, or simply the B-field. In the

presence of non-trivial B-field background, the corresponding string action is written as

S =
1

4πα′

∫
d2σ[
√
−hhabgµν(X)∂aX

µ∂bX
ν + ϵabBµν(X)∂aX

µ∂bX
ν ], (2.15)

where ϵab is the anti-symmetric tensor with ϵ01 = 1. The rest of this chapter is intensively involved

in this action.

Since the all indices of the target space are contracted, it is manifestly invariant under the diffeo-

morphism of the target space

X ′ = X ′µ(X), g′µν =
∂Xρ

∂X ′µ
∂Xσ

∂X ′ν gρσ, B′
µν =

∂Xρ

∂X ′µ
∂Xσ

∂X ′νBρσ, (2.16)

analogous to the case of a point particle.

H-flux

The field strength of the B-field, called H-flux, is given by an exterior derivative of 2-form B giving

a 3-form H = dB, in components

Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν . (2.17)

The B-field also has the gauge transfomations as transformations which preserve the H-flux. It

allows us to shift the B-field B → B + dΛ, in components

Bµν → Bµν + ∂µΛν − ∂νΛµ , (2.18)
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with any 1-form gauge parameter Λ.

In this string case, the physics again should not depend on the gauge choice of the external B-field.

Under another gauge choice of the B-field, say B → B + dΛ, the difference of the action reads

4πα′δS = 2

∫
d2σ∂a(ϵ

abΛν∂bX
ν). (2.19)

If we assume the world-sheet to be a cylinder and thus assume a closed string, this term becomes

trivial, since the (infinitely long) cylinder has no boundary. If we consider the case of open string,

due to the existence of the world-sheet’s boundaries, we need to introduce the 1-form gauge field

on the boundaries to cancel the above boundary term.

2.1.3 A bit of analysis

For simplicity let us consider that gµν = ηµν = diag(−1,+1, · · · ,+1), Bµν = 0 and make a world-

sheet gauge choice as hab = ηab = (−1,+1). Then the sigma-model reduces to

S =
1

4πα′

∫
d2σ∂aX

µ∂aXµ. (2.20)

Here raising and lowering of the target space indices are understood to be done by the (inverse of

the) flat-Minkowski metric ηµν (ηµν), as usual. The resulting action is the same as the action for

the (n+ 1) Klein-Gordon free-fields defined on two-dimensional Minkowski spacetime {σa}.

Equation of motion and boundary condition

Since the variation of the action with respect to the field Xµ yields

δS = − 1

2πα′

∫
d2σ(∂a∂aX

µ)δXµ +
1

2πα′

∫
dσ0∂1X

µδXµ

∣∣2π
σ1=0

, (2.21)

the equation of motion turns out to be the wave equation

∂a∂aX
µ = (∂1∂1 − ∂0∂0)X

µ = 0. (2.22)

The solution is given by a sum of any functions of σ0 + σ1 and σ0 − σ1

Xµ(σa) = Xµ
L(σ

0 + σ1) +Xµ
R(σ

0 − σ1). (2.23)

The half of the solution XL (XR) is referred to as left-mover (right-mover). The boundary term

implies the boundary conditions for Xµ.

The boundary term vanishes by imposing the periodic boundary condition on Xµ

Xµ(σ0, σ1 + 2π) = Xµ(σ0, σ1), (2.24)

which corresponds to a closed string, or by imposing boundary conditions

δXµ(σ0, 2π) = δXµ(σ0, 0) = 0, (2.25)

∂1X
µ(σ0, 2π) = ∂1X

µ(σ0, 0) = 0, (2.26)

corresponding to an open string with the Dirichlet and Neumann boundary condition, respectively.

For later convenience, we note that the Dirichlet condition can be rewritten as

∂0X
µ(σ0, 2π) = ∂0X

µ(σ0, 0) = 0. (2.27)
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Closed-string solution

For the case of a closed string, the field Xµ can be expanded by the plane wave as1

Xµ(σa) = xµ + pµσ0 + i
∞∑
n̸=0

1

n

[
αµ
ne

−in(σ0+σ1) + α̃µ
ne

−in(σ0−σ1)
]
, (2.28)

where αµ
n and α̂µ

n represent the Fourier coefficients. The left-mover and the right-mover are decom-

posed into

Xµ
L(σ

0 + σ1) =
xµ

2
+

1

2
pµ(σ0 + σ1) + i

∞∑
n ̸=0

1

n
αµ
ne

−in(σ0+σ1), (2.29)

Xµ
R(σ

0 − σ1) =
xµ

2
+

1

2
pµ(σ0 − σ1) + i

∞∑
n ̸=0

1

n
α̃µ
ne

−in(σ0−σ1). (2.30)

Light-cone coordinates

It is often convenient to use the light-cone coordinates σ+ and σ− defined by

σ+ = σ0 + σ1 , σ− = σ0 − σ1. (2.31)

By definition we see

∂+ :=
∂

∂σ+
=

∂σ0

∂σ+

∂

∂σ0
+

∂σ1

∂σ+

∂

∂σ1
=

1

2

(
∂0 + ∂1

)
, (2.32)

∂− :=
∂

∂σ− =
1

2

(
∂0 − ∂1

)
, (2.33)

giving ∂±σ
± = 1 and ∂±σ

∓ = 0. For a general contravariant vector va(a = 0, 1), with paying

attention to the world-sheet metric being diag(−1,+1), we define

v+ = v0 + v1 , v− = v0 − v1 , (2.34)

and

v+ =
1

2

(
v0 + v1

)
= −1

2

(
v0 − v1

)
, v− =

1

2

(
v0 − v1

)
= −1

2

(
v0 + v1

)
. (2.35)

From (2.34) and (2.35) we can easily read off the components of the world-sheet metric in the

light-cone coordinates {σ+, σ−} as

η++ = η−− = 0 , η+− = η−+ = −1

2
, (2.36)

η++ = η−− = 0 , η+− = η−+ = −2. (2.37)

1We do not care about both the normalization and the mass dimension of the Fourier components to avoid

notational complexity.
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Using the light-cone coordinates, the Lagrangian density of the action becomes

− ∂0X
µ∂0Xµ + ∂1X

µ∂1Xµ = −4 ∂+Xµ∂−Xµ. (2.38)

Noting the world-sheet measure becomes d2σ = dσ0dσ1 = −1/2dσ+dσ−, we see the action is

rewritten as

S =
1

2πα′

∫
dσ+dσ− ∂+X

µ∂−Xµ. (2.39)

The equation of motion, the Dirichlet and Neumann boundary conditions for open string are also

rewritten as

∂+∂−X
µ = 0, (2.40)

(∂+ + ∂−)X
µ|σ=0,2π = 0, (2.41)

(∂+ − ∂−)X
µ|σ=0,2π = 0, (2.42)

respectively. Acting onto the solution Xµ, the derivative operator ∂+ (∂−) projects out the right-

mover (left-mover):

∂+X
µ = ∂+X

µ
L, ∂−X

µ = ∂−X
µ
R. (2.43)

2.2 Current algebra

As we see in the previous section, the string action (2.15) has symmetries, consisting of the diffeo-

morphism (2.16) and the B-field gauge transformation (2.18). In this section we examine the current

algebra associated with these symmetries. The resulting algebra forms the Dorfman bracket, or

equivalently Courant bracket, defined in generalized geometry in the next chapter. The discussion

here follows that given by Alekseev and Strobl [35].

The current associated with the infinitesimal diffeomorphism and the B-field gauge transformation

is given by

J(u,α)(σ) = ui
(
X(σ)

)
pi(σ) + αi

(
X(σ)

)
∂σX

i(σ), (2.44)

where u is any vector field and α is any 1-form. The first term gives the translation when ui

is constant. Hence it is reasonable that the first term generates an infinitiesmal diffeomorphism.

From (2.19), it is understood that the second term is the current associated with the B-field gauge

transformation.

Since the Poisson bracket is defined by

{F,G} =
∫

dσ′
(

δF

δXi(σ′)

δG

δPi(σ′)
− δG

δXi(σ′)

δF

δPi(σ′)

)
, (2.45)
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for any functionals F and G, the bracket for the currents is calculated as

{J(u,α)(σ),J(v,β)(τ)}
= {ui

(
X(σ)

)
pi(σ) + αi

(
X(σ)

)
∂σX

i(σ), vi
(
X(τ)

)
pi(τ) + βi

(
X(τ)

)
∂τX

i(τ)}
= −

(
uk∂kv

i − vk∂ku
i
)
pi(σ)δ(σ − τ)−

(
uk∂kβi − vk∂kαi

)
∂σX

i(σ)δ(σ − τ)

+

∫
dσ′αk

(
X(σ)

)
∂σδ(σ − σ′)vk

(
X(τ)

)
δ(τ − σ′)

−
∫

dσ′uk
(
X(σ)

)
δ(σ − σ′)βk

(
X(τ)

)
∂τδ(τ − σ′).

With paying attention to ∂σδ(σ − τ) = −∂τδ(σ − τ), we can rewrite the integrals as∫
dσ′αk

(
X(σ)

)
∂σδ(σ − σ′)vk

(
X(τ)

)
δ(τ − σ′) = −∂iαkv

k∂σX
i(σ)δ(σ − τ) + αkv

k(τ)∂σδ(σ − τ),

and∫
dσ′uk

(
X(σ)

)
δ(σ − σ′)βk

(
X(τ)

)
∂τδ(τ − σ′) = ∂iu

k∂σX
iβk(σ)δ(σ − τ)− ukβk(τ)∂σδ(σ − τ).

Then the bracket reads

{J(u,α)(σ),J(v,β)(τ)} = −
(
uk∂kv

i − vk∂ku
i
)
pi(σ)δ(σ − τ)

−
(
uk∂kβi + ∂iu

kβk − vk∂kαi + ∂iαkv
k
)
∂σX

i(σ)δ(σ − τ)

+
(
αkv

k + ukβk
)
(τ)∂σδ(σ − τ), (2.46)

here again using ∂τδ(τ − σ) = −∂σδ(τ − σ) = −∂σδ(σ− τ). With a use of notations widely used in

differential geometry2, we can rewrite the terms above as(
uk∂kv

i − vk∂ku
i
)
∂i = [u, v], (2.47)(

uk∂kβi + ∂iu
kβk − vk∂kαi + ∂iαkv

k
)
dxi = Luβ − Lvα+ ivdα, (2.48)

αkv
k + ukβk = iuβ + ivα, (2.49)

and then the algebra is rewritten as

{J(u,α)(σ),J(v,β)(τ)} = −J[(u,α),(v,β)](σ)δ(σ − τ) +
(
iuβ + ivα)(τ)∂σδ(σ − τ). (2.50)

Here we introduced a bracket [ , ] defined by

[(u, α), (v, β)] = ([u, v],Luβ − Lvα+ ivdα). (2.51)

This bracket is the Dorfman bracket (3.48) used in generalized geometry. Its properties are men-

tioned in the next chapter. Here we only comment that it is not skew-symmetric.

In the curent algebra (2.50), the left-hand side is manifestly skew-symmetric, while the skew-

symmetric property of the right-hand side is not manifest due to the choice of the expression for

2 A brief introduction for the notation is given in appendix.
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the anomalous term.

To rewrite the current algebra in manifestly skew-symmetric manner, notice that the following

formula is valid for any function f

f(τ)∂σδ(σ − τ) =
1

2
f(τ)∂σδ(σ − τ)− 1

2
f(σ)∂τδ(σ − τ) +

1

2
∂σf(σ)δ(σ − τ).

With making use of this formula, the current algebra is re-expressed as

{J(u,α)(σ),J(v,β)(τ)} = −J((u,α),(v,β))(σ)δ(σ − τ) + (anomalous), (2.52)

with

((u, α), (v, β)) :=

(
[u, v],Luβ − Lvα−

1

2
d(iuβ − ivα)

)
, (2.53)

(anomalous) =
1

2

(
iuβ + ivα)(τ)∂σδ(σ − τ)− 1

2

(
iuβ + ivα)(σ)∂τδ(σ − τ). (2.54)

As desired, both the bracket ( , ) and the anomalous term are manifestly skew-symmetric. The

bracket ( , ) defined here is referred to as the Courant bracket (3.25) which is also used in generalized

geometry. Its properties are intensively studied in the next chapter.

2.3 The Buscher rule

In this section we give a derivation of the Buscher rule which provides the duality for sigma-

models [Buscher][Duff]. We see that the duality transformation is applicable only when there is a

direction of isometry. The existence of the direction of isometry means that the background fields

are invariant under transformations along this direction. In the duality transformations, there exist

natural actions of O(n, n) transformation group.

2.3.1 One direction of isometry

As a worming-up, we consider the case of both g and B being independent ofX0. Though we assume

X0 as the direction of isometry, there is no intension for “0” to denote the temporal component of

the target space. It can be replaced with some other character, say “n”, which indicates in general

a spacial direction.

As we shall see in a moment, the following action is classically equivalent to (2.15)

S′ =
1

4πα′

∫
d2σ[
√
−hhabg00VaVb + 2

√
−hhabg0iVa∂bX

i +
√
−hhabgij∂aXi∂bX

j

+ 2ϵabB0iVa∂bX
i + ϵabBij∂aX

i∂bX
j + 2ϵabX̂0∂aVb] , (2.55)

with i, j = 1, · · · , n. Here X̂0 is the Lagrange multiplier leading a constraint

ϵab∂aVb = 0. (2.56)
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Following the Poincaré lemma, locally we can find a function X0 which satisfies Va = ∂aX
0.

Substituting this into (2.55), we can reproduce the original action (2.15).

On the other hand, we find that the equations of motion for Va reads

0 = 4πα′ δS
′

δVa
= 2
√
−hhabg00Vb + 2

√
−hhabg0i∂bXi + 2ϵabB0i∂bX

i + 2ϵab∂bX̂
0. (2.57)

Eliminating Va from (2.55) with a use of the solution of this equation of motion

Va =
1

g00

(
− g0i∂aX

i − hab√
−h

ϵbcB0i∂cX
i − hab√

−h
ϵbc∂cX̂

0

)
, (2.58)

we find that the Lagrangian density becomes

√
−hhab 1

g00
∂aX̂

0∂bX̂
0 + 2

√
−hhabB0i

g00
∂aX̂

0∂bX
i +
√
−hhab

(
gij −

g0ig0j −B0iB0j

g00

)
∂aX

i∂bX
j+

+ 2ϵab
g0i
g00

∂aX̂
0∂bX

i + ϵab
(
Bij −

g0iB0j − g0jB0i

g00

)
∂aX

i∂bX
j . (2.59)

Thus the action (2.55) reduces to the sigma-model

S̃ =
1

4πα′

∫
d2σ[
√
−hhabg̃µν(X)∂aX

µ∂bX
ν + ϵabB̃µν(X)∂aX

µ∂bX
ν ] (2.60)

with the backgrounds given by

g̃00 =
1

g00
, g̃0i =

B0i

g00
, g̃ij = gij −

g0ig0j −B0iB0j

g00
,

B̃0i =
g0i
g00

, B̃ij = Bij −
g0iB0j − g0jB0i

g00
. (2.61)

Since both sigma models (2.15) and (2.60) are obtained from the same action (2.55), the physics

described by them should be equivalent. The relations among the background fields (2.61) are

referred to as the Buscher rule.

2.3.2 All directions of isometry

As a more special case, let us assume that the background fields g and B are independent of all of

the spacetime coordinates Xµ (µ = 1, · · · , n). The action which corresponds to (2.55) in this case

is

S′′ =
1

4πα′

∫
d2σ[
√
−hhabgµνV µ

a V ν
b + ϵabBµνV

µ
a V ν

b + 2ϵab∂aX̂µV
µ
b ], (2.62)

where X̂µ are the Lagrange multipliers leading constraints

ϵab∂aV
µ
b = 0. (2.63)
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These constraints are solved by V µ
a = ∂aX

µ with some functions Xµ due to the Poincaré lemma.

Then the action (2.15) is reproduced.

On the other, taking the variations of V µ
a yields

0 = 2πα′ δS
′′

δV µ
a

=
√
−hhabgµνV ν

b + ϵabBµνV
ν
b − ϵab∂bX̂µ, (2.64)

and thus

ϵab∂bX̂µ =
√
−hhabgµνV ν

b + ϵabBµνV
ν
b . (2.65)

We would like to algebraically solve this equation with respect to V µ
a . Making an ansatz

V µ
a =

1√
−h

pµνhabϵ
bc∂cX̂ν + qµν∂aX̂ν , (2.66)

and then eliminating V µ
a from (2.65)

ϵab∂bX̂µ = ϵab(gµνp
νρ +Bµνq

νρ)∂bX̂ρ +
√
−hhab(Bµνp

νρ + gµνq
νρ)∂bX̂ρ, (2.67)

we find the simultaneous equations

δρµ = gµνp
νρ +Bµνq

νρ, (2.68)

0 = Bµνp
νρ + gµνq

νρ. (2.69)

They are solved by (here the equations are understood as matrix equations)

p = (g −Bg−1B)−1, (2.70)

q = −g−1B{(gB−1g −B)g−1B}−1 = (B − gB−1g)−1. (2.71)

Note that the matrix p (q) is a(n) (anti-)symmetric matrix. These matrices satisfy the following

relations

p+ q = (g +B)−1, (2.72)

p = −qgB−1 = −B−1gq, (2.73)

q = −g−1Bp = −pBg−1. (2.74)

Thus the action (2.62) reduces to

S′′ =
1

4πα′

∫
d2σ

[√
−hhabpρσ∂aX̂ρ∂bX̂σ + ϵabqρσ∂aX̂ρ∂bX̂σ

]
. (2.75)

Hence we have another sigma model which is physically equivalent to (2.15).

The relations between the fields Xµ and X̂µ which appear in the action (2.15) and (2.75), respec-

tively, are given by

ϵab∂bX̂µ =
√
−hhabgµν∂bXν + ϵabBµν∂bX

ν , (2.76)
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from(2.65).Introducing the anti-symmetric tenor ϵab := −ϵab, we can rewrite these relations as

ϵab∂bX
µ =
√
−hhabpµν∂bX̂ν + ϵabqµν∂bX̂ν . (2.77)

By substituting (2.77) into (2.76) and using the formulae for p and q, we obtain

ϵab∂bX̂ρ =
√
−hhab((g −Bg−1B)ρλ∂bX

λ +Bρλg
λγ∂bX̂γ). (2.78)

Similarly, substituting (2.76) into (2.77), we equivalently have

ϵab∂bX
µ =
√
−hhab(−(g−1B)µν∂bX

ν + gµν∂bX̂ν). (2.79)

2.3.3 O(n, n)-transformation

Let us introduce a 2n-dimensional column vector

ZM =

(
Xµ

X̂µ

)
, (2.80)

and 2n× 2n matrix Ω

Ω =

(
0 1

1 0

)
, (2.81)

where 1 denotes n × n unity matrix. Then the relations between the fields (2.78) and (2.79) can

be simply represented as

ϵabΩMN∂bZ
N =

√
−hhabGMN∂bZ

N , (2.82)

with

GMN =

(
g −Bg−1B Bg−1

−g−1B g−1

)
. (2.83)

Since the matrix Ω is an invariant matrix under actions of any element S in O(n, n) transformation

which satisfies STΩS = Ω, there is a natural action of this transformation on the column vector Z,

defined by Z ′ = S−1Z. The action of ST on (2.82) gives

ϵab(ST ) L
MΩLK∂bZ

K = ϵabΩMN (S−1)NK∂bZ
K = ϵabΩMN∂bZ

′N , (2.84)
√
−hhab(ST ) L

MGLK∂bZ
K =

√
−hhab(ST ) L

MGLKSK
N∂bZ

′N , (2.85)

i.e.

ϵabΩLK∂bZ
′K =

√
−hhab(ST ) P

L GPKSK
N∂bZ

′N . (2.86)

Thus the action of an O(n, n) matrix S on the backgrounds are given by

GMN → G′
MN = (ST ) L

MGLKSK
N . (2.87)

Making the gauge choice as hab = diag(−1,+1), we find(
∂1X̂µ

∂1X
µ

)
=

(
g −Bg−1B Bg−1

−g−1B g−1

)(
∂0X

µ

∂0X̂µ

)
. (2.88)
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Relation to the Buscher rule

Especially for

S = Ω =

(
0 1

1 0

)
, (2.89)

the condition STΩS = Ω is satisfied and Ω is an element of O(n, n) transformation group, indeed

ΩTΩΩ =

(
0 1

1 0

)(
0 1

1 0

)(
0 1

1 0

)
=

(
1 0

0 1

)(
0 1

1 0

)
= Ω. (2.90)

Corresponding to S = Ω, the metric transforms into

G =

(
g −Bg−1B Bg−1

−g−1B g−1

)
→ G′ = ΩT

(
g −Bg−1B Bg−1

−g−1B g−1

)
Ω

=

(
g−1 −g−1B

Bg−1 g −Bg−1B

)
, (2.91)

following the rule (2.87). Recalling (2.70), (2.71), (2.72), (2.73) and (2.74), we find the resulting

metric can be represented as

G′ =

(
p− qp−1q qp−1

−p−1q p−1

)
. (2.92)

We easily see that in this transformation the following replacements take places

g → p = (g −Bg−1B)−1, B → q = −g−1Bp. (2.93)

This is the same relations as (2.75) obtained in the dual descriptions of the sigma-models. Hence

O(n, n) transformations include the Buscher rule and provide transformations of wider class. The

meaning of the other elements in O(n, n) is discussed below.

