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Abstract

Data from strong gravitational lensing is critically important in this era of precision
cosmology. Analysis of strong gravitational lensing depends on software analysis of
observational data. This dissertation includes six studies that serve to compare the
results of models using strong gravitational lens model software.

In order to identify the software available, we performed a systematic review of
26 lens model software packages. Lens models are classified as parametric models
or non-parametric models, and are further divided into research and educational
software. Fourteen of the 26 software packages are thoroughly reviewed with regard
to software features (installation, documentation, files provided, etc.) and lensing
features (type of model, input data, output data, etc.) as well as a brief review of
studies where they have been used. The remaining 12 packages are reviewed in an
abbreviated manner because either the software was not functional after download,
or the software is not available for download and could only be reviewed from existing
published reports. This is the first systematic review of strong gravitational lens
modeling software, and includes most of the software being used today for studies
of strong gravitational lensing as well as software available for demonstration and
educational purposes. This review became the core of a similar review in an online
resource for strong gravitational lens data.

The next study evaluates the behavior of strong gravitational lens modeling soft-
ware with changes in redshift. Four different strong gravitational lens codes are
directly compared (Lenstool, glafic, GRALE and PixeLens) in the analysis of a
mock model and SDSSJ1004+4112. The percent change in time delays calculated
at each redshift tested are compared with percent change in DdDs/Dds. A mock
model with a singular isothermal ellipsoid and four images is tested with each code.
Five models are used with a constant zlens and a varying zsource, and five models
with a constant zsource and a varying zlens. In general, the changes in time delay
are of a similar magnitude and direction, although some calculated time delays did
not follow changes in DdDs/Dds. This variation is explained by changes in image
position calculated by glafic and GRALE, which varied according to Dds/Ds. Small
changes in redshift affect the calculated time delay and mass, and that the effect on
the calculations is dependent on the particular software used.

The use of multiple lens models may enhance the understanding of a system being
studied. HydraLens, consisting of about 10,000 lines of Visual Basic code simplifies
creation of model files for Lenstool, Gravlens/Lensmodel, glafic and PixeLens, using
a custom designed GUI for each of the four codes that simplifies the entry of the
model for each of these codes, obviating the need for user manuals to set the values
of the many flags and in each data field. HydraLens can also translate a model
generated for any of these four software packages into any of the other three. This
software is available for download from the Astrophysics Source Code Library.

The objective of the next study is to directly compare the analysis of four lens
systems using four lens model software codes to understand the differences and



limitations of the models. The software lens model translation tool, HydraLens, was
used to generate multiple models for four strong lens systems including COSMOS
J095930+023427, SDSS J1320+1644, SDSSJ1430+4105 and J1000+0021. All four
systems were modeled with four different lens model programs including PixeLens,
Lenstool, glafic, and Lensmodel. The calculation of the Einstein radius and enclosed
mass for each lens model was comparable. The results were more dissimilar if the
masses of more than one lens potential were free-parameters. The image tracing
algorithms of the software are different, resulting in different output image positions
and differences in time delay and magnification calculations, as well as ellipticity and
position angle. Differences in optimization resulted in different results for ellipticity
and position angle. In a comparison of different software versions using identical
model input files, results differed significantly when using two versions of the same
software.

The next study is a comparative study of time delays calculated by four lens model
codes for two string gravitational lens systems which have been extensively studied in
the past, including B1608+656 and RXJ1131−1231. This was performed as a follow-
up to the study above where two systems were compared using four software codes
and gave very disparate results. In this study, both systems have been extremely
well studied by numerous investigators. For B1608+656 we used two models, one
with a single SIE potential and one with two SIE potentials which closely resembles
observational data. In the single SIE model, the results are somewhat variable but
on the same order of magnitude as observational data, and close agreement for the
velocity dispersion calculations. For the two SIE models, there is also some variation,
but the results are somewhat similar to those with the single SIE model. The velocity
dispersions calculated by the three codes are similar, but the mass of the G2 lens
is greater than that from previous studies. The models of RXJ1131−1231 all use a
single SIE potential, and the results are close to that calculated in previous studies.
There is fairly close agreement with previous calculations of lens mass. Overall, the
studies of these two systems showed less variation than that in our previous study
of the mock model and SDSSJ1004+4112. Further studies will determine the value
of H0 using these models, and further refinement of the models.

The next study is a detailed study of MACSJ1149.5+2223, which includes the
first observation of a GRAvitationally lensed yet MOrphologically Regular image
(GRAMOR). The initial part of this study is development of the lens models using
Lenstool and glafic. The Lenstool model used is based on that used in the Hubble
Frontier Fields project. The initial phase of the project was designed to evaluate
the ability of this model to constrain the cosmological parameters by evaluating
the wX vs. Ωm plane. This study showed that the Lenstool model constrains the
dark energy equation of state parameter in a manner similar to that observed with
Abell1689. The Lenstool model uses five lens potentials which are PIEMDs. The
first glafic model tested was not able to constrain the dark energy equation of state
parameter. This model uses an NFW potential model. Further studies are pending
including refinement of the glafic model, representing the GRAMOR image, and
then determining whether or not the GRAMOR will further constrain the cosmo-
logical parameters.

Taken together, the results of these six studies further support the need for future
lensing studies to include multiple lens models, use of open software, availability of
lens model files use in studies, and computer challenges to develop new approaches.



Future studies need a standard nomenclature and specification of software used to
allow improved interpretation, reproducibility and transparency of results.
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Chapter 1

The Equivalence Principle

1.1 The Equivalence Principle

Perhaps the most beautiful and most important foundation of general relativity is the equiv-
alence principle, which Einstein dubbed ”My Happiest Thought” when he realized in about
1907, that a person in free-fall to the earth (i.e. in earth’s gravitational field) does not sense
gravity. From this thought, he deduced the equivalence principle, which in simple terms states
that an accelerated reference frame in the absence of gravity (e.g. in deep space away from
any gravitational fields) is the same as a reference frame at rest in a gravitational field (e.g.
on the surface of the earth). Given an equivalent force, the mass in an accelerated reference
frame equals the mass in a gravitational field. At the time, this was a revolutionary thought in
physics, that most physicists at the time would have attributed to mere happenstance.

Figure 1.1: The Equivalence Principle predicts that gravity will bend light. [3]

From this simple idea, we can predict the bending of a beam of light in a gravitational
field (aka, Gravitational Lensing) in a simple ”gedanken” experiment. In the left-sided panel
of Figure 1.1, we can see a man inside a box that is accelerating upward with an acceleration
equal to g. He is unaware that he is in deep space, with no gravitational forces around him,
but due to acceleration, he imagines he is on earth (the Equivalence Principle). He fires a laser
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pistol at the wall opposite him, but because of the continued acceleration of the box, the laser
beam will hit the wall slightly below where he aims (the opposite wall has moved up slightly in
the time it took the light to travel across the box). He sees bending of the beam of light, due to
acceleration of the box. If we accept the Equivalence Principle, then the same will happen in a
gravitational field. Outside the box, an astronaut is floating and watches the whole thing. To
this astronaut, everything (the box, the light, the target) is accelerating upward, and the light
goes straight across. In the absence of gravity (i.e. in deep space away from any gravitational
fields), light is not bent.

In the right-sided panel of Figure 1.1, a man is in a box that is falling toward earth in free
fall (i.e. in a gravitational field). He fires the laser pistol again, and he, the light and the wall
are all falling together so he sees the light hit exactly at the spot aimed for. In free-fall, there
is no effect of gravity (as is well-known by real astronauts), and light is not bent. The observer
outside the box sees that the light hits the wall at a slightly lower spot since the wall is falling
and the target has dropped in the time it took the laser light to reach the opposite wall. To
the outside observer, the beam of light is bent in the gravitational field of earth.

The Equivalence Principle predicts simply and elegantly that light is bent in a gravitational
field, or in an accelerated reference frame which is in a place without gravity. Both ”gedanken”
experiments reach the same conclusion about the bending of light. This, simply put, is the core
concept of everything to follow in this dissertation.

1.2 The Bending of Light

The main subject of this dissertation is Gravitational Lensing, which is the bending of light by
gravity. This effect has been observed experimentally, but a little over 100 years ago would not
have been believed by top physicists of the day.

Strong gravitational lensing, the ability of gravity to bend light, has been considered by
scientists for over 200 years, perhaps longer. The amount of bending of light by gravity was
predicted by the General Theory of Relativity, which was published in its complete form in 1915,
and then demonstrated in a dramatic observational experiment by Eddington in 1919. The
possibility of observing light from distant galaxies which has been affected by the gravitational
effect of massive intervening galaxies was considered by Einstein in 1936 [1], but never thought to
be observable. In the concluding paragraph of this short paper, Einstein concluded ”Therefore,
there is no great chance of observing this phenomenon, even if dazzling by the light of the much
nearer star B is disregarded.”

In 1937, Zwicky postulated that such observations may yield important information about
the intervening galaxies [4]. The first gravitational lens was observed in 1979 by Walsh and
colleagues and since then gravitational lensing has provided, with great promise for the future,
some of the most important information in modern cosmology [2].

Gravitational lensing is evaluated by analysis of computer models based on the observed
images. From these models, characteristics of the intervening galaxy, or cluster, (the lens,
or deflector) including mass, dynamic motion, shape and substructure, can be deduced. The
overarching goal of this dissertation is to deepen the understanding of the computer models
that are used to obtain data from gravitational lens observations.

1.3 Organization of this Dissertation

Chapters 1, 2, and 3 constitute a general introduction to Special Relativity, General Relativity,
Cosmology, Gravitational Lensing and Gravitational lens models. In Chapter 2, we develop the
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fundamental physics and mathematics of special relativity, general relativity and cosmology. In
Chapter 3, we develop the fundamentals of gravitational lensing and gravitational lens models
as well as discussing their applications in cosmology.

Chapters 4, 5, 6, 7, 8 and 9 constitute the core of this dissertation with detailed discussions
of the investigations of strong gravitational lens models that were undertaken. In Chapter 4, we
review 26 software packages that are available to study strong gravitational lensing. In Chapter
5, we demonstrate that the results from different gravitational lens software models are not
necessarily the same, suggesting the importance of using several techniques to analyze available
data. In Chapter 6, we describe HydraLens, a software package written to facilitate the writing
of model files for several of the available strong gravitational lens model software packages.
In Chapter 7, using models generated by HydraLens, we perform direct, semi-independent
comparisons of models for SDSS J1320+1644, COSMOS J095930+023427, SDSSJ1430, and
J1000+0021 using Lenstool, Lensmodel, glafic and PixeLens. In Chapter 8, we compare results
of time delay calculations from models in a study of two well-characterized lens systems. In
Chapter 9, we use compare two gravitational lens models of MACS J1149.5+2223 to constrain
cosmological parameters.

Finally, Chapter 10 is the Conclusion, with a discussion of possible future directions in
strong gravitational lens models and applications of comparative lens model studies.
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Chapter 2

Special Relativity, General
Relativity and Cosmology

2.1 Purpose and Organization of this Chapter

This chapter serves as a general introduction to the scientific foundations of gravitational lens-
ing, including the Special Theory of Relativity, General Relativity, and Cosmology. The infor-
mation in this chapter can be found in any number of textbooks, and serves as an introductory
summary to these fascinating topics. It is generally presented in an historical context, as this is
the best way to understand the development of this incredible field. This chapter is presented
as background for what follows and the level of material presented is similar to contemporary
textbooks. There is no attempt to develop new aspects of science in this chapter.

This chapter is organized as follows. We begin with a thorough discussion of Special Rel-
ativity including its historical background and mathematical formulation in Section 2.2. This
includes a discussion of Galilean relativity, the difficulties Einstein saw with Maxwell’s Equa-
tions and their incongruities with Galilean relativity, the Lorentz Transforms and then Special
Relativity itself. We then go into the development of General Relativity, also with historical
background and the reasons Einstein saw the need for a new explanation of gravity in Section
2.3. This section also includes a discussion of tensor analysis, the Einstein Field Equations,
and tests of General Relativity. The chapter concludes with a discussion of the fundamentals
of Cosmology as a prelude to the remainder of the dissertation in Section 2.4. This includes
a number of fundamental topics such as the Cosmological Principle, the Cosmological Con-
stant, the Hubble Parameter, the Standard Model, Cosmological Parameters and Large Scale
Structure.

2.2 Special Relativity

Galilean Relativity

Einstein described relativity as a two-story building, the foundation being special relativity
and the second floor being general relativity. It is important to begin with a brief discussion
of special relativity. Perhaps the best way to discuss this important topic is to view it in an
historical context. The idea of relativity did not originate with Einstein, and probably was
first enunciated by Galileo. In its simplest form, the principle of relativity states ”The laws of
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physics take the same form in all frames of reference moving with constant velocity with respect
to one another.”

Galilean relativity was the product of this beautiful argument that later became the foun-
dation of the principle of the relativity of motion, which Galileo presented as an imaginary
(”gedanken”) experiment, although clearly based in part on actual experience. Think of your-
self in a cabin below deck in a ship, with water dripping from a container hanging from the
ceiling, butterflies flitting about, and some fish swimming in a bowl. When the ship is at rest
in dock, the water drips vertically to the floor, the butterflies fly anywhere with equal ease,
and the fish swim likewise in all directions. Next consider the ship moving at any speed but
always at a constant rate; according to Galileo, the experience is the same as when the ship is at
rest. There is no preferred direction for the fish or butter flies, nor do they move with different
speeds or different degrees of difficultly in specific directions. As well, the water drips vertically
downward. The behavior is the same as whenever the ship is at rest. Drawing on personal
experience, Galileo wrote: In confirmation of this I remember having often found myself in my
cabin wondering whether the ship was moving or standing still; and sometimes at a whim I
have supposed it going one way when its motion was the opposite [27].

The key idea of Galilean relativity is that time is a constant in all reference frames and the
Galilean transformation, in the case of Newtonian relativity, is written as:

t′ = t (2.1)

x′ = x+ vt (2.2)

Newtonian Assumptions about Space and Time

One of the greatest scientists of all times, Sir Isaac Newton, made innumerable contributions
to science, mathematics and other fields of endeavour. Newton constructed dynamics on the
basis of three laws:

First law (Principle of inertia) Free particles move with constant velocity (in a relativistic
sense, they describe straight world-lines in spacetime).

Second law A particle acted upon by a force acquires an acceleration that is proportional to
the force:

F = ma (2.3)

The proportionality constant m is a property of the particle known as the mass. In terms
of momentum, the law reads

F = dp/dt (2.4)

Third law (action-reaction principle) Two particles interact by simultaneously exerting
on each other, both equal and opposite forces

The first law is a special case of the second law (where F = 0). The first law establishes
the tendency to perdurability as the main feature of motion (as it was imagined by Galileo and
others, in contradistinction to the Aristotelian view).
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The second law becomes the particle equation of motion, once the force is given as a func-
tion of r, u, t, etc. Then, a law for the involved interaction is also required (which can be
gravitational, electromagnetic, etc.).

The third law implies the conservation of the total momentum of an isolated system of
interacting particles. In fact, the sum of the reciprocal forces between the two particles must
equal zero, since they are equal and opposite. If these are the only forces on each particle, we
can use the second law to obtain d(p1 + p2)/dt = 0. Thus p1 + p2 is a conserved quantity. This
argument can be extended to prove the conservation of the total momentum of any isolated
system of particles [11].

Classical Mechanics allows for interacting forces at a distance. They are derived from
potential energies depending on the distances between particles, which automatically provide
interaction forces accomplishing Newton’s third law.

Newton’s fundamental laws of dynamics are not formulated to be used in any reference
frame. In fact, it is evident that the first law cannot be valid in any frame, since a constant
velocity u in a frame S does not imply a constant velocity u’ in another frame S’. This can be
easily understood by considering cases where S’ rotates or accelerates with respect to S. However
if S’ translates uniformly with respect to S, either the particle has constant velocities u, u’ in
both frames or in none of them. Galilean addition of velocities is a particular example of this
general statement. In fact, Galilean transformations were obtained for two equally oriented
moving frames. These moving are in relative translation (absence of relative rotation).The
translation is uniform, since the velocity V is constant. Thus u’ is constant if and only if u is
constant.

Although the principle of inertia cannot be valid in just any frame, at least it is true that if it
is valid in a frame S, then it will be valid in any other frame S’ uniformly translating with respect
to S. Can we extent this statement to the second law? Newton’s second law involves particle
acceleration. In Galilean transformations, acceleration is invariant. The forces in Classical
Mechanics depend on distances (like gravitational and elastic forces) or relative velocities (like
the viscous force on a particle moving in a fluid, which depends on the velocity of the particle
relative to the fluid). Both the distances and the relative velocities are invariant under Galilean
transformations. In this way, each side of second law is invariant under changes of frames in
relative uniform translation. Therefore, the invariance of distances and time intervals, which
leads to Galilean transformations, is a key element of Newtonian dynamics because it allows
the second law to be valid in a family of reference frames in relative uniform translation. This
is the family of inertial frames, and an essential component of the principle of relativity [11]:

Principle of relativity The laws of physics have the same form in any inertial frame.

For instance, the same physical laws describe a free falling body both in a plane and at the
earth surface. The principle of relativity in classical mechanics tells us that the state of motion
of the frame cannot be revealed by a mechanical experiment: the result of the experiment will
not depend on the motion of the frame because it is ruled by the same laws in all the inertial
frames.

But how can we recognize whether a frame is inertial or not? We could effectively recognize
a particle in rectilinear uniform motion; if we were sure that the particle is free of forces, then
we would conclude that the frame is inertial. However, mechanics allows not only for contact
forces but for forces at a distance. So how can we be sure that a particle is free of forces?
Newton was aware of this annoying weakness of its formulation; he then considered that the
laws of mechanics described the particle motion in the absolute space. Thus, the inertial frames
are those fixed or uniformly translating with respect to Newton’s absolute space.
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While the inertial frames are defined by their states of motion with respect to Newton’s
absolute space, this (absolute) motion is not detectable, since the principle of relativity puts on
an equal footing all the inertial frames; actually, only relative motions are detectable. Absolute
space in classical mechanics plays the essential role of selecting the privileged family of inertial
frames where the fundamental laws of physics are valid; but, surprisingly, it is not detectable.
In some sense absolute space acts, because it determines the inertial trajectories of particles,
but it does not receive any reaction because it is immutable. Leibniz criticized this feature of
the Newtonian construction, by demanding that mechanics aimed to describe the relationships
among particles instead of particle motions in absolute space. In practice, however, Newton’s
mechanics is successful because we can choose reference frames where the non-inertial effects
are weak or can be understood in terms of inertial forces that result from referring the frame
motion to another more inertial frame [11].

Special Relativity abandons the invariance of distances and time intervals (see below). This
means that Galilean transformations are also abandoned. Newton’s second law and the char-
acter of fundamental forces are reformulated by Einsteinian relativity. The inertial frames
maintain their privileged status without a sound physical basis.

Maxwell’s Equations and Physics in the Late 19th Century

The fundamental problem that physicists in the late 19th century had with Maxwell’s equations
is that they appeared to violate the Galilean principle of relativity which states that the laws
of physics are the same in all inertial frames. This suggests that the laws of electromagnetism
would hold in all inertial reference frames, which implies that the speed of light is always c.
However, this violates the law of addition of velocities. In order to reconcile this, it was said
that Maxwell’s equations can only hold in a certain frame of reference. So, clearly, c should be
just the speed of light as measured in the reference frame of the vacuum. Note that there is
some tension here with the concept that all inertial frames are fundamentally equivalent. If this
is so, one would not expect empty space itself to pick out one as special. To reconcile this in
their minds, physicists decided that ‘empty space’ should not really be completely empty. Their
thinking was that if it were completely empty, how could it support electromagnetic waves? So,
they imagined that all of space was filled with a fluid-like substance which was referred to as the
luminiferous ether. They supposed that electromagnetic waves were nothing other than wiggles
of this fluid itself [17]. A great deal of physics was developed at that time to accommodate the
concept of ’the ether’ although no one was quite sure what the ether actually was.

Galilean Relativity and the Michaelson-Morley Experiment

Galilean relativity predicts that an observer moving with respect to the ether measures a dif-
ferent speed of propagation for electromagnetic waves. This prediction was dramatically con-
tradicted by the Michelson-Morley result. The figure below illustrates the interferometer used
in the Michaelson-Morley experiment. If the light waves traveled at different speeds (perpen-
dicular light beams were used) relative to the ether, then it was expected that fringes would be
observed.
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Figure 2.1: The Michaelson-Morley experiment [11]

After a failed attempt in 1881, Michelson joined Morley to improve the experimental sen-
sitivity. In 1887 they used an interferometer whose arms were 11 m long. However, they still
observed no displacement of fringes. Michelson was convinced that the null result meant that
the Earth carried a layer of ether stuck to its surface.

The Lorentz Transforms

A new (Lorentzian) kind of invariance had to be introduced and was only later interpreted by
Einstein in terms of new physics. While they are not invariant under the Galilean transforms,
Maxwell’s laws are invariant under Lorentz transforms.

Lorentz thought that Michelson-Morley’s null result could be understood in a very different
way, than they concluded. He considered that a body moving in the ether suffered a length
contraction due to its interaction with the ether. The interaction would contract the body
along the direction of its absolute motion V, but the transversal dimensions would not undergo
any change. This proposal in 1892 had been independently advanced by FitzGerald three
years before. This proposal did not mean abandonment of belief in the invariance of lengths,
or the existence of the ether. The contraction was a dynamical effect and depended on an
objective phenomena: the interaction between two material substances. The contraction should
be observed in any frame, and all the frames should agree about the value of the contracted
length [11].

The idea that light was a material wave (i.e., the idea that Maxwells laws were written
to be used only in the ether frame) and the belief in the invariance of distances and time
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intervals led physics down a blind alley. While complicated explanations were described to
interpret experimental results, like Fresnels partial dragging of ether and FitzGerald-Lorentz
length contraction caused by the ether, the experimental results were not so complicated. The
experiments concluded that absolute motion cannot be detected [11].

It is partially for these reasons that Lorentz is not credited with developing Special Relativ-
ity. While he formulated the mathematical foundation, he did not enunciate the new physics
that was implied, that is, abandonment of the idea of the ether and abandonment of the idea
of length invariance.

Maxwell’s Equations are not Galilean Transform Invariant

We are told early in our physics education, that classical electromagnetism is not Galilean
invariant, that is, that the relationships between fields are not preserved under Galilean trans-
formations. Maxwell’s theory predicts the existence of electromagnetic waves traveling in vacuo
at speed c and the Galilean non-invariance of velocities any velocity implies that Maxwell’s equa-
tions in their simple form are valid only in a well-defined reference frame, which was referred to
as the luminiferous ether, a space-filling medium supporting wave propagation. Thus, Galilean
relativity predicts that an observer not at rest with respect to the ether measures a different
speed of propagation for the electromagnetic waves [22].

A cursory approach may leave the wrong impression that the reason why classical elec-
tromagnetism is not Galilean invariant rests ultimately in the presence of the parameter c in
Maxwell’s equations. The parameter c in Maxwell’s equations is actually a property of Newto-
nian free space itself, due to its very definition:

c =
1√
ε0µ0

(2.5)

in terms of two free space quantities, namely the vacuum permittivity ε0 and the vacuum
permeability µ0, which can be separately determined. Since the vacuum in Newtonian physics is
observer-invariant, both quantities can be regarded as observer independent scalars, i.e., univer-
sal constants characterizing the vacuum in any reference frame. Hence, resting on the definition
above, it follows that this same observer independence characterizes Maxwell’s parameter c as
well, which therefore behaves as a scalar invariant under frame transformations [22].

The Origins of Special Relativity

While special relativity is founded on the work of several people, including Lorentz, Minkowski
and Poincaré, it was clearly the genius of Einstein alone who saw the implications of this
previous work to describe physics in a new way. Despite the fact that several of these people
were close to the theory, it was only Einstein who saw the physical implications in their entirety.

In the ”miracle year” of 1905, while employed as a patent clerk in Bern, Switzerland, Einstein
wrote five papers that shook the very foundation of physics. It has been said by some that any
one of these would have qualified to be the basis for a Nobel Prize, but it was the paper about the
photoelectric effect that won the Nobel Prize for Einstein, although not until 1921, well after the
description of General Relativity in 1915 and its verification by Eddington with the observation
of gravitational lensing by the sun in 1919. The Nobel Committee cited Einstein ”for his services
to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect”.
There was no mention of relativity at all.

At the time, most physicists believed that waves propagated in the ether, and that everything
was relative to the ether frame of reference. The Michelson-Morley experiment disproved the
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existence of the ether in 1896, but according to Einstein’s own statements, he was not influenced
at all by these results. Whether Einstein knew about the experiment or not is a matter of some
historical controversy, but most authors take Einstein at his word on this matter [11].

The Contribution of Einstein

Einstein’s 1905 paper about the special theory of relativity, in fact, was titled ”On the Elec-
trodynamics of Moving Bodies” which highlights the fact that special relativity has its roots in
electrodynamics and not kinematics. For it was the incongruities of Maxwell’s Equations with
the physics of the day, as we described above, that led Einstein to develop the special theory
of relativity.

The first sentence of Einstein’s paper set-up the conceptual framework: It is well known
that Maxwell’s electrodynamics as usually understood when applied to moving bodies, leads to
asymmetries that are not inherent in the phenomena. What were these well-known asymmetries,
and what were the phenomena he was speaking of? Einstein went back to Faraday’s experiment
of a magnet moving through a conductor (or a loop of wire). With the conductor at rest, the
moving magnet generated an electric field and this produced a current in the wire. If, on
the other hand, the magnet were set at rest and the conductor moved over the magnet, even
though (according to theory) there was no electric field around a stationery magnet, a current
of the same strength as the former case was still produced in the wire. Einstein saw this as
an asymmetry in interpretation in the two cases; one with, and one without, an electric field.
Despite this apparent conceptual problem, the observable phenomenon here depends only on
the relative motion of conductor and magnet, since in both cases electricity was produced in
the wire. Undoubtedly, the asymmetry was not inherent in the phenomenon, as he said. From
the viewpoint of the phenomenon, a current was produced by any relative motion between the
magnet and the conductor, whereas the theory of electromagnetism affirmed that an electric
field was produced only by a moving magnet, not one at rest [27].

In 1905, Einstein deduced the relativity principle from his interpretation of Faraday’s ex-
periment, coming from electrodynamics. We stated earlier that Galileo arrived at his relativity
principle from the mechanics of motion. Putting the two together Einstein felt that exam-
ples of this sort lead to the conjecture that not only the phenomena of mechanics but also
those of electrodynamics have no properties that correspond to the concept of absolute rest.
This was a generalization of the relativity principle that encompassed both mechanics and
electromagnetism. It was, partially, Einstein’s attempt to unify the physics of motion with
electromagnetism.

This is the problem which Einstein saw so clearly. The incongruity between Maxwell’s equa-
tions and Galilean relativity had to be resolved, which meant choosing one of three alternatives:

1 The Galilean transformation was correct and something was wrong with Maxwell’s equations.

2 The Galilean transformation applied to Newtonian mechanics only.

3 The Galilean transformation, and the Newtonian principle of relativity based on this trans-
formation were wrong and that there existed a new relativity principle valid for both
mechanics and electromagnetism that was not based on Galilean transformations.

The first possibility was eliminated since Maxwell’s equations proved to be totally successful
in their application. The second was unacceptable as it seemed something as fundamental as
the transformation between inertial frames could not be restricted to only one set of natural
phenomena. It seemed preferable to believe that physics was a unified subject. The third was
all that was left, so Einstein set about trying to describe a new principle of relativity [9].
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Principles of Special Relativity

The two fundamental principles of special relativity are:

Physics is the same in all inertial reference frames : All the laws of Newtonian me-
chanics are equally valid in all inertial reference frames, or, roughly speaking, in all
non-rotating and non-accelerating laboratories, no matter how fast they move, which
is referred to as Newtonian relativity. Any mechanical experiment will proceed identi-
cally in every such reference frame. For example, no one could tell the difference between
a game of billiards played on earth and one played in a smoothly flying very fast jet
airplane. It was indeed this property of Newtonian mechanics that allowed Galileo and
Newton to champion Copernicus’s idea of an earth flying around the sun, since terrestrial
laboratories would even under these circumstances be considered good approximations to
inertial frames [24]

Einstein, postulated in 1905 that not only the laws of mechanics, but all the laws of physics
(including, for example, electromagnetism, optics, thermodynamics, etc.) are similarly
valid in all inertial frames.This was a way to express the symmetry which Einstein found
so beautiful in physics, and which he infused into his theories. In particular, he saw
special relativity as a consequence of the symmetry in Maxwell’s equations. The Lorentz
transforms maintain the symmetry in Maxwell’s equations.

The speed of light is constant : The origin of this concept is a product of Einstein’s ge-
nius, which was totally counter to the ideas of contemporary physics at that time, and
totally counterintuitive to our everyday experience where Galilean relativity makes sense.
Einstein realized that Maxwell’s equations demand a constant speed of light, no matter
what the reference frame. Maxwell’s laws are frame invariant. The speed of light depends
only on µ and ε, not on any other physical quantities.

The beauty of special relativity is rooted in its simplicity, that it is mathematically based on
the Pythagorean theorem. The first principle above, states that there are no preferred frames of
reference and simply states that all laws of physics are the same in all reference frames. While
Galileo and Newton saw this principle as applied to mechanics, Einstein simply extended it to
all laws of physics. Simple, but powerful with far-reaching consequences [32].

The second principle, that the speed of light is a constant, seems radical at first glance, but
after considering its origins, in Maxwell’s equations, is easier to follow. It does, however, have
great implications for all of physics.

Special relativity is in principle a theory of all physics, which aims to make all physical
laws invariant from one inertial frame to another under Lorentz transformations. It required
a review of the existing laws of physics, and a modification of any law that failed the test of
’Lorentz-invariance’. According to this criterion, Maxwell’s theory was found to be already
’relativistic’ and needed no revision (in vacuum). Newton’s theory, as already noted, was not.
Its relativistic modifications led to astonishing predictions, in one of the most striking instances
of theory far outpacing observation [24]

Special Relativity- Mathematical Formulation

We will start with the Lorentz transforms, which were developed to replace the Galilean trans-
formations, discussed above, as his way of explaining the fact that Maxwell’s equations were not
invariant under the Galilean transforms. Maxwell’s equations are invariant under the Lorentz
transforms. While the Lorentz transforms are an essential part of the mathematical description
of special relativity, Lorentz saw them as a way to reconcile the results of the Michaelson-Morley
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experiment with the existence of the ether. Einstein saw them as a way to redefine the physics
of motion in mathematical terms. The Lorentz factor γ is usually written as:

γ =
1√

1− (v2/c2)

The figure below (from [24]) shows the Lorentz factor γ as a function of v as it approaches
c. Note that γ stays very close to 1, until v becomes quite close to c. This figure illustrates in
part, why c is an absolute ’speed limit’.

Figure 2.2: Relationship of v and γ

We can then write the Lorentz transforms as a function of γ:

x′ = γ(x− vxt) (2.6)

y′ = y (2.7)

z′ = z (2.8)
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t′ = γ(t− vx/c2) (2.9)

These four equations explain the concept of time dilation and the Lorentz length contraction.
Furthermore, the Lorentz transforms can be derived from the principles of Special Relativity.
In summary, the Lorentz transforms lead to a description of spacetime in which the notions
of simultaneity, time duration, and spatial distance are well-defined in each inertial reference
frame, but their values, for a given pair of events, can vary from one reference frame to another.
Objects evolve more slowly and are contracted along their direction of motion when observed
in a reference frame relative to which they are in motion [26].

Special Relativity- Kinematics

In addition to the Lorentz transforms, special relativity also requires new ways of thinking
about kinematics and the addition of velocities. This problem can be illustrated as follows. An
object moves at speed v1 with respect to reference frame S′. The frame S′ is moving at speed
v2 with respect to frame S, in the same direction as the motion of the object.

Figure 2.3: Relativistic Addition of Velocities [19]

What is the speed, u, of the object with respect to frame S? We know that, without
relativistic considerations, u = v1 + v2. However, we know that special relativity makes this
seemingly everyday situation more complicated because time is no longer absolute. The relative
speed of the two frames is v2. We also know that v1 = ∆x′/∆t′ from basic kinematics. Our
goal is to determine u ≡ ∆x/∆t.

The Lorentz transformations from S′ to S are:

∆x = γ2(∆x′ + v2∆t′) (2.10)

and

∆t = γ2(∆t′ + v2∆x′/c2 (2.11)

where

γ2 ≡ 1/
√

1− v2
2/c

2 (2.12)
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and therefore

u ≡ ∆x

∆t
=

∆x′ + v2∆t′

∆t′ + v2∆x′/c2
(2.13)

=
∆x′/∆t′ + v2

1 + v2(∆x′/∆t′)/c2
(2.14)

=
v1 + v2

1 + v1v2/c2
(2.15)

This last equation shows the velocity-addition formula, for adding velocities along the same
line, with the correction required by special relativity [19].

Lorentz Invariance and 4-vectors

By using 4-vectors to describe the physical world, we bring together the concepts of space and
time, which is essential for a complete understanding of both special and general relativity.

We can define X to be the vector (space-time displacement vector)

X =


ct
x
y
z

 (2.16)

The Lorentz transforms can now be written in compact form by

Λ =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 (2.17)

where

β =
v

c
(2.18)

The entire Lorentz transform is then written as

X ′ = ΛX (2.19)

It follows then that the inverse Lorentz transform is written as

X = Λ−1X ′ (2.20)

Under a Lorentz transformation, a 4-vector changes, but its length remains the same. When
we make a change in coordinates for a line in space, we know that the length of the line is
unchanged, and is still

r =
√
x2 + y2 + z2 (2.21)
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no matter what the coordinate change entails. The length of a 4-vector is calculated similarly,
but with a crucial sign that enters in because time and space are not exactly the same as each
other. The length of a 4-vector in space-time is calculated by

−(X0)2 + (X1)2 + (X2)2 + (X3)2 (2.22)

This combination is Lorentz invariant, because of the crucial negative sign in front of the
time term in this equation. Thus,

−c2t′2 + x′2 + y′2 + z′2 = −c2t2 + x2 + y2 + z2 (2.23)

For a 4-vector XT , we can write this quality in matrix notation as

−c2t2 + x2 + y2 + z2 = XT gX (2.24)

where

g =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.25)

where g is called the ’metric’ or the ’metric tensor’. For any quantity A that transforms in the
same way as X, the scalar quantity AT gA is Lorentz invariant’, which means that the value
will not change no matter what reference frame is used to calculate it. A generalized form of
the metric tensor plays a central role in General Relativity, and will be used extensively in the
following discussion of General Relativity. In order to consider Lorentz transformations of all
kinds (for relative motion in any direction, with or without rotation and inversion) we regard
g as the prior, given quantity, and then

ΛT gΛ = g (2.26)

is the defining property of Lorentz transformations Λ in general. For the sake of definitions,
invariant, or Lorentz-invariant, means that a quantity is the same in all reference frames.
Conserved means that a quantity is not changing over time. Covariant is a technical term
applied to some 4-vector quantities, and is used to mean invariant when it is the mathematical
form of an equation that is invariant. Rest mass is Lorentz-invariant but not conserved. Energy
is conserved but not Lorentz-invariant [26]

The role of proper time, τ , in special relativity is central, and crucial to its understanding.
If we consider a worldline, we would like to describe events along this line, and if possible we
would like a description that does not depend on a choice of frame of reference. This is just
like the desire to do classical (Newtonian) mechanics without picking any particular coordinate
system: in Newtonian mechanics it is achieved by using 3-vectors. In Special Relativity, we
use 4-vectors. We also need a parameter to indicate how far along the worldline it is. In
Newtonian mechanics this is accomplished by time, because it is universal among reference
frames connected by a Galilean transformation. In Special Relativity we use the proper time τ .
Proper time is defined as the integral of the infinitesimal bits of proper time experienced by the
particle along its history. This is a suitable choice because this proper time is Lorentz-invariant,
agreed among all reference frames [26]. Proper time is shown mathematically by:

τ =

∫ √
1− v2

c2
dt (2.27)
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Special Relativity- Dynamics

We have discussed above the ways in which the principles of relativity as stated by Einstein
affect our ideas about space and time. Given that, special relativity also has profound effects on
our ideas about force, momentum and energy. We begin our exploration of relativistic dynamics
by seeking the most useful denition of momentum in relativity, and we do this by investigating
a simple collision in one dimension. Two bodies (A, B) approach each other and interact, then
two bodies draw away from each other (C,D). In the absence of external forces, momentum is
conserved. The classical definition of momentum is

Relativistic Considerations of Momentum

~p = m~v = m
d~x

dt
(2.28)

This can be extended to a relativistic four vector by

pµ = mUµ = (γmc, γmv) (2.29)

which has the appropriate non relativistic limit ~p = m~v.

In a two body collision, the total momentum for the system is conserved, giving

mAvA +mBvB = mCvC +mDvD (2.30)

as a frame-independent result. If momentum is conserved in all inertial reference frames,
then mass must also be conserved. The conservation of mass is not an independent principle:
it follows from the conservation of momentum plus the idea that any inertial reference frame is
as good as any other inertial reference frame (from the principle of relativity).

If we use the particle’s own time, τ , which is the proper time, then

~p = m
d~x

dτ
(2.31)

We know that the proper time τ is related to a change in the time t in the frame through
time dilation

dt =
dτ√

1− (v2/c2)
(2.32)

where v is the velocity of the particle in the frame. This means that momentum is now
defined with relativistic considerations as

~p =
m~v√

1− (v2/c2)
(2.33)

Relativistic Considerations of Energy

The Taylor expansion shows that

1√
1− x = 1 +

x

2
+

3x2

8
+ ... (2.34)
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Applying this expansion, and multiplying by c2 shows that

mc2√
1− (v2/c2)

= mc2(1 +
1

2

v2

c2
) (2.35)

Which reduces to

mc2√
1− (v2/c2)

= mc2 +
1

2
mv2 (2.36)

combining this with the relativistic definition of energy, and noticing that the second term
above is just kinetic energy,

E =
mc2√

1− (v2/c2)
(2.37)

results in perhaps the most famous equation of all time

∆E = ∆mc2 (2.38)

This is sometimes considered as the equivalence of mass and energy, but it is not exactly
a true equivalence. The energy is the timelike component of the momentum four-vector, while
the mass is the invariant length of the four-vector. The energy in the rest system indeed equals
mc2, but while in motion, the energy varies with velocity, as shown above. Thus

E = mc2 (2.39)

holds only in the rest system.
Some treatments of relativity refer to the mass of a motionless particle as the rest mass m0,

and the mass of moving particle as the relativistic mass with mrel = γm0. This terminology
is misleading and should be avoided. There is no such thing as relativistic mass. There is only
one mass associated with an object. This mass is what the above treatments would call the
rest mass. Since there is only one type of mass, there is no need to use the qualifier rest. We
therefore simply use the notation m [19].

Special Relativity and Accelerated Frames of Reference

It is essential here to dispel one of the commonly held misbeliefs about special relativity, namely
that accelerated frames of reference cannot fall under the descriptions afforded by special rela-
tivity. In fact, special relativity can handle the physics of accelerated frames of reference [18].
Special relativity cannot handle the physics of reference frames in a gravitational field. Grav-
ity is not invariant under the Lorentz transforms. Special relativity postulates that all laws
of physics are invariant under Lorentz transformations, which include ordinary rotations and
changes in the velocity of a reference frame.

Physical Consequences of Special Relativity

We can summarize some of the fundamental physical effects which are a direct result of the
Lorentz transform and the two postulates of special relativity:
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Classical Limit If v << c, then the Lorentz transforms reduce to the Galilean transforms.
This is an important feature of the Lortentz transforms, as it meets the requirements of
the Correspondence Principle.

Loss of Simultaneity The fact that

t′ = γ(t− vx/c2) (2.40)

immediately shows the relativity of simultaneity, namely that two events with the same
t but different x will not transform into two events with the same t′, which expresses the
loss of simultaneity predicted by special relativity.

Time Dilation The Lorentz factor γ is greater than 1, and since

t′ = γt (2.41)

we have

t′ > t (2.42)

This is referred to as time dilation. Time dilation has been established observationally.

Length contraction Similarly, since

l′ =
l

γ
(2.43)

which is the effect referred to as ’length contraction’ in special relativity. There are no
good methods as yet to observe this phenomenon directly.

Velocity addition As shown in Figure 3 above, if two reference frames, S and S′ are moving
relative to each other with a velocity v2, then an object moving at v1 in the S′ frame would
be moving at u ≡ v1+v2 relative to the frame S if there were no relativistic considerations,
and this is consistent with our everyday experience at typical speeds. However, because
of the loss of simultaneity imposed by special relativity, the speed is actually

u =
v1 + v2

1 + v1v2/c2
(2.44)

The Invariant Interval Although the coordinates of the same event are different in different
reference frames, the distance between the two events, s, in spacetime does not change
and is given by:

s2 = −ct2 + x2 + y2 + z2 (2.45)

The minus sign in the time term above (−ct2) has enormous consequences in the physics
of general relativity as it mandates that the shortest distance between two points in
spacetime also has the longest time.
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Relativistic Dynamics Dynamics refers to considerations regarding momentum and energy,
as modified by special relativity.

In short, momentum, which is usually written as p = mv, is written as

p = γmv (2.46)

using the value of γ as defined above. Energy is written as

E = γmc2 (2.47)

and, this leads to the famous consequence of relativity known to most schoolchildren,
namely that

E = mc2 (2.48)

2.3 General Relativity

Most major theories in physics are the result of a need to explain experimental observations.
Quantum mechanics is a beautiful example of this, which has its foundations in the Bohr atom,
Einstein’s photoelectric effect and the Schrödinger wave equation. Quantum mechanics was
developed because the existing theories could not explain the rapidly expanding experimental
evidence.

General relativity stands in stark contrast, having been the product of the thinking of one
man, without the need to explain any particularly troubling experimental evidence. At the
time he developed the General Theory of Relativity, there was no specific need for a new expla-
nation of existing experimental evidence. Newtonian physics did quite well in explaining the
observations made until that time, perhaps with the exception of the advance of the perihelion
of Mercury. It is said that most physicists of the day were willing to overlook this disparity. It
was the genius of Einstein, who was not satisfied with the theoretical explanations of Newtonian
gravity and who nearly single-handedly began a nearly ten year quest to explain gravity in a
more elegant fashion. The result of that quest was the General Theory of Relativity.

Newtonian Gravity

Einstein was dissatisfied with the concept of gravity as described by Sir Isaac Newton, hundreds
of years before. General Relativity is closely related to Special Relativity, which Einstein
considered to be its basis (the two-story building analogy above). Based on special relativity,
Einstein realized that ”action at a distance” and the instantaneous transfer of information,
both of which are mandated by Newtonian gravitation, are not possible. He therefore set out
to develop a new theory of gravity, based on these concepts and not based on experimental
evidence.

Foundations of General Relativity

General Relativity is based on three principles:

20



The Equivalence Principle In 1907, Einstein said he had his ”happiest thought”. While
some references state that this was only a thought, other sources state that it actually
happened. In any case, Einstein considered that a painter who fell from the roof would
not feel his own weight. Thus was born the idea of the equivalence of inertial and gravita-
tional mass. While this may seem intuitive, Einstein enunciated the ”Strong Equivalence
Principle” that codified this concept as a basic truth of nature, across all of physics, no
longer limited to the motion of bodies as Galileo had considered it.

The Correspondence Principle : This name was coined by Niels Bohr in 1920, after Gen-
eral Relativity was described, but refers to the fact that General Relativity reduces to
classical Newtonian physics in the weak field limit.

The Principle of Covariance : This requires that physics stays the same after coordinate
transformations, and is the reason that General Relativity is expressed as tensors. The
use of tensors was a considerable barrier for Einstein, who enlisted the aid of his college
friend Marcel Grossman (who by then was a Professor of Mathematics and an expert in
non-Euclidean Geometry) to teach him tensor calculus.

Gravitation and Geometry

Einstein focussed on the fact that freely falling frames are locally the same as inertial frames.
Things were tricky for measurements across a finite distance. Consider, for example, the refer-
ence frame of a freely falling person. Suppose that this person holds out a rock and releases it.
The rock is then also a freely falling object, and the rock is initially at rest with respect to the
person. This is the idea contained in the Equivalence Principle.

The issue is that we would like to think of the freely falling worldlines as inertial worldlines.
We would like to consider them as being ‘straight lines in spacetime.’ However, We must draw
them on a spacetime diagram as curved. We can straighten out any one of them by using the
reference frame of an observer moving along that worldline. However, this makes the other
freely falling worldlines appear curved.

Eventually Einstein found a useful analogy with something that at first sight appears quite
different, a curved surface. The idea is captured by the question, What is a straight line on a
curved surface? Mathematicians made up a new word for this idea, the geodesic. A geodesic
can be thought of as the straightest possible line on a curved surface. More precisely, we can
define a geodesic as a line of minimal distance, the shortest line between two points. The idea
is that we can define a straight line to be the shortest line between two points. Actually, there
is another definition of geodesic that is even better, but requires more mathematical machinery
to state precisely. Intuitively, it captures the idea that the geodesic is ‘straight.’ It tells us that
a geodesic is the path on a curved surface that would be traveled, for example, by an ant (or a
person) walking on the surface who always walks straight ahead and does not turn to the right
or left [17]

The concept of a geodesic as the straightest possible line on a curved surface is central to
Einstein’s formulation of gravity as the curvature of space-time. Straight lines (geodesics) on
a curved surface act like freely falling worldlines in a gravitational field. It is useful to think of
this analogy at one more level: Consider two people standing on the surface of the earth. We
know that these two people remain the same distance apart as time passes. Why do they do so?
Because the earth itself holds them apart and prevents gravity from bringing them together.

The next central concept in the geometry of space-time is that curved surfaces are locally
flat. Mathematically speaking, gravity is locally Lorentzian. In small areas of space-time,
physics is defined by the Lorentz transforms. Putting these small areas of space-time together
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results in general relativity. This is the same phenomenon one experiences when drawing a map
of the earth on a flat piece of paper. We see that something like the equivalence principle holds
for curved surfaces, flat maps are very accurate in small regions, but not over large ones.

The point is that this process of building a curved surface from flat ones is just exactly what
we want to do with gravity! We want to build a gravitational field out of little pieces ”flat”
inertial frames. We might say that gravity is the curvature of spacetime. This gives us the new
language that Einstein was looking for [17]:

Inertial Frames We can draw it on our flat paper and geodesics behave like straight lines.
This is exactly the Minkowskian geometry of special relativity.

Worldlines of Freely Falling Observers Follow straight lines in Spacetime

Gravity The Curvature of Spacetime

In fact, with the following assumptions, we can derive the basic ideas of general relativity:

Gravity Gravity is the curvature of space-time

Covariance Physics is independent of the choice of coordinates

Metric The basic equations of general relativity give the dynamics of the metric which describe
the curvature of space-time

Energy is conserved

Equivalence Principle

Correspondence Principle In the weak field limit, general relativity reduces to Newtonian
physics.

Mathematical Introduction

We will begin now to describe the mathematics of general relativity, which is done in the
language of tensors. By using tensors to describe gravity, Einstein was freed from the limitations
imposed by specific coordinate systems. Tensors allow Physics to be described in a coordinate-
free notation. We begin by describing some of the basics of tensor mathematics.

Tensor Operations:

? Addition: Aαβµν +Bαβµν = Cαβµν

? Subtraction: Aαβµν −Bαβµν = Dαβ
µν

? Tensor Product: Aαβµν B
γδ
ηξ = Fαβγδµνηξ

? Contraction: Aαψψγ = Hα
γ (summed over ψ)

? Inner Product: Aαβµν B
νγ
δη = Pαβνγµνδη = Kαβγ

µδη
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Tensors and Physics:
When the equations of motion are written in tensor form, they are invariant under some

appropriately-defined transformations. For example:

? Newtonian Mechanics: 3 - vectors (x, y, z) = (x1, x2, x3) are invariant under Galilean
transformations.

? Special Relativity: 4 - vectors (t, x, y, z) = (x0, x1, x2, x3) are invariant under Lorentz
transformations.

? General Relativity: 4 - vectors (t, x, y, z) = (x0, x1, x2, x3) are invariant under general
coordinate transformations.

We now use the notation of tensors to describe flat space and space-time, and then use these
concepts to put into mathematical terms the basic underlying principles of general relativity
including curved three dimensional space, the covariant derivative and the Principle of General
Covariance.

Flat Euclidean space

We generally think in terms of a flat space metric (Euclidean), where parallel lines never cross
and the sum of the interior angles of a triangle is 1800.

In this case, the invariant line element of space in Cartesian coordinates (x, y, z) = (x1, x2, x3)
is:

ds2 = (dx1)2 + (dx2)2 + (dx3)2, (2.49)

and space is flat.
An equivalent way of writing the above metric is:

ds2 = δijdx
idxj , (2.50)

where δαβ is the Kronecker delta function defined as:

δαβ =

{
1 for α = β,
0 for α 6= β.

(2.51)

Therefore, the Euclidean space metric tensor for Cartesian coordinates is:

δij =

 1 0 0
0 1 0
0 0 1

 . (2.52)

An invariant line element in an arbitrary coordinate system in flat space, can be written in
terms of Cartesian coordinates (via change of variables):

ds2 = δijdx
idxj = δij

(
∂xi

∂x′k
dx′k

)(
∂xj

∂x′l
dx′l

)
= δij

∂xi

∂x′k
∂xj

∂x′l
dx′kdx′l ≡ pkldx′kdx′l. (2.53)

where pkl is the metric of the new coordinate system.
Since the line element is invariant under the interchange of dx′ and dx, we may, without

loss of generality, take the metric tensor to be symmetric in general relativity.
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Consider an example of spherical coordinates (r, θ, φ), Fig. (2.4), where we are at the center
of the spherical coordinate system. As we look out into the “cosmos,” the flat space part of the
metric (line element) is given by the following line element:

ds2 = dr2 + r2
(
dθ2 + sin2θdφ2

)
, (2.54)

Figure 2.4: Spherical coordinate system. Figure shows r = constant surface, hence, dr = 0 on
the surface [20].

where θ is now measured from the north pole and is π at the south pole.
It is useful to abbreviate the term between parenthesis as:

dΩ2 = dθ2 + sin2θdφ2, (2.55)

because it is a measure of angle on the sky of the observer.

Flat Minkowski Spacetime

We can now generalize the interval to 4-dimensional flat spacetime (x0, x1, x2, x3) [20]:

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2, (2.56)

which can be written as:
ds2 = ηαβdx

αdxβ , (2.57)
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where ηαβ is the Minkowski (flat) spacetime metric tensor:

ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2.58)

Curved Three-Dimensional Space

For a general (possibly curved) covariant spacetime metric tensor gαβ , the invariant line element
is given by

ds2 = gαβdx
αdxβ . (2.59)

The contravariant spacetime metric tensor gαβ is the inverse of the covariant tensor gαβ :

gαβgβγ = δαγ . (2.60)

This implies that whenever the metric tensor is diagonal:

gαβ = (gαβ)−1. (2.61)

One can take inner products of tensors with the metric tensor, thus lowering or raising indices:

Aαβ = gαµA
µ
β , Aαβ = gαµAβµ. (2.62)

For the spatial part of gαβ , as proven by Robertson and Walker, the alternative line elements,
that obey both isotropy and homogeneity is:

ds2 = dr2 + Sk(r)2dΩ2, (2.63)

where the function Sk(r) is a function of space curvature given by:

Sk(r) =


1√
k

sin
(√
k r
)

for k > 0

r for k = 0
1√
−k sinh

(√
−k r

)
for k < 0

, (2.64)

This means that the circumference of a sphere around us with radius r, for k 6= 0, is no
longer equal to C = 2πr, but is smaller for k > 0 and larger for k < 0. Also, the surface area
of that sphere is no longer S = 4πr2, but is smaller for k > 0 and larger for k < 0. For small
r (to be precise, for r � |k|1/2 ) the deviation from C = 2πr and S = 4πr2 is small, but as
r approaches |k|1/2 the deviation can become very large. This can be checked by writing the
Taylor series expansion of Eq. (2.64). This is very similar to the 2-dimensional example of the
Earths surface [20].

If we stand on the North Pole, and use r as the distance from us along the sphere (i.e. the
longitudinal distance) from the north pole and dφ as the 2-dimensional version of dΩ, then the
circumference of a circle at r = 10000 km (i.e. a circle that is the equator in this case) is just
40000 km instead of 2π × 10000 = 62831 km, i.e. a factor of 0.63 smaller than it would be on
a flat surface.

The constant k is the curvature constant. We can also define a “radius of curvature”, as:

Rcurvature = |k|−1/2, (2.65)
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which, for our 2-dimensional example of the Earths surface, is the radius of the Earth. In our
3-dimensional Universe it is the radius of a 3-dimensional “surface” of a 4-dimensional “sphere”
in 4-dimensional space.

Note that the expression given in Eq. (2.63) is not the only way to write the metric in curved
space. For instance, if we switch to a very commonly used parametrization in which we change
the radial coordinate from r to x ≡ Sk(r), then from Eq. (2.64):

r =



1√
k

sin−1
(√

k x
)

for k > 0

x for k = 0

1√
−k sinh−1

(√
−k x

)
for k < 0

, (2.66)

which implies that:

dr =



1√
k

(
√
k√

1−(
√
kx)

2
dx

)
for k > 0

dx for k = 0

1√
−k

(
√
−k√

1+(
√
−kx)

2
dx

)
for k < 0

. (2.67)

By squaring both sides of Eq. (2.67) we get:

dr2 =


1

1−kx2 dx
2 for k > 0

dx2 for k = 0

1
1−kx2 dx

2 for k < 0

. (2.68)

Then, the metric for homogeneous, isotropic, 3-dimensional space can be written as

ds2 =
dx2

1− kx2
+ x2dΩ2, (2.69)

which we can rewrite, by changing the name of the variable from x to r, as

ds2 =
dr2

1− kr2
+ r2dΩ2, (2.70)

⇒ ds2 =
dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

)
. (2.71)

Note that this metric is different only in the way we choose our coordinate r; it is not
different in any physical way from Eq. (2.63).

The Covariant Derivative

Consider a vector ~A given in terms of its components along the basis vectors êα as:

~A = Aαêα. (2.72)
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Differentiating the vector ~A using the standard Leibniz rule for the differentiation of the product
of functions (fg)′ = f ′g + fg′, we get:

∂ ~A

∂xα
=

∂

∂xα

(
Aβ êβ

)
=
∂Aβ

∂xα
êβ +Aβ

∂êβ
∂xα

. (2.73)

In flat Cartesian coordinates the basis vectors are constant. However, this is not the case in
general curved spaces. In general, the derivative in the last term will not vanish, and it will
itself be given in terms of the original basis vectors:

∂êβ
∂xα

≡ Γναβ êν , (2.74)

where Γναβ is called Christoffel symbol, which is written in terms of the metric tensor gµν as
(see [18]):

Γναβ ≡
1

2
gνγ
(
gαγ,β + gγβ,α − gαβ,γ

)
. (2.75)

Here it is important to note that Christoffel symbols are not tensors.
Taking the curvature of the ambient manifold into account when taking derivatives of a

scalar field φ, a vector Aα, or a co-vector Aα will yield covariant derivatives:

∂;µφ ≡ ∂,µφ, Aα;β ≡ Aα,β − ΓναβAν , Aα;β ≡ Aα,β + ΓναβA
ν , (2.76)

where we have used the short hand notation ∂,µφ ≡ ∂φ
∂xµ , Aα,β ≡ ∂Aα

∂xβ
and Aα,β ≡ ∂Aα

∂xβ
. Other

covariant derivatives of second rank contravariant and covariant tensor are defined as

∇ρAµν ≡ Aµν;ρ ≡ Aµν,ρ + ΓµραA
αν + ΓνρβA

µβ , (2.77)

∇ρAµν ≡ Aµν;ρ ≡ Aµν,ρ − ΓαρµAαν − ΓβρνAµβ , (2.78)

respectively. The covariant derivative of mixed tensor is defined as

∇ρAµν ≡ Aµν;ρ ≡ Aµν,ρ + ΓµραA
α
ν − ΓβρνA

µ
β , (2.79)

where Aµν,ρ = ∂Aµν

∂xρ , Aµν,ρ =
∂Aµν
∂xρ , and Aµν,ρ =

∂Aµν
∂xρ .

For vector Aα, and co-vector Aα, defined along a curve xβ = xβ(s), the covariant derivative
along this curve are

DAα

Ds
≡ dAα

ds
+ Γαβγ

dxγ

ds
Aβ ,

DAα
Ds

≡ dAα
ds
− Γβαγ

dxγ

ds
Aβ , (2.80)

The covariant derivative in a curved spacetime is the analog to the ordinary derivative in
Cartesian coordinates in flat spacetime (from [20]).

The Principle of General Covariance

This principle states that all tensor equations valid in Special Relativity will also be valid in
General Relativity if:

? The Minkowski metric ηαβ is replaced by a general curved metric gαβ .

ds2 = ηαβdx
αdxβ ⇒ ds2 = gαβdx

αdxβ (2.81)

ηαβu
αuβ = −1 ⇒ gαβu

αuβ = −1, (2.82)
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? All the partial derivatives are replaced by covariant derivatives; in simple language the
commas in the equations will be replaced by semicolon (, → ;). E.g.,

Tαβ,β = 0 ⇒ Tαβ;β = 0. (2.83)

from [20]

The Einstein Field Equations

Having stated in mathematical terms the underlying principles of general relativity, including
the geometry of flat spacetime, curved space-time, the covariant derivative, and the principle of
covariance, we will now go on to describe the various tensors which make up the Einstein Field
Equations including the Riemann tensor, the Ricci Tensor, and the Stress-Energy tensor. After
gaining a basic mathematical grasp of these concepts, we can then see how Einstein arrived at
the famous field equation which bears his name. There is no attempt to rigorously derive the
field equations, but only to describe them in basic mathematical terms.

Einstein’s field equations, the general relativity generalization of Poisson’s equation for
gravity, is a set of 10 equations that describe gravity. Einstein’s general theory of relativity
describes the fundamental interaction of gravitation as a result of spacetime being curved by
matter and energy. First published by Einstein in 1915 as a tensor equation, the Einstein field
equation equates local spacetime curvature (expressed by the Einstein tensor Gµν) to the local
energy and momentum within that spacetime (expressed by the stress-energy tensor Tµν) [20]

Similar to the way that electromagnetic fields are determined from the source charges and
currents through Maxwell’s equations, Einstein’s field equations are used to determine the
spacetime geometry resulting from the presence of mass-energy and linear momentum (sources),
that is, they determine the metric tensor of spacetime for a given arrangement of stress-energy
in the spacetime. The relationship between the metric tensor and the Einstein tensor allows
the Einstein field equations to be written as a set of non-linear partial differential equations.
The solutions of the Einstein field equations are the components of the metric tensor. The
trajectories of particles and radiation in the resulting geometries are then calculated using the
geodesic equation.[20]

The Riemann tensor

The Riemann curvature tensor, or Riemann-Christoffel tensor, is the most common tensor
used to describe the curvature of Riemannian manifolds. It associates a tensor to each point
of a Riemannian manifold (i.e., it is a tensor field) that measures the extent to which the
metric tensor is not locally isometric to a Euclidean flat space and so specifies the geometrical
properties of spacetime. More precisely, the Riemann tensor governs the evolution of a vector
on a displacement parallel propagated along a geodesic. It is defined in terms of Christoffel
symbols as

Rαβγδ ≡ Γαβδ,γ − Γαβγ,δ + ΓνβδΓ
α
νγ − ΓνβγΓανδ, (2.84)

where Γαβδ,γ ≡
∂Γαβδ
∂xγ .

Spacetime is considered flat if the Riemann tensor vanishes everywhere. The Riemann tensor
can also be written directly in terms of the spacetime metric
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Rαβγδ ≡
1

2
(gβγ,αδ + gαδ,βγ − gβδ,αγ − gαγ,βδ) + gµνΓναγΓµβδ − gµνΓναδΓ

µ
βγ . (2.85)

The Riemann tensor has skew symmetry and interchange symmetry. Because of these symme-
tries, the Riemann tensor in 4-dimensional spacetime has only 20 independent components out
of 44 = 256 [20].

The Ricci tensor

The Ricci tensor, or the Ricci curvature tensor, governs the evolution of a small volume parallel
propagated along a geodesic. It is obtained from the Riemann tensor by contracting over two
of the indices,

Rαβ ≡ Rγαγβ . (2.86)

It is symmetric, which means that it has at most 10 independent components out of 4×4 = 16.
For the case of vacuum we will see later, the field equation is Rµν = 0.

The Ricci scalar

The Ricci scalar R is obtained by contracting the Ricci tensor over the remaining two indices
and is denoted by :

R ≡ gαβRαβ = Rαα. (2.87)

The Einstein tensor

The Einstein tensor is defined in terms of the Ricci tensor and Ricci scalar as

Gαβ ≡ Rαβ −
1

2
gαβR. (2.88)

One can use Bianchi identities to derive a very important property of the Einstein tensor,
Gαβ;α = 0 [20].

The Stress-Energy Tensor

In the Newtonian approximation, the gravitational field is directly proportional to mass. In
general relativity, mass is just one of several sources of spacetime curvature. The stress-
energy (energy-momentum) tensor, denoted by Tµν , includes all possible forms of sources
(energy) that can curve spacetime, and it describes the density and flow of the 4-momentum
(−E, px, py, pz, ).[18] In simple terms, the stress-energy tensor quantifies everything that causes
spacetime to curve, and thus contributes to the gravitational field.

More rigorously, the components Tµν of the stress-energy tensor is the flux of the µ com-
ponent of the four momentum crossing the surface of constant xν . A surface of constant xν is
simply a 3-plane perpendicular to the xν-axis. Hence, the stress-energy tensor is the flux of a
4-momentum across a surface of a constant coordinate. The stress-energy tensor describes the
density of energy and momentum and the flux of energy and momentum in a region. Since,
under the mass-energy equivalence principle, we can convert mass units to energy units and
vice-versa, then the stress-energy tensor can describe all the mass and energy in a given region
of spacetime [20]
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The stress-energy tensor, being a tensor of rank two in four-dimensional spacetime, has
sixteen components that can be written as a 4×4 matrix, and has the following structure in an
orthonormal basis

Tµν =


T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

 . (2.89)

Note that the components T 00, T 10, T 20 and T 30 are interpreted as densities. A density is what
you get when you measure the flux of 4-momentum across a 3-surface of constant time, which
means the instantaneous value of 4-momentum flux is density.

We now consider several energy-momentum tensors frequently used in General Relativity
including classical vacuum and dust.

Vacuum: This is the simplest possible stress-energy tensor in which all the values are zero:

Tµν = 0. (2.90)

This tensor represents a region of space in which there is no matter, energy, or fields. This
is not just at a given instant, but over the entire period of time in which we’re interested in.
Nothing exists in this region, and nothing happens in this region.

Dust: Imagine a time-dependent distribution of identical, massive, non-interacting, electri-
cally neutral particles. In general relativity, such a distribution is called a dust.

To fully describe the dust we need to write its energy-momentum tensor, which is given by

Tµν = ρuµuν . (2.91)

For a comoving observer, the 4-velocity is given by ~u = (1, 0, 0, 0), so the stress-energy tensor
reduces to

Tµν =


ρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (2.92)

Dust is an approximation to the content of the Universe at later times, when radiation is
negligible.

The Einstein Field Equations

Just as Maxwell’s equations govern the electric and magnetic field response to electric charges
and current (sources), Einstein’s field equations describe how the metric is governed by energy
and momentum (sources). There are two basic parts of this equation, which describe the motion
of particles and the generation of the gravitational field.

The effect of gravity on the motion of partices is described by the geodesic equation

d2xν

dλ2
+ Γνγδ

dxγ

dλ

dxδ

dλ
= 0, (2.93)

which is analogous to Newton’s second law of motion ~F = m~a.
The generation of a gravitational field by a source of mass energy involves finding the analog

of the Poisson equation

∇2Φ(~x) = 4πGρ(~x), (2.94)
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which specifies how matter (or energy in general relativity) curves spacetime. Here∇2 = δij∂i∂j
is the Laplacian in space and ρ is the mass density [the explicit form of φ = −GM/r is the
solution of Eq. (2.94) for the case of a spherically symmetric mass distribution].

In classical Newtonian gravity, gravitational effects are produced by a mass at rest. In
modified Newtonian gravity, which we can call special relativity, we learned that rest mass
is also a form of energy. Thus special relativity put mass and energy on an equal footing.
Extending this idea, one should expect that in general relativity, all sources of both energy and
momentum contribute in generating spacetime curvature. On the left hand side of Eq. (2.94) a
second order differential operator acts on the gravitational potential and on the right hand side
is a measure of mass density. The relativistic generalization of the Poisson equation should be
the relationship between tensors. The tensor generalization of mass density can be Tµν . This
means that we consider the stress-energy tensor Tµν as the source of spacetime curvature (with
an unknown scaling factor), in the same sense that the mass density ρ is the source for the
potential Φ in Newtonian gravity. Hence, the right hand side of the general relativity analog of
the Poisson equation should be κTµν (where κ is an unknown constant to be determined later.)
[20]

Regarding the left hand side of the general relativity analog of the Poisson equation, we
have shown that the spacetime metric in the Newtonian limit is modified by a term that is
proportional to Φ. Extending this idea, the general relativity counterpart of ∇2Φ(~x) contains
terms having the second derivative of the metric tensor, for example:

[
∇2 g

]
µν

= κTµν . (2.95)

However, this should be a tensor equation and the left-hand side of Eq. (2.95) is not a tensor.
It is just simplistic notation that indicates we need something on the left hand side that should
have the second derivative of the metric.

The Riemann tensor Rαβγδ, and consequently its contractions, the Ricci tensor Rαβ = Rγαγβ ,
and the Ricci scalar R = Rαα, contain the second derivative of the metric and therefore is a
candidate for the left hand side of Einstein’s field equations.

Following this line of thought, Einstein originally suggested that the field equations might
be

Rµν = κTµν , (2.96)

but one can see directly that this can not be correct. While the conservation of energy and
momentum require Tµν;µ = 0, the same in general is not true for the Ricci tensor Rµν;µ 6= 0.

However Einstein’s tensor, Gµν = Rµν − 1
2gµνR, which is a combination of the Ricci tensor and

scalar, satisfies the divergence-less condition ∇µGµν = 0. Therefore, Einstein’s field equations
become

Gµν ≡ Rµν −
1

2
gµνR = κTµν . (2.97)

This equation satisfies all of the obvious requirements: the right-hand side of is a covariant
expression of the energy and momentum density in the form of a symmetric and conserved
tensor, while the left-hand side is also a symmetric and conserved tensor constructed from the
first and second derivatives of the metric tensor and the metric tensor itself. The only issue that
remains is to fix the constant κ. By matching Einstein’s equation in the Newtonian limit to the
Poisson equation, the constant κ was found to 8πG, where G is the Newtonian gravitational
constant. Then Eq. (2.97) takes the form
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Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν .

In summary, Einstein’s equations for the gravitational field came from requiring that the
equations of motion are generally covariant under coordinate transformations and reduced to
the Newtonian form in weak stationary gravitational fields. The field equation relates the Ricci
tensor, that is made up of second derivatives of the metric tensor, to the Ricci scalar formed
by contracting the Ricci tensor, and to the energy-momentum content of the Universe [20].

Newtonian Gravity as the Weak Field Limit of General Relativity

That General Relativity reduces to Newtonian gravity in the weak field limit is a necessary
consequence of the Correspondence Principle, which Einstein saw as an essential ingredient to
General Relativity. We shall demonstrate this mathematically in this section.

In order to check that General Relativity reduces to Newton’s Theory of Gravity, we must
do two things [3].

Relate the geodesic equation to Newton’s law of motion

Relate Einstein’s field equations to the Newton-Poisson equation

We start with the definition of the interval, based on the metric

ds2 = gµνdx
µdyν . (2.98)

The Einstein field equation is

Gµν = −8πGTµν . (2.99)

The Newtonian potential for a point-like mass is

Φ =
−Gm
r

. (2.100)

The Newtonian equation of motion is

d2xi

dt2
= F i = − ∂Φ

∂xi
. (2.101)

In the weak field limit

G00 = −2∇2Φ (2.102)

and

T00 = ρ. (2.103)

Combining these two terms for the weak field limit with the Einstein field equation we then
have

−2∇2Φ = −8πGρ (2.104)
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which reduces to the Newton-Poison equation

∇2Φ = 4πGρ (2.105)

showing that the Einstein field equation in the weak field limit, reduces to Newtonian gravity
as a demonstration of the compliance of General Relativity with the correspondence principle.

Tests of General Relativity

Over the years, there have been a number of experimental tests of general relativity proposed.
We shall discuss four of the classic tests of this theory. The first three including the gravitational
deflection of light, the precession of perihelia and gravitational redshift were suggested by
Einstein. The subject of bending of light by the sun is very briefly mentioned here and then
developed in an extensive manner throughout this dissertation. The other three tests of general
relativity are mentioned very briefly here for completeness but not developed mathematically.

These first three tests are considered the ”classic” tests of general relativity. The fourth
was added by Shapiro in 1964. There are other tests as well, which will not be described here.
While it may not be common knowledge, many people depend daily on the results predicted
by both special and general relativity in their daily lives, as the Global Positioning System
requires corrections for both special relativistic effects (time dilation) and general relativistic
effects (gravitational redshift). Without these small but critical correction factors, the GPS
system would be useless to guide our cars or the missiles it was initially developed for [2].

Bending of Light by the Sun This will only be mentioned briefly here as it is the subject
of Chapter 3, and in fact, the subject of the rest of this dissertation. Of specific interest
regarding this particular test is that Einstein calculated a value for the bending of light
by the sun, and published it in 1911. This result was in fact incorrect and his publication
in 1915 of a value of 1.74arcsec which was the result verified in 1919 by Eddington. Had
the planned expedition in 1914 gone forth, Einstein’s fame may never have materialized.
Also of interest is that this test was conducted after the general theory of relativity had
been completely described, again emphasizing the unusual development of relativity where
theory preceded experiments.

Advance of the Perihelion of Mercury It was well-known at the end of the nineteenth
century that the orbit of Mercury did not exactly follow Newtonian mechanics. The
perihelion of an elliptical orbit is its point of closest approach to the Sun. The precession of
perihelia reflects the fact that noncircular orbits in general relativity are not perfect closed
ellipses. Before general relativity, there were several attempts to explain the discrepancy,
including a mythical, unobserved planet referred to as Vulcan that exerted a gravitational
effect on Mercury disturbing its orbit. The major axis of Mercury’s orbit precesses at a
rate of 43arcsec every 100 years, which is exactly the value calculated by Einstein and
published in 1916 [30].

Gravitational Redshift Einstein predicted the gravitational redshift of light based on the
equivalence principle in 1907, but it is very difficult to measure astrophysically. Although
it was measured in 1925, it was only conclusively tested by the Pound-Rebka experiment
in 1959 which measured the relative redshift of two sources at the top and bottom of Har-
vard University’s Jefferson tower using the Mössbauer effect. The result was in excellent
agreement with general relativity. This was one of the first precision experiments testing
general relativity [30].
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Gravitational Time Delay Shapiro proposed another test, beyond the classical tests, which
could be performed within the solar system. He predicted a relativistic time delay (Shapiro
delay) in the round-trip travel time for radar signals reflecting off other planets. The mere
curvature of the path of a photon passing near the Sun is too small to have an observable
delaying effect (when the round-trip time is compared to the time taken if the photon
had followed a straight path), but general relativity predicts a time delay which becomes
progressively larger when the photon passes nearer to the Sun due to the time dilation
in the gravitational potential of the sun. Observing radar reflections from Mercury and
Venus just before and after it will be eclipsed by the Sun gives agreement with general
relativity theory at the 5% level. More recently, the Cassini probe has undertaken a similar
experiment which gave agreement with general relativity at the 0.002% level. Very Long
Baseline Interferometry has measured velocity-dependent (gravitomagnetic) corrections
to the Shapiro time delay in the field of moving Jupiter and Saturn [30].
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A Comparison of Newtonian and Einsteinian Mechanics

Newtonian and Einsteinian mechanics, from [20].

Newtonian Mechanics Einsteinian Mechanics

Absolute time and absolute space Dynamical spacetime, one entity

Galilean invariance of space (simultaneity) Lorentz invariance of spacetime (time dilation,
length contraction, no simultaneity)

Existence of preferred inertial frames (at rest or
moving at constant velocity with respect to abso-
lute space).

No preferred frames (physics is the same
everywhere).

Infinite speed of light c (instantaneous action at
a distance)

Finite and fixed speed of light c (nothing physical
can propagate faster than c)

There is no upper limit on the speed with which
mass can travel.

There is an upper limit of speed with which mass
can travel, c.

Gravity is a force. Gravity is a distortion of the geometry of
spacetime.

Newton’s Second Law: Geodesic equation:

d2xi

dt2 = −δij ∂Φ
∂xj . d2xν

dλ2 = −Γνγδ
dxγ

dλ
dxδ

dλ .