SO(n, n) generators

We end this section with a few comments on O(n, n) transformations. Let us consider infinitesimal

transformations. Since their successive actions defines an element which is continuously connected

to the unity, the resulting element is of SO(n, n). For an infinitesimal transformation S = 1 +X,

the definition for it to be an element of SO(n, n), STΩS = Ω, gives

Ω = (1 +XT )Ω(1 +X) ∼ Ω+XTΩ+ ΩX. (2.94)

Hence the generators X must satisfy the condition

XTΩ = −ΩX. (2.95)
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Recalling the definition of Ω and parameterizing the matrix X as

X =

(
A η

b α

)
, (2.96)

the condition (2.95) reads

α = −AT , bT = −b, ηT = −η. (2.97)

The number of the parameter tells us the number of the generators being

n2 + 2× n(n− 1)

2
=

2n(2n− 1)

2
. (2.98)

The finite transformation are classified into the following of three types(
eA 0

0 e−AT

)
,

(
1 0

B 1

)
,

(
1 β

0 1

)
, (2.99)

where B and β are finite skew-symmetric matrices.

The interpretations of these transformations are as follows. For simplicity taking g = η, B = 0

and infinitesimal transformations parametrized by Aµ
ν = ∂νu

µ and bµν = ∂µαν , their actions onto

GMN read (
η 0

0 η−1

)
1+A−→

(
ηµν + ∂µuν + ∂νuµ 0

0 ηµν − ∂µuν − ∂νuµ

)
, (2.100)(

η 0

0 η−1

)
b=dα−→

(
ηµν − (dα)µρη

ρσ(dα)σν −(dα)µρηρν

ηµρ(dα)ρν ηµν

)
, (2.101)

which correspond to the diffeomorphism generated by the vector field u and the B-field gauge

transformation induced by 1-form gauge parameter α, respectively. The β-transformation has

no such clear interpretation. The actions of SO(n, n) transformations, especially corresponding

to diffeomorphisms and B-field gauge transformations, play important roles as well in the next

chapter.

2.4 T-duality

For simple argument, setting Bµν = 0 and gµν = ηµν = diag(−1,+1, · · · ,+1), furthermore taking

a gauge choice as hab = ηab = diag(−1,+1), we find the relations between the fields (2.78) and

(2.79) reduces to

ϵab∂bX̂µ = ∂aXµ, (2.102)

ϵab∂bX
µ = ∂aX̂µ. (2.103)
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Since ϵab is the anti-symmetric tensor, these equations indicate that the derivative of Xµ with

respect to σ0(σ1) is converted to the derivative with respect to σ1(σ0) for X̂µ. To be more specific,

noting that ϵ01 = −ϵ10 = −1 and hab = diag(−,+), we find

∂1X̂µ = −ϵ01∂1X̂µ = −∂0Xµ = ∂0Xµ, (2.104)

∂0X̂µ = ϵ10∂0X̂µ = ∂1Xµ = ∂1Xµ. (2.105)

These equations mean the duality which interchanges the roles of derivatives

∂0 ←→ ∂1 , (2.106)

implying for a closed string the duality between

∂+XL ←→ ∂+X̂L, ∂−XR ←→ −∂−X̂R, (2.107)

by (2.43), or equivalently, from more physical point of view

momentum ←→ winding, (2.108)

and for an open string

(∂+ + ∂−)X
µ|σ=0,2π = 0 ←→ (∂+ − ∂−)X̂

µ|σ=0,2π = 0, (2.109)

Dirichlet boundary condition Neumann boundary condition

by (2.26) and (2.27), or (2.41) and (2.42).

The Dp-branes are characterized as p-dimensional extended objects, to which open strings can

attach. This is equivalent to that the D-branes are characterized as hypersurfaces on which open

strings have the Dirichlet boundary conditions. Since the duality interchanges the boundary con-

ditions for open strings, its actions on D-branes are summarized as

wrapped Dp-brane ←→ unwrapped D(p− 1)-brane. (2.110)

These dualities are what the T-duality tells us.

Thus the Buscher rule obtained in the previous section is understood to provide a general rule for

T-duality transformation with the general metric and B-field.

2.5 Non-geometric backgrounds

In this section we give a brief discussion on how the successive applications of T-duality trans-

formation to the coventional backgrounds provide odd configurations referred to as non-geometric

in literatures. For simplicity, the observations here starts with a three-torus with a constant H-

flux, for more details and general discussions under general set-up, see [ref]. Since we regard the

three-torus as a two-torus fibered over S1, we firstly review on how a two-torus is characterized

geometrically.
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2.5.1 Two-torus

This section provides some notions on two-torii. A two-torus T 2 is known to be one of the simplest

examples of the Calabi-Yau manifolds. In general, a Calabi-Yau n-fold is a Kähler manifold having

n complex dimensions and vanishing the first Chern class. The two-torus is the only compact

Calabi-Yau one-fold.

Consider a rectangular torus T 2 = S1 × S1 with periodicity x1 ∼ x1 +R1 and x2 ∼ x2 + R2. It is

convenient to introduce two complex parameters τ and ρ defined by

τ = i
R1

R2
, (2.111)

ρ = iR1R2, (2.112)

which describes the complex structure and the size of the torus, respectively. A complex-structure

deformation of the torus changes the value of the parameter τ , while a Kähler-structure deformation

does ρ.

The rectangular torus is not the most general. There can be an angle θ between one cycle and the

other of the two-torus. In general a T 2 is characterized by

ds2 =

2∑
I,J=1

GIJdX
IdXJ , B =

1

2

2∑
I,J=1

BIJdX
I ∧ dXJ . (2.113)

Hence its moduli are given by the following four real parameters

GIJ =

(
G11 G12

G12 G22

)
, BIJ =

(
0 B12

−B12 0

)
. (2.114)

These four real parameters can be traded for two complex parameters τ and ρ, as an extension

above:

τ = τ1 + iτ2 =
G12

G22
+ i

√
detG

G22
, (2.115)

ρ = ρ1 + iρ2 = B12 + i
√
detG. (2.116)

The relations between these parameters can be inverted yielding

G+B =
ρ2
τ2

(
τ21 + τ22 τ1

τ1 1

)
+ ρ1

(
0 1

−1 0

)
. (2.117)

As is well known, the complex modulus τ determines an equivalent torus when it is replaced with

τ → aτ + b

cτ + d
, with

(
a b

c d

)
∈ SL(2,Z), (2.118)

which is obtained by successive applications of discrete transformations

τ → τ + 1 and τ → −1

τ
. (2.119)



2.5. NON-GEOMETRIC BACKGROUNDS 23

Although it is not so obvious, so does the other modulus ρ. One circumstantial evidence for ρ

transforming as an SL(2,Z) modulus is given by noting that they altogether provide the symmetry

SL(2,Z)× SL(2,Z) = SO(2, 2;Z), (2.120)

i.e. the invariance under (discrete version of) SO(2, 2) transformations. As discussed in preceding

sections, the invariance under SO(2, 2) is realized when there exist two directions of isometry. And

indeed the discussion here is the case.

Especially for the case of the rectangular torus with vanishing B-field, since the metric becomes

GIJ = R2
I δIJ , (2.121)

and
√
G = R1R2, the parameters τ and ρ reduce to those mentioned above, (2.111) and (2.112).

This is equivalent to τ1 = ρ1 = 0 and then

G+B =

(
ρ2τ2 0

0 ρ2/τ2

)
. (2.122)

2.5.2 T-duality and non-geometric backgrounds

This section explains how T-duality transforms the conventional backgrounds into the configura-

tions called non-geometric. We consider a three-torus with a constant H-flux as a starting point.

Three-torus with H-flux Consider the rectangular three-torus

ds2 = R2
1(dX

1)2 +R2
2(dX

2)2 +R2
3(dX

3)2, (2.123)

in the presence of a constant H-flux ∫
T 3

H = N ∈ Z. (2.124)

The periodicities are given by identifications

XI ∼ XI + 1, I = 1, 2 and 3, (2.125)

for each direction. The H-flux can be denoted as

H = NdX1 ∧ dX2 ∧ dX3. (2.126)

By choosing a gauge choice of the B-field as

B = NX1dX2 ∧ dX3, (2.127)

we can conveniently regard this three-torus as a two-torus (X2, X3) fibered over S1(X1). Then the

complex structure and the Kähler structure read

τ = i
R2

R3
, (2.128)

ρ = NX1 + iR2R3, (2.129)
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respectively, yielding monodromy of the Kähler structure

ρ→ ρ+N, (2.130)

under a translation X1 → X1 + 1. This is absorbed by an SL(2,Z) transformation of the moduli

parameter ρ with monodromy matrix

M0(X1) =

(
1 NX1

0 1

)
ρ

. (2.131)

First T-duality transformation We apply the Buscher rule

g̃00 =
1

g00
, g̃0i =

B0i

g00
, g̃ij = gij −

g0ig0j −B0iB0j

g00
,

B̃0i =
g0i
g00

, B̃ij = Bij −
g0iB0j − g0jB0i

g00
, (2.132)

regarding X2-direction as an isometry. Then we find that the metric reads

ds2 = R2
1(dX1)

2 +
1

R2
2

(dX2 +NX1dX3)
2 +R2

3(dX3)
2, (2.133)

and the B-field vanishes

B = 0. (2.134)

The periodicities are understood as follows: for X3-direction is unchanged X3 ∼ X3 + 1, while

(X1, X2) ∼ (X1 + 1, X2 −NX3), (2.135)

which defines a twisted torus or nilmanifold.

Taking a basis of 1-forms {ηi}, i = 1, 2 and 3 as

η1 = dX1, η2 = dX2 +NX1dX3, η3 = dX3, (2.136)

and its dual basis of vector fields {ηi}, i = 1, 2 and 3 as

η1 = ∂1, η2 = ∂2, η3 = ∂3 −NX1∂2, with ∂I =
∂

∂XI
, (2.137)

we have

ηi(ηj) = δij , (2.138)

by construction. Then the metric can be rewritten as

ds2 = (dη1)2 + (dη2)2 + (dη3)2. (2.139)

They satisfy the following algebra

[η1, η3] = [∂1, ∂3 −NX1∂2] = −N∂2 = f2
13η2, (2.140)

[η2, η1] = [dY2 +NX1dX3, ∂1] = −NdX3 = f2
13η

3, (2.141)

[η2, η3] = −f2
13η

1, (2.142)

with f2
13 = −N .
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Second T-duality transformation Since both the metric (2.133) and the B-field (2.134) are

independent of any shift along X3-direction. This z-direction is left as a direction of isometry. By

performing the Buscher rule, we find that the resulting metric reads

ds2 = dX2
1 +

1

1 +N2X2
1

(dX2
2 + dX2

3 ), (2.143)

and the B-field does

B =
−NX1dX2 ∧ dX3

1 +N2X2
1

. (2.144)

Though the isometry with respect to X1-coordinate is no longer manifest, introducing the notion

of T-fold [18] enables to restore the notion of periodicity in the resulting geometry.

2.5.3 O(d, d)-invariant action

A construction of an O(d, d)-invariant action has been investigated [36–42] and [43–46]. Their

resulting gravity theory is shown to be physically equivalent to the original low-energy supergravity

theory of the Neveu-Schwarz-Neveu-Schwarz (NSNS) sector

LNSNS =
√
|g|
(
R− 1

12
HijkH

ijk

)
. (2.145)

Although their considerations are done in the framework of doubled field theory (DFT), giving an

introduction to DFT is beyond the scope of this dissertation, see [47–51] for more details about

DFT. In [36–42], the dynamical variables are given by two doublets3

(gij , Bij) and (Gij , β
ij). (2.146)

The former doublet (gij , Bij) consists of the conventional NSNS sector fields. The latter doublet is

related to the former by

Ẽ−1
ij = Eij = gij +Bij , (2.147)

E ij = Gij + βij . (2.148)

These relations are realized as a T-duality transformation (2.70) and (2.71) .

DFT treats not only the conventional coordinate xi but also a dual coordinate x̃i to accomplish

an invariant theory under O(n, n) transformations which include T-duality transformations. The

doubled coordinates XM are introduced by XM = (x̃i, x
i). To remove the redundancy of these

doubled coordinate dependence in the formulation, the “strong constraint” or “section condition”

should be imposed

ηMN∂M∂N = 0, ηMN =

(
0 1

1 0

)
, (2.149)

3 To be precise, there is the dilation field in addition to the metric and the B-field.
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on any fields, gauge parameters and etc. where ∂M = (∂̃i, ∂i). Imposing this condition is equivalent

to imposing

∂i∂̃
i = 0. (2.150)

The gauge transformation in DFT is parametrized by ξM = (ξ̃i, ξ
i) as

δEij =LξEij + ∂iξ̃j − ∂j ξ̃i

+ Lξ̃Eij − Eik(∂̃
kξl − ∂̃lξk)Elj , (2.151)

where

LξEij = ξk∂kEij + ∂iξ
kEkj + ∂jξ

kEki, (2.152)

Lξ̃Eij = ξ̃k∂̃
kEij − ∂̃kξ̃iEkj − ∂̃kξ̃jEki. (2.153)

The difference of the signs in front of the gauge parameters are chosen to make Eij a covariant

tensor with respect to xi whereas to make Eij a contravariant tensor with respect to x̃i .

In [36–42], a construction of an invariant theory under these gauge transformations is accomplished

in somehow a heuristic manner. A derivative operator is defined by

D̃i = ∂̃i − βij∂j , (2.154)

with the anti-symmetric tensor β. This derivative operator has a non-trivial commutator

[D̃i, D̃j ] = −Rijk∂k −Q ij
k D̃k, (2.155)

giving

Rijk = 3D̃[iβjk] = 3(∂̃[iβjk] + βl[i∂lβ
jk]), (2.156)

Q ij
k = ∂kβ

ij . (2.157)

A covariant derivative with upper indices is introduced by

∇̃iV j = D̃iV j − Γ̆ij
k V

k, ∇̃iVj = D̃iVj + Γ̆ik
j Vk. (2.158)

The connection coefficients are given by

Γ̆
(ij)
k = Γ̆ij

k −Gkl(G
miΓ̆[jl]

m +GmjΓ̆[il]
m ), (2.159)

where

Γ̆ij
k =

1

2
Gkl(D̃

iGjl + D̃jGil − D̃lGij), (2.160)

Γ̆
[ij]
k = −1

2
Q ij

k . (2.161)
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Hence, explicitly they read

Γ̆ij
k =

1

2
Gkl[(∂̃

i − βim∂m)Gjl + (∂̃j − βjm∂m)Gil − (∂̃l − βlm∂m)Gij ]

= Γ̃ij
k −

1

2
Gkl(β

im∂mGjl + βjm∂mGil − βlm∂mGij) (2.162)

Γ̆
[ij]
k = −1

2
∂kβ

ij , (2.163)

where Γ̃ij
k is introduced by

Γ̃ij
k =

1

2
Gkl(∂̃

iGjl + ∂̃jGil − ∂̃lGij). (2.164)

Thus the connection coefficients read

Γ̆
(ij)
k = Γ̃ij

k −
1

2
Gkl(β

im∂mGjl + βjm∂mGil − βlm∂mGij −Gmi∂mβjl −Gmj∂mβil), (2.165)

Γ̆
[ij]
k = −1

2
∂kβ

ij . (2.166)

Since the construction of this connection is based on the doubled gauge transformations and the

requirement that the theory should be covariant, so far the geometrical meaning of the connection

has been less clear. Eventually, the meaning of the connection will be demystified in this dissertation

from the viewpoint of the algebroid.





Chapter 3

Generalized geometry

In the previous chapter, we observed that the algebra of the currents associated with the gauge

transformations of the background fields forms the Dorfman bracket, or equivalently Courant

bracket and there are natural actions of O(n, n) transformations on background fields. Gener-

alized geometry provides a framework that formulates these observations in mathematical manner.

In this chapter, we present some notion of generalized geometry, focussing only on what are needed

in this dissertation. For systematic introduction, see [24], for review on mathematical aspects,

see [27], and review for physical applications, see [52, 53]. Firstly, we give definitions of the al-

gebraic structures, called the Lie algebroid and the Courant algebroid. Then we introduce the

generalized tangent bundle as an example of the Courant algebroid on which generalized geometry

is defined. We briefly discuss some properties of the generalized tangent bundle. Finally, we re-

view on the construction of an analogue of Riemannian geometry in the framework of generalized

geometry.

3.1 Lie algebroid

In this section, we introduce the notion of Lie algebroid [54, 55]. The Lie algebroid is the most

fundamental structure to define (analogue of) generalized geometry.

Definition

A Lie algebroid is defined by a triple (E, [·, ·]E , ρ). Here E denotes a vector bundle π : E → M

over a base manifold M . We represent the set of the sections of this vector bundle E as Γ(E), as

usual. The bracket [·, ·]E is a Lie bracket i.e. a skew-symmetric bi-linear map

[ ·, ·]E : Γ(E)⊗ Γ(E)→ Γ(E), (3.1)

satisfying the Jacobi identity. And ρ is an anchor map ρ : E → TM , such that 1) the induced map

ρ : Γ(E)→ Γ(TM) defines a Lie-algebra homomorphism and 2) it satisfies the Leibniz rule

[X, fY ]E = f [X,Y ]E + (ρ(X)f)Y, (3.2)

29
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for any X,Y ∈ Γ(E) and f ∈ C∞(M). Here ρ(X)f denotes the action of the vector field ρ(X) ∈
Γ(TM) on the function f ∈ C∞(M) resulting in the derived function of f along the vector field

ρ(X).

Tangent bundle as a Lie algebroid

The tangent bundle TM is a trivial example of the Lie algebroid. The identity map id : Γ(TM)→
Γ(TM) defines the anchor map and the Lie bracket is defined by the commutator

[X,Y ]TM = XY − Y X, where X,Y ∈ Γ(TM), (3.3)

as usual. One can easily show that the triple (TM, [ ·, · ]TM , id) actually satisfies the conditions to

be a Lie algebroid mentioned above. We will simply denote this Lie algebroid (TM, [ ·, · ]TM , id) as

TM .

Lie algebroid of a Poisson manifold

Poisson bivector Let (M, θ) be a Poisson manifold equipped with a Poisson bivector θ ∈
Γ(∧2TM). In some local coordinate system {xm}, it is represented in components as

θ =
1

2
θij∂i ∧ ∂j . (3.4)

The Poisson bivector defines the Poisson bracket as

{f, g} = θij∂if∂jg = θij∂i(df)∂j(dg) =: idgidfθ. (3.5)

The Poisson bivector θ satisfies [θ, θ]S = 0, where [·, ·]S is the Schouten-Nijenhuis bracket, an

extension of the Lie bracket [ ·, · ]TM to the bracket acting on poly-vector fields Γ(∧•TM). This is

calculated as

[θij∂i ∧ ∂j , θ
kl∂k ∧ ∂l]S

= [θij∂i, θ
kl∂k] ∧ ∂j ∧ ∂l − [θij∂i, ∂l] ∧ ∂j ∧ θkl∂k − [∂j , θ

kl∂k] ∧ θij∂i ∧ ∂l

= (θij∂iθ
kl∂k − θkl∂kθ

ij∂i) ∧ ∂j ∧ ∂l + θkl∂lθ
ij∂i ∧ ∂j ∧ ∂k − θij∂jθ

kl∂k ∧ ∂i ∧ ∂l

= 4θkl∂lθ
ij∂i ∧ ∂j ∧ ∂k. (3.6)

Thus the condition [θ, θ]S = 0 implies, in terms of components,

θl[k∂lθ
ij] = 0. (3.7)

This condition guarantees that the Poisson bracket {·, ·} satisfies the Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0, (3.8)

for any smooth functions f, g, h ∈ C∞(M).
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Lie algebroid A Lie algebroid of a Poisson manifold [56] is defined by a triple (T ∗M, [·, ·]θ, θ).
Here T ∗M denotes the cotangent bundle. The anchor map is induced by the Poisson bi-vector θ

by regarding it as a map θ : Γ(T ∗M)→ Γ(TM) i.e.

θ(ξ) = iξθ, for ξ ∈ Γ(T ∗M), (3.9)

in components

iξθ = iξkdxk

(
1

2
θij∂i ∧ ∂j

)
= ξiθ

ij∂j . (3.10)

The Lie bracket [·, ·]θ is defined by the Koszul bracket:

[ξ, η]θ = Lθ(ξ)η − iθ(η)dξ, (3.11)

in components

[ξ, η]θ = (diθ(ξ) + iθ(ξ)d)η − iθ(η)dξ

= d(ξiθ
ijηj) + iξiθij∂j (∂kηl)dx

k ∧ dxl − iηiθij∂j (∂kξl)dx
k ∧ dxl

= ∂k(ξiθ
ijηj)dx

k + ξiθ
ij(∂jηk)dx

k − ξiθ
ij(∂kηj)dx

k − ηiθ
ij(∂jξk)dx

k + ηiθ
ij(∂kξj)dx

k

= (ξiηj∂kθ
ij + ξiθ

ij∂jηk − ηiθ
ij∂jξk)dx

k. (3.12)

The skew-symmetry is manifest if we rewrite the bracket as

[ξ, η]θ = Lθ(ξ)η − Lθ(η)ξ + d(iξiηθ). (3.13)

We will often denote this Lie algebroid (T ∗M, [·, ·]θ, θ) as (T ∗M)θ for short.

3.2 Courant algebroid

In this section we give the definition of the Courant algebroid. The Courant algebroids constructed

from the Lie algebroid TM and (T ∗M)θ, introduced in the previous section, are the main objects,

which are considered in the generalized geometry and the Poisson generalized geometry, respectively.

We explain the former as an example of the Courant algebroid.

Definiftion

A Courant algebroid is defined by a quadruple (E, [·, ·]E , ρ, ⟨·, ·⟩E), where E is a vector bundle over

a base manifold M , the bracket [·, ·]E is a skew-symmetric bi-linear bracket i.e.

[ ·, ·]E : Γ(E)⊗ Γ(E)→ Γ(E), (3.14)

ρ is a bundle map ρ : E → TM and ⟨·, ·⟩E denotes non-degenerate symmetric product on Γ(E),

⟨·, ·⟩E : Γ(E)⊗ Γ(E)→ C∞(M). (3.15)
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They are required to satisfy the following five conditions: 1) for e1, e2 ∈ Γ(E) the induced map

Γ(E)→ Γ(TM) satisfies

ρ[e1, e2]E = [ρ(e1), ρ(e2)]TM , (3.16)

2) and for any function f ∈ C∞(M),

[e1, fe2]E = f [ρ(e1), ρ(e2)]TM + (ρ(e1)f)e2 − ⟨e1, e2⟩Df, (3.17)

where the map D : C∞(M) → Γ(E) is defined by D = ρ∗d . Since ρ∗ is the pull-back of ρ which

defines a map: Γ(T ∗M) = Γ∗(TM)→ Γ(E) and d is the de Rham differential: C∞(M)→ Γ(T ∗M),

the map D is defined, which means that

⟨Df, e⟩ = ⟨ρ∗df, e⟩ = ⟨df, ρ(e)⟩ = ρ(e)f. (3.18)

3)The map D is required to satisfy

ρ ◦ D = 0, (3.19)

which induces, for any functions f, g ∈ C∞(M),

⟨Df,Dg⟩ = ⟨ρ∗df,Dg⟩ = ρ(Dg)f = 0. (3.20)

And 4) for e, e1, e2 ∈ Γ(E),

ρ(e)⟨e1, e2⟩ = ⟨[e, e1] +D⟨e, e1⟩, e2⟩+ ⟨e1, [e, e2] +D⟨e, e2⟩⟩, (3.21)

finally, 5)

DT (e, e1, e2) = J (e, e1, e2). (3.22)

Here T and J are defined, respectively, as follows

T (e, e1, e2) =
1

3
(⟨[e, e1], e2⟩+ ⟨[e1, e2], e⟩+ ⟨[e2, e], e1⟩), (3.23)

J (e, e1, e2) = [[e, e1], e2] + [[e1, e2], e] + [[e2, e], e1]. (3.24)

Generalized tangent bundle as Courant algebroid

Let M be a n-dimensional smooth manifold, TM be the tangent and T ∗M be the cotangent bundle,

respectively. The formal sum of these bundles, TM ⊕T ∗M is referred to as the generalized tangent

bundle. A section of TM ⊕ T ∗M is called a generalized vector field, consists of a sum of a vector

field X ∈ Γ(TM) and a 1-form ξ ∈ Γ(T ∗M), X + ξ ∈ Γ(TM ⊕ T ∗M). So that the dimension of

the fiber is 2n.

The quadruple (TM⊕T ∗M, [·, ·], ρ, ⟨·, ·⟩) defines a Courant algebroid, where the bracket, the anchor

map and the bilinear form are given, respectively, by for X + ξ, Y + η ∈ Γ(TM ⊕ T ∗M),

[X + ξ, Y + η] = [X,Y ] + LXη − LY ξ −
1

2
d(iXη − iY ξ), (3.25)

ρ(X + ξ) = X, (3.26)

⟨X + ξ, Y + η⟩ = 1

2
(iXη + iY ξ). (3.27)
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Since the anchor map ρ acts as a projection ρ : Γ(TM ⊕ T ∗M) → Γ(TM) , the induced map

ρ∗ defines an injection ρ∗ : Γ(T ∗M) → Γ(TM ⊕ T ∗M). Thus, the condition 1) and 3) are easily

understood. Following the definitions, straightforward calculations yield, for u, v, w ∈ Γ(TM ⊕
T ∗M),

[u, fv] = f [u, v] + (ρ(u)f)v − ⟨u, v⟩df , (3.28)

ρ(u)⟨v, w⟩ = ⟨[u, v] + d⟨u, v⟩, w⟩+ ⟨v, [u,w] + d⟨u,w⟩⟩. (3.29)

They correspond to the conditions 2) and 4), respectively. Finally, the condition 5) is shown as

follows. With noting that

DT (X1 + ξ1, X2 + ξ2, X3 + ξ3)

=
1

6

[
di[X1,X2] + diX1

(
LX2 −

1

2
diX2

)
− diX2

(
LX1 −

1

2
diX1

)]
ξ3

+ (1→ 2→ 3→ 1) + (1→ 3→ 2→ 1),

while

J (X1 + ξ1, X2 + ξ2, X3 + ξ3)

=
1

2

[
− di[X1,X2] + LX1diX2 − LX2diX1 + diX1

(
LX2 −

1

2
diX2

)
− diX2

(
LX1 −

1

2
diX1

)]
ξ3

+ (1→ 2→ 3→ 1) + (1→ 3→ 2→ 1),

thus what we have to show is A = B, where

A =
1

3

[
di[X1,X2] + diX1

(
LX2 −

1

2
diX2

)
− diX2

(
LX1 −

1

2
diX1

)]
,

B = −di[X1,X2] + LX1diX2 − LX2diX1 + diX1

(
LX2 −

1

2
diX2

)
− diX2

(
LX1 −

1

2
diX1

)
,

or equivalently, Ã = B̃, with

Ã = 4di[X1,X2]

B̃ = 3LX1diX2 − 3LX2diX1 + diX1(2LX2 − diX2)− diX2(2LX1 − diX1).

Thus it is actually shown to be valid:

Ã = 2di[X1,X2] − 2di[X2,X1] = 2d(LX1iX2 − iX2LX1)2− d(LX2iX1 − iX1LX2)

= 2diX1diX2 − 2diX2(diX1 + iX1d)− 2diX2diX1 + 2diX1(diX2 + iX2d)

= 4diX1diX2 − 4diX2diX1 + 4diX1iX2d,

B̃ = 3diX1diX2 − 3diX2diX1 + 2diX1iX2d+ diX1diX2 − 2diX2iX1d− diX2diX1 = Ã.

3.3 Generalized geometry

In the rest of this chapter, we are denoted in the generalized tangent bundle, i.e. the Courant

algebroid TM⊕T ∗M defined as above: Its sections consist of the sum u+ξ of vector field u ∈ Γ(TM)

and 1-form ξ ∈ Γ(T ∗M), equipped with the Courant bracket, the bilinear form, and the anchor

map ρ : TM ⊕ T ∗M → TM .
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3.3.1 Some properties

Bilinear form under SO(n, n)-transformation

The bilinear form (3.27) can be represented as

⟨u+ ξ, v + η⟩ = 1

2

(
u

ξ

)T (
0 1

1 0

)(
v

η

)
. (3.30)

Thus the action of SO(n, n) is naturally considered. Since(
u

ξ

)
→

(
u′

ξ′

)
= S−1

(
u

ξ

)
, (3.31)(

0 1

1 0

)
→ ST

(
0 1

1 0

)
S =

(
0 1

1 0

)
, (3.32)

the bilinear form is invariant under SO(n, n) transformation

⟨u′ + ξ′, v′ + η′⟩ = ⟨u+ ξ, v + η⟩. (3.33)

The SO(n, n) transformation can be classified as (2.99)(
eA 0

0 e−AT

)
,

(
1 0

B 1

)
,

(
1 β

0 1

)
. (3.34)

The actions of these transformations on generalized vectors are represented as,(
u′

ξ′

)
=

(
1 + Lv 0

0 1 + Lv

)(
u

ξ

)
=

(
uµ − uν∂νv

µ

ξµ + ξν∂µv
ν

)
, (3.35)(

u′

ξ′

)
=

(
1 0

B 1

)(
u

ξ

)
=

(
uµ

ξµ +Bνµu
ν

)
, (3.36)(

u′

ξ′

)
=

(
1 β

0 1

)(
u

ξ

)
=

(
uµ + βνµξν

ξµ

)
, (3.37)

respectively. The first is surely a diffeomorphism generated by a vector field v. The second is

understood to correspond to the B-transformation as follows: recalling that the generalized tangent

vector is a parameter of the current, we find

J(u,ξ) = uµpµ + ξµ∂σX
µ

→ uµ(pµ +Bµν∂σX
ν) + ξµ∂σX

µ = uµΠµ + ξµ∂σX
µ. (3.38)

And the last one can be understood to yield

J(u,ξ) = uµpµ + ξµ∂σX
µ

→ uµpµ + ξµ(∂σX
µ + βµνpν), (3.39)

but it does not have clear interpretation.
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Courant bracket under SO(n, n)-transformation

Here we investigate responses of the Courant bracket to SO(n, n)-transformations.

Diffeomorphism In the ordinary differential geometry TM , a diffeomorphism φ : M → M

induces an automorphism φ∗ : TM → TM , so that the symmetry of the Lie algebroid TM

consists of diffeomorphisms, Diff(M). An infinitesimal diffeomorphism generated by a vector field

w = wµ∂µ, and its action on Γ(TM) is represented by the Lie derivative Lw, as Lwu = [w, u] for

u ∈ Γ(TM).

For the generalized tangent bundle TM ⊕ T ∗M , a diffeomorphism φ : M → M induces an auto-

morphism φ∗ ⊕ φ∗ : TM ⊕ T ∗M → TM ⊕ T ∗M . Its infinitesimal form can again be represented

by the Lie derivative. Under an infinitesimal diffeomorphism the bracket responds as

[(1 + Lw)(u+ ξ), (1 + Lw)(v + η)]

= [u+ ξ, v + η] + [Lwu, v] + [u,Lwv] + LLwuη + LuLwη − LLwvξ − LvLwξ

− 1

2
d(iLwuη + iuLwη − iLwvξ − ivLwξ)

= [u+ ξ, v + η] + [w, [u, v]] + LwLuη − LwLuη −
1

2
Lwd(iuη − ivξ)

= (1 + Lw)[u+ ξ, v + η], (3.40)

with using the Cartan formulae. Thus the Courant bracket closes under diffeomorphisms.

B-transformation One of the significant properties of the Courant bracket is that it is isomorphic

under the B-transformation eB with closed 2-form, dB = 0: For arbitrary generalized tangent

vectors u = X + ξ and v = Y + η,

[eB(u), eB(v)] = [u+B(X), v +B(Y )]

= [u, v] + i[X,Y ]B − iXiY dB

= eB([u, v]) + iY iXdB. (3.41)

For later convenience and actually we will be interested in the case of dB ̸= 0, we retain here the

term involving dB.

Note that an H-twisted bracket is defined by

[u, v]H = [u, v] + iY iXH. (3.42)

Using this bracket, for the case with dB ̸= 0 the B-transformed bracket is represented as

e−B[eB(u), eB(v)] = [u, v]dB. (3.43)

β-transformation The β-transformation yields, for u = X + ξ and v = Y + η,

[eβ(u), eβ(v)] = [u+ β(ξ), v + β(η)]

= [u, v] + [u, β(η)] + [β(ξ), v]− [β(ξ), β(η)]

= [u, v]− Lβ(η)(X + ξ) + Lβ(ξ)(Y + η)− Lβ(ξ)β(η), (3.44)
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while

eβ([u, v]) = [u, v] + β

(
LXη − LY ξ −

1

2
d(iXη − iyξ)

)
(3.45)

So that

[eβ(u), eβ(v)]− eβ([u, v])

= −Lβ(η)(X + ξ) + Lβ(ξ)(Y + η)− Lβ(ξ)β(η)− β

(
LXη − LY ξ −

1

2
d(iXη − iyξ)

)
. (3.46)

This bracket can not close only using the choice of the bi-vector field β. However, we can do it by

selecting the form of generalized vectors, as mentioned later.

Generalized Lie derivative As mentioned above, the symmetry of the Courant algebroid TM⊕
T ∗M turns out to be a semi-direct product Diff(M) × Ω2

closed(M), of the diffeomorphism and the

B-field transformations. We call an element of this group as generalized diffeomorphism.

An infinitesimal generalized diffeomorphism is represented by a generalized Lie derivative L(w,b),

which acts on u+ ξ ∈ Γ(TM ⊕ T ∗M) as

L(w,b)(u+ ξ) := Lw(u+ ξ) + iub. (3.47)

Especially when b is exact, b = −dΛ, it reduces to the Dorfman bracket. We represent the gener-

alized Lie derivative of such a case as Lw+Λ,

Lw+Λ(u+ ξ) = Lw(u+ ξ)− iudΛ = [w + Λ, u+ ξ]D. (3.48)

3.3.2 Dirac structure

A Dirac structure is a subbundle L ⊂ TM ⊕ T ∗M satisfying the following three- conditions: 1) it

is involutive under the Dorfman bracket [u+ ξ, v + η] ∈ L for u+ ξ, v + η ∈ Γ(L), 2) it is isotropic

under the canonical inner product, which means ⟨u+ ξ, v+ η⟩ = 0 for u+ ξ, v+ η ∈ Γ(L) and 3) it

has the maximal rank i.e. the fibre dimension of L is n, half of that of TM ⊕ T ∗M .

Since the Dorfman bracket on Γ(L) beceoms skew-symmetric, a Dirac structure defines a Lie

algebroid by definition.

It is immediately understood that a generalized diffeomorphism (3.48) by an element of L is a

symmetry of the Dirac structure L. Indeed, the action Lw+Λ for w + Λ ∈ Γ(L) on a section

u+ ξ ∈ Γ(L) results in again on L due to the involutiveity Lw+Λ(u+ ξ) = [w+Λ, u+ ξ]D ∈ L. We

call it as a L-diffeomorphism.

Trivial examples of the Dirac structure are TM and T ∗M . Another examples are obtained by

B-transformation of TM and β-transformation of T ∗M , which we describe below.

B-transformation of TM

Given an arbitrary 2-form ω ∈ Γ(∧2T ∗M), B-transformation of TM with ω defines a subbundle

Lω = eω(TM), which is denoted by

Lω = {eω(u) = u+ ω(u)
∣∣u ∈ Γ(TM)}. (3.49)
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Here the 2-form ω is regarded as a map Γ(TM)→ Γ(T ∗M). It is defined by

ω(u) := ω(u, ·) = iuω = ωµνu
µdxν , (3.50)

where the last expression is the representation in some local coordinates. There the 2-form ω is

represented as ω = 1
2ωµνdx

µ ∧ dxν .

The subbundle Lω defines a Dirac structure if and only if ω is a closed 2-form, dω = 0. This

is because the B-transformation generated by a closed 2-form is a symmetry of the generalized

tangent bundle.

β-transformation of T ∗M

Given an arbitrary bi-vector θ ∈ Γ(∧2TM), a β-transformation of T ∗M defines a subbundle Lθ =

eθ(TM),

Lθ = {eθ(ξ) = ξ + θ(ξ)
∣∣ξ ∈ Γ(T ∗M)}. (3.51)

Here, the bivector θ is considered as a map Γ(T ∗M)→ Γ(TM), defined by

θ(ξ) := θ(ξ, ·) = ιξθ = θµνξµ∂ν , (3.52)

where the last expression is a local expression written in local coordinates.

The subbundle Lθ defines a Dirac structure if and only if θ is a Poisson bivector i.e. [θ, θ]S = 0 where

[ ·, ·]S is the Schouten-Nijenhuis bracket. We again mention that this condition to be a Poisson

bivector is the same condition for the Jacobi identity of the Poisson bracket {f, g} = θ(df, dg) for

f, g ∈ C∞(M) to be satisfied.

Two ways to describe the same Dirac structure

In the last two examples, the assumptions are equivalent to the requirement that the spacetime

(M,ω) is equipped with a symplectic form ω. In the generalized geometry, there are two possibilities

Lθ and Lω which define the same Dirac structure, as we discuss in the following.

As mentioned above, any element of Lω can be represented by using a vector u ∈ Γ() as u+ ω(u),

and any element of Lθ can be represented by using 1-form ξ ∈ Γ(T ∗M) as ξ+θ(ξ). If the two Dirac

structures define the same subbundle Lθ = Lω, there must be one to one correspondence between

these two representations:

ξ + θ(ξ) = u+ ω(u). (3.53)

Comparing the vectors and forms in both sides, we get

ξ = ω(u), u = θ(ξ). (3.54)

Substituting the first relation into the second equation yields

u = θ(ω(u)). (3.55)
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Since u is arbitrary, we have a relation between matrices

θµν = (ωµν)
−1. (3.56)

This relation is also pointed out in [57]. In this example, it gives a rather trivial statement that a

symplectic structure defines a Poisson bivector as its inverse. With this setting we have the two

descriptions of the same Dirac structure, the one is by TM and the other is T ∗M . In [58] the

Dirac structure is identified with the D-brane, and in [59] the semiclassical Seiberg-Witten map is

constructed.

3.4 Generalized Riemannian geometry

In this section we give a review on the construction of an analogue of Riremannian geometry based

on the Courant bracket. The discussion here follow along [27].

3.4.1 Positive definite subbundle

Since the bilinear form has the signature (n, n), we can decompose the space of generalized tangent

vectors into a maximally positive definite subbundle C+ ⊂ TM ⊕ T ∗M and a maximally negative

definite subbundle C− ⊂ TM ⊕ T ∗M . The elements in C+ are defined by a graph of a map

g +B : Γ(TM)→ Γ(T ∗M),

C+ = {X + (g +B)(X) | X ∈ Γ(TM)}. (3.57)

Here g denotes the positive-definite Riemannian metric and B denotes any 2-form. Similarly, the

orthogonal complement C−, which has negative definite inner product, is given by

C− = {X + (−g +B)(X) | X ∈ Γ(TM)}. (3.58)

Especially for the case with B = 0, we define an extension map ± : Γ(TM)→ C± as

X± = X ± g(X) ∈ C±. (3.59)

So that we have

X+ −X− = 2g(X). (3.60)

Then we define a projection operator π± : Γ(TM)⊕ Γ(T ∗M)→ C± as

π±(2g(X)) = ±X±. (3.61)

To get the formula for an arbitrary 1-form ξ, we rewtire the 1-form g(X) as ξ = g(X), then we find

2π±(ξ) = ±(X ± g(X)) = ±(g−1(ξ)± ξ)

= ξ ± g−1(ξ) =: ξ±. (3.62)
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For the consistency to be the projection operators, they should satisfy

π±(X
±) = X±, (3.63)

π∓(X
±) = 0. (3.64)

From the latter condition we can read off how we should define the actions of the projection

operators onto a vector field X as

0 = π±(X
∓) = π±(X)∓ π±(g(X))

= π±(X)∓ 1

2
(g(X)± g−1(g(X))), (3.65)

i.e.

π±(X) =
1

2
(X ± g(X)) ∈ C±. (3.66)

For a consistency check, we calculate the left-hand side of the former condition:

π±(X
±) = π±(X)± π±(g(X))

=
1

2
(X ± g(X))±

(
± 1

2
X±
)

= X±. (3.67)

Here we use the (3.66) and (3.61). Thus the projection operators are well-defined.

To extend the discussion in the case of B ̸= 0, we successively apply a B-transformation eB in

addition to the extension map ± :

X 7−→ eBX± = X + (±g +B)(X) ∈ C±, (3.68)

ξ 7−→ eBξ± = ξ ± g−1(ξ)±B(g−1(ξ)) = ±[g−1(ξ) + (±g +B)(g−1)(ξ)] ∈ C±. (3.69)

3.4.2 Generalized connection

To construct Riemannian geometry, we are devoted in the positive-definite subbubdle C+ defined

in the previous subsection. Firstly, we define a connection on C+. Since a connection ∇ is induced

by a vector field, it should be defined as a map

∇ : C+ → T ∗M ⊗ C+. (3.70)

A connection ∇ : C+ → T ∗M ⊗ C+ is defined by

∇Xu = π+(e
−B[eBX−, eBu]) = π+([X

−, u]dB), (3.71)

for X ∈ Γ(TM) and u = Y + g(Y ) = Y + i.e. eBu = Y + (g + B)(Y ) ∈ C+. Notice that the

property of the Courant bracket under a B-transformation leads, for u = Y + g(Y ) = Y +,

∇Xu = π+([X
−, Y +] + iY iXdB), (3.72)
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as explained in the above. We can check for this connection satisfying the Leibniz rule: For an

extension X− = X − g(X) and a positive definite generalized vector u = Y + g(Y ) = Y +, and

arbitrary functions f and h, with noting (3.28) and ⟨X−, Y +⟩ = 0, we have

∇fX(hu) = π+([fX
−, hY +] + fhiY iXdB)

= π+(fh[X
−, Y +] + f(Xh)Y + − h(Y f)X− + fhiY iXdB)

= π+(fh[X
−, Y +] + fhiY iXdB + f(Xh)Y +)

= fh∇Xu+ f(Xh)u. (3.73)

From the second line to the third we use a property that the operator π+ projects out X−.