Poisson equation: Einstein’s field equation:

∇2Φ(x) = 4πGρm Gµν = 8πGTµν

Mass produces a field Φ causing a force on the
other mass m given by:

Spacetime is curved and mass particles move
along curved geodesics defined by metric:

~F = −~∇Φ. ds2 = gµν(x)dxµdxν .

Absolute space acts on matter but is not acted
upon.

Mass tells space-time how to curve and space-
time tells matter how to move (from JA Wheeler)
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A Summary of General Relativity

There are three essential ideas underlying general relativity [4]:

Space-time may be described as a curved four dimensional mathematical structure called a
pseudo-Riemannian manifold. In brief, time and space together comprise a curved four
dimensional non-Euclidean geometry. The laws of physics must be expressed in a form
that is valid independent of any coordinate system used to label points in space-time.

At every space-time point there exist locally inertial reference frames corresponding to locally
flat coordinates carried by freely falling observers in which the physics of general rela-
tivity is locally indistinguishable from that of special relativity. This is Einstein’s strong
equivalence principle and it makes general relativity an extension of special relativity to
a curved space-time.

Mass, as well as mass and momentum flux, curves space-time in a manner described by the
Einstein Field Equations. Mass moves in space-time under the influence of gravity along
geodesics.

Pictorially, the concept of space-time curvature is often invoked as a rubber sheet. While
this is may not be entirely accurate, it serves as a useful way to visualize the idea that a ”sheet”
of space-time is deformed by mass, resulting in a change in the geometry. It is perhaps best
described in the ”Parable of the Apple” [18].

Figure 2.5: The geometry of space-time is changed by the presence of mass

General relativity can be stated in the formal tensor expression of Einstein’s Field Equations:

Gµν = 8πTµν (2.106)

but is most eloquently summarized in the simple words of John Archibald Wheeler:

”Mass tells space-time how to curve and space-time tells matter how to move”
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2.4 Fundamentals of Cosmology

The purpose of this section is to provide a brief introduction to Cosmology, particularly areas
that relate closely to Relativity and Gravitational Lensing. There is no attempt here to be
exhaustive, but only to introduce major concepts that serve as important background for studies
in gravitational lensing.

The Cosmological Principle

Cosmology is the study of the structure and evolution of the Universe as a whole. We can write
down equations for the evolution of the Universe by making a powerful assumption known as the
cosmological principle. The cosmological principle states that the Universe appears isotropic (it
looks the same in all directions) and homogeneous (properties such as density or temperature
do not vary with position) to any observer.

As an assumption, the cosmological principle cannot be proven. But no observation per-
formed so far is inconsistent with this assumption, on scales over 100MPc, at least no obser-
vation of the distant Universe. The density of galaxies appears to be independent of direction.
The intensity of the cosmic background radiation (the microwave radiation from the early hot
Universe) is highly isotropic. There appears to be no significant variation with direction.

We would expect intuitively that at any given time the universe ought to look the same to
observers in all typical galaxies, and in whatever direction they look. (Hereafter we will use
the label “typical” to indicate galaxies that do not have any large peculiar motion of their own,
but are simply carried along with the general cosmic flow of galaxies.) This hypothesis is so
natural (at least since Copernicus) that it has been called the Cosmological Principle by the
English astrophysicist Edward Arthur Milne [1].

The Hubble Parameter

In the late 1920’s, Hubble discovered that the spectral lines of galaxies were shifted towards
the red by an amount proportional to their distances. If the redshift is due to the Doppler
effect, this means that the galaxies move away from each other with velocities proportional to
their separations. The importance of this observation is that it is just what we should predict
according to the simplest possible picture of the flow of matter in an expanding universe [1]. In
terms of the redshift z ≡ (λ′ − λ)/λ, the “linear” Hubble law can be written as

z ≈ (H0/c) r , (2.107)

where c is the speed of light, H0 is the present value of the Hubble constant and r the distance to
the galaxy. For small velocities (V � c), the Doppler redshift is z ≈ V/c. Therefore, V ≈ H0r,
which is the most commonly used form of Hubble law. The present day Hubble expansion rate
is H0 = 100 h km s−1 Mpc−1, where h = 0.71+0.04

−0.03.
A particularly useful quantity to define from the scale factor is the Hubble parameter (some-

times referred to as the Hubble constant), given by

H ≡ ȧ

a
. (2.108)

The Hubble parameter relates how fast the most distant galaxies are receding from us to
their distance from us via Hubble’s law,

v ' Hd. (2.109)
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Figure 2.6: Hubble diagrams showing the relationship between recessional velocities of distant
galaxies and their distances. The left plot shows the original data of Hubble. The right plot
shows more recent data, using significantly more distant galaxies (note difference in scale) from
[28]
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Figure 2.7: Homogeneity and the Hubble Law: A string of equally spaced galaxies
Z, A, B, C, . . . are shown with velocities as measured from A or B or C indicated by the
lengths and directions of the attached arrows. The principle of homogeneity requires that the
velocity of C as seen by B is equal to the velocity of B as seen by A, adding these two velocities
gives the velocity of C as seen by A, indicated by an arrow twice as long. Proceeding in this
way we can fill out the whole pattern of velocities shown in the figure. As can be seen the
velocities obey the Hubble law: the velocity of any galaxy, as seen by others is proportional to
the distance between them. This is the only pattern of velocities consistent with the principle
of homogeneity. from [1]

This is the relationship that was discovered by Edwin Hubble, and has been verified to high
accuracy by modern observational methods (see figure 2.6) [28].

As applied to the galaxies themselves, the Cosmological Principle requires that an observer
in a typical galaxy should see all the other galaxies moving with the same pattern of velocities,
whatever typical galaxy the observer happens to be riding in. It is a direct mathematical
consequence of this principle that the relative speed of any two galaxies must be proportional
to the distance between them, just as found by Hubble. To see this consider three typical
galaxies A, B, and C, strung out in a straight line, as shown in Fig. 2.7. Suppose that the
distance between A and B is the same as the distance between B and C. Whatever the speed
of B as seen from A, the Cosmological principle requires that C should have the same speed
relative to B. But note that C, which is twice away from A as is B, is also moving twice as fast
relative to A as is B. We can add more galaxies in our chain, always with the result that the
speed of recession of any galaxy relative to any other is proportional to the distance between
them [1].

As often happens in science, this argument can be used both forward and backward. Hubble,
in observing a proportionality between the distances of galaxies and their speeds of recession,
was indirectly verifying the Cosmological Principle. Contrariwise, we can take the Cosmological
Principle for granted on a priori grounds, and deduce the relation of proportionality between
distance and velocity. In this way, through the relatively easy measurement of Doppler shifts,
we are able to judge the distance of very remote objects from their velocities [1].

Before proceeding any further, two qualifications have to be attached to the Cosmological
Principle. First, it is obviously not true on small scales – we are in a Galaxy which belongs to

39



a small local group of other galaxies, which in turn lies near the enormous cluster of galaxies
in Virgo. In fact, of the 33 galaxies in Messier’s catalogue, almost half are in one small part
of the sky, the constellation of Virgo. The Cosmological Principle, comes into play only when
we view the universe on a scale at least as large as the distance between clusters of galaxies,
or about 100 million light years. Second, in using the Cosmological Principle to derive the
relation of proportionality between galactic velocities and distances, we suppose the usual rule
for adding V � c. This, of course, was not a problem for Hubble in 1929, as none of the galaxies
he studied then had a speed anywhere near the speed of light. Nevertheless, it is important
to stress that when one thinks about really large distances characteristic of the universe, as a
whole, one must work in a theoretical framework capable of dealing with velocities approaching
the speed of light.

Relativity in Cosmology

To derive the equations of the evolution of the Universe, we combine the cosmological principle
with the complete theory of gravity, General Relativity. The Einstein Field Equations consist
of ten nonlinear partial differential equations. They are incredibly hard to solve and for almost
a century there have been many attempts at finding solutions which might describe real world
phenomena. We are going to focus on one set of solutions which apply in a very particular
regime. We will solve the Field Equations for the whole Universe under the assumption that
it is homogeneous and isotropic. Homogeneity and isotropy are distinct yet inter-related con-
cepts. For example a universe which is isotropic will be homogeneous while a universe that
is homogeneous may not be isotropic. A universe which is only isotropic around one point is
not homogeneous. A universe that is both homogeneous and isotropic is said to satisfy the
Cosmological Principle. It is believed that our Universe satisfies the Cosmological Principle.
[12]

Homogeneity severely restrict the metrics that we are allowed to work with in the Einstein
field equation. For a start, they must be independent of space, and solely functions of time.
Furthermore, we must restrict ourselves to spaces of constant curvature of which there are only
three: a flat euclidean space, a positively curved space and a negatively curved space. We will
look at curved spaces in a later lecture and will restrict ourselves to a flat geometry here. [12]

In the next sections, we will consider the Schwarzschild solution to the Einstein Field Equa-
tions because they are of great historical significance. We then consider the Robertson-Walker
metric and Friedman equations as a way to bring together the General Theory of Relativity
with the Cosmological Principle. The Robertson-Walker metric is defined for any behavior of
the scale factor a(t). This metric is then plugged into the Einstein Field Equations which relate
the scale factor to the energy-momentum of the Universe.

The Schwarzschild Solution and Black Holes

In the fall of 1915, Karl Schwarzschild was already a well-known German astronomer, serving as
Director of the Astrophysical Observatory in Potsdam and a member of the Prussian Academy
of Sciences. At the outbreak of World War I, he volunteered for service despite being over 40
years of age, and served in France and Russia.

While on the eastern front, he contracted pemphigus, a rare auto-immune skin disease.
While in the hospital, he attempted to find exact solutions of Einsteins equations of general
relativity, newly published in November 1915. He obtained the solution for both a spherically
symmetric star of uniform density and of a mass point. His results were published in early
1916, and Schwarzschild soon died of the disease, in May, 1916 [14].
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The Schwarzschild solution to the Einstein Field Equations provided the basis for considering
a black hole (this term was coined by JA Wheeler in the mid-1960s). The simplest description
of black holes says a black hole is a region of spacetime from which gravity prevents anything,
including light, from escaping. It is an object created when a massive star collapses to a size
smaller than twice its geometrized mass, thereby creating such strong spacetime bending that
its interior can no longer communicate with the external universe.

Black holes were first predicted using solutions of the equations of General Relativity. These
equations predict specific properties for their external geometry. If the black hole is non-
rotating, then its exterior metric is be that of Schwarzschild, which is the exact, unique, static
and spherically symmetric solution of Einstein’s equation in vacuum. In Schwarzschild coordi-
nates, the line element for the Schwarzschild metric has the form

ds2 = − (1− 2Gm/r) dt2 +
dr2

1− 2Gm/r
+ r2

(
dθ2 + sin2 θ dφ2

)
, (2.110)

where G is Newton’s constant and we use units in which c = 1. The surface of the black hole,
i.e., the horizon, is located at r = 2Gm. Only the region on and outside the black hole’s surface,
r ≥ 2Gm, is relevant to external observers. Events inside the horizon can never influence the
exterior.

In that region of spacetime, r >> 2Gm, where the geometry is nearly flat, Newton’s theory,
dv/dt = ∇Φ(r), where Φ(r) is the Newtonian gravitational potential, can be obtained from the
approximate line element

ds2 = − (1− 2Gm/r) dt2 + dr2 + r2
(
dθ2 + sin2 θ dφ2

)
. (2.111)

For Schwarzschild metric, in the limit r � 2Gm, Φ(r) = −Gm/r. Consequently, m is the mass
that governs the Keplerian motions of test masses in the distant, Newtonian gravitational field
and we can call m in Eq. (2.110) Keplerian mass of the black hole.

If the black hole is rotating with angular momentum J , its exterior geometry is given by the
Kerr metric. The Kerr metric is given in Boyer-Lindquist coordinates, which are a generalization
of Schwarzschild coordinates, by

ds2 = −
(

1− 2Gmr

Σ2

)
dt2 +

Σ2

∆
dr2 + Σ2dθ2 − 4Gmra

Σ2
sin2 θdtdφ

+

(
r2 + a2 +

2Gmra2 sin2 θ

Σ2

)
sin2 θdφ2 , (2.112)

where a is the Kerr parameter, related to the angular momentum J by a ≡ J/m; Σ2 =
r2 + a2 cos2 θ, and ∆ = r2 + a2 − 2Gmr. We will assume throughout that a is positive.

The Roberston-Walker Metric and the Friedman Equations

In 1917 Albert Einstein presented a model of the universe based on his theory of General
Relativity. It described a geometrically symmetric (spherical) space with finite volume but no
boundary. In accordance with the Cosmological Principle, the model was homogeneous and
isotropic. It was also static: the volume of the space did not change.

In order to obtain a static model, Einstein had to introduce a new repulsive force in his
equations. The size of this cosmological term is given by the cosmological constant Λ. Einstein
presented his model before the redshifts of the galaxies were known, and taking the universe
to be static was then reasonable. When the expansion of the universe was discovered, this
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argument in favor of a cosmological constant vanished. Einstein himself later called it the
biggest blunder of his life. Nevertheless the most recent observations seem to indicate that a
non-zero cosmological constant has to be present.

The St. Petersburg physicist Alexander Friedmann studied the cosmological solutions of
Einstein equations. If Λ = 0, only evolving, expanding or contracting models of the universe
are possible. The general relativistic derivation of the law of expansion for the Friedmann
models will not be given here. It is interesting that the existence of three types of models and
their law of expansion can be derived from purely Newtonian considerations, with results in
complete agreement with the relativistic treatment. Moreover, the essential character of the
motion can be obtained from a simple energy argument, which we discuss next. [1]

Consider a spherical region of galaxies of radius r. We also assume Λ = 0.) The mass of
this sphere is its volume times the cosmic mass density,

M =
4π r3

3
ρ . (2.113)

We can now consider the motion of a galaxy of mass m at the edge of our spherical region.
According to Hubble’s law, its velocity will be V = Hr and the corresponding kinetic energy

K =
1

2
mV 2 . (2.114)

In a spherical distribution of matter, the gravitational force on a given spherical shell depends
only on the mass inside the shell. The potential energy at the edge of the sphere is

U = −GMm

r
= −4πmr2ρG

3
, (2.115)

where G = 6.67×10−8 cm3 g−1s−2 is Newton’s constant of gravitation. Hence, the total energy
is

E = K + U =
1

2
mV 2 − GM m

r
, (2.116)

which has to remain constant as the universe expands. The value of ρ corresponding to E = 0
is called the critical density ρc. We have,

E =
1

2
mH2r2 − GMm

r

=
1

2
mH2r2 −Gm4π

3
r2ρc

= mr2

(
1

2
H2 − 4π

3
Gρc

)
= 0 (2.117)

where we define

ρc =
3H2

8πG
. (2.118)

The density parameter Ω is defined as Ω = ρ/ρc.
Now consider two points at separation r, such that their relative velocity is V . Let R(t) be

a time dependent quantity representing the scale of the universe. If R increases with time, all
distances, including those between galaxies, will grow. Then

r =
R(t)

R(t0)
r0 , (2.119)
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and

V = ṙ =
Ṙ(t)

R(t0)
r0 , (2.120)

where dots denote derivative with respect to t. Therefore, the Hubble constant is

H =
V

r
=
Ṙ(t)

R(t)
. (2.121)

From the conservation of mass it follows that ρ0R
3
0 = ρR3. Using Eq. (2.118) for the critical

density one obtains

Ω =
8πG

3

ρ0R
3
0

R3H2
. (2.122)

The deceleration expansion is described by the deceleration parameter q defined as

q = −RR̈
Ṙ2

. (2.123)

The deceleration parameter describes the change of expansion Ṙ. The additional factors have
been included in order to make it dimensionless, i.e., independent of the choice of units of length
and time.

The expansion of the universe can be compared to the motion of a mass launched vertically
from the surface of a celestial body. The form of the orbit depends on the initial energy. In
order to compute the complete orbit, the mass M of the main body and the initial velocity
have to be known. In cosmology, the corresponding parameters are the mean density and the
Hubble constant.

The E = 0 model corresponds to the “flat” Friedmann model, so-called Einstein-de Sitter
model. If the density exceeds the critial density, the expansion of any spherical region will
turn to a contraction and it will collapse to a point. This corresponds to the closed Friedmann
model. Finally, if ρ < ρc, the ever-expanding hyperbolic model is obtained.

These three models of the universe are called the standard models. They are the simplest
relativistic cosmological models for Λ = 0. Models with Λ 6= 0 are mathematically more
complicated, but show the same behaviour.

The simple Newtonian treatment of the expansion problem is possible because Newtonian
mechanics is approximately valid in small regions of the universe. However, although the
resulting equations are formally similar, the interpretation of the quantities involved is not the
same as in the relativistic context. The global geometry of Friedmann models can only be
understood within the general theory of relativity.

What is meant by a curved space? To answer this question, recall that our normal method
of viewing the world is via Euclidean plane geometry. In Euclidean geometry there are many
axioms and theorems we take for granted. Non-Euclidean geometries which involve curved
space have been independently imagined by Carl Friedrich Gauss (1777-1855), Janos Bólyai
(1802 - 1860), and Nikolai Ivanovich Lobachevski (1793-1856). Let us try to understand the
idea of a curved space by using two dimensional surfaces. [1]
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Figure 2.8: The two dimensional analogues of the Friedmann models. A spherical surface, a
plane, and a pseudo-sphere. Note that the global geometry of the universe affects the sum of
angles of a triangle. From [1]

Consider for example, the two-dimensional surface of a sphere. It is clearly curved, at least
to us who view it from outside – from our three dimensional world. But how do the hypothetical
two-dimensional creatures determine whether their two-dimensional space is flat (a plane) or
curved? One way would be to measure the sum of the angles of a triangle. If the surface is a
plane, the sum of the angles is 180◦. But if the space is curved, and a sufficiently large triangle
is constructed, the sum of the angles would not be 180◦.

To construct a triangle on a curved surface, say the sphere of Fig. 2.8, we must use the
equivalent of a straight line: that is the shortest distance between two points, which is called
a geodesic. On a sphere, a geodesic is an arc of great circle (an arc in a plane passing through
the center of the sphere) such as Earth’s equator and longitude lines. Consider, for example,
the triangle whose sides are two longitude lines passing from the north pole to the equator,
and the third side is a section of the equator. The two longitude lines form 90◦ angles with
the equator. Thus, if they make an angle with each other at the north pole of 90◦, the sum of
the angles is 270◦. This is clearly not Euclidean space. Note, however, that if the triangle is
small in comparison to the radius of the sphere, the angles will add up to nearly 180◦, and the
triangle and space will seem flat. On the saddlelike surface, the sum of the angles of a triangle
is less than 180◦. Such a surface is said to have negative curvature. [1]

On a large scale what is the overall curvature of the universe? Does it have positive cur-
vature, negative curvature or is it flat? By solving Einstein equations, Robertson and Walker,
showed that the three hypersurfaces of constant curvature (the hyper-sphere, the hyper-plane,
and the hyper-pseudosphere) are indeed possible geometries for a homegeneous and isotropic
universe undergoing expansion.

If the universe had a positive curvature, the universe would be closed, or finite in volume.
This would not mean that the stars and galaxies extended out to a certain boundary, beyond
which there is empty space. There is no boundary or edge in such a universe. If a particle were
to move in a straight line in a particular direction, it would eventually return to the starting
point – perhaps eons of time later. On the other hand, if the curvature of the space was zero
or negative, the universe would be open. [1]

In an expanding universe, the galaxies were once much nearer to each other. If the rate of
expansion had been unchanging, the inverse of the Hubble constant, tage = H−1

0 , would repre-
sent the age of the universe. In Friedmann-Robertson-Walker models, however, the expansion
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is gradually slowing down (i.e., q < 0), and thus the Hubble constant gives an upper limit on
the age of the universe, tage ≈ 14 Gyr. Of course, if Λ 6= 0 this upper limit for the age of the
universe no longer holds.

In an expanding universe the wavelength of radiation is proportional to R, like all other
lengths. If the wavelength at the time of emission, corresponding to the scale factor R, is λ,
then it will be λ0 when the scale factor has increased to R0: λ0/λ = R0/R. The redshift is

z =
λ0 − λ
λ

=
R0

R
− 1 ; (2.124)

i.e., the redshift of a galaxy expresses how much the scale factor has changed since the light
was emitted.

The Age-Redshift Relationship

If we see a source at redshift z, how old was the universe when the light left the source? In the
FRW universe we have

dt =
da

ȧ
=
da

a

1

H
= − dz

1 + z

1

H
(2.125)

so the age of the universe at redshift z is

t(z) =

∫ t

0

dt′ =

∫ ∞
z

dz′

1 + z′
1

H(z′)
(2.126)

Putting z = 0 gives the present age of the universe,

t0 =

∫ ∞
0

dz′

1 + z′
1

H(z′)
(2.127)

Subtracting the two tells us for how long the photons travelled to come to our detectors:

∆t = t0 − t(z) =

∫ z

0

dz′

1 + z′
1

H(z′)
(2.128)

Note that whereas time t is a coordinate whose origin is in the past (in usual cosmological
models it is chosen to be at the beginning of the universe), the origin of the redshift is set to
be today. Conceptually, t is just like Newtonian time, so it is simple to use. For example, if
we discuss two different cosmological models, it is straightforward to compare them when the
universe has the same age (assuming both have a beginning of time). In contrast, comparing
them at the same redshift doesnt make sense unless you specify by which criteria you select
today in the two models. Observationally, however, it is difficult to determine the age of the
universe, while it is easy to measure the redshift. (Assuming we dont know beforehand what
the function H(z) is, i.e. how the universe expands.) The redshift is useful when it is expressed
in relation to some parameter which is easy to measure, such as distances.

The Distance-Redshift Relation

The Friedmann equation may be solved most simply in parametric form, by recasting it in
terms of the conformal time dη = cdt/R (denoting derivatives with respect to η by primes):
[21]

R′2 =
8πG

3c2
ρR4 − kR2 (2.129)
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Because H2
0R

2
0 = kc2/(Ω− 1), the Friedmann equation becomes

a′2 =
k

Ω− 1
[Ωt + Ωma− (Ω− 1)a2 + Ωva

4] (2.130)

which is straightforward to integrate provided that Ωv = 0. Solving the Friedmann equation
for R(t) in this way is important for determining global quantities such as the present age of the
universe, and explicit solutions for particular cases are considered below. However, from the
point of view of observations, and in particular the distanceredshift relation, it is not necessary
to proceed by the direct route of determining R(t).

To the observer, the evolution of the scale factor is most directly characterized by the
change with redshift of the Hubble parameter and the density parameter; the evolution of H(z)
and Ω(z) is given immediately by the Friedmann equation in the form H2 = 8πGρ/3kc2/R2.
Inserting the model dependence of ρ on a gives

H2(a) = H2
0 [Ωv + Ωma

−3 + Ω−4
t − (Ω− 1)a−2]. (2.131)

This is a crucial equation, which can be used to obtain the relation between redshift and
comoving distance. The radial equation of motion for a photon is Rdr = cdt = cdR/Ṙ =
cdR/RH. With R = R0/(1 + z), this gives

R0 =
c

H(z)
dz (2.132)

=
c

H0
[Ωv + Ωma

−3 + Ω−4
t − (Ω− 1)a−2]−1/2dz. (2.133)

This relation is arguably the single most important equation in cosmology, since it shows
how to relate comoving distance to the observables of redshift, Hubble constant and density
parameters. The comoving distance determines the apparent brightness of distant objects, and
the comoving volume element determines the numbers of objects that are observed. These
aspects of observational cosmology are discussed in more detail below.

Lastly, using the expression for H(z) with Ω(a) − 1 = kc2/H2R2 gives the redshift depen-
dence of the total density parameter:

Ω(z)− 1 =
Ω− 1

1− Ω + Ωva2 + Ωma−1 + Ωta−2
(2.134)

This last equation is very important. It tells us that, at high redshift, all model universes
apart from those with only vacuum energy will tend to look like the Ω = 1 model.

If Ω 6= 1, then in the distant past Ω(z) must have differed from unity by a tiny amount: the
density and rate of expansion needed to have been finely balanced for the universe to expand
to the present. This tuning of the initial conditions is called the flatness problem and is one of
the motivations for the applications of quantum theory to the early universe. [21]

The Cosmological Constant

In cosmology, the cosmological constant (usually denoted by Λ) is the value of the energy density
of the vacuum of space. It was originally introduced by Albert Einstein in 1917 as an addition to
his theory of general relativity to achieve a static universe, which was the accepted view at the
time. Einstein abandoned the concept after Hubble’s 1929 discovery that all galaxies outside
our own Local Group are moving away from each other, implying an overall expanding universe.
From 1929 until the early 1990s, most cosmology researchers assumed the cosmological constant
to be zero. Einstein was quoted by George Gamow as saying that the cosmological constant
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was the ”biggest blunder” of his life (The authenticity of this quote is sometimes questioned).
[31]

Since the 1990s, several developments in observational cosmology, especially the discovery
of the accelerating universe from distant supernovae in 1998, and also independent evidence
from the cosmic microwave background and large galaxy redshift surveys, have shown that the
mass-energy density of the universe includes around 70% in dark energy. While dark energy is
poorly understood at a fundamental level, the main required properties of dark energy are that
it dilutes much more slowly than matter as the universe expands, and that it clusters much
more weakly than matter, or perhaps not at all. The cosmological constant is the simplest
possible form of dark energy since it is constant in both space and time, and this leads to the
current standard model of cosmology known as the ΛCDM model, which provides a good fit to
many cosmological observations. [31]

In fact, adding the cosmological constant to Einstein’s equations does not lead to a static
universe at equilibrium because the equilibrium is unstable: if the universe expands slightly,
then the expansion releases vacuum energy, which causes yet more expansion. Likewise, a
universe that contracts slightly will continue contracting. However, the cosmological constant
has remained a subject of theoretical and empirical interest. Empirically, cosmological data in
the past decades strongly suggests that our universe has a positive cosmological constant. The
explanation of this small but positive value is an outstanding theoretical challenge. [31]

General relativity is an example of a scientific theory of impressive power and simplicity,
while the cosmological constant, is an example of a modification, originally introduced to help
fit the data, which appears at least on the surface to be superfluous. Its original role, to allow
static homogeneous solutions to Einstein’s equations in the presence of matter, turned out to be
unnecessary when the expansion of the universe was discovered by Hubble, and there have been
a number of subsequent episodes in which a nonzero cosmological constant was put forward
as an explanation for a set of observations and later withdrawn when the observational case
evaporated. The energy density is the sum of a number of apparently unrelated contributions,
each of magnitude much larger than the upper limits on the cosmological constant today. The
reason that the observed vacuum energy is so small in comparison to the scales of particle physics
has become a major focus if research, although it is usually thought to be easier to imagine an
unknown mechanism which would set it precisely to zero than one which would suppress it by
just the right amount to yield an observationally accessible cosmological constant. [6]

The history of the cosmological constant has led to a reluctance to further consider a nonzero
cosmological constant. However, recent years have provided the best evidence yet that this
elusive quantity does play an important dynamical role in the universe. It is worthwhile to
review the physics and astrophysics of the cosmological constant (and its modern equivalent,
vacuum energy). [6]

Einstein’s field equations are

Rµν −
1

2
Rgµν = 8πGTµν . (2.135)

The universe is spatially homogeneous and isotropic which implies that its metric takes the
Robertson-Walker form

ds2 = −dt2 + a2(t)R2
0

[
dr2

1− kr2
+ r2dΩ2

]
, (2.136)

where dΩ2 = dθ2 + sin2 θdφ2 is the metric on a two-sphere.
To obtain a Robertson-Walker solution to Einstein’s equations, the rest frame of the fluid

must be that of a comoving observer in the metric (2.151); in that case, Einstein’s equations
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reduce to the two Friedmann equations

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2R2
0

, (2.137)

where we have introduced the Hubble parameter H ≡ ȧ/a, and

ä

a
= −4πG

3
(ρ+ 3p) . (2.138)

Einstein was interested in finding static (ȧ = 0) solutions, both due to his hope that general
relativity would embody Mach’s principle that matter determines inertia, and simply to account
for the astronomical data as they were understood at the time. A static universe with a positive
energy density is compatible with (2.137) if the spatial curvature is positive (k = +1) and the
density is appropriately tuned; however, (2.138) implies that ä will never vanish in such a
spacetime if the pressure p is also nonnegative (which is true for most forms of matter, and
certainly for ordinary sources such as stars and gas). Einstein therefore proposed a modification
of his equations, to

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (2.139)

where Λ is a new free parameter, the cosmological constant [7]. Indeed, the left-hand side of
(2.139) is the most general local, coordinate-invariant, divergenceless, symmetric, two-index
tensor we can construct solely from the metric and its first and second derivatives. With this
modification, the Friedmann equations become

H2 =
8πG

3
ρ+

Λ

3
− k

a2R2
0

. (2.140)

and
ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (2.141)

These equations admit a static solution with positive spatial curvature and all the parameters
ρ, p, and Λ nonnegative. This solution is called the “Einstein static universe.”

The discovery by Hubble that the universe is expanding eliminated the empirical need for
a static world model (although the Einstein static universe continues to thrive in the toolboxes
of theorists, as a crucial step in the construction of conformal diagrams). It has also been
criticized on the grounds that any small deviation from a perfect balance will rapidly grow into
a runaway departure from the static solution. [7]

The cosmological constant Λ is a parameter with units of (length)−2. From the point of
view of classical general relativity, there is no preferred choice for what the length scale defined
by Λ might be. Particle physics, however, brings a different perspective to the question. The
cosmological constant turns out to be a measure of the energy density of the vacuum — the state
of lowest energy — and although we cannot calculate the vacuum energy with any confidence,
this identification allows us to consider the scales of various contributions to the cosmological
constant [7].

The cosmological constant is an energy associated with the vacuum, that is, with empty
space. The possibility of a nonzero cosmological constant has been entertained in the past
for theoretical and observational reasons. Recent supernovae results (Perlmutter et al 1998,
Riess et al 1998) have made a strong case for a nonzero and possibly quite large cosmological
constant. Their results have encouraged increased interest in the properties of a universe with
nonzero cosmological constant. Several other observations of various cosmological phenomena
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are also planned or underway which will further constrain the range of allowed values for the
cosmological constant. [8].

The Equation of State

The Friedmann equation relates the rate of increase of the scale factor, as described by the
Hubble parameter, to the total energy density of all matter in the universe. The Friedmann
equation defines, at any given time, a critical energy density,

ρc ≡
3H2

8πG
, (2.142)

for which the spatial sections must be precisely flat (k = 0). We then define the density
parameter

Ωtotal ≡
ρ

ρc
, (2.143)

which allows us to relate the total energy density in the universe to its local geometry

Ωtotal > 1 ⇔ k = +1

Ωtotal = 1 ⇔ k = 0 (2.144)

Ωtotal < 1 ⇔ k = −1 .

It is often convenient to define the fractions of the critical energy density in each different
component by

Ωi =
ρi
ρc

. (2.145)

Energy conservation is expressed in GR by the vanishing of the covariant divergence of the
energy-momentum tensor,

∇µTµν = 0 . (2.146)

Applying this to our assumptions – the RW metric (2.151) and perfect-fluid energy-momentum
tensor – yields a single energy-conservation equation,

ρ̇+ 3H(ρ+ p) = 0 . (2.147)

This equation is actually not independent of the Friedmann and acceleration equations, but
is required for consistency. It implies that the expansion of the universe (as specified by H)
can lead to local changes in the energy density. Note that there is no notion of conservation
of “total energy,” as energy can be interchanged between matter and the spacetime geometry.
[28]

The relationship of the pressure and energy density are now considered. Within the fluid
approximation used here, we may assume that the pressure is a single-valued function of the
energy density p = p(ρ). It is often convenient to define an equation of state parameter, w, by

p = wρ . (2.148)

This should be thought of as the instantaneous definition of the parameter w; it need represent
the full equation of state, which would be required to calculate the behavior of fluctuations.
Many useful cosmological matter sources do obey this relation with a constant value of w.
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For example, w = 0 corresponds to pressureless matter, or dust – any collection of massive
non-relativistic particles would qualify. Similarly, w = 1/3 corresponds to a gas of radiation,
whether it be actual photons or other highly relativistic species.[28]

A constant w leads to a great simplification in solving our equations. The energy density
evolves with the scale factor according to

ρ(a) ∝ 1

a(t)3(1+w)
. (2.149)

The Standard Model

The success of the Big Bang rests on three observational pillars: the Hubble diagram exhibiting
expansion; light element abundances which are in accord with Big Bang nucleosynthesis; and the
blackbody radiation left over from the first few hundred thousand years, the cosmic microwave
background [10]. We shall discuss each of these three pillars in the following three sections.

The Expanding Universe

Einstein’s original field equations are

Rµν −
1

2
Rgµν = 8πGTµν . (2.150)

On very large scales the universe is spatially homogeneous and isotropic to an excellent
approximation, which implies that its metric takes the Robertson-Walker form

ds2 = −dt2 + a2(t)R2
0

[
dr2

1− kr2
+ r2dΩ2

]
, (2.151)

where dΩ2 = dθ2 + sin2 θdφ2 is the metric on a two-sphere.
The curvature parameter k takes on values +1, 0, or −1 for positively curved, flat, and

negatively curved spatial sections, respectively. The scale factor characterizes the relative size
of the spatial sections as a function of time. It is written in a normalized form a(t) = R(t)/R0,
where the subscript 0 refers to a quantity evaluated at the present time. The redshift z under-
gone by radiation from a comoving object as it travels to us today is related to the scale factor
at which it was emitted by

a =
1

(1 + z)
. (2.152)

The energy-momentum sources may be modeled as a perfect fluid, specified by an energy
density ρ and isotropic pressure p in its rest frame. The energy-momentum tensor of such a
fluid is

Tµν = (ρ+ p)UµUν + pgµν , (2.153)

where Uµ is the fluid four-velocity.
To obtain a Robertson-Walker solution to Einstein’s equations, the rest frame of the fluid

must be that of a comoving observer in the metric (2.151). In that case, Einstein’s equations
reduce to the two Friedmann equations

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2R2
0

, (2.154)

where we have introduced the Hubble parameter
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H ≡ ȧ/a, and
ä

a
= −4πG

3
(ρ+ 3p) . (2.155)

Einstein was interested in finding static (ȧ = 0) solutions, both due to his hope that general
relativity would embody Mach’s principle that matter determines inertia, and to account for
the astronomical data as they were understood at the time. A static universe with a positive
energy density is compatible with (2.154) if the spatial curvature is positive (k = +1) and
the density is appropriately tuned; however, (2.155) implies that ä will never vanish in such a
spacetime if the pressure p is also non-negative (which is true for most forms of matter, and
certainly for ordinary sources such as stars and gas) [6].

Einstein therefore proposed a modification of his equations, to

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (2.156)

where Λ is a new free parameter, the cosmological constant.
Indeed, the left-hand side of (2.156) is the most general local, coordinate-invariant, sym-

metric, two-index tensor without divergence that we can construct solely from the metric and
its first and second derivatives. With this modification, the Friedmann equations become

H2 =
8πG

3
ρ+

Λ

3
− k

a2R2
0

. (2.157)

and

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (2.158)

These equations admit a static solution with positive spatial curvature and all the parameters
ρ, p, and Λ nonnegative, and is referred to as the ”Einstein static universe.”

Two independent groups undertook searches for distant supernovae in order to measure
cosmological parameters: the High-Z Supernova Team (Riess et al) and the Supernova Cosmol-
ogy Project (Perlmutter et al). A plot of redshift vs. corrected apparent magnitude from the
original SCP data is shown in Figure 2.9.
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Figure 2.9: Hubble diagram from the Supernova Cosmology Project, from [28].

The data are much better fit by a universe dominated by a cosmological constant than by
a flat matter-dominated model. In fact the supernova results alone allow a substantial range
of possible values of ΩM and ΩΛ; however, if we think we know something about one of these
parameters, the other will be tightly constrained. In particular, if ΩM ∼ 0.3, we obtain

ΩΛ ∼ 0.7 . (2.159)

This corresponds to a vacuum energy density

ρΛ ∼ 10−8 erg/cm3 ∼ (10−3 eV)4 . (2.160)

The supernova studies provided direct evidence for a nonzero value of Einstein’s cosmological
constant.

If general relativity is correct, cosmic acceleration implies there must be a dark energy
density which diminishes relatively slowly as the universe expands. This can be seen directly
from the Friedmann equation, which implies

ȧ2 ∝ a2ρ+ constant . (2.161)

From this relationship, it is clear that the only way to get acceleration (ȧ increasing) in
an expanding universe is if ρ falls off more slowly than a−2; neither matter (ρM ∝ a−3) nor
radiation (ρR ∝ a−4) will do the trick. Vacuum energy is, of course, strictly constant; but
the data are consistent with smoothly-distributed sources of dark energy that vary slowly with
time.
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There are good reasons to consider dynamical dark energy as an alternative to an honest
cosmological constant. First, a dynamical energy density can be evolving slowly to zero, allowing
for a solution to the cosmological constant problem which makes the ultimate vacuum energy
vanish exactly. Second, it poses an interesting and challenging observational problem to study
the evolution of the dark energy, from which we might learn something about the underlying
physical mechanism. Perhaps most intriguingly, allowing the dark energy to evolve opens the
possibility of finding a dynamical solution to the coincidence problem, if the dynamics are such
as to trigger a recent takeover by the dark energy (independently of, or at least for a wide range
of, the parameters in the theory). To date this hope has not quite been met, but dynamical
mechanisms at least allow for the possibility (unlike a true cosmological constant).

The simplest possibility along these lines involves the same kind of source typically invoked
in models of inflation in the very early universe: a scalar field φ rolling slowly in a potential,
sometimes known as “quintessence” [28]. The energy density of a scalar field is a sum of kinetic,
gradient, and potential energies,

ρφ =
1

2
φ̇2 +

1

2
(∇φ)2 + V (φ) . (2.162)

For a homogeneous field (∇φ ≈ 0), the equation of motion in an expanding universe is

φ̈+ 3Hφ̇+
dV

dφ
= 0 . (2.163)

If the slope of the potential V is quite flat, we will have solutions for which φ is nearly
constant throughout space and only evolving very gradually with time; the energy density in
such a configuration is

ρφ ≈ V (φ) ≈ constant . (2.164)

Thus, a slowly-rolling scalar field is an appropriate candidate for dark energy.
However, introducing dynamics opens up the possibility of introducing new problems, the

form and severity of which will depend on the specific kind of model being considered. Most
quintessence models feature scalar fields φ with masses of order the current Hubble scale,

mφ ∼ H0 ∼ 10−33 eV . (2.165)

(Fields with larger masses would typically have already rolled to the minimum of their poten-
tials.) In quantum field theory, light scalar fields are unnatural; renormalization effects tend
to drive scalar masses up to the scale of new physics. The well-known hierarchy problem of
particle physics amounts to asking why the Higgs mass, thought to be of order 1011 eV, should
be so much smaller than the grand unification/Planck scale, 1025-1027 eV. Masses of 10−33 eV
are correspondingly harder to understand. In addition, light scalar fields give rise to long-range
forces and time-dependent coupling constants that should be observable even if couplings to
ordinary matter are suppressed by the Planck scale [28]. We therefore need to invoke additional
fine-tunings to explain why the quintessence field has not already been experimentally detected.

To date, many investigations have considered scalar fields with potentials that asymptote
gradually to zero, of the form e1/φ or 1/φ. These can have cosmologically interesting properties,
including “tracking” behavior that makes the current energy density largely independent of the
initial conditions. They do not, however, provide a solution to the coincidence problem, as
the era in which the scalar field begins to dominate is still set by finely-tuned parameters
in the theory. One way to address the coincidence problem is to take advantage of the fact
that matter/radiation equality was a relatively recent occurrence (at least on a logarithmic
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scale); if a scalar field has dynamics which are sensitive to the difference between matter-
and radiation-dominated universes, we might hope that its energy density becomes constant
only after matter/radiation equality. Instead of a conventional kinetic energy K = 1

2 (φ̇)2, in
k-essence the form

K = f(φ)g(φ̇2) , (2.166)

has been suggested, where f and g are functions specified by the model. For certain choices of
these functions, the k-essence field naturally tracks the evolution of the total radiation energy
density during radiation domination, but switches to being almost constant once matter begins
to dominate. Unfortunately, it seems necessary to choose a finely-tuned kinetic term to get the
desired behavior [28].

An alternative possibility is that there is nothing special about the present era; rather,
acceleration is just something that happens from time to time. In these models the potential
takes the form of a decaying exponential (which by itself would give scaling behavior, so that
the dark energy remained proportional to the background density) with small perturbations
superimposed:

V (φ) = e−φ[1 + α cos(φ)] . (2.167)

On average, the dark energy in such a model will track that of the dominant matter/radiation
component; however, there will be gradual oscillations from a negligible density to a dominant
density and back, on a timescale set by the Hubble parameter, leading to occasional periods of
acceleration. Unfortunately, in neither the k-essence models nor the oscillating models do we
have a compelling particle-physics motivation for the chosen dynamics, and in both cases the
behavior still depends sensitively on the precise form of parameters and interactions chosen.
Nevertheless, these theories stand as interesting attempts to address the coincidence problem
by dynamical means.

One of the interesting features of dynamical dark energy is that it is experimentally testable.
In principle, different dark energy models can yield different cosmic histories, and, in particu-

lar, a different value for the equation of state parameter, both today and its redshift-dependence.
Since the CMB strongly constrains the total density to be near the critical value, it is sensible
to assume a perfectly flat universe and determine constraints on the matter density and dark
energy equation of state; see Figure 2.10 for some recent limits.

As can be seen in Figure 2.10, one possibility that is consistent with the data is that
w < −1. Such a possibility violates the dominant energy condition, but possible models have
been proposed. However, such models run into serious problems when one takes them seriously
as a particle physics theory. Even if one restricts one’s attention to more conventional matter
sources, making dark energy compatible with sensible particle physics has proven tremendously
difficult.

Given the challenge of this problem, it is worthwhile considering the possibility that cosmic
acceleration is not due to some kind of dark energy, but rather arises from new gravitational
physics. there are a number of different approaches to this and we will not review them here.

Big Bang Nucleosynthesis

When the universe was much hotter and denser, when the temperature of order an MeV/kB ,
there were no neutral atoms or even bound nuclei. The vast amounts of radiation in such a
hot environment ensured that any atom or nucleus produced would be immediately destroyed
by a high energy photon. As the universe cooled well below the binding energies of typical
nuclei, light elements began to form. Knowing the conditions of the early universe and the
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Figure 2.10: Constraints on the dark-energy equation-of-state parameter, as a function of ΩM,
assuming a flat universe. These limits are derived from studies of supernovae, CMB anisotropies,
measurements of the Hubble constant, large-scale structure, and primordial nucleosynthesis.
From [28].
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relevant nuclear cross-sect ions, we can calculate the expected primordial abundances of all the
elements. [10]

Figure 2.11: Constraint on the baryon density from Big Bang Nucleosynthesis. Predictions are
shown for four light elements. The solid vertical band is fixed by measurements of primordial
deuterium. The boxes are the observations; there is only an upper limit on the primordial
abundance of 3He. From [10]

Figure 2.11 shows the predictions of Big Bang Nucleosynthesis for the light element abun-
dances. The boxes and arrows in Figure 2.11 show the current estimates for the light element
abundances. These are consistent with the predictions, and this consistency test provides yet
another ringing confirmation of the Big Bang. The measurements do even more though. The
theoretical predictions, depend on the density of protons and neutrons at the time of nucle-
osynthesis. The combined proton plus neutron density is called the baryon density since both
protons and neutrons have baryon number one and these are the only baryons around at the
time. Thus, Big Bang Nucleosynthesis gives us a way of measuring the baryon density in
the universe. Since we know how those densities scale as the universe evolves (they fall as
A−3), we can turn the measurements of light element abundances into measures of the baryon
density today. In particular, the measurement of primordial deuterium pins down the baryon
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density extremely accurately to only a few of the critical density. Ordinary matter (baryons)
contributes at most 5 of the critical density. Since the total matter density today is almost
certainly larger than this. Direct estimates give values on the order of 20-30. Nucleosynthesis
provides a compelling argument for nonbaryonic dark matter. [10]

The deuterium measurements are the new developments in the field. These measurements
are so exciting because they explore the deuterium abundance at redshifts of order 3-4, well
before much processing could have altered the primordial abundances. The basic idea is that
light from distant QSOs is absorbed by intervening neutral hydrogen systems. The key absorp-
tion feature arises from transition from the (n = 1) ground state of hydrogen to the first excited
state (n = 2), requiring a photon with wavelength A = 1215.7 A. Since photons are absorbed
when exciting hydrogen in this fashion, there is a trough in the spectrum at A = 1215.7 A,
redshifted by a factor of 1 + 2. The corresponding line from deuterium should be (i) shifted
over by 0.33 1 + z) and (ii) much less damped since there is much less deuterium. The steep
decline in deuterium as a function of baryon density helps. Even relatively large errors in D
measurements translate into small errors on the baryon density. [10]

The Cosmic Microwave Background

The Cosmological Principle has observational support of another sort, apart from the mea-
surements of the Doppler shifts. After making due allowances for the distortions due to our
own Galaxy and the rich nearby cluster of galaxies in the constellation of Virgo, the universe
seems remarkably isotropic; that is, it looks the same in all directions. Now, if the universe is
isotropic around us, it must also be isotropic about every typical galaxy. However, any point in
the universe can be carried into another point by a series of rotations around fixed centers, so
if the universe is isotropic around every point, it is necessary also homogeneous. In what fol-
lows we will discuss how the observation of the cosmic microwave background (CMB) provides
convincing evidence for an isotropic universe. [1]

The expansion of the universe seems to suggest that typical objects in the universe were
once much closer together than they are right now. This is the idea for the basis that the
universe began about 13.7 billion years ago as an expansion from a state of very high density
and temperature known affectionately as the Big Bang.

The Big Bang was not an explosion, because an explosion blows pieces out into the sur-
rounding space. Instead, the Big Bang was the start of an expansion of space itself. The volume
of the observable universe was very small at the start and has been expanding ever since. The
initial tiny volume of extremely dense matter is not to be thought of as a concentrated mass in
the midst of a much larger space around it. The initial tiny but dense volume was the universe
– the entire universe. There would not have been anything else. When we say that the universe
was once smaller than it is now, we mean that the average separation between galaxies (or other
objects) was less. Therefore, it is the size of the universe itself that has increased since the Big
Bang. [1]

In 1964, Arno Penzias and Robert Wilson were experiecing difficulty with what they as-
sumed to be background noise, or “static,” in their radio telescope . Eventually, they became
convinced that it was real and that it was coming from outside the Galaxy. They made precise
measurements at wavelength λ = 7.35 cm, in the microwave region of the electromagnetic spec-
trum. The intensity of this radiation was found initially not to vary by day or night or time of
the year, nor to depend on the direction. It came from all directions in the universe with equal
intensity, to a precision of better than 1%. It could only be concluded that this radiation came
from the universe as a whole.

The intensity of this CMB as measured at λ = 7.35 cm corresponds to a blackbody radia-

57



tion at a temperature of about 3 K. When radiation at other wavelengths was measured, the
intensities were found to fall on a blackbody curve, corresponding to a temperature of 2.725 K.
[1]

The CMB provides strong evidence in support of the Big Bang, and gives us information
about conditions in the very early universe. In fact, in the late 1940s, George Gamow calculated
that the Big Bang origin of the universe should have generated just such a CMB .

To understand why, let us look at what a Big Bang might have been like. The temperature
must have been extremely high at the start, so high that there could not have been any atoms
in the very early stages of the universe. Instead the universe would have consisted solely of
radiation (photons) and a plasma of charged electrons and other elementary particles. The
universe would have been opaque - the photons in a sense “trapped,” travelling very short
distances before being scattered again, primarily by electrons. Indeed, the details of the CMB
provide strong evidence that matter and radiation were once in thermal equilibrium at very
high temperature. As the universe expanded, the energy spread out over an increasingly larger
volume and the temperature dropped. Only when the temperature had fallen to about 3,000 K
was the universe cool enough to allow the combination of nuclei and electrons into atoms. (In
the astrophysical literature this is usually called “recombination,” a singularly inappropriate
term, for at the time we were considering the nuclei and electrons had never in the previous
history of the universe been combined into atoms!) The sudden disappearence of electrons broke
the thermal contact between radiation and matter, and the radiation continued thereafter to
expand freely. [1]

At the moment this happened, the energy in the radiation field at various wavelengths was
governed by the conditions of the thermal equilibrium, and was therefore given by the Planck
blackbody formula for a temperature equal to that of the matter ∼ 3, 000 K. In particular,
the typical photon wavelength would have been about one micron, and the average distance
between photons would have been roughly equal to this typical wavelength.

What has happened to the photons since then? Individual photons would not be created or
destroyed, so the average distance between photons would simply increase in proportion to the
size of the universe, i.e., in proportion to the average distance between typical galaxies. But
we saw that the effect of the cosmological redshift is to pull out the wavelength of any ray of
light as the universe expands; thus the wavelength of any individual photon would also simply
increase in proportion to the size of the universe. The photons would therefore remain about
one typical length apart, just as for blackbody radiation. [1]

Before proceeding we will pursue this line of argument quantitavively. We can obtain the
Planck distribution that gives the energy du of a blackbody radiation per unit volume, in a
narrow range of wavelengths from λ to λ+ dλ,

du =
8πhc

λ5
dλ

1

ehc/λkT − 1
. (2.168)

For long wavelengths, the denominator in the Planck distribution may be approximated by

ehc/λkT − 1 ' hc/λkT , (2.169)

Hence, in this wavelength region,

du =
8πkT

λ4
dλ . (2.170)

This is the Rayleigh-Jeans formula. If this formula held down to arbitrarily small wavelengths,
du/dλ would become infinite for λ→ 0, and the total energy density in the blackbody radiation
would be infinite. Fortunately, as we saw before, the Planck formula for du reaches a maximum
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at a wavelength λ = 0.2014052hc/kT and then falls steeply off for decreasing wavelengths. The
total energy density in the blackbody radiation is

u =

∫ ∞
0

8πhc

λ5
dλ

1

ehc/λkT − 1
. (2.171)

Integrals of this sort can be looked up in standard tables of definite integrals; the result gives
the Stefan-Boltzmann law

u =
8π5(kT )4

15(hc)3
= 7.56464× 10−15 (T/K)4erg/cm3 . (2.172)

(Recall that 1 J ≡ 107 erg = 6.24× 1018 eV.)

Figure 2.12: The CMB over the entire sky, color-coded to represent differences in temperature
from the average 2.725 K: the color scale ranges from +300 µK (red) to −200 µK (dark blue),
representing slightly hotter and colder spots (and also variations in density.) Results are from
the WMAP satellite. The angular resolution is 0.2◦. From [1].

The Planck distribution can be interpreted in terms of quanta of light or photons. Each
photon has an energy E = hc/λ. Hence the number dn of photons per unit volume in blackbody
radiation in a narrow range of wavelengths from λ to λ+ dλ is

dn =
du

hc/λ
=

8π

λ4
dλ

1

ehc/λkT − 1
. (2.173)

Then the total number of photons per unit volume is

n =

∫ ∞
0

dn

= 8π

(
kT

hc

)3 ∫ ∞
0

x2 dx

ex − 1
, (2.174)

where x = hc/(λkT ). The integral cannot be expressed in terms of elementary functions, but
it can be expressed as an infinite series∫ ∞

0

x2 dx

ex − 1
= 2

∞∑
j=1

1

j3
≈ 2.4 . (2.175)
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Therefore, the number photon density is

n = 60.42198

(
kT

hc

)3

= 20.28

(
T

K

)3

photons cm−3 , (2.176)

and the average photon energy is

〈Eγ〉 = u/n = 3.73× 10−16 (T/K) erg . (2.177)

Consider what happens to blackbody radiation in an expanding universe. If the size of the
universe changes by a factor f , then doubles in size, then f = 2. As predicted by the Doppler
effect, the wavelengths will change in proportion to the size of the universe to a new value
λ′ = fλ. After the expansion, the energy density du′ in the new wavelength range λ′ to λ′+dλ′

is less than the original energy density du in the old wavelength range λ+ dλ, for two different
reasons:
(i) Since the volume of the universe has increased by a factor of f3, as long as no photons have
been created or destroyed, the numbers of photons per unit volume has decreased by a factor
of 1/f3.
(ii) The energy of each photon is inversely proportional to its wavelength, and therefore is
decreased by a factor of 1/f . It follows that the energy density is decreased by an overall factor
1/f3 × 1/f = 1/f4:

du′ =
1

f4
du =

8πhc

λ5f4
dλ

1

ehc/λkT − 1
. (2.178)

If we rewrite Eq. (2.178) in terms of the new wavelengths λ′, it becomes

du′ =
8πhc

λ′5
dλ′

1

ehcf/λ′kT − 1
, (2.179)

which is exactly the same as the old formula for du in terms of λ and dλ, except that T has
been replaced by a new temperature T ′ = T/f . Therefore, we conclude that freely expanding
blackbody radiation remains described by the Planck formula, but with a temperature that
drops in inverse proportion to the scale of expansion.

The existence of the thermal CMB gives strong support to the idea that the universe was
extremely hot in its early stages. As can be seen in Fig. 2.12, the background is very nearly
isotropic, supporting the isotropic and homogeneous models of the universe. Of course one
would expect some small inhomogeneities in the CMB that would provide “seeds” around
which galaxy formation could have started. These tiny inhomogeneities were first detected by
the COBE (Cosmic Background Explorer) and by subsequent experiments with greater detail,
culminating with the WMAP (Wilkinson Microwave Anisotropy Probe). [1].

The Cosmic Inventory

There is now a substantial observational basis for estimates of the cosmic mean densities of all
the known and more significant forms of matter and energy in the present-day universe. The
compilation of the energy inventory offers an overview of the integrated effects of the energy
transfers involved in all the physical processes of cosmic evolution operating on scales ranging
from the Hubble length to black holes and atomic nuclei. The compilation also offers a way
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to assess how well we understand the physics of cosmic evolution, by the degree of consistency
among related entries. Very significant observational advances, particularly from large-scale
surveys including the Two Degree Field Galaxy Redshift Survey, the Sloan Digital Sky Survey,
the Two Micron All-Sky Survey, the HI Parkes All Sky Survey, and the Wilkinson Microwave
Anisotropy Probe, made it timely to compile what is known about the entire energy inventory,
and was presented in a landmark publication by [15].

This inventory includes the mass densities in the various states of baryons. Most entries
in this part of the inventory have not changed much, while substantial advances in the ob-
servational constraints have considerably reduced the uncertainties. It appears that most of
the baryonic components are observationally well constrained, apart from the largest entry, for
warm plasma, which still is driven by the need to balance the budget rather than more directly
by the observations. [15]

The largest entries, for dark matter and the cosmological constant, or dark energy, are well
constrained within a cosmological theory that is reasonably well tested, but the physical natures
of these entries remain quite hypothetical. While the physical nature of magnetic fields and
cosmic rays are understood, the theories of the evolution of these components, and the estimates
of their contributions to the present energy inventory, are quite uncertain. The situation for
most of the other entries tends to be between these extremes: the physical natures of the entries
are adequately characterized, for the most part, and our estimates of their energy densities,
while generally not very precise, seem to be meaningfully constrained by the observations. [15]

The inventory, which is presented in the following table, is arranged by categories and
components within categories. We show here only a portion of the extensive inventory compiled
by [15].

Figure 2.13: The Cosmic Energy Inventory, part of Table 1 in [15]
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The inventory in Figure 2.13 assumes the now standard relativistic Friedmann-Lemâıtre
ΛCDM cosmology, in which space sections at fixed world time have negligibly small mean
curvature. Einstein’s cosmological term, Λ, is independent of time and position, the dark
matter is an initially cold noninteracting gas, and primeval departures from homogeneity are
adiabatic, Gaussian, and scale-invariant. Physics in the dark sector is not well constrained: Λ
might be replaced with a dynamical component. The current limit on the index of the equation
of state for the dark energy is w = p/ρ < −0.78 at 95%. The bound w = −1.02+0.13

−0.19 is obtained
from the Type Ia supernova Hubble diagram under the assumption of flat space curvature as
in the models for dark energy now under discussion, the physics of the dark matter may prove
to be more complicated than that of a free collisionless gas, and the initial conditions may not
be adequately approximated by the present standard cosmology. If such complications were
present we expect their effects on entries that are sensitive to the cosmological model would be
slight, however, because the cosmological tests now offer close to compelling evidence that the
ΛCDM model is a useful approximation to reality. [15]

The Dark Sector

The components in Category 1 (Figure 2.13) interact with the contents of the visible sector
only by gravity, as far as is now known. This makes it difficult to check whether the dark
energy — or Einstein’s cosmological constant, Λ — and the dark matter really have the simple
properties assumed in the ΛCDM cosmology. Future versions of the inventory might contain
separate entries for the potential, kinetic and gradient contributions to the dark energy density,
or a potential energy component in the dark matter.

There is abundant evidence that the total mass density — excluding dark energy — is well
below the Einstein-de Sitter value. That means, among other things, that the consistency of
cross-checks from the many ways to estimate the mass density provides close to compelling
evidence that the gravitational interaction of matter at distances up to the large-scale flows is
well approximated by the inverse square law, and that starlight is a good tracer of the mass
distribution on scales to 100kpc. [15]

The other entries in the first category in Figure 2.13 are computed and estimates of the
other significant contributions to the total mass density, under the assumption that the density
parameters sum to unity, that is, space curvature is neglected.

Thermal Remnants

The components in Category 2 (Figure 2.13) include thermal remnants.
Entry 2.1 is based on the COBE measurement of the temperature of the thermal cosmic

electromagnetic background radiation (the CMBR), To = 2.725 K. The COBE and UBC mea-
surements show that the spectrum is very close to thermal. It has been slightly disturbed by
the observed interaction with the hot plasma in clusters of galaxies. The limit on the resulting
fractional increase in the radiation energy density is [15]

δu/u = 4y < 6× 10−5. (2.180)

This means that the background radiation energy density has been perturbed by the amount
∆Ω < 10−8.5. The thermal background radiation has been perturbed also by the dissipation of
the primeval fluctuations in the distributions of baryons and radiation on scales smaller than
the Hubble length at the epoch of decoupling of baryonic matter and radiation. If the initial
mass fluctuations are adiabatic and scale-invariant the fractional perturbation to the radiation
energy per logarithmic increment of the comoving length scale is δu/u ∼ δ2

h, where δh ∼ 10−5 is
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the density contrast appearing at the Hubble length. This is small compared to the subsequent
perturbation by hot plasma.

Entry 2.2 uses the standard estimates of the relict thermal neutrino temperature, Tν =
(4/11)1/3To, and the number density per family, nν = 112 cm−3. They adopt the neutrino
mass differences from oscillation experiments [15].

Nuclear binding energy was released during nucleosynthesis, and is shown in entry 2.3 as a
negative value, meaning the comoving baryon mass density has been reduced and the energy
density in radiation and neutrinos increased. The effect on the radiation background has long
since been thermalized, of course, but the entry is worth recording for comparison to the
nuclear binding energy released in stellar evolution. For the same reason, we compute the
binding energy relative to free protons and electrons. The convention is artificial, because light
element formation at high redshifts was dominated by radiative exchanges of neutrons, protons
and atomic nuclei, and the abundance of the neutrons was determined by energy exchanges
with the cosmic neutrino background. It facilitates comparison with category 6, however. The
nuclear binding energy in entry 2.3 is the product

−ΩNB,He = 0.0071Yp Ωb = 10−4.1. (2.181)

This is larger in magnitude than the energy in the CMBR today.

The Baryon Rest Mass

The entries in Category 3 (Figure 2.13) refer to the baryon rest mass. One must add the
negative binding energies to get the present mass density in baryons. The binding energies are
small and the distinction purely formal at the accuracy we can hope for in cosmology, of course,
with the conceivable exception of the baryons sequestered in black holes.

They begin with the best-characterized components, the stars, star remnants, and planets,
and then consider the diffuse components, and conclude this subsection with discussions of the
baryons in groups and the intergalactic medium and the lost baryons in black holes. [15].

The baryon mass in stars is estimated from the galaxy luminosity density and the stellar
mass-to-light ratio, Mstars/L, along with a stellar initial mass function (the IMF) that allows
us to estimate the mass fractions in various forms of stars and star remnants.

The mass in planets that are gravitationally bound to stars must be small, but it is of
particular interest to us as residents of a planet. It is reported that about 6.5% of nearby
FGKM stars have detected Jovian-like planets, and that an extrapolation to planets at larger
orbital radii might be expected to roughly double this number. In the model for the PDMF
the ratio of the number density of stars in the mass range 0.08 to 1.6 m� to the mass density
in stars is n/ρ = 2.1m−1

� . The product of this quantity with the mass density in stars, the
fraction 0.13, and the ratio of the mass of Jupiter to the Solar mass is

Ωplanets = 10−6.1. (2.182)

Stars with lower metallicity have fewer planets, but that may not introduce a serious error
because there are fewer low metallicity stars. [15]

Entry 3.1, for the baryon mass outside galaxies and clusters of galaxies, is the difference
between the adopted value of the baryon density parameter and the sum of all the other entries
in category 3. Within standard pictures of structure formation this component could not be in a
compact form such as planets, but rather must be a plasma, diffuse enough to be ionized by the
intergalactic radiation or else shocked to a temperature high enough for collisional ionization,
but not dense and hot enough to be a detectable X-ray source outside clusters and hot groups
of galaxies.
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We comment here on a simple picture for the cooling and settling of baryons onto galaxies.
The sum of the baryon mass densities belonging to galaxies, in entries 3.3 to 3.13, is Ωb,g =
0.0035. This is 8% of the total baryon mass. Suppose Ωb,g consists of all baryons gathered
from radius rg around L ∼ L∗ galaxies, and it is supposed that we can neglect the addition of
baryons by settling from further out and the loss by galactic winds. That is, we are supposing
that at r > rg the ratio of the baryon density to the dark matter density is the cosmic mean
value, and that the baryons closer in have collapsed onto the galaxies.

The Remainder

The interested reader is referred to the original publication [15] for a review of the rest of the
cosmic inventory. By reviewing the dark sector and the baryon mass, we have discussed nearly
100.0% of the cosmic energy inventory. A summary chart is shown below in Figure 2.14 as a
summary of the detailed description provided in [15].

Figure 2.14: The Cosmic Energy Inventory, based on data from [15], as published by Pössel
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The Cosmological Parameters

The discovery of the cosmic microwave background (CMB) by Penzias and Wilson in 1964
(Nobel Prize 1978) established the modern paradigm of the hot big bang cosmology. Almost
immediately after this seminal discovery, searches began for anisotropies in the CMB – the
primordial signatures of the fluctuations that grew to form the structure that we see today.
Despite many attempts, the detection of higher-order anisotropies proved elusive until the
first results from the Cosmic Background Explorer (COBE). The COBE results established
the existence of a nearly scale-invariant spectrum of primordial fluctuations on angular scales
larger than 7◦, consistent with the predictions of inflationary cosmology, and stimulated a new
generation of precision measurements of the CMB.

Rapid advances in observational cosmology have led to the establishment of a precision
cosmological model, with many of the key cosmological parameters determined to one or two
significant figure accuracy. Particularly prominent are measurements of cosmic microwave back-
ground (CMB) anisotropies, with the highest precision observations being those of the Planck
Satellite which for temperature anisotropies supersede the iconic WMAP results. However the
most accurate model of the Universe requires consideration of a range of different types of
observation, with complementary probes providing consistency checks, lifting parameter degen-
eracies, and enabling the strongest constraints to be placed. [16]

The term ‘cosmological parameters’ encompasses an ever increasing range of parameters,
and often includes the parameterization of some functions, as well as simple numbers describing
properties of the Universe. The original usage referred to the parameters describing the global
dynamics of the Universe, such as its expansion rate and curvature. Also now of great interest
is how the matter budget of the Universe is built up from its constituents: baryons, photons,
neutrinos, dark matter, and dark energy. We need to describe the nature of perturbations
in the Universe, through global statistical descriptors such as the matter and radiation power
spectra. There may also be parameters describing the physical state of the Universe, such
as the ionization fraction as a function of time during the era since recombination. Typical
comparisons of cosmological models with observational data now feature between five and ten
parameters. [16]

With an isotropic and homogeneous matter background, described by a stress tensor Tµν of
a fluid in its rest frame. Thus Tµν = diag(ρ,−p,−p,−p), where ρ is energy/matter density and
p is pressure. The Einstein equations are

(Rµν −
1

2
gµνR) = 8πGTµν . (2.183)

For a spacetime with metric and matter given above, and a cosmological constant Λ, these
equations of motion yield (

Ṙ

R

)2

= H2 =
8πGρ

3
− k

R2
+

Λ

3
. (2.184)

Here, Ṙ = dR/dt, etc. In addition the acceleration of R(t) obeys

R̈

R
= −4πG

3
(ρ+ 3p) +

Λ

3
(2.185)

where p is pressure in the matter stress tensor above.
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Write H0 for the numerical value of H today, the Hubble constant, H0 = 100h km/s/Mpc
and R0 for the value of the scale factor today. [8] Then define

Ωk =
−k
R2

0H
2
0

Ωρ =
8πG

3H2
0

ρ0

ΩΛ =
Λ

3H2
0

,

(2.186)

constants corresponding to the values of these ratios today. The equation of motion, equation
(2.184), implies [8]

1 = Ωk + Ωρ + ΩΛ . (2.187)

Ordinarily, the Universe is taken to be a perturbed Robertson–Walker space-time with
dynamics governed by Einstein’s equations. Using the density parameters Ωi for the various
matter species and ΩΛ for the cosmological constant, the Friedmann equation can be written∑

i

Ωi + ΩΛ − 1 =
k

R2H2
, (2.188)

where the sum is over all the different species of material in the Universe. This equation applies
at any epoch, but later in this article we will use the symbols Ωi and ΩΛ to refer to the present
values.

The complete present state of the homogeneous Universe can be described by giving the
current values of all the density parameters and the Hubble constant h (the present-day Hubble
parameter being written H0 = 100h km s−1 Mpc−1). A typical collection would be baryons
Ωb, photons Ωγ , neutrinos Ων , and cold dark matter Ωc (given charge neutrality, the electron
density is guaranteed to be too small to be worth considering separately and is included with
the baryons). The spatial curvature can then be determined from the other parameters using
2.188. The total present matter density Ωm = Ωc + Ωb is sometimes used in place of the cold
dark matter density Ωc. [16]
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Figure 2.15: Cosmological Parameters, from [16].

Parameter constraints reproduced from Table 1.1 in [16] are shown in Figure 2.15. All
columns assume the ΛCDM cosmology with a power-law initial spectrum, no tensors, spatial
flatness, and a cosmological constant as dark energy. Planck takes the sum of neutrino masses
fixed to 0.06eV, while WMAP sets it to zero. Above the line are the six parameter combinations
actually fit to the data in the Planck analysis (θMC is a measure of the sound horizon at
last scattering); those below the line are derived from these. Two different data combinations
including Planck are shown to highlight the extent to which additional data improve constraints.
The first column is a combination of CMB data only — Planck temperature plus WMAP
polarization data plus high-resolution data from ACT and SPT — while the second column
adds BAO data from the SDSS, BOSS, 6dF, and WiggleZ surveys. For comparison the last
column shows the final nine-year results from the WMAP satellite, combined with the same
BAO data and high-resolution CMB data (which they call eCMB). Note that the WMAP
data uses ΩΛ directly as a fit parameter, rather than θMC. The perturbation amplitude ∆2

R

is specified at the scale 0.05 Mpc−1 for Planck, but 0.002 Mpc−1 for WMAP, so the spectral
index ns needs to be taken into account in comparing them. Uncertainties are shown at 68%
confidence. [16]

These parameters allow us to track the history of the Universe back in time, at least until
an epoch where interactions allow interchanges between the densities of the different species,
which is believed to have last happened at neutrino decoupling, shortly before Big Bang Nu-
cleosynthesis (BBN). To probe further back into the Universe’s history requires assumptions
about particle interactions, and perhaps about the nature of physical laws themselves. [16]
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Large Scale Structure

The central unsolved riddle of cosmology has therefore become the question of how the near
perfectly homogeneous, featureless, extremely hot and dense early Universe gave rise to the
wealth and variety of structure which make our cosmos into such a fascinating world to live in.
Instrumental in solving this puzzle is the realization that our Universe still contains cosmological
fossils, structures and physical properties that still contain traces of the processes that have been
responsible for the emergence of all the objects and structures populating our cosmos. The way
in which matter has arranged itself on scales of a few up to several hundreds Megaparsec has
evolved sufficiently far to yield observable manifestations of the growth process while its matter
contents and internal motions have not yet been blended to such an extent that they do no
longer contain any directly and objectively retrievable information on the structure formation
processes. [29].

The hot and cold spots we see on the CMBR today were the high and low density regions
at the time the radiation that we observe today was first emitted. Once matter took over as
the dominant source of energy density, these perturbations were free to grow by accreting other
matter from their surroundings. Initially, the collapsing matter would have just been dark
matter since the baryons were still tied to the radiation. After the formation of the CMBR
and decoupling, however, the baryons also fell into the gravitational wells set up by the dark
matter and began to form stars, galaxies, galaxy clusters, and so on. Cosmologists refer to this
distribution of matter as the ”large scale structure” of the universe. [13]

Up to this point we have discussed the universe in terms of a homogeneous and isotropic
FRW model. We now take the next step by explicitly considering small perturbations around
the homogeneous and isotropic model (which we now refer to as the unperturbed or background
universe). In cosmology, perturbation theory has wide applicability. Often the distribution of
non-linear objects can be treated in terms of linear theory, even though their internal com-
position cannot, and even very non-linear structures such as planets, stars and galaxies have
evolved from small initial perturbations under the influence of gravity. This growth is called
structure formation, though sometimes the term is used to refer only to the situation when
perturbations become of order unity and bound structures form. [23]

The growth of this small inhomogeneity into the present observable structure of the universe.
This part is less speculative, since we have a well established theory of gravity, general relativity.
However, there is uncertainty in this part too, since we do not know the precise nature of the
dominant components to the energy density of the universe, the dark matter and the possible
dark energy. The gravitational growth depends on the equations of state and the streaming
lengths (particle mean free path between interactions) of these density components. Besides
gravity, the growth is affected by pressure forces [23]

As a general rule, making predictions for the statistical properties of large scale structure
can be very challenging. For the CMBR, the deviations from the mean temperature are very
small and linear perturbation theory is a very good approximation. By comparison, the density
of matter in our galaxy compared to the mean density of the universe is enormous. As a result,
there are two basic options: either do measurements on very large physical scales where the
variations in density are typically much smaller or compare the measurements to simulations
of the universe where the non-linear effects of gravity can be modeled. Both of these options
require significant investment in both theory and hardware, but the last several years have
produced some excellent confirmations of the basic picture. [13]

The process that led to the generation of the acoustic peaks in the CMBR power spectrum
was driven by the presence of a tight coupling between photons and baryons just prior to
decoupling. This fluid would fall into the gravitational potential wells set up by dark matter
(which does not interact with photons) until the pressure in the fluid would counteract the
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gravitational pull and the fluid would expand. This led to hot spots and cold spots in the
CMBR, but also led to places where the density of matter was a little higher thanks to the
extra baryons being dragged along by the photons and areas where the opposite was true. Like
with the CMBR, the size of these areas was determined by the size of the observable universe
at the time of decoupling, so certain physical scales would be enhanced if you looked at the
angular power spectrum of the baryons. Of course, once the universe went through decoupling,
the baryons fell into the gravitational wells with the dark matter, but those scales would persist
as ”wiggles” on the overall matter power spectrum. [13]

Of course, as the size of the universe expanded, the physical scale of those wiggles increased,
eventually reaching about 500 million light years today. Making a statistical measurement of
objects separated by those sorts of distances requires surveying a very large volume of space.
In 2005, two teams of cosmologists reported independent measurements of the expected baryon
feature. As with the CMBR power spectrum, this confirmed that the model cosmologists have
developed for the initial growth of large scale structure was a good match to what we see in
the sky. [13]

The second method for understanding large scale structure is via cosmological simulations.
The basic idea behind all simulations is this: if we were a massive body and could feel the
gravitational attraction of all of the other massive bodies in the universe and the overall geom-
etry of the universe, where would we go next? Simulations answer this question by quantizing
both matter and time. A typical simulation will take N particles (where N is a large number;
hence the term N-body simulation) and assign them to a three-dimensional grid. Those initial
positions are then perturbed slightly to mimic the initial fluctuations in energy density from
inflation. Given the positions of all of these particles and having chosen a geometry for our
simulated universe, we can now calculate where all of these particles should go in the next small
bit of time. We move all the particles accordingly and then recalculate and do it again. [13]

Obviously, this technique has limits. If we assign a given mass to all of our particles, then
measurements of mass below a certain limit will be strongly quantized (and hence inaccurate).
Likewise, the range of length scales is limited: above by the volume of the chunk of the universe
we have chosen to simulate and below by the resolving scale of our mass particles. There is also
the problem that, on small scales at least, the physics that determines where baryons will go
involves more than just gravity; gas dynamics and the effects of star formation makes simulating
baryons (and thus the part of the universe we can actually see!) challenging. Finally, we do not
expect the exact distribution of mass in the simulation to tell us any thing in particular; we
only want to compare the statistical properties of the distribution to our universe. This article
discusses these statistical methods in detail as well as providing references to the relevant
observational data. Still, given all of these flaws, efforts to simulate the universe have improved
tremendously over the last few decades, both from a hardware and a software standpoint. [13]

The theory of cosmological perturbations has become a cornerstone of modern quantitative
cosmology since it is the framework which provides the link between the models of the very
early Universe such as the inflationary Universe scenario (which yield causal mechanisms for
the generation of fluctuations) and the wealth of recent high-precision data on the spectrum of
density fluctuations and cosmic microwave anisotropies.