3.4.3 Generalized curvature

A curvature on is constructed by taking a commutator of the connection. A curvature on the

positive-definite subbundle C+ is defined by

R(X,Y )u := (∇X∇Y −∇Y∇X −∇[X,Y ])u, (3.74)

where X,Y ∈ Γ(TM) and u = Z + g(Z) = Z+ with some vector field Z ∈ Γ(TM). We mention

that [X,Y ] denotes the usual Lie bracket, or equivalently we can say it as the Courant bracket,

because by definition it reduces to the Lie bracket with the case of both X and Y being vector

fields. We can easily show that this curvature satisfies the tensor property,

R(fX, gY )hu = fghR(X,Y )u, (3.75)

see appendix B.1.

3.4.4 Local expressions

In terms of components in some local coordinates {xi}, we have

∇∂i(∂j)
+ = π+([(∂i)

−, (∂j)
+] + i∂j i∂idB). (3.76)

With some calculations

[(∂i)
−, (∂j)

+] = [∂i − gildx
l, ∂j + gjkdx

k]

= (∂igjk + ∂jgik − ∂kgij)dx
k, (3.77)

i∂j i∂idB = i∂j i∂i

(
1

2
∂kBlmdxk ∧ dxl ∧ dxm

)
= (∂iBjk + ∂jBki + ∂kBij)dx

k, (3.78)

we find that the coefficient of the connection is

∇∂i(∂j)
+ = π+

(
[2Γkij +Hkij ]dx

k
)
. (3.79)
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Here we define this coefficients as

Γkij =
1

2
(∂igjk + ∂jgik − ∂kgij), (3.80)

Hkij = ∂iBjk + ∂jBki + ∂kBij . (3.81)

These are very the Christoffel symbol constructed by the positive-definite Riemannian metric gµν ,

and the H-flux, which is the 3-form field strength of the 2-form B-field, respectively.

For the case with B = 0

We would like to calculate the connection and the curvature in components of local coordinates

{xi}. Firstly we set B = 0 for simplicity. From the above calculation, we have

∇∂i(∂j)
+ = π+(2Γkijdx

k) = Γkij(dx
k + gkl∂l)

= gklΓkij(∂l + glmdxm) = Γl
ij(∂l)

+. (3.82)

To obtain the curvature we have to compute

(∇i∇j −∇j∇i)(∂k)
+. (3.83)

Here we denote ∇i = ∇∂i and use ∇[∂i,∂j ] = 0. By using (3.73) and (3.82) we obtain

∇i∇j(∂k)
+ = ∇i

(
Γm
jk(∂m)+

)
= (∂iΓ

m
jk)(∂m)+ + Γm

jkΓ
p
im(∂p)

+ = (∂iΓ
m
jk + Γl

jkΓ
m
il )(∂m)+, (3.84)

and then

(∇i∇j −∇j∇i)(∂k)
+ = (∂iΓ

m
jk − ∂jΓ

m
ik + Γl

jkΓ
m
il − Γl

ikΓ
m
jl )(∂m)+ =: Rm

kij(∂m)+. (3.85)

Here the coefficient turns out to the celebrated Riemann curvature tensor:

Rm
kij = ∂iΓ

m
jk − ∂jΓ

m
ik + Γl

jkΓ
m
il − Γl

ikΓ
m
jl . (3.86)

For the case with B ̸= 0

Under the situation with B ̸= 0 the discussion above is also applicable. Since we have (3.79),

performing the projection operator gives

∇i∂
+
j = π+

(
[2Γkij +Hkij ]dx

k

)
= (2Γkij +Hkij)π+(dx

k)

=
1

2
(2Γkij +Hkij)(dx

k + gkm∂m) =
1

2
(2Γkij +Hkij)g

km(∂m + gmldx
l)

=
1

2
(2Γm

ij + gmkHkij)(∂m)+ =: Ξm
ij (∂m)+, (3.87)
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where we define Ξl
ij as an extended object of the Christoffel symbol by

Ξl
ij := Γm

ij +
1

2
gmkHkij . (3.88)

Then the curvature is calculated straightforwardly,

(∇i∇j −∇j∇i)(∂k)
+ = (∂iΞ

m
jk − ∂jΞ

m
ik + Ξl

jkΞ
m
il − Ξl

ikΞ
m
jl )(∂m)+

= Υm
kij(∂m)+, (3.89)

where we introduce Υm
kij = ∂iΞ

m
jk−∂jΞ

m
ik+Ξl

jkΞ
m
il −Ξl

ikΞ
m
jl . Explicitly, in terms of the components,

see appendix B.1, we obtain a tensor expression of this curvature as

Υm
kij = Rm

kij +
1

4
glnHnjkg

mpHpil −
1

4
glnHnikg

mpHpjl +
1

2
gml∇iHljk −

1

2
gml∇jHlik. (3.90)

The Ricci tensor is obtained by taking a contraction between an upper index and a lower index

Υkj := Υm
kmj

= Rm
kmj +

1

4
glnHnjkg

mpHpml −
1

4
glnHnmkg

mpHpjl +
1

2
gml∇mHljk −

1

2
gml∇jHlmk

= Rm
kmj −

1

4
glnHnmkg

mpHpjl +
1

2
gml∇mHljk. (3.91)

Furthermore the Ricci scalar is given by contracting between the metric and the Ricci scalar

Υ := gkjΥkj = gkjΥm
kmj

= R− 1

4
glngkjHnmkg

mpHpjl +
1

2
gkjgml∇mHljk = R− 1

4
H lpjHpjl = R− 1

4
H2, (3.92)

where R denotes the usual Ricci scalar constructed by the Riemannian metric g. The generalized

Ricci scalar Υ involves the term squared of the H-flux and is the same as the Einstein-Hilbert

action of the supergravity.



Chapter 4

Poisson generalized geometry

In this chapter we define a new Courant algebroid [28]. This algebroid is a dual of the algebroid

used in generalized geometry in a sense that the roles of the tangent and the cotangent bundles are

interchanged. We discuss some properties of the new Courant algebroid, which provide the bases

of the next chapter.

4.1 New Courant algebroid

In this section, after recalling some notions of the Lie algebroid (T ∗M)θ of a Poisson manifold

introduced in the beginning of the previous chapter, we give a definition a new Courant algebroid

(TM)0 ⊕ (T ∗M)θ. The corresponding bracket is different from that of the Courant algebroid

TM ⊕ T ∗M . Here we investigate some properties of the new Courant algebroid.

4.1.1 Lie algebroid of a Poisson manifold

Let (M, θ) be a Poisson manifold equipped with a Poisson bivector θ ∈ ∧2TM . The Poisson

bivector θ satisfies [θ, θ]S = 0, where [·, ·]S is the Schouten-Nijenhuis bracket. A Lie algebroid of a

Poisson manifold [56] is defined by a triple (T ∗M, θ, [·, ·]θ), where T ∗M is the cotangent bundle, θ

is the anchor map, and [·, ·]θ denotes the Lie bracket defined by the Koszul bracket as

[ξ, η]θ = Lθ(ξ)η − iθ(η)dξ, (4.1)

for ξ, η ∈ Γ(T ∗M). We denote this Lie algebroid as (T ∗M)θ for short.

we can define the Cartan differential calculus on the space of polyvectors Γ(∧•TM). The “exterior

derivative” dθ : Γ(∧pTM) → Γ(∧p+1TM) is defined as dθ = [θ, ·]S . In particular, for a function

f ∈ C∞(M) = Γ(∧0TM), its action is defined by

dθf = [θ, f ]S = −θ(df). (4.2)

And the “interior derivative” is defined by the contraction between 1-form and poly-vectors. Then

we can defined the “Lie derivative” as follows. The actions of the Lie derivative Lζ , where ζ ∈

43
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Γ(T ∗M), on a function f , a 1-form ξ and a vector field X are given by

Lζf := iζdθf,

Lζξ := [ζ, ξ]θ,

LζX := (dθiζ + iζdθ)X, (4.3)

respectively. They are shown to satisfy following Cartan relations on the space of polyvectors

Γ(∧•TM),

{iξ, iη} = 0, {dθ, iξ} = Lξ, [Lξ, iη] = i[ξ,η]θ , [Lξ,Lη] = L[ξ,η]θ , [dθ,Lξ] = 0. (4.4)

4.1.2 Courant algebroid (TM)0 ⊕ (T ∗M)θ

Let us consider a vector bundle TM ⊕ T ∗M equipped with a canonical inner product

⟨X + ξ, Y + η⟩ = 1
2(iXη + iY ξ), (4.5)

anchor map ρ : TM ⊕ T ∗M → TM ,

ρ(X + ξ) = θ(ξ), (4.6)

and a skew-symmetric bracket

[X + ξ, Y + η] = [ξ, η]θ + LξY − LηX −
1

2
dθ(iξY − iηX). (4.7)

Then we can show that the quadruple (TM ⊕ T ∗M, ⟨·, ·⟩, ρ, [·, ·]) defines a Courant algebroid. To

show this, note that a Lie bialgebroid A ⊕ A∗ is always a Courant algebroid [54], and the above

Courant algebroid is of this type. This means that the first Lie algebroid (TM)0 := (TM, a =

0, [·, ·] = 0) is a tangent bundle with the vanishing Lie bracket and the vanishing anchor map, while

the second (T ∗M)θ = (T ∗M, θ, [·, ·]θ) is the Lie algebroid of a Poisson manifold explained in the

previous subsection. We denote this Courant algebroid as (TM)0 ⊕ (T ∗M)θ for short.

We can show, see appendix B.2, that the bracket (4.7) satisfies the following equations

[u, fv] = f [u, v] + (Lξf)v − (dθf)⟨u, v⟩, (4.8)

Lξ⟨v, w⟩ = ⟨[u, v] + dθ⟨u, v⟩, w⟩+ ⟨v, [u,w] + dθ⟨u,w⟩⟩, (4.9)

where u = X + ξ, v = Y + η, w = Z + ζ ∈ (TM)0 ⊕ (T ∗M)θ, and f is a smooth function. These

properties are crucial in defining a connection which is compatible with O(d, d)-invariant inner

product ⟨·, ·⟩ as we shall see in the following section. Note that in the second equation, while the

left-hand side depends only on ξ, the right-hand side seems to depend on X as well. Despite of its

appearance, we can check that the cancellation between the terms involving X does occur in the

right-hand side. Thus its appearance is really dummy and the right-hand side is indeed independent

of X.
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To make a comparison between the new Courant algebroid (TM)0⊕ (T ∗M)θ and TM ⊕T ∗M used

in generalized geometry, we give some comments. In the standard case TM ⊕ T ∗M , the anchor

map is given by ρ(X + ξ) = X and the Courant bracket [·, ·]C is defined by

[X + ξ, Y + η]C = [X,Y ] + LXη − LY ξ −
1

2
d(iXη − iY ξ). (4.10)

The Courant algebroid TM ⊕ T ∗M can be considered as an extension of the Lie algebroid TM ,

and in fact it is a Lie bialgebroid (TM, id, [·, ·]TM )⊕ (T ∗M, 0, 0).

In our new Courant algebroid (TM)0 ⊕ (T ∗M)θ, the roles of TM and T ∗M are interchanged: the

underlying Lie bialgebroid is (T ∗M, θ, [·, ·]θ) ⊕ (TM, 0, 0), the anchor map (4.6) picks up only

T ∗M -part, the Courant bracket (4.7) is written in terms of the operators defined by (T ∗M)θ only.

In this way, our Courant algebroid (TM)0 ⊕ (T ∗M)θ can be considered as an extension of the Lie

algebroid (T ∗M)θ.

As a consequence, in the Courant algebroid (TM)0 ⊕ (T ∗M)θ, the Poisson Lie algebroid (T ∗M)θ
governs the differential geometry, and the resulting differential geometry is quite different from the

one governed by the Lie algebroid TM . However, we can proceed to formulate an analogue of the

generalized geometry exactly in the same manner as the standard generalized tangent bundle.

Some comments are in order: First, the standard Courant bracket (4.10) and the new bracket (4.7)

can be considered as complementary parts in the Roytenberg bracket [55,60]:

[X + ξ, Y + η]Roy = [X,Y ] + LXη − LY ξ −
1

2
d(iXη − iY ξ)

+ [ξ, η]θ + LξY − LηX +
1

2
dθ(iXη − iY ξ). (4.11)

Note that the Roytenberg bracket is the bracket for a Lie bialgebroid TM ⊕ (T ∗M)θ and not for

the present Courant algebroid (TM)0 ⊕ (T ∗M)θ.

Secondly, in general, an anchor map ρ : E → TM of a Courant algebroid E induces a natural

differential operator D : C∞(M) → Γ(E) defined by ⟨Df,A⟩ = 1/2ρ(A)f, for arbitrary function

f ∈ C∞(M) and section A ∈ Γ(E). In our case,

⟨Df,X + ξ⟩ = 1

2
θ(ξ) · f =

1

2
θ(ξ, df) = −1

2
iξθ(df), (4.12)

implies that Df = dθf = −θ(df) ∈ Γ(TM).

Finally, in [59], the same Lie algebroid (T ∗M)θ is used but in a different context. It appears as a

Dirac structure in the standard generalized tangent bundle TM ⊕ T ∗M .

4.1.3 Symmetry of (TM)0 ⊕ (T ∗M)θ

As is mentioned in the previous chapter, the symmetry of the generalized tangent bundle TM⊕T ∗M

consists of diffeomorphisms generated by vector fields and B-transformations induced by closed 2-

forms. Here we investigate the symmetry of the new Courant algebroid (TM)0⊕ (T ∗M)θ. It turns

out to be a direct product of β-diffeomorphisms and β-transformations.
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Let us define the following two transformations acting on a section X + ξ ∈ Γ((TM)0 ⊕ (T ∗M)θ):

1) β-diffeomorphism: for a 1-form ζ ∈ Γ(T ∗M), we define

Lζ(X + ξ) = LζX + Lζξ, (4.13)

by the diagonal actions of the Lie derivative Lζ given by (4.3).

2) β-transformation: for a bivector β ∈ Γ(∧2TM), we define

eβ(X + ξ) = X + ξ + iξβ. (4.14)

The β-transformation here follows a widely-used definition in the context of TM ⊕ T ∗M . As is

mentioned in the previous chapter, it turns out not to be a symmetry of the Courant bracket of

TM ⊕ T ∗M . However, the β-transformation is indeed a symmetry of the new Courant bracket

(TM)0 ⊕ (T ∗M)θ as we shall see in a minute.

The β-diffeomorphism is a natural object for the Courant algebroid (TM)0 ⊕ (T ∗M)θ as follows.

It is instructive to rewrite (4.3) following [43–46] as

Lζf = Lθ(ζ)f,
Lζξ = Lθ(ζ)ξ − iθ(ξ)dζ,

LζX = Lθ(ζ)X + θ(iXdζ). (4.15)

The third equation of (4.15) is proven in the appendix B.2. In the above expressions, the terms

of the ordinary Lie derivative Lθ(ζ) represent a diffeomorphism generated by a vector field θ(ζ).

The term iθ(ξ)dζ in the second equation is a B-transformation with dζ of a β-transformed vector

θ(ξ), while the term θ(iXdζ) in the third equation is a β-transformation of a B-transformation with

dζ. Therefore, the β-diffeomorphism is a rather complicated combination of a diffeomorphism, a

B-transformation and a β-transformation from the viewpoint of TM ⊕ T ∗M . And it is no longer

a symmetry of the Courant bracket of TM ⊕ T ∗M .

It is worth mentioning that if the parameter ζ is an exact 1-form, say ζ = dh, the β-diffeomorphism

(4.3) reduces to the ordinary diffeomorphism generated by the Hamilton vector field Xh = θ(dh):

LdhX = LXh
X, Ldhξ = LXh

ξ. (4.16)

Such exact 1-forms form a subgroup of the group of β-diffeomorphisms.

We are now ready to study the symmetry of the new Courant algebroid. For an infinitesimal

β-diffeomorphism Lζ , we can show that

⟨LζA,B⟩+ ⟨A,LζB⟩ = Lζ⟨A,B⟩,
ρ(LζA) = Lζρ(B),

[LζA,B] + [A,LζB] = Lζ [A,B]. (4.17)

The first and the third equations are satisfied by an arbitrary ζ, while the second equation holds

when the vector field θ(ζ) is dθ-closed. The proofs of the above relations are given in the appendix
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B.2. And for a β-transformation eβ, we can also show that

⟨eβA, eβB⟩ = ⟨A,B⟩,
ρ(eβA) = ρ(B),

[eβA, eβB] = eβ[A,B]. (4.18)

Here the first and the second equations are satisfied by an arbitrary β, while the last holds when

the bivector field β is dθ-closed. First two equations are obvious to hold. We give the proof of the

third equation in the appendix B.2.

In summary, a β-diffeomorphism Lζ is a symmetry if Lζθ = 0 and a β-transformation eβ is a symme-

try if dθβ = 0. In particular, for construction of R-fluxes, it is essential that the β-transformations

are the symmetry of the new bracket, as we shall see in the next section.

We end this section with a few remarks. As in the case of B-transformation, we call the particular

case of a β-transformation edθZ with a dθ-exact bivector β = dθZ, a β-gauge transformation.

Similar to the Courant bracket of TM ⊕ T ∗M , the action of a pair (ζ, β) = (ζ,−dθZ) can be

written as

L(ζ,−dθZ)(X + ξ) = [ζ, ξ]θ + LζX − iξdθZ

= (ζ + Z) ◦ (X + ξ), (4.19)

where in the last line, the symbol ◦ denotes the analogue of the Dorfman bracket 1. Hence, a

β-gauge transformation is an inner transformation.

It is also worth to note that the β-transformation does not yield a naive shift θ → θ + β of

the bivector θ. Here the situation is different from the case in the paper [59], where (T ∗M)θ is

regarded as a Dirac structure in TM ⊕ T ∗M , and the β-transformation is required to preserve the

Dirac structure. In that case the β-transformation indeed results in a shift θ → θ + β, and the

Maurer-Cartan type condition for β has to be satisfied.

4.1.4 Dirac structure

A Dirac structure L is defined in the same manner as in the standard generalized geometry. That

is, a Dirac structure L ⊂ (TM)0 ⊕ (T ∗M)θ is a maximally isotropic subbundle, and is involutive

with respect to the new bracket [L,L] ⊂ L. There are always two Dirac structures independent of

the choice of a Poisson bivector θ:

1. L = (T ∗M)θ. Its bracket [·, ·]θ is a Lie bracket. because of ρ(L) = θ(T ∗M), the dimension of

the leaf equals to the rank of θ.

2. L = (TM)0. Its bracket vanishes, and ρ(L) = 0. All leaves are 0-dimensional.

Contrary to the standard generalized geometry, even a simple subbundle such as L = span{∂a, dxi}
is not necessarily a Dirac structure, depending on the choice of the Poisson bivector. Nevertheless,

we can say some general statements analogous to those given in the standard generalized geometry:

1The skew-symmetrization of ◦ gives the new bracket (4.7)
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1. Let ∆ ⊂ T ∗M be a subbundle of T ∗M such that it is involutive [∆,∆]θ ⊂ ∆ with respect to

the Koszul bracket. Then, L = ∆⊕Ann(∆) is a Dirac structure of (TM)0 ⊕ (T ∗M)θ.

Proof. L is apparently maximally isotropic. The involutive condition [L,L] ⊂ L reduces to

[∆,Ann(∆)] ⊂ Ann(∆), because [∆,∆]θ ⊂ ∆ and [Ann(∆),Ann(∆)] = 0. This condition

means for arbitrary ξ, η ∈ ∆ and X ∈ Ann(∆)

0 = ⟨[ξ,X], η⟩, (4.20)

but it is rewritten as

0 = ⟨[ξ, η]θ, X⟩, (4.21)

which is automatically satisfied by definition. (End of the proof)

2. Given a Dirac structure L, its deformation LF = eFL by a L-2 form F ∈ ∧2L∗ is still a

Dirac structure iff the Maurer-Cartan type equation dLF + 1
2 [F ,F ]L∗ = 0 is satisfied [54].

For L = (T ∗M)θ, F is a bivector such that dθF = 0. For L = (TM)0, F is a 2-form such

that [F ,F ]θ = 0 ([·, ·]θ is the Gerstenhaber bracket extending the Koszul bracket.).

In the papers [58, 59], Dirac structures are identified with D-branes (with fluctuations). It is

interesting to investigate the Dirac structures here in this context.

4.2 Proposal of R-flux

In this section, we propose a definition of R-fluxes by a set of data (R, βi, αij), where R ∈ ∧3TM ,

βi ∈ ∧2TUi and αij ∈ TUij , such that

R|Ui = dθβi,

βj − βi|Uij = dθαij . (4.22)

Here {Ui} denotes a good open covering of M and Uij = Ui ∩ Uj . It follows from (4.22) that R is

a global 3-vector on M and is dθ-closed: dθR = 0. Local bivectors {βi} are gauge potentials for

the R-flux, the analogue of B-fields for H-fluxes, and correspondingly, there is the local β-gauge

symmetry of the form

βi 7→ βi + dθΛi, αij 7→ αij + Λi − Λj , (4.23)

for an arbitrary gauge parameter Λi ∈ TUi. In particular, since the R-flux is invariant under the

gauge symmetry, it is Abelian.

This proposal is based on the mathematical correspondence between the standard generalized

tangent bundle TM ⊕ T ∗M and our new Courant algebroid (TM)0⊕ (T ∗M)θ. In the following we

show that this R-flux is exactly the (TM)0 ⊕ (T ∗M)θ-analogue of an H-flux in TM ⊕ T ∗M . We

give a review on the global definition of the H-flux in the appendix B.2.
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Recall that in the new Courant algebroid (TM)0 ⊕ (T ∗M)θ, comparing with TM ⊕ T ∗M , (T ∗M)θ
play the role of TM . Thus, an H-twisting of TM ⊕ T ∗M (B.34) corresponds to a twisting of

(TM)0 ⊕ (T ∗M)θ satisfying the exact sequence

0→ (TM)0
π∗
−→ E

π−→ (T ∗M)θ → 0. (4.24)

We emphasize that the bundle map π is not an anchor map, thus the meaning of the exactness of

(4.24) is different from the standard exact Courant algebroid.

In the following subsection we show

1. Given a data (R, β, α) in (4.22) we can construct a Courant algebroid E that satisfies the

exact sequence (4.24). It is classified by Poisson cohomology [R] ∈ H3
θ (M).

2. E is isomorphic to the untwisted Courant algebroid (TM)0 ⊕ (T ∗M)θ with the R-twisted

bracket.

3. E is a quasi-Lie bialgebroid ((TM)0, δ = 0, ϕ = R).

Each statement has its analog in the case of H-fluxes [61, 62], here our logic follows in part along

with the presentation by [62].

4.2.1 Gluing by local β-gauge transformation

We follow the argument of [62] for H-fluxes, by replacing the role of TM with that of T ∗M , and

B-transformations with β-transformations.

Let (M, θ) be a d-dimensional Poisson manifold with a dθ-closed 3-vector R ∈ ∧3TM . We assume a

trivialization of R, that is, an open cover {Ui} of M equipped with local bivectors βi ∈ ∧2TUi and

vectors αij ∈ TUij such that (4.22) is satisfied. Given such a trivialization, a Courant algebroid

E is constructed in the following way. First, over each open set Ui, we can consider a Courant

algebroid Ei = (TUi)0 ⊕ (T ∗Ui)θ, equipped with the anchor map ρi, the inner product ⟨·, ·⟩i and
the bracket [·, ·]i defined by

ρi(ξ) = θ(ξ), ⟨X + ξ, Y + η⟩i =
1

2
(iXη − iY ξ),

[X + ξ, Y + η]i = [ξ, η]θ + LξY − LηX +
1

2
dθ(iXη − iY ξ), (4.25)

for X + ξ, Y + η ∈ (TUi)0 ⊕ (T ∗Ui)θ. On the intersection Uij , Ei and Ej are glued by a β-gauge

transformation generated by αij , that is the transition function is

Gij : Uij → O(d, d),

Gij(x) =

(
1 −dθαij(x)

0 1

)
. (4.26)

It defines the equivalence relation ∼ between X + ξ ∈ Ej |Uij and

Gij(X + ξ) = X + ξ − dθαij(ξ) ∈ Ei|Uij . (4.27)
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Such Gij satisfies the cocycle condition

GijGjk = Gik, (4.28)

on Uijk due to (4.22). Therefore, it defines the vector bundle over M by

E =
⨿
x∈M

(TUi)0 ⊕ (T ∗Ui)θ/ ∼ . (4.29)

Since a β-gauge transformation preserves the anchor map, the inner product and the bracket (see

(4.18)), they all are globally well-defined on the quotient. For example, the bracket on Ui and Uj

are related by

[Gij(X + ξ), Gij(Y + η)]i = Gij([X + ξ, Y + η]j). (4.30)

Therefore, the vector bundle E is in fact a Courant algebroid.

It is apparent that E satisfies the exact sequence (4.24). Here the map π is induced by the projection

(TUi)0 ⊕ (T ∗Ui)θ → (T ∗Ui)θ to the second factor and π∗ is the inclusion.

As in the case of H-twist, the set of bivectors {βi} induces a bundle map s : (T ∗M)θ → E, locally

defined by a β-transform as

s(ξ) = eβi(ξ) = ξ + βi(ξ) (4.31)

for ξ ∈ T ∗Ui. It follows form (4.22) that s((T ∗M)θ) is globally well-defined as a vector bundle over

M . This map s is in fact an isotropic splitting, since it satisfies π ◦ s(ξ) = ξ and ⟨s(ξ), s(η)⟩ = 0

for all ξ, η ∈ (T ∗M)θ. Therefore, s induces the isotropic splitting E = π∗((TM)0)⊕ s((T ∗M)θ) of

E, and any section A ∈ E can be uniquely expressed for X ∈ TM and ξ ∈ T ∗M as

A = X + s(ξ). (4.32)

4.2.2 R-twisted bracket

From this splitting, the structure of the Courant algebroid in E = π∗((TM)0) ⊕ s((T ∗M)θ) is

translated to that in (TM)0 ⊕ (T ∗M)θ. Since s is a β-transformation eβi locally, the anchor map

and the inner product is unchanged from (TM)0 ⊕ (T ∗M)θ (see (4.18)):

ρ(X + s(ξ)) = θ(ξ) = ρ(X + ξ), ⟨X + s(ξ), Y + s(η)⟩ = ⟨X + ξ, Y + η⟩. (4.33)

The bracket on π∗((TM)0)⊕ s((T ∗M)θ) is our bracket of sections of the form (4.32). We compute

it locally as (see (4.18))

[X + s(ξ), Y + s(η)] = [eβi(X + ξ), eβi(Y + η)]

= eβi [X + ξ, Y + η] + [θ, βi]S(ξ, η)

= s([ξ, η]θ) + LξY − LηX +
1

2
dθ(iXη − iY ξ) + (dθβi)(ξ, η). (4.34)
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Hence, if we define the R-twisted bracket by

[X + ξ, Y + η]R := [X + ξ, Y + η] +R(ξ, β), (4.35)

then we have

[X + s(ξ), Y + s(η)] = (π∗ ⊕ s)([X + ξ, Y + η]R). (4.36)

Therefore, as a Courant algebroid, E = π∗((TM)0)⊕ s((T ∗M)θ) is equivalent to (TM)0⊕ (T ∗M)θ
but with the R-twisted bracket.





Chapter 5

Poisson Generalized Riemannian

geometry

In this chapter we construct an analogue of Riemannian geometry based on the new Courant

algebroid. Firstly, we define positive-definite subbundle. Since the inner product in the Courant

algebra (TM)0 ⊕ (T ∗M)θ is the same as that in TM ⊕ T ∗M , the positive-definite subbundle in

(TM)0 ⊕ (T ∗M)θ is so too. We shall show that a connection and a curvature are consistently

defined on the positive-definite subbundle, even in the presence of the R-flux. The final section

provides a construction of the gravity theory based on the framework defined and investigated in

the other part of this chapter.

5.1 Positive-definite subbundle

As in the standard Courant algebroid, we define a generalized Riemannian structure as a maximal-

positive definite subbundle C+ ⊂ (TM)0 ⊕ (T ∗M)θ. Since this definition depends only on TM ⊕
T ∗M as a vector bundle, and the bilinear form is independent of the bracket, a generalized Rieman-

nian structure C+ of the standard tangent bundle becomes automatically that of the new Courant

algebroid. In other words, two Courant algebroids share the same C+. Therefore, C+ is given by

a graph of a map g +B : TM → T ∗M ,

C+ = {X + (g +B)(X) | X ∈ TM}. (5.1)

As is emphasized in our previous papers [58, 59], however, there are various ways to represent C+

as graphs. In particular, C+ can be seen from T ∗M as

C+ = {ξ + (G+ β)(ξ) | ξ ∈ T ∗M}, (5.2)

where G + β = (g + B)−1 : T ∗M → TM is the inverse map. Two representations (5.1) and (5.2)

of C+ are equivalent if the fluxes are absent.

However, in the presence of the fluxes, the situation is changed. In the presence of an H-flux,

the representation (5.1) is natural, since an H-twisting requires to replace B with a local 2-form

53



54 CHAPTER 5. POISSON GENERALIZED RIEMANNIAN GEOMETRY

Bi while it does not affect the symmetric part g. In other words, a Riemannian manifold (M, g)

is unchanged regardless of the presence of H-fluxes. This compatibility of the generalized metric

with H-twisting is emphasized in [27]. On the other hand, in the different representation (5.2),

an H-twisting affects both the symmetric part G and the skew-symmetric part β, so that G is

non-trivially glued by local B-gauge transformations.

Similarly, in the presence of a R-flux, the representation (5.2) is natural, since now a R-twisting

affects only β, kept fixed the symmetric part G. Here G is a fiber metric on T ∗M defining a

Riemannian manifold.

In the case with β = 0, we make a choice of the positive-definite subbundle C+ as

C+ = {X +G−1(X)|X ∈ TM} = {ξ +G(ξ)|ξ ∈ T ∗M}. (5.3)

Recalling some definitions may be helpful: The projection operators π± and extension maps ± give

π±(X) =
1

2
(X ±G−1(X)) =

1

2
X±, (5.4)

π±(ξ) =
1

2
(±G(ξ) + ξ) =

1

2
ξ±, (5.5)

for every vector field X and 1-form ξ.

To make the discussion in the case with β ̸= 0, we perform a successive β-transformation to the

positive-definite subbundle of trivial β:

eβ(ξ+) = ξ + (G+ β)(ξ) ∈ C+. (5.6)

In the rest of this section we assume β = 0 for simplicity. We shall discuss about the extension to

the case with β ̸= 0 in the next section.

5.2 In the absence of R-flux

5.2.1 Connection, Torsion and Curvature

Here we shall define a connection, a torsion and a curvature on positive-definite subbundle Cβ=0
+ .

As mentioned above, here we assume β = 0 for making the argument simple. The definitions are

based on the algebraic structure of the Courant algebroid (TM)0 ⊕ (T ∗M)θ.

Poisson generalized connection We define a bilinear map ∇ : Cβ=0
+ → TM ⊗ Cβ=0

+ as

∇ξu := π+
(
[ξ−, u]

)
, (5.7)

where ξ ∈ T ∗M and u ∈ Cβ=0
+ . Then this map satisfies the following properties

∇fξu = f∇ξu, (5.8)

∇ξ(fu) = f∇ξu+ (Lξf)u, (5.9)

where f denotes any smooth function. The proofs of these relations are given in appendix B.2.

Hence the map ∇ defines a connection.
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Furthermore, we can show that this is compatible with the canonical O(d, d)-invariant inner

product ⟨·, ·⟩:

Lξ⟨u, v⟩ = ⟨∇ξu, v⟩+ ⟨u,∇ξv⟩, (5.10)

for u, v ∈ Cβ=0
+ , see appendix B.2.

Poisson generalized torsion A torsion can also be defined in a parallel manner with the gen-

eralized geometry:

T̄ (ξ, η) = ∇ξη
+ −∇ηξ

+ − ([ξ, η]θ)
+, (5.11)

as is easily shown that

T̄ (fξ, gη) = fgT̄ (ξ, η), (5.12)

with a use of the formula (??).

Poisson generalized curvature We define a curvature by

R̄(ξ, η)u = (∇ξ∇η −∇η∇ξ −∇[ξ,η]θ)u, (5.13)

for any 1-forms ξ, η and u ∈ Cβ=0
+ . Note that the Koszul bracket [·, ·]θ, which is the Lie bracket of

the Poisson geometry (T ∗M)θ, appears in the third term. We can show that this curvature actually

satisfies the following tensorial property

R̄(fξ, gη)hu = fghR̄(ξ, η)u, (5.14)

see appendix B.2.

5.2.2 Local expressions

The definitions above are quite abstract and indeed their proofs are based only on the algebraic

properties of the Courant algebroid (TM)0 ⊕ (T ∗M)θ. In this subsection, we present local expres-

sions of the objects introduced in the previous subsection on some local coordinates {xµ}.

Poisson generalized connection Firstly, we shall calculate the connection (5.7)

∇dxi(dxj)+ = π+([(dx
i)−, (dxj)+]) = π+([dx

i −Gik∂k, dx
j +Gjl∂l]). (5.15)

The bracket under the projection operator becomes as follows, see appendix B.2,

[dxi −Gik∂k, dx
j +Gjl∂l]

= ∂kθ
ijdxk + [θmn(∂mGji)− θmi(∂mGjn)− θmj(∂mGin)−Gjl(∂lθ

in)−Gil(∂lθ
jn)]∂n. (5.16)
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Notice that the coefficient in front of 1-form dxk is skew-symmetric under an exchange bewteen

the indices i and j, while that of the vector field ∂n is symmetric. We denote these coefficients as

Γ̄
{ij}
k =

1

2
[θmn(∂mGji)− θmi(∂mGjn)− θmj(∂mGin)−Gjl(∂lθ

in)−Gil(∂lθ
jn)]Gnk, (5.17)

Γ̄
[ij]
k =

1

2
(∂kθ

ij) =
1

2
Gnl(∂lθ

ij)Gnk. (5.18)

Then the connection can be represented as

∇dxi(dxj)+ = (Γ̄
{ij}
k + Γ̄

[ij]
k )(dxk)+ =: Γ̄ij

k (dx
k)+. (5.19)

The meaning of this connection is intensively studied in the next section.

Poisson generalized torsion The local expression for the torsion tensor is obtained by com-

puting

∇dxi(dxj)+ −∇dxj (dxi)+ − ([dxi, dxj ])+. (5.20)

It is worth noting that [dxi, dxj ] = ∂kθ
ijdxk ̸= 0 with our Courant algebroid. This is significantly

different point from the standard one, as [∂i, ∂j ]TM = 0. And then

T̄ ij := T̄ (dxi, dxj) = (Γ̄ij
k − Γ̄ji

k − ∂kθ
ij)(dxk)+ = (2Γ̄

[ij]
k − ∂kθ

ij)(dxk)+ = 0. (5.21)

Thus, when β = 0, the torsion tensor is identically zero

T̄ = 0, (5.22)

which is guaranteed by the multi-linearity (5.21). Although the connection non-trivially has anti-

symmetric part, it is torsion free.

Poisson generalized curvature The local expression for the curvature is obtained by computing

(∇dxi∇dxj −∇dxj∇dxi −∇[dxi,dxj ])(dx
k)+. (5.23)

Using the Leibniz rule and the linearity of the covariant derivative, we have

∇dxi∇dxjdxk = ∇dxiΓ̄
jk
l (dxl)+ = (LdxiΓ̄

jk
l + Γ̄jk

m Γ̄im
l )(dxl)+, (5.24)

and, as mentioned above,

∇[dxi,dxj ](dx
k)+ = (∂nθ

ij)Γ̄nk
l (dxl)+. (5.25)

By combining these results, we find that the curvature is

R̄kij
l (dxl)+ := (∇dxi∇dxj −∇dxj∇dxi −∇[dxi,dxj ])(dx

k)+

= (θim∂mΓ̄jk
l − θjm∂mΓ̄ik

l − ∂nθ
ijΓ̄nk

l + Γ̄jk
m Γ̄im

l − Γ̄ik
mΓ̄jm

l )(dxl)+

=: Πkij
l (dxl)+. (5.26)

Here we introduce a symbol Πkij
l to denote the coefficients

Πkij
l = θim∂mΓ̄jk

l − θjm∂mΓ̄ik
l − ∂nθ

ijΓ̄nk
l + Γ̄jk

m Γ̄im
l − Γ̄ik

mΓ̄jm
l . (5.27)

This object can be interpreted as an analogue of the Riemann curvature tensor.
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Ricci tensor and Ricci scalar The Ricci tensor is obtained by a contraction between an upper

and a lower indices of the Riemann curvature tensor

R̄kj = R̄klj
l . (5.28)

And the Ricci scalar is constructed by a contraction of the Ricci tensor with the metric

R̄ = GkjR̄
kj . (5.29)

5.2.3 Rewriting in covariant manner

To get more insights into the connection Γ̄ij
k , we rewrite it in manifestly covariant manner. Using

the ordinary Levi-Civita connection Γk
ij , defined as usual,

Γk
ij =

1

2
Gkl(∂iGlj + ∂jGli − ∂lGij), (5.30)

we can rewrite the derivative of the metric G as

∂mGij = −Γi
mlG

lj − Γj
mlG

il. (5.31)

We introduce the usual Levi-Civita connection as ∇i. Then the symmetric part of the connection

reads

2Γ̄
{ij}
k = [Γi

mlθ
mjGln + Γj

mlθ
miGln −Gjl∇lθ

in −Gil∇lθ
jn]Gnk, (5.32)

while the antisymmetric part does

2Γ̄
[ij]
k = Gnl[∇lθ

ij − Γi
mlθ

mj + Γj
lmθmi]Gnk. (5.33)

By summing them up we find that the connection (5.19) is rewritten as

2Γ̄
{ij}
k + 2Γ̄

[ij]
k = 2Γj

mkθ
mi +∇kθ

ij −Gjl∇l(θ
inGnk)−Gil∇l(θ

jnGnk), (5.34)

i.e.

Γ̄ij
k = Γj

mkθ
mi +

1

2
[∇kθ

ij −∇j(θinGnk)−∇i(θjnGnk)] =: Γj
mkθ

mi +Kij
k , (5.35)

where we introduce a tensor Kij
k defined as

Kij
k =

1

2
Gkn[∇nθij −∇iθjn +∇jθni] =: GknK

nij , (5.36)

which can be interpreted as an analogue of “contorsion tensor”. Here raising and lowering of indices

are done by the metric G, and pay attention to ∇i ̸= ∇dxi .

Thus we can rewrite the connection (5.19) as

∇dxi(dxj)+ = (Γj
kmθmi +Kij

k )(dxk)+ = Γ̄ij
k (dx

k)+. (5.37)
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After some lengthy computation, see appendix B.2, we obtain the covariant expression of the

curvature as

Πkij
l = θimθnjRk

lmn − (∇nθ
ij)Knk

l + θnj∇nK
ik
l − θni∇nK

jk
l +Kjk

mKim
l −Kik

mKjm
l , (5.38)

where Rk
lmn and∇ denote the Riemann curvature tensor and the Levi-Citiva connection constructed

by the metric G, respectively.

An analogue of the Ricci tensor is constructed by contracting an upper index with a lower index

as usual:

Πkj := Πklj
l

= θlmθnjRk
lmn − (∇nθ

lj)Knk
l + θnj∇nK

lk
l − θnl∇nK

jk
l +Kjk

mK lm
l −K lk

mKjm
l . (5.39)

Notice that

2K lk
l = 2∇lθ

lk, (5.40)

where we used θlpGpl = 0. Hence we obtain an analogue of the Ricci tensor

Πkj = Πklj
l

= θlmθnjRk
lmn − (∇nθ

lj)Knk
l + θnj∇n∇lθ

lk − θnl∇nK
jk
l +Kjk

m∇lθ
lm −K lk

mKjm
l . (5.41)

Finally an analogue of the Ricci scalar is defined by taking the contraction between the metric

G and the Ricci tensor

Π = GkjΠ
kj

= θlmθnjRjlmn −Gkj(∇nθ
lj)Knk

l + θnjGkj∇n∇lθ
lk −Gkjθ

nl∇nK
jk
l +GkjK

jk
m∇lθ

lm −GkjK
lk
mKjm

l .

(5.42)

Notice that

2GkjK
jk
l = −2Gpl∇j(θ

jp), (5.43)

where we used Gkj∇lθ
jk = ∇l(Gkjθ

jk) = 0. Then we find that the analogue of the Ricci scalar

results in

Π = θlmθnjRjlmn + 2θnm∇n∇lθ
lm −∇nθnm∇lθ

lm. (5.44)

Here raising and lowering of indices are done by the metric G.