Newtonian Theory of Cosmological Perturbations

The growth of density fluctuations is a consequence of the purely attractive nature of the
gravitational force. Imagine (first in a non-expanding background) a density excess δρ localized
about some point x in space. This fluctuation produces an attractive force which pulls the
surrounding matter towards x. The magnitude of this force is proportional to δρ. Hence, by
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Newton’s second law
δ̈ρ ∼ Gδρ , (2.189)

where G is Newton’s gravitational constant. Hence, there is an exponential instability of flat
space-time to the development of fluctuations.

Obviously, in General Relativity it is inconsistent to consider density fluctuations in a non-
expanding background. If we consider density fluctuations in an expanding background, then
the expansion of space leads to a friction term in (2.189). Hence, instead of an exponential
instability to the development of fluctuations, the growth rate of fluctuations in an expanding
Universe will be as a power of time. It is crucial to determine what this power is and how it
depends both on the background cosmological expansion rate and on the length scale of the
fluctuations. [5]

We will be taking the background space-time to be homogeneous and isotropic, with a metric
given by

ds2 = dt2 − a(t)2dx2 , (2.190)

where t is physical time, dx2 is the Euclidean metric of the spatial hypersurfaces (here taken for
simplicity to be spatially flat), and a(t) denoting the scale factor, in terms of which the expansion
rate is given by H(t) = ȧ/a. The coordinates x used above are “comoving” coordinates,
coordinates painted onto the expanding spatial hypersurfaces. Note, however, that in the
following two subsections x will denote the physical coordinates, and q the comoving ones.

In this context, matter is described by a perfect fluid, and gravity by the Newtonian grav-
itational potential ϕ. The fluid variables are the energy density ρ, the pressure p, the fluid
velocity v, and the entropy density S. The basic hydrodynamical equations are

ρ̇+∇ · (ρv) = 0

v̇ + (v · ∇)v +
1

ρ
∇p+∇ϕ = 0

∇2ϕ = 4πGρ (2.191)

Ṡ + (v · ∇)S = 0

p = p(ρ, S) .

The first equation is the continuity equation, the second is the Euler (force) equation, the third
is the Poisson equation of Newtonian gravity, the fourth expresses entropy conservation, and
the last describes the equation of state of matter.

The background is given by the background energy density ρo, the background pressure p0,
vanishing velocity, constant gravitational potential ϕ0 and constant entropy density S0. As
mentioned above, it does not satisfy the background Poisson equation.

The equations for cosmological perturbations are obtained by perturbing the fluid variables
about the background,

ρ = ρ0 + δρ

v = δv

p = p0 + δp (2.192)

ϕ = ϕ0 + δϕ

S = S0 + δS ,

where the fluctuating fields δρ, δv, δp, δϕ and δS are functions of space and time, by inserting
these expressions into the basic hydrodynamical equations (2.191), by linearizing, and by com-
bining the resulting equations which are of first order in time to obtain the following second
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order differential equations for the energy density fluctuation δρ and the entropy perturbation
δS

δ̈ρ− c2s∇2δρ− 4πGρ0δρ = σ∇2δS (2.193)

δ̇S = 0 ,

where the variables c2s and σ describe the equation of state

δp = c2sδρ+ σδS (2.194)

with

c2s =
(δp
δρ

)
|S

(2.195)

denoting the square of the speed of sound.
The first conclusions from the basic perturbation equations (2.193) are that

1) entropy fluctuations do not grow,
2) adiabatic fluctuations are time-dependent, and
3) entropy fluctuations seed an adiabatic mode. [5]

Taking a closer look at the equation of motion (2.193) for δρ, we see that the third term
on the left hand side represents the force due to gravity, a purely attractive force yielding an
instability of flat space-time to the development of density fluctuations (as discussed earlier,
see (2.189)). The second term on the left hand side of (2.193) represents a force due to the
fluid pressure which tends to set up pressure waves. In the absence of entropy fluctuations, the
evolution of δρ is governed by the combined action of both pressure and gravitational forces.
[5]

Restricting our attention to adiabatic fluctuations, we see from (2.193) that there is a critical
wavelength, the Jeans length, whose wavenumber kJ is given by

kJ =
(4πGρ0

c2s

)1/2
. (2.196)

Fluctuations with wavelength longer than the Jeans length (k � kJ) grow exponentially

δρk(t) ∼ eωkt with ωk ∼ 4(πGρ0)1/2 (2.197)

whereas short wavelength modes (k � kJ) oscillate with frequency ωk ∼ csk. Note that the
value of the Jeans length depends on the equation of state of the background. For a background
dominated by relativistic radiation, the Jeans length is large (of the order of the Hubble radius
H−1(t)), whereas for pressure-less matter the Jeans length goes to zero.

Relativistic Theory of Cosmological Fluctuations

The Newtonian theory of cosmological fluctuations discussed in the previous section breaks
down on scales larger than the Hubble radius because it neglects perturbations of the metric,
and because on large scales the metric fluctuations dominate the dynamics. [5]
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Let us begin with a heuristic argument to show why metric fluctuations are important on
scales larger than the Hubble radius. For such inhomogeneities, one should be able to ap-
proximately describe the evolution of the space-time by applying the first Friedmann-Lemâitre-
Robertson-Walker (FLRW) equation of homogeneous and isotropic cosmology to the local Uni-
verse: ( ȧ

a

)2
=

8πG

3
ρ . (2.198)

Based on this equation, a large-scale fluctuation of the energy density will lead to a fluctuation
(“δa”) of the scale factor a which grows in time. This is due to the fact that self gravity
amplifies fluctuations even on length scales λ greater than the Hubble radius.

This argument is made rigorous in the following analysis of cosmological fluctuations in
the context of general relativity, where both metric and matter inhomogeneities are taken
into account. We will consider fluctuations about a homogeneous and isotropic background
cosmology, given by the metric (2.190), which can be written in conformal time η (defined by
dt = a(t)dη) as

ds2 = a(η)2
(
dη2 − dx2

)
. (2.199)

The evolution of the scale factor is determined by the two FLRW equations,

ρ̇ = −3H(ρ+ p) , (2.200)

which determine the expansion rate and its time derivative in terms of the equation of state of
the matter, whose background stress-energy tensor can be written as

Tµν =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 . (2.201)

The theory of cosmological perturbations is based on expanding the Einstein equations to
linear order about the background metric. The theory was initially developed in pioneering
works by Lifshitz. Significant progress in the understanding of the physics of cosmological
fluctuations was achieved by Bardeen who realized the importance of subtracting gauge artifacts
from the analysis. [5]

To understand the generation and evolution of fluctuations in current models of the very
early Universe, we need both Quantum Mechanics and General Relativity, i.e. quantum gravity.
This is an intractable problem, since the theory of quantum gravity is not yet established.
However, on large cosmological scales the fractional amplitude of the fluctuations is smaller
than 1. Since gravity is a purely attractive force, the fluctuations must have been - at least in
the context of an eternally expanding background cosmology - very small in the early Universe.
Thus, a linearized analysis of the fluctuations is self-consistent. [5]

To briefly summarize the quantum theory of cosmological perturbations. In the linearized
theory, fluctuations are set up at some initial time ti mode by mode in their vacuum state.
While the wavelength is smaller than the Hubble radius, the state undergoes quantum vacuum
fluctuations. The accelerated expansion of the background redshifts the length scale beyond the
Hubble radius. The fluctuations freeze out when the length scale is equal to the Hubble radius.
On larger scales, the amplitude of vk increases as the scale factor. This corresponds to the
squeezing of the quantum state present at Hubble radius crossing (in terms of classical general
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relativity, it is self-gravity which leads to this growth of fluctuations). It is the squeezing of the
quantum vacuum state leads to the emergence of the classical nature of the fluctuations. [5]

The presiding discussion of Newtonian and Relativistic cosmological perturbations is in-
tended to be a brief summary of this field. In order to further understand the nature of
cosmological perturbations and the formation of large scale structure, it is necessary to delve
into the quantum origins of cosmological perturbations. this can be further explored in [5] and
the references therein.

Summary: Cosmology

Cosmology is the science concerned with the origins, structure and evolution of the Universe
as a whole. It is based on the Cosmological Principle, which basically is an extension of
the Copernican Principle that the earth is not a privileged location. On large scales, the
universe is homogeneous and isotropic. As an assumption, the cosmological principle cannot
be proven. But no observation performed so far is inconsistent with this assumption; at least
no observation of the distant Universe. The density of galaxies appears to be independent of
direction; the intensity of the cosmic background radiation (the microwave radiation from the
early hot Universe) is highly isotropic; there is no significant variation with direction.

The physics of the Universe is best described, as we know today, by the General Theory
of Relativity. The Robertson-Walker metric describes the kinematics of our homogeneous and
isotropic Universe. The dynamics of the Universe are described by the Friedman equations.
Galaxies have a redshift which is proportional to their distance. The Hubble constant expresses
the rate of expansion of the Universe, according to Hubble’s law. The ”Big Bang” model of the
Universe is supported collectively by three pillars, including studies of the Cosmic Microwave
Background, the expansion of the Universe, and nucleosynthesis. The Cosmological Constant
(Λ) is a way to express the increasing acceleration of the Universe, as was shown by supernovae
studies. The standard model of the Universe is referred to as the ΛCDM model and can be
described by the cosmological parameters. Large scale structure in the Universe is believed to
be a result of gravitational instability. These density fluctuations, which left their trail in the
Cosmic Microwave Background, result in gravitational collapse of over dense regions which the
form the large scale structure in the Universe. [25]

Perhaps the most exciting way to end this brief survey of Cosmology is to acknowledge that
while studies over the last 100 years have provided a great deal of insight into the origin, struc-
ture and evolution of the Universe, there remain an exponentially greater number of questions
yet to be answered. What are the precise values of the cosmological parameters? What is the
nature of Dark Energy and why is the Universe expanding? What is the nature of Dark Matter
(to be discussed in Chapter 3)? What drove inflation in the early Universe?
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2.5 Chapter Summary

The three vast subjects introduced in this chapter can be succinctly summarized in three state-
ments:

Special Relativity The speed of light is constant.

General Relativity Mass tells space-time how to curve and space-time tells matter how to
move (from JA Wheeler).

Cosmology The Universe is homogeneous and isotropic.

All else follows from these three statements which have vast repercussions for our under-
standing of the universe.
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Saga. In H. J. A. Röttgering, P. N. Best, and M. D. Lehnert, editors, The Most
Distant Radio Galaxies, page 341, 1999. 68

[30] Wikipedia. Tests of general relativity. http://en.wikipedia.org/wiki/Tests_of_

general_relativity. 33, 34

[31] Wikipedia. Cosmological constant. http://en.wikipedia.org/wiki/Cosmological_

constant, September 2014. 47

[32] C. M. Will. Special Relativity: A Centenary Perspective, pages 33–49. 2006. 12

76

http://en.wikipedia.org/wiki/Tests_of_general_relativity
http://en.wikipedia.org/wiki/Tests_of_general_relativity
http://en.wikipedia.org/wiki/Cosmological_constant
http://en.wikipedia.org/wiki/Cosmological_constant


Chapter 3

Gravitational Lensing: Models
and Applications in Cosmology

3.1 Purpose and Organization of this Chapter

The information in this chapter can be found in any number of textbooks and major review
articles, and has been collected here in one place to serve as a convenient summary of the
rapidly growing field of gravitational lensing. This chapter is presented as background for what
follows. There is no attempt to develop new aspects of science in this chapter. Much of the
material in this chapter is derived from existing sources that are extensively cited.

There are many excellent comprehensive review articles about all facets of gravitational lens-
ing. The interested reader is referred to [39], [63], [17], [61], [2] and others. Weak Gravitational
lensing is extensively reviewed in [21], [50], [55], [4] and others.

After a review of distance measurements in cosmology (Section 3.2), we will briefly review
the basic theory of gravitational lensing (Section 3.3), followed by an extensive discussion of
Strong Gravitational Lensing (Section 3.4) and a brief discussion of Weak Gravitational Lensing
(Section 3.5). Finally, we will highlight some of the issues and applications of gravitational
lensing in contemporary cosmology research (Section 3.6) such as the Mass-Sheet Degeneracy
(Section 3.6), using gravitational lensing to understand Dark Matter (Section 3.6), and using
lensing as a ”Cosmic Telescope” to detect objects that are otherwise impossible to detect
(Section 3.6 ). Finally, we conclude with an introduction to gravitational lens models (Section
3.7) as a prelude to the remainder of this dissertation.
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3.2 Distance Measurements in Cosmology

The measurement of distance on cosmological scales is a part of the foundation of gravita-
tional lensing, and made somewhat counterintuitive because of the bending of space-time by a
gravitational field. It is necessary to provide a brief review of this important subject.

Distance calculations were made using redshift values according to the methods described
in [23]. This included distances to the lens, Dd, distance to the source, Ds and distance from
the source to the lens, Dds. The Hubble distance is defined by:

DH ≡
c

H0
= 3000h−1 Mpc = 9.26× 1025 h−1 m (3.1)

In order to define the comoving distance, DC, the function:

E(z) ≡
√

ΩM (1 + z)3 + Ωk (1 + z)2 + ΩΛ (3.2)

is defined. The line-of-sight comoving distance, DC, is then given by integration:

DC = DH

∫ z

0

dz′

E(z′)
(3.3)

where DH is the Hubble distance.
Since Ωk=0 in this study, the transverse comoving distance, DM is the same as DC. The

angular diameter distance, DA is related to the transverse comoving distance, DM by:

DA =
DM

1 + z
(3.4)

Therefore, the distance between two objects (Dds) such as the lens (Dd) and source(Ds),
with Ωk ≥ 0 is given by:

DA12 =
1

1 + z2

[
DM2

√
1 + Ωk

D2
M1

D2
H

−DM1

√
1 + Ωk

D2
M2

D2
H

]
(3.5)

where DM1 and DM2 are the transverse comoving distances to z1 and z2, DH is the Hubble
distance, and Ωk is the curvature density parameter. This calculation is significantly simplified
in this study with Ωk=0.
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3.3 Gravitational Lensing: Basic Principles

Gravitational lensing depends solely on the projected, two-dimensional mass distribution of the
lens, and is independent of the luminosity or composition of the lens. Lensing offers an ideal
way to detect and study dark matter, and to explore the growth of structure in the universe.

Gravitational lensing is one of the most important probes of the universe, and has a long and
rich history with large gaps in time. Although controversial, some claim that this phenomenon
was predicted by Newton in Opticks. This seems to be open to interpretation. Early calculations
of this effect were based on Newtonian mechanics, done by Cavendish (unpublished 1784) and
separately by Soldner (1804).

We discuss gravitational lensing here under three main assumptions which are underlying
the entire discussion. First, gravitational lensing is considered within the framework of general
relativity. Second, we assume that lensing matter inhomogeneities have weak gravitational
fields in the sense that their Newtonian gravitational potential is small, Φ � c2. Third, the
sources of the potential are assumed to move slowly with respect to the mean cosmic flow,
such that peculiar velocities are small compared with the speed of light. The assumption of
weak, slowly moving gravitational lenses is well valid in all astrophysical applications except
for light propagation near compact objects, which is not covered in this discussion. Lensing
by moving and rotating astrophysical bodies has been discussed in the literature and generally
been found to be negligibly small. Within the framework of these assumptions, gravitational
lensing is considered to be a complete theory with fully developed theoretical aspects, including
the mathematics of singularities in lens mapping [2].

The theory of gravitational lensing is best understood starting from Fermat’s principle,
which is well known from geometrical optics, which states that between a fixed source and a
fixed observer, light will choose a path along which its travel time is extremal. Wave optics is
typically unimportant for gravitational lensing because the wave length of light is much smaller
than any structures in a gravitational lens.

The propagation of light in arbitrary curved spacetimes is a complicated theoretical problem.
However, for almost all cases of relevance to gravitational lensing, we assume that the overall
geometry of the universe is described by the Friedmann-Lemâıtre-Robertson-Walker metric
and that matter inhomogeneities which cause lensing are just local perturbations. Light paths
propagating from the source past the lens to the observer can then be broken up into three
distinct zones. In the first zone, light travels from the source to a point close to the lens through
unperturbed spacetime. In the second zone, near the lens, light is deflected. Finally, in the
third zone, light again travels through unperturbed spacetime. To study light deflection close
to the lens, we assume a locally flat, Minkowskian spacetime which is weakly perturbed by the
Newtonian gravitational potential of the mass distribution constituting the lens. [39].

Using Newtonian mechanics, one can calculate based on the assumption that light has mass,
and should undergo acceleration. The following derivation of the deflection angles is modified
from [65] and [52]. For small deflections of a light ray, and the kinetic energy of the particle is
much larger than its maximal potential energy in the gravitational field:

GmM

ξ
� mv2

0

2
(3.6)

or

ξ � rg =
2GM

c2
(3.7)

Most gravitating bodies have sizes much larger than their gravitational radius, so that this
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condition is always true. In the first order approximation:

â ' −∆vz
c

(3.8)

To obtain ∆vz we use the equation of motion, which along the z axis is written as

m
dvz
dt

= −fcosϕ = −fξ
r

(3.9)

This leads to

∆vz = −ξGM
∫ ∞

0

dt

r3(t)
(3.10)

By then using dt = dx/c and integrating over ϕ we then obtain

∆vz = −2GM

ϕc
(3.11)

which can be written as:

â =
2GM

ξc2
=
rg
ξ

(3.12)

where â is the angle of deflection. This formula shows the effect of the sun’s gravitational
field on light, using only Newtonian mechanics and a few assumptions, as shown above.

These calculations were also done by Einstein, and published in 1911, before his work on
General Relativity was completed [13]. Einstein calculated a deflection by the sun of 0.83
arcseconds, based on the final formula above, the same result published by Soldner more than
100 years earlier! This formula did not account for the general relativistic considerations, which
includes the curvature of space-time near the deflecting mass.

Einstein later recalculated the effect using the following formula, accounting for the curva-
ture of space-time.

â =
4GM

ξc2
=

2rg
ξ

(3.13)

where α is the deflection angle. Note that this result is exactly twice the result shown in
the formula based on Newtonian mechanics.

We can now do a sample calculation to calculate the deflection angle of rays passing near
the Sun’s surface, so we set ξ = R�. The sun’s radius R� = 7 x 105km, so its gravitational
(Schwarzschild) radius rg� = 2.96km.

Therefore

â =
2rg
ξ

= 8.4x10−6 = 1.74” (3.14)

Gravitational lensing (by the sun) was the third test of the general theory of relativity,
verified on a famous expedition in 1919 during a solar eclipse, by Sir Arthur Eddington. Ed-
dington’s results agreed with the second formula published by Einstein, to within 20 percent,
which accounted for general relativity.

Prior to 1919, general relativity was able to explain gravitational redshift and the advance
of the perihelion of mercury, which was the first observational test of general relativity. The
bending of light by the sun observed during a solar eclipse was the third test. The remarkable
feature of this experiment in 1919, and the reason that the results catapulted Einstein to the
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top of the scientific heap, was that the bending of light by the sun was a prediction of relativity
that was verified within acceptable error limits. The first laboratory test of General Relativity
was the Pound Rebka experiment in 1960, to verify the gravitational redshift.

While it remains purely speculative, it is likely that World War I had a profound influence
on the impact of Einstein and General Relativity at that time, because of the politics associated
with a British scientist validating the results of a German. Furthermore, an earlier expedition
was canceled because of the War, and if that expedition had gone forward, the results would
have been compared with Einstein’s 1911 work, and shown no agreement.

Figure 3.1: Angular deflection of a ray of light passing close to the limb of the Sun. Since
the light ray is bent toward the Sun, the apparent positions of stars move away from the Sun.
This is a schematic of what Eddington observed in 1919, which verified a prediction of General
Relativity. [39]

The delay in the expedition until after the full formulation of general relativity and Einstein’s
recalculation was crucial to the Einstein’s reputation. These results not only further verified
general relativity but made Einstein a household name around the world. The deflection of
light predicted by Newtonian gravity is exactly half that predicted by General Relativity, and
Eddington’s results were consistent with general relativity. It is ironic that in 1936, Einstein
published his thoughts on gravitational lensing, stating ’Therefore, there is no great chance of
observing this phenomenon’ and yet it now is one of the most important tools in Cosmology
[14]. The first gravitational lens was observed in 1979 by Walsh and colleagues.

Gravitational lensing analysis on background galaxies is a unique technique to map the mass
distributions of any object, such as galaxies and clusters, regardless of their dynamical state.
This enables us to explore substructures in primary halos and to measure their masses directly
[46].

The Lens equation and Lens Potential

The mathematical basis of gravitational lensing is the lens equation using a thin-lens approxi-
mation, and is described by [39]. The reduced deflection angle is given by:

~α =
Dds

Ds

~̂α . (3.15)
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Since θDs = βDs − α̂Dds, the positions of the source and the image are given by

~β = ~θ − ~α(~θ) . (3.16)

This equation shows that the deflection is dependent on the ratio Dds/Ds, and is generally
referred to as the lensing equation. The lensing equation is perhaps the most important single
equation in gravitational lensing as it is the basis for everything that follows.

Figure 3.2: Schematic diagram of Gravitational Lensing [61]

If we define a scalar potential ψ(~θ) which is an appropriately scaled, projected Newtonian
potential of the lens, [39]

ψ(~θ) =
Dds

DdDs

2

c2

∫
Φ(Dd

~θ, z) dz . (3.17)

The derivatives of ψ with respect to ~θ have convenient properties. The gradient of ψ with
respect to θ is the deflection angle:

~∇θψ = Dd
~∇ξψ =

2

c2
Dds

Ds

∫
~∇⊥Φ dz = ~α , (3.18)

while the Laplacian is proportional to the surface-mass density Σ:

∇2
θψ =

2

c2
DdDds

Ds

∫
∇2
ξΦ dz =

2

c2
DdDds

Ds
· 4πGΣ = 2

Σ(~θ)

Σcr
≡ 2κ(~θ) , (3.19)
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where Poisson’s equation relates the Laplacian of Φ to the mass density. The surface mass
density scaled with its critical value Σcr is called the convergence κ(~θ). Since ψ satisfies the
two-dimensional Poisson equation ∇2

θψ = 2κ, the effective lensing potential is written in terms
of κ

ψ(~θ) =
1

π

∫
κ(~θ′) ln |~θ − ~θ′| d2θ′ . (3.20)

As mentioned earlier, the deflection angle is the gradient of ψ, which is shown as:

~α(~θ) = ~∇ψ =
1

π

∫
κ(~θ′)

~θ − ~θ′
|~θ − ~θ′|2

d2θ′ , (3.21)

The local properties of the lens mapping are described by its Jacobian matrix A:

A ≡ ∂~β

∂~θ
=

(
δij −

∂αi(~θ)

∂θj

)
=

(
δij −

∂2ψ(~θ)

∂θi∂θj

)
= M−1 . (3.22)

As indicated, A is the inverse of the magnification tensor M. The matrix A is also called the
inverse magnification tensor. The local solid-angle distortion due to the lens is given by the
determinant of A. A solid-angle element δβ2 of the source is mapped to the solid-angle element
of the image δθ2, and so the magnification is given by [39]:

δθ2

δβ2
= detM =

1

detA
. (3.23)

This expression is an appropriate generalization when there is no symmetry.
Equation (3.22) shows that the matrix of second partial derivatives of the potential ψ (the

Hessian matrix of ψ) describes the deviation of the lens mapping from the identity mapping.
For convenience, we introduce the abbreviation [39]:

∂2ψ

∂θi∂θj
≡ ψij . (3.24)

Since the Laplacian of ψ is twice the convergence, we have:

κ =
1

2
(ψ11 + ψ22) =

1

2
tr ψij . (3.25)

Two additional linear combinations of ψij are important, and these are the components of the
shear tensor:

γ1(~θ) =
1

2
(ψ11 − ψ22) ≡ γ(~θ) cos

[
2φ(~θ)

]
,

γ2(~θ) = ψ12 = ψ21 ≡ γ(~θ) sin
[
2φ(~θ)

]
.

(3.26)

With these definitions, the Jacobian matrix can be written:

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
= (1− κ)

(
1 0
0 1

)
− γ

(
cos 2φ sin 2φ
sin 2φ − cos 2φ

)
(3.27)
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Convergence and Shear

The meaning of the terms convergence and shear now becomes clear. Convergence alone causes
an isotropic focusing of light rays, leading to an isotropic magnification of a source. The source
is mapped onto an image with the same shape but larger size. Shear introduces anisotropy into
the lens mapping. The quantity γ = (γ2

1 + γ2
2)1/2 describes the magnitude of the shear and φ

describes its orientation. As shown in Fig. 3.3, a circular source of unit radius becomes, in the
presence of both κ and γ, an elliptical image with major and minor axes [39]:

(1− κ− γ)−1 , (1− κ+ γ)−1 . (3.28)

The magnification is

µ = detM =
1

detA
=

1

[(1− κ)2 − γ2]
. (3.29)

Note that the Jacobian A is in general a function of position ~θ.

Figure 3.3: Illustration of the effects of convergence and shear on a circular source. Convergence
magnifies the image isotropically, and shear deforms it to an ellipse. (From [39]).

As they travel from a background galaxy to the observer, photons get deflected by mass
fluctuations along the line of sight. As a result, the apparent images of background galaxies are
subject to a distortion that is characterized by the distortion matrix:

Ψij ≡
∂(δθi)

∂θj
≡
(
κ+ γ1 γ2

γ2 κ− γ1

)
, (3.30)

where δθi(θ) is the deflection vector produced by lensing on the sky. The convergence κ is
proportional to the projected mass along the line of sight and describes overall dilations and
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contractions. The shear γ1 (γ2) describes stretches and compressions along (at 45◦ from) the
x-axis. Figure 3.4 illustrates the geometrical meaning of the two shear components. [50]

ε

ε

1

γ2
2

γ1

Figure 3.4: Illustration of the geometrical meaning of the shear γi and of the ellipticity εi. A
positive (negative) shear component γ1 corresponds to an elongation (compression) along the
x-axis. A positive (negative) value of the shear component γ2 corresponds to an elongation
(compression) along the x = y axis. The ellipticity of an object is defined to vanish if the
object is circular (center). The ellipticity components ε1 and ε2 correspond to compression and
elongations similar to those for the shear components. From [50]

Consequences of Gravitational Lensing

Strong lensing occurs when Equation 3.16 has multiple solutions corresponding to multiple
images. Examples of the most common configurations of strong gravitational lensing by galaxies
are shown in Figure 3.5 and explained with an optical analogy in Figure 3.6. This analogy is
easily reproduced with a wine glass!

For a given deflector the solid angle in the source plane that produces multiple images is
called the strong-lensing cross section. For a given population of deflectors, the optical depth
is the fraction of the sky where distant sources appear to be multiply-imaged. [61].
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Figure 3.5: Examples of the most common configurations of galaxy-scale gravitational lens
systems. A background source (top left) can produce four visible images (a “quad”; top right),
an (incomplete) Einstein ring (bottom left), or two visible images (a “double”; bottom right),
depending on the ellipticity of the projected mass distribution of the deflector and on the
relative alignment between source and deflector [61]
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Figure 3.6: Optical analogy to illustrate the gravitational lensing phenomenon. The optical
properties of the stem of a wineglass are similar to those of a typical galaxy scale lens. Viewed
through a wineglass, a background compact source such as distant candle (top left), can repro-
duce the quad (top right), Einstein ring (bottom left), and double (bottom rights) configurations
observed in gravitational lensing and shown in Figure 3.5. [61].

Change of Position

The deflection shifts the apparent location of a star, galaxy or quasar in the sky. In most cases,
this makes little difference to observers, because they do not know where the object would have
been in the absence of lensing. But if the sourcelens alignment changesfor instance, if either is
movingastronomers can directly measure the displacement.

Magnification

The deflection and focusing of light rays affect the apparent brightness of the background star or
quasar. Although most cosmic sources are demagnified slightly, some are magnified by varying
degrees. Observers have measured magnifications of more than 100 times

Deformation

Extended cosmic objects (such as galaxies) often appear stretched along a circle centered on
the lens, producing banana-shaped arcs. Point sources (such as stars and quasars, which are
either too small or too distant to see in detail) typically remain points.
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Multiplication

Strong gravitational lensing can produce multiple images. Additional images always emerge in
pairs, and one of these images is mirrorinverted. Although the number of images must be odd,
one image is usually obscured, so observers see an even number.

Lens Mapping

In the vicinity of an arbitrary point, the lens mapping as shown by the lens equation (Equa-
tion 3.16 ) can be described by its Jacobian matrix A:

A =
∂~β

∂~θ
=

(
δij −

∂αi(~θ)

∂θj

)
=

(
δij −

∂2ψ(~θ)

∂θi∂θj

)
. (3.31)

Where we used the fact that the deflection angle can be expressed as the gradient of an effective
two-dimensional scalar potential ψ: ~∇θψ = ~α, where

ψ(~θ) =
DLS

DLDS

2

c2

∫
Φ(~r)dz (3.32)

and Φ(~r) is the Newtonian potential of the lens.
The determinant of the Jacobian A is the inverse of the magnification:

µ =
1

detA
. (3.33)

Let us define

ψij =
∂2ψ

∂θi∂θj
. (3.34)

The Laplacian of the effective potential ψ is twice the convergence:

ψ11 + ψ22 = 2κ = tr ψij . (3.35)

With the definitions of the components of the external shear γ:

γ1(~θ) =
1

2
(ψ11 − ψ22) = γ(~θ) cos[2ϕ(~θ)] (3.36)

and
γ2(~θ) = ψ12 = ψ21 = γ(~θ) sin[2ϕ(~θ)] (3.37)

(where the angle ϕ reflects the direction of the shear-inducing tidal force relative to the coor-
dinate system) the Jacobian matrix can be written

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
= (1− κ)

(
1 0
0 1

)
− γ

(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)
. (3.38)

The magnification can now be expressed as a function of the local convergence κ and the local
shear γ:

µ = (detA)−1 =
1

(1− κ)2 − γ2
. (3.39)
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Caustic and Critical Curves

In strong lensing, reference is often made to ‘caustics’ in the source plane and ‘critical curves’
in the image/lens plane. Critical curves formally correspond to the solutions of det A = 0 in
the lens/image plane; i.e. formally infinite magnification (in practice there is a limit to the
magnification, due to the finite source size and the breakdown of geometrical optics). The lens
equation maps these curves onto corresponding caustics in the source plane. The location of
a source relative to the caustics determines how many images are produced, and their mag-
nifications. A source located just inside a caustic has very magnified images, straddling the
critical curve in the lens/image plane. As a source crosses a caustic, image pairs are created or
destroyed. The area contained within caustics is related to the probability for a certain number
of images. [27].

Both panels of Figure 3.7 show critical curves (lens plane, left-hand side) and caustics
(source plane, right-hand side) for an elliptical mass distribution. A source (violet and light
blue, respectively) is moved inwards towards the center of mass (red) in four (three) steps.
The corresponding images in the lens plane are plotted in the same color on the left-hand side
of each panel. Left-hand side: the light-blue source has crossed the outer caustic and two
additional images radially emerge from the inner critical curve, which is a radial critical curve
therefore. The corresponding caustic is a radial caustic. Moving the source further inwards
(to the dark-blue point), results in the additional images moving away from the radial critical
curve (the one going inwards gets smaller and fainter). Crossing the next caustic (green) two
further images separate tangentially along the outer critical curve (tangential critical curve).
The fifth image is very close to the centre and so small and faint that it is no longer seen in the
figure. If the source is exactly on the optical axis (red), then four circularly distributed images
occur (plus one in the centre that is invisible). If the mass distribution in the lens is spherically
symmetric we would see a circle instead of the four red images the Einstein circle of the lens.
[57]

In the case illustrated on the right panel the source is not moved across a straight fold
of the tangential caustic but across a cusp. Then, (from blue to green) three images emerge
out of one. Images emerging from a fold are called fold-arcs while those related to a cusp are
called cusp-arcs. In general cusp-arcs are larger and more strongly curved and therefore more
spectacular than fold-arcs.
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Figure 3.7: Compact source moving away from the center of an elliptical lens. Left panel:
source crossing a fold caustic; right panel: source crossing a cusp caustic. Within each panel,
the diagram on the left shows critical lines and image positions and the diagram on the right
shows caustics and source positions. From [39]

According to Figure 3.8 the number of images always changes by two if the source crosses
a critical curve. This is a generic result for non-singular mass distributions, for which the
number of images must therefore be odd. While Figure 3.7 is intended to illustrate how arcs
and multiple images form, typical image configurations for realistic lens models are shown in
Figure 3.8. In the four panels the core radius (the steepness of the mass profile and the surface
mass density in the centre) is varied. Small core radii favor multiple images and the appearance
of arcs. The positions of images at a radial critical curve roughly measures the core radius
(and therefore the flattening of the density distribution), while the images along the tangential
critical curve determine the amplitude of the potential.
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Figure 3.8: This figure illustrates possible multiple-image configurations in a typical lens. An
isothermal sphere with additional external shear was assumed. The core radius varies in the
four panels. Caustics are solid, critical curves dashed. Filled symbols represent the source
position while the corresponding images are indicated by the open symbols. If the core radius
is large xc = 2.0, then only one tangential critical curve appears, the second (radial) critical
curve gives rise to radial arcs or four or five, respectively, images. From [57]

The previous considerations have shown that an isolated lens typically has two critical
curves, one defined by the total mass enclosed and the other defined by the slope of the mass
profile. The caustics, i.e. the images of the critical curves, have several generic types. Most
important are the so-called fold lines and the cusp points. When a source approaches a cusp
from outside, an image pair is formed in addition to the existing image. The three images
together are responsible for the largest distorted images we know. When a source approaches
a fold line from outside, an additional image is formed in the interior of the fold. The two
images straddling a fold critical curve are equally magnified, but they have opposite parity. Of
the three images next to a cusp critical curve, the two outer ones have equal magnification and
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equal parity, while the middle image has twice that magnification and the opposite parity. These
statements are very important for our understanding of strong gravitational lenses because they
hold independently of the actual lens model. [3].

The Einstein Radius and Einstein Ring

When a lens galaxy is spherically symmetric, it can redistribute the light of a background
quasar or galaxy into a complete circle, which is referred to as an Einstein Ring. The diameter
of the ring is proportional to the square root of the lensing massproviding a very elegant way
of determining the mass of the lens galaxy. About a dozen Einstein rings are now known.

It is convenient to define the Einstein radius. For a circular deflector it is the radius of the
region inside which the average surface-mass density equals the critical density. A point source
perfectly aligned with the center of a circular mass distribution will be lensed into a circle of
radius equal to the Einstein radius, or Einstein ring (see Figure 3.5).

The effect of alignment on the formation of an Einstein Ring is shown in Figure 3.9.

Figure 3.9: Five snapshots of a gravitational lens situation: From left to right the alignment
between lens and source gets better and better, until it is perfect in the rightmost panel. This
results in the image of an “Einstein ring”. [63]

The size of the Einstein radius depends on the enclosed mass as well as on the redshifts of
deflector and source. The definition of Einstein radius needs to be modified for non-circular
deflectors.

Once appropriately defined, the Einstein radius is a most useful quantity to express the
lensing strength of an object, and it is usually very robustly determined via strong lens models.
As a consequence, the mass enclosed in the cylinder of radius equal to the Einstein radius can
be measured to within 1-2%, including all random and systematic uncertainties. [61].

Consider now a circularly symmetric lens with an arbitrary mass profile. The lens equation
reads

β(θ) = θ − Dds

DdDs

4GM(θ)

c2 θ
. (3.40)

Due to the rotational symmetry of the lens system, a source which lies exactly on the optic axis
(β = 0) is imaged as a ring if the lens is supercritical. Setting β = 0 in eq. (3.40) we obtain the
radius of the ring to be
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θE =

[
4GM(θE)

c2
Dds

DdDs

]1/2

.

This is the mathematical definition of the Einstein radius. Figure 3.10 illustrates the situation.
Note that the Einstein radius is not just a property of the lens, but depends also on the various
distances in the problem. [39].

Figure 3.10: A source S on the optic axis of a circularly symmetric lens is imaged as a ring with
an angular radius given by the Einstein radius θE. [39]

The Einstein radius provides a natural angular scale to describe the lensing geometry for
several reasons. In the case of multiple imaging, the typical angular separation of images is of
order 2θE. Further, sources which are closer than about θE to the optic axis experience strong
lensing in the sense that they are significantly magnified, whereas sources which are located
well outside the Einstein ring are magnified very little. In many lens models, the Einstein ring
also represents roughly the boundary between source positions that are multiply-imaged and
those that are only singly-imaged. The mean surface mass density inside the Einstein radius is
the critical density Σcr. [39].

For a point mass M , the Einstein radius is given by

θE =

(
4GM

c2
Dds

DdDs

)1/2

. (3.41)
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To give two illustrative examples, we consider lensing by a star in the Galaxy, for whichM ∼M�
and D ∼ 10 kpc, and lensing by a galaxy at a cosmological distance with M ∼ 1011M� and
D ∼ 1 Gpc. The corresponding Einstein radii are

θE = (0.9 mas)

(
M

M�

)1/2 (
D

10 kpc

)−1/2

,

θE = (0.′′9)

(
M

1011M�

)1/2 (
D

Gpc

)−1/2

.

(3.42)

Mass density profiles

Another quantity of interest is the average logarithmic slope of the three-dimensional total
mass density profile d log ρtot/d log r ≡ −γ′. An isothermal mass model has γ′ = 2. The total
mass density profile for a spherical model is often expressed in terms of the equivalent circular
velocity

vc ≡
√
GM(< r)

r
, (3.43)

which facilitates comparison with the literature on spiral galaxies and on numerical simulations.
For a spherical power-law density profile, γ′ is simply related to the slope of the rotation curve
by the relation d log vc/d log r = (2− γ′)/2. For this reason, an isothermal profile is sometimes
referred to as a flat rotation curve. [61]

The basic result on this topic is that γ′ ≈ 2, i.e. early-type lens galaxies have approximately
isothermal mass density profiles, or close-to-flat equivalent rotation curves. This has been known
since at least the early nineties, both on the basis of lensing studies and on local kinematics.
However, in order to understand the mass structure of galaxies with sufficient level of precision
to constrain formation models, we need to ask more detailed questions. What is the average γ′

and its intrinsic scatter for the overall population of early-type galaxies? How does γ′ depend on
the galactic radius or other global properties? Does it depend on the environment, as expected
if halos were tidally truncated? Does γ′ evolve with redshift? Determining the mass profiles of
lens galaxies to high accuracy is essential for many applications to cosmography. [61]

In the past few years, the large number of lenses discovered and the high level of precision
attainable with lensing has enabled substantial breakthroughs. Joint lensing and dynamical
studies of the SLACS sample have shown that γ′ = 2.08 ± 0.02 with an intrinsic scatter of
less than 10%. This result is valid in the sense of an average slope inside one effective radius
or less, the typical size of the Einstein radius of SLACS lenses. For higher redshift deflectors,
Einstein radii are typically larger than the effective radius and reach out to 5 Re. Although
the high redshift samples with measured velocity dispersions are small, they seem to suggest a
somewhat larger intrinsic scatter around γ′ = 2. No significant dependency on galactic radius,
global galaxy parameter, or redshift has been found so far based on lensing and dynamical
analysis. The small scatter around γ′ = 2 is remarkable, considering that neither the DM halo,
nor the stellar mass are well described by a simple power-law profile. Nevertheless, the two
components add up to an isothermal profile (Fig. 3.11). This effect is similar to the disk-halo
conspiracy responsible for the flat rotation curves of spiral galaxies, and it is therefore been
dubbed the ’bulge-halo conspiracy’. Detailed dynamical studies of the two-dimensional velocity
field of deflector galaxies in conjunction with strong gravitational lensing confirm this picture
to higher accuracy. [61]
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Figure 3.11: Mass density profiles of lens galaxies inferred from a strong lensing and dynamical
analysis. In addition to the mass associated with the stars (red line), the data require a more
extended mass component, identified as the dark matter halo (blue line). Although neither
component is a simple power-law, the total mas profile is close to isothermal, i.e. γ′ = 2. The
vertical dashed line identifies the location of the Einstein radius. [61]

Similar and consistent results can be obtained directly from gravitational lens models, both
for lensed sources covering a significant radial range or when a gravitational time delay has
been measured and the cosmology is fixed by independent measurements.

The Double Einstein Ring

Given the already small optical depth for strong lensing, the lensing of multiple background
sources by a single foreground galaxy is an extremely rare event. At Hubble Space Telescope
(HST) resolution (FWHM ∼ 0.′′12) and depth (IAB ∼ 27) it is expected that one massive
early-type galaxy (which dominate the lensing cross-section) in about 200 is a strong lens.
Taking into account the strong dependence of the lensing cross-section on lens galaxy velocity
dispersion (∝ σ4), and the population of lens galaxies, it is estimated that about one lens galaxy
in ∼ 40− 80 could be a double source plane strong gravitational lens.

For these reasons, at most a handful of double lenses are to be found in the largest spectro-
scopic surveys of early-type galaxies such as the luminous red galaxies of the Sloan Digital Sky
Survey. However, future high resolution imaging surveys will increase the number of known
lenses by 2-3 orders of magnitude, and hence should be able to provide large statistical sam-
ples of double source plane gravitational lenses, opening up the possibility of qualitatively new
applications of gravitational lensing for the study of galaxy formation and cosmography.

The discovery of the first double source plane partial Einstein Ring was reported in 2008
[18]. The gravitational lens system SDSSJ0946+1006, was discovered as part of the Sloan Lens
ACS (SLACS) Survey. The object was first selected by the presence of multiple emission lines
at higher redshift in the residuals of an absorption line spectrum from the SDSS database as
described by and then confirmed as a strong lens by high resolution imaging with the Advanced
Camera for Surveys aboard HST. In addition to an Einstein ring due to the source (source 1)
responsible for the emission lines detected in the SDSS spectrum, the Hubble image also shows
a second multiply imaged system forming a broken Einstein Ring with a larger diameter then
the inner ring (source 2). This configuration can only arise if the two lensed systems are at
different redshifts and well aligned with the center of the lensing galaxy. [18]

95



Observer

ls2

s1

ls1

s2

D

D

D

D

Source 2Source 1Lens

Figure 3.12: Sketch of a double source plane lens system. The cosmological scaling factor β
is the product of Dls1 and Ds2 (both in red) divided by the product of Dls2 and Ds1 (both in
blue). For a singular isothermal sphere, where the first source has no mass, β is the ratio of
Einstein radii. Figure from [9].

Two concentric partial ring-like structures are clearly seen at radii 1.43± 0.01′′ and 2.07±
0.02′′ from the center of the lens galaxy. Such a peculiar lensing configuration – with widely
different image separations of nearly concentric multiple image systems – implies that the
rings come from two sources at different redshift, the innermost (Ring 1) corresponding to the
nearest background source 1 and the outermost (Ring 2) being significantly further away along
the optical axis. [18]

This was the first report of the discovery of the first galaxy-scale double lensing event made
of a foreground lens galaxy at redshift zL = 0.222, a first source at redshift zs1 = 0.609 (Ring
1) and a more distant source (Ring 2) with unknown redshift, despite an attempt to measure
its redshift with deep optical spectroscopy using LRIS on the Keck I Telescope. The detection
of Ring 2 in a single orbit HST-ACS F814W filter image, sets an upper limit to its redshift
zs2 < 6.9. [18]

Modeling the geometry of the lensed features at different source planes allowed determination
of the mass density profile of the lens galaxy which was found to be close to isothermal. The best
fit lens model predicts a stellar velocity dispersion in very good agreement with that measured
from SDSS spectroscopy. The model requires a relatively large amount of dark matter inside
the effective radius fDM,2D(< Reff) ' 73±9% (corresponding to a projected total mass-to-light
ratio M/LV = 11.54±0.13h70 (M/LV )�). Along with the complex isophotes of the lens galaxy
and the presence of several other (less luminous) galaxies at similar photometric redshifts, the
high dark matter fraction suggests that the lens may be the central galaxy of a group scale halo.
The high precision of this measurement – far superior to that attainable from a single multiply
imaged systems – demonstrates that double source plane lenses are extremely valuable tools to
study the mass profile of galaxies and groups.

In this system, the presence of two multiply-imaged sources at different redshifts constrains
the projected mass density slope to be γ′ = 2.00 ± 0.03, based purely on lens modeling. The
lack of central images also constrains the slope of the total density profile to be steep (e.g.,
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γ′ = 2) in the central regions of deflectors. It should be noted that lensing is mostly sensitive to
the projected mass density slope at the location of the images, rather than the average inside
the images. Therefore, a direct comparison with the lensing and dynamical results is only valid
to the extent that a pure power-law profile is a good model for the data.[61]

Figure 3.13: Double Einstein ring compound lens SDSSJ0946+1006. Left: color composite
HST image. Note the foreground main deflector in the center, the bright ring formed by the
images of the intermediate galaxy, and the fainter ring formed by the images of the background
galaxy lensed by the two intervening objects. Right: Enclosed mass profile as inferred from
the Einstein radii of the two rings (red solid points - the error bars are smaller than the points).
The enclosed mass increases more steeply with radius than the enclosed light (solid blue line;
rescaled by the best fit stellar mass-to-light ratio), indicating the presence of a more extended
dark matter component. Even a “maximum bulge” solution (dotted blue line) cannot account
for the mass at the outer Einstein radius. [61]

In a further study of J0946, this interesting system was used to determine cosmological pa-
rameters [9]. The authors present constraints on the equation of state of dark energy, w, and the
total matter density, ΩM, derived from SDSSJ0946+1006, the first cosmological measurement
with a galaxy-scale double-source-plane lens. By modeling the primary lens with an elliptical
power-law mass distribution, and including perturbative lensing by the first source, they were
able to constrain the cosmological scaling factor in this system to be β−1 = 1.404±0.016, which
implies ΩM = 0.33+0.33

−0.26 for a flat ΛCDM cosmology. Combining with a CMB prior from Planck,

they found that w = −1.17+0.20
−0.21 assuming a flat wCDM cosmology. This inference shifts the

posterior by 1σ and improves the precision by 30 per cent with respect to Planck alone, and
demonstrates the utility of combining simple, galaxy-scale multiple-source-plane lenses with
other cosmological probes to improve precision and test for residual systematic biases.
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Figure 3.14: The galaxy-subtracted HST F814W image of SDSSJ0946+1006. The first source
is modeled as only contributing to the flux observed within the green mask, and the second
source is assumed to only have non-zero flux within the blue mask. The red crosses mark the
4 pixels which we map back on to the first lens plane and use to determine the centroid of the
first source’s mass. Figure from [9].

This is the first derivation of cosmological constraints from a galaxy-scale double-source-
plane lens (DSPL). The measurement of β is completely independent of other cosmological
probes, and can easily be combined with other datasets to produce tighter cosmological param-
eter estimates, lift parameter degeneracies, and test for the presence of unknown systematics.
Because of the complementarity of DSPLs with the CMB, the measurement with just a single
DSPL improves the precision of the inference on w by approximately one third. More precise
inferences have been made by combining the CMB with, e.g., baryon acoustic oscillation (BAO)
measurements (combining Planck with the BAO results from yields w = −1.12+0.10

−0.11), but we
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note that the number of DSPLs that will be useful for cosmological inference will increase by or-
ders of magnitude with Euclid, dramatically improving the precision but also helping to uncover
systematic biases. For example, combining Planck with either J0946 or BAO measurements
causes the inference on w to shift closer to −1 by around 1σ. [9]
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Figure 3.15: The w and ΩM plane. Red shows the 68, 95 and 99.7 per cent confidence constraints
derived from our measurement of the cosmological scale factor in J0946. In the left, panel grey
shows the WMAP9 constraints whilst the Planck 2013 constraints are shown on the right. In
both panels, black shows the combined constraint from J0946 and the CMB prior. Figure from
[9].

The lens model that they presented is robustly constrained, but the inference on β depends
on the assumption that the observed lensing is entirely due to an elliptical power-law mass
distribution at z = 0.222 and an isothermal mass distribution at z = 0.609. The latter point is
not a significant concern here, since the highest redshift source has an impact parameter with
respect to the z = 0.609 source that is more than three times larger than the Einstein radius θE

s1.
Similarly, the power-law description for the central total mass density distribution is motivated
by the absence of any correlation between the power-law indices and radii of strong lenses,
as well as the power-law behavior of the total mass distribution over a large range of scales
from the ensemble weak lensing mass profile of lenses and mass profiles of massive X-ray-bright
galaxies. [9]

Although multiple-source-plane lenses largely break this degeneracy for true mass sheets,
it has been shown that a ring of mass (in addition to the mass from the power-law model)
between the Einstein radii of the two sources can mimic the mass-sheet degeneracy even for
multiple-source-plane lenses. However, it is not clear what physical process would be respon-
sible for significant ring-like projected over- (or under-) densities and we therefore neglect this
possibility. Lensing by line-of-sight structures is also not included in our model, and if these ob-
jects introduce a positive external convergence then our estimate of β will be low. The authors
estimate that ignoring the external convergence results in a ∼ 1 per cent systematic uncertainty
on β (i.e., comparable to the statistical uncertainty) which would degrade the precision of our
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inference on w by ≈ 25 per cent. However, directly modeling the line of sight using the existing
SDSS and HST imaging and including the velocity dispersion profile will significantly decrease
this systematic uncertainty. Furthermore, modeling the strong lensing with all of the available
HST data will reduce our statistical uncertainty while allowing us to further test for residual
systematics by comparing our inference on β between the different HST filters. [9]

Although there is still room for improvement of the measurement of β for J0946, the most
significant obstacle for DSPL cosmological constraints is the scarcity of simple multiple-source-
plane lenses. It is suggested [18] that one in 40 − 80 galaxy-scale strong lenses should be a
DSPL, and tentative Euclid forecasts of ∼ 100000 galaxy-galaxy strong lenses, this analysis of
J0946 demonstrates the significant degeneracy-breaking power of even a single DSPL.

Details of Image Formation

It is possible to classify the images in a simple way. We distinguish two kinds of images:
ordinary and critical ones. Ordinary images occur at the points where the lens equation is
verified and where the amplification is finite. On the contrary, for some critical points the lens
mapping is not invertible and the amplification is infinite. These points form on the lens plane
closed curves, named critical curves, and if we map them to the source plane we get other closed
curves, named caustics. We can distinguish two kinds of critical curves: radial and tangential
ones, but the second ones are crucial in our case to analyze the formation of images. Limiting
the attention to the case of a single lens: for spherical mass distribution the critical curves
are circular, the tangential caustic is point-like and the radial one is circular, in this case, in
addition to a central image, two images form; for elliptical mass distribution the critical curves
are not circular, the tangential caustic becomes an astroid with folds and cuspids (see Fig. 3.16)
and in addition to an eventual central image, we can have 2 or 4 images. [60]

Figure 3.16: Image configurations in quadruply lensed events. For the double quasars, there
are two possible configurations not shown here. [60]

In particular, when a source approaches the astroid from the inner side, two images fuse and
disappear, thus passing from a 4-images to a 2-images configuration. In typical lensing events,
when the source is near a fold, we observe two nearby images, one on a side of the critical
curves and another to the other side (see inclined quad in Fig. 3.16), on the contrary, when
the source is near a cusp, 3 images form near the critical curves (see lower panels in Fig. 3.16).
These images are magnified respect to the other ones, as can be easily verified in real cases by
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an inspections of the quasars in Fig. 3.16. More complex configurations with a higher number
of images are possible when more than one lens are considered. [60]

Circularly Symmetric Lenses

Figures 3.17 and 3.18 show typical image configurations. The right halves of the figures display
the source plane, and the left halves show the image configuration in the lens plane. Since A is
a 2× 2 matrix, a typical circularly symmetric lens has two critical lines where detA vanishes,
and two corresponding caustics in the source plane. The caustic of the inner critical curve is a
circle while the caustic of the outer critical curve degenerates to a critical point because of the
circular symmetry of the lens. A source which is located outside the outermost caustic has a
single image. Upon each caustic crossing, the image number changes by two, indicated by the
numbers in Fig. 3.17. The source shown as a small rectangle in the right panel of Fig. 3.17 has
three images as indicated in the left panel. Of the three image, the innermost one is usually
very faint; in fact, this image vanishes if the lens has a singular core (the curvature of the time
delay function then becomes infinite) as in the point mass or the singular isothermal sphere.
[39]

Figure 3.17: Imaging of a point source by a non-singular, circularly-symmetric lens. Left: image
positions and critical lines; right: source position and corresponding caustics. [39]

Figure 3.18 shows the images of two extended sources lensed by the same model as in Fig.
3.17. One source is located close to the point-like caustic in the center of the lens. It is imaged
onto the two long, tangentially oriented arcs close to the outer critical curve and the very faint
image at the lens center. The other source is located on the outer caustic and forms a radially
elongated image which is composed of two merging images, and a third tangentially oriented
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image outside the outer caustic. Because of the image properties, the outer critical curve is
called tangential , and the inner critical curve is called radial . [39]

Figure 3.18: Imaging of an extended source by a non-singular circularly-symmetric lens. A
source close to the point caustic at the lens center produces two tangentially oriented arc-like
images close to the outer critical curve, and a faint image at the lens center. A source on the
outer caustic produces a radially elongated image on the inner critical curve, and a tangentially
oriented image outside the outer critical curve. Because of these image properties, the outer
and inner critical curves are called tangential and radial , respectively.
[39].

Non-circular Lenses

A circularly symmetric lens model is much too idealized and is unlikely to describe real galaxies.
Therefore, considerable work has gone into developing non-circularly symmetric models. The
breaking of the symmetry leads to qualitatively new image configurations. [39]

Elliptical Galaxy Model

To describe an elliptical galaxy lens, we should ideally consider elliptical isodensity contours.
A straightforward generalization of the isothermal sphere with finite core gives

Σ(θ1, θ2) =
Σ0

[θ2
c + (1− ε)θ2

1 + (1 + ε)θ2
2]

1/2
, (3.44)

where θ1, θ2 are orthogonal coordinates along the major and minor axes of the lens measured
from the center. The potential ψ(θ1, θ2) corresponding to this density distribution has been
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calculated but is somewhat complicated. For the specific case when the core radius θc vanishes,
the deflection angle and the magnification take on a simple form:

α1 =
8πGΣ0√

2εc2
tan−1

[ √
2ε cosφ

(1− ε cos 2φ)1/2

]
,

α2 =
8πGΣ0√

2εc2
tanh−1

[ √
2ε sinφ

(1− ε cos 2φ)1/2

]
,

µ−1 = 1− 8πGΣ0

c2(θ2
1 + θ2

2)1/2(1− ε cos 2φ)1/2
, (3.45)

where φ is the polar angle corresponding to the vector position ~θ ≡ (θ1, θ2).
Instead of the elliptical density model, it is simpler and often sufficient to model a galaxy

by means of an elliptical effective lensing potential [39]

ψ(θ1, θ2) =
Dds

Ds
4π
σ2
v

c2
[
θ2

c + (1− ε)θ2
1 + (1 + ε)θ2

2

]1/2
, (3.46)

where ε measures the ellipticity. The deflection law and magnification tensor corresponding to
this potential can be calculated. When ε is large, the elliptical potential model is inaccurate
because it gives rise to dumbbell-shaped isodensity contours, but for small ε, it is a perfectly
viable lens model. [39]

External Shear

The environment of a galaxy, including any cluster surrounding the primary lens, will in general
contribute both convergence and shear. The effective potential due to the local environment
then reads

ψ(θ1, θ2) =
κ

2
(θ2

1 + θ2
2) +

γ

2
(θ2

1 − θ2
2) (3.47)

in the principal axes system of the external shear, where the convergence κ and shear γ are
locally independent of ~θ. An external shear breaks the circular symmetry of a lens and therefore
it often has the same effect as introducing ellipticity in the lens. It is frequently possible to
model the same system either with an elliptical potential or with a circular potential plus an
external shear. [39]

Image Configurations with a Non-Circularly Symmetric Lens

In contrast to the circularly symmetric case, for a non-circular lens the source, lens and images
are not restricted to lie on a line. Therefore, it is not possible to analyze the problem via
sections of the time delay surface. Fermat’s principle and the time delay function are still very
useful but it is necessary to visualize the full two-dimensional surface t(~θ).

Figure 3.19 illustrates the wide variety of image configurations produced by an elliptical
galaxy lens (or a circularly symmetric lens with external shear). In each panel, the source plane
with caustics is shown on the right, and the image configurations together with the critical curves
are shown on the left. Compared to the circularly symmetric case, the first notable difference
introduced by ellipticity is that the central caustic which was point-like is now expanded into
a diamond shape; it is referred to as the astroid caustic (also tangential caustic). Figure 3.19
shows the images of a compact source moving away from the lens center along a symmetry line
(right panel) and a line bisecting the two symmetry directions (left panel). A source behind
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the center of the lens has five images because it is enclosed by two caustics. One image appears
at the lens center, and the four others form a cross-shaped pattern. When the source is moved
outward, two of the four outer images move toward each other, merge, and disappear as the
source approaches and then crosses the astroid (or tangential) caustic. Three images remain
until the source crosses the radial caustic, when two more images merge and disappear at the
radial critical curve. A single weakly distorted image is finally left when the source has crossed
the outer caustic. When the source moves toward a cusp point (right panel of Figure 3.19),
three images merge to form a single image. All the image configurations shown in Figure 3.19
are exhibited by various observed cases of lensing of QSOs and radio quasars. [39]

Figure 3.19: The caustic and critical lines of an elliptical lens. The left and right panels describe
the caustic and the critical curves respectively. The upper panels show the relationship between
source positions and the shapes of images around the cusp. Lower panels are the same but
around the fold. [19] and [17].

Classification of Gravitational Lensing

Gravitational lensing is usually considered in one of several categories, or regimes, based on the
nature of the observed effects. Strong gravitational lensing occurs when a single source is seen as
several images. In addition to the source itself, there are usually two or four additional images.
These distortions are easily visible as dramatic effects which also includes high magnification,
luminous arcs, and sometimes a complete ’Einstein Ring’.

In weak lensing, the distortions of the background sources are much smaller and are therefore
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detected by statistical analysis of large numbers of sources. In these cases, the center of the lens
is further away from the observer’s line of sight, to Θ� ΘE . The orientations can be averaged
to measure the shear of the lensing field. The shear can then be used to reconstruct the mass
distribution in the area, particularly the background distribution of dark matter. Weak lensing
is more common than strong lensing.

In microlensing, there is no change in shape of the image, but the amount of light received
changes over time. Unlike macrolensing and millilensing, microlensing is a transient effect such
that it is observable through monitoring a source for a period of time and recording its light
curve. The apparent brightness of the source varies over time as the alignment of the lens
system changes due to the moving lens.

Last, is the category referred to as millilensing. Millilensing (sometimes called mesolensing)
effects, may be produced by satellite galaxies or their dark counterparts, dark matter subhalos,
as well as small-scale objects such as intermediate-mass black holes, with typical multiple image
separations in the order of milliarcseconds. Therefore, lensing effects in this regime potentially
address one of the small-scale issues of the CDM theory, the so-called ”missing satellites prob-
lem” which is discussed below, in the section on Dark Matter substructure [1].

Measurement of gravitational lensing in clusters is usually limited to strong and weak lensing.
Strong lensing produces drastic lensing events with highly elongated arcs or multiple images
of background objects. Weak lensing uses statistical measurements of small distortions in the
shapes of background galaxies produced by a massive, foreground cluster. Weak lensing studies
of low-redshift clusters provides us with a good opportunity to detect and measure smaller
subhalo masses in clusters [46].

Since strong and weak lensing probe mass distributions at different radii, the combination
of these two is powerful and essential for the full understanding and detailed mapping of the
gravitational potential of clusters. While the combined strong and weak lensing analysis allows
accurate and robust measurements of the concentration parameter, the current main limitation
is the small number of clusters available for such a detailed combined analysis [44]. Umetsu
and colleagues have developed a precise cluster mass profile which is averaged from combined
strong and weak lensing data [62]. They outline their methods for obtaining high precision
mass profiles, combining independent weak-lensing distortion, magnification, and strong-lensing
measurements. For massive clusters the strong and weak lensing regimes contribute equal
logarithmic coverage of the radial profile. The utility of high-quality data is limited by the
cosmic noise from large scale structure along the line of sight. This noise is overcome when
stacking clusters, as too are the effects of cluster asphericity and substructure, permitting a
stringent test of theoretical models. This technique combines all possible lensing information
available in the cluster regime. This study concentrates on those clusters for which high-quality
data is available in both regimes.

Umetsu and coworkers have developed a method for improving the statistical precision
of cluster mass profiles, combining independent weak-lensing distortion, magnification, and
strong-lensing measurements. This extends recent weak-lensing work by to include the central
strong-lensing information in a stacking analysis, for full radial coverage. This exciting methods
takes into account the cosmic covariance from uncorrelated large scale structure projected along
the line of sigt, as well as the effect of different cluster redshifts, so that error propagation in
terms of lensing efficiency of individual clusters can be properly averaged.

The technique of stacked lensing analysis can be used to combine strong and weak lensing
data, and can also be applied to weak lensing alone. This is discussed below, in the discussion of
analyzing the effects of dark matter on the density profile, as analyzed by gravitational lensing.
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3.4 Strong Gravitational Lensing

Three properties make strong gravitational lensing useful to measure and understand the uni-
verse. Firstly, strong lensing observables - such as relative positions, flux ratios, and time delays
between multiple images - depend on the gravitational potential of the foreground galaxy (lens
or deflector) and its derivatives. Secondly, the lensing observables also depend on the over-
all geometry of the universe via angular diameter distances between observer, deflector, and
source. Thirdly, the background source often appears magnified to the observer, sometimes by
more than an order of magnitude. As a result, gravitational lensing can be used to address
three major astrophysical issues: i) understanding the spatial distribution of mass at kpc and
sub-kpc scale where baryons and DM interact to shape galaxies as we see them; ii) determin-
ing the overall geometry, content, and kinematics of the universe; iii) studying galaxies, black
holes, and active nuclei that are too small or too faint to be resolved or detected with current
instrumentation. [61].

Discovery of Strong Gravitational Lenses

There are three key steps that must be taken to confirm the lensing hypothesis and study a
sample in detail: a redshift measurement for the lens (typically from optical spectroscopy);
a distinct redshift for the background source (typically from radio or (sub-)mm wave spec-
troscopy); and spatially-resolved imaging of the source that is consistent with strong lensing
[8]

The strong lensing applications described in the literature span a broad range of astrophys-
ical phenomena, observational, and theoretical challenges. However, they all share a common
limitation: the relatively small number of systems to which they can be applied. Although
there are 200 systems known, they are not all suitable for all applications. Studies must rely
on at most a few tens of cases to infer results of general interest.

Fortunately, a number of large surveys are expected to take place in the next decade, pro-
viding an ideal dataset to mine for rare objects such as strong lenses. The challenge will consist
in developing fast and robust algorithms to find new lenses, and then in mustering the resources
needed to study them.

Imaging-based searches

Imaging-based searches can be divided into catalog-based and pixel-based. Catalog-based
searches look for objects in a lensing-like configuration. They are most effective at detect-
ing sharp multiply-imaged features such as multiply-imaged quasars, but they can also be used
for extended sources, provided the image separation is large enough for deblending. Pixel-based
searches start from a set of pixels, and look for lensing-like configurations. Lenses are identified
on the basis of characteristic geometries or by actually modeling every system as a possible
lens. The pixel-based method is slower and more computationally intensive than catalog-based
searches, but in principle can be used to push the detection limit to smaller angular separations,
beyond the level where source and deflector can be deblended by general-purpose cataloging soft-
wares. Visual searches can be considered as pixel-based, with the human brain as lens-modeling
tool. Algorithms need to be adjusted to reach an optimal balance between completeness (false
negative) and purity (false positive) appropriate for each dataset and scientific goal. The best
algorithms can currently achieve 90% completeness and purity searching through HST data.
Although some human intervention is still necessary, this breakthrough makes it feasible to
search through future surveys of 1000 deg2 or more. [61]
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Time-domain surveys allow for a different image-based strategy: looking for variable resolved
sources. At high galactic latitude, lensed quasars are more common than contaminants such as
pairs of variable stars. Pairs of non-lensed quasars can be distinguished on the basis of their
light curves and colors, while lensed supernovae are a welcome contaminant. A first application
of the method to the SDSS Supernovae survey data show that the only known compelling lens
candidate is recovered as a close pair of variable sources. Out of over 20,000 sources, only
a handful of false positives are found, suggesting a “purity” of ∼20%. This is encouraging,
although more tests on wider and deeper data are needed to further improve the method in
view of upcoming surveys. [61]

Spectroscopy-based searches

Spectroscopic searches rely on identifying composite spectra with features coming from mul-
tiple redshifts. Follow-up high resolution information is then needed to identify the subset of
events with detectable multiple-images, and to obtain astrometry for lens modeling. A strong
advantage of the method is that lenses come with redshifts by construction. After the early
serendipitous discoveries, the method started to bear large numbers of lenses only with the
SDSS spectroscopic database. The recent searches highlight the quality of spectroscopic data
as the key element for success. High signal-to-noise ratios are needed to identify faint spectral
features, close-to Poisson limited sky subtraction is needed to reduce false positives, spectral
resolution better than 100 km s−1 is need to resolve line multiplets, and wide wavelength cov-
erage increases the redshift range for the search. It is a testament to the high quality of the
SDSS database that the confirmation rate is ∼ 60 − 70 %, after a very strict initial selection
(approximately 1/1000 SDSS galaxies are selected as a candidate for follow-up by SLACS). [61]

Time Delays

Refsdal [51] pointed out that if the background source is variable, it is possible to measure
an absolute distance within the system and therefore the Hubble constant. Consider the light
paths from the source to the observer corresponding to the individual lensed images. Although
each is at a stationary point in the Fermat time delay surface, the absolute light travel time for
each will generally be different, with one of the Fermat minima having the smallest travel time.
Therefore, if the source brightens, this brightening will reach the observer at different times
corresponding to the two different light paths. Measurement of the time delay corresponds to
measuring the difference in the light travel times, each of which is individually given by [24]:

τ =
DlDs

cDls
(1 + zl)

(
1

2
(θ − β)2 + ψ(θ)

)
, (3.48)

where α, β and θ are angles defined above in Figure 3.2, Dl, Ds and Dls are angular diameter
distances also defined in Figure 3.2, zl is the lens redshift, and ψ(θ) is a term representing the
Shapiro delay of light passing through a gravitational field. Fermat’s principle corresponds to
the requirement that ∇τ = 0. Once the differential time delays are known, we then calculate
the ratio of angular diameter distances which appears in the above equation. If the source and
lens redshifts are known, H0 follows immediately. From this equation, we can derive a useful
rule for the case of a 2-image lens, if we make the assumption that the matter distribution is
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isothermal 1 and H0 = 70 km s−1 Mpc−1, is

∆τ = (14 days)(1 + zl)Ds
2

(
f − 1

f + 1

)
, (3.49)

where zl is the lens redshift, s is the separation of the images (approximately twice the Einstein
radius), f > 1 is the ratio of the fluxes and D is the value of DsDl/Dls in Gpc. A larger time
delay implies a correspondingly lower H0. [24]

The first gravitational lens was discovered in 1979 and monitoring programs began soon
afterwards to determine the time delay. This turned out to be a long process involving a dispute
between proponents of a ∼ 400−day and a ∼ 550−day delay, and ended with a determination of
417±2 days. Since that time, at least 17 more time delays have been determined (see Table 3.1).
In the early days, many time delays were measured at radio wavelengths by studying systems in
which a radio-loud quasar was the multiply imaged source. Recently, optically-measured delays
have dominated, due to the fact that only a small optical telescope in a site with good seeing
is needed for the photometric monitoring, whereas radio time delays require large amounts of
time on long-baseline interferometers which do not commonly exist. [24].

Table 3.1 shows the currently measured time delays, of a number of systems. Since the
most recent review an extra half-dozen have been added, and there is every reason to suppose
that the sample will continue to grow at a similar rate. The person who wants to measure
time delays is faced with a dilemma, in terms of whether to justify the proposal in terms of
measuring H0, given the previously mentioned problems with mass modeling, or in terms of
determining mass models by assuming H0 = 71 km s−1 Mpc−1 (or whatever). From [24].

Consider a galaxy lensing a time-variable source like a quasar or a supernova. Under the
thin lens approximation, multiple images will be observed to vary with a delay which depends
on the gravitational potential as well on a ratio of angular diameter distance. The ratio of
angular diameter distances is mostly sensitive to the Hubble Constant H0 (hereafter h in units
of 100 km s−1Mpc−1). However, time delays also contain non-negligible information about other
cosmological parameters, especially if one considers a sample of deflectors and sources spanning
a range of redshifts. Therefore, although it is convenient to think in terms of the Hubble
constant as the primary parameter, time-delays provide constraints in the multidimensional
cosmological parameter space. When combined with other cosmology probes like the CMB
power spectrum, time-delays are very effective at breaking degeneracies such as that between
H0 and w [61].

From a practical point of view, cosmography with time-delays can be broken into two sep-
arate problems: measuring time delays and modeling the lensing potential, including matter
along the line of sight. Uncertainties in these two terms dominate the error budget and they
are independent. Therefore, in order to measure H0 to 1% accuracy from one lens system one
needs to know both quantities with sub percent accuracy. Or, for a sample of N lenses, one
needs unbiased measurements with approximately half

√
N% uncertainty on both quantities

[61].

Measuring time delays

Measuring time delays requires properly sampled light curves of duration significantly longer
than the time-delay between multiple images. Once an approximate time-delay is known, the
measurement can generally be refined by adapting the monitoring strategy, e.g. with dense
sampling triggered after an event on the leading image. Typical time delays for galaxy lens

1An isothermal model is one in which the projected surface mass density decreases as 1/r. An isothermal
galaxy will have a flat rotation curve, as is observed in many galaxies.
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Lens system Time delay

[days]

CLASS 0218+357 10.5± 0.2

HE 0435-1-223 14.4+0.8
−0.9 (AD)

SBS 0909+532 45+1
−11 (2σ)

RX 0911+0551 146± 4

FBQ 0951+2635 16± 2

Q 0957+561 417± 3

SDSS 1004+4112 38.4± 2.0 (AB)

HE 1104–185 161± 7

PG 1115+080 23.7± 3.4 (BC)

9.4± 3.4 (AC)

RX 1131–1231 12.0+1.5
−1.3 (AB)

9.6+2.0
−1.6 (AC)

87± 8 (AD)

CLASS 1422+231 8.2± 2.0 (BC)

7.6± 2.5 (AC)

SBS 1520+530 130± 3

CLASS 1600+434 51± 2

47+5
−6

CLASS 1608+656 31.5+2
−1 (AB)

36+1
−2 (BC)

77+2
−1 (BD)

SDSS 1650+4251 49.5± 1.9

PKS 1830–211 26+4
−5

HE 2149–2745 103± 12

Q 2237+0305 2.7+0.5
−0.9 h

Table 3.1: Time delays, with 1-σ errors, from the literature. In some cases multiple delays have
been measured in 4-image lens systems, and in this case each delay is given separately for the
two components in brackets. From [24]
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systems are in the range weeks to months (with tails on both ends out to hours to years) and
minimum detectable amplitudes from the ground are of order ∼5%, limited by photometric
accuracy for crowded sources and microlensing. Thus, accurate time-delays typically require
several seasons of dedicated monitoring effort.

After the first “heroic” campaigns of the nineties and early 2000, which yielded of order 10
time-delays, several groups are now trying to take this effort to the next level with the help
of queue mode scheduling and robotic telescopes. A recent summary of published time-delay
measurements is given by [24]. Taking the published time-delay uncertainties at face value,
the present sample contributes to the error budget on H0 a little less than 1%. Time-domain
astronomy is a rapidly growing field and it is likely that many of the logistical problems faced
by time-delay hunters so far will be solved in the next decade. [61]

Lens Statistics

The abundance of galaxy lenses has often been used for constraining the cosmological constant
Λ. While early studies typically found upper limits of Λ . 0.7, more recent investigations
find values which are better compatible with other determinations, finding spatially-flat model
universes with low matter density (Ω0 ' 0.3) preferred. The reason for this change is that grad-
ually more realistic galaxy luminosity functions were used for estimating the expected number
of lenses, rather than error-prone extrapolations of local galaxy number densities towards high
redshift [2].