5.3 Interpretation of the connection

In this section we try to clarify the geometrical meaning of the connection presented in the last two

sections. We investigate here what kind of geometry the connection Γ̄ij
k defines. To this end, we
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extend the connection to that acting on 1-form {dxi}, not {(dxi)+}1 and forget the results above

for a while:

∇dxidxj = Ω̄ij
k dx

k. (5.45)

We define a connection for any 1-forms ξ, η and any functions f , g,

∇fξ(gη) := fg∇ξη + f(Lξg)η, (5.46)

especially for ξ = ξidx
i and η = ηidx

i

∇ξη = ξiηj∇dxidxj + ξi(Ldxiηj)dx
j = (ξiηjΩ̄

ij
k + ξiθ

ij∂jηk)dx
k. (5.47)

We require that the covariant derivative should be compatible with the metric G in the sense

of what follows:

LξG(η, ζ) = G(∇ξη, ζ) +G(η,∇ξζ). (5.48)

We calculate straightforwardly the left-hand side

Lξ(Gijηiζj) = ξkθ
kl∂l(G

ijηiζj), (5.49)

and the right-hand side

G(∇ξη, ζ) +G(η,∇ξζ)

= G((ξiηjΩ̄
ij
k + ξiθ

ij∂jηk)dx
k, ζ) +G(η, (ξiζjΩ̄

ij
k + ξiθ

ij∂jζk)dx
k)

= ξkηiζj(G
ilΩ̄kj

l +GjlΩ̄ki
l ) + ξkG

ijζjθ
kl∂lηi + ξkG

ijηiθ
kl∂lζj . (5.50)

Hence, we impose

θkl∂lG
ij − Ω̄ki

l Glj − Ω̄kj
l Gil = 0. (5.51)

Permuting the indices of (5.51) cyclicly, we have

θil∂lG
jk − Ω̄ij

mGmk − Ω̄ik
mGjm = 0, (5.52)

θjl∂lG
ki − Ω̄jk

mGmi − Ω̄ji
mGkm = 0. (5.53)

Furthermore, taking a sum −(5.51) + (5.52) + (5.53), we have

−θkl∂lGij + θil∂lG
jk + θjl∂lG

ki = −(Ω̄ki
m − Ω̄ik

m)Gmj − (Ω̄kj
m − Ω̄jk

m )Gim + (Ω̄ij
m + Ω̄ji

m)Gmk. (5.54)

We can define an analogue of the torsion tensor as

T̄ (ξ, η) = ∇ξη −∇ηξ − [ξ, η]θ, (5.55)

1 For Riemannian geometry, the Christoffel symbol defines the Levi-Civita connection on the basis vectors {∂i}
as ∇i∂j = Γk

ij∂k. Here we make an analogous discussion.
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for any 1-forms ξ and η. Since the right-hand side is manifestly skew-symmetric, T̄ defines a skew-

symmetric map. We can check that this map defines a tensor. As a consistency check, we can

easily show that

T̄ (fξ, gη) = ∇fξ(gη)−∇gη(fξ)− [fξ, gη]θ

= fg∇ξη + f(Lξg)η − gf∇ηξ − g(Lηf)ξ − fg[ξ, η]θ − f(Lξg)η + g(Lηf)ξ
= fg(∇ξη −∇ηξ − [ξ, η]θ) = fgT̄ (ξ, η), (5.56)

for arbitrary function f and g. Thus T̄ indeed defines a skew-symmetric tensor. Torsion-free

condition claims

T̄ ij := T̄ (dxi, dxj) = ∇dxidxj −∇dxjdxi − [dxi, dxj ]θ

= (Ω̄ij
k − Ω̄ji

k − ∂kθ
ij)dxk = 0, (5.57)

i.e.

Ω̄ij
k − Ω̄ji

k = ∂kθ
ij , (5.58)

giving (5.54)

(Ω̄ij
m + Ω̄ji

m)Gmk = θmk∂mGij − θmi∂mGjk − θmj∂mGki −Gjm∂mθik −Gim∂mθjk (5.59)

These are very the same as Γ̄ij
k . Hence, the connection Ω̄ij

k = Γ̄ij
k is obtained as the solution of both

the condition for the compatibility with the metric Gij and the torsion-free.

Note that we obtain an interesting observation about the Poisson bi-vector θ. As we have

∇dxkθij = θkm∂mθij − Ωki
mθmj − Ωkj

mθim, (5.60)

permuting the indices cyclicly,

∇dxiθjk = θim∂mθjk − Ωij
mθmk − Ωik

mθjm, (5.61)

∇dxjθki = θjm∂mθki − Ωjk
mθmi − Ωji

mθkm (5.62)

and then taking a sum we have

∇dxkθij +∇dxiθjk +∇dxjθki

= θkm∂mθij + θim∂mθjk + θjm∂mθki − Ωki
mθmj − Ωkj

mθim − Ωij
mθmk − Ωik

mθjm − Ωjk
mθmi − Ωji

mθkm

= θmj(Ωik
m − Ωki

m) + θim(Ωjk
m − Ωkj

m )− θmk(Ωij
m − Ωji

m)

= θmj∂mθik + θim∂mθjk − θmk∂mθij = −θmj∂mθki − θmi∂mθjk − θmk∂mθij = 0, (5.63)

with a use of the Poisson condition θm[i∂mθjk] = 0. Hence, the covariantized Poisson condition

∇dx[iθjk] = 0 (5.64)

is satisfied.
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5.4 In the presence of R-flux

This section examines the extension of the construction of Riemann geometry in the previous

section to the case in the presence of R-flux. Because the R-flux is found to enter differently from

the metric and the Poisson tensor, the extension is done straightforwardly.

5.4.1 Connection, Torsion and Curvature

Poisson generalized connection In order to incorporate an R-flux into our formalism, we make

a definition of a connection under the presence of β as

∇ξu = π+(e
−β[eβ(ξ−), eβu]), (5.65)

with ξ ∈ Γ(T ∗M) and u ∈ Cβ=0
+ . Here we introduced extensions ± as ξ± = ξ ±G(ξ) ∈ Cβ=0

± , and

hence eβξ± = ξ+(±G+β)(ξ) ∈ C±. Recall that our bracket satisfies, for u = X+ξ and v = Y +η,

[eβ(u), eβ(v)] = [u+ β(ξ), v + β(η)] = eβ[u, v] + iηiξdθβ. (5.66)

Hence we have

∇ξu = π+([ξ
−, u] + iηiξdθβ) = π+([ξ

−, u]) + π+(iηiξdθβ), (5.67)

where u|1−form = η. It is noteworthy that the first term in the right-hand side is the same as that

of trivial β and the R-flux separately appears as the second term. Thus, using the results of the

case of trivial β, the Leibniz rule of this connection

∇fξ(gu) = fg∇ξu+ f(Lξg)u (5.68)

is easily shown to be satisfied.

Poisson generalized torsion A torsion is also defined by

T̄ (ξ, η) = ∇ξη
+ −∇ηξ

+ − ([ξ, η]θ)
+, (5.69)

and it is easily shown that

T̄ (fξ, gη) = fgT̄ (ξ, η). (5.70)

Poisson generalized curvature A curvature is given by

R̄(ξ, η)u = (∇ξ∇η −∇η∇ξ −∇[ξ,η]θ)u, (5.71)

for any 1-forms ξ, η and u ∈ C+. The proof of the tensor property

R̄(fξ, gη)hu = fghR̄(ξ, η)u, (5.72)

is done in a parallel manner with the case of β = 0, using only the Leibniz property of the connection
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5.4.2 Local expressions

Poisson generalized connection In the local coordinates {xi} the connection reads

∇dxi(dxj)+ = π+([(dx
i)−, (dxj)+]) + π+(idxj idxidθβ). (5.73)

The first term is nothing but (5.16) except for the replacement of g with G:

[(dxi)−, (dxj)+] = [dxi −Gik∂k, dx
j +Gjl∂l]

= ∂kθ
ijdxk + [θmn(∂mGji)− θmi(∂mGjn)− θmj(∂mGin)−Gjl(∂lθ

in)−Gil(∂lθ
jn)]∂n. (5.74)

The different point of the connection from the case with β = 0 is the presence of the term involving

dθβ. We give explicit form of this term. Note that in our formulation [28] an R-flux is given by a

Poisson exterior derivative with dθ of a bi-vector field potential β. It results in a tri-vector field:

dθβ = [θ, β] = [
1

2
θnm∂n ∧ ∂m,

1

2
βij∂i ∧ ∂j ] =:

1

3!
Rabc∂a ∧ ∂b ∧ ∂c. (5.75)

Then we find

idxj idxidθβ

= [θnm∂mβij + θim∂mβjn + θjm∂mβni + βnm∂mθij + βim∂mθjn + βjm∂mθni]∂n

= Rijn∂n, (5.76)

Here again we define the coefficients of the connection as

2Γ̄
{ij}
k = Gnk[θ

mn∂mGji − θmj∂mGin − θmi∂mGjn −Gim∂mθjn −Gjl∂lθ
in], (5.77)

2Γ̄
[ij]
k = ∂kθ

ij , (5.78)

Rijn = θnm∂mβij + θim∂mβjn + θjm∂mβni + βnm∂mθij + βim∂mθjn + βjm∂mθni. (5.79)

Then we see that the connection can be written as

∇dxi(dxj)+ =

(
Γ̄ij
k +

1

2
RijnGnk

)
(dxk)+. (5.80)

Poisson generalized torsion The local expression for torsion is read straightforwardly

T̄ ij := ∇dxi(dxj)+ −∇dxj (dxi)+ − ([dxi, dxj ]θ)
+ = RijnGnk(dx

k)+. (5.81)

Hence the R-flux appears as the torsion. This is parallel to the H-flux appearing the torsion of

generalized connection.

Poisson generalized curvature In the local coordinates {xi}, the Riemann curvature reads

(∇dxi∇dxj −∇dxj∇dxi −∇[dxi,dxj ])(dx
k)+. (5.82)
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Using the Leibniz rule and the linearity of the covariant derivative, we have

∇dxi∇dxjdxk

= ∇dxi

(
Γ̄jk
l +

1

2
RjknGnl

)
(dxl)+

=

{
Ldxi

(
Γ̄jk
l +

1

2
RjknGnl

)
+

(
Γ̄jk
m +

1

2
RjknGnm

)(
Γ̄im
l +

1

2
RimpGpl

)}
(dxl)+, (5.83)

and by definition

∇[dxi,dxj ](dx
k)+ = (∂nθ

ij)∇dxn(dxk)+ = (∂nθ
ij)

(
Γ̄nk
l +

1

2
RnkpGpl

)
(dxl)+. (5.84)

Combining these equations, we find that the curvature is

(∇dxi∇dxj −∇dxj∇dxi −∇[dxi,dxj ])(dx
k)+ =: R̄kij

l (dxl)+

=

{
Πkij

l +
1

2
θim∂m(RjknGnl) +

1

2
RjknGnmΓ̄im

l +
1

2
Γ̄jk
mRimpGpl +

1

4
RjknGnmRimpGpl−

− 1

2
θjm∂m(RiknGnl)−

1

2
RiknGnmΓ̄jm

l −
1

2
Γ̄ik
mRjmpGpl −

1

4
RiknGnmRjmpGpl−

− 1

2
(∂nθ

ij)RnkpGpl

}
(dxl)+, (5.85)

with

Πkij
l = (θim∂mΓ̄jk

l − θjm∂mΓ̄ik
l − ∂nθ

ijΓ̄nk
l + Γ̄jk

m Γ̄im
l − Γ̄ik

mΓ̄jm
l ), (5.86)

as already introduced in the case with β = 0.

Poisson generalized Ricci tensor The Ricci tensor R̄kj is obtained by taking a contraction

R̄kj :=R̄klj
l

=Πkj +
1

2
θlm∂m(RjknGnl) +

1

2
RjknGnmΓ̄lm

l −

− 1

2
RlknGnmΓ̄jm

l −
1

2
Γ̄lk
mRjmpGpl −

1

4
RlknGnmRjmpGpl −

1

2
(∂nθ

lj)RnkpGpl. (5.87)

Poisson generalized Ricci scalar Finally, the contraction between the Ricci tensor and the

metric yields the Ricci scalar R̄

R̄ :=GkjR̄
kj = Π− 1

4
R2, (5.88)

with

Π = Gkj(θ
lm∂mΓ̄jk

l − θjm∂mΓ̄lk
l − ∂nθ

ljΓ̄nk
l + Γ̄jk

m Γ̄lm
l − Γ̄lk

mΓ̄jm
l ), (5.89)

R2 = GkjGlpGnmRklnRjpm, (5.90)
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where Rijkl denotes the Riemann curvature tensor constructed of Gij and Rink does the R-flux,

defined by R = dθβ. Since the Ricci scalar R̄ is a sum of the Ricci scalar Π which is obtained in

the absence of R-flux in the previous section and the square of the R-flux. This result (5.88) is

parallel to that of generalized Riemannian geometry, which is the sum of the ordinary Ricci scalar

and the square of the H-flux (3.92).



Chapter 6

Conclusion and Discussion

In this dissertation we addressed the issue of formulating non-geometric fluxes. We proposed a

new variant of generalized geometry to formulate the R-flux which is one of the non-geometric

fluxes [28]. This novel framework, which we referred to as Poisson generalized geometry, was a

kind of dual of the ordinary generalized geometry and was based on the Poisson structure θ of the

target space. It was a Courant algebroid (TM)0 ⊕ (T ∗M)θ equipped with a new bracket

[X + ξ, Y + η] = [ξ, η]θ + LξY − LηX −
1

2
dθ(iξY − iηX), (6.1)

where the roles of the vector field and 1-form were interchanged compared to the standard gener-

alized geometry which is equipped with the following Courant bracket

[X + ξ, Y + η]C = [X,Y ] + LXη − LY ξ −
1

2
d(iXη − iY ξ). (6.2)

The relevant symmetries to the novel framework consisted of β-deformations and β-diffeomorphisms,

which terminology is introduced in refs. [36–42]. In our formulation, the R-flux was realized as a

twisting of the Courant algebroid (TM)0 ⊕ (T ∗M)θ via β-transformations:

[eβ(X + ξ), eβ(Y + η)] = eβ[X + ξ, Y + η] + iηiξdθβ, (6.3)

where the R-flux was given by R = dθβ. These were parallel to those of generalized geometry: the

relevant symmetries to generalized geometry are given by B-transformations and diffeomorphisms

and the H-flux is realized as a twisting of the standard Courant algebroid TM ⊕ T ∗M via B-

transformations:

[eB(X + ξ), eB(Y + η)]C = eB[X + ξ, Y + η]C + iY iXdB, (6.4)

where the H-flux is given by H = dB.

In the latter part of this dissertation we constructed an analogue of Riemannian geometry based on

the Poisson generalized geometry. Our construction of Poisson generalized Riemannian geometry

had its basis on the differential geometry of (T ∗M)θ. It was found that the analogues of the

connection and the curvature were consistently defined. The resulting geometry was found to be
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compatible with both the Poisson structure θ and the positive-definite metric G: The connection

was given by

∇dxi(dxj)+ =

(
Γ̄
{ij}
k + Γ̄

[ij]
k +

1

2
RijnGnk

)
(dxk)+, (6.5)

with

Γ̄
{ij}
k =

1

2
Gnk[θ

mn∂mGji − θmj∂mGin − θmi∂mGjn −Gim∂mθjn −Gjl∂lθ
in], (6.6)

Γ̄
[ij]
k =

1

2
∂kθ

ij , (6.7)

Rijn = θnm∂mβij + θim∂mβjn + θjm∂mβni + βnm∂mθij + βim∂mθjn + βjm∂mθni. (6.8)

The R-flux, R = dθβ, arose in the connection and was interpreted as a torsion tensor. The analogue

of Ricci scalar Ξ read

Ξ := Π− 1

4
R2, (6.9)

with

Π = Gkj(θ
lm∂mΓ̄jk

l − θjm∂mΓ̄lk
l − ∂nθ

ljΓ̄nk
l + Γ̄jk

m Γ̄lm
l − Γ̄lk

mΓ̄jm
l ) (6.10)

= θlmθnjRjlmn + 2θnm∇n∇lθ
lm −∇nθnm∇lθ

lm, (6.11)

R2 = GkjGlpGnmRklnRjpm, (6.12)

where Rijkl denotes the Riemann curvature tensor constructed of Gij and Rink does the R-flux,

defined by R = dθβ. These results were similar to the case of generalized geometry where the

H-flux appears as a torsion tensor and the generalized Ricci scalar is

Υ = R− 1

4
H2, (6.13)

where R is the ordinary Ricci scalar constructed from gij and H2 = gijgklgmnHikmHjln with

H = dB.

We end this dissertation with a few comments on the relation between string theory and the

geometry which was constructed in this dissertation.

In order to write down the Einstein-Hilbert action, we should define an invariant measure. One

natural choice of invariant measure would be√
detGijdx

1 ∧ · · · ∧ dxn. (6.14)

As all indices in the quantity Ξ = Π− 1/12R2 are contracted, it is apparently a scalar. Hence the

analogue of the Einstein-Hilbert action would be

L =
√
|G|
(
Π− 1

12
R2

)
, (6.15)
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where we rescaled the R-flux and introduced G = detGij . Since the R-flux R = dθβ is an invariant

quantity under gauge transformations induced by β-transformations

β → β + dθΛ, (6.16)

and both the invariant measure and the Ricci scalar Ξ are invariant under diffeomorphisms, in-

cluding β-diffoemorphisms in particular, the Einstein-Hilbert action defined above is manifestly

invariant under both β-transformations and β-diffeomorphisms.

In this sense, our construction of gravity theory is closely related to the construction done by

Andriot et.al. [36–42] and Blumenhagen et.al. [43–46], since the construction of the gravity the-

ory in [36–46] is also based on β-diffeomorphisms. Their resulting gravity theory is shown to be

physically equivalent to the original low-energy supergravity theory of NSNS sector

LNSNS =
√
|g|
(
R− 1

12
HijkH

ijk

)
. (6.17)

They also introduce a covariant derivative with upper indices

∇̃iV j = D̃iV j − Γ̆ij
k V

k, ∇̃iVj = D̃iVj + Γ̆ik
j Vk. (6.18)

The connection coefficients are given by

Γ̆
(ij)
k = Γ̆ij

k −Gkl(G
miΓ̆[jl]

m +GmjΓ̆[il]
m ), (6.19)

where

Γ̆
(ij)
k = Γ̃ij

k −
1

2
Gkl(β

im∂mGjl + βjm∂mGil − βlm∂mGij −Gmi∂mβjl −Gmj∂mβil), (6.20)

Γ̆
[ij]
k = −1

2
∂kβ

ij , (6.21)

Γ̃ij
k =

1

2
Gkl(∂̃

iGjl + ∂̃jGil − ∂̃lGij). (6.22)

Comparing with our connection

Ωij
k =

1

2
Gkn(θ

im∂mGjn + θjm∂mGin − θnm∂mGij −Gmi∂mθjn −Gmj∂mθin), (6.23)

Θij
k =

1

2
∂kθ

ij , (6.24)

we find that the connection Γ̆ij
k exactly coincides with ours, (Ω+Θ)ijk , if θ = β, except the existence

of the term Γ̃ij
k containing derivatives with respect to the dual coordinate ∂̃. Since in our formalism

we do not refer to the dual coordinate x̃i, we can naturally drop off the term Γ̃ij
k for comparison.

Hence, the connections exactly coincide.

However, there is a significant difference between the formulation of [36–46] and our formulation

as well. In [36–46] the bi-vector β is allowed to be any bi-vector i.e. the Poisson condition is no

longer imposed. There the violation of the Jacobi identity itself is identified with the R-flux

R̆ = [β, β]SN ̸= 0. (6.25)
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On the other hand, our formulation assumes a Poisson bi-vector θ which satisfies the Poisson

condition

[θ, θ]SN = 0. (6.26)

Our R-flux is globally well-defined by

R = [θ,Λ]SN = dθΛ, (6.27)

with a use of gauge potential Λ of bi-vector field. This formulation of the R-flux realized to introduce

the notion of (Abelian) gauge transformation Λ→ Λ + dθλ.

In refs. [36–46] the Q-flux

Q ij
k = ∂kβ

ij (6.28)

is introduced heuristically, in order to make the curvature tensor covariant, and it confuses ones

due to its non-covariant expression, whereas in our construction it inevitably appeared as the

anti-symmetric part of the connection

Θij
k =

1

2
∂kθ

ij (6.29)

by the first principle. It provides us with a definite interpretation on our geometry: our connection

enables the corresponding covariant derivative to be compatible with both the metic Gij and the

Poisson tensor θij . Besides, the anti-symmetric part of the connection guarantees that the torsion

tensor vanishes in the absence of the R-flux. This notion on geometry has hardly obtained without

imposing the Poisson condition.

In this dissertation we used the new Courant algebroid as a fundamental structure, however, there

are many open questions related to the formulation. Along the approach of refs. [63,64], we would

like to define another non-geometric flux, Q-flux. It will be important to understand the T-duality

chain in fully geometric way. It also needs more detailed study on the Poisson generalized geometry,

such as a variant of generalized complex structures. The most important question is how the R-flux

is realized in string theory or supergravity. In the case of H-fluxes, H should be quantized, since it

appears in the Wess-Zumino-Witten term in the string world-sheet theory. Similarly, R-flux should

also be quantized when it is realized as a background flux in the string world-sheet theory [60] or

membrane world-volume theory [65]. It is interesting to see whether our R-flux is consistent with

these formulations. There, the U(1) gerbe analogue of R-flux would play a role.

It was observed that the resulting gravity theory is compatible with the Poisson structure. A Poisson

structure potentially provides the non-commutative nature, since a space equipped with it can be

regarded as the semi-classical approximation of a non-commutative space. Hence, by applying

Kontsevich’s deformation quantization formula to the Poisson structure [66,67], the gravity theory

constructed from Poisson generalized geometry is expected to be lifted to a gravity theory on a non-

commutative space. It might be related to matrix models [68–70], since both the non-commutativity

and the gravity must be taken into account in formulating those models.
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Appendix A

Notations for differential geometry

We use the symbols listed here without mention throughout this dissertation.

Cartan differential calculus

We list here the mathematical notations used throughout this dissertation.

C∞(M) : set of smooth functions on manifold M, (A.1)

X (M) : set of vector fields on manifold M, (A.2)

Ωp(M) : set of p-forms on manifold M, (A.3)

as usual. We use the standard notations used in differential geometry: i and d denote the interior

product and exterior derivative, defined in some local coordinate {xµ} as

iXω =
1

(p− 1)!
Xνων[µ2···µp]dx

µ2 ∧ · · · ∧ dxµp , (A.4)

df =
∂f

∂xµ
dxµ, (A.5)

dω =
1

(p+ 1)!
∂[µ0

ωµ1···µp]dx
µ0 ∧ dxµ1 ∧ · · · ∧ dxµp , (A.6)

respectively, for vector field X ∈ X (M), p-form ω ∈ Ωp(M) and f ∈ C∞(M). The indices under

the square bracket [ ] are anti-symmetrized, e.g. f[µν] = fµν − fνµ. The exterior derivative is

nilpotent

d2 = 0. (A.7)

The Lie derivative is defined as

LXY = [X,Y ], (A.8)

LXf = iXdf, (A.9)

LXω = (diX + iXd)ω. (A.10)
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In terms of local coordinates, they are rewritten as

LXY = (Xµ∂µY
ν − Y µ∂µX

ν)∂ν , (A.11)

LXf = Xµ ∂f

∂xµ
, (A.12)

LXω =
1

p!
(∂[µ1

Xνωνµ2···µp] +Xν∂νω[µ1µ2···µp])dx
µ1 ∧ · · · ∧ dxµp , (A.13)

by definition. For example, for 1-form η, the Lie derivative generated by vector field X can be

written as

LXη = (∂µX
νην +Xν∂νηµ)dx

µ, (A.14)

and for 2-form ξ

LXξ =
1

2
(∂[µ1

Xνξνµ2] +Xν∂νξ[µ1µ2])dx
µ1 ∧ dxµ2 (A.15)

They satisfy following relations

{iX , iY } = 0, {d, iX} = LX , [d,LX ] = 0, [LX , iY ] = i[X,Y ], [LX ,LY ] = L[X,Y ]. (A.16)

They are easily shown as

[d,LX ] = dLX − LXd = d(iXd+ diX)− (diX + iXd)d = 0, (A.17)

and for any p-form ω,

[LX , iY ]ω

=
1

(p− 1)!
LX(Y νων[µ1···µp−1]dx

µ1 ∧ · · · ∧ dxµp−1)

− 1

p!
iY [(∂[µ0

Xνωνµ1···µp−1] +Xν∂νω[µ0µ1···µp−1])dx
µ0 ∧ · · · ∧ dxµp−1 ]

=
1

(p− 1)!

[
∂[µ1

XρY νωνρµ2···µp−1] +Xρ∂ρ(Y
νων[µ1···µp−1]))

− Y ρ∂ρX
νων[µ1···µp−1] + Y ρ∂[µ1

Xνωνρµ2···µp−1] − Y ρXν∂νωρ[µ1···µp−1]

]
dxµ1 ∧ · · · ∧ dxµp−1

=
1

(p− 1)!

[
Xρ∂ρY

νων[µ1···µp−1])− Y ρ∂ρX
νων[µ1···µp−1]

]
dxµ1 ∧ · · · ∧ dxµp−1 = i[X,Y ]ω, (A.18)

and finally,

[LX ,LY ] = [LX , diY ] + [LX , iY d]

= [LX , d]iY + d[LX , iY ] + [LX , iY ]d+ iY [LX , d] = di[X,Y ] + i[X,Y ]d = L[X,Y ]. (A.19)
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Schouten-Nijenhuis bracket

The Schouten-Nijenhuis bracket is an extension of the Lie bracket of the vector fields to that of the

poly-vector fields. For two poly-vectors of the form V = X1 ∧ · · · ∧Xk and W = Y1 ∧ · · · ∧ Yl, with
Xi, Yj ∈ X (M), the Schouten-Nijenhuis bracket is defined as

[V,W ]S =

k,l∑
i=1,j=1

(−1)i+j [Xi, Yj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · ·Xk ∧ Y1 ∧ · · · Ŷj ∧ · · ·Yl. (A.20)

Here [Xi, Yj ] denotes the usual Lie bracket mentioned above and the vector fields with the symbol

hat ˆ are understood to be removed. Hence, for 1-vectors the Shouten-Nijenhuis bracket reduces to

the usual Lie bracket.

For example, for X,Y, Z,W ∈ X (M)

[X ∧ Y, Z ∧W ] = [X,Z] ∧ Y ∧W − [X,W ] ∧ Y ∧ Z − [Y,Z] ∧X ∧W + [Y,W ] ∧X ∧ Z. (A.21)

Vector bundles

TM : tangent bundle over manifold M, (A.22)

Γ(TM) : set of sections of tangent bundle TM i.e. set of vector fields, (A.23)

T ∗M : cotangent bundle over manifold M, (A.24)

Γ(T ∗M) : set of sections of cotangent bundle T ∗M i.e. set of 1-forms. (A.25)





Appendix B

Computational details

B.1 Generalized geometry

Proof of (3.75) We show the following equation

R(fX, gY )hu = fghR(X,Y )u. (B.1)

Indeed, using the Leibniz rule of the connection, we have

R(fX, gY )hu

= (∇fX∇gY −∇gY∇fX −∇[fX,gY ])hu

= f∇X(gh∇Y u+ g(Y h)u)− g∇Y (fh∇Xu+ f(Xh)u)−∇fg[X,Y ]+f(Xg)Y−g(Y f)Xhu =

= fgh∇X∇Y u+ fX(gh)∇Y u+ fg(Y h)∇Xu+ fX(g(Y h))u−
− gfh∇Y∇Xu− gY (fh)∇Xu− gf(Xh)∇Y u− gX(f(Xh))u−
− fg∇[X,Y ]hu− f(Xg)∇Y hu+ g(Y f)∇Xhu =

= fgh(∇X∇Y u−∇Y∇Xu−∇[X,Y ]u) + (fX(gh)− gf(Xh)− fh(Xg))∇Y u+

+ (fg(Y h)− gY (fh) + gh(Y f))∇Xu+

+ (fX(g(Y h))− gY (f(Xh))− fg([X,Y ]h)− f(Xg)(Y h) + g(Y f)(Xh))u =

= fgh(∇X∇Y u−∇Y∇Xu−∇[X,Y ]u)+

+ [(f(Xg)(Y h)) + fgX(Y h)− g(Y f)(Xh)− gfY (Xh)−
− fg([X,Y ]h)− f(Xg)(Y h) + g(Y f)(Xh)]u

= fgh(∇X∇Y u−∇Y∇Xu−∇[X,Y ]u). (B.2)
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Details of the curvature in generalized geometry

Υm
kij = ∂iΞ

m
jk + Ξl

jkΞ
m
il − (i↔ j)

= ∂i

(
Γm
jk +

1

2
gmlHljk

)
+

(
Γl
jk +

1

2
glnHnjk

)(
Γm
il +

1

2
gmpHpil

)
− (i↔ j)

= Rm
kij +

1

2
∂i(g

mlHljk) +
1

2
Γl
jkg

mpHpil +
1

2
glnHnjkΓ

m
il +

1

4
glnHnjkg

mpHpil−

− 1

2
∂j(g

mlHlik)−
1

2
Γl
ikg

mpHpjl −
1

2
glnHnikΓ

m
jl −

1

4
glnHnikg

mpHpjl. (B.3)

At a first glance this object Υm
kij is not a covariant quantity because it has terms involving the

partial derivatives, not the covariant derivatives. However, in fact they form covariant tensors:

(terms seeming not to be covariant)

=
1

2
∂i(g

mlHljk)−
1

2
∂j(g

mlHlik) +
1

2
Γl
jkg

mpHpil +
1

2
glnHnjkΓ

m
il −

1

2
Γl
ikg

mpHpjl −
1

2
glnHnikΓ

m
jl

=
1

2
∂ig

mlHljk +
1

2
gml∂iHljk −

1

2
∂jg

mlHlik −
1

2
gml∂jHlik+

+
1

2
gmpΓl

jkHpil +
1

2
glnΓm

il Hnjk −
1

2
gmpΓl

ikHpjl −
1

2
glnΓm

jlHnik. (B.4)

Note that 0 = ∇ig
ml = ∂ig

ml +Γm
ipg

pl +Γl
ipg

mp, so that ∂ig
ml = −gplΓm

ip − gmpΓl
ip. With making a

use of this relation, we find

(terms seeming not to be covariant)

=
1

2
(−gplΓm

ip − gmpΓl
ip)Hljk +

1

2
gml∂iHljk −

1

2
(−gplΓm

jp − gmpΓl
jp)Hlik −

1

2
gml∂jHlik+

+
1

2
gmpΓl

jkHpil +
1

2
glnΓm

il Hnjk −
1

2
gmpΓl

ikHpjl −
1

2
glnΓm

jlHnik

=
1

2
gml∂iHljk −

1

2
gmpΓl

ipHljk −
1

2
gmpΓl

ikHpjl −
1

2
gml∂jHlik +

1

2
gmpΓl

jpHlik +
1

2
gmpΓl

jkHpil

=
1

2
gml[∇iHljk + Γp

ilHpjk + Γp
ijHlpk + Γp

ikHljp]−
1

2
gmpΓl

ipHljk −
1

2
gmpΓl

ikHpjl−

− 1

2
gml[∇jHlik + Γp

jlHpik + Γp
jiHlpk + Γp

jkHlip] +
1

2
gmpΓl

jpHlik +
1

2
gmpΓl

jkHpil

=
1

2
gml∇iHljk −

1

2
gml∇jHlik. (B.5)

Thus we obtain a tensor expression

Υm
kij = Rm

kij +
1

4
glnHnjkg

mpHpil −
1

4
glnHnikg

mpHpjl +
1

2
gml∇iHljk −

1

2
gml∇jHlik. (B.6)

B.2 Poisson generalized geometry

Proof of the third equation of (4.15) We will prove the third equation of (4.15),

LζX = Lθ(ζ)X + θ(iXdζ), (B.7)



B.2. POISSON GENERALIZED GEOMETRY 77

in the the components calculation. Because of

[θ,X]S =
[
1
2θ

µν∂µ ∧ ∂ν , X
α∂α

]
S

= 1
2 [θ

µν∂µ, X
α∂α]S ∧ ∂ν − 1

2 [∂ν , X
α∂α]S ∧ θµν∂µ

= 1
2θ

µν∂µX
α∂α ∧ ∂ν − 1

2θ
µν∂νX

α∂α ∧ ∂µ − 1
2X

α∂αθ
µν∂µ ∧ ∂ν

= θµν∂µX
α∂α ∧ ∂ν − 1

2X
α∂αθ

µν∂µ ∧ ∂ν , (B.8)

so we have

iζdθX = iζ [θ,X]S

= θµν∂µX
αζα∂ν − θµν∂µX

αζν∂α −Xα∂αθ
µνζµ∂ν

= (θµρ∂µX
αζα + θµν∂νX

ρζµ −Xα∂αθ
µρζµ) ∂ρ. (B.9)

Next, we compute

dθiζX = −θ(d(iζX))

= −θµν∂µ(ζαXα)∂ν

= −θµρ(∂µζαXα + ζα∂µX
α)∂ρ. (B.10)

Therefore, the l.h.s. is written as

LζX = iζdθX + dθiζX

= (θµρ∂µX
αζα + θµν∂νX

ρζµ −Xα∂αθ
µρζµ) ∂ρ − θµρ(∂µζαX

α + ζα∂µX
α)∂ρ

= (θµν∂νX
ρζµ − θµρ∂µζαX

α −Xα∂αθ
µρζµ) ∂ρ. (B.11)

On the other hand, the r.h.s. is computed as follows. The first term is written as

Lθ(ζ)X = [θ(ζ), X]S = [θµνζµ∂ν , X
α∂α]S

= θµνζµ∂νX
α∂α −Xα∂α(θ

µνζµ)∂ν

= (θµνζµ∂νX
ρ −Xα∂αθ

µρζµ −Xαθµρ∂αζµ) ∂ρ, (B.12)

and the second term is

θ(iXdζ) = θ
(
iX
(
1
2(∂µζν − ∂νζµ)dx

µ ∧ dxν
))

= θ (Xµ(∂µζν − ∂νζµ)dx
ν) = θ (Xν(∂νζµ − ∂µζν)dx

µ)

= θµρXν(∂νζµ − ∂µζν)∂ρ. (B.13)

Summing up, we obtain

Lθ(ζ)X + θ(iXdζ) = (θµνζµ∂νX
ρ −Xα∂αθ

µρζµ −Xαθµρ∂αζµ + θµρXν(∂νζµ − ∂µζν)) ∂ρ

= (θµνζµ∂νX
ρ −Xα∂αθ

µρζµ − θµρXν∂µζν) ∂ρ

= (θµν∂νX
ρζµ − θµρ∂µζαX

α −Xα∂αθ
µρζµ) ∂ρ. (B.14)

Thus, the equation is proved.
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Proofs of (4.17) The proof of the first equation is shown as follows.

⟨Lζ(X + ξ), Y + η⟩+ ⟨X + ξ,Lζ(Y + η)⟩ =1
2(iηLζX + iLζξY + iξLζY + iLζηX)

=1
2Lζ(iηX + iξY )

=Lζ⟨X + ξ, Y + η⟩, (B.15)

where we used iLζξ = i[ζ,ξ]θ = [Lζ , iξ] given in (4.4). Next, let us prove the third equation. The

r.h.s. is

Lζ [X + ξ, Y + η] = Lζ [ξ, η]θ + LζLξY − LζLηX + 1
2Lζdθ(iXη − iY ξ). (B.16)

By using the relations following from (4.4),

Lζ [ξ, η]θ = [ζ, [ξ, η]θ]θ = [Lζξ, η]θ + [ξ,Lζη]θ,
LζLξY = LξLζY + L[ζ,ξ]θY, (B.17)

the r.h.s. is further rewritten as

Lζ [X + ξ, Y + η] = [Lζξ, η]θ + [ξ,Lζη]θ + LξLζY + L[ζ,ξ]θY − LηLζX − L[ζ,η]θX
+ 1

2dθiζdθ(iXη − iY ξ). (B.18)

On the other hand, the first term in the l.h.s. is

[Lζ(X + ξ), Y + η] = [Lζξ, η]θ + L[ζ,ξ]θY − Lη(LζX) + 1
2dθ(iLζXη − iY (Lζξ)), (B.19)

and similar for the second term. Thus, the l.h.s gives

[Lζ(X + ξ), Y + η] + [X + ξ,Lζ(Y + η)]

=[Lζξ, η]θ + L[ζ,ξ]θY − Lη(LζX) + 1
2dθ(iLζXη − iY (Lζξ))

+[ξ,Lζη]θ + Lξ(LζY )− L[ζ,η]θX + 1
2dθ(iX(Lζη)− iLζY ξ). (B.20)

Then except for the dθ-exact terms, it is apparent that (B.18) and (B.20) coincide. Moreover, the

dθ-exact terms are also the same, since

iLζXη + iX(Lζη) = Lζ(iXη) = iζdθ(iXη). (B.21)

Here we used the formula of the action of the Lie derivative on a function, Lζf = iζdθf .

Finally, we check the second equation. The l.h.s is given as ρ(Lζ(X + ξ)) = θ(Lζξ), while the

r.h.s is Lζ(ρ(X + ξ)) = (Lζθ)(ξ) + θ(Lζξ), so that the equation is satisfied if

Lζθ = dθiζθ = dθθ(ζ) = 0. (B.22)
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Proof of the third equation of (4.18) To this end we will show that

eβ[X + ξ, Y + η] = [eβ(X + ξ), eβ(Y + η)] + [θ, β]S(ξ, η) (B.23)

then, a β-transformation is a symmetry if dθβ = [θ, β]S = 0. The l.h.s. is written as

eβ[X + ξ, Y + η] = [X + ξ, Y + η] + β([ξ, η]θ). (B.24)

while the r.h.s. is

[eβ(X + ξ), eβ(Y + η)] = [X + ξ + β(ξ), Y + η + β(η)]

= [X + ξ, Y + η] + Lξβ(η)− Lηβ(ξ) + 1
2dθ(iβ(ξ)η − iβ(η)ξ). (B.25)

By using the formula LζX = Lθ(ζ)X + θ(iXdζ), we have

Lξβ(η) = Lθ(ξ)β(η) + θ(iβ(η)dξ)

= [θ(ξ), β(η)]θ + θ(iβ(η)dξ), (B.26)

By using dθf = −θ(df), we have

dθiβ(ξ)η = dθ(β(ξ, η)) = −θ(d(β(ξ, η))) (B.27)

Substituting these, the r.h.s. becomes

[eβ(X + ξ), eβ(Y + η)]

=[X + ξ, Y + η] + [θ(ξ), β(η)]θ − [θ(η), β(ξ)]θ + θ(iβ(η)dξ − iβ(ξ)dη − d(β(ξ, η)))

=[X + ξ, Y + η] + [θ(ξ), β(η)]θ + [β(ξ), θ(η)]θ − θ([ξ, η]β), (B.28)

where in the last line we define [ξ, η]β by the same formula as the Koszul bracket for an arbitrary

bivector β (It is not a Lie bracket but we do not use this property.). Then, by using

[(θ + β)(ξ), (θ + β)(η)]S = [θ(ξ), θ(η)]S + [θ(ξ), β(η)]S + [β(ξ), θ(η)]S + [β(ξ), β(η)]S , (B.29)

it is further rewritten as

[eβ(X + ξ), eβ(Y + η)]

=[X + ξ, Y + η] + [(θ + β)(ξ), (θ + β)(η)]S − [θ(ξ), θ(η)]S − [β(ξ), β(η)]S − θ([ξ, η]β), (B.30)

To rewrite it further, we use a formula

[β(ξ), β(η)]S = β([ξ, η]β) +
1

2
[β, β]S(ξ, η) (B.31)

which is valid for any bivector β. In particular,

[(θ + β)(ξ), (θ + β)(η)]S = (θ + β)([ξ, η]θ+β) +
1

2
[θ + β, θ + β]S(ξ, η)

= (θ + β)([ξ, η]θ + [ξ, η]β) +
1

2
[θ + β, θ + β]S(ξ, η). (B.32)
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Then, we finally obtain

[eβ(X + ξ), eβ(Y + η)]

=[X + ξ, Y + η] + (θ + β)([ξ, η]θ + [ξ, η]β)− θ([ξ, η]θ)− β([ξ, η]β)− θ([ξ, η]β)

+
1

2
[θ + β, θ + β]S(ξ, η)−

1

2
[θ, θ]S(ξ, η)−

1

2
[β, β]S(ξ, η)

=[X + ξ, Y + η] + β([ξ, η]θ) + [θ, β]S(ξ, η). (B.33)

Review on twisting of TM ⊕ T ∗M with H-flux When there is a H-flux, one can define the

corresponding Courant algebroid (E, ρ, [·, ·]) from TM ⊕ T ∗M by twist as follows [24,61,62]:

1) Take a good cover {Ui} of M . Before twisting, a global section of TM ⊕ T ∗M satisfies

Xi + ξi = Xj + ξj on a overlap Uij = Ui ∩ Uj .

2) Modify the gluing condition to Xi+ ξi = Xj + ξj − dAij(Xj) for a set of 1-forms Aij ∈ T ∗Uij .

Note that T ∗M is twisted by local B-gauge transformations.

3) Define a bundle E = ⨿i (TUi ⊕ T ∗Ui) / ∼ by a standard clutching construction. Then,

(E, ρ, [·, ·]) is a Courant algebroid, because the B-gauge transformation preserves both the

anchor ρ and the bracket [·, ·].

This twisting defines an exact Courant algebroid

0→ T ∗M
ρ∗−→ E

ρ−→ TM → 0. (B.34)

with an isotropic splitting s : TM → E. That is E = s(TM)⊗ ρ∗(T ∗M). Locally, the splitting is

given by a local B-transform as

si(X) = eBi(X) = X +Bi(X), (B.35)

where Bi ∈ ∧2T ∗Ui. In order that it is globally defined, it should satisfy si(X) = sj(X) on Uij .