The Sloan Digital Sky Survey has allowed the definition of a homogeneously selected quasar
sample from which cosmological parameters were derived. Assuming a spatially flat universe,
a value of ΩΛ0 = 0.74+0.17

−0.16 was derived for the cosmological constant, where statistical and
systematic errors were combined in quadrature. Allowing a free equation-of-state parameter
gave w = −1.1+0.67

−0.78 and a matter-density parameter of Ωm0 = 0.26± 0.08 when combined with
independent cosmological constraints.

Halos are expected to have a continuous mass spectrum in universes dominated by cold dark
matter, which is described by mass functions. Thus, one would expect a continuous distribution
of splitting angles between fractions of an arc second to several ten arc seconds. The observed
image-splitting distribution was studied to determine if it was consistent with expectations from
CDM. Observation and theory agreed if selection effects were taken into account. Others found
that the splitting-angle distribution in CDM is grossly incompatible with microwave-background
constraints in a model universe with high matter density and vanishing cosmological constant,
but that both could be comfortably reconciled in a spatially-flat, low-density CDM model. [2]

Occasionally, therefore, lens systems should be detected with splitting angles of ten or more
arc seconds. Some have interpreted the absence of wide-separation lenses in the CLASS survey
as being due to low central mass concentrations in group- and cluster-sized halos. It was
perceived as a further confirmation of the CDM paradigm when a quadruply imaged quasar
was detected in the Sloan Digital Sky Survey with a splitting angle of 14.62 arc seconds, for
which others derived a lens mass of (5± 1)× 1013 h−1M� within a radius of 100h−1 kpc based
on a non-parametric lens model. The triaxiality of CDM halos must be taken into account
in probability and mass estimates for the formation of wide-separation lens systems, which is
familiar from other studies of strong lensing in galaxy clusters. [2]

Clearly, cosmological parameters from the statistics of strong gravitational lensing by galax-
ies are generally no longer competitive compared to those based on observations of the cosmic
microwave background because the uncertainties in lens models and sample selection are con-
siderable. It should be kept in mind, however, that the cosmic microwave background does
not independently measure the Hubble constant, but the expansion rate during the time of
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recombination. Hence, independent measurements in particular of the Hubble constant are and
remain most important. [2]

Estimation of the Hubble Constant

The lens equation is dimensionless, and the positions of images as well as their magnifications
are dimensionless numbers. Therefore, information on the image configuration alone does not
provide any constraint on the overall scale of the lens geometry or the value of the Hubble
constant. Refsdal [51] realized that the time delay, however, is proportional to the absolute
scale of the system and does depend on H0 (cf. Fig. 3.20). [39]

Figure 3.20: Sketch of the dependence of the overall scale of a lens system on the value of the
Hubble constant [39].

To see this, we first note that the geometrical time delay is simply proportional to the path
lengths of the rays which scale as H−1

0 . The potential time delay also scales as H−1
0 because

the linear size of the lens and its mass have this scaling. Therefore, for any gravitational lens
system, the quantity

H0 ∆τ (3.50)

depends only on the lens model and the geometry of the system. A good lens model which
reproduces the positions and magnifications of the images provides the scaled time delay H0 ∆τ
between the images. Therefore, a measurement of the time delay ∆τ will yield the Hubble
constant H0. [39]

To measure the time delay, the fluxes of the images need to be monitored over a period of
time significantly longer than the time delay in order to achieve reasonable accuracy. In fact,
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the analysis of the resulting light curves is not straightforward because of uneven data sampling,
and careful and sophisticated data analysis techniques have to be applied. QSO 0957+561 has
been monitored both in the optical and radio wavebands. Unfortunately, analysis of the data
has led to two claimed time delays [39] :

∆τ = (1.48± 0.03) years (3.51)

and

∆τ ' 1.14 years (3.52)

The discrepancy appears to have been resolved in favor of the shorter delay. In addition to
a measurement of the time delay, it is also necessary to develop a reliable model to calculate the
value of H0∆τ . QSO 0957+561 has been studied by a number of groups over the years, with
recent work incorporating constraints from VLBI imaging. The Hubble constant is estimated
to be

H0 = (82± 6) (1− κ)

(
∆τ

1.14 yr

)−1

km s−1 Mpc−1 (3.53)

where κ refers to the unknown convergence due to the cluster surrounding the lensing galaxy.
Since the cluster κ cannot be negative, this result directly gives an upper bound on the Hubble
constant (H0 < 88 km s−1 Mpc−1 for ∆τ = 1.14 years). Actually, κ can also be modified
by large scale structure along the line of sight. In contrast to the effect of the cluster, this
fluctuation can have either sign, but the rms amplitude is estimated to be only a few per cent.
It is confirmed that large-scale structure does not modify the functional relationship between
lens observables, and therefore does not affect the determination of H0. [39]

To obtain an actual value of H0 instead of just an upper bound, we need an independent
estimate of κ. Studies of weak lensing by the cluster give κ = 0.24± 0.12 (2σ) at the location
of the lens. This corresponds to H0 = 62+12

−13 km s−1 Mpc−1. Another technique is to measure
the velocity dispersion σgal of the lensing galaxy, from which it is possible to estimate κ used
the Keck telescope to measure σgal = 279 ± 12 km s−1, which corresponds to H0 = 66 ±
7 km s−1 Mpc−1. Although most models of QSO 0957+561 are based on a spherically symmetric
galaxy embedded in an external shear (mostly due to the cluster), introduction of ellipticity in
the galaxy, or a point mass at the galaxy core, or substructure in the cluster seem to have little
effect on the estimate of H0 [39].

A measurement of the time delay has also been attempted in the Einstein ring system
B 0218+ 357. In this case, a single galaxy is responsible for the small image splitting of 0.′′3.
The time delay has been determined to be 12 ± 3 days (1σ confidence limit) which translates
to H0 ∼ 60 km s−1 Mpc−1 [39].

The determination of H0 through gravitational lensing has a number of advantages over
other techniques. [39].

1 The method works directly with sources at large redshifts, z ∼ 0.5, whereas most other
methods are local (observations within ∼ 100 Mpc) where peculiar velocities are still
comparable to the Hubble flow.

2 While other determinations of the Hubble constant rely on distance ladders which pro-
gressively reach out to increasing distances, the measurement via gravitational time delay
is a one-shot procedure. One measures directly the geometrical scale of the lens system.
This means that the lens-based method is absolutely independent of every other method
and at the very least provides a valuable test of other determinations.
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3 The lens-based method is based on fundamental physics (the theory of light propagation in
General Relativity), which is fully tested in the relevant weak-field limit of gravity. Other
methods rely on models for variable stars (Cepheids) or supernova explosions (Type II),
or empirical calibrations of standard candles (Tully-Fisher distances, Type I supernovae).
The lensing method does require some information on the “shapes” of galaxies which is
used to guide the choice of a parameterized lens model.

Cosmological Constant

A large cosmological constant Λ0 increases the volume per unit redshift of the universe at
high redshift. This means that the relative number of lensed sources for a fixed comoving
number density of galaxies increases rapidly with increasing Λ0. Turning this around it is
possible to use the observed probability of lensing to constrain Λ0. The current limit is Λ0 <
0.65 (2σ confidence limit) for a universe with Ω0 +Λ0 = 1. With a combined sample of optical
and radio lenses, this limit could be slightly improved to Λ0 < 0.62 (2σ; [39].

A completely independent approach considers the redshift distribution of lenses. For a given
source redshift, the probability distribution of zd peaks at higher redshift with increasing Λ0.
Once again, by comparing the observations against the predicted distributions one obtains an
upper limit on Λ0. This method is less sensitive than the first, but gives consistent results. [39]

Another technique consists in comparing the observed QSO image separations to those
expected from the redshifts of lenses and sources and the magnitudes of the lenses, assuming
certain values for Ω0 and Λ0. The cosmological parameters are then varied to optimize the
agreement with the observations. Applying this approach to a sample of seven lens systems, it
was found that Λ0 = 0.64+0.15

−0.26 (1σ confidence limit) assuming Ω0 + Λ0 = 1. [39]

3.5 Weak Gravitational Lensing

The main subject of this dissertation is strong lensing models. However, for the sake of com-
pleteness of this introductory material, it is essential to discuss the subject of weak gravitational
lensing as well. There is no generally applicable definition of weak lensing despite the fact that
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it constitutes a flourishing area of research. The common aspect of all studies of weak grav-
itational lensing is that measurements of its effects are statistical in nature. While a single
multiply-imaged source provides information on the mass distribution of the deflector, weak
lensing effects show up only across ensembles of sources. One example was given above: The
shape distribution of an ensemble of galaxy images is changed close to a massive galaxy clus-
ter in the foreground, because the cluster’s tidal field polarizes the images. We shall see later
that the size distribution of the background galaxy population is also locally changed in the
neighborhood of a massive intervening mass concentration. [4]

Until very recently, weak lensing has been considered by a considerable fraction of the com-
munity as ‘black magic’ (or to quote one member of a PhD examination committee: “You have
a mass distribution about which you don’t know anything, and then you observe sources which
you don’t know either, and then you claim to learn something about the mass distribution?”).
Most likely the reason for this is that weak lensing is indeed weak. One cannot ‘see’ the effect,
nor can it be graphically displayed easily. Only by investigating many faint galaxy images
can a signal be extracted from the data, and the human eye is not sufficient to perform this
analysis. This is different even from the analysis of CMB anisotropies which, similarly, need
to be analyzed by statistical means, but at least one can display a temperature map of the
sky. However, weak lensing has gained a lot of credibility, not only because it has contributed
substantially to our knowledge about the mass distribution in the Universe, but also because
different teams, with different data set and different data analysis tools, agree on their results.
[55]

Magnification and distortion effects due to weak lensing can be used to probe the statistical
properties of the matter distribution between us and an ensemble of distant sources, provided
some assumptions on the source properties can be made. For example, if a standard candle at
high redshift is identified, its flux can be used to estimate the magnification along its line-of-
sight. It can be assumed that the orientation of faint distant galaxies is random. Then, any
coherent alignment of images signals the presence of an intervening tidal gravitational field.
As a third example, the positions on the sky of cosmic objects at vastly different distances
from us should be mutually independent. A statistical association of foreground objects with
background sources can therefore indicate the magnification caused by the foreground objects
on the background sources.

All these effects are quite subtle, or weak, and many of the current challenges in the field are
observational in nature. A coherent alignment of images of distant galaxies can be due to an
intervening tidal gravitational field, but could also be due to propagation effects in the Earth’s
atmosphere or in the telescope. A variation in the number density of background sources around
a foreground object can be due to a magnification effect, but could also be due to non-uniform
photometry or obscuration effects. These potential systematic effects have to be controlled at
a level well below the expected weak-lensing effects. [4]

The principles of weak gravitational lensing

Distortion of faint galaxy images

Images of distant sources are distorted in shape and size, owing to the tidal gravitational field
through which light bundles from these sources travel to us. Provided the angular size of a lensed
image of a source is much smaller than the characteristic angular scale on which the tidal field
varies, the distortion can be described by the linearized lens mapping, i.e., the Jacobi matrix
A. The invariance of the surface brightness by gravitational light deflection, I(θ) = I(s)[β(θ)],
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together with the locally linearized lens equation,

β − β0 = A(θ0) · (θ − θ0) , (3.54)

where β0 = β(θ0), then describes the distortion of small lensed images as

I(θ) = I(s)[β0 + A(θ0) · (θ − θ0)] . (3.55)

We recall (see IN) that the Jacobi matrix can be written as

A(θ) = (1− κ)

(
1− g1 −g2

−g2 1 + g1

)
, where g(θ) =

γ(θ)

[1− κ(θ)]
(3.56)

is the reduced shear, and the gα, α = 1, 2, are its Cartesian components. The reduced shear
describes the shape distortion of images through gravitational light deflection. The (reduced)
shear is a 2-component quantity, most conveniently written as a complex number,

γ = γ1 + iγ2 = |γ| e2iϕ ; g = g1 + ig2 = |g| e2iϕ ; (3.57)

its amplitude describes the degree of distortion, whereas its phase ϕ yields the direction of
distortion. The reason for the factor ‘2’ in the phase is the fact that an ellipse transforms into
itself after a rotation by 180◦. Consider a circular source with radius R); mapped by the local
Jacobi matrix, its image is an ellipse, with semi-axes

R

1− κ− |γ| =
R

(1− κ)(1− |g|) ;
R

1− κ+ |γ| =
R

(1− κ)(1 + |g|)

and the major axis encloses an angle ϕ with the positive θ1-axis. Hence, if sources with circular
isophotes could be identified, the measured image ellipticities would immediately yield the value
of the reduced shear, through the axis ratio

|g| = 1− b/a
1 + b/a

⇔ b

a
=

1− |g|
1 + |g|

and the orientation of the major axis ϕ. In these relations it was assumed that b ≤ a, and
|g| < 1. We shall discuss the case |g| > 1 later. [55]

However, faint galaxies are not intrinsically round, so that the observed image ellipticity is
a combination of intrinsic ellipticity and shear. The strategy to nevertheless obtain an estimate
of the (reduced) shear consists in locally averaging over many galaxy images, assuming that
the intrinsic ellipticities are randomly oriented. In order to follow this strategy, one needs to
clarify first how to define ‘ellipticity’ for a source with arbitrary isophotes (faint galaxies are
not simply elliptical); in addition, seeing by the atmospheric turbulence will blur – and thus
circularize – observed images, together with other effects related to the observation procedure.
From [55].
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Figure 3.21: A circular source, shown at the left, is mapped by the inverse Jacobian A−1 onto an
ellipse. In the absence of shear, the resulting image is a circle with modified radius, depending
on κ. Shear causes an axis ratio different from unity, and the orientation of the resulting ellipse
depends on the phase of the shear. From [55]

Figure 3.22: The shape of image el-
lipses for a circular source, in de-
pendence on their two ellipticity
components χ1 and χ2; a corre-
sponding plot in term of the elliptic-
ity components εi would look quite
similar. Note that the ellipticities
are rotated by 90◦ when χ → −χ
From [55]

Which of these two definitions is more convenient depends on the context; one can easily
transform one into the other,

ε =
χ

1 + (1− |χ|2)1/2
, χ =

2ε

1 + |ε|2 . (3.58)

In fact, other (but equivalent) ellipticity definitions have been used in the literature, but the
two given above appear to be most convenient.
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From source to image ellipticities.

In total analogy, one defines the second-moment brightness tensor Q
(s)
ij , and the complex ellip-

ticities χ(s) and ε(s) for the unlensed source. From

Q
(s)
ij =

∫
d2β I(s)(θ) qI [I

(s)(β)] (βi − β̄i) (βj − β̄j)∫
d2β I(s)(θ) qI [I(s)(β)]

, i, j ∈ {1, 2} , (3.59)

one finds with d2β = detA d2θ, β − β̄ = A
(
θ − θ̄

)
, that

Q(s) = AQAT = AQA , (3.60)

where A ≡ A(θ̄). Using the definitions of the complex ellipticities, one finds the transformations

χ(s) =
χ− 2g + g2χ∗

1 + |g|2 − 2<(gχ∗)
; ε(s) =


ε− g

1− g∗ε if |g| ≤ 1 ;

1− gε∗
ε∗ − g∗ if |g| > 1 .

(3.61)

The inverse transformations are obtained by interchanging source and image ellipticities, and
g → −g in the foregoing equations.

Estimating the (reduced) shear.

In the following we make the assumption that the intrinsic orientation of galaxies is random,

E
(
χ(s)

)
= 0 = E

(
ε(s)
)
, (3.62)

which is expected to be valid since there should be no direction singled out in the Universe.
This then implies that the expectation value of ε is [as obtained by averaging the transformation
law (3.61) over the intrinsic source orientation]

E(ε) =

 g if |g| ≤ 1

1/g∗ if |g| > 1 .
(3.63)

This is a remarkable result, since it shows that each image ellipticity provides an unbiased
estimate of the local shear, though a very noisy one. The noise is determined by the intrinsic
ellipticity dispersion

σε =
√〈

ε(s)ε(s)∗
〉
,

in the sense that, when averaging over N galaxy images all subject to the same reduced shear,
the 1-σ deviation of their mean ellipticity from the true shear is σε/

√
N . A more accurate

estimate of this error is
σ = σε

[
1−min

(
|g|2, |g|−2

)]
/
√
N (3.64)

Hence, the noise can be beaten down by averaging over many galaxy images; however, the region
over which the shear can be considered roughly constant is limited, so that averaging over galaxy
images is always related to a smoothing of the shear. Fortunately, we live in a Universe where
the sky is ‘full of faint galaxies’, as was impressively demonstrated by the Hubble Deep Field
images and previously from ultra-deep ground-based observations. Therefore, the accuracy
of a shear estimate depends on the local number density of galaxies for which a shape can
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Figure 3.23: Illustration of
the tangential and cross-
components of the shear, for
an image with ε1 = 0.3, ε2 = 0,
and three different directions
φ with respect to a reference
point. From [55]

be measured. In order to obtain a high density, one requires deep imaging observations. As a
rough guide, on a 3 hour exposure with a 4-meter class telescope, about 30 galaxies per arcmin2

can be used for a shape measurement.
In fact, considering (3.63) we conclude that the expectation value of the observed ellipticity is

the same for a reduced shear g and for g′ = 1/g∗. It has been shown that one cannot distinguish
between these two values of the reduced shear from a purely local measurement, and term this
fact the ‘local degeneracy’; this also explains the symmetry between |g| and |g|−1 in (3.64).
Hence, from a local weak lensing observation one cannot tell the case |g| < 1 (equivalent to
detA > 0) from the one of |g| > 1 or detA < 0. This local degeneracy is, however, broken in
large-field observations, as the region of negative parity of any lens is small (the Einstein radius
inside of which |g| > 1 of massive lensing clusters is typically . 30′′, compared to data fields of
several arcminutes used for weak lensing studies of clusters), and the reduced shear must be a
smooth function of position on the sky.

Whereas the transformation between source and image ellipticity appears simpler in the case
of χ than ε – see (3.61), the expectation value of χ cannot be easily calculated and depends
explicitly on the intrinsic ellipticity distribution of the sources. In particular, the expectation
value of χ is not simply related to the reduced shear (Schneider & Seitz 1995). However, in the
weak lensing regime, κ� 1, |γ| � 1, one finds

γ ≈ g ≈ 〈ε〉 ≈ 〈χ〉
2

. (3.65)

Tangential and cross component of shear

The shear components γ1 and γ2 are defined relative to a reference Cartesian coordinate frame.
Note that the shear is not a vector (though it is often wrongly called that way in the literature),
owing to its transformation properties under rotations: Whereas the components of a vector
are multiplied by cosϕ and sinϕ when the coordinate frame is rotated by an angle ϕ, the shear
components are multiplied by cos(2ϕ) and sin(2ϕ), or simply, the complex shear gets multiplied
by e−2iϕ. The reason for this transformation behavior of the shear traces back to its original
definition as the traceless part of the Jacobi matrix A. This transformation behavior is the same
as that of the linear polarization; the shear is therefore a polar. In analogy with vectors, it is
often useful to consider the shear components in a rotated reference frame, that is, to measure
them w.r.t. a different direction; for example, the arcs in clusters are tangentially aligned, and
so their ellipticity is oriented tangent to the radius vector in the cluster. From [55].
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If φ specifies a direction, one defines the tangential and cross components of the shear relative
to this direction as

γt = −<
[
γ e−2iφ

]
, γ× = −=

[
γ e−2iφ

]
; (3.66)

For example, in case of a circularly-symmetric matter distribution, the shear at any point will
be oriented tangent to the direction towards the center of symmetry. Thus in this case choose
φ to be the polar angle of a point; then, γ× = 0. In full analogy to the shear, one defines the
tangential and cross components of an image ellipticity, εt and ε×.

The sign in (3.66) is easily explained (and memorized) as follows: consider a circular mass
distribution and a point on the θ1-axis outside the Einstein radius. The image of a circular
source there will be stretched in the direction of the θ2-axis. In this case, φ = 0 in (3.66),
the shear is real and negative, and in order to have the tangential shear positive, and thus to
define tangential shear in accordance with the intuitive understanding of the word, a minus sign
is introduced. Negative tangential ellipticity implies that the image is oriented in the radial
direction. We warn the reader that sign conventions and notations have undergone several
changes in the literature, and the current author had his share in this. From [55].

Minimum lens strength for its weak lensing detection.

As a first application of this decomposition, we consider how massive a lens needs to be in order
that it produces a detectable weak lensing signal. For this purpose, consider a lens modeled as
an SIS with one-dimensional velocity dispersion σv. In the annulus θin ≤ θ ≤ θout, centered
on the lens, let there be N galaxy images with positions θi = θi(cosφi, sinφi) and (complex)
ellipticities εi. For each one of them, consider the tangential ellipticity

εti = −<
(
εi e−2iφi

)
. (3.67)

The weak lensing signal-to-noise for the detection of the lens obtained by considering a weighted
average over the tangential ellipticity is

S

N
=

θE

σε

√
πn
√

ln(θout/θin)

= 8.4

(
n

30 arcmin−2

)1/2 ( σε
0.3

)−1
(

σv

600 km s−1

)2

(3.68)

×
(

ln(θout/θin)

ln 10

)1/2〈
Dds

Ds

〉
,

where θE = 4π(σv/c)
2(Dds/Ds) is the Einstein radius of an SIS, n the mean number density of

galaxies, and the average of the distance ratio is taken over the source population from which
the shear measurements are obtained. Hence, the S/N is proportional to the lens strength (as
measured by θE), the square root of the number density, and inversely proportional to σε, as
expected. From this consideration we conclude that clusters of galaxies with σv & 600 km/s can
be detected with sufficiently large S/N by weak lensing, but individual galaxies (σv . 200 km/s)
are too weak as lenses to be detected individually. From [55].

Mean tangential shear on circles.

In the case of axi-symmetric mass distributions, the tangential shear is related to the surface
mass density κ(θ) and the mean surface mass density κ̄(θ) inside the radius θ by γt = κ̄− κ. It
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is remarkable that a very similar expression holds for general matter distributions. To see this,
we start from Gauss’ theorem, which states that∫ θ

0

d2ϑ ∇ · ∇ψ = θ

∮
dϕ ∇ψ · n ,

where the integral on the left-hand side extends over the area of a circle of radius θ (with
its center chosen as the origin of the coordinate system), ψ is an arbitrary scalar function, the
integral on the right extends over the circle with radius θ, and n is the outward directed normal
on this circle. Taking ψ to be the deflection potential and noting that ∇2ψ = 2κ, one obtains

m(θ) ≡ 1

π

∫ θ

0

d2ϑ κ(ϑ) =
θ

2π

∮
dϕ

∂ψ

∂θ
, (3.69)

where we used that ∇ψ · n = ψ,θ. Differentiating this equation with respect to θ yields

dm

dθ
=
m

θ
+

θ

2π

∮
dϕ

∂2ψ

∂θ2
. (3.70)

Consider a point on the θ1-axis; there, ψ,θθ = ψ11 = κ + γ1 = κ − γt. This last expression is
independent on the choice of coordinates and must therefore hold for all ϕ. Denoting by 〈κ(θ)〉
and 〈γt(θ)〉 the mean surface mass density and mean tangential shear on the circle of radius θ,
(3.70) becomes

dm

dθ
=
m

θ
+ θ [〈κ(θ)〉 − 〈γt(θ)〉] . (3.71)

The dimensionless mass m(θ) in the circle is related to the mean surface mass density inside
the circle κ̄(θ) by

m(θ) = θ2 κ̄(θ) = 2

∫ θ

0

dϑ ϑ 〈κ(ϑ)〉 . (3.72)

Together with dm/dθ = 2θ 〈κ(θ)〉, (3.71) becomes, after dividing through θ,

〈γt〉 = κ̄− 〈κ〉 , (3.73)

a relation which very closely matches the result mentioned above for axi-symmetric mass distri-
butions. One important immediate implication of this result is that from a measurement of the
tangential shear, averaged over concentric circles, one can determine the azimuthally-averaged
mass profile of lenses, even if the density is not axi-symmetric. From [55].

Magnification effects

A magnification µ changes source counts according to

n(> S,θ, z) =
1

µ(θ, z)
n0

(
>

S

µ(θ, z)
, z

)
, (3.74)

where n(> S, z) and n0(> S, z) are the lensed and unlensed cumulative number densities of
sources, respectively. The first argument of n0 accounts for the change of the flux (which implies
that a magnification µ > 1 allows the detection of intrinsically fainter sources), whereas the
prefactor in (3.74) stems from the change of apparent solid angle. In the case that n0(S) ∝ S−α,
this yields

n(> S)

n0(> S)
= µα−1 , (3.75)
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and therefore, if α > 1 (< 1), source counts are enhanced (depleted); the steeper the counts,
the stronger the effect. In the case of weak lensing, where |µ − 1| � 1, one probes the source
counts only over a small range in flux, so that they can always be approximated (locally) by a
power law. Provided that κ� 1, |γ| � 1, a further approximation applies,

µ ≈ 1 + 2κ ; and
n(> S)

n0(> S)
≈ 1 + 2(α− 1)κ . (3.76)

Thus, from a measurement of the local number density n(> S) of galaxies, κ can in principle
be inferred directly. It should be noted that α ∼ 1 for galaxies in the B-band, but in redder
bands, α < 1; therefore, one expects a depletion of their counts in regions of magnification
µ > 1. Broadhurst et al. (1995) have discussed in detail the effects of magnification in weak
lensing. Not only are the number counts affected, but since this is a redshift-dependent effect
(since both κ and γ depend, for a given physical surface mass density, on the source redshift),
the redshift distribution of galaxies is locally changed by magnification.

Since magnification is merely a stretching of solid angle, it has been pointed out that magni-
fied images at fixed surface brightness have a larger solid angle than unlensed ones; in addition,
the surface brightness of a galaxy is expected to be a strong function of redshift [I ∝ (1+z)−4],
owing to the Tolman effect. Hence, if this effect could be harnessed, a (redshift-dependent)
magnification could be measured statistically. Unfortunately, this method is hampered by ob-
servational difficulties; it seems that estimating a reliable estimate for the surface brightness
from seeing-convolved images is even more difficult than determining image shapes. From [55].

Shape Measurements and PSF Correction

The typical change in ellipticity due to gravitational lensing is much smaller than the intrinsic
shape of the source, even in the case of clusters of galaxies. Although this can be dealt with by
averaging the shapes of many galaxies, the shear signal can be overwhelmed by instrumental
effects, which may be difficult to assess on an object-by-object basis. Hence the study of
algorithms that can accurately determine the shapes of faint galaxies has been a major part of
the development of weak gravitational lensing as a key tool for cosmology.

The problem is highlighted by comparing the ”true” image of an object to the ”observed”
version shown in Figure 3.24. The main source of bias that needs to be corrected for is the
blurring of the images by the point spread function (PSF). Unless the pixels are large with
respect to the PSF, the pixellation is not a major source of concern. As it is easier to measure
properties when the noise is low, the S/N ratio is another key parameter determining how well
shapes can be measured. In the case of space-based observations, due to the combination of low
sky background and radiation damage, charge transfer inefficiency may also be an important
effect. [21]

One approach to recover the true galaxy shapes is to adopt a suitable model of the surface
brightness distribution. An estimate of the lensing signal is obtained by shearing the model
and convolving it with the PSF, comparing the result to the observed image until a best fit
is found. A model for the PSF is typically obtained by analyzing the shapes of a sample of
stars in the actual data. An important advantage of this approach is that instrumental effects
can be incorporated in a Bayesian framework. As the modeling requires many calculations and
thus is computationally expensive, the use of model-fitting algorithms has only recently become
more prominent. Some examples of this approach are lensfit which was used to analyze the
CFHTLenS data, and im3shape. There are challenges as well: the model needs to accurately
describe the surface brightness of the galaxies, while having a limited number of parameters in

121



Figure 3.24: We need to infer accurate information about the shape of the true surface brightness
distribution (left) from images that have been corrupted by various sources of bias, such as
pixellation, seeing and noise. Given a good description of the instrumental effects it is possible
to simulate their effects and thus examine the performance of shape measurement algorithms.
[21]

order to avoid fitting the noise. A model that is too rigid will lead to model bias, as does a
model that is too flexible. [21]

Galaxy shapes can also be quantified by computing the moments of the galaxy images. Such
methods have been applied to data extensively, especially the KSB method. The shapes can be
quantified by the polarization

e1 =
I11 − I22

I11 + I22
, and e2 =

2I12

I11 + I22
, (3.77)

where the quadrupole moments Iij are given by

Iij =
1

I0

∫
d2x xixjW (x)f(x), (3.78)

where f(x) is the observed galaxy image, W (x) a suitable weight function to suppress the noise
and I0 the weighted monopole moment. It is also convenient to define R2 = I11 + I22 as a
measure of the size of the galaxy. Both model-fitting and moment-based methods are used to
measure the weak lensing signal and further development is ongoing. In these notes we continue
with a closer look at the use of moments, because it is somewhat easier to see how the results
are impacted by instrumental effects.

Observational distortions

The observed moments are changed by the blurring of the PSF: the PSF has a width which
leads to rounder images and typically is anisotropic, which leads to a preferred orientation. If
that were not enough, noise in the images leads to additional biases. The various sources of bias
can be grouped into two kinds: a multiplicative bias m that scales the shear, and an additive
bias c that reflects preferred orientations that are introduced. The observed shear and true
shear are thus related by:

γobs
i = (1 +m)γtrue

i + c, (3.79)

where we implicitly assumed that the biases are the same for both shear components. The
additive bias is a major source of error for cosmic shear studies because the PSF patterns can
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overwhelm the lensing signal. Studies of clusters and galaxies use the tangential shear averaged
using many lens-source pairs, and much of the additive biases tend to average away. As we
discuss below it is possible to test how well the correction for additive bias has performed, but
the estimate of the multiplicative bias requires image simulations. [21]

If it were possible to ignore the effects of noise in the images, we could use unweighted
moments. In this case the correction for the PSF is straightforward as the corrected moments
are given by

Itrue
ij = Iobs

ij − IPSF
ij , (3.80)

i.e. one only needs to subtract the moments of the PSF from the observed moments. The result
provides an unbiased estimate of the polarization, but to convert the result into a shear still
requires knowledge of the unlensed ellipticity (distribution), although this could be established
iteratively from the data.

From a pure statistical perspective it is more efficient to image large areas of the sky rather
than take deep images of smaller regions. Hence the images of the sources are typically noisy and
unweighted moments cannot be used. The optimal estimate is obtained by matching the weight
function to the size (and shape) of the galaxy image. However, the correction for the change in
moments due to both the weight function and the PSF is no longer simple, but involves higher
order moments of the surface brightness distribution, which themselves are affected by noise.
Note that limiting the expansion in moments is analogous to the model bias in model-fitting
approaches.

In the simplified case of unweighted moments, the change in the observed ellipticity ε̂ due
to small errors in the PSF size (δR2

PSF) or PSF ellipticity (δεPSF) can be expressed as

ε̂gal ≈ εgal +
∂εgal

∂(R2
PSF)

δ(R2
PSF) +

∂εgal

∂εPSF
δεPSF, (3.81)

which can be written as

ε̂gal ≈
[

1 +
δ(R2

PSF)

R2
gal

]
εgal −

[
R2

PSF

R2
gal

δεPSF +
δ(R2

PSF)

R2
gal

εPSF

]
. (3.82)

The first term shows the multiplicative bias caused by errors in the PSF size, relative to the
galaxy size. The second term corresponds to the additive bias and is determined by errors in the
PSF model δεPSF and residuals in the correction for the PSF anisotropy (last term). However,
the PSF is not the only source of bias, especially when considering weighted moments and hence
the expression for the multiplicative bias (idem for the additive one) becomes more involved
when more effects are included. In particular new contributions arise that are related to the
correction method (method bias). As is already clear from the expression reproduced above,
a small PSF is important in order to minimize the biases. Although small PSF anisotropy is
preferable, a good model of the PSF size and shape is critical. [21]

PSF model

Although much effort has been spent on improving the correction for the PSF, without an
accurate model for the spatial variation of the PSF, the resulting signal will nonetheless be
biased (e.g. In ground-based data the PSF changes from exposure to exposure due to changing
atmospheric conditions and gravitational loads on the telescope. The PSF of HST observations
changes due to the change in thermal conditions as it orbits around the Earth. If a sufficient
number of stars can be identified in the images, these can be used to model the PSF. As can be
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Figure 3.25: Left panel: Plot of the apparent magnitude versus half-light radius for RCS data.
The rectangle indicates the sample of stars that can be used to model the PSF variation.
Brighter stars saturate and their observed sizes increase as can be seen as well. Right panel:
An example of the pattern of PSF anisotropy for MegaCam on CFHT. The sticks indicate the
direction of the major axis of the PSF and the length is proportional to the PSF ellipticity. A
coherent pattern across the field-of-view is clearly visible. [21]
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seen from Figure 3.25 stars can be identified by plotting magnitude versus size. As the stars are
the smallest objects, they occupy a clear vertical locus. If the star saturates, charge leaks into
neighboring pixels and the size increase which explains the trail towards larger sizes, whereas
the size and shape estimates become noisy for faint stars. After selecting a sample of suitable
stars (not too bright such that they are saturated but also not too faint such that they cannot
be separated from faint, small sources) the resulting PSF pattern can be modeled. The right
panel in Figure 3.25 shows an example for MegaCam on the Canada-France-Hawaii Telescope
(CFHT), which shows a coherent pattern across the field-of-view.

Most studies to date fit an empirical model to the measurements of a sample of stars to
capture the spatial variation. As the PSF pattern is determined by (inevitable) misalignments
in the optics, the overall pattern varies relatively smoothly. However, to efficiently image large
areas of sky, observations are carried out using mosaic cameras. For instance, Megacam on
CFHT consists of 36 chips. Misalignments and flexing of the chips will lead to small additional
PSF patterns on the scale of the chips. A single low-order model fit to the full focal plane cannot
capture these small scale variations. Instead a low-order (typically second-order) polynomial is
used for each chip, but this may lead to over-fitting on small scales due to the limited number
of stars per chip. Whether a model based on the typical optical distortions can be used to
model the PSF pattern of the Subaru telescope has also been evaluated. The global pattern,
which varies from exposure to exposure, can indeed be described fairly well. By combining
many observations, one can also try to account for the misalignments of the individual chips.
[21]

To obtain deeper images and to fill in the gaps between the chips, exposures are dithered
and combined into a stack. As the observing conditions typically vary between exposures, the
combined PSF pattern becomes very complicated (especially at the location of the chip gaps).
It is important to account for this, for instance by modeling the PSF of each exposure and
keeping track which PSFs contribute to the stack at a particular location. Alternatively one
can model each exposure.

The true shapes of galaxies should not correlate with the PSF pattern, although chance
alignments of the shear and the PSF may occur. This enables an important test of the fidelity
of the correction for PSF anisotropy: we can measure the correlation between the corrected
galaxy shapes and the PSF ellipticity, the star-galaxy correlation. The detection of a significant
correlation points to an inadequate correction, which may be due to the method itself or the
PSF model. Importantly, this test does not depend on cosmology, while being very sensitive
to one of the most dominant sources of bias in cosmic shear studies. In the analysis of the
CFHTLenS data, this was used to identify and omit fields that showed significant systematics.
[21]

Cluster Mass Reconstruction with Weak Gravitational Lensing

The study of cosmic shear has been the main science driver of most recent weak lensing studies,
but in this section we highlight some of the applications to galaxy and cluster lensing which
pertain to cosmology and the study of dark matter.

Mapping the distribution of dark matter

The observed weak lensing shear field provides estimates of the derivatives of the lensing po-
tential It is possible to invert this problem to obtain a parameter-free reconstruction of the
surface density distribution: it is possible to make an ‘image’ of the dark matter distribution.
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The surface density (up to an arbitrary contant κ0) can be written as:

κ(θ)− κ0 =
1

π

∫
d2θ′

ζ(θ′ − θ)γ(θ′)

(θ′ − θ)2
, (3.83)

where the convolution kernel ζ(θ) is given by

ζ(θ) =
θ2

2 − θ2
1 + 2iθ1θ2

|θ|4 . (3.84)

The proper evaluation of this integral requires data out to infinity, which is impractical. This
complication spurred the development of finite-field inversion methods.

The intrinsic shapes of the sources add significant noise to the reconstruction and as a result
only the distribution of matter in massive clusters of galaxies can be studied in detail using
weak lensing mass reconstructions. Of particular interest is the study of merging systems,
where dynamical techniques cannot be used. Figure 3.26 shows a reconstruction of the mass
distribution of the Bullet cluster based on HST observations. The reconstructed (dark) matter
distribution is offset from the hot X-ray gas, but agrees well with the distribution of galaxies.
These observations provide some of the best evidence for the existence of dark matter. This is
because in alternative theories of gravity the hot X-ray gas should be the main source of the
lensing signal. In the near future we can expect improved constraints on the properties of dark
matter particles based on a systematic study of merging systems. [22]
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Figure 3.26: X-ray emission from the ‘Bullet’ cluster of galaxies as observed by Chandra. The eponymous
bullet is a small galaxy cluster which has passed through the larger cluster and whose hot gas is seen in X-rays
as the triangular shape on the right. The contours correspond to the previous mass reconstruction. The dark
matter distribution is clearly offset from the gas, which contains the majority of baryonic matter, but agrees
well with the distribution of galaxies – as expected if both the dark matter and stars in galaxies are effectively
collisionless. From [22]

Cosmology with galaxy clusters

Since clusters trace the highest peaks in the density, their number density as a function of
mass and redshift depends strongly on the underlying cosmology, making it an interesting
complementary probe for dark energy studies. Although conceptually straightforward, the
implementation of this method has proven difficult.

One reason is that precise measurements of cosmological parameters require cluster catalogs
with well-defined selection functions. In principle clusters can be identified in mass reconstruc-
tions from large weak lensing surveys, but projections along the line-of-sight lead to a relatively
high false positive rate. Hence, either one must work with a statistic that includes projection
effects, or with samples derived from optical, X-ray or radio observations.

Even in the latter case it is essential to have a well-determined relation between the observed
cluster properties and mass. This is where weak lensing studies of large cluster samples can play
an important role. The determination of the mean relation between the quantity of interest
(e.g., richness, X-ray temperature) and cluster mass can be done statistically. For instance, the
ensemble averaged weak lensing signal has been measured as a function of richness and lumi-
nosity using data from Sloan Digital Sky Survey (SDSS). Unfortunately, the mass-observable is
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expected to have an intrinsic scatter as well, which is the result of differences in formation his-
tory, etc. The precise characterization of this unknown scatter is important to ensure accurate
measurements of cosmological parameters. Individual weak lensing masses can be derived for
massive clusters. We note, however, that ultimately the accuracy of these mass measurements
is limited by projections along the line of sight. [22]

Multi-wavelength observations of samples that contain up to ∼ 50 massive clusters have only
recently started. These comprehensive studies, which also combine data at other wavelengths,
will not only help quantify the scatter, but will also improve our understanding of cluster
physics. This in turn will increase the reliability of other cluster mass estimators (such as the
X-ray temperature). Evidence has recently been found that the outer regions of clusters are
not in hydrostatic equilibrium, suggesting that additional pressure may be provided by bulk
motion of the plasma. Cluster cosmology is an evolving field, and the hope is that with large
samples of clusters observed in multiple wavelengths their internal physics will be modeled well
enough for cosmological applications. [22]

Properties of dark matter halos

Simulations of hierarchical structure formation in CDM cosmologies have shown that the density
profiles of virialized halos over a wide range in mass have a nearly universal profile with radius
– the Navarro-Frenk-White (NFW) profile. The only difference between halos of galaxies and
clusters of different mass is their concentration, which reflects the central density of the halo.
Gravitational lensing provides us with powerful tools to test a range of predictions of the CDM
paradigm via the structure of halos. For instance, the dark matter dominated outer regions can
be uniquely probed by weak lensing, whereas strong gravitational lensing can be used to study
the density profile on small scales.

Central regions: In the context of CDM, simulations indicate a power law density profile
ρ ∝ r−β as r → 0. The original studies found a slope of β = 1, but the exact value is still
debated. Without a complete treatment of the effects of baryons, observational results will be
difficult to interpret. Despite these complications, much effort is devoted to determine the slope
of the density profile observationally, as it can provide unique constraints on physical properties
of the dark matter particle, such as its interaction cross section. [22]

Dynamical studies of galaxies have proven useful, and much of the current controversy
about the central slope is based on observations of the rotation curves of low surface brightness
galaxies, which suggest that the dark matter distribution has a central core. Strong lensing by
galaxies can provide limited information because the typical Einstein radius is large compared
to the region of interest. Nevertheless, the combination of strong lensing and dynamics has
shown to be extremely useful for the study of the stars and dark matter in galaxies and to test
general relativity.

Strong lensing can be used to study the inner density profiles of clusters, although results
are still somewhat ambiguous. Of particular interest are clusters that show both tangential and
radial arcs, because these can help to constrain the density profile. An analysis of such systems
suggests an average slope β ∼ 0.5. [22]

Outer regions: The value for the outer slope of the density profile is expected to be β ∼ 3.
A related prediction is that the mean central density of the halo decreases with virial mass, i.e.,
lower mass systems are more concentrated. The average dark matter profile of galaxy clusters
has been studied using SDSS. These results agree well with predictions from ΛCDM models, as
do studies of individual clusters such as Abell 1689.
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The study of the outer parts of galaxies is more difficult, because the signal of an individual
galaxy is too small to be detected. The interpretation of the observed signal, also known as
the galaxy-mass cross-correlation function is complicated by the fact that it is the convolution
of the galaxy dark matter profile and the (clustered) distribution of galaxies. Despite these
limitations, galaxy-galaxy lensing studies provide a number of useful tests of the cold dark
matter paradigm.

One such test is the measurement of the extent of dark matter halos. Pioneering studies
were unable to provide constraints because of the small numbers of lens-source pairs. Large
surveys, such as SDSS, RCS and CFHTLShave measured the lensing signal with much higher
precision, enabling determination of the extent of dark matter halos around field galaxies. Note
that these measurements use the small scale end of the galaxy-shear cross-correlation. [22]

Another area where galaxy-galaxy lensing studies will have a great impact is the study of
the shapes of dark matter halos. CDM simulations predict that halos are tri-axial. This is
supported by the findings that show the dark matter halos are on average aligned with the light
distribution with a mean axis ratio that is in broad agreement with the CDM predictions. A
similar result was obtained recently using CFHTLS data. Both these studies lacked the multi-
color data to separate lenses by galaxy type. Such a separation was done using SDSS data.
They did not detect a significant flattening, although their data do suggest a positive alignment
for the brightest ellipticals.

The accuracy of these measurements is expected to improve significantly over the next few
years as more data is collected as part of cosmic shear surveys. An accurate measurement of
the anisotropy of the lensing signal around galaxies (i.e, the signal of flattened halos in CDM)
is also a powerful way to test alternative theories of gravity. [22]

3.6 Gravitational Lensing in Cosmology

Gravitational lensing is an important tool for determining the values of cosmological parameters,
for the characterization of dark matter and more recently used as ”cosmic telescopes” to image
objects that would otherwise not be visible. Strong gravitational lensing by galaxies and clusters
provides one of the most striking confirmations of Einstein’s theory of General Relativity. In
the case of galaxy-galaxy lensing, the chance alignment of two galaxies along the line of sight
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provides information about both the lens and the source that cannot be obtained in any other
way. The angular separation of multiple images of a lensed galaxy is typically parameterized
in terms of the angular Einstein radius and provides an unambiguous measurement of the total
mass of the lens (baryonic plus non-baryonic) as long as the distances to the lens and source
are known. At the same time, lensing increases the apparent size of the background source and
conserves surface brightness in the process [8].

The Mass-Sheet Degeneracy

When modeling lensed quasars, on the basis of a few quasar images, one attempts to model
the whole two-dimensional gravitational potential of the lensing galaxy or galaxies. There is
no unique solution to the problem: too few observational constraints are available and several
mass models giving each one a different time-delay can reproduce a given image configuration,
its astrometry and flux ratios. In other words, lens models are degenerate.

Degeneracies have been described and blamed abundantly in the literature for being the
main source of uncertainty in lens models. Whatever precision on the measured astrometry
and time-delay, several mass models will predict several time-delays and hence several H0. One
must devise techniques to break the degeneracies or find quasars that are less affected by them.

The main degeneracy one has to face in quasar lensing is called the mass sheet degeneracy:
when adding to a given mass model, a sheet of constant mass density (i.e., constant conver-
gence), one does not change any of the observables, except for the time-delay. The additional
mass can be internal to the lensing galaxy (e.g., ellipticity does not change the total mass
within the Einstein radius, but does change at the position of the images) or due to intervening
objects along the line of sight. The exact mass introduced by the mass sheet increases the
total mass of the lens, but one can re-scale it and locally change its slope at the position of the
images. The result is that the image configuration does not change, but the convergence, at
the position of the images does change, and modifies the time-delay. Therefore, knowledge of
the the slope of the mass profile of the lensing galaxy, whether it be under the form of a model
or of a measurement, is one of the keys to having a ”good” model. [10]
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Figure 3.27: Two ways of obtaining a given image configuration. The left panel displays a
system with four images, with an elliptical lens that introduces convergence and shear at the
position of the images. On the right panel, is shown the same image geometry and flux ratios,
but the lens is now circular. One would in principle only obtain two images with such a lens.
The shear required to obtain four images is introduced by the nearby cluster. The mass density
of the cluster is represented through its convergence . The mass of the main lens is scaled
accordingly by 1/(1− κ) so that the image configuration remains the same as in the left panel:
the mass in the main lens and in the cluster are degenerate. If no independent measurement is
available for at least one of the components (main lens or cluster), it is often difficult to know,
from the modeling alone, what exactly are their respective contributions.[10].

Adding convergence also modifies the shear, hence the ellipticity of the main lens. There are
several ways of reproducing a given combination of shear and convergence at the position of the
images, as illustrated in Figure 3.27. In the left panel of the figure, the shear is produced only
by the main elliptical lensing galaxy. In the right panel, the total shear is a combination of the
lens-induced shear and of that of the nearby galaxy cluster. In principle, it is even possible to
model a given system equally with either one single elliptical lens or with a completely circular
lens and an intervening cluster responsible for an ”external” source of shear.

Both types of degeneracies can be broken or, at least, their effect can be strongly minimized,
by constraining in an independent way (1) the mass profile of the main lens, and (2) the total
mass (and possibly also the radial mass profile) of any intervening cluster along the line of sight.
This work can be done with detailed imaging, spectroscopy of all objects along the line of sight,
and by using numerical multi-components models for the total lensing potential

The Mass Sheet Degeneracy has its origin in the transformation shown here. Consider a
strong lensing system with images coming from a single source. A uniform sheet of mass with
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density Σs produces a deflection described by

~̂αs(~θ) =
Ds

Dds

Σs

Σcr

~θ, (3.85)

in which the critical mass density for the current geometry is defined as follows:

Σcr =
c2

4πGDd

Ds

Dds
. (3.86)

Note that Σcr depends on the redshift of the source via the angular diameter distances Ds and
Dds. Let Σ0(~θ) be a mass distribution that is compatible with the observed images. This means
that the corresponding lens equation

~β0(~θ) = ~θ − Dds

Ds

~̂α0(~θ) (3.87)

projects the images onto the source plane in such a way that they overlap exactly. Without
further constraints, this immediately yields an infinite number of alternative solutions. Indeed,
if the mass distribution is replaced by

Σ1(~θ) = λΣ0(~θ) + (1− λ)Σcr, (3.88)

the new lens equation becomes

~β1(~θ) = ~θ − λDds

Ds

~̂α0(~θ)− (1− λ)
Dds

Ds

~̂αs(~θ) = λ~β0(~θ). (3.89)

The transformation (3.88) describes the so-called mass-sheet degeneracy and simply rescales
the source plane by the factor λ, producing an equally acceptable source reconstruction. Note
that merely adding a mass-sheet is not sufficient; one also needs to rescale the original mass
distribution by the same factor λ, which justifies the alternative name of steepness degeneracy.
The density of the mass-sheet has to be precisely the critical mass density for this to work. For
this reason, a mass-sheet cannot be used when there are sources at different redshifts, since
these would require different critical densities. [33]

The mass sheet degeneracy can also be looked at from the point of view of redshifts [6]. In the
simple case of background sources all having the same redshift, the mass-sheet degeneracy can be
understood just using the above equations. Indeed, consider for a moment the transformation
of the potential ψ

ψ(~θ, z)→ ψ′(~θ, z) =
1− λ

2
~θ2 + λψ(~θ, z) , (3.90)

where λ is an arbitrary constant. κ and γ are related to the potential ψ through its second
partial derivatives (denoted by subscript), namely

κ =
1

2
(ψ,11 + ψ,22) , γ1 =

1

2
(ψ,11 − ψ,22) , γ2 = ψ,12 . (3.91)

From (3.90) it follows that κ transforms as

κ(~θ, z)→ κ′(~θ, z) = λκ(~θ, z) + (1− λ) , (3.92)

and similarly the shear changes as γ(~θ, z) to λγ(~θ, z). Therefore the reduced shear g(~θ, z)
remains invariant.
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It has been shown that in the case of a known redshift distribution, a similar form of the
mass-sheet degeneracy holds to a very good approximation for non-critical clusters, i.e. for
clusters with |g(~θ, z)| ≤ 1 for all source redshifts z. In such a case the standard weak-lensing
mass reconstruction is affected by the degeneracy

κ→ κ′ ' λκ+
(1− λ) 〈Z(z)〉
〈Z2(z)〉 , (3.93)

where
〈
Zn(z)

〉
denotes the n-th order moment of the distribution of cosmological weights. As

a result, standard weak-lensing reconstructions are still affected by the mass-sheet degeneracy
even for sources at different redshifts; moreover, simulations show that the degeneracy is hardly
broken even for lenses close to critical. [6].

One usually factors out the similarity transformation by working with a scaled arrival time
surface like so [53]

τ(θ) =
1

2
(θ − β)2 − 2∇−2

θ κ(θ). (3.94)

Here the scaled arrival time τ , the scaled surface density (or convergence) κ and the operator
∇−2

θ are all dimensionless. The physical arrival time and density are

t(θ) = (1 + zL)
DLDS

cDLS
τ(θ), Σ(θ) =

c2

4πG

DS

DLSDL
κ(θ). (3.95)

The usual lensing potential is ψ = 2∇−2
θ κ and the bending angle is α = ∇θψ.

We now rewrite (3.94) by discarding a 1
2β

2 term, since it is constant over the arrival-time
surface, and using ∇2

θθ
2 = 4, to get

τ(θ) = 2∇−2
θ (1− κ)− θ · β. (3.96)

The transformation
1− κ→ s(1− κ), β → sβ. (3.97)

clearly just rescales time delays while keeping the image structure the same; but since the
source plane is rescaled by s all magnifications are scaled by 1/s, leaving relative magnifications
unchanged. The effect on the lens is to rescale the lensing mass and then add or subtract a
constant mass sheet. This is (3.97) a magnification transformation, but it is usually referred to
as the ‘mass-sheet degeneracy’ [53]

For a circular lens, the mass-sheet degeneracy preserves the total mass inside an Einstein
radius θE. We can see this by invoking the two-dimensional analog of Gauss’s flux law in
electrostatics, which in lens notation becomes∮

α× dl = 2

∫
κ d2θ, (3.98)

or that the normal component of α, integrated along any closed loop, is proportional to the
enclosed mass. Along an Einstein ring, α is always radial and hence normal to the ring; also,
its magnitude always equals θE (since a source at the centre is imaged onto the ring). Hence,
the left hand integral in Eq. (3.98) depends only on θE. Meanwhile the right hand integral gives
twice the enclosed mass. Thus, fixing the Einstein radius fixes the enclosed mass.

The mass-sheet degeneracy is broken if there are sources at more than one redshift. The
reason is that we can no longer factor out the source-redshift dependence as we did in Eqs.
(3.94) and (3.95). Instead, we can replace (3.94) and (3.95) with

τ(θ) =
1

2
(θ−β)2−2

DLS

DS
∇−2

θ κ(θ), t(θ) = (1+zL)
DL

c
τ(θ), Σ(θ) =

c2

4πG

1

DL
κ(θ), (3.99)
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and replace Eq. (3.96) with

τ(θ) = 2∇−2
θ

(
1− DLS

DS
κ

)
− θ · β, (3.100)

Sources at different redshifts imply simultaneous equations of the type (3.100) but with different
factors of DLS/DS, which prevents a transformation like (3.97). [53]

The mass distribution κ(θ) and each of the distributions

κλ(θ) = λκ(θ) + (1− λ) , (3.101)

together with an (in most cases unobservable; see below) isotropic scaling of the source plane
coordinates β → λβ, yields exactly the same dimensionless observables, i.e., image positions,
image shapes, magnification ratios, etc. This is called the mass-sheet degeneracy (MSD). In
other words, from the observed image positions and flux ratios, one cannot distinguish between
the original κ and any of the mass distributions in (3.101). Weak gravitational lensing cannot
break the MSD, since image shapes are unaffected. However, the product of the time delay
and the Hubble constant is affected, H0 ∆t → λH0 ∆t, but leaving time delay ratios again
invariant. [56]

Breaking the mass-sheet degeneracy

The mass-sheet transformation (MST) leaves the critical curves invariant, also the curves on
which κ = 1. Furthermore, it leaves the shapes of the isodensity contours invariant, just the
value of κ on these contours changes according to (3.101).

As is clear from the transformation of H0 ∆t, in order to get a reliable estimate of the
Hubble constant from gravitational lensing, one first needs to break the MSD. Several ways
have been suggested in the literature. Some of these make use of the fact that the MST (3.101)
affects the magnification, µ → µ/λ2, hence if the magnification can be estimated, the value of
λ can be constrained (this magnification corresponds to the aforementioned isotropic scaling of
the source plane coordinates). For AGN as sources, which have a very broad distribution of
intrinsic luminosities, this cannot be easily accomplished. It has been shown that the correlation
between AGN variability properties and luminosity can be used as a tool for estimating source
luminosities, and hence lensing magnification, the scatter of the variability–luminosity relation
is large and can only be employed in a statistical way.

Another possibility to break the MSD in strong lensing systems is based on independent
mass estimates of the lens. Combining lensing measurements with spectroscopy of the lens
galaxy, the MSD can be broken.For early-type galaxies (most lenses are of that type), the
stellar velocity dispersion yields an estimate of the mass inside the effective radius of the lens,
which together with the precise (and unaffected by the MST) determination of the mass inside
the Einstein radius of the lens allows one to determine the mean slope γ′ of the mass profile
between the effective radius and the Einstein radius. [56]

In general, the velocity dispersion measurement in individual systems is derived with typi-
cally 10% uncertainty, which translates into an uncertainty of the same order on the logarith-
mic slope of the profile The radial/tangential anisotropy of the stars commonly encoded in the
anisotropy parameter β = 1− (σ̄2

θ/σ̄
2
r) also systematically affects the estimate of the slope to a

level which can reach 15%. The impact of anisotropy may in practice be smaller, i.e. less than
5%.

In any case, the MST to first order corresponds to a scaling of the three-dimensional mass
distribution by a factor λ – with the constant (1− λ)-term corresponding to a larger-scale 3-D
mass component which contributes little to the gravitational potential inside the effective radius.
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Since σ2 ∝ M , we find that ∆H0/H0 = ∆λ/λ = ∆M/M = 2∆σ/σ. Thus an uncertainty
of 6% in the stellar velocity dispersion translates into a ∼ 12% uncertainty in the Hubble
constant, even if we ignore uncertainties regarding orbit anisotropies and triaxiality of the mass
distribution.

[6] uses the information of individual redshifts of background sources to break this degener-
acy. As an illustration of the effect, suppose that half of the background sources are located at
a known redshift z(1), and the other half at another known redshift z(2). Then, the weak lensing
reconstructions based on the two populations will provide two different mass maps, κ′(~θ, z(1))

and κ′(~θ, z(2)), leading to two different forms of the mass-sheet degeneracy. In other words, the
two mass reconstructions (i = 1, 2) are given by

κ′(~θ, z(i)) = λ(i)κt(~θ, z
(i)) +

(
1− λ(i)

)
(3.102)

where they denote κt(~θ, z
(i)) the true projected κ of the lens at the angular position ~θ for

sources at redshift z(i). Since the transformation (3.102) holds for any ~θ, we have a system

of equations to be solved for λ(1) and λ(2). The relation between κt(~θ, z
(1)) and κt(~θ, z

(2)) is
known, and it follows

κt(~θ, z
(1))Z(z(2)) = κt(~θ, z

(2))Z(z(1)). (3.103)

If one measures both κ′(~θ, z(i)) at N different positions ~θj , this gives us a system of 2N equations

to be solved for λ(i) and κt(~θj). The mass-sheet degeneracy is therefore at least in theory lifted.
[6]

It is interesting to observe that this argument only applies to relatively “strong” lenses.
Indeed, for “weak” lenses, i.e. lenses for which we can use a first order approximation in κ and
γ, the expectation value of measured image ellipticities is

〈
ε(z)

〉
= γ(~θ, z). In such case the

degeneracy of the form

ψ(~θ, z)→ ψ′(~θ, z) =
1− λ

2
~θ2 + ψ(~θ, z) (3.104)

leaves the observable γ(~θ, z) unchanged. As a result, the method described above cannot be
used to break the mass-sheet degeneracy for these lenses. Only when the (1 − Z(z)κ) term

in the reduced shear becomes important and g(~θ, z) can be distinguished from γ(~θ, z) in the
(noisy) data, is it possible to make unbiased cluster mass reconstructions. [6]

[59] describe two methods for breaking the mass-sheet degeneracy:

i. Stellar dynamics of the lens galaxy. Stellar dynamics can be used jointly with lensing to
break the internal mass-sheet degeneracy by providing an estimate of the enclosed mass at
a radius different from the Einstein radius, which is approximately the radius of the lensed
images from the lens galaxy. We note that for a given stellar velocity dispersion, there is a
degeneracy in the mass and the stellar orbit anisotropy (which characterizes the amount
of tangential velocity dispersion relative to radial dispersion). Nonetheless, the mass-
isotropy degeneracy is nearly orthogonal to the mass-sheet degeneracy, so a combination
of the mass within the effective radius (from the stellar velocity dispersion) and the mass
within the Einstein radius (from lensing) effectively breaks both the mass-isotropy and
the internal mass-sheet degeneracies.

ii. Studying the environment and the line of sight to the lens galaxy. Observations of the field
around lens galaxies allow a rough picture of the projected mass distribution to be built
up. Many lens galaxies lie in galaxy groups, which can be identified either by their spectra
or, more cheaply (but less accurately), by their colors and magnitudes. By modeling the
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mass distribution of the groups and galaxies in the lens plane and along the line of sight
to the lens galaxy, one can estimate the external convergence κext at the redshift of the
lens. The group modeling requires (i) identification of the galaxies that belong to the
group of the lens galaxy, and (ii) estimates of the group centroid and velocity dispersion.
A number of recipes can be followed. Two extremes can be considered: (i) the group is
described by a single smooth mass distribution, and (ii) the masses are associated with
individual galaxy group members with no common halo. The realistic mass distribution
for a galaxy group should be somewhere between these two extremes. The experience to
date is that modeling lens environments accurately is very difficult, with uncertainties of
100% typical.

[59] emphasizes that the mass-sheet degeneracy is simply one of the several parameter
degeneracies in the lens modeling that has been given a special name. When power-laws (κ ∼
bR1−γ′

, where R is the radial distance from the lens center, b is the normalization of the lens,
and γ′ is the radial slope in the mass profile) are used to describe the lens mass distribution,
one often finds a H0-γ′ degeneracy in addition to the H0-b-κext (mass-sheet) degeneracy (for
fixed Ωm, ΩΛ and w; more generally, D∆t would be in place of H0). These two degeneracies
are of course related via H0. The H0-γ′ degeneracy primarily occurs in lens systems with
symmetric configurations due to a lack of information on γ′. In contrast, lens systems with
images spanning a range of radii or with extended images provide information on γ′, and so
the H0-γ′ degeneracy is broken. Nonetheless, the H0-b-κext degeneracy is still present unless
information from dynamics and lens environment studies is provided.

Dark Matter and Gravitational Lensing

The discussion of dark matter will begin with a definition (3.6, followed by some general ideas
to characterize dark matter (3.6). We will then discuss some of the problems in the CDM
model that are brought about by the concept of dark matter (3.6), and then discuss methods
for detecting dark matter. Last, we will look at four effects of dark matter on the universe and
how those effects can be used to determine the nature of dark matter (3.6).

Definition

Dark matter has been defined as any form of matter whose existence is inferred solely on
the basis of its gravitational effects. The existence of dark matter in galaxy clusters was
predicted by Fritz Zwicky in the 1930’s, who observed that galaxies in clusters are moving
faster than predicted by their mass estimates. This preceded the pioneering work of Vera
Rubin, who accurately measured the rotation curves of galaxies and found that experimental
results required the existence of dark matter. This research took a great leap forward in the
1990s when numerical simulations of structure formation with CDM were performed. Dark
matter does not emit or absorb light in any form, thus it does not interact electromagnetically.

Characterization of Dark Matter

Dark matter is characterized as ordinary matter (i.e. baryonic matter, e.g. MACHOs) or some
other kind of matter (i.e. non-Baryonic matter, e.g. WIMPs). Most research has looked at
these two main groups of particles. At this time, many investigators believe that WIMPs or
other non-baryonic particles appear to be the most promising possibility among a long list of
possibilities [58]. The search to characterize the properties of dark matter is one of the most
important lines of investigations in cosmology today, and is seen as an integral part of verifying
the existing models of cosmology.

136



According to the standard model, baryonic dark matter is required to make up the difference
between the visible matter density and the baryon density as required by standard BBN models.
Exactly where these baryons might be hiding depends on the nature of the objects being studied.

Characterization of non-baryonic dark matter is done in one of two ways, either direct or
indirect. Direct searches depend on dark matter particles actually passing through detectors
and physically interacting with them. Indirect searches look for secondary products produced
when dark matter particles annihilate each other elsewhere. Direct searches can, in principle, be
used to look for neutrinos, axions and WIMPs, whereas only WIMPs are accessible indirectly
[58]. These methods will be discussed below in Section 2.3, Specific Dark Matter Detection
Techniques.

Problems with DM in the ΛCDM model of Cosmology

On large scales, the ΛCDM simulations work quite well, while on galaxy scales there are 3
main problems that arise when comparing observational results with those predicted by the
models. An understanding of these 3 problems which result from the comparing the numerical
simulations to observation is essential to understand the nature of dark matter in galaxies.

1. Core-Cusp problem: The core-cusp problem arises from the CDM simulations that
suggest that CDM forms ”cusp distributions”, meaning that they increase sharply to a high
value at a central point. This would suggest that the center of the galaxy has a higher dark
matter density, but this has not been observed [11]. There have been three suggested ways to
interpret the constraints of the core-cusp problem including: (a) CDM halos do in fact have
cusps, constraining cosmological parameters, (b) Something eliminates the cusps (feedback,
modified dark matter), or (c) The CDM simulations which show cusp formations are wrong
[64].

2. Angular momentum problem: The angular momentum problem is a result of the types
of models used to describe the CDM universe. This includes three basic issues: disks rotate
too fast at a given luminosity, mass (dark and luminous) is too concentrated and that disks are
too small at a given rotation speed [7]. This was worked out by Navarro and Steinmetz, who
concluded that the dark halos are much less centrally concentrated than those formed in the
CDM models they investigated, suggesting the need for extreme feedback [40].

3. Missing satellite problem: The existence of dark matter is based on a number of lines
of evidence, including the rotation curves of spiral galaxies, x-ray halos in elliptical galaxies,
kinematics of galaxy clusters and gravitational lensing toward galaxy clusters. One goal of
determining the nature of dark matter is to better understand the true history of structure
formation of the universe and to basically ”build better models”. The magnitude of this problem
is suggested by model predictions of 10,000 satellite galaxies in the Milky Way galaxy, while
only 30 have been identified.

Since our understanding of the universe is based currently on the CDM model, these three
problems which are a result of the models currently in use, represent significant areas of research
in cosmology today, and motivate attempts to further understand dark matter.

Dark Matter- Evidence

The existence of dark matter is based on a number of lines of evidence. Basically, since dark
matter is not directly observable (yet), we rely on observing its effects to infer its existence.
Continuing research related to dark matter is basically in two tracks. Next, we will look at
ways of studying the effects of dark matter on various aspects of the Universe including

• Mass Distribution
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• Dark Matter and Global Shape

• Density Profile

• Dark Matter Substructure

While many lines of evidence support the existence of dark matter, at this time we have only
been able to observe its effects and have not directly observed or characterized dark matter.
This evidence and the observed effects are all based on gravitational effects. It is of course
possible that our understanding and/or characterization of gravity is fundamentally flawed,
which leads us to erroneously attribute these observations to dark matter.

Mass Distribution

In a simple calculation based on the mechanics of Kepler’s third law, it is easy to show that

M =
V 2r

G
(3.105)

If we solve this equation for our own solar system with the radius of the sun’s orbit and velocity
of the sun, then this predicts that there are about 1 x 108 solar masses inside the sun’s orbit.
Clearly, something is wrong! This is a very simple and fast illustration of why the concept of
dark matter has been invoked. Other data has also been used more convincingly.

Until the 1970s, rotation data for spiral galaxies came from optical observations which do
not extend beyond the luminous inner regions. At that time, the optical rotation curves seemed
consistent with the distribution of luminous matter. With the construction of radio telescopes,
it became possible to measure the distribution and rotation of the H I in spiral galaxies, which
showed that the H I in many spirals extended far beyond the starlight, and that the H I rotation
curves in such galaxies showed nearly constant rotational velocity out to the radial limits of the
data [16].

This was unexpected, because a flat rotation curve means that the total mass of the spiral
within some radius r increases linearly with r, while the total luminosity approaches a finite
asymptotic limit as r increases. It soon became clear that a large amount of invisible gravitating
mass (more than 90 per cent of the total mass in some examples) is needed to explain these
flat rotation curves (see Figure 3 below). At the radial limit of the data, the dark halo is
providing most of the total gravitational field. In almost every example, a massive dark halo
that dominates the enclosed mass M(r) at large r is needed to explain the observed rotation
curves. The nature of this dark matter remains unknown, and is one of the great problems of
modern astrophysics [16].

The studies of the masses of spiral galaxies are based on the 21cm emission line of hydrogen
in spiral galaxies, to trace orbital motions. The rotation curve is then used to determine the
total amount of mass as a function of distance from the center. Rotation curves measure the
mass distribution of a galaxy. This is discussed further below in the section ’Dynamical Effects
of Dark Matter on Visible Structure’. Spiral galaxies all tend to have flat rotation curves
indicating large haloes of dark matter.
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Figure 3.28: Rotation curve for a typical galaxy from [16]. The lower panel hows the H1 rotation
curve (points). The curve labelled disk shows the expected rotation curve if the surface density
distribution followed the surface brightness distribution in the upper panel. The curve labelled
gas is the contribution to the rotation curve from the observed gas. The curve labelled halo
is the rotation curve of the adopted dark halo model: the three labelled rotation curves, when
added in quadrature, produce the total rotation curve that passes through the observed points.

Measuring mass in elliptical galaxies is slightly different, since ellipticals have very little gas
which makes it impossible to use the 21cm H line, as is done with spiral galaxies. Elliptical
galaxies are not supported by rotation, so rotation curves cannot be used to study their dark
matter content. Elliptical galaxies are studies with the broadening of stellar spectral lines.
Broader lines generally indicate faster star movement.

Measuring mass in galaxy clusters is somewhat different. The velocities of galaxies are
studied by their Doppler shifts. Up to 50 times the mass of the stars is found in clusters.
Another method of measuring cluster mass is based on the fact that clusters contain large
amounts of hot x-ray emitting gas. The temperature of this hot gas measures the cluster’s mass
because the gas is held it the cluster by gravitational forces. Cluster masses obtained by x-ray
measurements agree well with the galactic velocity method. A third method of determining the
mass in galaxy clusters is using gravitational lensing, discussed further below.

Especially for galaxy clusters, the mass function is an important tool of the theoretician.
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The mass function describes the halo mass distribution in the Universe. The evolution of
the mass function is sensitive to cosmology because matter density controls the rate of the
growth of structure. There have been a number of analytic methods used to calculate the
mass function for dark matter halos, which can show the evolution of the mass function with
different cosmologies, for example standard CDM with Ωm=1.0, Open CDM with Ωm=0.3 and
ΩΛ=0, or ΛCDM with ω=-0.8. Two of the mass functions that have been used are the Press-
Schechter and the Sheth-Tormen types. These are then used in simulations to understand the
mass function of dark matter halos. The halos present a set of specific difficulties in calculating
the mass function [20].

Studies of mass-to-light ratios show that as one proceeds farther from the center, there is
more mass per light. Thus, most matter is not luminous and it is not concentrated centrally.

The existence of galactic halos of dark matter is mainly derived from studies of stars and
gas in spiral galaxies. It is acknowledged that much less is known about dark matter around
elliptical galaxies. In an interesting study of gravitational lensing to derive the masses of
elliptical galaxies, Magain and Chantry found that the mass to light ratios in these galaxies
does not depend on radius and that the mass does not exceed the value predicted by stellar
population models by more than a factor of two [35]. They conclude that these results can be
explained by baryonic matter alone, without the need for dark matter. These results are in
sharp contrast to what is found from the rotation curves of spiral galaxies.

Testing predictions from numerical dark matter simulations and probing dark energy require
precise measurements of galaxy cluster masses, however it is nontrivial to define what is meant
by the mass of a cluster because clusters do not have any clear boundary between themselves
and the surrounding large-scale structure. By convention cluster mass has been defined as the
mass enclosed within a three-dimensional sphere of a given radius with respect to the halo center
such as the virial mass. Given a working definition of mass, a method of mass measurement
must be chosen, each of which suffers a number of advantages and disadvantages [48]. The
problem of cluster mass determination is being studied intensively with gravitational lensing.

Dark Matter and Global Shape

The shapes of the dark matter halos are not expected to be spherical. One of the general pre-
dictions of structure formation within the prevailing cold dark matter (CDM) paradigm is that
galaxy-scale dark matter haloes should be described by a triaxial density ellipsoid [29]. Despite
the near-ubiquitous predictions of triaxiality from such simulations, there has not been much
observational evidence to confirm triaxiality in specific individual galaxies, although gravita-
tional lensing and X-ray observations have indicated that non-sphericity appears to be common
in dark matter haloes, such studies are sensitive only to the integral of the density profile along
the line of sight and do not provide real three dimensional information [29]. The Milky Way
Galaxy provides perhaps the best laboratory for testing predictions of halo sphericity since the
tidal stream remnants of dwarf satellites orbiting in the Galactic halo can be traced in three
dimensions and provide sensitive probes of the underlying mass distribution. Observations of
the lengthy tidal streams produced by the destruction of the Sagittarius dwarf spheroidal are
capable of providing strong constraints on the shape of the Galactic gravitational potential.
However, previous work, based on modeling different stream properties in axisymmetric Galac-
tic models has yielded conflicting results: while the angular precession of the Sgr leading arm is
most consistent with a spherical or slightly oblate halo, the radial velocities of stars in this arm
are only reproduced by prolate halo models. Law and colleagues [29] demonstrated that this
apparent paradox can be resolved by instead adopting a triaxial potential. Their new Galactic
halo model, which simultaneously fits all well-established phase space constraints from the Sgr
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stream, provides the first conclusive evidence for, and tentative measurement of, triaxiality in
an individual dark matter halo.

Since the natural shape of dark matter is triaxial as is confirmed as well from the cos-
mologicial N-body simulations, it is surprising at first sight that disk galaxies are roughly
axisymmetric in the outer parts. Yet this has been shown with very high quality HI data. This
suggests strongly that the process of disk galaxy formation is such that the original triaxial
dark matter halo shape is modified by the formation of the disk, e.g. due to dissipation. The
shape of the dark matter halo close to the disk should be either oblate or prolate [5].

The application of gravitational lensing to determine the shape of dark matter halos was
nicely demonstrated in a landmark study by Oguri and colleagues [45], who observed 20 massive
clusters of galaxies with the Subaru Telescope’s Prime Focus Camera (Suprime-Cam). Clusters
of galaxies are ideal sites for studying the distribution of dark matter, because they contain
thousands of galaxies and are known to accompany a large amount of dark matter. The superb
light-collecting power and excellent image quality of the Subaru Telescope gave the researchers
an extra advantage. By using Suprime-Cam at prime focus, they could capture objects in a
particularly wide field-of-view.

Observations with Suprime-Cam yielded wide-field images of 20 massive clusters of galaxies
(typically located at 3 billion light years from Earth), which were then used to measure and
analyze dark matter distributions. From their detailed analysis of gravitational lensing effects
in the images, they obtained clear evidence that the distribution of dark matter in the clusters
has, on average, an extremely flattened shape rather than a simple spherical contour. The
measured degree of the flattening is quite large, corresponding to 2:1 in terms of the ratio of
major to minor axes of the ellipse.