Taking into account the gluing condition 2), it leads to conditions Bj = Bi+dAij for local 2-forms.

It also implies that H := dBi on M is a global closed 3-form.

Thus, we need a data (H,Bi, Aij) to construct E. More specifically, it is known that the

geometric object corresponding to a closed 3-form H flux is a U(1)-gerbe with connection, when its

cohomology class [H] is in the integer cohomology H3(M ;Z). It is defined by a set (H,Bi, Aij ,Λijk)

in the Čech-de Rham double complex, with a set of equations

Ui : H = dBi,

Uij : Bj −Bi = dAij ,

Uijk : Aij +Ajk +Aki = dΛijk,

Uijkl : Λjkl − Λikl + Λijl − Λijk = nijkl. (B.36)

This H-twisting is also regarded as a change of the Courant bracket of TM ⊕ T ∗M to the

H-twisted Courant bracket. To see this recall that the relation

[eBi(X + ξ), eBi(Y + η)] = eBi [X + ξ, Y + η] + iXiY dBi (B.37)
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is still true for local B-transformations. Therefore, if we define an H-twisted Courant bracket

[X + ξ, Y + η]H = [X + ξ, Y + η] + iXiY H, (B.38)

then we have locally

eBi [X + ξ, Y + η]H = [eBi(X + ξ), eBi(Y + η)], (B.39)

and globally

[X + s(ξ), Y + s(η)] = (ρ∗ ⊕ s)([X + ξ, Y + η]H). (B.40)

This defines an isomorphism of Courant algebroids

(TM ⊕ T ∗M,ρ, [·, ·]H) −→ (E, ρ, [·, ·]). (B.41)

We end this section with a remark about global B-transformations. The another choice of

the splitting s′ should differ from s by a B-transformation with a global 2-form b and change

E = s′(TM)⊗ ρ∗(T ∗M), where s′i(X) = X + (Bi + b)(X). It leads to the twisted bracket [·, ·]H+db

but does not change the cohomology class in H3
dR(M).

Proofs of (4.8) and (4.9) We give the proofs of (4.8) and (4.9). To show them we preliminarily

examine the following stuffs. In this section f, g ∈ C∞(M) and ξ, ζ ∈ T ∗M and X,Y ∈ TM .

Furthermore, we may use u = X + ξ, v = Y + η, w = Z + ζ ∈ (TM)0 ⊕ (T ∗M)θ. By definition, we

trivially see

L(fξ)g = ifξdθg = fLξg. (B.42)

Similarly, by definition we find

L(fξ)ζ = [fξ, ζ]θ

= Lθ(fξ)ζ − iθ(ζ)d(fξ)

= iθ(fξ)dζ + diθ(fξ)ζ − iθ(ζ)(df ∧ ξ + fdξ)

= fiθ(ξ)dζ + d(fiθ(ξ)ζ)− fiθ(ζ)dξ − iθ(ζ)(df ∧ ξ)

= fiθ(ξ)dζ + fdiθ(ξ)ζ + (iθ(ξ)ζ)df − fiθ(ζ)dξ − ξ(iθ(ζ)df) + (iθ(ζ)ξ)df

= fLξζ − ξ(iθ(ζ)df) + (iθ(ξ)ζ)df + (iθ(ζ)ξ)df.

Noticing that

(iθ(ξ)ζ)df + (iθ(ζ)ξ)df = (iθ(ξ)ζ)df − (iθ(ξ)ζ)df = 0,

−ξ(iθ(ζ)df) = −ξLθ(ζ)f = −ξLζf,

we obtain

L(fξ)ζ = fLξζ − (Lζf)ξ. (B.43)
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Next, we have

L(fξ)X = (dθifξ + ifξdθ)X

= dθ(fiξX) + fiξdθX

= (iξX)dθf + fdθiξX + fiξdθX = fLξX + (iξX)dθf, (B.44)

and,

Lξ(fg) = iξdθ(fg)

= −iξθ(d(fg))
= −iξθ((df)g + fdg)

= iξ(dθf)g + iξ(fdθg) = (Lξf)g + fLξg, (B.45)

furthermore,

Lξ(fζ) = [ξ, fζ]θ

= −[fζ, ξ]θ
= −L(fζ)ξ
= −fLζξ + (Lξf)ζ = fLξζ + (Lξf)ζ, (B.46)

where we used (A.2). Finally, we see

Lξ(fX) = (dθiξ + iξdθ)(fX)

= dθ(fiξX) + iξ(dθ ∧X + fdθX)

= (iξX)dθf + fdθiξX + fiξdθX + iξ(dθf ∧X)

= fLξX + (iξX)dθf + (iξdθf)X − dθf(iξX) = fLξX + (Lξf)X, (B.47)

where we used dθ(fX) = dθf ∧X + fdθX. This is shown as

dθ(fX) = [θ, fX]S

=
1

2
[θij∂i ∧ ∂j , fX

k∂k]S

=
1

2

(
[θij∂i, fX

k∂k] ∧ ∂j − θij [∂j , fX
k∂k] ∧ ∂i

)
=

1

2

(
θij∂i(fX

k)∂k ∧ ∂j − fXk(∂kθ
ij)∂i ∧ ∂j − θij∂j(fX

k)∂k ∧ ∂i
)

= θij(∂if)X
k∂k ∧ ∂j + f [θ,X]S

= −θ(df) ∧X + f [θ,X]S = dθf ∧X + fdθX, (B.48)
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where θ(df) = θij(∂if)∂j . With these preliminaries, we address to showing equations (4.8) and

(4.9):

[X + ξ, f(Y + η)]

= Lξ(fY + fη)− L(fη)X +
1

2
dθ(iX(fη)− ifY ξ)

= fLξ(Y + η) + (Lξf)(Y + η)− fLηX − (iηX)dθf +
1

2
fdθ(iXη − iY ξ) +

1

2
(dθf)(iXη − iY ξ)

= f [X + ξ, Y + η] + (Lξf)(Y + η)− 1

2
(dθf)(iXη + iY ξ). (B.49)

This is (4.8). The equation (4.9) is given by

⟨[u, v] + dθ⟨u, v⟩, w⟩+ ⟨v, [u,w] + dθ⟨u,w⟩⟩

= ⟨Lξv − LηX +
1

2
dθ(iXη − iY ξ) +

1

2
dθ(iXη + iY ξ), w⟩+ ⟨v, [u,w] + dθ⟨u,w⟩⟩

= ⟨Lξv − iηdθX − dθiηX + dθiXη, w⟩+ ⟨v, [u,w] + dθ⟨u,w⟩⟩
= ⟨Lξ(Y + η)− iηdθX,w⟩+ ⟨v, [u,w] + dθ⟨u,w⟩⟩

=
1

2
(iζLξY + iZLξη − iζiηdθX) + ⟨v, [u,w] + dθ⟨u,w⟩⟩

=
1

2
(iζLξY + iZLξη − iζiηdθX) +

1

2
(iηLξZ + iY Lξζ − iηiζdθX) =

1

2
Lξ(iζY + iZη) = Lξ⟨v, w⟩.

(B.50)

Here we used

iζLξY + iY Lξζ = iζ{Lθ(ξ)Y + θ(iY dξ)}+ iY {Lθ(ξ)ζ − iθ(ζ)dξ}
= Lθ(ξ)(iζY ) + iζθ(iY dξ)− iY iθ(ζ)dξ

= Lθ(ξ)(iζY ) + iζθ(iY dξ) + iθ(ζ)iY dξ

= Lθ(ξ)(iζY ) + iζθ(iY dξ)− iθ(iY dξ)ζ = Lθ(ξ)(iζY ) = Lξ(iζY ). (B.51)

Proofs of (5.8) and (5.9) In this section we denote ξ ∈ T ∗M , ξ− = ξ − (G + β)(ξ) ∈ C−,

u = X + ζ ∈ C+. By definition and (4.8),

∇(fξ)u = π+([fξ
−, u])

= π+(f [ξ
−, u]− (Lζf)ξ− +

1

2
dθf⟨ξ−, u⟩) = π+(f [ξ

−, u]) = f∇ξu, (B.52)

where we used π+(ξ
−) = 0 and ⟨ξ−, u⟩ = 0. Similarly,

∇ξ(fu) = π+([ξ
−, fu])

= π+(f [ξ
−, u] + (Lξf)u−

1

2
dθf⟨ξ−, u⟩)

= π+(f [ξ
−, u]) + (Lξf)u = f∇ξu+ (Lξf)u, (B.53)

where π+(u) = u. These are what we wanted to prove.
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Proof of the compatibility (5.10) Using the equation (4.9) and the fact mentioned after

(4.9),

Lξ⟨u, v⟩ = ⟨[ξ, u] + dθ⟨ξ, u⟩, v⟩+ ⟨u, [ξ, v] + dθ⟨ξ, v⟩⟩
= ⟨[ξ−, u] + dθ⟨ξ−, u⟩, v⟩+ ⟨u, [ξ−, v] + dθ⟨ξ−, v⟩⟩
= ⟨[ξ−, u], v⟩+ ⟨u, [ξ−, v]⟩
= ⟨π+[ξ−, u], v⟩+ ⟨u, π+[ξ−, v]⟩ = ⟨∇ξu, v⟩+ ⟨u,∇ξv⟩. (B.54)

Proof of (5.14) Firstly notice that by combining the results (B.42), (B.43) and (B.46), we find

[fξ, gη] = [fξ, gη]θ

= fLξ(gη)− (L(gη)f)ξ
= fgLξη + f(Lξg)η − g(Lηf)ξ = fg[ξ, η] + f(Lξg)η − g(Lηf)ξ. (B.55)

Secondly, from (5.8) and (5.9) we obtain

∇fξ∇gη(hu) = f∇ξ(gh∇ηu+ (gLηh)u)
= f(Lξ(gh)∇ηu+ gh∇ξ∇ηu+ Lξ(gLηh)u+ (gLηh)∇ξu). (B.56)

Hence, on one hand

(∇fξ∇gη −∇gη∇fξ)(hu)

= f(Lξ(gh)∇ηu+ gh∇ξ∇ηu+ Lξ(gLηh)u+ (gLηh)∇ξu)

− g(Lη(fh)∇ξu+ fh∇η∇ξu+ Lη(fLξh)u+ (fLξh)∇ηu)

= fgh(∇ξ∇η −∇η∇ξ)u+ fh(Lξg)∇ηu− gh(Lηf)∇ξu+ fLξ(gLηh)u− gLη(fLξh)u. (B.57)

And on the other hand

∇[fξ,gη]hu

= ∇fg[ξ,η]+f(Lξg)η−g(Lηf)ξhu

= (∇fg[ξ,η] +∇f(Lξg)η −∇g(Lηf)ξ)hu

= (fg∇[ξ,η] + f(Lξg)∇η − g(Lηf)∇ξ)hu

= fgh∇[ξ,η]u+ fg(L[ξ,η]h)u+ fh(Lξg)∇ηu+ f(Lξg)(Lηf)u− gh(Lηf)∇ξu− g(Lηf)(Lξh)u
= fgh∇[ξ,η]u+ fh(Lξg)∇ηu− gh(Lηf)∇ξu+ f(Lξg)(Lηf)u− g(Lηf)(Lξh)u+ fg(L[ξ,η]h)u.

(B.58)

Thus

(∇fξ∇gη −∇gη∇fξ −∇[fξ,gη])(hu) = fgh(∇ξ∇η −∇η∇ξ −∇[ξ,η])u. (B.59)
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Proof of (5.16) The bracket under the projection operator is computed as follows:

[dxi − gik∂k, dx
j + gjl∂l]

= [dxi, dxj ]θ + Ldxi(gjl∂l)− Ldxj (−gjl∂l) +
1

2
dθ(i−gjl∂l

dxj − igjl∂ldx
i)

= [dxi, dxj ]θ + (dθidxi + idxidθ)(g
jl∂l) + (dθidxj + idxjdθ)(g

jl∂l)− dθg
ij

= [dxi, dxj ]θ + idxidθ(g
jl∂l) + idxjdθ(g

jl∂l) + dθg
ij . (B.60)

Each terms results in

[dxi, dxj ] = [dxi, dxj ]θ = Lθ(dxi)dx
j − iθ(dxj)d(dx

i)

= diθ(dxi)dx
j = dθij = ∂kθ

ijdxk, (B.61)

idxidθ(g
jl∂l) = idxi [

1

2
θmn∂m ∧ ∂n, g

jl∂l]S

= idxi

(
[
1

2
θmn∂m, gjl∂l]S ∧ ∂n − [∂n, g

jl∂l]S ∧
1

2
θmn∂m

)
= idxi

(
1

2
θmn(∂mgjl)∂l ∧ ∂n −

1

2
gjl(∂lθ

mn)∂m ∧ ∂n −
1

2
θmn(∂ng

jl)∂l ∧ ∂m

)
= idxi

(
θmn(∂mgjl)∂l ∧ ∂n −

1

2
gjl(∂lθ

mn)∂m ∧ ∂n

)
= θmn(∂mgji)∂n − θmi(∂mgjl)∂l − gjl(∂lθ

in)∂n, (B.62)

idxjdθ(g
il∂l) = θmn(∂mgij)∂n − θmj(∂mgil)∂l − gil(∂lθ

jn)∂n, (B.63)

dθg
ij = −θ(dgij) = −θ(∂kgijdxk) = −θkl(∂kgij)∂l. (B.64)

Hence the bracket reads

[dxi − gik∂k, dx
j + gjl∂l]

= [dxi, dxj ]θ + idxidθ(g
jl∂l) + idxjdθ(g

jl∂l) + dθg
ij

= ∂kθ
ijdxk + θmn(∂mgji)∂n − θmi(∂mgjn)∂n − gjl(∂lθ

in)∂n

+ θmn(∂mgij)∂n − θmj(∂mgin)∂n − gil(∂lθ
jn)∂n − θmn(∂mgij)∂n

= ∂kθ
ijdxk + [θmn(∂mgji)− θmi(∂mgjn)− θmj(∂mgin)− gjl(∂lθ

in)− gil(∂lθ
jn)]∂n. (B.65)

Proof of (5.38) In order to write down its explicit formula in terms of g and θ, we compute

preliminarily

θim∂m(Ω + Θ)jkl = θim∂m

(
Γk
nlθ

nj +
1

2
T jk
l

)
= θim

(
(∂mΓk

nl)θ
nj + Γk

nl∂mθnj +
1

2
∂mT jk

l

)
, (B.66)

(∂nθ
ij)(Ω + Θ)nkl = (∂nθ

ij)

(
Γk
plθ

pn +
1

2
Tnk
l

)
, (B.67)

(Ω + Θ)jkm (Ω + Θ)iml =

(
Γk
nmθnj +

1

2
T jk
m

)(
Γm
plθ

pi +
1

2
T im
l

)
(B.68)
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Gathering these results we find that the curvature’s explicit form becomes

Πkij
l = θim

(
(∂mΓk

nl)θ
nj + Γk

nl∂mθnj +
1

2
∂mT jk

l

)
− θjm

(
(∂mΓk

nl)θ
ni + Γk

nl∂mθni +
1

2
∂mT ik

l

)
−

− (∂nθ
ij)

(
Γk
plθ

pn +
1

2
Tnk
l

)
+

+

(
Γk
nmθnj +

1

2
T jk
m

)(
Γm
plθ

pi +
1

2
T im
l

)
−
(
Γk
nmθni +

1

2
T ik
m

)(
Γm
plθ

pj +
1

2
T jm
l

)
= θim(∂mΓk

nl)θ
nj − θjm(∂mΓk

nl)θ
ni + Γk

nmθnjΓm
plθ

pi − Γk
nmθniΓm

plθ
pj+

+ θimΓk
nl∂mθnj − θjmΓk

nl∂mθni +
1

2
θim∂mT jk

l −
1

2
θjm∂mT ik

l − (∂nθ
ij)

(
Γk
plθ

pn +
1

2
Tnk
l

)
+

+
1

2
Γk
nmθnjT im

l − 1

2
T ik
mΓm

plθ
pj +

1

2
T jk
m Γm

plθ
pi − 1

2
Γk
nmθniT jm

l +
1

4
T jk
m T im

l − 1

4
T ik
m T jm

l .

(B.69)

The first line in (B.69) yields the celebrated Riemann curvature tensor:

θim(∂mΓk
nl)θ

nj − θjm(∂mΓk
nl)θ

ni + Γk
nmθnjΓm

plθ
pi − Γk

nmθniΓm
plθ

pj

= θimθnj [∂mΓk
ln − ∂nΓ

k
lm + Γp

lnΓ
k
pm − Γp

lmΓk
pn] = θimθnjRk

lmn. (B.70)

Here in our notation the Riemann curvature tensor is defined by

Rk
lmn = ∂mΓk

ln − ∂nΓ
k
lm + Γp

lnΓ
k
pm − Γp

lmΓk
pn, (B.71)

as usual. The third and fourth terms in the second line in (B.69) and the first four terms in the

last line in (B.69) is

1

2
θim∂mT jk

l −
1

2
θjm∂mT ik

l +
1

2
Γk
nmθnjT im

l − 1

2
T ik
mΓm

plθ
pj +

1

2
T jk
m Γm

plθ
pi − 1

2
Γk
nmθniT jm

l

= −1

2
θni∂nT

jk
l +

1

2
θnj∂nT

ik
l +

1

2
θnjΓk

nmT im
l − 1

2
θpjΓm

plT
ik
m +

1

2
θpiΓm

plT
jk
m −

1

2
θniΓk

nmT jm
l

=
1

2
θnj∂nT

ik
l +

1

2
θnjΓk

nmT im
l − 1

2
θnjΓm

nlT
ik
m −

1

2
θni∂nT

jk
l +

1

2
θniΓm

nlT
jk
m −

1

2
θniΓk

nmT jm
l

=
1

2
θnj∇nT

ik
l −

1

2
θnjΓi

nmTmk
l − 1

2
θni∇nT

jk
l +

1

2
θniΓj

nmTmk
l . (B.72)

Here we use the fact that the quantity T is a tensor, that is, it is a covariant object. Hence so far

the curvature is summarized as

Πkij
l = θimθnjRk

lmn + θimΓk
nl∂mθnj − θjmΓk

nl∂mθni − (∂nθ
ij)

(
Γk
plθ

pn +
1

2
Tnk
l

)
+

+
1

2
θnj∇nT

ik
l −

1

2
θni∇nT

jk
l −

1

2
θnjΓi

nmTmk
l +

1

2
θniΓj

nmTmk
l +

1

4
T jk
m T im

l − 1

4
T ik
m T jm

l .

(B.73)

This expression still has terms involving the partial derivatives and the Christoffel symbols and

seems not to be covariant. However, the non-covariant-looking part turns out to form a covariant
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tensor

θimΓk
nl∂mθnj − θjmΓk

nl∂mθni − (∂nθ
ij)

(
Γk
plθ

pn +
1

2
Tnk
l

)
− 1

2
θnjΓi

nmTmk
l +

1

2
θniΓj

nmTmk
l

= −(∂nθij)Γk
plθ

pn − 1

2
(∂nθ

ij)Tnk
l + Γk

nl[θ
im∂mθnj − θjm∂mθni]− 1

2
θnjΓi

nmTmk
l +

1

2
θniΓj

nmTmk
l

= −(∂nθij)Γk
plθ

pn − 1

2
(∂nθ

ij)Tnk
l + Γk

nl[θ
im∂mθnj + θjm∂mθin]− 1

2
θnjΓi

nmTmk
l +

1

2
θniΓj

nmTmk
l

= −Γk
plθ

pn(∂nθ
ij)− 1

2
(∂nθ

ij)Tnk
l − Γk

nlθ
nm∂mθji − 1

2
θnjΓi

nmTmk
l +

1

2
θniΓj

nmTmk
l

= −1

2
[(∂nθ

ij)Tnk
l + θnjΓi

nmTmk
l − θniΓj

nmTmk
l ]

= −1

2
[(∂nθ

ij) + Γi
mnθ

mj − Γj
mnθ

mi]Tnk
l = −1

2
(∇nθ

ij)Tnk
l . (B.74)

Here in the third equality we use the Poisson condition on θ. Note that the Poisson condition on

the Poisson bi-vector θ

θim∂mθjk + θjm∂mθki + θkm∂mθij = 0, (B.75)

is equivalent to the one in which the partial derivatives are replaced by the covariant derivatives:

θim∇mθjk + θjm∇mθki + θkm∇mθij = 0, (B.76)

because of the antisymmetric property of the Poisson tensor and the symmetric property of the

Christoffel symbol in their upper and lower indices, respectively. Finally we obtain the covariant

expression of the curvature

Πkij
l = θimθnjRk

lmn −
1

2
(∇nθ

ij)Tnk
l +

1

2
θnj∇nT

ik
l −

1

2
θni∇nT

jk
l +

1

4
T jk
m T im

l − 1

4
T ik
m T jm

l , (B.77)

T jk
l = ∇lθ

jk −∇k(θjpgpl)−∇j(θkpgpl). (B.78)
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