This finding represents the first direct and clear detection of flattening in the dark matter
distribution with the use of gravitational lensing. In addition to the promise of using gravita-
tional lensing for exploring the nature of dark matter, this research contributes to the theoretical
modeling of dark matter. Detailed comparisons of the team’s findings with theoretical model
predictions of the distribution of dark matter show that the observed degree of the flattening
is in excellent agreement with theoretical expectations [43].

Density Profile

In the 1990s, numerical simulations were used to fit an analytic density profile to density
distributions to predict a density profile, called the NFW profile (Navarro, Frenk and White).
Other density profiles have been evaluated to fit the rotation curves. A major motivation is to
test key predictions from the cold dark matter theory of structure formation: (1) the density
profile of the dark matter halos posited to host galaxies and cluster of galaxies is predicted to
be universal and follow a simple 2-parameter model and (2) massive galaxy cluster-scale dark
matter halos have concentrations that are less concentrated than less massive halos [47].

Gravitational lensing has been used as a probe of the dependence of cluster density on
cluster-centric radius, which is known as the density profile. This has been done with three
different approaches including statistics of multiply lensed QSOs, time delay statistics and arc
statistics [41; 42].

The mass and internal structure of galaxy clusters reflect the properties of primordial density
perturbations and the nature of dark matter. One of the most interesting predictions from
numerical simulations based on the cold dark matter (CDM) model of structure formation is
that dark matter halos can be described by the NFW profile [48]. These results have shown that
cluster-scale halos should have relatively shallow, low-concentration mass profiles, where the
power-law slope of density profile becomes more negative with increasing radius, approaching
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an asymptotic slope of ?3 around the virial radius.
One of the most recent methods to probe the mean mass density profile of cluster-scale dark

matter halos was reported by Okabe and colleagues, using stacked weak-lensing [47]. In this
study, a mass-selected sample of clusters at z 0.2 was analyzed using a stacked weak lensing
analysis, based on Subaru observational data. An NFW model was used to fit the data. This
study is important because it shows the potential for weak lensing techniques to be used to
determine the mean mass density profiles of cluster-scale dark matter halos.

Dark matter substructure

The cold dark matter (CDM) paradigm predicts the presence of numerous substructures in dark
halos on any scale, because less massive objects form earlier and become more massive through
mergers. High- resolution N-body simulations have shown an assembly history that subhalos
continually fall into larger halos [46].

The missing satellite problem, where cosmological simulations of CDM predict a significantly
larger fraction of lower mass satellites around galaxies than is detected, represents a major
puzzle in the study of structure formation [34]. The SDSS has found additional faint satellites
in the Milky Way, but the numbers are much lower than the predicted abundances of sub
haloes [34]. One approach to finding these dark satellites is through gamma rays emitted
by dark matter annihilation. Gravitational lensing is am alternative way to detect subhaloes.
Using gravitational lensing, there are several approaches including the effect on image positions,
and their effect on time delays in the case of massive satellites.

Quadruply gravitationally lensed quasars are extremely useful objects for lensing studies
because they provide a large number of constraints on the models of the mass distribution
of the lensing galaxies. Simple models for the gravitational potentials – a monopole plus a
quadrupole – are extremely good at reproducing the positions of the quasar images. However,
there are some cases where they fail to produce the observed fluxes of the images. This is termed
a flux ratio anomaly and is most likely due to small scale structure in the mass distribution of the
lens. The idea is that there is some mass condensation in the smooth dark matter distribution
of the lensing galaxy, and this object further perturbs the light from the background quasar
through its own gravitational influence. Although the angular deflection due to such an object
is undetectable with current telescopes, the change in brightness is detectable, leading to the
observed flux ratio anomaly [49]. Many lenses have flux ratio anomalies, where the relative
brightnesses cannot be explained by simple central lens galaxies. Mid-IR observations have
been used in the search for substructure and using this technique in a multiply lensed galaxy,
the observed flux-ratio anomaly is used as evidence of low-mass substructure [34].

The study of MG0414+0534 is interesting as an example of using flux ratio anomalies to
study substructure. This quadruply lensed quasar (zs=2.64, zl=0.96) is radio-loud, and was
discovered in 1989 by Hewitt. The fact that it is a radio loud quasar makes it unusual, and
important for study because the radio data can be compared with optical data.

It was then studied by Falco and coworkers who reported that the flux ratios were different
comparing the optical and radio data [15]. The system was analyzed using four different gravi-
tational lens models. They suggested microlensing as a possible explanation for this difference.
Keeton et al then discussed the origin of shear in gravitational lenses, including a discussion
of MG0414 [26]. They concluded that the most important source of ellipticity in gravitational
lenses is the primary lens galaxy. This system was also reviewed by Mao and Schneider, who
clearly state that the difference in flux ratios observed may be a result of small scale structure
within the lens galaxy [36]. By this time, no one had yet applied the term flux ratio anomaly
to this phenomenon.
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This quasar was studied by Minezaki et al [38] who found a flux ratio anomaly at mid-IR
wavelengths that suggests a millilensing structure. Mid-IR is used because image fluxes can be
affected by extinction and microlensing in the primary lens at the easily observed wavelengths.
At mid-IR, both extinction and microlensing are negligible [34]. The models of Minezaki et
al were extended to a more detailed model in the work by MacLeod and colleagues [34] who
used Lensmodel software, and found that the model had a significantly improved fit with the
addition of a third lens near image A2. MacLeod and colleagues found a flux ratio of 0.93 ±
0.02 for the A2/A1 images. This ratio should be 1.00 since they are bright, close images, if one
assumes a smooth lens model. The fact that they are 5σ apart is the flux ratio anomaly, which
suggests substructure. The results of MacLeod are very close to those observed my Minezaki.
The fact that the anomaly persists into the mid-IR is considered evidence that it is a result of
substructure in the lens (millilensing) which is concluded both by MacLeod and Minezaki.

MacLeod and colleagues not only did detailed observational studies, but they then used
lensmodel software to model the system. They started with G1 and G2, as in previous studies
and then added a third lens galaxy (G3) with an SIS profile at various positions surrounding the
lens, searching for a better fit to the observed flux ratios. This third galaxy distorts the critical
curves near images A1 and A2 (see their Fig 6), bringing their flux ratio back into agreement
with the mid-IR data. The exact nature of G3 is not yet known [34].

Summary: The nature of dark matter

The existence of dark matter is inferred from its gravitational effects, and has not been ob-
served directly. There have been many attempts to characterize dark matter, and non-baryonic
particles are considered to be strong possibilities. Searches for dark matter are characterized
as direct or indirect. Considerations of dark matter within the CDM model of cosmology have
led to three problems including

• The core-cusp problem

• The angular momentum problem

• The missing satellite problem

Efforts to understand dark matter are focused on (a) methods to detect dark matter and (b)
understanding the effects of dark matter on galactic structure.

There are several methods being used to identify and determine the nature of dark matter
including:

• WIMP annihilation: WIMPS may be the non-baryonic matter which comprises dark
matter, but cannot be observed directly. Annihilation of WIMPS in the dark matter
halos produce high energy particles, which if observed, could be evidence that WIMPS
exist.

• Dynamical effects on visible galactic structure: The effect of dark matter on the kinematics
of galaxies and clusters is used as evidence that dark matter exists. For galaxy clusters,
mass of the cluster is calculated based on the virial theorem. These dynamical effects
have been used to determine the mass of galaxies and clusters.

• Gravitational lensing: Gravitational lensing was the second observational test of general
relativity in 1919, and has become one of the most important tools in modern cosmology.
The deflection of light from a background source by an intervening galaxy is categorized
as strong, weak or micro-lensing. Analysis of the images formed can lead to quantitative
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methods to calculate many cosmological parameters of interest, including galactic mass,
shape, density profiles, and the locations of dark matter substructure.

These three techniques described above are then being used to investigate the effects of dark
matter on the universe, including such features as:

• Mass distribution: On a basic level, this is how the existence of dark matter was originally
inferred, by looking at the rotation curves of galaxies and noting that they were ”flattened”
suggesting the existence of much more matter than is explained by luminous matter.

• Shape: Gravitational lensing has been used recently to verify an extremely flattened shape
for the distribution of dark matter in clusters.

• Density Profile: Stacked weak lensing has recently been used to determine the mean mass
density profiles of cluster-scale dark matter halos.

• Dark matter substructure: Recent studies of the quadruply lensed radio-loud quasar
MG0414 used detailed mid-IR measurements to identify the flux ratio anomaly in this
object, confirming the previous results of Minezaki and colleagues [38] and then use lens
modeling to suggest the position of dark matter (G3) to explain the observed flux ratio
anomaly.

Gravitational Lensing as Cosmic Telescopes

In a typical galaxy-scale strong lens system, the background source is magnified by an order
of magnitude. Exploiting this effect, lensed galaxies at intermediate and high redshift can
be studied with the same level of detail as non-lensed galaxies in the local universe (§ 3.6).
Furthermore, the host galaxies of bright active galactic nuclei are “stretched away” from the
wings of the point spread function, enabling precise measurements of their luminosity and size,
and ultimately of the cosmic evolution of the relation between host galaxy and central black
hole (§ 3.6). Finally, microlensing by stars provides us with unique spatial information on the
scale of the accretion disk, which is orders of magnitudes smaller than anything that can be
resolved from the ground at any wavelength (§ 3.6).

Small and faint galaxies

The resolution of HST and the sensitivity of radio interferometers mean that we know very little
about the distant (z >> 0.1) universe on scales below ∼ 1 kpc. Indeed, even in the nearby
universe (z ∼ 0.1), large ground based surveys such as SDSS do not provide much sub-kpc scale
information. Yet, we know from the local volume that small and faint galaxies are an essential
ingredient of the universe, acting as building blocks of more massive systems. Only with the aid
of gravitational lensing we can resolve sub-kpc scales and determine the morphology and size,
and kinematics of small galaxies as well as trace the location of star formation and the pattern
of chemical abundances. Furthermore, flux magnification enables detailed spectroscopic studies
that would be prohibitive in the absence of lensing. These pilot studies show that intrinsic
properties can be robustly recovered via lens modeling. The rapid increase in the number of
known lenses should soon provide the large statistical samples needed for high impact studies.
[61]
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Host galaxies of lensed active nuclei

In the local universe, massive galaxies are found to harbor central supermassive black holes.
Remarkably, the mass of the black hole correlates with kpc-scale properties of the host bulge,
such as velocity dispersion, luminosity and stellar mass. This family of correlations has been
interpreted as evidence that black hole growth and energy feedback from active galactic nu-
clei play an important role in galaxy formation and evolution. However, the physics of the
interaction as well as the relative timing of galaxy formation and black hole growth are poorly
understood. Although the local relations are an important constraint, observing their cosmic
evolution is necessary to answer some fundamental questions. Are the local relations only the
end-point of evolution, or are they established early-on? Which comes first, the black hole or
the host bulge?

It is challenging to answer these questions observationally. Direct dynamical black hole
mass measurements can only be done in the very local universe. At intermediate and high-
z redshift, one needs to rely on indirect methods such as the empirically calibrated relation
with continuum luminosity and line width observed for type-1 active galactic nuclei (AGN).
However, the presence of bright luminous point sources hampers the study of the host galaxy.
Strong lensing helps by stretching the host galaxy of distant lensed quasars primarily along the
tangential direction. Of course, the quasar is also magnified, but one generally wins because
the surface brightness of the point spread function falls off more rapidly than linearly. Using
this method, showed that the bulges of host galaxies of distant quasars are more luminous than
expected based on the local relation, consistent with a scenario where bulge formation predates
black hole growth, at least for some objects. Similar results have been found for non-lensed
AGN. However, without the aid of lensing, studies have to be limited to lower redshifts and
lower luminosity AGNs. [61]

Structure of active galactic nuclei

Understanding the physics of accretion disks and the regions surrounding supermassive black
holes is essential to explain the AGN phenomenon with all its implications for galaxy formation
and evolution. However, the scales involved are extremely small by astronomical standards (for
a typical 109 M� black hole, the Schwarzschild radius is ≈ 3 · 1014 cm, the broad line region is
∼ 1017−18 cm), and therefore impossible to resolve with conventional imaging techniques.

Microlensing is perhaps the only tool capable of probing the small scales of the accretion disk.
The Einstein radius of a star of mass Ms, corresponds to approximately 4 · 1016

√
Ms/M�cm≈

0.01
√

Ms/M�pc when projected at the redshift of a typical lensed quasar. The inner parts of
the accretion disk will be smaller than this scale and therefore subject to microlensing, while
the broad line region and the outer dusty torus should be largely unaffected. The characteristic
timescale for variation is given by the microlensing caustic crossing time, typically of order
years, although it can be shorter for special redshift combinations such as that of Q2237+030.
[61]

Based on this principle, one can infer the characteristic size of the accretion disk as a function
of wavelength. Long-light curves – where the gravitational time delay between multiple images
can also be determined – provide the most stringent limit, but interesting information can also
be obtained from single epoch data on a statistical basis.

The inferred absolute size of the accretion disk can be known up to a factor of order unity,
which depends on 〈Ms〉 and on the relative transverse speeds between the stars, the deflector,
and the source. However, the slope of the relation between accretion disk temperature and size is
independent of that factor and can thus be determined more precisely. Current results indicate
that the accretion disk is approximately the size expected for disks, although discrepancies of
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order a factor of a few have been reported. Assuming that the size scales as λ1/η, η is found to
be in the range 0.5 − 1, whereas η = 0.75 is expected for a disk. Long wavelength data imply
the presence of a second spectral component, consistent with the hypothesis of a dusty torus of
size much larger than the microlensing scale.

These first exciting results are just the beginning, because very few light curves obtained so
far are long enough to harness the full power of microlensing. With the rapid development of
time-domain astronomy predicted for the next decade, multiwavelength monitoring campaigns
of several years for tens of objects should become feasible. [61]

A z ∼ 10 Galaxy Discovered Using a Gravitational Lens

In an extremely exciting recent development, [66] report the discovery of a z ∼ 10 Lyman-break
galaxy multiply imaged by the massive galaxy cluster A2744, which has been observed to an
unprecedented depth with HST as part of the Hubble Frontier Fields campaign. This report
demonstrates the power of gravitational lenses as cosmic telescopes.

HFF observations of A2744 (z = 0.308) were obtained. These data consisted of 70 orbits
with WFC3/IR in the F105W, F125W, F140W, and F160W near-infrared filters, and 70 orbits
with ACS/WFC in the F435W, F606W, and F814W optical bandpasses. These observations
were supplemented with archival ACS data.

The investigators initially identified the high-redshift galaxy candidate as a J-band dropout
near the center of A2744 (referred to as JD1A). A preliminary estimate of JD1A’s photometric
redshift suggested it was most likely at z ∼ 10, although there was a non-negligible probability
of it being a lower-redshift (z ∼ 2− 3) interloper.

In order to assess these two possibilities, and motivated by the vicinity to the critical curves,
the investigators used an updated version of a publicly available light traces mass (LTM) grav-
itational lensing model of A2744. The ltm model assumes that both the baryonic and dark
matter mass distributions can be traced by the cluster’s light distribution, where the latter
mass component is a smoothed version of the former. This method has been most successful
at uncovering large numbers of multiply imaged galaxies in other galaxy clusters. Compared
to the publicly accessible ltm model of A2744, the new ltm model uses an updated catalog of
multiple images, spanning the redshift range z ∼ 1− 7.

Using the ltm model, the investigators delens JD1A to the source-plane and back, con-
sidering both the low- and high-redshift hypotheses. A source redshift of z ∼ 2 predicts a
counter-image ∼ 3arcsec northeast of the position of JD1A, and a second counter-image ap-
proximately 20arcsec west of the southern core of the cluster. However, no other objects are
located at either of these predicted positions within ∼ 1 − 2arcsec (the image reproduction
precision rms of the model is ∼ 1.′′3). A source redshift of z ∼ 10, on the other hand, yields
the same positional symmetry of multiple images as in the z ∼ 2 case, but—as expected—with
larger deflection angles. Remarkably, they found faint J-band dropout galaxies near both pre-
dicted counter-image locations, although note that this identification is tentative due to this
object’s faintness.

Several independent lensing models were used to verify the positions of the predicted multiple
images. First, they constructed a second model with the updated pipeline, which adopts the
LTM assumption only for the galaxies, yet follows an analytical form for the dark matter, namely
(projected) elliptical nfw distributions for the main mass clumps. This model (hereafter,
“nfw”) is basically identical to the zitrin nfw model released as part of the Hubble Frontier
Fields, but has been updated using the multiple-image catalog. Finally, they checked the results
against the lensing model of A2744 supplied by the CATS team, constructed using the parametric
Lenstool algorithm, and against a free-form lensing model, which combines both parametric
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and non-parametric techniques.
The authors found that all four lensing models yield consistent results regarding the pre-

dicted multiple image positions of JD1. Quantitatively, the ltm model yields z & 4 for the
candidate, while the “nfw” model requires z & 8, both with 95% confidence based on more
than ten thousand Monte-Carlo Markov Chain (MCMC) steps. The Lenstool model yielded
similar results. This analysis shows that a high-redshift solution for the candidate is clearly
favored over the lower-redshift (z ∼ 2− 3) alternative.

The ltm model implies magnifications of 10.01+1.1
−0.86, 11.25+4.8

−2.5, and 3.57+0.33
−0.03 (95% confi-

dence intervals) for JD1A, JD1B, and JD1C, respectively. These values are broadly consistent
with the magnifications predicted by the updated “nfw” model, and with the magnifications
inferred using the Lenstool lensing model, although these can reach up to ∼ 2 times higher
magnifications for images A and B, and ∼ 50% lower magnification for image C, and the reader
should refer to these as the typical systematic uncertainties here. For calculating the source
properties, they used the magnifications from the ltm model, which renders the calculation
conservative in the sense that higher magnifications for A and B yield an even smaller and
fainter source than inferred.

Finally, the magnification by the lens models indicate that the intrinsic apparent magnitude
is 29.9 AB (F160W), and the rest-frame UV (∼ 1500 Å) absolute magnitude isMUV,AB = −17.6,
corresponding to ∼ 0.1 L∗z=8, or ∼ 0.2 L∗z=10 (extrapolated with dM∗/dz ∼ 0.45). This makes
this galaxy one of the least luminous z ∼ 10 candidates ever discovered, supplying a first taste
of the upcoming achievements of the HFF observational effort – reaching deeper into the faint
end of the high-redshift luminosity function.

In summary, this remarkable discovery was only possible because of the power of a gravita-
tional lens as a cosmic telescope.

3.7 Gravitational Lens Models

The gravitational deflection of light is a simple physical phenomenon with a rich phenomenology
and history. The fact that many different observable effects arise from a few key physical
principles gives gravitational lensing broad reach in astrophysics, cosmology, relativity, and
even mathematics. This section of the basic review will focus on strong lensing systems in
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which light bending by a distant, massive galaxy creates multiple, resolvable images of a more
distant source.

We now turn to highlight a core component of strong lensing studies: lens modeling. One
of the problems with lensing, is that we cannot see everything we need to understand in order
to interpret lens data. We cannot avoid making some assumptions about how the mass in lens
galaxies is distributed. To a large extent the assorted modeling methods that have emerged in
recent years differ as to what assumptions are made and how they are used. [25]

As we will see, there can be assumptions about both the lens galaxy and the background
source.With the source, the choice of point-like or extended is governed by the data, but if it is
extended we need to decide what kind of symmetries and/or smoothness criteria to impose.With
the lens, the fundamental choice is how to apply independent astrophysical knowledge. One
approach is to define a modest space of models based on a careful analysis of what we think
we know about the properties of galaxies that are important for lensing. A second approach
is to give the lens models much more freedom and flexibility, and to supplement the lens data
with explicit constraints on the form and/or smoothness of the lens model in order to obtain a
reasonable set of acceptable models.

The goal of this section is to review various lens modeling methods and see if we can discuss
them in a common framework especially in the context of Bayesian statistics. In Bayesian
language, we draw conclusions from the posterior probability distribution for a model, which
can be decomposed into two factors: the likelihood of the data given the model, and priors on
the model. The form of the likelihood is guided by the nature of the data. The form of the
priors, by contrast, depends on the choice of models. The two approaches mentioned above
boil down to using astrophysical priors to narrow the model space before we encounter any
lens data, or keeping the model space large and using priors in conjunction with lens data to
constrain the posterior distribution. The distinction is often distilled into light traces mass”
(LTM, formerly called parametric) versus non-Lignt Traces Mass” (non-LTM, formerly called
non-parametric) models. [25]

Having outlined how lenses constrain the mass distribution, we turn to the problem of
actually fitting data. The simplest approach for a casual user is simply to down load a modeling
package, read the manual, try some experiments, and then apply it intelligently. There are many
such packages available, as described later in Chapter 4.

In most cases we are interested in the problem of fitting the positions ~θi of i = 1 · · ·n
images where the image positions have been measured with accuracy σi. We may also know
the positions and properties of one or more lens galaxies. Time delay ratios also constrain lens
models but sufficiently accurate ratios are presently available for relatively few systems. Flux
ratios constrain the lens model, but we are so uncertain of their systematic uncertainties due
to extinction in the ISM of the lens galaxy, and the effects of substructure that we can never
impose them with the accuracy needed to add a significant constraint on the model. [37]

The basic issue with lens modeling is whether or not to invert the lens equations (“source
plane” or “image plane” modeling). The lens equation supplies the source position

~βi = ~θi − ~α(~θi, ~p) (3.106)

predicted by the observed image positions ~θi and the current model parameters ~p. Particularly
for LTM models it is easy to project the images on to the source plane and then minimize the
difference between the projected source positions. This can be done with a χ2 fit statistic of
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the form

χ2
src =

∑
i

(
~β − ~βi
σi

)2

(3.107)

where we treat the source position ~β as a model parameter.
The astrometric uncertainties σi are typically a few milli-arcseconds. Moreover, where VLBI

observations give significantly smaller uncertainties, they should be increased to approximately
0.′′001–0.′′005 because low mass substructures in the lens galaxy can produce systematic errors
on this order. Astrometric constraints can be imposed to no greater accuracy than the largest
deflection scales produced by lens components which are not included in the models. The advan-
tage of χ2

src is that it is fast and has excellent convergence properties. The disadvantages are
that it is wrong, cannot be used to compute parameter uncertainties, and may lead to a model
producing additional images that are not actually observed. [37]

The reason it is wrong and cannot be used to compute parameter errors is that the un-
certainty σi in the image positions does not have any meaning on the source plane. This is
easily understood if we Taylor expand the lens equation near the projected source point ~βi
corresponding to an image

~β − ~βi = M−1
i (~θ − ~θi) (3.108)

where M−1
i is the inverse magnification tensor at the observed location of the image. In the

frame where the tensor is diagonal, we have that ∆β± = λ±∆θ± so a positional error ∆β±
on the source plane corresponds to a positional error λ−1

± ∆β± on the image plane. Since
the observed lensed images are almost always magnified (usually λ+ = 1 + κ + γ ∼ 1 and
0.5 > |λ− = 1 + κ − γ| < 0.05) there is always one direction in which small errors on the
source plane are significantly magnified when projected back onto the image plane. Hence, if
you find solutions with χ2

src ∼ Ndof where Ndof is the number of degrees of freedom, you will
have source plane uncertainties ∆β <∼ σi. However, the actual errors on the image plane are
µ = |M | larger, so the χ2 on the image plane is ∼ µ2Ndof and you in fact have a terrible fit.

If you assume that in any interesting model you are close to having a good solution, then
this Taylor expansion provides a means of using the easily computed source plane positions to
still get a quantitatively accurate fitting statistic,

χ2
int =

∑
i

(
~β − ~βi

)
·M2

i ·
(
~β − ~βi

)
σ2
i

, (3.109)

in which the magnification tensor Mi is used to correct the error in the source position to an
error in the image position. This procedure will be approximately correct provided the observed
and model image positions are close enough for the Taylor expansion to be valid.

Finally, there is the exact statistic where for the model source position ~β you numerically
solve the lens equation to find the exact image positions ~θi(~β) and then compute the goodness
of fit on the image plane

χ2
img =

∑
i

(
~θi(~β)− ~θi

σi

)2

. (3.110)

This will be exact even if the Taylor expansion of χ2
int is breaking down, and if you find all

solutions to the lens equations you can verify that the model predicts no additional visible
images. Unfortunately, using the exact χ2

img is also a much slower numerical procedure.
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As we discussed earlier, even though lens models provide the most accurate mass normaliza-
tions in astronomy, they can constrain the mass distribution only if the source is more complex
than a single compact component. For most lenses, obtaining information on the radial den-
sity profile requires some other information such as a dynamical measurement, a time delay
measurement or a lensed extended component of the source. Even for these systems, it is im-
portant to remember that the actual constraints on the density structure really only apply over
the range of radii spanned by the lensed images – the mass interior to the images is constrained
but its distribution is not, while the mass exterior to the images is completely unconstrained.
This is not strictly true when we include the angular structure of the gravitational field and
the mass distribution is quasi-ellipsoidal.

It is also important to keep some problems with LTM models in mind. First, models that lack
the degrees of freedom needed to describe the actual mass distribution can be seriously in error.
Second, models with too many degrees of freedom can be nonsense. We can illustrate these
two limiting problems with the sad history of Q0957+561 for the first problem and attempts to
explain anomalous flux ratios with complex angular structures in the density distribution for
the dark matter for the second. [37]

Q0957+561, the first lens discovered and the first lens with a well measured time delay, is
an ideal lens for demonstrating the trouble you can get into using LTM models without careful
thought. The lens consists of a cluster and its brightest cluster galaxy with two lensed images
of a radio source bracketing the galaxy. VLBI observations resolve the two images into thin,
multi-component jets with very accurately measured positions (uncertainties as small as 0.1 mas,
corresponding to deflections produced by a mass scale ∼ 10−8 of the primary lens!). Models
developed along two lines. One line focused on models in which the cluster was represented
as an external shear while the other explored more complex models for the cluster and argued
that external shear models had too few parameters to represent the mass distribution given
the accuracy of the constraints. The latter view was born out by the morphology of the lensed
host galaxy and direct X-ray observations of the cluster which showed that the lens galaxy was
within about one Einstein radius of the cluster center where a tidal shear approximation fails
catastrophically. The origin of the problem is that as a two-image lens, Q0957+561 is critically
short of constraints unless the fine details of the VLBI jet structures are included in the models.
Many studies imposed these constraints to the limit of the measurements while not including all
possible terms in the potential which could produce a deflection on that scale (i.e. the precision
should have been restricted to milli-arcseconds rather than micro-arcseconds). Models would
adjust the positions and masses of the cluster and the lens galaxy in order to reproduce the
small scale astrometric details of the VLBI jets without including less massive components of
the mass distribution that also affects the VLBI jet structure on these angular scales. Lens
models must contain all reasonable structures producing deflections comparable to the scale of
the measurement errors.

Nomenclature for Lens Model Studies

One of the difficult problems in the strong gravitational lensing literature is variability in
terminology. The first characteristic of a lens model is whether it is LTM or non-LTM. In
strong gravitational lensing, there are a several observables such as the relative positions of
images, relative fluxes of images and time delays among the lensed images. These observables
depend not only on the mass distribution of the source but also on cosmological parameters.
The LTM method assumes a simple but physically reasonable model of potential such as an
isothermal sphere, NFW model, elliptical pseudo-isothermal model and so on with parameters
that have clear physical meanings, based on the assumption that light traces mass. Physically
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reasonable means that one can infer the shape of the lensing potential from the image position
as well as the lens position and shape assuming the existence of a correlation between light and
mass (thus ”LTM”). In the case of a galaxy lens, the relative position of the images and the
presence of arcs gives us enough information to determine the form of the potential. [17]

The other method is called the non-LTM method, which is sometimes referred to as the
”grid-based” method because one does not assume the potential shape from the beginning.
This method has become widely used since deep observations using 8-10 m telescopes and the
HST reveal detailed shape information of images for galaxy lenses, and a multitude of arcs and
images for cluster lenses. This information allows us to establish the grid by grid correspondence
between the image plane and the source plane. The basic principle of the non-LTM method is
the conservation of the surface brightness. The surface brightness of two grids related by the
lens equation is the same. [17]

Another important characterization for lens model studies is whether the comparison is
direct or indirect. Direct studies are conducted by the same investigator, and two or more
models are compared directly in the same investigation. Indirect studies are conducted by
comparing results with results that already exist in the literature.

A third parameter for comparative studies is whether the data is the same in the two models,
a semi-independent study, or the exact data used to construct the model of the same object is
different, an independent study.

Characterization of lens studies according to these three parameters as a unified consis-
tent nomenclature was suggested in a previous study [30]. It is hope that adoption of such a
consistent terminology will allow more consistent comparisons of lens studies.

LTM and non-LTM Lens Models

Lens inversion procedures are often divided into two categories: LTM and non-LTM methods.
LTM techniques approximate the mass distribution of the lens by a function that is characterized
by a small number of parameters. They then optimize these parameters to provide the best
possible fit to the observed data. Several such algorithms have been proposed (e.g. lensclean),
and several software packages are publicly available (e.g. gravlens and lenstool. Lens
model software packages are discussed extensively in Chapter 4 of this dissertation and [31].
Non-parametric inversion methods try to avoid this restriction, for example by pixellizing the
mass distribution, pixellizing the lens potential or by dynamically adjusting the number of basis
functions used. [32].

There remains a great deal of controversy about the use of these two techniques, and some
argue that one is more ”correct” than the other. LTM techniques seem to be used most com-
monly. This is motivated by the fact that the data usually do not contain more than a few arcs.
This is not enough to constrain the mass distribution without the help of a parametrization.
LTM methods rely heavily on assumptions or priors on the mass distribution. A common prior
is the assumption that there is a smooth dark matter component which is correlated spatially
with the centroid of the luminous matter in the cluster. The mass is then ususally modeled by
a large smooth dark matter halo placed on top of the central galaxy or the centroid of the lumi-
nous matter, as well as smaller dark matter haloes located in the positions of the other luminous
galaxies. The parameters of each halo are then adjusted to best reproduce the observations.
[12].

There is some subjectivity involved in this process, particularly in the addition of the dom-
inant dark matter component to the cluster. The assumption that the dark matter follows the
luminosity is necessary but remains the Achilles heel of LTM lens modeling. For large clusters
the number of parameters in the LTM lens model quickly becomes large but there is still no
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guarantee that the LTM model used, is in fact capable of reproducing well the mass distribution.
It is not hard to imagine complications such as dark matter substructure, asymmetric galaxy
profiles, interactions between individual galaxies and the cluster or even dark matter haloes
without significant luminosity all of which would not be well represented by the typical LTM
methods. In these cases, where the number of parameters is large, we may want to consider
alternative non-LTM methods where all the previous problems do not have any effect on any of
the assumptions. Also is in these situations where the number of parameters in both LTM and
non-LTM methods is comparable. When the number of parameters is comparable in both cases,
it is interesting to explore non-LTM methods since they do not rely on the same assumptions
[12]. This strongly supports the conduct of comparative studies in gravitational lensing.

LTM Models

The oldest approach to lens modeling is to assume the density distributions of lens galaxies
can be approximated by functions with a modest number of free parameters. Astrophysical
knowledge is built into the careful selection of functions and parameters, in two ways. First, we
can consider density distributions derived from other observational and theoretical studies of
galaxies: the list includes isothermal, power law, de Vaucouleurs, Hernquist, and NFW models,
etc. [25]

Table 3.2 compiles formulae for the effective lensing potential and deflection angle of four
commonly used circularly symmetric lens models including the point mass, singular isothermal
sphere, isothermal sphere with a softened core, and constant density sheet. In addition, one can
have more general models with non-isothermal radial profiles, e.g. density varying as radius to
a power other than −2. [39]

From [39].

Lens Model ψ(θ) α(θ)

Point mass
Dds

Ds

4GM

Ddc2
ln |θ| Dds

Ds

4GM

c2Dd|θ|
Singular isothermal sphere

Dds

Ds

4πσ2

c2
|θ| Dds

Ds

4πσ2

c2

Softened isothermal sphere
Dds

Ds

4πσ2

c2
(
θ2

c + θ2
)1/2 Dds

Ds

4πσ2

c2
θ

(θ2
c + θ2)

1/2

Constant density sheet
κ

2
θ2 κ|θ|

Table 3.2: Examples of circularly symmetric lenses. The effective lensing potential ψ(θ) and
the deflection angle α(θ) are given. The core radius of the softened isothermal sphere is θc.

The gravitational time-delay functions tgrav(θ) ∝ −ψ(θ) of the models in Table 3.2 are
illustrated in Fig. 3.29. Note that the four potentials listed in Tab. 3.2 all are divergent for
θ →∞. (Although the three-dimensional potential of the point mass drops ∝ r−1, its projection
along the line-of-sight diverges logarithmically.) The divergence is, however, not serious since
images always occur at finite θ where the functions are well-behaved. [39]
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Figure 3.29: Gravitational time-delay functions for the four circularly symmetric effective po-
tentials listed in Tab. 3.2. (a) point mass; (b) singular isothermal sphere; (c) softened isothermal
sphere with core radius θc; (d) constant density sheet.

There are a number of general principles that have emerged from LTM lens modeling. The
Einstein radius, and the mass within it, are robust measurements with model uncertainties at the
percent level. It can be difficult to constrain the radial density profile from strong lensing alone,
especially in 4-image lenses. By combining strong lensing with other astrophysical evidence, it
has been found that the total density profiles of lens galaxies are close to isothermal, although
they might not be perfectly isothermal at all radii and there may be some intrinsic scatter We
cannot assume that lens galaxies are spherical or isolated. Image position data, especially in
4-image lenses and rings, are good enough to detect and even distinguish quadrupole moments
due to ellipticity in the lens galaxy and tidal shear from the lens galaxys environment. Smooth
lens models often fail to reproduce the observed flux ratios in 4-image lenses. The failures can
usually be attributed to elements missing from the smooth models, namely microlensing by
stars and/or millilensing by dark matter substructure. [25]

LTM lens models can be used with all of the different source modeling methods discussed so
far. Indeed, LTM lens models have been used with point-like sources, with Einstein rings mod-
eled using elliptical sources, with extended sources in LensClean, and with pixelated sources.
The principles discussed above have been drawn from the full range of LTM lens modeling
studies. [25]

One final point about LTM lens modeling is that we do not always think about it in a
Bayesian sense because we do not necessarily have to deal with explicit priors. Nevertheless,
it is straightforward and even attractive to place LTM modeling in a Bayesian framework. We
might want to do that in order to impose additional astrophysical constraints (for example, on
the shape and mass-to-light ratio of the stellar distribution if we are modeling the stars and
dark matter separately).
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Non-LTM Models

An alternative to selecting parametric models is to expand the lens potential using some ap-
propriate set of basis functions:

φ(x) =
∑
v

avfv(x) (3.111)

and then fit for the coefficients av. While such models were formerly called non-parametric,
that term is highly misleading because there are in fact parameters (namely the expansion
coefficients) [25]. These models are now referred to as non-LTM, to reflect the physics involved.
Some authors use the term free-form because it highlights the point that the models are given
more freedom to deviate from preconceptions. As opposed to LTM strong lens modelling, which
often indicates that the source and lens-potential model of the lens system can be described by
a small set of parameters (e.g. image positions, flux-ratios, time-delays for the lensed images,
and lens strength, ellipticity, scale, etc. for the lens potential model), grid-based strong lensing
means that the source and lens-potential models are described by a large set of parameters
that directly quantify a grid of source-brightness and/or lens-potential values. Hence in short
summary: Non-parametric really means lots of parameters! . This is one of the reasons that the
term non-parametric has been dropped in favor of ”non-LTM”. [28].

There have been various approaches to non-LTM models that use different choices of basis
functions and priors, and different data that lead to the models being over- or under-constrained.

In many cases LTM strong lens modeling can not be used. For example, there are lens
systems with extended and complex lensed images for which one can not easily relate structure in
one lensed image to structure in another lensed image (this is often trivial in case of point images
and jets). Besides this, grid-based strong lensing (non-LTM) makes few to no assumptions about
the structure of the source (and possibly the lens potential as well, although the solutions often
require regularization because the number of free parameters can be large. non-LTM lensing
analysis makes use of all (or most) information available in the lensed images or even absence of
information; i.e. the prediction of lensed images that are not present in the data are penalized.
Finally, non-LTM analysis allows structure of the source to be separated from structure in the
lens potential, in a statistical (i.e. Bayesian) sense. [28]

There are many approaches to non-LTM models, as stated above. A nice summary of the
grid-based approach is given in [28]. First, a data-model is build, which describes the observed
data as a function of a set of (non)linear parameters. The source is described by a set of
linear parameters (i.e. their surface brightness values on a predefined source grid), whereas the
lens-potential is described by a set of nonlinear parameters that parametrically describe the
lens potential in the image plane. To solve for the linear parameters (given a fixed potential
model), a quadratic penalty function is defined, using the above data-model, the first part
of which is a standard χ2 term and the second part is a regularization term that results in
the smoothest source model allowed by the data. The minimum of this penalty function is
found through standard linear-algebra techniques. Once a good starting model has been found,
the relative weight (λ) between the χ2 and regularization terms in the penalty function is
found through an Bayesian evidence optimization, subsequently marginalizing over this nuisance
parameter, giving the evidence of the set of non-linear model parameters. The best non-linear
parameters are then found by maximizing the evidence penalty-function, using standard non-
linear optimization methods, like Downhill-Simplex, Conjugate-Gradient methods, etc. Finally,
the lens-equations can be linearized to include a linear correction to the lens-potential in the
equations. This fully-linear equation can then iteratively be solved. The above outline indicates
what can be done in grid-based lensing techniques, although simplified version are possible (e.g.
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modeling can be done without Bayesian evidence optimization) or more complicated version
(e.g. adaptive grids).

Another approach is the pixelated mass map. Saha and Williams have developed free-form
models in which the basis functions correspond to mass pixels [54]. The PixeLens code applies
to point-image lenses and uses position and time delay constraints, so the problem is fully linear
(in the pixel densities, the source position, the time scale factor t−1

0 , and also the external shear
amplitudes). With even modest spatial resolution in the mass map, the mass pixels outnumber
the constraints so the problem is under-constrained. Saha and Williams deal with the resulting
solution space in two ways. First, they impose priors to eliminate models that are grossly
unphysical:

• 1. All pixel densities must be non-negative.

• 2. The density gradient must point within 45 degrees of the lens center.

• 3. No pixel value may exceed the average of its neighbors by more than a factor of two
(except for the central pixel).

• 4. The projected density profile must be steeper than r−1/2.

• 5. If desired, the mass map may be required to have inversion symmetry.

These priors restrict the solution space but are otherwise non-informative, so the posterior is
uniform over the allowed models. The second step is to use Monte Carlo techniques to generate
an ensemble of models drawn from the posterior. The ensemble average is itself a successful
model (since the constraints are linear, any linear combination of good models is also good)
that gives a sense of the typical properties of the solutions. The statistics of the ensemble then
characterize the range of successful models. [25]

Another approach to non-LTM modelling has been referred to as the hybrid approach. Non-
LTM modeling has not been applied to lenses with general extended sources, because the source
reconstruction method is non-linear in the lens parameters, and it is impractical to undertake
a non-linear optimization of a large number of free-form modes. Instead, hybrid models have
been introduced to accommodate extended sources while still allowing a (quasi-)linear analysis
of general lens potentials. In hybrid models we obtain an arbitrary potential, φ = φ0 + δφ as
a combination of a reference model φ0 and perturbations δφ. The reference model is taken to
have some restricted, parametric form, so it provides amodest number of non-linear parameters
that must be searched explicitly. The perturbations, by contrast, are allowed to be fully free.
The idea is that if the potential perturbations are small, we can do a Taylor series expansion
and work to lowest order in δφ, and thus linearize the problem. As we will see, there are several
reasons why it may be necessary to iterate a few times, but at each step the analysis is linear.
[25]

Hybrid models have been used to handle the complexity in B1608+656 associated with
having two galaxies inside the Einstein radius. The analysis started with a parametric two-
galaxy model and then refined it using pixelated potential reconstruction. (They also accounted
for many other details including light from the lens galaxies, and extinction of the lensed images
by dust in the lens galaxies.) The joint Bayesian analysis of constraints from lensing and WMAP
supports a wide range of conclusions involving the mass distribution of the lens galaxies and their
environment, the Hubble constant, and curvature and dark energy parameters. Hybrid models
have also been used as the basis of a method to search for unseen mass clumps in lens galaxies
and place constraints on dark matter substructure. A mass clump near the Einstein radius
will distort an extended image in a characteristic way that can be uncovered by simultaneously
reconstructing the (pixelated) source and potential. [25]
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Chapter 4

A Systematic Review of Strong
Gravitational Lens Model
Software

4.1 Purpose and Organization of this Chapter

In order to effectively compare strong gravitational lens models, it is necessary to first have an
inventory of available software. 1. This chapter is the result of an attempt to be comprehensive
and describe as many lens model software packages as possible. The literature was extensively
reviewed and multiple search methodologies employed. Having done this, there were 26 strong
gravitational lens model software packages identified, which are reviewed in this chapter. The
extent of the review of each software package depended on its availability and the ability to
install and use the software.

This chapter is organized as follows. In section §4.3, we review the classification of grav-
itational lens models and the methodology used to review the available software. In section
§4.4, we review 17 software packages that have been used extensively in gravitational lens re-
search. Following this, in section §4.5, we review nine programs that are useful in education for
gravitational lensing. In section §4.6 we discuss several factors of importance in selecting and
comparing available software and in section §4.7 we make suggestions for the next generation
of software to support future gravitational lens research based on this review.

The data from this study was used as the basis of the Software Review in the Orphan
Lens Project [12]. In addition, several software packages were added to the web site by other
contributors after completion of this study, and then added to this study from the Orphan Lens
web site.

4.2 Introduction

Gravitational lensing has great promise to provide new insights into the structure and history of
the universe. Gravitational lensing has yielded many exciting results by mapping dark matter

1Portions of this chapter were published in Lefor AT, Futamase T. and Akhlaghi M. A system-
atic review of strong gravitational lens modeling software. New Astronomy Reviews 2013. 57:1-13 [30]
doi:10.1016/j.newar.2013.05.001. Permission to use this published material granted by the Publisher, License
3571220164041
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distributions, and the recent use of strong gravitational lensing data has added a new dimension
to this research [14]. Gravitational lensing is a very active area of investigation, and research is
highly dependent on computer modeling. In some areas of contemporary astrophysics research,
there is software that is a de facto standard for many investigators (e.g. SExtractor [8] 1,
GALFIT [50] 2, etc.). While gravitational lens modeling software has been written, there are
no standards and no easily accessible source of information about existing software. The lack
of standard software may be a virtue of the gravitational lensing community, allowing more
flexibility and creativity. The lack of a single standard program makes it more important to
compare existing software used for modeling strong gravitational lenses. Information regarding
existing software will be helpful to those developing new approaches and interfaces.

This review was undertaken to identify available strong lens modeling software, and review
the installation, use, and the nature of inputs and data outputs. This paper serves as a guide
to available software and provides useful information to both new and established investigators
in this field. The availability of source code may be a useful starting point for anyone writing
their own modeling software.

4.3 Classification and Review Methodology

Modeling of gravitational lenses starts with a list of observables such as relative positions of
the components, relative fluxes of the images, time delays between the images and other lens
properties. Gravitational lens modeling can be considered a “forward” or a “reverse” problem.
In the forward problem, images are predicted based on a known source and lensing mass. More
commonly, the reverse problem is considered, using observed images to reconstruct a model of
the mass density based on the images, usually approached using non-parametric methods.

In Light Traces Mass (LTM, formerly known as parametric) models, a clear physical param-
eterization is used to construct the model from the outset, while non-LTM (formerly known as
non-parametric) models are often “grid-based”, although there are other methods used. Both
LTM and non-LTM models are valuable, since some features of individual lenses are model in-
dependent while others are very model dependent [58]. A major distinction is whether the cal-
culation is “model-based” (LTM or parametric) or “model-free” (non-LTM or non-parametric)
at the start of the process [15]. The recent approach to model classification avoids the confu-
sion of parametric vs. non-parametric (since all models use parameters) and classifies models
as LTM or non-LTM [14].

Light Traces Mass Models

Light Traces Mass models are generally used to solve the “forward” problem, taking a source
and lensing mass, and then predicting the resulting image. LTM models are also known as
simply-parameterized models, and assume a physical model which fits the data with relatively
few defined parameters [23]. In LTM models, the data is fitted to a physical object (e.g.
Point Mass, Singular Isothermal Sphere, Singular Isothermal ellipsoid, De Vaucouleurs model,
Navarro-Frank-White Model, etc.) and a model of the lensing mass made using that physical
object to predict the effect on the light from the source.

1http://astroa.physics.metu.edu.tr/MANUALS/sextractor/
2http://users.obs.carnegiescience.edu/peng/work/galfit/galfit.html
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Non-Light Traces Mass Models

Non-LTM models are often used to solve the more complex “reverse” problem, also called lens
inversion, of taking a lensed image and from it, predicting the nature of the lensing mass.
The lens inversion problem is complicated by the fact that there are huge degeneracies in the
parameter space which make several models able to fit observed data [40]. The degeneracy
problem is inherent in lens inversion, because the constraints on the potential are local [2].
The principle underlying non-LTM gravitational lens models is that the effective lens potential
and the deflection equations are linear functions of the surface density [43]. These models
reconstruct the mass distribution or lens potential as a map defined on a grid of pixels [23].
By using a large number of parameters these models are very flexible, but conversely, the large
number of parameters can lead to over-fitting the data. The parameters are usually in the form
of basis functions, and given the large number used, the term “non-parametric” is somewhat
paradoxical, although it refers to the lack of a discrete physical model being used in the solution
of the problem [36]. It is only recently that lens inversion is studied using strong gravitational
lensing data.

Lens inversion methods are classified into 3 types: (i) model dependent reconstructions, (ii)
potential reconstruction on a grid and (iii) expansion of the potential functions. Degeneracy
must be dealt with using any of these techniques [2]. Further examples of these techniques
include the maximum entropy method [65], genetic algorithms [10; 36], Bayesian analysis [11;
62], the semilinear technique [66], and perturbative reconstruction [2].

The ideal lens inversion algorithm (i) should be free of assumptions regarding mass or
luminosity distributions, (ii) should not depend on prior information, (iii) should not produce
models that are physically impossible, (iv) should be free of uncontrollable parameters, and
(v) should be extendable to any kind of data [31]. The fact that there are so many techniques
being used to investigate lens inversion, indicates that there is no single “best” technique.
The theoretical underpinnings of these various methods have been reviewed and shown to be
essentially different methods of doing the same thing [11].

Education and Research Modeling Software

Gravitational lens modeling software can also be arbitrarily classified into packages used for
education and those used for research. Those classified for research in this review have been
used in published studies of gravitational lensing. Those classified as educational have not been
used for studies.

Review Methodology

There are two main goals when evaluating gravitational lens modeling software [69]. The
first is to determine if the software can recover the lens model parameters of a known lens,
and with what accuracy. The second regards the accuracy of the source reconstruction. The
accomplishment of these two goals must be considered against the background of software
usability and efficiency.

Gravitational lens modeling software was identified by using search engines on the Inter-
net as well as searching the literature on arXiv.org. The software reviewed here was chosen
based on availability for download and the ability to install and execute the programs. An-
other resource for gravitational lens modeling software is the Astro-Code Wiki, which includes
links for several of the modeling codes reviewed here [5]. Information regarding release dates
and versions was obtained from the web sites. Each of the software packages described here
was downloaded, compiled (when necessary) and installed. Sample data files were used when
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available, and output shown here is directly from the downloaded version. All of the software
functioned as described by their developers. Documentation was also downloaded directly from
the internet. This review was not intended to be all inclusive; other lens modeling packages are
not reviewed. Several of these programs, although web sites for download were identified on line
or in publications, were no longer available for download. Others had significant issues when
attempting to compile and execute the programs, precluding their use. There are likely other
software packages being used by individuals but not available for download on the internet.
The software reviewed here is representative of what is available in regard to algorithms, types
of models available and feature sets. Features of the software reviewed relating to installation
and use are summarized in Table 4.1, for the software that was fully evaluated. Software not
fully evaluated is summarized in Table 4.2. Features of the software relating to lensing models
and algorithms are summarized in Table 4.3.

164



Package Year Source Exec Platform Ref

gravlens 2008 No Yes PPC, Linux, OS X [26]
lensmodel 2008 No Yes PPC, Linux, OS X [26]
Lensview 2008 Yes No OS X/Linux [67]
Lenstool 2006 Yes No OS X/Linux [23]

LensPerfect 2007 Yes No Python [15]
glafic 2012 No Yes OS X/Linux [46]

PixeLens 2007 Yes Yes Java [57; 70]
SimpLens 2003 Yes Yes Java [58]
GRALE 2008 Yes No OS X/Linux [31]

GravLensHD 2011 No Yes iOS [55]
G-Lens 1998 No Yes DOS [9]

Gravitational Lensing 2002 No Yes Win/HP-49 [63]
lens 2002 Yes No MATLAB [45]

MOWGLI 2013 No Yes Java [44]

Table 4.1: A summary of the features of 14 strong gravitational lens model software packages
which were fully evaluated. Source indicates that the source code is provided, Exec indicates
that a downloadable executable file is provided and Platform indicates the computing plat-
form that the executable works on. (PPC=PowerPC, Dates are the current version available,
Exec=available executable code). Software in the upper portion of the table is considered
’Research’ and that in the lower portion is considered ’Educational’.

Package Year Source Exec Platform Ref

IGLOO 2004 Yes No Linux [21]
GLAMROC 2008 Yes No Linux [6]

GLASS 2013 Yes No Python [17]
Mirage 2011 No No MATLAB [54]

ZB 2009 No No MATLAB [71]
WSLAP 2004 No No - [18]
SaWLens 2009 No No Linux [41; 42]

GLEE 2010 No No Linux [20; 61]

Gravitational Lenser 2000 Yes Yes Adobe Photoshop [51]
WFPC2 2001 No No Web [48]

XFGLenses 2008 Yes No Linux [19]
Gravitational Lensing Model 2011 Yes Yes Java [59]

Table 4.2: A summary of the features of 12 strong gravitational lens model software packages
which were not fully evaluated in this study for various reasons but are summarized below.
Source indicates that the source code is provided, Exec indicates that a downloadable executable
file is provided and Platform indicates the computing platform that the executable works on.
(PPC=PowerPC, Dates are the current version available, Exec=available executable code).
Software in the upper portion of the table is considered ’Research’ and that in the lower portion
is considered ’Educational’.
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4.4 Research Software

Strong gravitational lens modeling software for research use is in this category. There were 17
such packages identified in the literature and on the internet. The first nine software packages
described here have been used to analyze experimental data in published studies, and were
available for download and testing. These nine have complete descriptions of software features
and lensing features. The remaining eight software packages are described briefly, but were not
tested, either because the authors do not make them available or because the software simply
could not be compiled.

gravlens

Gravlens is a subset of lensmodel. The lensmodel software uses the gravlens kernel and adds
functionality, and was also described by [26]. The description of these two packages is combined
below, with the understanding that the Gravlens kernel is limited in functionality compared
with lensmodel. The details are described in the User Manual [24].

lensmodel

Software features

The GRAVLENS- Software for gravitational lensing package was first released in 2001, and
is now in version 1.99 dated 20081. The software is available as a download, with executable
files provided for PPC and Linux architectures. Source code is not available. Documentation
is also available as a 101 page user manual [24]. The lensmodel program is available as a
download, with executable files provided for PPC and Linux architectures. Source code is not
available. The lensmodel software uses the gravlens kernel and adds functionality, and was
also described by [26]. A tutorial is provided with the user manual. The user interface is
character based and input is through a text file with text commands. There are two on-line
tutorials that illustrate many of the features of the software. While gravlens includes basic
lensing calculations, lensmodel includes added routines to model strong lenses [24].

Lensing features

The lensmodel software uses a parametric model, and has been used in a number of research
studies [1; 4; 7; 16; 38; 60]. GRAVLENS was first described along with a new algorithm that
allowed calculation of lensing parameters for a generalized mass model, allowing implementa-
tion of multiple parameterized models [26]. GRAVLENS is a sophisticated software package
that is accompanied by a large catalog of parametric lensing models [25]. Both programs in
GRAVLENS includes a wide range of basic lensing calculations which are based on tiling of
the image. The heart of the code is a general algorithm for solving the lens equation and is
fully described in [26]. This algorithm involves tiling the image and source planes, and using
these tiles to determine the number and approximate positions of all lensed images associated
with a given source. Performing a calculation requires specifying the details of the tiling and
the parameters of the mass model. The code uses a polar grid centered on the main galaxy.
Default values work with most calculations. Optionally, a critical curve grid can be used in
which critical curves are used to determine where to place radial zones. Various options for
plotting the output are available, and the output is a file of macros for input into the Super-
Mongo plotting program. The lensmodel software expands on the capabilities of gravlens, to

1http://redfive.rutgers.edu/ keeton/gravlens/
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include routines that make it easy to fit models to observed lens systems. The central portion of
lensmodel computes a χ2 value for a set of models. A wide variety of lens models are available
in the catalog [25]. The software can also calculate the Hubble constant using time delays. The
available tutorials are very helpful for illustrating and explaining the complex commands that
are used in gravlens and lensmodel.

Gravlens was used to model strong gravitational lenses in an interesting study which ex-
amined the cusp and fold relations as a gauge of substructure [1]. This was a theoretical
investigation to look at the sensitivity of these relations to the presence of substructure in the
lens. The authors found that the fold relation is a more robust indicator of substructure than
the cusp. Gravlens provided an excellent analytical tool for this study. A newly discovered
elliptical galaxy at z=0.0345 was investigated and modeled with gravlens/lensmodel [60]. The
model was created with a SIE, and was found to be in close agreement with the light distribution
observed.

In a study of a bright strongly lensed z=2 galaxy in the SDSS DR5, Lin and colleagues used
Lensview to model a lensing system [38]. However, since Lensview uses the full image infor-
mation, they employed gravlens/lensmodel to fit an SIE model using only the image positions.
The resulting model showed a very good fit to the image positions. This study is one of the
very few direct comparisons of strong gravitational lens modeling software in the literature.

The ten image radio lens, B1933+503 was modeled using gravlens by Cohn and coworkers
[16]. The mass distribution of this system was modeled with a wide variety of parameterized
ellipsoidal density distributions. The models were constrained using the relative positions of the
lens galaxy and the lensed images and the flux ratios between the images. The mass distribution
was concluded to have an approximately flat rotation curve based on this analysis. The gravlens
program was used to model the cluster lens MS0451.6-0305 by Alba and colleagues [7]. A simple
elliptical lens model (SIE) with external shear was used. They used an NFW profile for the
cluster mass distribution which was consistent with observations. The model reproduced the
positions of the Extremely Red Object images and the radio images very well. This model was
used to test if the configuration of the observed radio emission could be understood as a result
of gravitational lensing, and was able to explain the morphology of the radio map as a result of
the three lensed background sources. Gravlens was also used to model a strongly lensed Lyman
Break galaxy at z=2.73, identified in the SDSS DR4 imaging data [4]. The authors assumed a
SIE and used gravlens/lensmodel to perform fits to the data. The fitted values showed excellent
agreement with observed values from the SDSS DR4 database.

Summary

Both gravlens and lensmodel require no installation as they are provided as executable binary
files. They are somewhat complicated to use because of the character based interface and
extensive command set. They would benefit from a graphical user interface which is described
in a web site but the code has not been available [3] 1. The lack of source code is also a limiting
factor for those wishing to study the computational techniques used. Finally, the programs
are limited by requiring an outside plotting package to view graphical results. The required
plotting package is expensive and somewhat outdated. Both gravlens and lensmodel have an
extensive catalog of available mass models that can work with complex datasets, and perform
very well in regard to comparing the models generated with observational results. Overall, they
are excellent strong gravitational lens modeling software packages.

1http://cinespa.ucr.ac.cr/software/xfgl/index.html

167



Lensview

Software features

Lensview was first released in 2006 and he current version 1.1.2 is dated 2008 1. This software
is distributed as source code, and has dependencies on CFITSIO, GSL and the FFTW libraries,
as well as an optional dependency on fastsell. It can be installed in Linux or OS X. There is
a web site where the software can be downloaded, with information regarding installation and
use, but there is no separate user manual [67]. The user interface is character based and input
is through a text file with text commands. The software is described as running in two modes,
”simple projection” and ”normal” (fit an observed image).

Lensing features

Lensview is based on the LensMEM algorithm [65], which finds the best fitting lens mass
model and source brightness distribution using a maximum entropy constraint [69]. Lensview
is used to study lens inversion, obtaining a model of the source based on lensed images. It
uses a parametric model for solving the lens inversion problem. The main features of the
software include: (i) projection between image and source plane conserving surface brightness,
(ii) compound lens models which can contain several basic components, (iii) reconstruction of
the unlensed source brightness profile and corresponding model image using a non-parametric
source, (iv) iterative source reconstruction process incorporating a maximum entropy metric,
and (v) statistical evaluation of the model image given by the current lens model parameters.

In simple mode, Lensview takes as input: a source, a lens model, a data image (optional)
and projects the source onto the image. The projected image and χ2 are output. A log file is
also produced. A variety of lens model components are supported, including pseudo-isothermal
potential (PIEP), SIE, point mass, power-law mass distribution, NFW, constant density mass
sheet, external shear, exponential disc and a Sérsic mass distribution. Sample templates for
each of these mass distributions are given on the website [67]. To use the software, one needs a
data image, a PSF image and a mask image, all of which need to be the same size. There are
no sample data files provided with the software, but there are some examples available through
the website. Output from the program can be a FITS image, or a file for input into IDL and
plotting the χ2 surfaces.

In their study, Wayth and Webster first used Lensview with simulated optical images to
determine optimal pixel size, accuracy of lens model parameters, distinguishing power of the
image and overall goodness-of-fit [69]. Model images were created with a two-component source
having two regions of different size and peak brightness. A PSF was generated and convolved
with the simulated image. They found that an image to source pixel scale ratio of at least 2 is
required to reproduce the data and a ratio of 3 was optimal. A sufficiently large source plane of
approximately 15x15 pixels was adequate. All lens model parameters were well recovered using
this data. A comparison of various models showed that the image could distinguish between
lens models although the differences were quite small.

Lensview was used to analyze the Einstein Ring ER 0047-2808 [68]. This study modeled
the system using six different models, including PIEP, SIS+γ, SIE, SPEMD, M/L and NFW.
This study showed that the SIS+γ, M/L and NFW (25kpc) could not reproduce the data, but
that the other models could. The differences between the other, successful models, were subtle.
The data showed that the lensed image has four distinct bright regions, and that Lensview was
able to generate a best-fitting image and reconstructed the source brightness profile using a
non-parametric model.

1https://www.cfa.harvard.edu/ rwayth/lensview/
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Lensview was also used to analyze the optically lensed arc HST J15433+5352 [69]. This
lens was modeled with a PIEP model, including an external shear. The final source plane used
was 10x10 pixels, with a source-to-image plane pixel scale ratio of 1/2. The resulting model
was somewhat surprising in that a purely elliptical model reproduced the data equally to a
model including shear. They found a critical radius (b) of 0.525, which differed somewhat from
data previously reported with a critical radius of 0.58 [29]. Some of this difference could be
accounted for the fact that the Lensview study is a non-parametric model, while Knudson et
al [29] used a parametric model.

Lin et al used Lensview to study a bright strongly lensed galaxy in the SDSS DR5 [38].
Lensview provided an excellent model, but as the authors pointed out, Lensview uses the full
image information which precludes determination of how well the image positions are deter-
mined. They then used Lensmodel to fit an SIE model using only the image positions. This
study illustrates both the strengths and weaknesses of this approach, but more importantly
also suggests the need for using multiple approaches to modeling.

Summary

Lensview is a comprehensive modeling program, with a large number of features and options.
It is not straightforward to use, although the sample data files and suggestions provided on the
website do facilitate gaining proficiency with the software. Due to its comprehensive nature, it
is possible to specify very complicated lens models based on one or more components.

Lenstool

Software features

Lenstool was first written in 1993, and is now released as version 6.7.1, dated 20061. Lenstool
is distributed as source code with dependencies on WCSTOOLS, PGPLOT and CFITSIO, and
the latest version is available on the Lenstool Project web site [27]. Installation is somewhat
tedious but can be accomplished with available standard libraries, and can be installed in
Linux or OS X. The user interface is character based and input is through a text file with
text commands. A 61-page user manual as well as a 41 page document entitled “Lenstool for
Dummies” are available for download [39]. The documentation is excellent for this complex
and comprehensive strong gravitational lens modeling software.

Lensing features

Input to Lenstool is a character based input file. Each line consists of a command and ap-
propriate data. Keywords are either first identifiers or second identifiers. A number of input
files are necessary. The first is a PAR file, containing the basic parameters for the model, a
list of the arcs for which Lenstool will predict counter images, and specification of requested
optimization. The remainder of the input includes multiple image files and a cluster members
file. The available options and commands are extensive, and testing the software with the files
available for download is an excellent way to gain familiarity with the complex input required.

Lenstool is referenced in at least 11 manuscripts [e.g. 22; 23; 28; 37; 52; 53]. These
manuscripts are listed on the Lenstool website [27], and many of them include downloadable files
of the lens models used in the research. Strong lens galaxy clusters are modeled with parametric
methods, and ranked using Bayesian evidence. Although Lenstool was initially developed in
1993 with a downhill χ2 minimization, modeling of complex systems become inefficient due to

1http://www.oamp.fr/cosmology/lenstool/
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the sensitivity of the technique to local minima. The computational method used by Lenstool
was then changed to use a publicly available Markov Chain Monte-Carlo sampler, avoiding
local minima in the likelihood functions. The merits of this method on simulated strong lensing
clusters is demonstrated by Jullo et al [23].

Using a multi-scale model with a hybrid approach of LTM and non-LTM modeling in the
Lenstool software, Jullo and Kneib were able to model Abell 1689, but only for a limited subset
of images [22]. The key feature is that Lenstool uses a multi-scale model, allowing sharper
contrast in regions of higher density. This arrangement of potentials of different sizes allows
Lenstool to produce a high-resolution model with a minimum number of parameters. In this
study, a mass reconstruction was created using Lenstool. The model combined a grid of radial
basis functions and galaxy scale clumps with cluster member galaxies. A grid was built from
a mass map based on 2 cluster-scale and 60 galaxy-scale clumps of mass, instead of the 190
galaxy-scale clumps used in previous studies [37]. A catalog of 28 images in 12 systems of
multiple images were selected for this analysis. There were 122 parameters, which took 15 days
to produce 2000 MCMC samples on a 2.4GHz processor. The results of this study confirmed
the ability of a multi-scale model to be used as a lens model. The authors report that the errors
between the positions of observed and predicted images were halved, compared to previous
studies.

The nature of the mass distribution in Abell 1703 was studied using Lenstool [52]. This
demonstrated the ability to model the inner mass distribution of massive galaxy clusters. This
study used a spectroscopic survey to confirm photometric redshifts and precisely constrain the
mass distribution in Abell 1703. Lenstool was used to constrain a parametric mass model
with the identified multiple systems. The positions of the multiply imaged systems were used
to optimize parameters describing the mass distribution, using a Pseudo Isothermal Elliptical
Mass Distribution (PIEMD) using the profile derived from photometry. The Bayesian approach
in Lenstool provides a large number of models which sample the probability density function of
all the parameters. Results were compared to previous weak-lensing studies, and were found to
have a very good fit. This strong lensing analysis using Lenstool and a simple NFW component
for the large scale dark matter distribution, was able to reproduce the large number of images
in Abell 1703, as well as demonstrate consistency with previous weak-lensing analyses.

Summary

Lenstool is a comprehensive program for gravitational lens modeling. The software is relatively
easy to install and use, and is accompanied by extensive documentation. It has been extensively
used in the modeling of observed gravitational lenses. The availability of the input files from
previous studies increases the utility of this software. The software uses a novel technique to
combine the strengths of both LTM and non-LTM models, by using a multi-scale model that
allows sharper contrast in areas of high density. The flexibility of this approach allows improved
prediction of image positions compared to previous studies.

LensPerfect

Software features

LensPerfect was released in 2007 and is available for download 1. The software is written in
Python and the source code is included. Dependencies include Numpy, Scipy, Matplotlib and
Pyfits. Installation of the software is slightly complicated by the fact that the software will
not work with the latest version of Python. There are numerous sample data files provided

1http://http://www.its.caltech.edu/ coe/LensPerfect/
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to demonstrate the features of the software. Output from analysis of one of the sample files
is shown in Fig 4.1. Documentation is available on two web sites including one which details
installation and use of the software [13], although there is no separate user manual. The user
interface is character based and input is through a text file with text commands.

Lensing features

The software was developed by Coe [15] and has also been used in one more research study [14].
LensPerfect uses a parametric model but is also “model-free” as described by its developers, who
further characterize it as non-LTM. LensPerfect solutions are given as sums of basis functions.
While most parametric models are based on a physical object, the basis functions used by
LensPerfect have no physical interpretation. Input to the program is via a text file and graphical
output is shown immediately on the display.

LensPerfect represents a new approach to gravitational lens mass map reconstruction, and
is the first method to do so using strong gravitational lensing data (multiple images). This new
approach uses direct inversion to obtain assumption-free mass map solutions which perfectly
reproduce all multiple image positions. This was developed using a new mathematical approach,
using a curl-free interpolation of vectors given at scattered data points. One of the key features
in any model is the measure of ”physicality” of the model. The developers of LensPerfect use
a new measure of physicality, with the following traits: (i) positive mass everywhere within the
convex hull, (ii) low mass scatter in each radial bin, (iii) no “tunnels”, (iv) overall smoothness
and (v) average mass in radial bins decreases outwards. The only rigid constraint among these
is the first trait, requiring positive mass. A complete discussion of these traits is available in
the reference [15].

LensPerfect provides an accurate mass map even when there are many lensed galaxies, by
using several novel approaches. A weighted average of predicted source positions is used to
determine each new source position. The solution is rebuilt at each iteration as new sources
are added. This process is fast, and results in an accurate mass map. Both source and image
positions are always perfectly constrained.

The galaxy cluster Abell 1689 is one of the most studied gravitational lens systems, and
thus is ideal for comparisons among lensing models. The large number of multiple images in
Abell 1689 also make detailed analysis a challenging problem. In a followup investigation after
introducing the method and software, LensPerfect was applied to the analysis of Abell 1689
using the positions of 168 multiple images. The non-LTM models from LensPerfect were able
to reproduce the observed input positions of 168 multiple images of 55 knots residing within
135 images of 42 galaxies [14]. The computing problem associated with analyzing Abell 1689
is obvious, since it has 100+ strong lensing features. The software must produce a mass model
with correct amounts of mass to deflect light from 30+ background galaxies into multiple paths
to arrive at the 100+ observed positions. LensPerfect did this, using direct matrix inversion to
find solutions based on the input data. The optimization took two weeks to run on a Macbook
Pro (Apple Corp., Cupertino CA) laptop computer. This study demonstrates the robustness
of the algorithm and its computing efficiency.

A mass map of Abell 1689 produced by LensPerfect using NFW and Sérsic fits had a
recovered mass profile which matched the input mass profile extremely well [14]. The NFW fit
parameters compare very well to previous studies of Abell 1689 using strong lensing data as
well as studies using a combination of strong and weak lensing data.
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Figure 4.1: Sample output from LensPerfect using a supplied test dataset
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Summary

LensPerfect is a full-featured program that is extremely capable of producing a mass map based
on lensed images, even when there are many galaxies as demonstrated in the followup study
of Abell 1689. It is distributed as source code, written in Python, which is available for many
platforms. The new approach taken by LensPerfect results in fast and accurate modeling, even of
complex systems. The output is graphical and displayed directly. LensPerfect does an excellent
job of accurate reconstruction of the sources and lensed images. The ability of LensPerfect to
accurately produce a mass map using strong lensing data represents an important advance in
gravitational lens research, and will likely lead to further advances.

glafic

Software features

The current release of glafic was written in 2012, and is provided as a downloadable executable
file which is unpacked from a .tar file 1. Several sample input files (also in a single .tar file)
and a detailed 51 page Users manual are provided. Source code is not provided. There is no
installation procedure since it is provided as an executable file for OS X. The program runs
without any modifications necessary. The user interface is character based and input is through
a text file with text commands. The program runs in the command line interface using OS X.
There is no graphical interface.

Lensing features

Glafic uses a parametric model that can be used for a wide variety of gravitational lensing
analyses [46]. It includes computation of lensed images for both point and extended sources,
handling of multiple sources, a wide variety of lens potentials and a technique for mass model-
ing. Commands are entered in a simple text file, which begins with a list of primary parameters
(omega, lambda, Hubble, lens redshift z, pixel size, etc.) and then an optional list of secondary
parameters (optional data files, output format desired, extended source normalizations, etc).
Point sources are defined simply by their redshift and x- and y-coordinates. Each lens is defined
by the lens model and seven parameters. A large catalog of lens models is available (includ-
ing point mass, Hernquist, NFW, Einsato, Sérsic, etc.). Extended sources can be Gaussian,
Sérsic, top hat, Moffat or multiple sources. After defining the parameters and the lens models,
parameters to be varied in the χ2 minimizations are specified. Following this, the desired com-
mands are issued such as computing various lensing properties, Einstein radius, write lensing
properties to a FITS file (see sample output in Fig 4.2), etc. Various types of optimization are
permitted. The commands are well described and illustrated in the User’s manual. Commands
can be entered as a batch using an input file, or entered on a command line. A number of
sample data files are provided which illustrate a number of the major features of glafic.

Glafic was used to perform a strong lens analysis of SDSS J1004+4112 [46]. This is a
particularly interesting quasar lens because it is one of only two known examples of a cluster-
scale quasar lens, and contains multiply imaged galaxies at z ∼ 3. The authors include an
indirect comparison with multiple previous mass models of this interesting lens. This study
used a parametric model, with the main halo of the lensing cluster modeled with the generalized
NFW profile. A standard χ2 minimization was used to find the best-fit mass model. The
best-fit radial mass profile generated is in good agreement with strong lensing data inferred
from Chandra X-ray observations. The model used several new constraints including positions

1http://www.slac.stanford.edu/ oguri/glafic/
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Figure 4.2: FITS image output by glafic for a sample model with a single point source, two
lenses and two extended sources

of spectroscopically confirmed multiple imaged galaxies, time delays between quasar images,
and faint central images. The model thus generated was able to successfully reproduce all
observations including time delays.

Summary

The glafic program is a well-designed, flexible and easy to use lens modeling program. It includes
a wide variety of lens models and is extremely flexible in the types of models it accepts. The
User’s manual is helpful and complete. Output consists of a variety of possible data files
including FITS images. Glafic can accurately recover lens model parameters of known lensing
systems.

PixeLens

Software features

PixeLens was written in 2007, and is available to run in a web browser or as a stand alone
java applet which can be downloaded from the website 1. There is no installation needed. This

1http://www.qgd.uzh.ch/projects/pixelens/
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program was used at the ANGLES School for Gravitational Lensing in 2007. The source code
is provided in the downloadable .jar file. Information is also available on the website. Sample
input data is provided. A paper (19 pages) and tutorial (14 pages) detailing the software
and underlying theory are available on the website, and serve as excellent documentation with
numerous examples. The user interface is a single window with several entry panels in the
window. Input is done in the window, or through an input file.

Lensing Features

This program uses a non-parametric model, with Bayesian statistics. Input to the program
consists of model constants (red shifts, pixel size, etc) and image data. The radius of the mass
map in pixels and the redshifts for the lens and source must be given. Optional inputs include
setting the mass map as symmetric or asymmetric, the radius of the mass map, external shear,
the number of models allowed, and several others. Image data includes x- and y- locations and
the time delays. Type of output can be selected as text or eps files. Sample output is shown in
Fig. 4.3, showing the image directly on the display.

[57] used PixeLens using non-LTM models to perfectly reproduce some of the data for
Abell1689, but computational limitations restricted PixeLens to fitting 30 multiple images at
a time, because of the requirement for exact fits to the image data. This could be considered
a virtue allowing the data to be split into two sets as pointed out in the study. In this study,
PixeLens had been enhanced to use multiple-source redshifts. PixeLens had some advantages in
the models generated, particularly in handling the inherent problem of degeneracy. While some
software uses one or a few models, PixeLens generates a large ensemble of models which explore
the possible mass distributions that can reproduce the data. Data from PixeLens was compared
to independent datasets for consistency [57]. PixeLens has also been used to model the giant
quadruple quasar SDSS J1004+4112 [57; 70]. In addition to the lensing data (image positions),
six kinds of constraints were applied to limit the ensemble to lenses that could plausibly be
galaxies or clusters. The result was free-form reconstructions allowed detection of structure in
the lens associated with cluster galaxies [70]. J1004+4112 was reconstructed using 13 images
from 4 sources.

Summary

PixeLens is an easy to use program for non-parametric modeling of gravitational lenses. There
is ample documentation available. It is based on reconstruction of a pixellated mass map
by generating large ensembles of models with a Metropolis algorithm. It can model several
lenses simultaneously, which is a rare feature of modeling software. The code has been tested
with a number of fake models and correctly recovers both the mass distributions of the lens
and H0 within uncertainties. PixeLens has been used in several published studies to analyze
gravitational lenses [56; 57].

SimpLens

Software features

SimpLens was written in 2003, and is available to run in a web browser or as a stand alone
java applet which can be downloaded from the website 1. There is no installation procedure
needed. The source code is provided in the downloadable .jar file. The user interface is a single

1http://www.physik.uzh.ch/ psaha/lens/simplens.php
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Figure 4.3: Sample output from PixeLens
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Figure 4.4: Sample data entry and output from SimpLens

window which displays graphs of mass, potential and arrival time. There is no formal written
documentation, but the web site provides adequate information.

Lensing features

SimpLens uses a non-parametric model, and the algorithm is explained in an article written
by the developer [58]. That article also demonstrates some of the analytic capabilities of
SimpLens. The user can enter values for a,b,h,g1, g2, n, eps, r, x, and y. The parameters a,
b, and h specify an elliptical mass distribution, while g1 and g2 refer to the external mass. By
clicking the computer mouse, the source position can be changed (see Fig 4.4 left panel) and
the effect of that change instantly visualized on the display. The graphs display caustics, saddle
point contours and critical curves. A number of sample data sets are provided which are easily
selected in a pull-down menu. The various parameters from the sample data can then be varied
to instantly observe the effect of the alteration on the three graphs. For example, the sample
data allows one to easily observe the effect of added shear.

Summary

SimpLens is a simple interactive program which allows one to instantly demonstrate the effect
of changing parameters on caustics, saddle points and critical curves for mass, potential and
arrival time. It is very easy to use and very instructive.
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GRALE

Software features

The current version of GRALE is 0.9.0, released in 2008 1. It is provided as source code
which must be compiled and linked using the CMAKE utility. The installation procedure is
fairly straightforward, and the GSL and CFITSIO libraries are necessary. The software can be
installed in Linux, or OS X. The GRALE library is easily run under GRALESHELL, which
provides an interactive environment. The software runs in a single window and text commands
are entered in a panel at the bottom of the window. Output is obtained using GNUPLOT (see
Fig. 4.5) or optionally as a FITS image. Documentation consists of a website dedicated to this
software, but there is no separate user manual.

Lensing features

GRALE can be used to simulate gravitational lenses and to invert lensing systems. The GRALE
algorithm uses a non-parametric technique to infer the mass distribution of a gravitational lens
system with multiple strong lensed systems [31]. To start simulating a gravitational lens, the
user first decides which type of lens to use. There are a variety to select from including a point
mass lens, a SIS, SIE, projected Plummer sphere, square shaped region of constant density,
a two dimensional gaussian density profile, and others. The lens parameters include mass,
distance and others as appropriate. Commands and parameters are entered line by line in
GRALESHELL. Next, the distances to the source plane are specified and then the mapping
from the image plane to the source plane is specified. Sources can then be added. A sample
lens model is shown in Fig. 4.5. Lens parameters can be optionally saved and retrieved. The
program directly outputs a file which is used by GNUPLOT to generate visual output.

GRALE has been used in a number of published studies to analyze various lenses. GRALE
functions well in modeling systems with few images, and thus less information [32]. GRALE
was used in a study using strong lens modeling to search for dark matter [34].

GRALE was used to model the system Cl 0024+1654, and infer the mass maps using a non-
parametric technique [33]. This represents the first time that image information alone was used
to reconstruct the mass distribution of this cluster in the strong lensing region. No information
about the positions of cluster members was used. Image data for sources A and B as previously
described was used for the inversion procedure to reconstruct the source. Source A was mapped
onto five images and source B mapped onto two images. A mass map was obtained by averaging
28 solutions. The only bias in the technique is that the user must specify a square shaped area
for the algorithm to search mass distribution, assuming that no mass is outside the boundaries
of that region. Using the inversion procedure in GRALE, an averaged mass map was obtained
that displayed the features seen in the ACS images.

Models of the well known system SDSS J1044+4112 were also created using GRALE [35].
This study looked at five spectroscopically confirmed images and position information was
used from existing studies. One of the images was uncertain (A5) and was not included in
the first inversion. A second inversion was then performed with the addition of image A5,
which allowed reconstruction of the source shapes after projecting back onto the source planes.
Calculation of the total mass within 60Kpc and 110Kpc compared well to results in existing
studies. Comparison was also made to the best fit NFW model, and the configuration of the
cluster corresponded to that reported previously [47].

1http://research.edm.uhasselt.be/ jori/page/index.php?n=Physics.Grale
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Figure 4.5: Output from GRALE for one of the supplied sample data files

179



Summary

GRALE is easily installed and straightforward to use. Commands are text-based and relatively
intuitive. A variety of lens models is available for simulations. A large number of lens and
source parameters can be entered by the user, allowing one to perform complex lens simulations.
In several studies, GRALE did an excellent job of recovering lens parameters and accurately
reconstructing the source parameters. GRALE has been tested with models of C 0024+1654
and SDSS J1004+4112 and gives results compatible with previous studies.

IGLOO

The IGLOO (Interactive Gravitational Lens Optimization Olgorithm) code, developed at the
University of Manchester, is different from other lens modeling software (e.g. GravLens,
Lenstool, etc.) in philosophy. It sacrifices richness of features (and sophistication of algo-
rithm) to user-friendliness and small size of code. It is an LTM model code. There have not
been any studies to date using this code. It was not possible to compile this code or test it
because of its many dependencies, some of which are no longer available.

This software can be downloaded at the URL given. It is dependent on GSL and PGPLOT.
Some documentation is available at the website [21]. The documentation includes a user manual,
some sample data as well as a description of the software design. Optimizations are performed
with the AMOEBA downhill-simplex method. The interface includes a number of function
buttons and a graphical output.

Glamroc

Glamroc is an adaptive mesh ray tracing code, using a non-LTM algorithm [6]. The source code
is available. It has been used in one study [49]. It does not have data-fitting capability and is
therefore useful for theoretical investigations. The software is accompanied by documentation
and sample data files. This code could not be compiled or tested.

GLASS

GLASS is the Gravitational Lensing AnalysiS Software, and was released in 2013. It is a non-
LTM code that uses an under-constrained adaptive grid of mass pixels to model a lens [17]. It
extends and develops some of the concepts from the free form modeling tool PixeLens, but with
all new code. The most computationally intensive portion was written in C but Python was
chosen because of its extensibility as a language and for its large scientic library support. The
flexibility allows GLASS to have quite sophisticated behavior while at the same time simplifying
the user experience and reducing the overall development time. One of the striking features is
that the input file to GLASS is itself a Python program.

The software is freely available for download and includes excellent documentation including
sample input files and a User Manual.

At the heart of GLASS lies a new algorithm for sampling the high dimensional linear space
that represents the modeling solution space. Each prior is a simple function that adds linear
constraints that operate on either a single lens object or the entire ensemble of objects. GLASS
currently describes the lens mass as a collection of pixels, but the code has been designed to
support alternative methods. In particular, there are future plans to develop a module using
Bessel functions. The algorithm for generating models in GLASS samples a convex polytope
in a high dimensional space whose interior points satisfy both the lens equation and other
physically motivated linear priors. [17].
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Mirage

Mirage is a non-LTM models software that is written in MATLAB. It could not be tested
because it is not publicly available. It has been used in several studies. Mirage determines
the parameters of pixelated source intensity distributions for a given lens model. This tech-
nique enables including the effects of spatially variant point-spread functions using the iterative
procedures in this lensing code.

The authors have developed a method to include the effects of a spatially variant PSF in
gravitational lens modeling [54]. Including these effects in the standard semilinear method
would be difficult due to the complicated blurring matrix required. These complications are
overcome by incorporating the algorithm used. This approach can accommodate large lensing
problems, which limits the applicability of the direct semilinear approach. Techniques to include
the effects of spatially variant PSFs are important, as the response varies over the detector area
for many astronomical instruments. The algorithm used allows this effect to be included in
lensing problems, thus improving the quality of reconstructions when the variability of the PSF
is significant. The CGLS and SD algorithms allow a regularized inversion to be found quickly
by truncated iteration.

ZB

ZB is an LTM strong gravitational lens model code with a minimum number of free parameters
[71]. It is somewhat less flexible than other methods because of the LTM assumption and the
use of few free parameters. Inputs to the program are (a) the position and flux of the [red
sequence] cluster members and (b) a list of multiple image systems and their redshift. The
user also defines other minor factors such as cosmology, etc. The output is the mass model,
kappa/mass density map, magnification map, critical curves, deflection fields, mass profile,
model optimized redshifts for the arcs if requested, rms and chi-sqaured, the potential and time
delays if requested, etc.

ZB strong lens model software excels in physically finding multiple-image systems. It uses
a simple parametrization and and a minimum of free parameters. In the original modeling
method, it adopts a power-law surface mass density for the galaxies scaled by their light and
smooths the superposition of this (unnormalized) galaxy contribution to represent the DM,
with either a 2D spline interpolation whose polynomial degree is a free parameter, or with
a Gaussian whose width is a free parameter. The overall resulting deflection field is then
simply normalized to a certain redshift / multiple-image system where the normalization is
another free parameters. For some more flexibility / ellipticity, external shear is added which
introduces two additional free parameters. Therefore the procedure adheres to the light-traces-
mass (LTM) assumption, yet this very simple procedure yields excellent results. The method
can be implemented via a grid minimization - which is faster but somewhat cruder, or via an
MCMC.

ZB has been used in a large number of published studies, analyzing dozens of cluster lenses,
including some direct comparisons with other lensing software. Some of these include CL0024,
MACS0717, MACS1149, A1703, A2261, A383, and MS1358. This MATLAB-based software is
however, not available for distribution.

WSLAP

WSLAP was introduced in 2004, and is a non-LTM lens model software. This software is not
available for distribution, and is used almost solely by its author [18].
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This software revisits the issue of non-parametric gravitational lens reconstruction and
presents a new method to obtain the cluster mass distribution using strong lensing data without
using any prior information on the underlying mass. The method relies on the decomposition
of the lens plane into individual cells. The problem in this approximation can be expressed
as a system of linear equations for which a solution can be found. Moreover, it is proposed
to include information about the null space. That is, the software makes use of the pixels in
which there are no arcs above the sky noise. The only prior information is an estimation of the
physical size of the sources. No priors on the luminosity of the cluster or shape of the haloes are
needed, making the results very robust. In order to test the accuracy and bias of the method
the software makes use of simulated strong lensing data. This method reproduces accurately
both the lens mass and source positions and provides error estimates.

SaWLens

Nonparametric analysis of gravitational lenses combining both weak and strong lensing infor-
mation. A detailed analysis of the software’s application is provided in Section 5 of Merten
[41]. This software was designed to combine mutiple observational constraints into a joint
reconstruction method in a consistent way.

The software is written as about 12,000 lines of C++ code, with multiple dependencies
including GSL, MPI, ATLAS, LAPACK, CFITSIO, CCfits and LibAstroC++. It requires at
least 8 CPU cores and about 1GB of memory per core. It runs under Linux and it is preferably
run on 16-128 core Beowolf clusters. Similar performance can be reached on NVIDIA Tesla
GPU cards. For example, CLASH reconstructions are run on a 24 core 2 node system with
about 1 day runtime per lens. Linux installations running the code need to have an MPI
environment installed even if the code is just running on a single task. This software is not
available for distribution, and has only been used in studies published by its author.

This software has been used in a number of studies [42].

GLEE

GLEE (Gravitational Lens Efficient Explorer) is used to probe cosmology through gravita-
tional lens time delays and to study the mass structure of galaxies/clusters [20; 61]. A variety
of simply-parametrized profiles can be used to describe the lens mass distributions. The sources
can be either point-like or spatially extended; pixelated grids are used to describe the surface
brightness of spatially extended sources. The lens parameters can be either optimized or sam-
pled.

GLEE uses simultaneous modeling of lens light distribution, lens mass distribution and
source light distribution, and is applicable to galaxy, group and cluster-scale strong lenses. The
spatially extended source modeling is computationally intensive. The lens parameters can be
either optimized or sampled. Pixelated grids are used to describe the surface brightness of
spatially extended sources.

GLEE has been used in a number of studies, but the software is not available for distribution
and is used only by its authors.

4.5 Educational Software

Programs suited for education are useful to demonstrate the basic principles of lensing. Cate-
gorization as educational software is arbitrary and based on the fact that there were no studies
found in the literature that used these nine software packages for data analysis in published
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studies. Of these nine software packages, the first five were available for download and testing
and are fully described. The remaining four were not fully tested and are only briefly described.

GravLens HD

Software features

GravLensHD is available for iOS devices and is obtained from the Apple (Cupertino CA) App
Store, at no cost 1. The source code is not provided. There is a help-screen with some suggested
exercises to demonstrate the features of a gravitational lens. The web site has some additional
information [55]. There is no formal documentation. The interface is limited to a single touch
screen. Installation is simple using the App Store application.

Lensing Features

This software uses a single mass as a lens, and is categorized as a parametric model. The
software uses a simulated source and a foreground lensing mass to draw arcs or an Einstein ring
as one moves the lensing mass relative to the star digitally on the touch screen. The lensing
mass can be made invisible leaving the lensed image of the source. The ellipticity of the lensing
mass can be changed through a few preset shapes. The size of the lensing mass can be changed
with on-screen gestures. The images can be saved to the devices library.The background image
can be changed to any picture of the user’s choice, giving an excellent way to show the effect
of a lens on a known image. Some technical material is also available within the application.
It uses a singular isothermal sphere (SIS) model with external shear. The maximum shear
permitted is 0.6.

Summary

In summary, this software provides an excellent demonstration of the effect of a gravitational
lens, and may serve as a tool to stimulate young minds to think about astronomy. The concepts
used are the same as those for any gravitational lensing system. There is no option for numerical
input, and all interaction with the software is through the touch screen. Further information is
available on a web site dedicated to this software [55].

G-Lens

Software features

G-Lens was written by Boughen in 1998 (as part of an undergraduate honors thesis), and is
available as an on-line download as a single executable file 2. The program will only run in
a DOS or early Windows environment, but can be used with more modern operating systems
in DOS emulators, such as DOSBox which runs in OS X [64]. Source code is not provided.
There is no installation, as one needs only to execute the .exe file provided. The software was
reviewed in the June 2000 issue of Sky and Telescope [9]. Along with the software, there is a
one-page instruction sheet available, but no other documentation. The user interface is a single
character based text box where the values of parameters are entered.

1Available on iOS devices though the App Store application
2http://uv.vuchorsens.dk/r/AC/doc/Ast
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Lensing Features

The lens mass is varied and is modeled as a single point mass, characterizing this software as a
parametric model. Input to the program is performed by providing the lensing mass (in solar
masses), the lens and source distances (in Mpc) and then selecting among three options for
geometry of the lens (circle, ellipse and grid). Output is immediately shown on the display.
The image can be optionally printed.

Summary

This software simulates a simple point mass lens and allows numerical input regarding basic
system geometry. The output is graphical showing the image resulting from the lens designed
by the user. The ability to specify basic parameters numerically makes this a good program for
demonstration of basic lens effects.

Gravitational Lensing

Software features

Gravitational Lensing was written in 2002 and is distributed as an executable file which runs
in Windows, and also as a C program for use on an HP-49 calculator. The software is available
for download on the website 1. There is no installation, as one needs only to run the .exe file
provided. Source code for the Windows version is not distributed. Documentation is available
to explain the science of lensing, written in Dutch. There is no documentation for running the
software. The interface is a single window, and a “File” menu. The program has an “About”
screen but no on-line help. The options in the “File” menu allows changing parameters of the
lens model. After changing the parameters, the result is displayed in the window.

Lensing features

The mass can be varied on the data entry screen and is modeled as a point mass, characterizing
this as a parametric model. Sample output is shown in Fig 4.6. The mass of the source and lens
can be set individually (as multiples of solar masses). Distances from the observer to source and
lens are set in Mpc. The position of the source can be set as an offset from center, and the angle
of view can be varied. Models include a Plummer model or isothermal sphere. The Einstein
radius can be optionally set. A set of default values is also available to show the capabilities of
the program.

Summary

This simulation is simple to install and use. Various parameters are easily set in a menu screen
and the resulting lens model instantly visualized. There are two optional models that can be
used. This software is very useful as an educational tool, but not sufficiently robust for research
analysis.

lens

Software features

Lens was released in 2002, and is written in MATLAB, and therefore the MATLAB (The
MathWorks Inc, Natick MA USA) software is required. The source code is distributed and

1http://www.kwakkelflap.com/gravlens.html
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Figure 4.6: Sample output from Gravitational Lensing
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Figure 4.7: Sample output from Lens showing the image plane (left) and the generated source
plane (right)

easily installed in MATLAB (these tests conducted with version R2010a). The source code
and sample data files (SIS1 and SIS2) are available for download 1. The package includes two
programs written in MATLAB, lens (“forward” modeling) and invert (which solves the lens
inversion problem). The information on the website includes a tutorial, and serves as excellent
documentation. The user interface is through the MATLAB screen. Installation is accomplished
using MATLAB. Sample data files are provided to test the software.

Lensing features

Lens is a hybrid program, which demonstrates both the “forward” problem as well as lens
inversion. For modeling the lensed images, lens uses a parametric model as a SIS, and the
algorithm is described in an accompanying article [45] which is easily available following a link
from the website. Various model parameters of the SIS can be changed in the parameter file, as
detailed on the website. The input data file specifies observation parameters, lens parameters
(sigma, z) and source parameters (z,x,y, ellipticity, flux) and produces the lensed image (the
“forward” problem”) (left panel, Fig 4.7). Resulting images are shown directly on the display
with no further intervention. The program optionally writes a data file which can then be used
as input to the inversion routine to solve the “reverse” problem. The user estimates the center
of the lensing mass with the computer mouse, and an image of the source plane is created (right
panel, Fig 4.7).

Summary

This program is easy to use, but requires MATLAB. The program demonstrates a solution to
the basic problems of gravitational lensing including the forward and reverse problems. Input

1http://www.astro.ubc.ca/people/newbury/siam/lens.html
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files are easy to create and the output graphics are quickly generated and illustrate the solution.
The software could be easily modified, and is supplied with ample comments.

MOWGLI

Software features

MOWGLI is available as a Java applet, accessed through a web browser 1. The web site
includes a Quick-start guide on-screen with easy to follow directions. The interface is intuitive
and requires minimal training to use. There is no documentation as all information is described
on the web site.

Lensing features

MOWGLI is designed for interactive manual modeling of strong gravitational lenses, as de-
scribed on the web site. Objects such as lenses, sources or masks are added to the screen
through an easy to use interface. One can upload a .jpg image of the system for which model-
ing is desired. By clicking and dragging on the screen, the objects can be moved into various
positions as desired. Once the objects are positioned, there are two buttons labeled ’predicted’
and ’residual’ to view these two images on the right hand panel of the interface. The residual
can be minimized by adjusting the Chi square with an on-screen button.

Summary

This software is easy to use and easily accessible as a Java applet. According to the website, a
paper has been submitted to further describe the features.

Gravitational Lenser

Gravitational Lenser (version 1.3) is a plug-in for Adobe Photoshop that demonstrates the basic
principles of lensing and allows the user the vary several parameters to observe the effect of
changing the parameters on the image produced by the lens [51]. It is available for download,
but according to the web site, runs only in the Windows environment at present. Source code
is available. Parameters are adjusted with six slider controls.

WFPC2

WFPC2 is a web-based app that allows the user to set a variety of parameters on a control
panel, and see the effect of the various parameters on the resulting images [48]. The user can
select from six parameterized lens potentials. The software has images for six lenses that were
observed with HST, and the user can then do a side-by-side comparison of the simulation with
the HST image. This software is excellent for demonstrating the effects of various parameters
on the images.

XFGLenses

XFGLenses can be downloaded from the web site [3] and is fully described in a paper [19]. The
software is a GUI control panel with numerous parameters that can be specified and the effect

1http://www.ephysics.org/mowgli/
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of these parameters on lensed images can then be observed. The control panel includes a model
menu, a source menu, a source positioner, as well as counters, buttons and sliders.

Compiling the software requires XForms, OpenGL and Image Library which make it ex-
tremely difficult to compile into working software. Part of this project includes a front-end
interface for gravlens and lensmodel (described above).

Gravitational Lensing Model

The Gravitational Lensing Model simulates the result of the deflection of photons as they pass
through the warped space-time of a gravitational field of stars, clusters of galaxies or dark
matter. In the simulation one can examine the effect caused by a gravitational lens in three
different cases: 1. A point-mass lens and a point mass source. 2. A point-mass lens and an
extended source. 3. A softened isothermal sphere lens and an extended source.

The software is distributed as an open source Java applet, and can be downloaded from the
web site [59]. It is a nice program to demonstrate some of the basics of gravitational lensing,
and is easy to use.
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Package Model Algorithm
gravlens LTM Image tiling

lensmodel LTM Image tiling
Lenstool LTM/Non-LTM MCMC

LensPerfect LTM Vector interpolation
glafic LTM Adaptive meshing

PixeLens Non-LTM Pixelated mass map
SimpLens Non-LTM -
Lensview Non-LTM LensMEM
GRALE Non-LTM Genetic
IGLOO LTM AMOEBA simplex

GLAMROC Non-LTM Adaptive Ray tracing
GLASS Non-LTM Adaptive Pixel Grid
Mirage Non-LTM Pixellated source intensity

ZB LTM Simple Parameterization / MCMC
WSLAP non-LTM Lens plane divided into cells
SaWLens non-LTM Strong and Weak Lensing

GLEE LTM Probes Cosmology through Time Delays

GravLensHD LTM -
G-Lens LTM -

Gravitational Lensing LTM -
lens LTM/Non-LTM -

MOWGLI - -
Gravitational Lenser - Lensing basics with Adobe Photoshop

WFPC2 LTM Web-based with 6 Potentials
XFGLenses LTM GUI with 22 lens models

Gravitational Lensing Model LTM Three Models available

Table 4.3: Lensing features of gravitational lens modeling software. The type of lens models
and algorithm used by each of the software packages is shown. Software in the upper portion
of the table is considered ’Research’ and that in the lower portion is considered ’Educational’.

4.6 Discussion

Most research using gravitational lens modeling software utilizes a single software package to
model an observed lensing system. Results are then compared with observational data or other
models from the literature. This is the first review to specifically examine strong gravitational
lens modeling software. This information is of particular importance because there are no single
standard programs used for modeling gravitational lenses.

Software Selection

There are a number of factors which are important when selecting appropriate software. In-
vestigators wishing to develop their own may use existing software, especially if source code is
provided, as a starting point for feature sets, data entry, etc. The computing platform may
also be an important factor, although most of the research software reviewed here will run on a
Linux system. Some of the software reviewed runs on a limited number of systems. The type of
data used for input and the results provided are also important factors. Some of the programs
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provide immediate display of output while others require another step, with other software, to
display the results.

Software Comparisons

Comparisons of gravitational lens modeling software will be defined as indirect comparisons
or direct comparisons. An indirect comparison is comparing results from various software, in
different papers, modeling the same lensing system. This is relatively easy because the software
is commonly tested using well-described lensing systems such as Cl0024+1654 (GRALE:[33]),
SDSS J1004+4112 (glafic:[46], GRALE:[35] and PixeLens:[70]), and Abell1689 (Lenstool:[22],
LensPerfect:[14], and PixeLens:[57]). Direct comparisons compare the models generated for a
single lensing system using different software in the same publication. However, there are very
few direct comparisons of software in the literature.

The modeling of Abell 1689 by PixeLens, LensPerfect and Lenstool has been compared
qualitatively [14]. Lin and coworkers use Lensview to model a bright z=2 galaxy and then
compared the results to another model made using Lenstool [38]. There is often no single ideal
modeling software, as was illustrated in the study by Lin and colleagues who found that the
Lensview model made it difficult to determine how well image positions alone are determined
[38]. Further studies are needed to compare the ability of various software packages to model the
same lensing system in order to enable meaningful comparisons. Understanding the underlying
assumptions and limitations of the various software will be facilitated in the future by more
direct comparison studies.

Future research in gravitational lens modeling will also require direct comparisons of the
results of models using data from both strong and weak gravitational lensing analysis. Such
analyses have already been reported for Abell1689 [14; 37].

The use of direct comparisons will enable better comparisons of software usability, feature
sets as well as checking results against known software. Future studies in gravitational lens
modeling will demand new approaches and sophistication.

4.7 Conclusions

There is a wide variety of gravitational lensing modeling software available. Many of the
publications using these packages are written by the software developers, suggesting that the
software is developed for their personal use. Software available only as executable files has
the advantage of being rapidly usable, as long as the computing platform is available. Software
distributed as source code may require significant time to compile and prepare given the vagaries
of software libraries.

The comprehensiveness of this study is limited by the ability to identify existing software
or studies related to the software reviewed. However, a fairly wide spectrum of software was
available for review, and this analysis identifies opportunities for improvement based on existing
software.

Awareness of available software may limit the need to develop proprietary software in the
future. The source code is available for some applications which facilitates the development
of custom software. Given the increased activity in gravitational lensing research, sharing
of software and algorithms may result in significant time savings. The usability of available
software is somewhat limited by the essentially consistent use of character based user interfaces.
Future software should be modular in nature and use a graphical user interface for improved
functionality.
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Until recently, the construction of gravitational mass maps to detail dark matter distribution
has depended on data from weak lensing. However, as shown in recent studies using LensPerfect,
glafic and GRALE, accurate mass maps can be constructed using data from strong gravitational
lensing data, and this may signal a new era in studies of strong gravitational lensing. New
approaches to software development will be necessary to support this shift in research, especially
with the advent of far more detailed images from the next generation of telescopes. Future
studies should include direct comparisons with other available software in addition to indirect
comparisons with previous studies of well-described lensing systems.
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Chapter 5

Time delay and mass calculations
are sensitive to changes in
redshift and are model dependent

5.1 Purpose and Organization of this Chapter

The purpose of this chapter is to conduct a direct comparison of strong gravitational lens
models 1. In particular we wanted to compare the results of four different strong gravitational
lens model software packages in the calculations of time delay and mass for two different systems.
The models were as identical as possible, and used as input to each of the software packages
evaluated. The purpose of this portion of the study was to determine how variable the results
are for two commonly evaluated parameters, time delay and mass.

This chapter is organized as follows. In section §5.3 we review the models used for the two
systems studied and the selection of redshift values tested, including a mock model and the
model for SDSSJ1004+4112. In section §5.4 we present the results for the calculation of time
delay and mass for each of the two model systems used, calculated by each of the four strong
gravitational lensing codes selected in this study, at nine different geometries. A summary of
data comparing changes in each parameter to changes in DdDs/Dds at each geometry tested is
also presented. In section §5.5 the nomenclature for lens model comparisons is defined, and a
review of existing comparative studies conducted. The results of the direct comparisons in this
study are discussed. In section §5.6 we make suggestions for the next generation of software to
support future gravitational lens research based on this study.

5.2 Introduction

The present is referred to as the ”Golden Age” of Precision Cosmology [6]. Strong gravitational
lensing data is a rich source of information about the structure and dynamics of the universe, and
these data are contributing significantly to this notion of precision cosmology. Strong lensing
is becoming a powerful tool to investigate three major issues in astrophysics: understanding

1Portions of this chapter were published in Lefor AT and Futamase T. Comparison of strong gravitational
lens model software I. Redshift and model dependence of time delay and mass calculations. Astronomy and
Computing 2014. 6:28-40 [20]. doi:10.1016/j.ascom.2014.04.006. Permission to use this published material
granted by the Publisher, License 3571220329348
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the spatial distribution of mass, determining the overall geometry, content and kinematics of
the universe, and studying distant galaxies, black holes and galactic nuclei that are otherwise
too faint to study with current instrumentation [46]. The use of time delays calculated from
gravitational lens systems has been used for some time to obtain cosmological constraints [e.g.
7; 10; 39; 44]. Data from strong gravitational lensing has also been used to establish the value
of H0 [e.g. 27; 42; 43], and is being combined with other datasets to obtain other cosmological
constraints such as Ωm and wx [e.g. 16]. More recently, strong gravitational lensing data is
being used to evaluate the gas phase metallicity of lensed galaxies [1], as a probe of the particle
nature of gravity and dark matter [19; 30], and as a test of scalar-tensor gravity [32]. Future
strong gravitational lensing studies promise to further expand our understanding of the physics
of the universe. A comprehensive database of 646 strong gravitational lens systems (accessed
23 Feb 2014) is maintained and provides extensive information about each of these systems [29].
Further understanding of the systematic errors in strong gravitational lens modeling, beginning
with the software, is essential as more lens systems are identified.

Comparison of strong gravitational lens models

Strong gravitational lens models allow determination of the value of various cosmological con-
straints. However, data analysis is complicated by the various types of models used as well as
the many different software codes that have been used [21]. The strong gravitational lens mod-
eling codes in use are not necessarily mutually exclusive, and there is no one software package
that appears to be ideal.

While the use of strong gravitational lens models as a probe of the fundamental features of
the universe continues to increase, most studies to date utilize a single model analyzed with a
single software code to understand a particular system. Each model consists of one or more
files, usually text files, as input to the modeling software that encode the characteristics of the
lensing system. There are number of barriers to greater use of multiple codes in a single study,
including the complexity of each model as well as the fact that the model used for each code is
often very different from that used for other codes. There are very few existing studies which
compare the results of analysis of one system using multiple software codes.

Effect of changes in the model on results

There are many differences among the software codes used for strong gravitational lens models,
which perhaps start with their initial classification, as parametric and non-parametric. While
this classification is commonly used, it is actually somewhat of a misnomer since all models use
parameters. More recently, parametric models are usually referred to as ”Light Traces Mass”
(LTM), and non-parametric models are referred to as ”Non-Light Traces Mass” (Non-LTM) [3].
However, each of the codes can behave in a different way, which may lead to different results.
The redshift of the lens and the source are critically important starting points for any lens
model, but there have been few studies to determine the effect of changes in these important
parameters on the final results of a lens model.

Purpose of this study

The purpose of this study is to investigate the effect of changes in system geometry, specifically
the effect of varying redshift, on the value of time delay and mass as calculated by four different
strong gravitational lens modeling codes. Although spectroscopic redshifts are becoming more
available, there may be systems for which preliminary investigations necessitate the use of
photometric redshifts. If the results of lens model calculations show little change with small
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changes in redshift, the results of lens model calculations using photometric redshifts may be
more useful.

Changes in redshift used in this study are based on the results in [5], which estimate the
errors in photometric redshifts to be:

∆zlens ∼ 0.04(1 + zlens) (5.1)

∆zsource ∼ 0.10(1 + zsource) (5.2)

These studies are performed to understand how each software code behaves under the con-
ditions of changing values of redshift, and compare those changes to changes in DdDs/Dds at
the same redshift values, tin order to understand the variability in results using different lens
model software. A review of existing comparative strong gravitational lens studies is included
to define the current state of comparative studies and define nomenclature for future studies.

5.3 Methods

Software

Models for each system are evaluated using two LTM lens model codes, Lenstool (version 6.7.1)
[18](Lenstool actually has both LTM and non-LTM components [3])and glafic (version 1.1.6)
[34], as well as two non-LTM codes, GRALE (version 0.12.1) [22] and PixeLens (version 2.17)
[38]. The software in this study was obtained by download from public web sites. Input files for
SDSSJ1004+4112 for Lenstool, and input files for all four software packages for the mock model
were written for this study. The GRALE model of SDSSJ1004+4122 was used in a previous
study by [24]. The glafic files were previously used in a study by [35], and the PixeLens model
was previously used by [49]. For the purpose of the models in this study, Ωm is set to 0.24, and
ΩΛ set to 0.76, h=0.70, with a flat universe (Ωk=0) [e.g. 33; 45] and H0 = 100h km s−1Mpc−1.
All models are run on an Intel (Santa Clara, CA) processor using Scientific Linux version 6.4.

Lens models

Two different systems are investigated with each of four strong lens modeling codes, including a
simple four-image mock model, and the giant gravitational quasar SDSSJ1004+4112. For each
model, time delays and enclosed mass are calculated. The time delays are calculated as the
difference in arrival time of the images. PixeLens directly calculates the time delays for each
image and the enclosed mass. The time delays for each image and the mass enclosed within
the Einstein radius is directly calculated by glafic and GRALE. Lenstool calculates the time
delays for each image, and produces a mass map as a FITS file from which the mass inside the
Einstein radius is obtained.

The mock model includes one potential, as a Singular Isothermal Ellipsoid (SIE) located
at the center (0.0, 0.0). Also at the center (0.0, 0.0) is a single point source. The SIE has
a velocity dispersion of 300 km s−1 and an ellipticity of 0.5 with a position angle of 0. Four
images are located equidistant from the center at 1.3”. All models are similarly parameterized.

The models for SDSSJ1004+4112 modeled with Pixelens [49], glafic [35] and GRALE [24]
were used unchanged from the published studies. Details of the parameterization of each model
are available in the original studies. The model for Lenstool was prepared for this study, and
follows the parameterization used in the glafic model. Time delays and enclosed mass within
the Einstein radii are calculated and compared as percent change from the values obtained with
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the actual lens system, zlens = 0.68 and zsource = 1.734. The zsource for the source located at
z=1.734 was varied, while the redshifts for the other sources were not changed. Time delays of
the images from that source were compared.

Varying lens system parameters

After creating the model files for the two systems they are used as input to PixeLens, GRALE,
Lenstool, and glafic. Lens system geometry, specifically zlens and zsource, is varied by directly
editing the input files and the models re-calculated. The geometry of the mock model is
set at zlens=0.3, and zsource=2.5 as initial (baseline) redshift values. The value of zlens and
zsource are each varied through a range of four values (according to Equations 1 and 2 as
described by [5], and based on the extrapolation of empirical findings [33]), resulting in five
models at zlens=0.3 while varying zsource, and five models at zsource=2.5 while varying zlens.
Similarly, the SDSSJ1004+4112 model was varied, with a total of five models at zlens=0.68
while varying zsource, and five models at zsource=1.734 while varying zlens. A total of nine
models (baseline plus four varying zlens and four varying zsource) are calculated using each of
the four modeling software packages in the study, to evaluate the mock model (Tables 5.1-5.4)
and the SDSSJ1004+4112 model (Tables 5.5-5.8). The purpose of using these nine models is
to ”stress’” the software to observe the effect of changes in redshift on output parameters.

Throughout this study, efforts were made to parameterize all models similarly. In each of
the comparison calculations, the only parameter altered was the zlens or zsource, depending on
the portion of the study. In all cases, source position, velocity dispersion, ellipticity, etc. were
left unchanged in all of the calculations.

Distance Calculations

Distance calculations were made using redshift values according to the methods described in
[12]. This includes distances to the lens, Dd, distance to the source, Ds and distance from the
source to the lens, Dds. The Hubble distance (DH) is defined by:

DH ≡
c

H0
= 3000h−1 Mpc = 9.26× 1025 h−1 m (5.3)

In order to define the comoving distance, DC, the function:

E(z) ≡
√

ΩM (1 + z)3 + Ωk (1 + z)2 + ΩΛ (5.4)

is defined. The line-of-sight comoving distance, DC, is then given by integration:

DC = DH

∫ z

0

dz′

E(z′)
(5.5)

where DH is the Hubble distance.
Since Ωk=0 in this study, the transverse comoving distance, DM is the same as DC. The

angular diameter distance, DA is related to the transverse comoving distance, DM by:

DA =
DM

1 + z
(5.6)

Therefore, the distance between two objects (Dds) such as the lens (Dd) and source(Ds),
with Ωk ≥ 0 is given by:

DA12 =
1

1 + z2

[
DM2

√
1 + Ωk

D2
M1

D2
H

−DM1

√
1 + Ωk

D2
M2

D2
H

]
(5.7)
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where DM1 and DM2 are the transverse comoving distances to z1 and z2, DH is the Hubble
distance, and Ωk is the curvature density parameter. This calculation is significantly simplified
in this study with Ωk=0.

Time Delay Calculations

Time delays are calculated for each of the two models using each of the four lens modeling
software packages tested, to evaluate the effect of a change in system geometry on the calcu-
lated parameters. The mathematical basis of gravitational lensing is the lens equation, and is
described by [31]. The reduced deflection angle α and the actual deflection angle α̂ are related
by eq. (5.8).

~α =
Dds

Ds

~̂α . (5.8)

The angle between the optic axis and the true source position is defined as ~β, and the angle
between the optic axis and the image is defined as ~θ [31]. Since θDs = βDs−α̂Dds, the positions
of the source and the image are given by

~β = ~θ − ~α(~θ) . (5.9)

This equation shows that the deflection is dependent on the ratio Dds/Ds, and is generally
referred to as the lensing equation. If we consider a lens with a constant surface-mass density.
The (reduced) deflection angle is then:

α(θ) =
Dds

Ds

4G

c2ξ
(Σπξ2) =

4πGΣ

c2
DdDds

Ds
θ , (5.10)

where ξ = Ddθ. In this case, the lens equation is linear, meaning that β ∝ θ. We then
define a critical surface-mass density

Σcr =
c2

4πG

Ds

DdDds
= 0.35 g cm−2

(
D

1 Gpc

)−1

, (5.11)

where the effective distance D is defined as the combination of distances

D =
DdDds

Ds
. (5.12)

For a lens with a constant surface mass density Σcr, the deflection angle is α(θ) = θ, and so
β = 0 for all θ.

A complete equation to calculate time delays involves unobservable quantities [33], indicating
that time delays in general depend on the details of mass models. The time delay is related by
[50]:

∆tij ∝
DdDs

Dds
(5.13)

for a given value of zlens. Thus, the relationship between Dd, Ds and Dds should determine
the behavior of a time delay calculation when the system geometry is altered. Based on this
relationship, the percent change in Dd, Ds and Dds for each of the redshifts in this study is also
calculated and used as a basis of comparison of the changes in results calculated for each of the
models.
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Mass calculations

Each of the modeling software codes tested also calculates the mass of the lens. The relative
projected mass density is determined by [18]:

κ(ξI , zs) =
∇2ϕ(ξI , zs)

2
=

Σ(ξI , zs)

Σcrit
(5.14)

The critical density is defined by:

Σcrit(z
s, zd) =

c2

4πG

Ds

DdsDd
(5.15)

The Newtonian projected potential is given by φ, and the lens-normalized projected potential
is given by ϕ. The absolute projected mass density is then:

Σ(ξI) = Σcrit
∇2ϕ

2
=
∇2φ(ξI)

4πG
(5.16)

Since this value is absolute, it does not depend on zsource.
The mass inside the Einstein radius (M(<RE)) for a Singular Isothermal Sphere is given by

[51]:

M(<RE) = R2
E

D

8πG
(5.17)

This relationship shows that the mass inside the Einstein radius is mostly dependent on the
value of the Einstein radius.

Data Analysis and Presentation

The calculated values for time delay and enclosed mass are shown in Tables 5.1-5.4 (mock
model) and Tables 5.5-5.8 (SDSSJ1004+4112). However, due to differences in the models, it is
difficult to compare the absolute values calculated. Furthermore, the goal of this analysis was to
observe the effects of changing geometry on changes in the calculated parameters. Therefore,
the percent change in each value at each geometry is calculated compared to the values at
the baseline geometry for each system. Based on the relationship between time delay and
DdDs/Dds, the percent change in DdDs/Dds at each redshift is also calculated and used as a
basis of comparison of the changes in results calculated for each of the models. If time delay
is related to DdDs/Dds by a simple proportion, then the percent change in time delay should
change similarly with the percent change in DdDs/Dds at each geometry. The percent change
in each calculated value is plotted with the percent change in DdDs/Dds in Figures 5.1-5.4
(mock model) and Figures 5.5-5.8 (SDSSJ1004+4112).

5.4 Results

Mock Model

A mock model is used with a single lens potential as a SIE at zlens=0.3 and zsource=2.5. This
model generates four equidistant images. Since this is mock data, the same model is used
as input for all four software codes evaluated, and is thus a direct, semi-independent lensing
comparison. The results from all four codes tested are shown, at each of the nine geometries
evaluated, with the values for time delay and mass, in Tables 5.1-5.4. For comparison, the
values of DdDs/Dds are shown at each geometry investigated. The differences in arrival times,
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time delays, are shown for images 2, 3 and 4 as TD2, TD3 and TD4, respectively, relative to
image 1, as calculated by each of the software models. All time delays are shown in days.

In order to compare the effect of changes in redshift among the models tested against changes
in DdDs/Dds, the values calculated for each parameter at each geometry are compared to the
value using the baseline geometry and the percent change determined. The percent change in
the values of DdDs/Dds were also calculated, and shown on each graph. Figures 5.1 and 5.2
show the effect of changes in redshift on time delay calculations. The values for the time delay
of images 2 and 4 are shown in all of the graphs. In both constant zlens and zsource evaluations,
there is considerable variability in the time delay calculations. The calculated values with each
code are generally quite different from the changes in DdDs/Dds alone, although the results
with PixeLens and Lenstool with a fixed zlens=0.30 follow the changes in DdDs/Dds most
closely at all geometries tested.

The summary of results for the mass calculations are shown in Figures 5.3 and 5.4 with
constant zlens and zsource respectively. In the studies with a constant zlens=0.30 (Figure 5.3),
PixeLens and Lenstool calculated a mass value that exactly follows true changes in DdDs/Dds,
while GRALE which showed no change in the calculated mass value, and changes calculated
by glafic were opposite in slope. Similarly, the calculations with geometries having a constant
zsource=2.50 (Figure 5.4 ) show results that follow DdDs/Dds closely, although the slope of the
line for GRALE calculations is in the opposite direction. A review above in Section 5.3, shows
that the critical mass density is directly proportional to the distances as shown in equation
5.15. However, the absolute projected mass-density shows no dependence on zsource as shown
in equation 5.16 and likely explains the results in Figure 5.3.
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Figure 5.1: The effect of changes in redshift on percent change in time delay for the mock model
with zlens=0.30 and varying zsource. Expected shows changes in the value of DdDs/Dds with
the changes in redshift.
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Figure 5.2: The effect of changes in redshift on percent change in time delay for the mock model
with zsource=2.50 and varying zlens. Expected shows changes in the value of DdDs/Dds with
the changes in redshift.
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Figure 5.3: The effect of changes in redshift on percent change in calculated mass inside the
Einstein radius (M(<RE)) for the mock model with zlens=0.30 and varying zsource. Expected
shows changes in the value of DdDs/Dds with the changes in redshift.
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Figure 5.4: The effect of changes in redshift on percent change in calculated mass inside the
Einstein radius (M(<RE)) for the mock model with zsource=2.50 and varying zlens. Expected
shows changes in the value of DdDs/Dds with the changes in redshift.

PixeLens

PixeLens version 2.17 is used in this study [38]. PixLens is a non-LTM strong gravitational lens
modeling code for solving lens inversions using a pixelated mass map. The program generates
an ensemble of models, and the default of 100 models is used in this study. PixeLens was
previously used in a study of SDSSJ1004+4112, and the model from that published study was
used in the present study [49].

The results of the PixeLens analysis with the mock model are shown in Table 5.1. These
results show very little change in any of the time delays for changes in zsource, while maintaining
zlens at z=0.3. The changes in time delays are similar to the proportional changes in zlens, and
the DdDs/Dds is very similar in all of these models. However, similar proportional changes in
zlens result in significant changes in the time delays, while maintaining zsource at z=2.5. There
were no changes in image positions for the PixeLens models. The changes in the time delays are
greatest in geometries with the greatest changes in DdDs/Dds. The changes is DdDs/Dds do
not always predict changes in the time delays in this data, which is seen in Figure 5.2 comparing
the curve for PixeLens with the expected curve.
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zlens zs DdDs/Dds TD2 TD3 TD4 M(<RE)
0.30 1.80 1.218 4.21 0 4.21 3.02E11
0.30 2.15 1.182 4.10 0 4.10 2.93E11
0.30 2.50 1.157 4.01 0 4.01 2.87E11
0.30 2.85 1.140 3.92 0 3.92 2.83E11
0.30 3.20 1.126 3.91 0 3.91 2.79E11
0.20 2.50 0.792 2.53 0 2.53 1.96E11
0.25 2.50 0.976 3.25 0 3.25 2.42E11
0.30 2.50 1.157 4.01 0 4.01 2.87E11
0.35 2.50 1.336 4.80 0 4.80 3.31E11
0.40 2.50 1.514 5.64 0 5.64 3.75E11

Table 5.1: A mock model with four images modeled using PixeLens demonstrating the effect of
changes in zlens and zsource (zs) on calculated parameters including time delay (TD, days) and
mass enclosed in the Einstein radius (in M�) (baseline system geometry highlighted in gray)

glafic

Glafic version 1.1.6 was used in these studies. Glafic is an LTM lens modeling code, and has
been used extensively in previous studies. The mock model input files for glafic were written
using a command file and a file with the image data for the geometry of the four images of
the model. The lens was modeled as a SIE. The results for the mock model are shown in
Table 5.2. The time delays for two of the four images have small absolute changes at the
geometries investigated, including those with a large change in DdDs/Dds. The time delay
calculations with glafic do not generally follow the changes in DdDs/Dds for models where zlens
is held constant (Figure 5.1), but do generally follow the changes in DdDs/Dds when zsource is
constant (Figure 5.2). The positions of the images calculated by the glafic models change as
the geometry of the lens system changes. The values of mass inside the Einstein radius do not
closely follow the changes in DdDs/Dds as shown in Figures 5.3 and 5.4.

zlens zs DdDs/Dds TD2 TD3 TD4 M(<RE)
0.30 1.80 1.218 36.7 0 36.7 4.09E11
0.30 2.15 1.182 37.9 0 37.9 4.21E11
0.30 2.50 1.157 38.7 0 38.7 4.30E11
0.30 2.85 1.140 39.3 0 39.3 4.36E11
0.30 3.20 1.126 39.8 0 39.8 4.42E11
0.20 2.50 0.792 28.5 0 28.5 3.43E11
0.25 2.50 0.976 33.9 0 33.9 3.91E11
0.30 2.50 1.157 38.7 0 38.7 4.30E11
0.35 2.50 1.336 43.0 0 43.0 4.59E11
0.40 2.50 1.514 46.6 0 46.6 4.81E11

Table 5.2: A mock model with four images modeled using glafic demonstrating the effect of
changes in zlens and zsource (zs) on calculated parameters including time delays (TD, days) and
mass enclosed in the Einstein radius (in M�) (baseline system geometry highlighted in gray)

Lenstool

The Lenstool analysis of the mock model is performed using the same geometry used with the
other modeling software in this study, and similarly parameterized as a SIE. Lenstool readily
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provided time delay data for each of the images, which is shown in Table 5.3. These data show
very little change in the time delays when zsource is varied, maintaining zlens at z=0.3, and
followed the changes in DdDs/Dds very closely as shown in Figure 5.1. There were no changes
in image positions for the Lenstool models. Lenstool showed greater variability from changes
in DdDs/Dds when the zsource was fixed as shown in Figure 5.2. Lenstool calculations of mass
enclosed within the Einstein radius followed changes in DdDs/Dds very closely for all models
tested.

zlens zs DdDs/Dds TD2 TD3 TD4 M(<RE)
0.30 1.80 1.218 8.9 0 8.9 1.66E11
0.30 2.15 1.182 8.5 0 8.5 1.61E11
0.30 2.50 1.157 8.3 0 8.3 1.57E11
0.30 2.85 1.140 8.2 0 8.2 1.55E11
0.30 3.20 1.126 8.1 0 8.1 1.53E11
0.20 2.50 0.792 5.2 0 5.2 1.07E11
0.25 2.50 0.976 6.8 0 6.8 1.33E11
0.30 2.50 1.157 8.3 0 8.3 1.57E11
0.35 2.50 1.336 9.8 0 9.8 1.82E11
0.40 2.50 1.514 11.7 0 11.7 2.06E11

Table 5.3: A mock model with four images modeled using Lenstool demonstrating the effect of
changes in zlens and zsource (zs) on the calculated time delays (TD, days) and mass enclosed
within the Einstein radius (in M�) (baseline geometry highlighted in gray)

GRALE

The GRALE analysis of the mock model is shown in Table 5.4. The GRALE model is a SIE,
as in the other models. The time delay calculations with GRALE do not generally follow the
changes in DdDs/Dds for models where zlens is held constant (Figure 5.1), but do generally
follow the changes in DdDs/Dds when zsource is constant (Figure 5.2), in a manner quite similar
to the glafic models. The positions of the images calculated by the GRALE models change as the
geometry of the lens system changes. There was no effect on changes in zsource on calculations
of mass density as shown in Figure 5.3. Changes in mass density for changes in zlens were
opposite in slope to changes in DdDs/Dds as shown in Figure 5.4 .

zlens zs DdDs/Dds TD2 TD3 TD4 M(<RE)
0.30 1.80 1.218 5.74 0 5.74 55.31
0.30 2.15 1.182 5.93 0 5.93 55.31
0.30 2.50 1.157 6.07 0 6.07 55.31
0.30 2.85 1.140 6.18 0 6.18 55.31
0.30 3.20 1.126 6.27 0 6.27 55.31
0.20 2.50 0.792 4.83 0 4.83 71.68
0.25 2.50 0.976 5.53 0 5.53 61.74
0.30 2.50 1.157 6.07 0 6.07 55.31
0.35 2.50 1.336 6.49 0 6.49 50.89
0.40 2.50 1.514 6.78 0 6.78 47.73

Table 5.4: A mock model with four images modeled using GRALE demonstrating the effect of
changes in zlens and zsource (zs) on calculated parameters including time delays (TD, days),
and total mass density as calculated by GRALE (baseline system geometry highlighted in gray)
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Previous models of SDSSJ1004+4112

SDSSJ1004+4112 has been extensively studied and is therefore an excellent system for this
comparative study [24; 35; 49]. The large gravitationally lensed quasar SDSSJ1004+4112 was
first extensively described in 2003 as quadruple images separated by 14.62 arc seconds [15].
This is a particularly important finding, since the large separation between the components
supported the idea that this object was dominated by dark matter. The four components had
a consistent redshift of z=1.734. The lensing object was identified as an early type galaxy
at a redshift of z=0.68. Spectroscopic follow-up observations and a mass modeling study of
this system were then reported by Oguri [36]. The mass model was studied using Lensmodel ,
described by Keeton [17], and showed that a wide range of lens models are consistent with the
data. The models also suggested significant substructure in the cluster and uncertainty in the
time delays. A fifth image in this complex system was then reported in 2005 based on HST
imaging [14]. The fifth image was then spectroscopically confirmed by Inada and colleagues
[13]. Sharon and coworkers then reported multiply imaged galaxies at z=3.32 and z=2.74 which
were spectroscopically confirmed as well as a third, unconfirmed galaxy [41]. Time delays for
the system were evaluated with Lensmodel [11]. In 2010, Oguri and colleagues performed a
complete analysis of the system using glafic [35], and include a summary of the previous models
of this complex system. This system was also modeled using GRALE (non-LTM), and the
model used in that study was used in the present work to evaluate GRALE [24].

Lens models of SDSS J1004+4112 in this study

The models for PixeLens, glafic and GRALE were all previously used in published studies and
used in their original form. Thus, the analysis of SDSSJ1004+4112 is a direct, independent
lensing comparison. Results at each geometry tested are shown for each of the four software
codes tested, with calculated results for time delay and mass. Time delays are for the images in
the original model at zlens=1.734 (or at the varied geometry). All time delays are shown in days.
Mass values shown are the mass within the Einstein radius for zlens=1.734 (or at the varied
geometry). For comparison, the calculated values of DdDs/Dds are shown at each geometry
investigated. In order to facilitate comparison between these models which are parameterized
somewhat differently, the percent change in calculated values is compared.

The values calculated for each parameter at each geometry are compared to the values using
the baseline geometry and the percent change determined. For comparison, the percent change
in the values of DdDs/Dds is also calculated, and shown on each graph. The results for time
delay calculations are shown in Figures 5.5 and 5.6 at constant zlens and zsource, respectively.
The results for enclosed mass calculations with the SDSSJ1004+4112 models are shown in
Figures 5.7 and 5.8 with constant zlens and zsource, respectively.
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Figure 5.5: The effect of changes in redshift on calculated time delays for SDSSJ1004 with
zlens=0.68 and varying zsource. Expected shows changes in the value of DdDs/Dds with the
changes in redshift.
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Figure 5.6: The effect of changes in redshift on calculated time delays for SDSSJ1004 with
zsource=1.734 and varying zlens. Expected shows changes in the value of DdDs/Dds with the
changes in redshift.
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Figure 5.7: The effect of changes in redshift on percent change in calculated mass inside the
Einstein radius (M(<RE)) for SDSSJ1004 with zlens=0.68 and varying zsource. Expected shows
changes in the value of DdDs/Dds with the changes in redshift.
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Figure 5.8: The effect of changes in redshift on percent change in calculated mass inside the
Einstein radius (M(<RE)) for SDSSJ1004 with zsource=1.734 and varying zlens. Expected
shows changes in the value of DdDs/Dds with the changes in redshift.

PixeLens

The results of the PixeLens analysis of SDSSJ1004+4112 are shown in Table 5.5. The model
used from [49] has four sources at a range of redshifts with a total of 13 images. In the model
for SDSSJ1004+4112, the full data set was used with 13 images, but when zsource was varied,
only the distance for the four images at z=1.734 were varied. In addition to the 4 images at
z=1.734, there were 5 images at z=3.32, 2 images at z=2.74 and 2 images at z=2.94.

PixeLens is unable to generate a model with zlens=0.68 and zsource=1.194 because of the
unusual system geometry. The behavior of the calculated time delays in this model are quite
different than those with the mock model. In the first set of data with a constant zlens=0.68,
even with variation of the zsource, the value of DdDs/Dds changes somewhat, and yet the
time delays change a great deal, getting progressively smaller as zsource increases, which is
easily seen in Figures 5.5 and 5.6. In the second data set, with a constant zsource=1.734, as
zlens increases, the time delays also increase progressively, with Dds/Ds getting smaller. The
changes in DdDs/Dds in this model are more pronounced than with the mock model, thus
making correlation with these values somewhat more clear. The time delays shown in Table 5.5
are those for the 4 images at the setting of zsource, while there are 9 other images in the model
not shown, which were left at a fixed value of z, from the observational data. The values of
these time delays (not shown) varies in a manner similar to the time delays shown for the four
images. The enclosed mass calculations are comparable to those published with this model,
and with other published models of this system [24; 49]. The enclosed mass calculated by the
model varies a relatively small amount in the first dataset with a constant zlens=0.68 and a
DdDs/Dds that varies little. In the second data set, despite a wide variation in Dds/Ds, the
enclosed mass varies much less.
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zlens zs DdDs/Dds TD2 TD3 TD4 M(<RE)
0.68 1.194 4.198 – – – –
0.68 1.464 3.392 351.2 33.5 1433.2 1.63E12
0.68 1.734 3.000 251.5 18.5 886.4 1.26E12
0.68 2.004 2.769 194.7 12.9 614.3 1.01E12
0.68 2.274 2.617 174.2 9.33 483.0 8.34E11
0.54 1.734 2.276 146.2 10.7 493.8 8.30E11
0.61 1.734 2.622 194.7 14.7 668.7 1.02E12
0.68 1.734 3.000 251.5 18.5 886.4 1.26E12
0.75 1.734 3.414 340.7 24.5 1168.4 1.52E12
0.82 1.734 3.878 432.6 32.0 1506.5 1.85E12

Table 5.5: The PixeLens model of SDSSJ1004+4112 demonstrates the effect of changes in zlens
and zsource (zs) on calculated parameters including time delays (TD, days) and enclosed mass
within the Einstein radius (in M�), with the actual system geometry highlighted in gray

glafic

The glafic model used in this study is considerably more complex than the PixeLens model,
and was used in the previous extensive study of SDSSJ1004+4112 by [35]. The model uses a
total of seven lens potentials and eight point sources. The point sources in the baseline model
are at z=1.734 (1 source), 2.74 (2 sources), 3.28 (2 sources) and 3.33 (3 sources). There are
no extended sources in the model. The seven lens potentials include one external perturbation
and three multipole perturbations as well as a Pseudo-Jaffe Ellipsoid (jaffe), an NFW density
profile (nfw) and a multiple galaxies component (gals). The redshift of the first point source
(baseline model at z=1.734) is varied in the models in this study, as shown in Table 5.6. The
glafic model used has 5 images at z=1.734.

The result of the glafic analysis is shown in Table 5.6, showing the time delays (TD), and
mass. Glafic uses a single lens plane, so the redshift of that plane is varied in the study. The
mass of the pseudo-Jaffe ellipsoid potential is shown within the Einstein radius as calculated
directly by glafic. Changes in TD2 and TD5 did change with DdDs/Dds, while there was very
little variation in TD3. The changes in TD5, compared to changes in DdDs/Dds, are easily seen
in figures 5.5 and 5.6, where the time delay calculated by glafic changes in a manner similar to
DdDs/Dds, with a constant zlens, until zsource goes above the baseline value. Glafic calculations
of mass change in a manner quite different from DdDs/Dds as shown in Figures 5.7 and 5.8.
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zlens zs DdDs/Dds TD2 TD3 TD4 TD5 M(<RE)
0.68 1.194 4.198 1071 812.6 2212.8 3551.6 7.50E11
0.68 1.464 3.392 900.1 821.8 2368.1 2983.7 6.76E11
0.68 1.734 3.000 754.0 821.5 2042.3 2499.1 5.28E11
0.68 2.004 2.769 769.1 821.3 1915.6 2652.0 5.02E11
0.68 2.274 2.617 678.6 820.9 2888.3 2987.6 4.80E11
0.54 1.734 2.276 708.4 821.3 1941.1 2347.9 4.62E11
0.61 1.734 2.622 716.0 821.4 1943.1 2373.3 5.20E11
0.68 1.734 3.000 754.0 821.5 2042.3 2499.1 5.28E11
0.75 1.734 3.414 908.0 821.5 2450.9 3009.6 5.96E11
0.82 1.734 3.878 1060.7 822.1 2686.5 3515.8 6.67E11

Table 5.6: glafic model of SDSSJ1004+4112 demonstrates the effect of changes in zlens and
zsource (zs) on calculated parameters including time delays (TD, days) and mass (in units of
M�) (actual system geometry highlighted in gray)

Lenstool

To date, there have been no studies of SDSSJ1004+4112 using Lenstool in the literature. The
model used here was written for this study and uses the five main images in the lensing system
at z=1.734, as well as the other images used above in the glafic model. Position data for the
model was obtained from previous studies [35]. The results of this analysis are shown in Table
5.7. Changes in time delay calculated by Lenstool followed closely with changes in DdDs/Dds

(Figures 5.5 and 5.6). Changes in the mass inside the Einstein radius (Figures 5.7 and 5.8) are
more exaggerated than changes in DdDs/Dds.

zlens zs DdDs/Dds TD2 TD3 TD4 TD5 M(<RE)
0.68 1.194 4.198 1686 6875 8179 3009 8.48E11
0.68 1.464 3.392 1409 5517 6803 1828 8.49E11
0.68 1.734 3.000 1204 4647 5831 1057 8.48E11
0.68 2.004 2.769 1071 4050 5199 422 8.48E11
0.68 2.274 2.617 975 3630 4699 -54.0 8.48E11
0.54 1.734 2.276 746.7 2805 3640 -255.0 7.60E11
0.61 1.734 2.622 975.2 3663 4707 348 8.08E11
0.68 1.734 3.000 1204 4647 5831 1057 8.48E11
0.75 1.734 3.414 1468 5727 7117 1755 8.84E11
0.82 1.734 3.878 1733 6908 8411 2548 9.13E11

Table 5.7: The Lenstool analysis of SDSSJ1004+4112 demonstrates the effect of changes in
zlens and zsource (zs) on calculated parameters including time delay (TD, days), and enclosed
mass inside the Einstein radius (in M�) (actual system geometry highlighted in gray)

GRALE

The GRALE model used in this study was previously published with a complete evaluation
by [24]. The results of this analysis are shown in Table 5.8. Calculations of time delays are
significantly different with GRALE compared to changes in DdDs/Dds, with an opposite slope
in the line (Figures 5.5 and 5.6). There are no changes in mass at any of the geometries tested
with GRALE (Figures 5.7 and 5.8), as is seen with a constant zlens with the mock model.
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zlens zs DdDs/Dds TD2 TD3 TD4 TD5 M(<RE)
0.68 1.194 4.198 708 1097 641 937 81.0
0.68 1.464 3.392 955 1963 855 1465 81.0
0.68 1.734 3.000 1142 2658 1045 1902 81.0
0.68 2.004 2.769 1313 3227 1199 2283 81.0
0.68 2.274 2.617 1450 3691 1306 2602 81.0
0.54 1.734 2.276 1393 3623 1240 2552 81.0
0.61 1.734 2.622 1270 3128 1158 2212 81.0
0.68 1.734 3.000 1142 2658 1045 1902 81.0
0.75 1.734 3.414 1039 2223 937 1634 81.0
0.82 1.734 3.878 959 1820 847 1403 81.0

Table 5.8: The GRALE analysis of SDSSJ1004+4112 demonstrates the effect of changes in
zlens and zsource (zs) on calculated parameters including time delay (TD, days), and the mass
density within the Einstein radius (actual system geometry highlighted in gray)

5.5 Discussion

General and Nomenclature

This purpose of this study is to review the status of comparative evaluations of gravitational lens
models and compare the effect of changes in redshift on two models using four different strong
gravitational lens modeling software codes. The nomenclature for lens model comparisons has
not been standardized, and the following three parameters will be used in describing comparison
studies. Strong gravitational lens models are classified as LTM or non-LTM. Comparisons
between different software are referred to as ”direct” if the models are used and compared in
the same paper, and ”indirect” when comparisons are made to previously published data [21].
Comparisons are also categorized as ”independent” if the models use different input data for the
same lens system, and ”semi-independent” when the same input data is used for two different
models in the same paper [e.g. 47]. These three parameters should be used to classify all future
lens model comparisons.

The results of this study show significant differences in the calculations of time delays and
enclosed mass among the different software code compared. The calculated values are different,
but in addition the response of the calculated values to changes in system geometry are also
different as demonstrated by comparing the percent change in calculated values. The origins
of these differences are in part due to differences in the way that the software models the lens
system. In addition, the various software codes have different approaches to paramaterization
of a lens system. The catalog of available lens potentials is different in glafic and Lenstool, for
example. Awareness of these intrinsic differences in the various strong gravitational lens models
suggests the need for caution in interpreting the results. Differences observed between different
lens models may reflect differences in the software alone, even when models are parameterized
as similarly as possibe. The specific assumptions made by each of the software models used
must be taken into account when interpreting results.

Comparative Studies of Strong Gravitational Lens Models

Of the 646 strong gravitational lenses currently in the Orphan Lens database [29], many have
been studied using one of the available strong gravitational lens modeling software codes avail-
able. There have been several studies that compare strong gravitational lensing analyses with
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X-ray analyses [e.g. 8; 28]. Coe at al compared their results using Lensperfect (Non-LTM) with
previous results modeling Abell 1689 [3; 4]. An indirect comparison of results for strong grav-
itational lensing analysis of SDSS J1004 using glafic (LTM) is included in the study by Oguri
and colleagues [35]. There are very few studies which include models of a single lens system
using more than one of the software codes available in the same paper, as ”direct” comparisons.
A review of these existing studies was undertaken to illustrate the present situation in lens
model comparisons.

Lin et al described SDSS J120602.09+514229.5 as a bright star forming galaxy at z=2.0,
strongly lensed by a foreground galaxy at z=0.42 [26]. The system was modeled using Lensview
(Non-LTM), originally described in 2006 [48]. The system was modeled using a singular isother-
mal ellipsoid (SIE) as the mass model. The authors correctly point out that smooth mass models
fit the image positions well, but not always the flux ratios of the images. They found ΘEin =
3.82±0.03, which translates to REin=14.8±0.1h−1. Lensview uses the full image information,
so the authors performed a direct, semi-independent comparison using GravLens / Lensmodel
(LTM), which allows fitting an SIE model using only image positions [17]. This showed a very
good fit to the image positions, in agreement with the Lensview fit. They also found that the
predicted flux for the A3 image in the Lensmodel fit was smaller than the measured flux by a
factor of 2 [26].

A direct, semi-independent comparison of results obtained with GravLens (LTM) with those
obtained using Lensview (Non-LTM) was also performed in an analysis of SDSS J1430+4105
[9]. The lens mass distribution was first studied using Gravlens assuming point sources, and
then with Lensview using the 2-dimensional surface brightness distribution of the same system.
The authors conducted an extensive modeling study with Gravlens, using five separate models
including a one component SIE, Power law, a de Vaucouleurs component with a dark matter
halo, and two further models to show that the result was unaffected by taking the environment
into account. Following this modeling with Gravlens, Lensview was used because it is well-
suited to systems with extended flux such as the one studied. Overall, the authors found good
agreement among the models generated and the information from Lensview, which fits lens
models to image data and uses the best-fitting lens model to reconstruct the source and image,
was complementary to that obtained with Gravlens.

In a direct comparison of independent lens models, Abell 1703 was studied using ZB software
(LTM), and GRALE (Non-LTM)[29; 54]. ZB software has been used in a number of studies,
and identified multiple images in high quality ACS images. It uses only 6 free parameters, so
that the number of multiple images exceeds the number of free parameters [52; 54]. The non-
LTM technique used by GRALE employs an adaptive grid inversion technique and a genetic
algorithm for non-LTM inversion [22; 25]. GRALE has been used to analyze a number of
systems including SDSSJ1004+4112 [24] and CL0024+1654 [23]. The LTM model using ZB
software accurately reproduced all multiply-lensed images, which led the authors to conclude
that their preliminary assumption that mass traces light is reasonable. The non-LTM technique
of GRALE, for which no prior information regarding the the distribution of cluster galaxies or
mass is given, resulted in a very similar 2D mass distribution to that generated using ZB [54].
The authors generated a subtraction map of the two results demonstrating the similarities of
the two results, and were able to explain the small differences observed. The authors conclude
that the LTM model may at times be less flexible than the non-LTM model. This study may
be a landmark study in direct comparisons of strong lensing techniques because it is the first
to have a complete analysis by two independent modeling methods.

In another direct comparison of ZB and GRALE, Zitrin and coworkers performed a strong
lensing analysis of MS 1358.4+6245 [53]. This detailed analysis using ZB software demonstrated
a shallow mass distribution of the central region by uncovering 19 multiply-lensed images that
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were previously undetected. In this direct, semi-independent comparison of ZB and GRALE,
results with the non-LTM adaptive grid method of GRALE also yielded a similarly shallow
profile. This is an important study demonstrating the value of a direct comparison with two
different modeling techniques.

More recently, an accurate mass distribution of the galaxy cluster MACS J1206.2-0847
was described using the combination of weak-lensing distortion, magnification, and strong-
lensing analysis of wide field Subaru imaging and HST data as part of the Cluster Lensing
and Supernova survey with Hubble (CLASH) program [47]. The authors used complementary
strong gravitational lensing analyses with ZB (LTM), Lenstool (LTM), Lensperfect (non-LTM),
PixeLens (non-LTM) and SaWLens (LTM) [29]. This study is probably the most comprehensive
direct comparison of strong gravitational lens modeling software to date. The positions and
redshifts were based on a previous study [55], and is thus a semi-independent study. The study
primarily depended on the ZB software, then used other software to verify the identification
of multiple images and independently assess the level of inherent systematic uncertainties in
the analyses. ZB software included a Markov Chain Monte Carlo (MCMC) implementation
where the BCG mass is allowed to vary. Seven free parameters were used in total which led
to a fully constrained fit since the number of multiple images is greater than the number
of free parameters. The new MCMC results were in good agreement with those previously
obtained [55]. The authors then performed complementary strong lensing analyses in a direct
comparison using Lenstool, Lensperfect, PixeLens and SaWLens, using the multiple images
previously identified [55] and the same spectroscopic and photometric redshift information. The
SaWLens software uses combined strong gravitational lensing constraints with weak lensing
distortion constraints. Finally, the authors compare the resulting projected integrated mass
profiles derived from these direct strong-lensing analyses along with the primary strong lensing
results based on [55]. This extensive direct, semi-independent comparison of strong gravitational
lensing models shows clear consistency among a wide variety of analytic techniques with different
systematics, supporting the reliability of the analyses in this study [47].

The Hubble Space Telescope (HST) Frontier Fields project is reporting preliminary results
[2]. This important deep field observing program will combine the power of the HST with
gravitational lenses. Lens models in the Frontier Fields project will include models from a
number of software codes including ZB, GRALE, Lenstool, and two other non-LTM lens model
software codes which will facilitate direct comparison of results from a number of lens models
rather than depending on a single model from which to draw conclusions. This approach
represents an important step in the use of data from lens models.

This review of existing literature shows that direct comparisons of strong gravitational lens
modeling codes are not plentiful, and suggests that this is an important goal for future studies.

Mock Model

A simple mock model is used in this study because it facilitates comparison across a variety
of software as a direct semi-independent study. This model allowed identical parameterization
across the four software models compared, within the limitations of the software. A total of
nine models were used with each of the software packages evaluated. A summary of the results
for the mock models is shown in Figures 5.1 and 5.2 (time delay) and Figure 5.3 and 5.4 (mass).
The models studied used a fixed zlens=0.3 and varied zsource (Figures 5.1 and 5.3) and a fixed
zsource=2.5 with varied zlens (Figures 5.2 and 5.4 ).

In examining the results of the mock model, the most striking difference is seen in Figure 5.1,
where the percent change for Lenstool, PixeLens and the expected values (reflecting changes
in DdDs/Dds) are all of similar magnitude, and the curves all have a have similar slope, while
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the curves showing the changes in the glafic and GRALE models have an inverse slope, and are
nearly identical to each other. Although the differences in the curves are only a few percent,
this difference is easily visible.

The Einstein radius, RE , for a Singular Isothermal Sphere is defined as [51]:

RE = 4π
(vd
c

)2

∗ Dds

Ds
(5.18)

and thus, with each new model geometry, RE changes as a result of the change in Dds/Ds. The
separation between multiple images is set by RE , which leads to a change in image position
at each geometry. Thus, changes in image position are expected to scale according to Dds/Ds,
and time delays would not scale simply as DdDs/Dds.

In the PixeLens models with fixed zlens, calculations of DdDs/Dds show that DdDs/Dds

varies very little despite the wide range of zsource used. Among these models there are very
small variations in the calculated time delays, or the total enclosed mass. The PixeLens models
do not have a change in image positions with changes in model geometry. In the second group
of models with fixed zsource and varying zlens, the changes in both the time delays and enclosed
mass calculation are small when the change in DdDs/Dds is small, but as that changes more
significantly, so does the change in time delay and enclosed mass. In general, the calculated
time delays are similar to changes in DdDs/Dds for all of the PixeLens models tested.

The glafic models tested have the same distribution of zlens and zsource as used in the tests
with PixeLens. The glafic models show slight changes in time delay calculations with a constant
value of zlens, and greater changes with a constant zsource. The changes in enclosed mass scale
according to the changes in DdDs/Dds. The changes in enclosed mass calculated by glafic are
similar to those seen in the PixeLens models.

The glafic models with a constant value of zlens (Figure 5.1) show changes that do not follow
the changes in DdDs/Dds, in fact the line has an inverse slope to the changes in DdDs/Dds.
The glafic models with a constant zlens change image positions at each of the various geometries
tested, which scale exactly the same (percent change) as the calculated time delays when zlens
is held constant. These changes in time delay scale according to Dds/Ds, based on the changes
in image position as discussed above. In contrast, although the image positions with a constant
zsource change in a manner which scales similarly to Dds/Ds, the changes in time delays with
a constant zsource (Figure 5.2) scale more closely to DdDs/Dds. This change in image position
with glafic models explains the observation that the time delays with the glafic models scale as
Dds/Ds when zlens is constant (Figure 5.1).

The Lenstool models show very little change in calculated time-delays compared to changes
in DdDs/Dds at a wide range of geometries tested. However, when the change in DdDs/Dds

is larger, the change in time delay is more marked for one of the images. These changes are
similar to the pattern seen with PixeLens in that small changes in DdDs/Dds result in negligible
changes in the time delays. The image positions compared among the various models are the
same.

The calculations of time delay with GRALE show little variation with a fixed value of zlens,
similar in magnitude to results with glafic. The calculation of mass with a fixed zsource show
no changes which may be a result of the use of absolute projected mass density (Equation 5.16)
calculation which does not depend on zsource. The GRALE models also have a change in image
position at the various geometries studied, similar to the glafic models, and the changes in
image position for all nine models studied scale according to Dds/Ds, similar to the results with
glafic. The changes in time delay calculated by GRALE scale the same as changes in image
position for models with zlens held constant (Figure 5.1), but scale more closely to changes in
DdDs/Dds with models where zsource is held constant (Figure 5.2), similar to the results with
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glafic.
The calculations of lens mass with a fixed zlens=0.30 shown in Figure 5.3, for PixeLens and

Lenstool, all follow the expected result very closely, showing that the mass calculation varies
exactly as does DdDs/Dds . The results with a fixed zsource=2.50, although fairly close among
PixeLens, glafic and Lenstool, show slightly greater variation, as seen in Figure 5.4 .

The results with glafic and GRALE show that the time delays scale similarly to the changes
in image position rather than DdDs/Dds, when zlens is constant. The observed differences in
time-delay calculations is consistent with the fact that the software depends on other factors
in these calculations and that for glafic and GRALE, the time delay calculations vary with
changes in the image position which follow the changes in the model geometry. The time delays
calculated by PixeLens and Lenstool follow the general pattern of changes in DdDs/Dds, and
there are no changes in image position calculated by these models.

SDSSJ1004+4112 Model

Effect of changes in redshift on calculated time delays and mass with SDSSJ1004+4112

Similar to the studies of the mock model above, five models with zlens fixed at z=0.68 and varied
zsource, and five models with zsource fixed at z=1.734, and varied zlens are evaluated, using the
baseline geometries for the system, for a total of nine different models tested. Figures 5.5 and
5.6 show a summary of the time delay calculations for all four software packages compared to
the expected variation calculated from changes in DdDs/Dds. A summary of the results for the
mass calculations is shown in Figures 5.7 and 5.8.

PixeLens has been used in several studies of this system [40; 49]. The model used has four
sources at a range of redshifts with a total of 13 images, and was obtained from the tutorial
document [37]. In contrast to the range of redshifts used in this study for the mock model,
calculations of DdDs/Dds showed a fairly wide variation. As a check of model consistency,
the calculated enclosed mass for the actual system geometry was identical to that in reported
studies at 6.1E13 within 110kpc [24; 49]. In the first PixeLens model of this system, the models
allowed the detection of structures in the lens associated with cluster galaxies [49]. This non-
LTM model was in good agreement with the LTM model previously reported by Oguri [36].
It is interesting that the time delays in the mock model vary very little, with small changes
in DdDs/Dds, while with similar small changes in DdDs/Dds for SDSSJ1004+4112, there is a
wide variation in the time delays. The enclosed mass calculation also has a wider variation in
the SDSSJ1004+4112 model than the mock model. PixeLens was also used to model the more
complete description of SDSSJ1004+4112 with 13 images coming from four sources, which is
the data set used in this study [40]. The calculated time delays with PixeLens show much wider
variation than the variation in DdDs/Dds, although this variation is much less marked in the
systems tested where zsource was fixed (Figure 5.5) than when zlens was fixed (Figure 5.4 ).

The glafic model input files from the study by Oguri are used in the present study to evaluate
SDSSJ1004+4112 using glafic [35] at various geometries. The glafic model incorporated new
observational data, including multiple galaxies and time delays. The halo component model
used a generalized NFW profile, and reproduced all observations. There is little effect on
calculations of time delays, despite wide variations in geometry, but there are significant effects
on parameters of the three lens profiles used in the model showing changes in mass. Time delays
3 and 4 do vary based on changes in DdDs/Dds , while the others do not (Table 5.6). As was
observed in the study of the mock model, the image positions calculated by the glafic models
do change with changes in system geometry. These changes in image position may partially
explain the fact that the time delays do not scale simply as DdDs/Dds.
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The Lenstool model used in this study was developed for this study, as there are no previous
studies which used Lenstool to evaluate SDSSJ1004+4112. The time delays follow the expected
results quite closely at nearly all geometries tested, indicating that the time delays depend on
DdDs/Dds. There are essentially no changes in calculated mass with a fixed zlens, consistent
with absolute projected mass density (Equation 5.16).

The previously reported GRALE model of SDSSJ1004+4112 demonstrated a central image
of a second galaxy where an object is visible in the ACS images [24]. The GRALE model
reproduced the calculations of enclosed mass reported in other studies, with virtually no changes
at all geometries tested. While there were very small changes in image position calculated with
the GRALE model, these changes were almost insignificant and could not explain the differences
in time delay calculations observed.

Comparing the results of the four models with the variation in DdDs/Dds, shows that
while PixeLens, glafic and Lenstool show similar trends to changes in DdDs/Dds, there are
still considerable differences of more than 20 percent in some cases. Lenstool is very close to
following the changes in DdDs/Dds, especially with a fixed value of zlens (Figure 5.5). Changes
in time delays calculated with the GRALE model were significantly different from the changes
in DdDs/Dds. Although changes in image position were similar in direction and magnitude to
changes in the time delay calculated by glafic and GRALE with the mock model, similar changes
were not observed with the models of SDSSJ1004+4112. This may be partially explained by
the fact that the SDSSJ1004+4112 models have many more images and multiple potentials
while the mock model is very simple with just one potential and four images.

Study Limitations

It is acknowledged that there are limitations to the methodology used to compare the models
of SDSSJ1004+4112. Three of the four models used were from previous studies, the original
models are used in order to obtain results consistent with the previous studies. In contrast to
the study here with the mock model, the parameterization of the models of SDSSJ1004+4112 is
somewhat different, including the number of images used in the model and other factors. Thus,
these models differ in their basic parameterization as well as the limitations imposed by the
various software such as potentials available to be used in the model. For this reason, percent
change in results rather than the absolute values were compared.

5.6 Conclusions

This is the first systematic evaluation of the behavior of strong gravitational lens modeling
software to evaluate the effect of changes in redshift on time delay and mass calculations. This
study is not intended to demonstrate superiority of one modeling software over another, but
rather to illustrate differences through a systematic evaluation of the results of strong gravita-
tional lens model calculations of time delay and mass with changes in redshift, and to compare
with changes in DdDs/Dds. A consistent nomenclature for gravitational lens model studies
is suggested using three parameters. Although there are many studies of strong gravitational
lens systems, a review of the literature shows that few of them include direct analyses with
different software models. The results of this study show that even small changes in redshift
significantly affect the calculated values of time delays and mass using four strong gravitational
lens modeling codes. The changes in calculated time delays and mass are different from the
changes in DdDs/Dds, suggesting that the calculations are dependent on other factors, and
these changes are different among the software packages used in this study. This is explained

221



in part, for models using glafic and GRALE, that the image positions change with system ge-
ometry resulting in changes in time delay that do not scale as DdDs/Dds. There are intrinsic
differences in some software which limits the ability to parameterize two models in exactly the
same way.

Future studies of strong gravitational lensing should include more direct comparisons to
evaluate the results with different software, as is planned for the Hubble Space Telescope Fron-
tier Fields Project. Strong gravitational lens modeling software requires systematic study to
understand its functions and limitations, and this study is an initial effort to further this un-
derstanding.
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Chapter 6

HydraLens: Computer-Assisted
Strong Gravitational Lens Model
Generation and Translation

6.1 Purpose and Organization of this Chapter

The purpose of this chapter is to describe the HydraLens Software Package that was written as
part of this dissertation. HydraLens is a program to directly translate lens models to facilitate
comparative studies using various lens model software packages. A User Manual is included as
Appendix A. 1. 2

This chapter is organized as follows. In section §6.3 we discuss the detailed organization
of the HydraLens software. In section §6.3 we discuss the command structure and input files
used by each of the four lens model software codes implemented in order to delineate the issues
in lens model translation. In section §6.4, we discuss the details of lens model generation and
translation as implemented in HydraLens. In section §6.5 we discuss issues in comparative lens
model studies as well as limitations and future development of HydraLens.

6.2 Introduction

The present time has been referred to as the ”Golden Age” of Precision Cosmology [2]. Strong
gravitational lensing data is a rich source of information about the structure and dynamics
of the universe, and these data are contributing significantly to this notion of precision cos-
mology. Strong gravitational lens studies are highly dependent on the software used to create
the models and analyze the components such as lens mass, Einstein radius, time delays etc.
A comprehensive review of available software has been conducted by [12]. While many such
software packages exist, most studies to date utilize only a single software package for analysis.
Furthermore, most authors of strong gravitational lensing studies use their own software only.

1Portions of this chapter were published in Lefor AT. Comparison of strong gravitational lens model software
II. HydraLens: Computer-assisted strong gravitational lens model generation and translation. Astronomy and
Computing 2014. 5:28-34 [10] doi:10.1016/j.ascom.2014.04.002. Permission to use this published material
granted by the Publisher, License 3571220094415

2The software is available for download from the Astronomy Source Code Library at http://ascl.net/1402.023
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More recently, the status of comparative studies of strong gravitational lens models has been
reviewed by [11].

One of the barriers to conducting comparative studies is the heterogeneity of the lens mod-
eling software that currently exists, which includes data input, calculation algorithms, and data
output. This heterogeneity is not surprising since all of the software has been independently
developed. There are also some common elements among the software being used. This het-
erogeneity presents one of the greatest barriers to the use of multiple modeling codes in the
study of strong gravitational lenses. The data files used by each model code are quite differ-
ent, and the formats can be confusing for someone wanting to use an unfamiliar lens modeling
code. This is a major barrier to comparative studies. Until the present time, software designed
to facilitate model entry is only available for Gravlens [1]. Using this program is somewhat
hampered by the difficulty in compiling it with multiple dependencies. For all other existing
lens model software, lens models files are entered as a simple free text file, and the user must
be careful to count exactly the number of parameters entered on each line and carefully set
the values of dozens of numerical flags. Small errors in entry of the file will make the results
unpredictable and unusable.

Some of the software used in lensing studies remains inaccessible to all investigators except
the one who developed the software [21]. In addition to preventing other investigators from
duplicating analyses, the lack of availability of software presents another barrier to comparative
studies. The Orphan Lens Database [14] contains a database of 24 strong gravitational lens
modeling software codes. Of these, 16 have been identified as being used in research studies,
of which five (Mirage, ZB, WSLAP, SaWLens and GLEE) are not publicly distributed and are
used almost exclusively by their developers. The remaining 11 strong gravitational lens model
software packages are available for download by interested investigators (Lenstool, Lensview,
Gravlens, Lensmodel, GRALE, PixeLens, SimpLens, glafic, LensPerfect, IGLOO and GLAM-
ROC). An extensive review of strong gravitational lens model software is presented in Chapter
4.

HydraLens Software

The software described herein is called ”HydraLens” in reference to the multi-headed creature of
Greek mythology, and it directly addresses the difficulties associated with writing a lens model
for four different, publicly available strong gravitational lens model codes. HydraLens is freely
available, and easy to compile with no-cost compilers, as a single, unified program. There are
no dependencies on other software or interfaces. HydraLens facilitates the entry of lens model
files for the four codes implemented, by using a simple graphical user interface (GUI) instead
of entering multiple parameters in simple text files. Models are entered using a GUI, which
has common elements and layout for all four model codes implemented, largely obviating the
need for manuals and references. In addition, HydraLens can translate lens model files among
the four software packages implemented. HydraLens serves two purposes. First, the ability
of HydraLens to translate among modeling codes may assist in the conduct of comparative
studies. Second, HydraLens is useful for those learning about strong gravitational lens models,
enabling straightforward creation of multiple input files.
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6.3 Methods

Strong Gravitational Lens Models

Each lens model software package uses a different input data format to construct the model.
They do have some features in common, and some are more similar than others. All of them use
simple text files as input, but the format of the text files, available functionality and command
structures are very dependent on the particular software. Some of the lens model software uses
multiple accessory files to provide other data. Each of them has a unique list of commands, with
great variability. For example, Lenstool uses a number of commands in the French language.
The fact that they use a wide range of flags, with a wide range of meanings, makes writing a
lens model file difficult, especially for the uninitiated. HydraLens was written to simplify the
process of creating lens model input files to facilitate direct comparison studies, and to assist
those starting in the field.

HydraLens Software Development

The use of a simple GUI was considered essential in the development of HydraLens, which
was implemented in Visual Basic (VB, Microsoft Corp, Redmond WA USA) since VB offers a
commonly recognized and easy to code GUI, as well as the fact that VB software runs in nearly
any Windows (Microsoft Corp) environment. VB compilers are available at no cost. HydraLens
is easily read and modified making HydraLens more generally useful to the astrophysics com-
munity. There are extensive comments embedded in the code to allow customization as desired
and a user manual supplied.

Overview of HydraLens

For each lens model software implemented, HydraLens has four basic functions: model genera-
tion, model write, model parsing and model translation. Each of these functions is implemented
using a modular approach, for each of the four strong gravitational lens software packages in
the system. Each of these four basic modules interacts with a common set of data structures
that are configured specifically for the lens model software, as shown in Figure 6.1.

The model generation function accepts input from the user from a GUI window, and fills in
a data structure with the information for that type of model. Alternatively, the data structure
can be filled in by a parsing an existing model by reading each line, then putting the commands
and data into the same data structures as the model generation function uses. For example, one
might have an existing model for a particular lens system written for Lenstool. This existing
model can be read in by HydraLens (model parsing) and then translated to any or all of the
other three model types supported. Once the model information is in the model-specific data
structure (through model generation or through model parsing), it can be written out as a lens
model input file, or it can be translated.

Common Parameter Entry

Most of the information for each model type is entered on a single GUI screen, visible after the
user selects the model type to be generated. However, some of the models require the user to
enter a number of parameters for each of many lines, such as the .obs file used in glafic which
has up to eight parameters for each image for each of the sources entered in glafic. Entering
these in a simple text editor is acceptable, but requires the user to be aware of what is typed
in each column, with no assistance. For each group of parameters needed, in each program, the
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Figure 6.1: Basic data structure of HydraLens showing the interactions of the four modules
with the data arrays

software uses a common screen for parameter entry that simply labels each text box, allowing
the user to enter text in an appropriately labeled area, then generating the appropriate line for
the data file. This parameter entry screen is common to all routines in HydraLens, and greatly
simplifies data input (Figure 6.2).

Figure 6.2: Parameter entry is greatly facilitated using a common parameter window, obviating
the need to count columns as parameters are entered into labeled text boxes

Lens Model Input files

In this section, we discuss the model files for each of the four lens model codes implemented,
focusing on aspects of the input file format important for the generation and translation of the
model. Since HydraLens is concerned only with writing lens model files, there is no discussion
of output from any of the software. In order to understand the scope of the models available
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with each of the software packages implemented, it is important to review in some detail the
design of each model and the commands available.

Lenstool

Lenstool (http://ascl.net/1102.004) was developed by Kneib, described in 1997 and has
undergone several improvements to its algorithms [4]. It has been used in many studies in the
literature, and uses a combination of light traces mass (LTM, previously known as ’paramet-
ric’) and non-light traces mass (non-LTM, previously known as ’non-parametric’) approaches.
Lenstool is available for download as source code and has dependencies on several other software
packages to build the software. It is accompanied by a User’s Manual [9], and there is also a
manual written by a third-party which is very useful [13]. Sample lens model input files are
available for download.

The Lenstool command structure consists of first and second identifiers. The first identifiers
are a group of 15 keywords that are basically groups, under which the second identifiers are
stated along with values of the parameters. For each of the first identifiers, there is a group
of specific second identifiers. Each second identifier is followed by parameters unique to that
second identifier such as numerical flags or file names. Each model file does not necessarily
contain all of the first identifiers.

The 15 first identifiers in Lenstool include: (Descriptions from the Lenstool Users manual
[9])

i. runmode: Reference coordinates can be set (reference), images and arclets (image, arclet)
can be defined with the name of input files, a source file (source) can be specified, as well
as other second identifiers.

ii. grille: this defines parameters such as number of potential modes, grid mode, polar /
rectangular shape of the grid, number of clumps that define the lens potential, and size
of the grid.

iii. potentiel: Defines the gravitational potential. The profile used is identified by a number,
and includes SIS, circular sphere, elliptical sphere, pseudo-elliptical, point mass, PIEMD,
plane mass, and NFW profile. For the potential selected, the user specifies a position,
ellipticity, angle, and zlens. Each different mass model is defined by a numerical flag.
Position, mass, ellipticity, velocity dispersion are also set here.

iv. limit: Defines constraints on the potential and is used for optimization.

v. potfile: Default parameters for galaxy scale mass components that account for pertur-
bations to the cluster potential by the galaxies. This includes a filename of the galaxy
catalog, mass profile (PIEMD is the default), velocity dispersion, rcore, rcut among others.

vi. cline: Parameters to compute critical and caustic lines, including the location of the source
plane, area to search for critical lines and step between searches.

vii. cosmologie: Specifies the value of constants such as Ωm, Λ, H0.

viii. champ: Define size of the field used in some calculations such as dimension of the grid

ix. grande: Define representation of the computer deformation of objects

x. observ: Define noise (seeing or Poisson) that is added to a gravitational image.

xi. source: Specifies details of the source, including zsource.
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xii. image: Specifies the input data file (object file, with secondary parameter ’multfile’) and
characteristics of images, multiple images or arclets.

xiii. cleanlens: Define parameters to retrieve the shape of the source knowing a pixel-frame of
the image

xiv. image: Define characteristics of images, multiple images or arclets

xv. fini: Tells Lenstool to stop reading the .par file. This is mandatory.

Lenstool also uses a group of input data files, including:

Object File A list of objects characterized by their position, shape and redshift with an integer
identifier for each object and six parameters. This format is used for arclets or sources.

Marker File A list of marker points in the image plane, with an identifier and xy-coordinate
for each.

IPX Pixel Image File IPX is a simple format for pixel-images data with a 4 line header.

FITS pixel image File This controls the reading of FITS pixel-frames.

A basic Lenstool model includes the model parameter file (.par file) with primary and
secondary identifiers as well as an image file (.cat, in the format of an object file) to define the
source images.

gravlens/lensmodel

Gravlens/lensmodel (http://ascl.net/1102.003) was developed by Keeton, and described
in 2001 [8]. These two codes are similar, sharing the same command structure, except that
lensmodel adds functionality to the Gravlens kernel. These use a LTM approach to lens models.
A paper detailing the mathematics of the mass models in GRAVLENS is also available [7]. The
GRAVLENS package is available for download as two executable files, and is accompanied by
a User Manual [6]. The two executables include gravlens and lensmodel.

Sample data files are available for download. Basic commands include:

Set commands These are used to set the values of parameters such as Ω, Λ, zlens and zsource.
There are also a set of flags for gravlens regarding grid format, parity checking, source
plane χ2, tiling and others. In the main data entry screen these values are pre-populated
with typical values.

Data This command specifies the name of the input data file to use.

Startup Specifies the number of galaxies for each mass model and the number of mass models,
which is followed by a line to specify the mass model selected and the flags for parameters
that will be optimized. Once the user selects a particular lens model, the parameters
screen opens and the parameters specific to that model are listed with labeled text boxes
for entry. Optimization flags are entered separately on the main GUI screen.

Commands Gravlens has many commands available for use. Some of them require entry of nu-
merous parameters and some are standalone words. The commands allow optimization,
varying parameters, data plotting, checking the code, and simple lensing calculations.
Common commands are used to set the type of tiling (grid mode), compute the lensing
properties on the specified grid (maketab), check the code (checkder, check mod), cre-
ate plots of data (plotgrid, plotcrit), and perform simple lensing calculations (calcRein,
finding).
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The data file specifies the image data for the lens, including:

• Number of galaxies

• Position, Reff , PA and e for each galaxy

• Number of sources

• Number of images for that source

• Location, flux, and time delays for each image as well as an identifier

A basic gravlens/lensmodel lens model consists of two files. The first is the input file,
specifying parameters and data file name, the mass model to use with optimization parameters,
and commands. The second file is the data file which specifies the data for each galaxy and
source, as well the images for each of the sources. HydraLens facilitates the creation of both of
these files with a GUI interface.

glafic

Glafic (http://ascl.net/1010.012) was developed by Oguri and described in 2010 [15]. It
has been used in a wide range of studies, and is a LTM approach to strong gravitational lens
models, using an adaptive mesh method with increased resolution near the critical curves.
Glafic uses functional lens model optimizations with many options. It is available for download
as an executable file, and is accompanied by a detailed User Manual [16]. Sample lens models
are available for download as well. The structure of glafic is somewhat close in appearance to
gravlens. A glafic input file has three parts. The first part sets the values of various parameters
such as Ωm and Λ. The second part defines the lenses, extended sources and point sources.
The third part is the list of commands. There is an optional section to define optimizations.

Parameter settings in glafic:

Primary parameters Each of the primary parameters is associated with a flag, file name,
etc. These include Ω, Λ, H0, zlens, output file name, rectangular region of the lens plane,
pixel size for extended sources and point sources, and adaptive meshing recursion level.

Secondary parameters These include the name of the gals data file, the extended source
model arcs file, seed for random number generation, and a number of other parameters
and flags that control the behavior of glafic.

Definition of lenses, extended sources and point sources in glafic:

lenses There are 21 different lens mass models in glafic. Each is stored with its name and up
to eight parameters. A single lens plane is supported. Most are characterized by a mass
scale, x and y coordinates, ellipticity and position angle, and other parameters as needed
for the specific mass model.

extended sources There are five different extended source types, each of which has up to
8 parameters, including source redshift, coordinates and up to 5 other parameters as
indicated.

point sources Point sources are stored only as redshift with x and y coordinates.
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Glafic uses a number of secondary files as data for the model, including a galaxy file (gal-
file.dat), a source file (srcfile.dat), an observation file (obs), and a priors file (prior). Each of
these is saved simply as strings based on how many parameters are used in each line.

Data files used by glafic include:

obs file File with data of an image of lensed arcs read with command readobs point or read-
obs extend (for point sources, extended sources)

gals file Mass model gals data file (galfile.dat) contains coordinates, luminosity, ellipticity and
position angle of each galaxy

src file Data file used to enter extended source model arcs (srcfile.dat)

prior file List of priors on parameters, read by ’parprior’ command

flux file Read with the command ’point flux’, this file contains fluxes for point sources

mask file Optional file read by ’readobs extend’

sigma file A list of σ values for Markov-Chain Monte Carlo optimization, read by ’mcmc sigma’

Optimization Commands in glafic:

Preparation read an image of lensed arcs from a file, calculate noise from observed image,
read data file for point source optimization, read text file of priors

Setting optimization parameters Perform model optimization, randomize optimization pa-
rameters, calculate a one dimensional χ2 slice, vary cosmological parameters.

Commands in glafic:

Lens properties Compute various lensing properties for an image, compute Einstein radii
for a source redshift, compute mass, write lensing properties to an output file, compute
convergences

Extended sources Write images of lensed extended sources to an output file, calculate total
flux, peak count and peak location, and write time delay surfaces

Point sources Find lensed images for point sources, move source position, compute critical
curves and caustics, write mesh pattern, and write time delay surfaces

Other Commands Other commands are available for composite sources, morsel optimization,
and other optimization commands.

Utilities available in glafic:

Markov-Chain Monte-Carlo Read a list of σ values for model parameters, perform MCMC
calculations, read a resulting chain file. Needs a file of σ values.

General Utility functions Change a parameter value, change optimization flags, moving lens
positions, print model parameters or optimization flags, and compute a physical critical
surface mass density

A basic glafic lens model includes a parameter / command file (.input) and an image (obs)
file.
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PixeLens

PixeLens (http://ascl.net/1102.007) was developed by Saha and described in 2006 [19].
PixeLens is a non-LTM lens model code, and is written in Java which is downloaded as a .jar
file and run locally [18]. It is accompanied by explanatory documentation as well as a tutorial
explaining the details of the input file [17]. Sample model files are available on the website.
The model files for Pixelens are the simplest among the four codes implemented in HydraLens.
Model input can be done through a GUI or through the command line as a batch file that is
called when Pixelens in invoked through Java. The model consists of a group of constants and
image data.

Constants Pixelens requires an object name, the radius of the mass map in pixels and zlens
and zsource to be specified. Optionally, one can specify the map symmetry, radius of
the mass amp, shear, number of models, Hubble time, minimum steepness, maximum
steepness, annular density and cosmological parameters such as Ωm and ΩΛ.

Image Data Images are given in double or quad format. For each image, one specifies the x
and y coordinates as well as the time delay. The redshifts are specified in the first section
above. Images must be listed in arrival time order. There is also a ’multi’ format used for
cluster lenses, useful if there are several source redshifts, or if the image is not a double
or quad image.

A PixeLens model can be entered directly into the Java GUI, or saved as a single text file
which contains all the information. HydraLens generates the text file for input to the Java
applet.

6.4 Implementation

When HydraLens is started, the user is presented with an input screen (see Figure 6.3) to define
the name of the model, the directory to store the model and then select the target software
from available choices. After selecting the type of model to generate, the user is brought to
screens specific for each model.

Lens Model Generation

Lenstool

The user first generates any accessory files needed including image file, source file or arclet file.
Selecting a button for each file type brings the user to a special screen to build that file type.
Upon return to the main model entry screen, the user is presented with detailed entry panels
for each of seven commonly used primary parameters in Lenstool, including runmode, grille,
potential, limit, cosmologie, image and source. The entry panel for each primary identifier
is pre-populated with commonly used values, and parameters are selected using check boxes.
When the ’finished’ button is pressed, the final lens model is created in the directory selected
by the user in the initial screen.

gravlens/lensmodel

HydraLens creates the model file (.input), starting with setting the basic parameter which are
on the main gravlens screen pre-populated with typical values. After finalizing the primary
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Figure 6.3: The opening screen allows the user to choose to generate a new model, read in an
existing model, and translate a model

parameters, that part of the window becomes invisible, leading the user to enter secondary pa-
rameters. The user then specifies secondary parameters as desired. Last, the desired commands
are entered from a scrolled list of available commands. The resulting model file has four sections,
including primary parameters, secondary parameters, models / optimizations and commands.
The ’data’ command loads the data from a specified file. Once the data command is entered, a
button appears on the screen to allow entry of the data file containing the information for each
lens galaxy, source, and images for that source. The data file is written, including appropriate
comment lines.

glafic

After selecting a glafic model, the user selects the type of file to generate (Main model, gals,
obs, priors or source) and then goes to a screen specific for that file type. The main model
file has a panel for the primary and secondary parameters. Lens models with extended sources
and points sources are constructed next followed by entry of desired commands. All available
commands are divided into basic calculations, sources, optimization and utilities and selected
from lists on the screen.

PixeLens

After selecting a PixeLens model, the user is brought to the PixeLens screen (see Figure 6.4).
The values of required and optional parameters are entered on the left and mage data is entered
on the right. Note that the ’action’ buttons in the middle and right panels are ’grayed out’.
These buttons become active as the user finishes each portion of building the model, to lead
them through each step of the process. When the ’Finished’ (red, lower right) is pressed, the
model is written to the file.

Completion

After going through the software specific screens to generate the model, the user is informed
that the file has been written and is then brought back to the main screen. At this point the

238



Figure 6.4: The PixeLens model generation entry screen

user’s only choice is to stop, having generated the model, or to translate it into one of the other
three model types.

Lens Model Translation

The process of translation is performed with no user interaction. After generating a model or
specifying the file path to an existing model, and returning to the main HydraLens window,
the user selects the software target for translation. The software generates a new model, with
an appropriate file name extension and returns to the main HydraLens window so the user can
exit. There are four model types supported in HydraLens, so there are 12 different translation
modules. Each translation module reads the model that the user just generated from the data
structure for that model, translates the parameters and puts them in the data structure for the
target model type, then calls the model write routine to write new target model file from the
data structure.

As an example of using HydraLens for translation, a simple model can be easily written and
tested in PixeLens, as a way of ”rapid prototyping”. This simple model can then be translated
to models for Lenstool, Lensmodel and glafic in a matter of minutes. The models generated
will be functional, but may need modification since many features in glafic, for example, do
not exist in PixeLens such as optimizations. The user must then edit the glafic model to set
the optimization parameters as desired. In most cases, this is still much faster and simpler
than starting with an empty screen in a basic text editing program. Similarly, translation to
PixeLens will often result in a simpler model than the original. Another example of information
that cannot be translated relates to specific limitations of the codes. In Lenstool, each potential
can have its own lens plane, while in the other three codes, only one lens plane is permitted.
Thus, translating from Lenstool with such a model necessarily will not include the multiple lens
planes.

It is not possible to transfer all data and/or commands from one type of model to another
because of differences in the requirements of each model code. Despite the possible loss of
information, the models produced by HydraLens will generally work, and then may need minor
modifications to allow for differences in the lens model codes.

Another difficulty associated with translation is the differences in commands used by the
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various codes. For example, glafic will calculate the Einstein radius and mass inside the Einstein
radius for a Single Isothermal Ellipsoid model by ignoring the ellipticity. Lensmodel generates an
error message when one tries to calculate the Einstein radius for a Single Isothermal Ellipsoid
model. Due to the wide range of commands, HydraLens does not translate commands, but
rather gives each model a standard group of functioning commands that can be modified by
the user.

The model translation feature offers two important advantages over writing a model using
a text editor. First, when creating a new type of model, the image coordinates are easily
transferred into the target model, without concern for typing long lists of numbers and counting
columns of parameters with proper formatting of the image files. Second, an input file is created
with many of the important fields already populated. A minor review of the resulting input file
may be necessary, but based on testing to date, the models created will be functional in the
target software.

6.5 Discussion

HydraLens facilitates creation of strong gravitational lens models for more than one lens model
code, in order to facilitate direct comparison studies of strong gravitational lens models. In
view of the paucity of direct comparative studies in the literature [11; 12], HydraLens may
help increase the number of future comparative studies by simplifying the process of model
development. Additionally, HydraLens may serve an important role in education where students
are just starting to use strong gravitational lens modeling codes . HydraLens allows students to
easily explore a number of available software packages. The study of strong gravitational lensing
is no longer limited to investigators, but has now extended to being a part of the curriculum
in some undergraduate and graduate programs [5; 20], as well as being taught to students in
specialized intensive education programs [3]. The use of lens model software by students may
be enhanced by using a tool such as HydraLens to facilitate the writing of lens model input
files.

The use of HydraLens, by both investigators to facilitate comparative studies and by stu-
dents to use the available software in their studies, is enhanced by the two main functions of
HydraLens including lens model file generation and lens model file translation.

Limitations

The major limitation of HydraLens is that it is subject to the unbreakable rule of computing,
”garbage-in, garbage-out”. HydraLens cannot write a model in the absence of appropriate
input data, and for this reason is referred to as computer-assisted model generation rather than
”automatic” model generation. A person totally naive to lens models will not necessarily benefit
from HydraLens, without some guidance. Similarly, a person who is an expert at writing lens
models for a particular software may not benefit from HydraLens. The people most likely to
find HydraLens of value are those who have begun to write lens models and have some minimal
level of experience, or people who are capable with one model software and want to begin using
another to conduct direct comparison studies.

The software described herein is functional and available, and facilitates the writing of lens
model files for a variety of available strong gravitational lens model software. For the purpose
of writing lens models, HydraLens could be viewed as a specialized text editor. In this role, its
major advantage is that the user will rarely need to refer to a reference source for the meaning
of most parameters as they are clearly described in the GUI at the time of entry. The input files
for lens model software uses simple text files. When writing a model using only a text editor,
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the user must be very careful about values of flags and parameters, which requires constant
reference to users’ manuals. HydraLens greatly simplifies that task by entering all fields using
a GUI, but the models generated may require some editing. There is no substitute for scientific
insight when writing a gravitational lens model.

In its role as lens model translation software, HydraLens may not always construct a perfect
model. Another limitation of model translation is that features vary greatly from one lens
model software to another, so that translation may necessitate the loss of some information or
capabilities. For example, glafic accepts data on image flux which is not included in Lenstool
models. The model created by HydraLens serves as a starting point and eliminates the need for
starting the process with a blank piece of paper. Translated models from HydraLens greatly
simplifies the tedium of writing an initial model file, especially in regard to image geometry.
Generated models are easily edited since they are all simple text files.

6.6 Future Development and Conclusions

Further Development

HydraLens is undergoing further development, especially to improve internal consistency check-
ing within the model. Due to its modular nature, other strong gravitational lens model codes
are being built into the system to expand its repertoire of models to generate and translate.
These features are being added, and will be included in future releases.

Conclusions

Previous reviews have shown that there are few comparative studies of strong gravitational lens
models in the existing literature [12], yet such comparisons are very important to advance the
field. Furthermore, given the differences in results from various strong gravitational lens model
codes, such comparitive studies are of great importance [11].

Barriers to comparative studies include the lack of availability of some software, and the
heterogeneity of the input files used in model codes which are available. HydraLens allows the
user to enter a lens model with an easy-to-follow GUI rather than entering a tedious text file,
for four commonly used strong gravitational lens modeling codes, all of which are freely avail-
able for download. Furthermore, HydraLens is capable of translating the data files among the
four model codes implemented to allow rapid development and testing of other models for com-
parison. These features may serve to facilitate direct comparison studies, and also to enhance
the educational application of strong gravitational lens model software. Further development
is already underway to provide more features and improve the usability of HydraLens.
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Chapter 7

A direct, semi-independent
comparative study of four strong
gravitational lenses: SDSS
J1320+1644, COSMOS
J095930+023427, SDSSJ1430,
and J1000+0021

7.1 Purpose and Organization of this Chapter

The goal of this study is to directly compare the results of calculations among four model
software codes in the evaluation of four lens systems, as a follow-up to the work presented
in Chapter 5. 1 The present study has several unique features. This study is the first to
use computer-aided lens model design, using HydraLens software (Chapter 6) to facilitate lens
model generation.There are no previous single studies which compare the results for multiple
lens systems using multiple lens model software. This study was designed to further evaluate
comparative lens model analyses and includes both direct and indirect semi-independent studies
of four lens systems using four different software models. Other studies have included indirect
comparisons to previous lens model analyses, or direct comparisons of several lens models of a
single lens system. This is the first study to also include combined indirect and direct analyses
where previously published lens models were used for direct comparisons.

The two objects studied in Chapter 5 were evaluated with four software lens models. The
results of each model were compared, specifically looking at time delays and lens mass. The
study in this chapter was designed to evaluate four known lensing objects with each of four
software models, specifically looking at best-fit lens parameters. There is no attempt to optimize
the model for each lens model software used. Rather, we sought to use nearly identical software
models and compare the results.

The nomenclature of lens model comparison studies, lens systems studied, previous lens

1The results in this chapter have been submitted to The Astrophysical Journal
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model studies of these systems and the lens model software used are described in section §7.3.
The results of the lens model studies for each of the four systems studied are presented in
section §7.4 and a review of existing comparison studies along with the results of this study are
presented in §7.5. Conclusions and suggestions for future lens model studies are in section §7.6.

7.2 Introduction

The present time has been referred to as the ”Golden Age” of Precision Cosmology. Strong
gravitational lensing data is a rich source of information about the structure and dynamics of
the universe, and these data are contributing significantly to this notion of precision cosmology.
Strong gravitational lens studies are highly dependent on the software used to create the models
and analyze the components such as lens mass, Einstein radius, time delays etc. A compre-
hensive review of available software has been conducted by [19] (see also Chapter 4). While
many such software packages are available, most studies utilize only a single software package
for analysis. Furthermore, most authors of strong gravitational lensing studies use their own
software only.

More recently, the status of comparison studies of strong gravitational lens models has been
reviewed by [18] (see also Chapter 5). This study demonstrated that changes in redshift affect
time delay and mass calculations in a model dependent fashion, with variable results with small
changes in redshift for the same models.

An important resource for the conduct of comparison studies is the Orphan Lens Project, a
compendium of information about strong lens systems that as of May 2014 contained data for
656 lens systems [22]. There are a number of barriers to the conduct of lens model comparisons.
Ideally, a comparison study of a previously studied lens would include the original model for
comparison, but this is sometimes impossible because the lens model code is not made publicly
available. Another barrier to performing comparative studies is the complexity of the lens model
files, since there are major differences among the commonly used model software available. In
order to facilitate this step of the process the HydraLens program was developed to generate
model files for multiple strong gravitational lens model packages [17] (see also Chapter 6).

To date, the largest comparison study of strong gravitational lens models was an analysis of
MACSJ1206.2-0847 as part of the CLASH survey conducted by [32]. This study included four
different strong gravitational lens models including Lenstool ([9]), PixeLens ([30]), LensPerfect
([3]) and SaWLens ([21]). The authors conducted five lens model analyses using the same data,
and is thus categorized as a direct and semi-independent study. This type of study has great
advantages in that all data and all models are available for direct comparison in a single study.

The Hubble Space Telescope (HST) Frontier Fields project is reporting preliminary results
1 [16]. This important deep field observing program will combine the power of the HST with
gravitational lenses. Lens models in the Frontier Fields project will include models from a
number of software codes including ZB, GRALE, Lenstool, and two other non-LTM lens model
software codes which will facilitate direct comparison of results from a number of lens models
rather than depending on a single model from which to draw conclusions.

1http://www.stsci.edu/hst/campaigns/frontier-fields/Lensing-Models
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7.3 Methods

Nomenclature

The use of standardized nomenclature to describe lensing studies is useful to evaluate multiple
studies. In this chapter we follow the nomenclature previously described [18]. Lens model
comparison studies are referred to as direct when the comparison is made based on calcula-
tions using two software models in the same paper, and indirect when comparison is made to
previously published data. In this study, we also use the actual models from published studies
(kindly supplied by the investigators) so these are considered combined indirect/direct com-
parisons. Lens model comparisons using the same data are referred to as semi-independent,
and when different data is used, the comparison is independent. Lastly, software is classified as
Light Traces Mass (LTM, formerly known as parametric), or non Light Traces Mass (non-LTM,
formerly known as non-parametric).

Lens Model Preparation

Each lens model software package uses a different input data format to describe the lens model.
All of them use simple text files as input, but the format of the text files, available functionality
and command structures are dependent on the particular software. Some lens model software
uses multiple accessory files to provide other data. Each of them has a unique list of commands,
with great variability. HydraLens [17] (Chapter 6 and Appendix A) 1 was written to simplify
the process of creating lens model input files to facilitate direct comparison studies, and to
assist those starting in the field.

The four lens systems were evaluated using four lens model codes, necessitating 16 different
models. The Lenstool model for COSMOS J095930+023427 was kindly provided by Cao [2].
The glafic model for SDSS J1320+1644 was kindly provided by Rusu [29]. The remaining 14
models were written for this study using HydraLens. In the case of COSMOS J095930+023427
and SDSS J1320+1644, the two lens models we received from other investigators were used as
input to HydraLens which generated the models for the other three software packages used in
this study. In the case of SDSS J1430+4105 and J1000+0021, models were first written for
PixelLens 2. HydraLens was then used to translate the PixeLens model into the format for the
other strong gravitational lens model software, including Lenstool 3, Lensmodel 4 and glafic 5.
The translated files output from HydraLens were edited to assure that parameters were fixed
or free as appropriate, and that optimization parameters were correctly set. The lens model
files were then used as input to the respective lens model software.

Gravitational Lenses Studied

The parameters used for the four lens systems was obtained from previous studies. The ge-
ometry for each system was identical in all four models evaluated, and therefore all studies
conducted are classified as semi-independent lens analyses. Three of the lens systems stud-
ied are listed in the Orphan Lens Database [22] including COSMOS J095930+023427, SDSS
J1320+1644 and SDSSJ1430+4105.

1http://ascl.net/1402.023
2http://ascl.net/1102.007
3http://ascl.net/1102.004
4http://ascl.net/1102.003
5http://ascl.net/1010.012
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COSMOS J095930+023427

The lens COSMOS J095930 was first described by Jackson [7]. COSMOS J095930 is an early-
type galaxy with four bright images of a distant background source. It is located at zlens=0.892,
and the background source is estimated at zsource=2.00. While the exact zsource is unknown,
the value used by previous investigators is 2.00.

Models of this system were described by Faure using Lenstool [5]. This model used a Singular
Isothermal Ellipsoid (SIE) with external shear (+γ) and found an Einstein radius of 0.79” and
σV =255 km s−1.

More recently, an extensive multi-wavelength study of this system was reported by Cao and
colleagues [2], also using Lenstool. This analysis used four different models, an SIE with two
Singular Isothermal Spheres (SIS) as well as a Pseudo-Isothermal Elliptical Mass Distribution
(PIEMD) model with two SIS, both with and without external shear [10]. We selected the
SIE+SIS+SIS model used by Cao as the basis of the present indirect comparison with their
work as well as the direct comparisons with the four lens models studied here.

The Lenstool model developed by Cao and coworkers was kindly supplied for this study
and used as a baseline model which was then translated into input files for the other software
by HydraLens. The Lenstool model used by Cao included priors for the values of ellipticity
(ε = [0.0, 0.9]) and position angle (PA= [-90,90] for the SIE potential) and for the velocity
dispersion (σ = [100, 1000] for all three potentials). These same priors were used in the models
of COSMOS J095930 for Lensmodel and glafic in this study. The Lenstool model developed by
Cao uses optimization in the source plane.

The Lenstool model developed by Cao has five free parameters including the velocity dis-
persion of the three galaxies, and orientation and ellipticity of the SIE galaxy. The positions
of the second and third galaxies (SIS) in the model were fixed. The models used here were
similarly parameterized.

The present study is an indirect comparison with the analysis of Cao [2] as well as a direct
comparison of the four lens models studied. Since we were provided the model used by Cao,
it is a combined indirect/direct comparative analysis of COSMOS J095930. All four models of
this system used a Ωm = 0.3, ΩΛ = 0.7, H0 = 70 km s−1 cosmology, as was used by [2].

SDSS J1320+1644

SDSSJ1320+1644 was initially described by [25] and [6], and is a large separation lensed quasar
candidate identified in the SDSS, with a separation of 8′′.585 ±0′′.002 at zsource=1.487 [29].
Both an elliptical and disk-like galaxy were identified almost symmetrically between the quasars
at redshift zlens=0.899.

A detailed lens model analysis of this system was conducted by Rusu and colleagues [29],
using glafic software. Based on their analysis, they conclude that SDSSJ1320+1644 is a probable
gravitationally lensed quasar, and if it is, this would be the largest separation two-imaged lensed
quasar known. They show that the gravitational lens hypothesis implies that the galaxies are
not isolated, but are embedded in a dark matter halo, using an NFW model and an SIS model.
The SIS model has a σV =645±25 km s−1. We use the ’SIS free’ model as the basis of the
comparison study, as defined by Rusu [29], which models the three galaxies (referred to as G1,
G2 and G4) as SIS potentials and leaves the position of the dark matter halo (also modeled as
a SIS) as a free parameter. The model used by Rusu includes priors for the velocity dispersion
of the dark matter halo (σ = [400, 800]). The same priors were used in the models of SDSS
J1320+1644 in this study. The analysis by Rusu uses optimization by glafic in the image plane.

Rusu considers models with 0 degrees of freedom, including 14 nominal constraints and the
same number of nominal parameters, which fit with χ2 << 1. The ellipticity and position
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angle are used when the position of the dark matter halo is fixed. The models developed for
this study were similarly parameterized using the position of the dark matter halo as a free
parameter (”SIS-free”) and fixed to introduce ellipticity and position angle.

A number of glafic models developed by Rusu and coworkers were kindly supplied for this
comparative analysis and used as a baseline model which was then translated by HydraLens
into models for the other software. The present study includes an indirect comparison with the
analysis of Rusu [29] as well as a direct comparison of the four software lens models studied.
Since we were provided a model used by Rusu, this is a combined indirect/direct comparative
analysis of SDSSJ1320+1644. All four models of this system used a Ωm = 0.27, ΩΛ = 0.73,
H0 = 70 km s−1 cosmology, as was used by [29].

SDSS J1430+4105

SDSS1430+4105 was first described by [1] as part of the SLACS survey. This system is at
redshift zlens=0.285 with zsource=0.575, and has a complex morphology with several subcom-
ponents as described by [4]. Bolton reported an effective radius of 2.55” and a σSDSS=322 km
s−1.

A very detailed lens model analysis of this system was then conducted by [4]. This analysis
was a direct, semi-independent comparative analysis using both Gravlens (LTM) and Lensview
(non-LTM) software. The authors studied five different models using Gravlens/Lensmodel,
including an SIE and a Power Law (PL) model as well as three two-component de Vaucouleurs
plus dark matter models. Similar results were found with the two different lens model analyses.
They also studied four models using Lensview [35] including an SIE and PL models with and
without external shear. We use the Gravlens/Lensmodel SIE model as the basis of the indirect
comparison with their work. The plane of optimization used in the Eichner model is not
explicitly stated in the report [4].

The models developed in the previous study were not available, and thus all models used
were written for this study. The results referred to as Model I by Eichner did not use any
priors in the lens model for SDSS J1430+4105, although priors were used in the development
of the model with results within the error limits reported. Similarly, priors were not used in the
models in this study. The free parameters used by Eichner et al included the lensing strength b,
the ellipticity and the orientation of the single-component SIE lens. These same free parameters
were used in the models developed for this study.

This is both an indirect comparison (compared with the SIE model in the published study
of [4]) and direct comparisons of the four lens models studied here. All four models of this
system used a Ωm = 0.3, ΩΛ = 0.7, H0 = 70 km s−1 cosmology, as was used by [4].

J1000+0021

Using imaging data from CANDELS and the large binocular telescope, van der Wel and col-
leagues recently reported the quadruple galaxy-galaxy lens J100018.47+022138.74 (J1000+0221),
which is the first strong galaxy lens at zlens >1 [34]. This interesting system has a zlens=1.53
and a zsource=3.417.

In the paper [34], the system was analyzed in the manner described by [33]. They reported
an Einstein radius of RE = 0.35” with an enclosed mass of ME = (7.6 ± 0.5) × 1010 M� with
an upper limit on the dark matter fraction of 60%. The highly magnified (40×) source galaxy
has a very small stellar mass (∼ 108 M�). The z = 1.53 lens is a flattened, quiescent galaxy
with a stellar mass of ∼ 6× 1010 M�.

There have been no other lens model analyses of this system using software models and
therefore all models were developed for this study using data from [34], and is thus is a direct
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comparison of the four lens software models studied. There were no priors used in the lens
models of J1000+0021 in this study. The free parameter in the SIS models was only the velocity
dispersion. In the SIE models, free parameters included the velocity dispersion, orientation and
ellipticity.

All four models of this system used a Ωm = 0.3, ΩΛ = 0.7, H0 = 70 km s−1 cosmology.

Lens Models

The analyses in this study were performed with four strong gravitational lens model software
packages that have been used extensively in the literature. All four systems were modeled with
all four lens model software packages. Lenstool and Lensmodel were executed under Scientific
Linux version 6.4 (except as noted for Lensmodel in section §7.4), and PixeLens and glafic were
executed under OS/X version 10.9. All of these lens model software codes were reviewed in the
Orphan Lens Project and the descriptions of the software are from the web site [22] as well as
from a review of lens model software [19].

Error calculations were performed according to the method of Rusu et al [29]. The errors
quoted for the calculated parameters (ellipticity, orientation, magnification, time delay, etc.) re-
flect the calculations corresponding to calculations within the 1σ confidence interval for velocity
dispersions.

The fit of the models is assessed by χ2 optimization and the RMS uncertainty. The RMS is
calculated by:

RMS2
images =

∑
i

((x
′

i − xi)2 + (y
′

i − yi)2) / Nimages, (7.1)

where x
′

i and y
′

i are the locations given by the model, and xi and yi are the real images location,
and the sum is over all Nimages images. The χ2 results are calculated for the models by Lenstool,
Lensmodel and glafic, and are reported in the data tables. The RMS value is reported by
Lenstool directly, while a manual calculation was necessary for models using Lensmodel and
glafic.

PixeLens

PixeLens is a non-LTM strong gravitational lens model software that is available for download
4 as a Java program which runs in a browser window [30]. Version 2.7 was used in these studies.
PixeLens is accompanied by a manual [27] and a tutorial [28]. PixeLens reconstructs a pixelated
mass map for the lens in terms of the arrival time surface and has been used in several studies
[30].

PixeLens employs a built-in MCMC approach and creates an ensemble of 100 lens models
per given image configuration. The pixelated mass map offers the advantage of being linear
in the unknown. Since all equations are linear in the unknowns, the best-fitting model and
its uncertainties are obtained by averaging over the ensemble [15; 30].The pixelated mass map
differentiates PixeLens from the other software used in this study which fit parametric functional
forms.

Lenstool

Lenstool has been used in many different studies and is available for download 5 [9]. Version
6.7.1 was used in these studies. Lenstool has features of both LTM and non-LTM modeling and
uses a Bayesian approach to strong lens modeling and has been well-described in the literature
[8; 9]. There are several resources available for writing lens models for Lenstool [14; 20].
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Lenstool can optimize most of the parameters in a model. Models produced by HydraLens
for Lenstool were modified slightly to add appropriate optimization parameters and then used
with Lenstool. Lenstool optimization is performed with MCMC, and χ2 optimization for all
models was conducted in the source plane. Lenstool uses the geometry of the images given and
then finds counter-images. The image positions are recomputed and the time delays determined.

Gravlens

The Gravlens package includes two codes, Gravlens and Lensmodel [13] accompanied by a
user manual [11]. Version 1.99o was used in these studies, under the Linux operating system,
downloaded from the Astrophysics Source Code Library 6. However, the Darwin (Macintosh)
executable file provided for version 1.99o will only run on the now obsolete PowerPC architec-
ture. A newer version to run on the Macintosh platform under OS/X 10.9 (Gravlens version
dated November 2012) was kindly provided by Professor Keeton, for these studies. Lensmodel
is an extension of Gravlens and was used for all analyses here. It is fully described in two
publications by Keeton [12; 13], and has been used extensively.

Lensmodel is an LTM lens model software, which optimizes the selected lens parameters and
uses a tiling algorithm and a simplex method with a polar grid centered on the main galaxy.
The tiles are used to determine the image positions, and then uses a recursive sub-gridding
algorithm to more accurately determine image positions. Optimization for all models in this
study were conducted in the source plane.

glafic

Glafic is an LTM lens model software, and includes computation of lensed images for both
point and extended sources, handling of multiple sources, a wide variety of lens potentials and
a technique for mass modeling [23] with multiple component mass models. Version 1.1.5 was
used on the OS/X platform and version 1.1.6 was used with Linux in these studies7.

Each lens is defined by the lens model and seven parameters. A large catalog of lens models
is available (including point mass, Hernquist, NFW, Einsato, Sersic, etc.). After defining the
parameters and the lens models, parameters to be varied in the χ2 minimizations are specified.
Following this, the desired commands are issued such as computing various lensing properties,
Einstein radius, write lensing properties to a FITS file, etc [24]. Glafic has been used in a large
number of lens model studies, including SDSSJ1004 [23], and performs lens model optimization.

Glafic uses a downhill simplex method of optimization, and all models in this study were
optimized in the source plane. The image plane is divided using square grids by an adaptive
meshing algorithm. The level of adaptive meshing is set as an optional parameter.

7.4 Results

Each of the four lens systems was modeled with all four lens model software codes including
PixeLens, Lenstool, Lensmodel, and glafic. Best-fit lens model parameters from previous studies
are presented along with the results from this study for each system. The results reported for
each lens were intended to follow the format of the data for best-fit lens parameters as reported
in previous studies, and therefore there are some differences in the data presented for the four
lens systems. Lenstool and glafic directly calculate the velocity dispersion and then calculate the
Einstein radius and mass within the Einstein radius. Lensmodel directly calculates the Einstein
radius, from which the other values were deduced. PixeLens calculates mass at various distances
from the lens mass.
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COSMOS J095930+023427

Best-fit lens model parameters for COSMOS J095930+023427 are shown in Figure 7.1 (Table
1). The data reported in [2] are at the upper portion of the table, and show the results
of the Lenstool model. The results in this study using the Lenstool model are somewhat
different because the model in this study used optimization in the image plane, rather than the
source plane optimization used by Cao. The glafic model was also conducted with optimization
in the image plane, while the Lensmodel model is conducted with source plane optimization
because image plane optimization did not yield a satisfactory model. Direct comparisons of
the four software models evaluated are shown next. The models used here were based on the
SIE+SIS+SIS model used by [2]. The Lenstool model includes an SIE potential at zlens=0.892,
and two SIS potentials at zlens=0.7, as described by [2].

The PixeLens model used image coordinates from [2], and calculated an enclosed mass inside
the Einstein radius very close to that calculated by the Lenstool model. The Lenstool model
optimized the ellipticity, position angle and velocity dispersion for the single SIE potential, and
only the velocity dispersion for the two SIS potentials, as done by [2] as free parameters. The
Lensmodel model sets all three lens potentials at zlens=0.892 because the software does not
permit multiple lens planes. The ellipticities and position angles optimized by each of the three
codes are quite different.

The Einstein radius of the SIE potentials are similar while there is some difference in the
optimized velocity dispersions calculated by the three codes, particularly in the values calculated
by glafic for the second potential. In an effort to understand this, the velocity dispersions of
the first and second potentials were fixed at the values calculated by Lenstool at 238 and 391
km s−1 respectively and the velocity dispersion of the third potential allowed to optimize, using
glafic. This resulted in a velocity dispersion of 634 km s−1 for the third potential. When the
first and third values were fixed at 238 and 603 km s−1, the second potential was optimized at
56.7 km s−1. Magnifications and time delays for this model are shown in Figure 7.2 (Table 2).
Both time delays and magnifications calculated by all four models show great variability.

The velocity dispersions shown in Figure 7.1 (Table 1) as calculated here are slightly differ-
ent from those reported by [2], because of the different optimization technique. The velocity
dispersions shown in Figure 7.1 (Table 1) as calculated here are exactly the same as those
reported by [2], which is expected since the model file was identical. The velocity dispersion
values shown for the Lensmodel and glafic models are somewhat different. The Lenstool model
used by Cao [2] defined potentials at zlens=0.892 and 0.7, although Lenstool allows only a
single lens plane [14]. When the results were re-calculated defining all lenses in the same plane
(zlens = 0.892) using Lenstool, there was no effect on the calculation of the velocity dispersion.
The wide variation in time delays calculated for this system are shown in Figure 7.2 (Table
2), and are consistent with the wide range in time delays reported in our previous study using
different models [18]. There is a wide disparity in time delay calculations seen in all of the
systems evaluated in this study.

The image planes for the four models are shown in Figure 7.3. The image positions have been
changed from the input positions in glafic because of the image tracing algorithm used. This
slight difference may account for the differences seen in time delay and magnification. Lenstool
identified 16 images, although they are nearly superimposed on the image plane shown in Figure
7.3b.

Each of the models uses somewhat different optimization schemes, and the velocity disper-
sions are a result of optimization, which may explain some of the differences shown in Figure 7.1
(Table 1). The differences in the results among the three software programs is not surprising,
since this model had all three velocity dispersions as free-parameters.
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Figure 7.1: Table 1
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Figure 7.2: Table 2

SDSS J1320+1644

Best-fit lens model parameters for SDSS J1320+1644 are shown in Figure 7.4 (Table 3) with an
indirect/direct comparison to the study of [29] and the four direct comparisons in this study.
[29] utilized a glafic model that modeled the potentials of G1, G2 and G4 which were boosted
by an embedding dark matter halo. One of the published models used four SIS potentials and
fixed the locations of the first three, allowing the position of the fourth (the dark matter halo) to
optimize (”SIS free”). Furthermore, they concluded that any reasonable mass model reproduced
the observed image configuration. The values shown in Table 3 are those as presented in the
paper, as the ’SIS free’ model [29]. In this study, the values calculated by [29] and shown here
were reproduced exactly using their model, and the ± values are at 1σ.

The PixeLens model has a much lower calculated time delay than the other models, and
an enclosed mass within 1σ of the value reported by [29]. As performed by [29], the positions
of the sources were kept fixed for the first three SIS potentials. The velocity dispersion and
position of the last potential (the dark matter halo) were optimized. The optimized position
of the fourth potential calculated in the Lenstool model is quite different, and the velocity
dispersion is similar to other models. Lensmodel uses the Einstein radius, rather than velocity
dispersion so the Einstein radii for the first three SIS potentials were fixed, and the fourth was
a free parameter. The mass of the fourth potential calculated by Lensmodel is nearly identical
to the values calculated using glafic by [29] as well as the Lenstool and glafic models reported
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(a)

(b)

(c)

(d)

Figure 7.3: Image planes for COSMOS J095930+023427 calculated by (a)PixeLens, (b)Lenstool,
(c)Lensmodel and (d)glafic. Red triangles show image positions. Axes are labeled in arc seconds.
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here. The time delays and magnification values show more variability. The calculated models
of SDSS J1320+1644 show similar optimization for the mass of the fourth SIS potential, with
fairly similar positions calculated by Lensmodel and glafic, while the positions calculated by
Lenstool show greater variability. There is great variability among the calculated time delays
and magnifications.

The calculations performed in this study using glafic are the same as the glafic SIS-free
model reported by [29]. Figure 7.4 (Table 3) shows that the mass calculated for the fourth SIS
potential, which was a free parameter, optimized to the same value for Lenstool, Lensmodel and
glafic. The optimized geometry was slightly different for Lenstool compared to the others. The
Einstein radius calculated by all four models was almost the same for the first SIS potential. The
fact that the velocity dispersion for the fourth lens potential was optimized to the same value in
all of the models may reflect the fact that there was only a single free parameter in each model.
This is different from the results above with COSMOS J095930+023427, which optimized three
lens potentials as free parameters, with varying results among the models tested.

The model of SDSS J1320+1644 was straightforward including four SIS potentials which
was reproduced in all software models without difficulty. The model used by Rusu [29] had
0 degrees of freedom and with a resulting χ2 << 1, due in part to the design of the model
with 14 nominal constraints and 14 parameters. The similarity of the potentials used to model
the system may have contributed to the close results for optimization of the mass. Despite
this, position, magnification and time delay showed great variability among the four models.
The velocity dispersion for only the fourth lens potential was left as a free parameter, with the
other three fixed, which is likely a major factor in the close agreement found among the various
models in the calculation of the velocity dispersion.

The image planes for the four models are shown in Figure 7.5. The image positions in the
image planes are the same as the input positions in all models. Despite this, there is variability
in the time delay and magnification calculations.
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Figure 7.4: Table 3

SDSSJ1430+4105

The indirect comparison to the work of [4] and the results of the four direct comparisons in
this study are shown in Figure 7.6 (Table 4). In [4] there are five different models tested for
SDSSJ1430+4105. The models were tested with Gravlens/Lensmodel (LTM) [13] and Lensview
(LTM) [35], and the results compared in a direct comparison.

The model used in the current study is based on Model I, as described in [4], which models
the lens as an SIE, ignoring the environment of the lens. The best fitting parameters reported
by [4] are shown in Figure 7.6 (Table 4). Their results are in good agreement with those by
[1]. In the SIE model using Lensview as reported by [4], their results were very similar to those
with the Lensmodel model. The input files for the model used by [4] were not available for this
study, making this study both an indirect and direct comparison.

The enclosed mass calculated by PixeLens inside the Einstein radius, is slightly higher than
the result published by [4]. The Einstein radii calculated by all the models are very close to each
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(a)

(b)

(c)

(d)

Figure 7.5: Image planes for SDSS J1320+1644 calculated by (a)PixeLens, (b)Lenstool,
(c)Lensmodel and (d)glafic. Red triangles show image positions. Axes are labeled in arc
seconds.
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other as well as close to the result of [4]. As shown in other lens systems in this study, there
is considerable variation in magnification and time delay calculations among the four models
studied as shown in Figure 7.7 (Table 5). The optimized ellipticities among the four models
are all quite close, but there is significant variability in the optimal position angles calculated.

The models used in this study (results shown in Tables 4 and 5) were written without
detailed knowledge of the model used by [4]. Despite this, the models all had similar results,
especially in regard to Einstein radius, enclosed mass and velocity dispersion calculations.

The image planes for the four models are shown in Figure 7.8. The image positions in
the output image plane of the Lensmodel model (Figure 3c) are identical to those reported by
Eichner [4]. The glafic (Figure 3d) model resulted in just 4 images in the output image plane.
In addition, Lenstool (Figure 3b) identified a total of 28 images, although some of them are
nearly superimposed in the image plane shown in Figure 7.8b.

The position angles were somewhat different but there was good agreement among the
models for ellipticity calculations. As with other models in this study, there was variation in
the calculation of time delays and magnifications.

One of the reasons for such close agreement among the models is that the models all used a
single SIE potential, which allowed for comparable potentials among the four lens model codes
tested. There was a single lens plane in all of the models.
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Figure 7.6: Table 4
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Figure 7.7: Table 5

J1000+0021

An analysis of this lens system was performed by [34] with a calculated Einstein radius of
RE = 0.35” (or 3.0 kpc) with an enclosed mass of ME = 7.6 ± 0.5 × 1010 M�. There have
been no extensive lens model analyses of this system published to date. This is the first strong
galaxy lens at zlens >1. In all models, the position (both RA and Dec) of the lens galaxy was
kept constant, and the mass was a free parameter optimized by the software. Further details
of the model used were not provided, such as the model software used or the χ2 calculation.

Results of the four direct comparisons done in this study are shown in Figure 7.9 (Table
6). This lens system was modeled both using an SIS and an SIE, with all lens model software
tested. The PixeLens model calculated the enclosed mass the same as reported by [34]. Using
an SIS potential, the Einstein radius, enclosed mass and velocity dispersion calculations were
nearly the same for Lenstool, Lensmodel and glafic. The Einstein radii and velocity dispersions
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(a)

(b)

(c)

(d)

Figure 7.8: Image planes for SDSS J1430+4105 calculated by (a)PixeLens, (b)Lenstool,
(c)Lensmodel and (d)glafic. Red triangles show image positions. Axes are labeled in arc
seconds.
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were very close to that reported by [34]. Calculations of magnification and time delay showed
quite a bit of variability in these models.

The results of the models shown in Figure 7.9 (Table 6) show very similar results for the SIS
and the SIE models. The enclosed mass within the Einstein radius is somewhat lower than that
reported by [34] for Lenstool, Lensmodel and glafic although the PixeLens model reproduced
the enclosed mass calculation very well. Similar to the models used for SDSSJ1430+4105, these
models were all quite straightforward with a single potential located at the origin, which may
have contributed to the concordance of results.

Comparing the results of the SIE models, the results with an SIE model using the four
software packages were also nearly identical, although among the SIE models, there was some
variability in the calculations of ellipticity and position angle.

The image planes of the four models are shown in Figure 7.10. This system is particularly
interesting. The image positions in the Lensmodel and glafic (Figures 7.10c and d) models have
an almost identical geometry, while the image positions in the Lenstool model (Figure 7.10b)
are quite different. The time delays and magnifications in the Lensmodel and glafic models are
very similar, while the Lenstool model values are quite different.

Figure 7.9: Table 6
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(c)

(d)

Figure 7.10: Image planes for J1000+0021 calculated by (a)PixeLens, (b)Lenstool,
(c)Lensmodel and (d)glafic. Red triangles show image positions. Axes are labeled in arc
seconds.
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Comparison of Results

There are some generalizations that can be made comparing the results calculated from the
models for each of the four lens systems studied. The Einstein radii and mass within the Einstein
radii are quite close for the four models of each system. The Einstein radius is calculated from
the average distance between the lens center and multiple images, and is insensitive to the
radial density profile [26]. The conversion from the Einstein radius to the enclosed mass within
the Einstein radius is dependent only on the lens and source redshifts, and is therefore model
independent [26]. Thus, the similar results for Einstein radii and mass within the Einstein radii
are expected since all models had the same system geometry of zlens and zsource.

There is variation among the calculated time delays and magnifications comparing the mod-
els generated by each of the four lens model software programs. The image positions input to
each model were identical. However, the image planes showing the output image positions of
the 16 models studied show changes in image position due to the image tracing algorithms in
each software model. These differences explain some of the variation seen in time delay and
magnification.

There is also little agreement among calculations of ellipticity and position angle. The
variation in results for calculated ellipticity and position angle may be a result of differences in
the optimization algorithms used by Lenstool, Lensmodel and glafic.

The complexity of the model also has an impact on agreement among the calculated values
for velocity dispersion. In the models for SDSS J1430+4105, J1000+0021and SDSS J1320+1644,
there was only one potential with the velocity dispersion as a free-parameter for optimization.
In all three of these systems, there was close agreement among the calculated values. In the
model of COSMOS J095930+023427, there were three lens potentials which were optimized,
with quite a bit of variation among the results from the three software programs used.

Comparison of Lens Model Software by Version

In order to evaluate the effect of software version and/or operating system / hardware platform,
the model of SDSS J1320+1644 was evaluated with glafic and Lensmodel on two different
hardware platforms. Glafic is distributed as an executable file with version 1.1.5 for the OS/X
platform and version 1.1.6 for Linux. Lensmodel is available as an executable file only for
download as version 1.99o for the Linux platform, and we were provided a version to run on
OS/X.

Input files for the models of SDSS J1320+1644 were used unchanged. In the first test, the
model was tested with the two versions of glafic. The mass of the first three SIS potentials
were held as fixed parameters and the mass of the fourth potential, as well as its position,
were free parameters to be optimized. Identical results were reported using either version of
glafic, on both platforms. The results were identical including the numbers of models used
for optimization in each run and the calculation of all parameters evaluated. The content of
all output files produced by both versions was identical. The models for SDSS J1320+1644
were then tested with each of the two versions of Lensmodel. In this same test, optimizing the
fourth SIS potential, results with Lensmodel were slightly different comparing the two versions.
The optimized Einstein radius of the fourth potential using the Linux version is reported as
3.622605, and the OS/X version reports 3.622528. There are similarly small differences in the
optimized position of the fourth potential.

In the next test, the mass of all four potentials was optimized. The results with glafic, on
both hardware platforms, were again identical in regard to all parameters evaluated, to the
accuracy of the last decimal place reported. The contents of all output files produced by glafic
were identical with the Linux and OS/X versions. However, the two versions of Lensmodel
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reported widely disparate results with the two versions tested. The Einstein radii of the four
optimized SIS potentials using the Linux version are 1.851, 1.004, 0.3161 and 1.660. Using the
OS/X version, the four potentials are optimized at 2.234, 1.818, 0.3139 and 2.006.

The hardware platform and/or operating system used in the calculations is not reported in
any of the studies reviewed.

7.5 Discussion

Small changes in redshift have different effects on the calculation of time delays and mass by
different lens model software codes [18]. In that study, a mock model with a single potential and
four images as well as a model of SDSS J1004+4112 were evaluated and the effect of changes in
redshift on changes in calculations of time delay and mass were determined. The study showed
that changes in time delay and mass calculations are not always proportional to changes in
DdDs/Dds, as would be predicted. The image positions in this study also changed as a result
of the image tracing by the software, which was partly responsible for the differences in the
values of time delay and mass in both systems when comparing the models from four different
lens model software packages.

The present study was designed to specifically compare the results from different lens mod-
els, rather than changes in the results, to identify factors that affect the ability to compare
results from different codes. The present study is the largest strong gravitational lens software
comparison study performed to date, evaluating four different lens systems with four different
lens model software codes in a single study, and is the first study to use HydraLens for the
preparation of multiple models.

Indirect Comparison Studies

Parameters calculated using strong gravitational lens models and compared with other pub-
lished results, are referred to as ”indirect comparison studies”. In the indirect comparison of
COSMOSJ095930 performed by [2] and [5], both analyses were conducted with Lenstool, and
had very similar results for Einstein radius, mass enclosed within the Einstein radius, and other
parameters. It is difficult to discern the details of the model used by [5] with regard to number,
type and geometry of the lens potentials used. Indirect comparisons are further complicated by
a lack of available detail of the model used, making it difficult to reproduce previous results.

Direct Comparison Studies

Studies where different lens models are compared in the same study, are referred to as ”direct
comparison studies”. The direct comparisons performed of Abell 1703, MS1358, MACSJ1206
and SDSS120602 have been described in detail in [18] . The information in these direct studies
was complementary in nature, leading to a greater understanding of the lens system. The lens
SDSSJ1430 was investigated by [4] who compared the results using Lensview and Lensmodel.
The Lensmodel analysis assumes point sources while Lensview uses the two-dimensional surface
brightness distribution of the same system. Both analyses led to the same conclusions regarding
the mass distribution of the galaxy. The two lens model techniques were indeed complementary
and led to similar results. In a comparative analysis of RX J1347.5-1145 using glafic and
PixeLens, the authors note a 13 percent difference in the calculation of mass enclosed within
the Einstein radius [15]. They suggest that the LTM model used by glafic may not be assigning
sufficient mass to the profiles in the models used. We observed a similar underestimation of
enclosed mass by non-LTM models as compared to PixeLens in the analysis of J1000+0021.
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7.6 Conclusions

Indirect comparison studies are of value, but as some of the comparisons conducted in this
study show, it may be difficult to reproduce the results of previous studies without previous
model files available to create the models for other software, thus limiting the nature of the
comparisons performed. In the analyses of COSMOS J095930+023427 and SDSS J1320+1644,
being able to use the same models as used in the original studies, qualifies these as direct
comparisons. This supports the importance of sharing lens model files in future studies.

Even in direct comparisons, the results with one model may not be exactly the same as with
another because of the difficulty in translating some of the features of one model to another
because of the differences in features of the available software. For example, it is not possible
to parameterize a PixeLens model exactly the same as a Lenstool model because of inherent
differences in the software. These differences may explain the observations of [15] as well as
some of the results in this study. Despite best efforts to similarly parameterize two models,
there still may be small differences. This suggests that using several models to understand a
system may lead to improved understanding.

In seeking agreement among various models, the number of free parameters for the lens
potentials is an important factor. While there was reasonable agreement among the calcu-
lated values for Einstein radius in single potential models, such as SDSS J1430+4105 and
J1000+0021 in this study, there was less agreement in a more complicated model such as COS-
MOS J095930+023427, which may be a reflection of using more lens potentials to describe the
system.

Differences noted in time delay and magnification calculations may be due to differences in
the image tracing algorithms used by each of the software models. The input image positions
are the same in all models. The software calculates new positions based on the software specific
ray-tracing algorithm used going from the source plane back to the image plane, resulting in
differences in time delay results. The differences in optimization algorithms used also leads
to some of the observed differences among the software models, with great variation in the
calculation of ellipticity and position angle.

These results demonstrate that there are significant differences in results using lens models
prepared with different software, and are consistent with a previous study of differences in lens
models [18]. There is no intention to suggest that a particular group of models are necessarily
more correct, but only to suggest that future lensing studies should evaluate lens models using
several approaches to understand the system more thoroughly, as already being conducted in
the Hubble Frontier Fields project.

Based on the results of this study, in order to allow comparisons across studies, it will be
important to use a consistent nomenclature for lensing studies, specifying indirect vs. direct
comparisons, independent vs. semi-independent comparisons and the type of model being used
as LTM vs. non-LTM, as we have previously described [18]. Furthermore, this study has
shown at least in one situation that the software version used can significantly affect the results
which stresses the importance of specifying the software version number being used in all future
studies, in addition to the hardware/operating system platform. It is also suggested that more
detail is provided in future studies to allow reproducibility of the models such as the number
and types of potentials used along with the name of the potential used in the various software
packages.

One of the most important aspects of any scientific experiment is reproducibility. In gravita-
tional lens model studies, this is impossible in many cases because the software is not available
to other investigators, or the lens model files are not available. Code-sharing of software in
astrophysics is essential, as emphasized by [31]. Based on the studies reported here, the sharing
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of lens model files in gravitational lens studies is also essential to assure reproducibility and
increased transparency in future gravitational lensing studies. Another approach in lensing
studies that has been successfully applied in weak lensing is computer challenges. The use
of multiple approaches including comparative studies of lens models, open software, open lens
model files, and computer challenges will help to assure increased transparency in future studies
and enhance the results.
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Chapter 8

RXJ1131 and B1608:
Comparative Studies of Time
Delays for Two
Well-Characterized Strong
Gravitational Lenses

8.1 Purpose and Organization of this Chapter

In Chapter 5, we showed that strong gravitational lens models made with different software can
yield significantly different results for the calculation of time delays for two different lens systems
[13]. In that study we used a mock model and SDSSJ1004+4112 as the basis of a comparative
study of lens models, evaluating time delay and mass calculations. This is a follow-up to the
study in Chapter 5, to focus specifically on time delay calculations. The purpose of this chapter
is to perform a study of two gravitational lenses, B1608+656 and RXJ1131-1231, for which
there is a wealth of observational and lens model data available for comparison. These two
systems have been extremely well characterized with regard to time delays in many previous
studies (see below in Section 8.2). 1

After an Introduction, and discussion of existing studies of B1608 and RXJ1131 in Section
8.2, we describe the lens models developed for these two lens systems in this study, in Section
8.3. The Results of studies using these lens models with Lenstool, PixeLens, Lensmodel and
glafic are described in Section 8.4. A discussion of the results is in Section 8.5 including a
detailed description of the implications of the variations found for using time delays to calculate
cosmological parameters such as H0 in Section 8.5. Finally, we will make some conclusions and
discuss future plans to complete this study in Section 8.6.

1The results in this chapter represent a work in progress. Future plans are described in Section 8.6.

271



8.2 Introduction

These last few years are being called the era of precision cosmology. Many different analytic
methods have resulted in data that supports what is commonly known as the concordance
cosmology, characterized by a virtually flat geometry in a universe dominated by dark matter
and dark energy [27]. With precision for parameters now reaching the few percent level, it
is valuable to compare and contrast different methods of establishing the description of the
Universe. A comparison of independent probes with similar precision allows one to test the
accuracy of the measurements, and reveal uncertainties.

Gravitational lensing has been used as one such probe of the Universe. The use of lensing
data is dependent not only on observations, but also on analysis of the data. Many of the
analyses to date are done using a single software code to determine critical parameters. Often,
this code is one written by the individual investigator conducting the study. While many of the
well-known codes are available for public use, many are not available which makes it impossible
to reproduce these studies [14].

Using Time Delays to Determine Cosmological Parameters

There is a brief discussion of Time Delays in Chapter 3, Section 3.4 of this dissertation, which is
further expanded below in Section 8.2. The idea of using time delays is traced back to [20]. In
principle, gravitational lensing provides an independent one-step method for Hubble constant
determination. Refsdal suggested using time delays between the images of gravitationally-
lensed supernovae long before discovery of the first gravitationally lensed quasar. Time delays
are proportional to H−0 1 and weakly depend on other cosmological parameters.

The accuracy of the method relies on the precision of the time delay determination, knowl-
edge of the distances in the system and reconstruction of the mass distribution of the lens.
Advances in spectroscopy combined with precise cosmology allow for distance measurement
with great accuracy. The mass distribution of the lens can be reconstructed well using resolved
radio and optical images. In addition, for lenses located at a low enough redshift, the velocity
dispersion of the lens can be measured, which allows for independent confirmation of the mass
distribution [1].

The dependence of the estimate of H0 from a gravitational lens time delay on the mass
distribution of the lens is well known, both from models of particular time delay lenses and
from general analytic principles [8]. The most important trend is that the predicted time delays,
or the inferred H0, increase as the mass distribution becomes more centrally concentrated. In
particular, it was shown that adding a constant surface density sheet to the mass distribution
has no observable effect other than to rescale the time delay (the mass sheet degeneracy), and
that the Hubble constants estimated from lens potentials of the form φ ∝ R3−η (ρ ∝ r−η)
roughly scale as H0 ∝ (η−1)/∆t, almost independent of the angular structure of the potential.

Gravitational lens time delays are determined by the Hubble constant, the positions of the
lensed images, and the surface density in the annulus bounded by the images. The average
surface density 〈κ〉 in the annulus is more important than its distribution. The relationship
between time delays and the local surface density is exact for circular lenses. While this is
not exactly true for non-circular lenses, it is true in practice. In two-image lenses, where the
images lie on opposite sides of the lens galaxy, the delays are insensitive to the angular structure
of the lens. In four-image lenses the delays are very sensitive to the quadrupole structure of
the potential, but the image positions tightly constrain the quadrupole and leave the surface
density as the only important variable [8].
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Time Delay Basics

The observations of gravitationally lensed quasars are best understood in light of Fermat’s
principle. Intervening mass between a source and an observer introduces an effective index of
refraction, thereby increasing the light-travel time. The competition between this Shapiro delay
from the gravitational field and the geometric delay due to bending the ray paths leads to the
formation of multiple images at the stationary points (minima, maxima, and saddle points) of
the travel time [10].

As with glass optics, there is a thin-lens approximation that applies when the optics are
small compared to the distances to the source and the observer. In this approximation, we
need only the effective potential, ψ(~x) = (2/c2)(Dls/Ds)

∫
dzφ, found by integrating the 3D

potential φ along the line of sight. The light-travel time is

τ (~x) =

[
1 + zl
c

] [
DlDs

Dls

] [
1

2

(
~x− ~β

)2

− ψ (~x)

]
, (8.1)

where ~x = (x, y) = R(cos θ, sin θ) and ~β are the angular positions of the image and the source,

ψ(~x) is the effective potential, (~x−~β)2/2 is the geometric delay in the small-angle approximation,
zl is the lens redshift, and Dl, Ds, and Dls are angular-diameter distances to the lens, to the
source, and from the lens to the source, respectively. The only dimensioned quantity in the
travel time is a factor of H−1

0 ' 10h−1 Gyr arising from the H−1
0 scaling of the angular-diameter

distances.
Images at the extrema of the time delay function are observed, which we find by setting the

gradients with respect to the image positions equal to zero, ~∇xτ = 0, and finding all the sta-
tionary points (~xA, ~xB , · · · ) associated with a given source position ~β. The local magnification
of an image is determined by the magnification tensor Mij , whose inverse is determined by the
second derivatives of the time delay function [10],

M−1
ij = ~∇x~∇xτ(~x) =

(
1− κ− γ cos 2θγ γ sin 2θγ

γ sin 2θγ 1− κ+ γ cos 2θγ

)
, (8.2)

where the convergence κ = Σ/Σc is the local surface density in units of the critical surface
density Σc = c2Ds/4πGDlDls, and γ and θγ define the local shear field and its orientation.
The determinant of the magnification tensor is the net magnification of the image, but it is a
signed quantity depending on whether the image has positive (maxima, minima) or negative
(saddle points) parity.

A simple but surprisingly realistic starting point for modeling lens potentials is the singular
isothermal sphere (the SIS model) in which the lens potential is simply

ψ(~x) = bR, where b = 4π
Dls

Ds

σ2

c2
= 1.′′45

(
σ

225 km s−1

)2
Dls

Ds
(8.3)

is a deflection scale determined by geometry and σ is the 1D velocity dispersion of the lens
galaxy. For |~β| < b, the SIS lens produces two colinear images at radii RA = |~β| + b and

RB = b − |~β| on opposite sides of the lens galaxy (as in Fig. 8.1 but with ∆θAB = 180◦).
The A image is a minimum of the time delay and leads the saddle point, B, with a time delay
difference of

∆tSIS = τB − τA =
1

2

[
1 + zl
c

] [
DlDs

Dls

]
(R2

A −R2
B). (8.4)

Typical time delay differences of months or years are the consequence of multiplying the ∼
10h−1 Gyr total propagation times by the square of a very small angle (b ≈ 3 × 10−6 radians
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so, R2
A ≈ 10−11). The SIS model suggests that lens time delay measurements reduce the

determination of the Hubble constant to a problem of differential astrometry. This is almost
correct, but we have made two idealizations in using the SIS model.

Figure 8.1: Schematic diagram of a two-image time delay lens. The lens lies at the origin, with
two images A and B at radii RA and RB from the lens center. The images define an annulus
of average radius 〈R〉 = (RA + RB)/2 and width ∆R = RA − RB , and the images subtend an
angle ∆θAB relative to the lens center. For a circular lens ∆θAB = 180◦ by symmetry. From
[10]

The first idealization was to ignore deviations of the radial (monopole) density profile from
that of an SIS with density ρ ∝ r−2, surface density Σ ∝ R−1, and a flat rotation curve. The
SIS is a special case of a power-law monopole with lens potential

ψ(~x) =
b2

(3− η)

(
R

b

)3−η

, (8.5)

corresponding to a (3D) density distribution with density ρ ∝ r−η, surface density Σ ∝ R1−η,
and rotation curve υc ∝ r(2−η)/2. For η = 2 we recover the SIS model, and the normalization
is chosen so that the scale b is always the Einstein ring radius. Models with smaller (larger)
η have less (more) centrally concentrated mass distributions and have rising (falling) rotation
curves. The limit η → 3 approaches the potential of a point mass. By adjusting the scale b and
the source position |~β|, we can fit the observed positions of two images at radii RA and RB on
opposite sides (∆θAB = 180◦) of the lens for any value of η [10].

The expression for the time delay difference can be well approximated by:

∆t(η) = τB − τA ' (η − 1)∆tSIS

[
1− (2− η)2

12

(
∆R

〈R〉

)2

· · ·
]
, (8.6)

where 〈R〉 = (RA + RB)/2 ' b and ∆R = RA − RB (see Fig. 8.1). While the expansion
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assumes ∆R/〈R〉 (or |~β|) is small, we can usually ignore the higher-order terms. There are two
important lessons from this model.

i. Image astrometry of simple two-image and four-image lenses generally cannot constrain
the radial mass distribution of the lens.

ii. More centrally concentrated mass distributions (larger η) predict longer time delays, re-
sulting in a larger Hubble constant for a given time delay measurement.

The second idealization was to ignore deviations from circular symmetry due to either the
ellipticity of the lens galaxy or the local tidal gravity field from nearby objects. A very nice
analytic example of a lens with angular structure is a singular isothermal model with arbitrary
angular structure, where the effective potential is ψ = bRF (θ), and F (θ) is an arbitrary function.
The model family includes the most common lens model, the singular isothermal ellipsoid (SIE).
The time delays for this model family are simply ∆tSIS , independent of the angular structure
of the lens [10].

The Gravitational Lens B1608+656

B1608+656 was discovered by [16] and has been very well characterized [5; 24; 25; 26]. B1608+656
was discovered as part of the Comic Lens All Sky Survey (CLASS), which was a survey designed
to locate gravitational lens systems consisting of multiply imaged compact components with
separations greater than 0.2′′. This was the first discovery of a gravitational lens in that survey,
a quadruply imaged object with a maximum separation of 2.1′′.

The gravitational lens CLASS B1608+656 is one of very few four-image lens systems for
which all three independent time delays have been measured and studied in detail. This makes
the system an excellent candidate for a high-quality determination of H0 at cosmological dis-
tances. However, the original measurements of the time delays had large (12–20%) uncertainties,
due to the low level of variability of the background source during the monitoring campaign [5].
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Figure 8.2: The original reduced HST/F814W image of B1608+656. The four images are
labelled A, B, C, and D; the two lens galaxies are G1 and G2. From [24]

Table 3.1 shows a list of time delays that are available in the literature. Of these lens
systems, CLASS B1608+656 is the only four-image system at that time for which all three
independent time delays have been unambiguously measured. This makes this system ideal for
further evaluation in a comparative lens model study.

The lens system is shown in Figure 8.2. This image shows the two lensing galaxies, as well
as the four separate images. Koopmans performed a detailed study of the mass model of B1608,
as shown in Figure 8.3. Their models included a variety of potentials, including SIE potentials
and others.
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Figure 8.3: Left: Critical (thick) and caustic curves (thin) of the SPLE1+D model. The galaxy
positions are indicated by stars, the images positions by open squares and the source by a closed
square. Right: The contours indicate constant time delays starting at ∆t=0 at image B and
increasing in steps of 10 h−1 days. From [11]

They presented significantly improved and refined mass models of the gravitational lens
B1608+656 – compared with previous modeling efforts – with the aim of determining a value
of the Hubble Constant, that is less affected by previously known systematics (e.g. radial mass
profile, dust extinction, etc.) [11].

Constraints on the mass model include: (i) the stellar velocity dispersion of the dominant
lens galaxy (G1), as measured with ESI, (ii) the deconvolved Einstein Ring seen in the HST
F160W and F814W images – the former of which is little affected by dust – corrected for
the contribution from the lens galaxies, (iii) the extinction-corrected lens-galaxy centroids and
structural parameters, the former being one of the major uncertainties in previous lens models
and (iv) recent improvements in the determination of the three independent time delays in this
four-image lens system.

Lens models have also been improved in allowing for many additional free parameters com-
pared with previous modeling efforts, including the galaxy positions, the position angle of G1,
an external shear and the density slopes of G1 and G2. Some of these parameters are con-
strained with observational priors. The freedom in the lens model (up to 22 free parameters)
allows for a proper analysis of the error on the inferred value of H0, including all observational
errors and correlations between free parameters [11].
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The Gravitational Lens RXJ1131-231

The discovery of a new quadruply imaged quasar surrounded by an optical Einstein ring
candidate, RXJ1131−1231, was reported by [22]. Spectra of the different components of
RXJ1131−1231 revealed a source at z = 0.658. At the time of its discovery, this object was
the closest known gravitationally lensed quasar. The lensing galaxy is clearly detected, with a
redshift measured at z = 0.295. This system has been extensively characterized by others as
well, including [2; 3; 15; 23; 27; 28; 30].

observed reconstructed

Figure 8.4: HST ACS image of RXJ1131−1231 in F814W filter. The background AGN is
lensed into four images (A, B, C and D) by the primary lens galaxy G and its satellite S. Left:
observed image. Right: reconstructed image based on the most probable composite model.
From [27]

This lens system is shown in Figure 8.4, and includes a main lens galaxy (G), four images
(A, B, C and D) as well as a small satellite galaxy, S. This Figure shows the primary lens
galaxy G and a satellite lens galaxy S that are surrounded by the Einstein ring of the lensed
source [3; 27]. This bright system brings together rare properties (i.e. quad, bright optical
Einstein ring, small redshift, high amplification), nearly unique among the known gravitational
lens systems [22].

A detailed analysis of nine years of observations of RXJ1131−1231 is presented by [29]. The
R-band light curves of the four individual images of the quasar were obtained using deconvo-
lution photometry for a total of 707 epochs. Several sharp quasar variability features strongly
constrain the time delays between the quasar images. Using three different numerical tech-
niques, they measure time delays for all possible pairs of quasar images while always processing
the four light curves simultaneously. For all three methods, the delays between the three close
images A, B, and C are compatible with being 0, while they measure the delay of image D to
be 91 days, with a fractional uncertainty of 1.5% (1σ) including systematic errors.
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8.3 Methods

We analyze strong gravitational lens models for two systems, including B1608+656 and RXJ1131−1231.
Both systems are analyzed using Lenstool [6], Lensmodel [7], glafic [18] and PixeLens [19]. All
four of these codes are publicly available for download and have been used extensively in the
literature, as well as in our previous studies. PixeLens is a non-LTM code, while Lenstool,
Lensmodel and glafic are all LTM codes.

The approach to comparative lens model studies here is similar to that used in our previous
studies (Chapters 5 [13], and 7) . Specifically, we are using the same model in all four codes, to
the greatest degree possible. While it is acknowledged that some features cannot be reproduced
among the codes, this approach was taken to demonstrate intrinsic differences in the model
codes. An alternative approach (not taken) would be to develop an optimal model in each
code. However, this approach is avoided in these studies as it may not show the differences in
the codes as well, although it may be an equally valid approach.

All models in this study use a Ωm = 0.3, ΩΛ = 0.7, H0 = 70 km s−1 cosmology.

Models of B1608+656

This system has been well studied. The model used here was adapted from [21], which used the
PixeLens code to study this system. This model was then translated into Lenstool, Lensmodel
and glafic using the HydraLens code [12], which we developed to facilitate comparative lens
model studies.

Our first set of models use a single SIE potential. This is admittedly a simplification of
the true situation, since the observational data identifies two lens galaxies, G1 and G2. These
models were used as a starting point for the study. The image positions used are from [11],
and a single SIE potential is at [0.0,0.0]. The lens galaxy position is held constant, while the
ellipticity, position angle and mass are free parameters.

The second set of models also uses image positions from [11], but uses two lens galaxies,
G1 and G2, at the geometry from the same previous study. Both of these galaxies are modeled
using SIE potentials. In these models, the lens galaxy positions are fixed, and the ellipticity,
position angle, and mass are free parameters. These models are not analyzed with PixeLens,
since PixeLens does not specify the lens potentials, so the results would be the same as with
the models above.

Models of RXJ1131−1231

Models for RXJ1131−1231 were developed using the system geometry from [23]. The model
includes a single SIE potential and four images. These initial models did not include the satellite
lens galaxy, referred to as S, above. In these models, the lens galaxy positions are fixed, and
the ellipticity, position angle, and mass are free parameters.

Starting with the initial system geometry, a model was written for PixeLens, which was
then translated by HydraLens [12]for Lenstool, Lensmodel and glafic. The resulting models
were modified slightly to adjust the parameters for optimization and the details of the lensing
potential.

8.4 Results

The results for all models were assessed in several ways. The initial geometry was shown by
the plot from PixeLens. Graphs of the critical and caustic curves generated by glafic were also
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used.
The fit of the models was assessed using χ2 and rms as figures-of-merit. The values of χ2

for each model are calculated directly by Lenstool, Lensmodel and glafic. The values for the
rms are calculated directly by Lenstool, and manually for models generated with Lensmodel
and glafic.

The χ2 is calculated by:

χ2 =
∑ (yf − yi)2

σ2
i

(8.7)

where yf is the model estimate, yi are the individual measurements and σi is the uncertainty
in the individual measurements.

The fit assessed by the rms uncertainty in the image plane is calculated by:

rms2
images =

∑
i

((x
′

i − xi)2 + (y
′

i − yi)2) / Nimages, (8.8)

where x
′

i and y
′

i are the locations given by the model, and xi and yi are the real images location,
and the sum is over all Nimages images. The best-fit solution is obtained by the minimum rms,
and the uncertainties are determined by the location of predicted images in the source plane
[31].

The chi-square is computed assuming that noise within the data can be approximated by
the square root of the signal recorded. The consequence of using a chi-square goodness-of-fit
metric is to reduce the influence of the peak maximum when determining the parameters for
the synthetic model. Notably, for high resolution data the use of chi-square to optimize the
model may broaden the resulting full width at half maximum compared to the same model
optimized using the rms. Different goodness-of-fit metrics offer alternative views from which
an optimum for a model can be established, however neither statistic is a measure for how well
a model itself relates to the true states present within the data.

Results of B1608+656 Lens Models

The image geometry of B1608+656 is shown here in Figure 8.5. The image positions and
geometry are from [11], and have the same configuration as in that report. The image geometries
used are the same in both the single and two potential model in this study.

Single Lens Potential Models of B1608+656

The results of the single potential models of B1608+656 are shown here in Table 8.1 (time
delays) and Table 8.2 (Best Fit Lens Parameters). The critical and caustic lines for the lens
model produced by glafic are shown in Figure 8.6. The time delays for this system are all on the
same order of magnitude, although they are somewhat variable. The Lenstool model closely
predicts the time delays for images A and C, while the time delay for image D is somewhat low.

A review of the best fit lens parameters shown in Table 8.2 shows that the χ2 for the models
is rather high, which probably reflects the fact that a single potential model is not adequate
to describe this system with two known lenses, G1 and G2. However, these models were used
as a simplistic starting point for the analysis, and it is not surprising that the models are not
a good fit. The mass of each of the four models is not that different, although there range is
notable. These results may have been different if the position of the lens mass was left as a free
parameter, which will be addressed in future studies.
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Software / Ref A B C D
Fassnacht [5] 31.5 · · · 36.0 77.0

PixeLens 7.9 · · · 0.4 48.2

Lenstool 38.0 · · · 32.4 56.5

Lensmodel 8.6 · · · 1.9 23.9

glafic 15.0 · · · 12.3 49.4

Table 8.1: Time Delays for four images in B1608. The three LTM models all use a single SIE
potential for the lens. The time delay for all images is relative to image B, in days.

Software RA Dec χ2 rms e θ RE M(< RE) σ0

(′′) (′′) (′′) (deg) (′′) (1011 M�) (km s−1)
PixeLens · · · · · · · · · · · · · · · · · · · · · 4.83 · · ·

Lenstool [0.0] [0.0] 471 0.08 0.78 165 1.16 3.65 299

Lensmodel [0.0] [0.0] 754 0.21 0.58 69.4 1.02 2.77 280

glafic [0.0] [0.0] 89.3 0.11 0.42 65 1.26 4.28 312

Table 8.2: Best Fit Lens Parameters for B1608 models with a single SIE lens potential
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Figure 8.5: B1608 model made with Pixelens using geometry from [11].
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Figure 8.6: B1608 model made with glafic using geometry from [11] and a single lens potential.
The image plane is shown in the upper panel and the source plane is in the lower panel.

Two Lens Potential Models of B1608+656

The results of the two potential models of B1608+656 are shown in Table 8.3 (time delays) and
Table 8.4 (Best Fit Lens Parameters). The critical and caustic lines for the model produced by
glafic is shown in Figure 8.7. The critical and caustic lines for this model should be compared
with the results of [11] as shown in Figure 8.3. The critical an caustic lines are quite similar to
that shown in Figure 8.3.
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The PixeLens results in Table 8.3 are shown just for comparison, but there is no specification
of potentials in the non-LTM code, PixeLens. The results from the other 3 codes are somewhat
closer to the real values as reported by [5]. Despite this, there are still significant differences
between the time delays of the models and the observational data. As above, if the position of
the lens potentials varied, the results might be closer to the observational data.

In reviewing the best fit lens parameters in Table 8.4, the χ2 values are much lower suggesting
a better fit of the data. The rms values are also very small, consistent with a better fit. All
three models predict a higher mass than that report din the model by [5], although all three
have a larger mass for G1 compared to G2. The ellipticity and position angles show great
variability in all models evaluated.

Software / Ref A B C D
Fassnacht [5] 31.5 · · · 36.0 77.0

PixeLens 7.9 · · · 0.4 48.2

Lenstool 26.6 · · · 36.7 51.2

Lensmodel 18.3 · · · 22.3 48.3

glafic 31.1 · · · 38.1 61.3

Table 8.3: Time Delays for four images in B1608+656. The 3 LTM models use two SIE
potentials for the G1 and G2 components of the lens, using the geometry from Table 3 in [11].
Time delays for all images are relative to image B, in days.

Software / RA Dec χ2 rms e θ RE M(< RE) σ0
Reference (′′) (′′) (′′) (deg) (′′) (1011 M�) (km s−1)
[11] 99.8 · · ·
G1 [0.425] [-1.059] 0.60 77 · · · · · · 247
G2 [-0.291] [-0.928] 0.32 68 · · · · · · 60

Lenstool 8.1 0.008
G1 [0.425] [-1.059] 0.16 93 0.67 1.22 228
G2 [-0.291] [-0.928] 0.99 151 0.46 0.58 189

Lensmodel 87.3 0.42
G1 [0.425] [-1.059] 0.17 79 0.69 1.28 231
G2 [-0.291] [-0.928] 0.41 45 0.40 0.43 177

glafic 6.15 0.11
G1 [0.425] [-1.059] 0.10 127 0.71 1.35 233
G2 [-0.291] [-0.928] 0.71 54 0.47 0.59 190

Table 8.4: Best Fit Lens Parameters for B1608+656 models with G1 and G2 lens potentials
based on the model from [11], Table 3. Positions of the potentials were fixed (in brackets) while
ellipticity, position angle and velocity dispersion were free parameters for both G1 and G2.
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Figure 8.7: B1608 model made with glafic using geometry from [11] with two lens potentials,
G1 and G2. The image plane is shown in the upper panel and the source plane is in the lower
panel.

Results of RXJ1131−1231 Lens Models

The results for lens models of RXJ1131−1231 are shown here inTable 8.5 (time delays) and
Table 8.6 (Best Fit Lens Parameters). The basic system geometry is shown below in Figure 8.8,
and the critical and caustic lines from the glafic model are shown in Figure 8.9.

Time delays predicted by the PixeLens model are extremely close to those reported by
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[23; 29]. The Lenstool model has a somewhat high time delay for Image C, but otherwise all
of the models are fairly close to that reported previously. It may be possible to improve the
results of the Lenstool model by using a different potential (e.g. PIEMD) or by allowing the
position of the potential to be a free parameter.

The rms values for all models shown in Table 8.4 are fairly low, suggesting a good fit of
the data, while the χ2 values are somewhat high for the Lensmodel and glafic models. The
Lenstool model has a fairly low value for χ2. All of the models predict a similar mass to the
[29] model, although the PixeLens model is higher than the rest. The critical and caustic lines
for the model shown in Figure 8.9 are similar to that reported previously by [2].

Software / Ref A B C D
Suyu [23] 0.7± 1.4 · · · −0.4± 2.0 91.4± 1.5

Tewes [29] 0.7± 1.2 · · · 0.4± 1.6 −91.4± 1.2

PixeLens 0.13 · · · 0.2 90.6

Lenstool 2.4 · · · 12.7 108.3

Lensmodel 1.6 · · · 0.2 87.3

glafic 1.9 · · · 0.15 110.9

Table 8.5: Time Delays for four images in RXJ1131−1231. The time delay for all images is
relative to image B, in days.

Software / RA Dec χ2 rms e θ RE M(< RE) σ0
Reference (′′) (′′) (′′) (deg) (′′) (1011 M�) (km s−1)

[23] · · · · · · · · · · · · 0.76 115 1.64 · · · · · ·
[3] -0.15 -0.41 272 · · · 0.45 -73.6 1.823 · · · · · ·

PixeLens · · · · · · · · · · · · · · · · · · · · · 6.91 · · ·

Lenstool [0.0] [0.0] 14.1 0.02 0.80 17 1.88 5.19 359

Lensmodel [0.0] [0.0] 321 0.12 0.07 -71 1.80 5.01 350.6

glafic [0.0] [0.0] 406 0.40 0.39 106 1.82 5.09 353

Table 8.6: Best Fit Lens Parameters for RXJ1131−1231 models. All LTM models have a single
SIE lens potential.

286



Figure 8.8: RXJ11311 model made with Pixelens
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Figure 8.9: RXJ1131 model made with glafic using a single lens potential. The image plane is
shown in the upper panel and the source plane is in the lower panel.

8.5 Discussion

Lens Models

This study evaluates lens models in a number of ways. The study of each of the three models
considered begins with a check of the basic system geometry, which was done by comparing
the image positions produced by the PixeLens model with the image positions in the literature.
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The critical and caustic lines for the three systems evaluated were similar to those published in
previous studies.

Time Delays

The use of lens model data to calculate time delays is important because of the potential for
time dearly data to constrain calculation of H0 as well as other cosmological parameters. These
applications of time delay data are further discussed below.

The most important trend is that the predicted time delays, or the inferred H0, increase as
the mass distribution becomes more centrally concentrated. Time delays are controlled by a
local property of the lens, the average surface density in the annulus between the lensed images.
Reducing the model dependence of the time delay estimates to such a simple physical property
of the lens leads to simple, accurate scaling laws for H0, provides model-independent tests for
the homogeneity of the time delay lenses, demonstrates that standard parametric models have
the necessary degrees of freedom to study degeneracies in estimates of H0 from time delay
measurements, and makes it easy to theoretically predict time delays for standard halo models
[8].

The dependence of time delays on the radial and angular structure of the lens shows
that standard parametric models, which can adjust both the radial mass distribution and the
quadrupole structure of the lens, encompass the physical properties needed to study the depen-
dence of Hubble constant estimates on the mass distribution of the lens.

It is interesting in this study, that the relatively simple model made with PixeLens, a non-
LTM code, was able to very accurately reproduce the time delays for the system RXJ1131−1231.
Most degrees of freedom in nonparametric models are not important for time delay estimates
in simple lenses. Since the parametric models have the advantage of corresponding to physical
models of galaxies, while most realizations of the nonparametric models do not, the use of
nonparametric approaches is probably better suited to very complicated systems [8].

Lens Model Parameters

We use elliptically-symmetric distributions with power-law profiles to model the dimensionless
surface mass density of the lens galaxies,

κpl(θ1, θ2) =
3− γ′

2

(
θE√

qθ2
1 + θ2

2/q

)γ′−1

, (8.9)

where γ′ is the radial power-law slope (with γ′ = 2 corresponding to isothermal), θE is the
Einstein radius, and q is the axis ratio of the elliptical isodensity contours. Various studies have
shown that the power-law profile provides accurate descriptions of lens galaxies. It has been
shown that the grid-based lens potential corrections from power-law models were only ∼ 2%
for B1608+656 with interacting lens galaxies, thus validating the use of the simple power-law
models even for complicated lenses. We note that the surface brightness of the main deflector
in RXJ1131−1231 shows no signs of interaction and it is therefore much simpler than the case
of B1608+656, further justifying the use of a simple power-law model to describe the mass
distribution within the multiple images [23]

The Einstein radius in Equation (8.9) corresponds to the geometric radius of the critical
curve, and the mass enclosed within the isodensity contour with the geometric Einstein radius
is:

ME = πθ2
ED

2
dΣcrit (8.10)
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that depends only on θE, a robust quantity in lensing.

Time Delays and the Determination of H0

It has been known that time delays between multiple images of strong gravitational lens systems
offer an interesting method to measure the Hubble constant H0, the most fundamental cosmo-
logical parameter that governs the length and time scale of our universe [20]. An advantage of
this method is that it does not rely on so-called distance ladder and can measure the global Hub-
ble constant independently of any local measurements. Motivated by this time delays have been
measured in more than 10 lensed quasar systems [see, e.g., 9] [17]. The situation as it presents is,
however, somewhat confusing and controversial. [8; 10] claimed from the analysis of several lens
systems that the Hubble constant should be relatively low, H0 ∼ 50 km s−1Mpc−1. However,
[11] performed systematic mass modeling of B1608+656 using all available data from radio to
optical and found constrained the value of the Hubble constant to be H0 = 75+7

−6 km s−1Mpc−1.
The analysis of the smallest separation lens B0218+357 yields H0 = 78 ± 3 km s−1Mpc−1. By
combining time delays in 10 lensed quasar systems H0 = 72+8

−11 km s−1Mpc−1 was obtained.
[17].

Implications of Comparative Lens Model Studies for the Determination
of Cosmological Parameters using Time Delays

The idea to use time delay lenses to measure H0 was first proposed by [20]. Strong gravitational
lenses are elegant geometric consequences of how light travels through the universe while grazing
massive galaxies. When the line of sight alignment is very close, light takes multiple paths
around the curved space of the lens. These paths form multiple images, and the light takes a
different amount of time to travel each path. Light passing closer to the lens is deflected by
a larger angle (increasing its path length) and experiences a greater relativistic time dilation,
further delaying its arrival. If the source flares up, or otherwise varies in intensity (e.g., if it is
an active galactic nucleus, or AGN), we can observe these “time delays” between or among the
images. These time delays are functions of the angular diameter distances between the source,
lens, and observer, as well as the properties of the lens itself [4].

Future large ensembles of time delay lenses have the potential to provide interesting cosmo-
logical constraints complementary to those of other methods. In a flat universe with constant
w including a Planck prior, LSST time delay measurements for ∼ 4, 000 lenses should constrain
the local Hubble constant h to ∼ 0.007 (∼ 1%), Ωde to ∼ 0.005, and w to ∼ 0.026 (all 1-σ
precisions) [4].

To date, most efforts have focused on studies of individual time delay lenses. In theory,
one might be able to control all systematics and constrain H0 unambiguously given a single
“golden lens”. Such a lens would have a sufficiently simple and well-measured geometry. The
closest to a golden lens may be B1608+656. In [26], the authors claim all systematics have been
controlled to 5%. New estimates for H0 based on this lens have been reported [4].

It is reasonable to expect that time delays will be reliably measured for large numbers
of these lenses, whether through repeated observations in surveys (Pan-STARRS and LSST),
auxiliary monitoring, and/or through tailored specific missions such as OMEGA [4].

Historically, analyses of individual lenses have yielded varying answers for H0 This can be
attributed to two factors, both of which, it appears, are now being overcome.

The first factor is simple intrinsic variation in lens properties (especially mass slope) and
environment (lensing contributions from neighboring galaxies). Consider the following estimate
from a simple empirical argument. If statistical uncertainties on H0 decrease as 1/

√
N (as-
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suming systematics can be controlled), and the current uncertainty from 16 lenses is ∼ 10%,
then the uncertainty on a single lens might be ∼ 40%. Thus, assuming h = 0.7 (where
H0 = 100h km s−1 Mpc−1), individual lenses may be expected to yield a wide range of h = 0.42
– 0.98 (1-σ) [4].

The second factor in the wide range of reported H0 values is that different analyses have
assumed different mass profiles to model the lenses, including isothermal, de Vaucouleurs, and
mass follows light. There is substantial weight of evidence that galaxy lenses are roughly
isothermal on average, at least within approximately the scale radius. Theoretical work supports
this idea, showing that a wide range of plausible luminous plus dark matter profiles all combine
to yield roughly an isothermal profile at the Einstein radius, though the slope may deviate from
isothermal beyond that radius [4].

8.6 Conclusions and Future Plans

[4] presented an analysis of the potential of gravitational lens time delays to constrain a broad
range of cosmological parameters. The cosmological constraining power δTC was calculated for
Pan-STARRS 1, LSST, and OMEGA based on expected numbers of lenses (including the quad-
to-double ratio) as well as the expected uncertainties in lens models, photometric redshifts, and
time delays. The Fisher matrix results in that study allow time delay constraints to be easily
combined with and compared to constraints from other methods.

The importance of time delay data to advance the understanding of cosmological parameters
underscores the importance of a further understanding of the calculation of time delays using
strong gravitational lens models.

Future plans include further work with these models. Specifically:

• The two potential model for B1608+656: Vary positions of the potentials to obtain more
constrained models.

• Use different types of potentials to optimize models

• Use the data to calculate H0 from models for B1608+656 and RXJ1131−1231
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dugo. A Bayesian approach to strong lensing modelling of galaxy clusters. New Journal
of Physics, 9:447, December 2007. 279

[7] C. R. Keeton. Computational Methods for Gravitational Lensing. ArXiv Astrophysics
e-prints, February 2001. 279

[8] C. S. Kochanek. What Do Gravitational Lens Time Delays Measure? ApJ, 578:25–32,
October 2002. 272, 289, 290

[9] C. S. Kochanek, B. Mochejska, N. D. Morgan, and K. Z. Stanek. A Simple
Method to Find All Lensed Quasars. ApJ Lett, 637:L73–L76, February 2006. 290

[10] C. S. Kochanek and P. L. Schechter. The Hubble Constant from Gravitational Lens
Time Delays. Measuring and Modeling the Universe, page 117, 2004. xv, 273, 274, 275,
290

[11] L. V. E. Koopmans, T. Treu, C. D. Fassnacht, R. D. Blandford, and G. Surpi.
The Hubble Constant from the Gravitational Lens B1608+656. Astrophys J, 599:70–85,
December 2003. xv, xvi, 277, 279, 280, 282, 283, 284, 285, 290

[12] A. T. Lefor. Comparison of Strong Gravitational Lens Model Software II. HydraLens:
Computer Assisted Generation of Lens Models. Astronomy and Computing, 5:28–34, Au-
gust 2014. 279

292



REFERENCES

[13] A. T. Lefor and T. Futamase. Comparison of Strong Gravitational Lens Model Soft-
ware I. Time delay and mass calculations are sensitive to changes in redshift and are model
dependent. ArXiv e-prints, July 2013. 271, 279

[14] A. T. Lefor, T. Futamase, and M. Akhlaghi. A systematic review of strong gravi-
tational lens modeling software. New Astr Rev, 57:1–13, July 2013. 272

[15] N. D. Morgan, C. S. Kochanek, E. E. Falco, and X. Dai. Time-Delay Measurement
for the Quadruple Lens RX J1131-1231. ArXiv Astrophysics e-prints, May 2006. 278

[16] S. T. Myers, C. D. Fassnacht, S. G. Djorgovski, R. D. Blandford,
K. Matthews, G. Neugebauer, T. J. Pearson, A. C. S. Readhead, J. D. Smith,
D. J. Thompson, D. S. Womble, I. W. A. Browne, P. N. Wilkinson, S. Nair,
N. Jackson, I. A. G. Snellen, G. K. Miley, A. G. de Bruyn, and R. T. Schilizzi.
1608+656: A Quadruple-Lens System Found in the CLASS Gravitational Lens Survey. As-
trophys J Lett, 447:L5, July 1995. 275

[17] M. Oguri. Gravitational Lens Time Delays: A Statistical Assessment of Lens Model
Dependences and Implications for the Global Hubble Constant. ApJ, 660:1–15, May 2007.
290

[18] M. Oguri. The Mass Distribution of SDSS J1004+4112 Revisited. Proceedings Astr Soc
Japan, 62:1017–, August 2010. 279

[19] J Read. Pixelens web page. http://www.qgd.uzh.ch/projects/pixelens/, May 2012.
279

[20] S. Refsdal. On the possibility of determining Hubble’s parameter and the masses of
galaxies from the gravitational lens effect. Monthly Notices Royal Astr Soc, 128:307, 1964.
272, 290

[21] P. Saha and L. L. R. Williams. A Portable Modeler of Lensed Quasars. Astr J,
127:2604–2616, May 2004. 279

[22] D. Sluse, J. Surdej, J.-F. Claeskens, D. Hutsemékers, C. Jean, F. Courbin,
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Chapter 9

Cosmological Parameters from
Strong Gravitational Lens
Models: Studies of GRAMORs

9.1 Purpose and Organization of this Chapter

This study was undertaken to further understand the cluster lens MACSJ1149.5+2223. 1 2This
fascinating lensing cluster is of interest for two major reasons. First, it is currently under intense
study as one of the clusters in the Hubble Frontier Fields project, which means that it is being
modeled by a number of independent modeling groups to obtain a deeper understanding of this
cluster lens.

Second, this cluster contains the largest known lensed images of a single spiral galaxy which
lies close to the center of the cluster (z=0.544). These images cover 150” and are magni-
fied approximately 200 times, which qualify this as the first GRAMOR (GRAvitationally
lensed yet MORphologically regular) image [18]. GRAMORs were first described in 1998,
and offer a unique opportunity for study of cluster lenses [4]. Although described in 1998,
MACSJ1149.5+2223 is the first GRAMOR observed, and offers a way to test the idea that
GRAMORs can be used to constrain cosmological parameters.

In this study, we explore the idea that GRAMORs can be used to constrain cosmological
parameters, specifically the Equation of State parameter, wX . This chapter is organized as
follows. In Section §9.3 we describe the lens models used to evaluate MACSJ1149.5+2223
including one with Lenstool and one with glafic. In Section §9.4 we describe the results obtained
with the lens models. The meaning of the results are described in Section §9.5. Some final
conclusions as well as a discussion of the next steps in this project are made in Section §9.6.

9.2 Introduction

Gravitational lensing provides a powerful tool to compare the predictions of cluster simulations
with observations. Gravitational lensing by galaxy clusters is found at intermediate redshifts,

1The results in this chapter represent a work in progress, which is continuing. Future plans are described in
Section 9.6.

2Results from this chapter were presented at the Yale Frontier Fields Workshop, Yale University, New Haven
CT USA, Nov 12-14 2014, http://www.astro.yale.edu/yale_frontier_workshop/
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including the most distant cluster discovered by Zwicky, Cl0024+17 (z = 0.39), and one of the
richest clusters discovered by Abell, A1689 (z = 0.18), with the largest known Einstein ring,
r ∼ 45” [18]. For such clusters many tens of multiply lensed images have been identified in
deep Hubble images, leading to accurately measured central surface mass distributions. The
Einstein radii of these massive clusters are found to be larger than predicted in the context
of the standard ΛCDM cosmological model. This discrepancy is empirically supported by the
surprisingly concentrated mass profiles measured for such clusters, when combining the inner
strong lensing with the outer weak lensing signal boosting the critical radius at a fixed virial
mass. The large number of giant arcs may help constrain the total lensing cross-section and is
considered by some to be at odds with standard ΛCDM [18].

The magnification generated by massive clusters has consistently led to the discovery of the
highest redshift galaxies, with the current record standing at z ∼ 9.6 for a galaxy behind A1689
and magnified by nearly a factor of ∼ 10, further discussed below in Section 9.2. Although
lens magnification reduces the accessible area of the source plane it enhances the flux of faint
galaxies with a net positive effect for the most distant galaxies lying on the steep exponential
tail of the luminosity function. Lensing provides additional spatial resolution by stretching
images, producing spatially resolved details.

GRAMORs

One of the most powerful results from studies of strong gravitational lensing is the ability to
determine the values of cosmological parameters. A GRAMOR image was discovered in the
cluster MACS J1149.5+2223 at redshift 0.544 [18]. The GRAMOR image is a spiral galaxy at
redshift 1.4906 with area 55�” and is observed near the center of the cluster as one of multiple
images. The area of all lensed images covers 150�” with a magnification estimated to be ∼200
in total. Mass reconstruction using the multiple images showed a very flat mass profile [18].
This is consistent with the theoretical prediction that a mass distribution with a flat central
core can easily produce undistorted images [16].

The other reason is the expectation that the statistics of GRAMORs will depend strongly
on cosmological parameters. Lens statistics depends in general on the cosmological parameters,
in particular the existence of dark energy [3; 4; 5]. Conditions for the formation of GRAMORs
is highly restricted compared with giant luminous arcs, and thus the appropriate combination
of the cosmological parameters will be more restrictive.

The Hubble Frontier Fields Project

Extending over three Hubble Space Telescope (HST) cycles, the Hubble Frontier Fields (HFF)
initiative constitutes the largest commitment of HST time for the exploration of the distant
Universe through gravitational lensing by massive galaxy clusters. The power of clusters as
well-calibrated telescopes for studies of the distant Universe has become fully appreciated only
in recent years. This important next step forward is now being taken in the form of the
Hubble Frontier Fields (HFF), a recent initiative launched by the Space Telescope Science
Institute. As part of the preparations for these unprecedented observations of lensing clusters,
five independent teams have analysed existing imaging and spectroscopic data to provide the
community with accurate mass models on each cluster [14].

The Hubble Frontier Fields is a revolutionary project to model six galaxy clusters [6]. These
clusters were carefully selected because of their unique features. It is expected that gaining an
understanding of these clusters will significantly advance our understanding of the Universe.
Of great significance is that these six clusters are being modeled by multiple investigators,
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each using different techniques including both LTM and non-LTM models. These six clusters
include Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745, MACS J1149.5+2223, Abell
S1063, and Abell 370. The results of these extensive modeling efforts are immediately made
public through the Hubble Frontier Fields web site.

Strong-lensing models, as well as mass and magnification maps, for the cores of the six HST
Frontier Fields galaxy clusters are available on the web site [6]. The parametric lens models
are constrained by the locations and redshifts of multiple image systems of lensed background
galaxies. The studies use a combination of photometric redshifts and spectroscopic redshifts
of the lensed background sources obtained by HFF investigators [7] (for Abell 2744 and Abell
S1063), collected from the literature, or provided by the lensing community.

Using these data, the HFF investigators (1) compare the derived mass distribution of each
cluster to its light distribution, (2) quantify the cumulative magnification power of the HFF
clusters, (3) describe how our models can be used to estimate the magnification and image
multiplicity of lensed background sources at all redshifts and at any position within the cluster
cores, and (4) discuss systematic effects and caveats resulting from our modeling methods.
These investigators specifically investigate the effect of the use of spectroscopic and photometric
redshift constraints on the uncertainties of the resulting models.

In initial results, the investigators find that the photometric redshift estimates of lensed
galaxies are generally in excellent agreement with spectroscopic redshifts, where available.
However, the flexibility associated with relaxed redshift priors may cause the complexity of
large-scale structure that is needed to account for the lensing signal to be underestimated.
These findings underline the importance of spectroscopic arc redshifts, or tight photometric
redshift constraints, for high precision lens models.

Previous Lens Models of MACSJ1149.5

Below are summaries of the four lens models of MACSJ1149.5+2223 that have been previously
published and used in studies. The descriptions of the various lens models are obtained from
each respective publication.
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Figure 9.1: Geometry of the cluster lens and the sources S1, S3 and S8 and schematic light
paths for sources S1 and S3 as an example. The lensing effect of the source S1 of the main
image system 1 is shown, in the reconstruction of all other multiple images whose sources are at
higher redshift. A,B,C denote individually modelled mass components in the cluster, G scaled
galaxy mass contributions. From [13]

ZB Lens Model

There have been a number of lens model studies to date of MACSJ1149.5. The first model
was that reported by Zitrin and Broadhurst [18] in their initial description of this fascinating
lensing cluster. They apply their well-tested approach to lens modeling, which had been applied
successfully to A1689 and Cl0024, uncovering unprecedentedly large numbers of multiply lensed
images [20]. The full details of this approach can be found in previous papers from this group.
Briefly, the basic assumption adopted is that mass approximately traces light, so that the
photometry of the red cluster member galaxies is the starting point for our model.

Cluster member galaxies are identified as lying close to the cluster sequence by photometry.
They approximate the large-scale distribution of matter by assigning a power-law mass profile
to each galaxy, the sum of which is then smoothed. The degree of smoothing and the index of
the power law are the most important free parameters. A worthwhile improvement in fitting the
location of the lensed images is generally found by expanding to first order the gravitational
potential of the smooth component, equivalent to a coherent shear, where the direction of
the shear and its amplitude are free, allowing for some flexibility in the relation between the
distribution of DM and the distribution of galaxies which cannot be expected to trace each
other in detail.

All well-detected candidate lensed galaxies are then lensed back to the source plane using the
derived deflection field, and then relens this source plane to predict the detailed appearance and
location of additional counter images, which may then be identified in the data by morphology,
internal structure, and color. The fit is assessed by the rms uncertainty in the image plane.
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Importantly, this image-plane minimization does not suffer from the well-known bias in-
volved with source plane minimization, where solutions are biased by minimal scatter toward
shallow mass profiles with correspondingly higher magnification. The model is successively re-
fined as additional sets of multiple images are identified and then incorporated to improve the
model.

Figure 9.2: Model of MACSJ1149 by [18]. Large scale view of the multiply lensed galaxies
identified by the model. In addition to the large spiral galaxy system 1, many other fainter sets
of multiply lensed galaxies are uncovered by our model. The white curve overlaid shows the
tangential critical curve corresponding to the distance of system 1. The larger critical curve
overlaid in blue corresponds to the average distance of the fainter systems, passing through
close pairs of lensed images in systems 2 and 3. This large scale elongated “Einstein ring”
encloses a very large critically lensed region equivalent to 170 kpc in radius. For this cluster
one arcsecond corresponds to 6.4 kpc/h70, with the standard cosmology.

In the results of their analysis, the derived surface mass distribution is found to be very
nearly uniform within the central 200kpc, with very little uncertainty, as is expected given
the very large and undistorted images observed. The value of the uniform surface mass in
this central region is the critical value for generating multiple images, about 0.5g/cm2 at the
estimated redshift for the source.

The total magnification of the spiral galaxy derived is about 200, when summed over all
five images, forming the largest known images of any lensed source, and is independent of the
unknown source redshift, and given by the ratio of the area of images divided by the area
subtended by the deprojected source.

Analysis of this model concludes that the unusually large and undistorted lensed images of
a spiral galaxy uncovered requires a nearly uniform distribution of matter within the central
∼ 200kpc region covered by these images. The formation of multiple images requires the value
of the central surface density to be nearly equal to the critical surface density for lensing.

Finally, they conclude that this cluster is unique in having near uniform density in projection,
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at the critical level, thereby maximizing gravitational lens magnification. They calculate that
the total area of sky exceeding a magnification, µ > 10, is ∼ 2.8arcmin2 corresponding to the
current high-redshift limit of z ∼ 8, which is over twice the equivalent area calculated for other
massive clusters such as A1689 and Cl0024. This extreme magnification together with the lack
of image distortion makes MACS J1149.5+2223 the most powerful known lens for accessing
faint galaxies in the early universe. The power of MACSJ1149.5 was recently harnessed exactly
as stated here to observe an object at z ∼ 9.6 (see Section 9.2).

In summary, this model assumes that the mass approximately follows the light. The model
consists of a superposition of power-law mass profiles for each galaxy in the cluster. As con-
straints, this model uses the multiple image positions from strong lensing. However, many of the
details, are only reproduced approximately. Under the assumption that the BCG consists only
of stellar mass, this models infers a nearly uniform DM surface mass density out to ∼ 200kpc.

A followup model of this system was published by [19]. This newer analysis took into
account the spectroscopic redshifts and the presence of faint lensed galaxies. The published
spectroscopic redshifts [15] were in full agreement with the predictions of their previous analysis.
They assumed z ' 1.5 for the spiral-galaxy (system 1), and z ' 2 for the outer blue images
(system 3), which were later verified to be at z = 1.49 and z = 1.89, respectively. Many other
faint lensed galaxies are also visible, most of which were securely identified as belonging to
10 sets of multiply-lensed background galaxies. They also found that the critical curves for a
source redshift of z ' 2 enclose a mass of 1.71±0.20×1014M�, and have an equivalent Einstein
radius of 27± 3arcsec.

Smith Lens Model

The second description of a lens model was reported by [15]. This model was based on their
observational data of MACSJ1149.5, and was developed using Lenstool. Their goal was to con-
strain the shape of the mass distribution in the cluster core. They adopted stringent criteria
for the inclusion of multiple-image systems as constraints on the lens model to guard against
detection of spurious features in the mass distribution. To be included, a galaxy or morphologi-
cal feature within a galaxy must be identified a minimum of three times, and the morphological
and color match between the multiple images of the galaxy/feature must be unambiguous.

The mass distribution was initially parameterized as a superposition of 21 cluster galaxies,
plus five cluster-scale components (which they referred to as halos) centered on the bright-
est galaxy in each of the light concentrations. All galaxies and halos were parameterized as
smoothly truncated pseudo-isothermal elliptical mass distributions (PIEMD). This is the same
parameterization we adopted in the model used here for the studies of constraining cosmological
parameters.
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Figure 9.3: Model of MACSJ1149 by [15]. The central ∼ 80′′ × 80′′ of the cluster showing the
multiple image systems discussed in the text. The cyan (outer), magenta and yellow curves
show the z = 1.491, z = 1.894 and z = 2.497 tangential critical curves respectively. The inner
cyan curve shows the radial critical curve for z = 1.491.

They then used the Bayesian evidence, i.e., the probability of the model given the data and
the choice of the PIEMD parameterization, to determine whether the additional complexity of
the five halo model is justified by the data. The result is summarized in Table 1 of the paper
[15]. The probability of the four halo model exceeds that of the five halo model by a factor of
20. They therefore conclude that halo C is not justified by the data. They then tested whether
even simpler models offer more probable descriptions of the data. In summary, models with ¡4
halos are less probable than the four halo model by 12-107 orders of magnitude, and therefore
adopted the four halo model as the fiducial model, and list its parameters in Table 1 of the
paper.

In summary, this model is also based on the image positions of multiply lensed bright clumps.
However, it makes use of a larger number of bright clumps, hence a significantly larger number
of constraints. The reconstructed image positions have a root mean square (rms) deviation
from the observed positions of 0.5 arcsec. This model rules out the flat central profile proposed
by [18].

Rau Lens Model

There is a third model described by Rau and coworkers, who used two different modeling
approaches [13]. This work attempts to improve on the models described above by [18] and
[15]. First, they use a more sophisticated model, by modeling all five galaxies that are close
to multiply lensed images and close to the cluster centre using individual mass profiles. This
is crucial for reproducing the morphology of the lensed image of the main system. Secondly,
they identify twice as many positional constraints as previously used. These include multiply-
imaged clumps that are part of two Einstein rings formed by two cluster galaxies, as well as
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details of the nonlinear configuration of the image covering the centre of the cluster. With this
increased number of constraints, they can place tight constraints on the slope of the total mass
density profile. Thirdly, they use a more sophisticated gravitational lens modeling method
that was originally developed and applied on galaxy scales. In this method, they use the
information provided by the positions of multiply-lensed images along with the full surface
brightness distribution of the images.

Since this lens modeling technique makes use of both the positions of the lensed images and
their surface brightness distribution, it is very important to minimize the light contamination
from the lensing galaxies. This was an important part of the observational portion of this paper.

Following the ΛCDM paradigm, the parametric mass model considered in this paper includes
a central dark matter halo for the cluster A, five central mass components for the BCG and
the galaxies G1, G2, G3 and G4, one mass component for a massive galaxy at B, and one for a
group of smaller galaxies at C. The choice for the positions of A, B and C closely followed the
ones chosen in [15] (A, B and D respectively, in their paper). They also stress that [15] did not
explicitly include the galaxies G1 and G2 that will prove to be important in the detailed mass
reconstruction of this cluster.

Figure 9.4: Model of MACSJ1149 by [13]. HST F814W/F606W/F555W RGB colour im-
age from the Cluster Lensing And Supernova survey with Hubble (CLASH) observations of
MACSJ1149 (north is up and east is left). Overlaid in white is the critical curve from the best
model, for a source redshift of zs = 1.49 and a cluster redshift of zl = 0.544. The center of the
reconstructed DM halo A is ∼ 1.5arcsec left of the BCG. There are three separate main images
labelled 1. The detailed morphology of the central image, 1.3, is more complicated, parts have
a seven fold image configuration.

They model the mass distribution of MACS J1149.5+2223 with two different methods. They
first build a model using the lensed image positions and constraints described, then, refine this
model with a hybrid model that includes both the position constraints plus the full image
surface brightness distribution.
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The hybrid modeling technique includes all the positional constraints plus the full surface
brightness distribution of image 1. First, they evaluate the quality of the results of this mod-
eling in terms of the image positions. The rms distances of the separation of all, and central
constraints are 0.94 and 0.063 arcsec, respectively, the means are 0.32 and 0.05 respectively.

Due to the increased number of constraints, the hybrid modeling technique puts more em-
phasis on the accurate reconstruction of the surface brightness distribution of the central image
1. Therefore, the respective rms is improved to a level comparable to the resolution limit of
the CLASH data. Instead, the outer constraints are weighted less and consequently the image
positions of the other images are reproduced less perfectly. As a consequence, the reconstruc-
tion of all multiple images is worse in terms of the total rms. However, the model based only
on positions performs worse for the central image: the solution is usable as a starting point for
the hybrid model, but it does not reproduce the image surface brightness distribution in detail.

These authors present a new and detailed model for the centre of the galaxy cluster MACS
J1149.5+2223. In particular, they identified more than twice as many constraints as previously
used. They also used a multiple lens plane algorithm in order to properly include the lensing
contribution of the mass associated with the source S1. Finally, with a hybrid modeling ap-
proach, they performed the first detailed reconstruction of the surface brightness distribution
of the system 1.

These results can be summarized as follows. These models recovered the surface brightness
distribution of system 1 with a precision close to the noise level of the HST CLASH observations.
Using a hybrid modeling approach, they have derived posterior probability density distributions
of the main model parameters that are significantly tighter than those derived with the simpler
position modeling. By using new constraints, they constrained three important details of the
mass distribution: the individual mass distributions of the two cluster galaxies G1 and G2, and
the total mass distribution of the cluster at the innermost radii. These results recovered the
2D logarithmic slopes for galaxies G1 and G2 measured at a distance corresponding to their
respective Einstein radii in the cluster. The mass model suggests a large (∼ 12 arcsec) core in
the cluster DM distribution and that the total mass profile at the very centre of the cluster is
dominated by the BCG.

Johnson Lens Model

The fourth paper describing a lens model for MACSJ1149.5+2223 is by Johnson and colleagues
who describe the model used for the Hubble Frontier Fields project [7]. They constraints from
the strongly lensed image lists in previous papers [15; 17; 18] supplemented by unpublished
identifications. They then consolidate all lists of images. We

fix the redshifts of systems 1, 2, and 3 to the spectroscopic redshifts reported by [15].
Excluding a mis-identified image as a constraint, the model presented predicts a redshift of
z > 3 for the two outer-most images of this image set, in stark contrast to the photometric
estimate of z ∼ 1. The nature of this system may be better understood with the full HFF depth
and spectroscopic confirmation.

The lens model of MACS J1149.5+2223 at z=0.543 consists of two dark matter halos, one
lying close to the BCG and the the other located near an overdensity of cluster galaxies 100
arctic north of the cluster center. We allow only the position, velocity dispersion, and cut radius
of the second halo to vary in the model. We include the velocity dispersion and cut radii of the
BCG and cluster member galaxy as free parameters.

They also include a galaxy-scale halo north of the cluster accounting for the lensing of image
systems 9 and 10, due to the galaxy-galaxy lensing boosted by the mass from the dark matter
halo of the cluster. Since neither of these two systems have spectroscopic redshifts, there are
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insufficient constraints to attempt to model both the individual galaxy plus other substructure
in that vicinity, which is essentially isolated from the rest of the cluster. Instead, they use a
single halo with position priors matching a galaxy. The model requires an unrealistically high
ellipticity, indicating that more substructure may be needed; we thus fix it to e=0.8 and leave
the position angle, velocity dispersion, and cut radius as free parameters. The necessity of
optimizing this halo in the model far away from the majority of modeling constraints suggests
the presence of significant substructure in part of the lens plane. The critical curves, image
constraints, mass distribution, and magnification map for this cluster are then shown in Figure
4 in the paper.

Figure 9.5: Top: False color image of MACSJ1149 from ACS imaging (red, F814W; green,
F606W; blue, F435W). From [7].

The authors compute a cylindrical mass at the core of MACSJ1149 of M(r < 500kpc) =
5.98+0.59

−0.25 × 1014 M�. They then directly compare this value with the model by [15], who
found M(r < 500kpc) = 6.7 ± 0.4 × 1014 M�. In fact, the [15] model and the Johnson model
were constructed independently with Lenstool and resulted in similar locations of cluster halo
components in the lens plane. However, the previous model was built with fewer identified image
systems. This model includes 35 images from 12 uniques sources, whereas [15] identified 19
images from 6 unique, multiply imaged sources. Johnson et al. found M(< crit) = 1.12+0.01

−0.04 ×
1014 M� for the mass enclosed by the z = 2 critical curve (0.40+0.01

−0.02 square arcmin), which does
not agree with [19], who found that M(< crit) = 1.71± 0.20× 1014 M� (0.63 square arcmin).
They also note that the [19] model does again not include any spectroscopic or photometric
redshifts, have a different set of multiple image identifications, and do not treat their image
redshift constraints as free parameters. The reader is referred to the discussion in [15], where
they rule out the inner slope of the surface mass density profile of the [19] model by 7σ. This
important result demonstrates how different modeling inputs can result in significantly different
lens models.
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MACSJ1149 as a Cosmic Telescope

Further understanding of this interesting lensing cluster is prompted for several reasons. Of
greatest interest is that this cluster was used as a ”cosmic telescope” to realize one of the great
potentials of gravitational lensing. Gravitational lensing by galaxy clusters allows the detection
of high-redshift galaxies fainter than what otherwise could be found in the deepest images of the
sky. In a recent report, Zheng and colleagues reported imaging of a gravitationally magnified
galaxy from the early Universe, at a redshift of z = 9.6± 0.2 (that is, a cosmic age of 490± 15
million years, or 3.6 per cent of the age of the Universe) [17]. They estimate that it formed less
than 200 million years after the Big Bang, implying a formation redshift of less than 14. Given
the small sky area that their observations cover, faint galaxies seem to be abundant at such a
young cosmic age, suggesting that they may be the dominant source for the early re-ionization
of the intergalactic medium.

Constraining the Dark Energy Equation of State

The use of strong lensing by galaxy clusters to constrain the dark energy equation of state
has been investigated [2]. The cores of massive clusters often contain several multiply imaged
systems of background galaxies at different redshifts. The locations of lensed images can be
used to constrain cosmological parameters due to their dependence on the ratio of angular
diameter distances. These authors use a series of simulations, and conclude that cosmography
with a set of well studied cluster lenses may provide a powerful complementary probe of the
dark energy equation of state.

A full discussion of image locations and the dark energy equation of state is given in [2].
Part of that discussion is shown here. We consider a constant equation of state parameter wX
because that is how this is specified in the Lenstool and glafic codes. The lens equation is given
by

~βi = ~θi −
2

c2
Dds

DdDs
∇φ(~θi), (9.1)

where the angular coordinates of the source i and its corresponding image(s) are given by ~βi
and ~θi respectively, and φ is the projected Newtonian potential of the lens. For the parametric
models used in this work, the potential is typically normalized by the associated central velocity
dispersion, σv. The subscripts d, and s correspond to the distances to the lens (deflector) and
source. Dab is defined as the angular diameter distance from za to zb. In the case of a flat,
two-component universe, Dab is given by

D(za, zb) =
c/H0

1 + zb

∫ zb

za

dz
(
Ωm(1 + z)3 + ΩX(z)

)−1/2
, (9.2)

where H0 is the present day Hubble constant, c is the speed of light, and Ωm is the present
day matter density normalized by the critical density. The function ΩX(z) is the contribution
from dark energy and its form depends on the choice of parameterization. Here we consider
a constant equation of state, wx. However, it can also be parameterized as the widely used
Chevallier, Polarski, and Linder (CPL) parameterization, wx(z) = w0 +waz/(1 + z) [2]. In this
case, ΩX(z) is given by

ΩX(z) = ΩX(1 + z)3(1+w0+wa) exp

[
−3waz

1 + z

]
. (9.3)

.
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These authors use a very innovative simulation method to show that CSL cosmography is
not limited to a particular type of cluster mass profile. A sample result is shown in Figure 9.6,
which shows that the results are similar for both NFW and PIEMD potentials.

Although they have used PIEMD lenses exclusively, the results are not dependent upon this
choice of profile. To illustrate this point, they then use the Navarro-Frenk-White profile, which
has a cusp with the density approaching r−1 in the inner regions, and transits to r−3 in the
outer regions beyond the scale radius. This profile is significantly different from the PIEMD
case.

For comparison, they then generate elliptical PIEMD and NFW lenses at a redshift of
zl = 0.21 with equal masses of 1.6 × 1015 M�. The former has a velocity dispersion of 1300
km/s, core radius of 41 kpc and scale radius of 900 kpc. The latter has a concentration parameter
c = 4.5 and a scale radius rs = 495 kpc. Both have ellipticity parameters of 0.3. Since our
purpose in this section is solely to compare different cluster-scale mass profiles, they neglect the
role of sub-structure in what follows. They then lens a simulated source distribution for both
cases and use the same number of images as constraints for parameter recovery, and run the
MCMC sampler using the input models with flat priors. In the NFW case all parameters are
free. In the PIEMD case, rcore is fixed to the input value so that the number of free parameters
is the same in the two cases. Figure 9.6 compares the results from both cases. The solid and
dashed contours show the PIEMD and NFW constraints respectively. Note the similarity of the
results, indicating that a sample of NFW cluster lenses would generally yield similar constraints
to those with the PIEMD cluster lenses.
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Figure 9.6: An illustration that similar dark energy constraints may be obtained from clusters
with very different mass profiles. The solid and dashed contours correspond to PIEMD and
NFW lenses respectively. For both cases the authors use mock catalogs of 21 images and assume
only observational errors of 0.1′′ for each image. From [2]

9.3 Methods

The purpose of this study is to examine MACSJ1149.5+2223 as a way of constraining cosmo-
logical parameters. There is no attempt to repeat the work being done by the Frontier Fields
project, which is focused on developing and comparing multiple lens models, including both
LTM and non-LTM models. This study has four basic components. We will begin with validat-
ing lens models of MACSJ1149.5+2223 using both Lenstool and glafic. Second, these models
will be investigated to see how well they can constrain cosmological parameters. Specifically,
we will evaluate the Equation of State parameter, wX in the plane of wX vs. Ωm. Third, after
having robust models, the models will be modified to reflect the presence of a GRAMOR. Last,
they will again be evaluated to see how well they constrain cosmological parameters. There are
no previous studies looking at MACSJ1149.5 to constrain cosmologic parameters.

307



MACSJ1149.5+2223 Lens Models

The image catalog used in this model for MACSJ1149.5+2223 was obtained from the Hubble
Frontier Fields Web Site [6]. The catalog of images was published by [10] as part of the CLASH
program. The image catalog contains a total of 38 images in 13 families. The redshifts used
are from [10]. Three of the images have published spectroscopic redshifts. Models in this
chapter were developed using both Lenstool [8] and glafic [12]. Both of these codes are LTM
(parametric) in their modeling methodology. All models in this study use a Ωm = 0.3, ΩΛ = 0.7,
H0 = 70 km s−1 cosmology.

Lenstool Model

The best-fit model for MACSJ1149 consists of two large-scale potentials (one with velocity
dispersion in excess of 1000 km/s and another with velocity dispersion in excess of 600 km/s)
and three potentials with velocity dispersions in excess of 300 km/s to model the central region.
In addition it includes the potentials of 217 contributing cluster galaxies. All potentials are
modeled with Pseudo Isothermal Elliptical Mass Distribution (PIEMD) profiles. This best-fit
model for MACSJ1149 includes 13 families of multiple images of which three have published
spectroscopic redshifts.

The lens model includes both cluster-scale halos and halos assigned to red-sequence cluster
member galaxies, all represented by pseudo-isothermal elliptical mass distributions [8]. The
PIEMD is parameterized by a two-dimensional location in the lens plane, a lens plane redshift,
ellipticity and position angle, a fiducial velocity dispersion, core radius, and cut radius. The
cut radius for these cluster-scale halos is much larger than the strong-lensing regime (< 100′′

of fiducial center of cluster) and cannot be constrained in the model, so we fix the cut radius
arbitrarily at 1500 kpc. Unless otherwise noted below, all of the other parameters of these
cluster-scale halos are left as free parameters.

The model used with source-plane optimization is shown in Figure 9.7 with images, caustic
and critical lines. This model is quite comparable to the four published lens models described
above in the Introduction. This model was obtained from Limousine, and was then modified
with the image positions from Merten [10].

MACSJ1149.5+2223 glafic Model

The glafic model used in this initial study uses a NFW potential, as well as a Jaffe potential.
There is added external convergence / shear as well as a sum of Jaffe potentials used to represent
the other galaxies. This was done in a manner similar to the model used by Oguri for SDSSJ1004
[12] as an initial guess for the model. Parameters were optimized and the model improved in
an iterative manner.

The final glafic model is shown in Figure 9.8 with images and critical lines. This model is
not quite as accurate as the Lenstool model used in this study, and does not compare as well
to the four published models described in the Introduction. Improvements in this model will
be necessary in the next phase of this project.

Evaluating the Equation of State Parameter

In order to evaluate constraints on the dark energy equation of state parameter, we perform
a series of calculations with models using a range of values of wX from -2.0 to 0.0 in steps of
0.1 (21 values) and at each of these values we also vary Ωm from 0.0 to 1.0 in steps of 0.1 (11
values). The χ2 values for these 231 results are then plotted on a contour plot and evaluated
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at the 95% and 90% confidence levels. The values of wX and Ωm are set in the models for each
run with both Lenstool and glafic.

Representation of the GRAMOR

Although GRAMORs were described some time ago [4], the first GRAMOR was observed in
2009 [18]. There have been no previous modeling studies to represent a GRAMOR with a
strong lens model code, or to use it to constrain the values of cosmological parameters. There
is no existing approach to this aspect of gravitational lens modeling.

Given the lack of an existing method, we will use two different methods in this study. In the
Lenstool model, we will add additional images at the same location as the GRAMOR image
(1.1) to represent a magnified image. In the glafic model, one can specify the flux for an image,
so this will be varied to represent the magnified image.

9.4 Results

The result of this study will eventually include four parts including evaluation of the lens
models with Lenstool (completed) and glafic (completed), constraining the equation of state
with Lenstool (completed) and glafic (pending), representation of a GRAMOR in Lenstool
(pending) and glafic (pending), and constraining the equation of state including a GRAMOR
with Lenstool (pending) and glafic (pending).

Evaluation of Lens Models

The lens models are evaluated in comparison to the previously published models as discussed
above in the Introduction. Other parameters include the χ2 and the image rms value.

For each of the observed image systems with n images, we determine the goodness of fit for
a particular set of model parameters using a source plane χ2,

χ2 =

n∑
i=1

[
M
(
~βi −

〈
~β
〉)]2

σ2
i

, (9.4)

where ~βi is the source plane position corresponding to image i,
〈
~β
〉

is the family barycenter,

M is the magnification tensor, and σi is the total (observational and modeling) error. The total
χ2 was obtained by summing over families and was used in conjunction with a Markov Chain
Monte Carlo (MCMC) sampler (Lenstool) to probe the posterior probability density function
(PDF) as a function of all relevant model parameters [8] (SOM). The key degeneracies with
cosmological parameters for this technique arise from the velocity dispersions, ellipticity and
core radii of the large scale mass clumps in the model [9].

The fit is assessed by the RMS uncertainty in the image plane:

RMS2
images =

∑
i

((x
′

i − xi)2 + (y
′

i − yi)2) / Nimages, (9.5)

where x
′

i and y
′

i are the locations given by the model, and xi and yi are the real images location,
and the sum is over all Nimages images. The best-fit solution is obtained by the minimum RMS,
and the uncertainties are determined by the location of predicted images in the source plane
[19].
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MACSJ1149.5+2223 Lenstool Model

The images, critical lines and caustics are shown in Figure 9.7. This model is qualitatively
similar to the four published models above, described in the Introduction. The χ2 for the best
model, with image-plane optimization, is 41.90 with an image rms of 0.48′′. Using source-plane
optimization, the χ2 value is 107.29, and the rms is 1.851′′.

Figure 9.7: The Lenstool model of MACSJ1149.5+2223 with source plane optimization

The source-plane optimization model was used in this study to examine the equation of
state parameter wX . Th choice of this model was based on computational requirements, and
has been used by many authors in this area. This is further discussed below in Section 9.5.
We acknowledge the fact that the χ2 value is higher for this model but based on a partial
comparison of results, the contour curve for wX vs. Ωm will not be any different.
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MACSJ1149.5+2223 glafic Model

Figure 9.8: The glafic model of MACSJ1149.5+2223 with source plane optimization

Constraining the Equation of State

The method used to examine constraints on the Equation of State parameter is described above
in 9.3. Briefly, we varied wX and Ωm and examined the contour plot of χ2. The results for the
Lenstool model are shown here. Results with the glafic model are pending future studies.

Lenstool: Constraining the Equation of State

The variation in χ2 in the wX - Ωm plane is shown in Figure 9.9.
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Figure 9.9: Lenstool: wX varies with Ωm

glafic: Constraining the Equation of State

Using the glafic model described above, we evaluated χ2 throughout the wX and Ωm plane as
described. However, there was no variation seen in the values of χ2 at any point. This can
only be interpreted to mean that the model as developed is inadequate and another model is
necessary.

This result is pending future studies with a new lens model, and will be conducted in a
manner similar to that used for Lenstool.

Representation of a GRAMOR in the Lens Model

This component of the project is still pending, and will proceed using bot the Lenstool and
glafic models for MACSJ1149.5. The method to be used for this is described above in Section
9.3.

Constraining the Equation of State: GRAMOR

This component of the project is still pending, and will proceed using bot the Lenstool and
glafic models for MACSJ1149.5. The method to be used for this is described above in Sections
9.3 and 9.3.

9.5 Discussion

Although it was recognized that distant clusters of galaxies are able to produce gravitationally
lensed, highly magnified, yet morphologically regular images (GRAMORs) of distant galaxies
[5; 16] some time ago, the first such image was observed in 2009 [18]. Since GRAMORs have a
regular morphology, they are not easily identified, as in the case of giant arcs. [16] pointed out

312



that the predicted number of GRAMORs is expected to be comparable to that of giant arcs.
They examined the statistical properties of GRAMORs by using two models of cluster mass
profile, an isothermal sphere with a core and a universal dark matter halo profile and showed
that a relative frequency of GRAMORs to giant arcs can be used to probe the density profile of
clusters of galaxies. [5] show the use of GRAMORs in restricting the value of the cosmological
constant.

Study of Abell1689 to Constrain Cosmologic Paramaters

There have been extensive studies of Abell1689 to constrain cosmological parameters [9]. The
results of this are shown in Figure 9.10. In this study, the authors used a simplified model with
a total of 21 free parameters, with two large scale potentials and a galaxy-scale potential for
the central brightest cluster galaxy. These authors solved the lens equation in the source plane
because it is computationally efficient to do so. Inverting in the lens plane provides additional
information, but was felt to be computationally prohibitive.

Figure 9.10: Constraint of wX and Ωm in A1689 in the study of [9]

Using GRAMORs to Constrain Cosmologic Parameters

A recent study from our own research group examined the lens statistics for GRAMORs [11].
They calculated the expected number distribution of GRAMORs as a function of source redshift
changing several conditions. These results showed that a cluster with a flat core produces more
GRAMORs which is consistent with previous studies. They also considered various values of
lens redshift and found that the distribution has a sharp peak in most cases. In particular
the peak becomes more sharp for clusters with a higher redshift. They then showed that the
number of GRAMORs is expected to be ∼ 2.1 per cluster in the most likely case, which means
that a sufficient number of GRAMORs can be expected to be observed based on the statistics
if we perform a systematic survey.
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They also found that the number of GRAMORs depends strongly on the cosmological pa-
rameters, which is a unique property of GRAMORs. In the case of an arc, the PDF doesn’t
have such a big difference comparing two models. This is caused by the behavior of the param-
eter which represents the magnification of lensed images. The peak position in the PDF is at
about z = 1.6 for the ΛCDM universe which is close to the observed value ofzs = 1.4906, while
the PDF has a peak at about zs = 2 in another model. It is rather surprising that only one
system MACSJ1149.5+2223 and one image can give us a strong constraint on the existence of
the cosmological constant [11].

Source Plane Optimization

It is acknowledged that optimization in the image plane may be superior is some instances. De-
spite this, optimization in the source plane is commonly used. In a study of SDSSJ1004+4112,
Oguri used glafic to model that system. They employed a standard χ2 minimization to find
the best fit mass model. They used a downhill simplex method to find a minimum. To speed
up the calculations, χ2 was estimated in the source plane, which was found to be sufficiently
accurate for their purposes [12].

Strong lens modeling with the standard χ2 minimization is sometimes time-consuming,
especially when many lens potential components and images are involved. One way to overcome
this problem is to evaluate χ2 in the source plane instead of the image plane. Although the
source plane χ2 involves approximations (given that observational measurements are always
made in the image plane) and therefore is less accurate than the image plane χ2, it allows one
to estimate χ2 without solving the nonlinear lens equation. This technique has been adopted
by several authors, although the implementations were quite different for different papers. The
technique used by Oguri is thoroughly described in Appendix B [12].

Figure 9.11: Original Lenstool model of MACSJ1149.5+2223 with image plane optimization

Source plane optimization was also used in the study of constraining cosmologic parameters
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using a study of Abell1689 by [9]. They solved the lens equation in the source plane for
Abell 1689 because it is computationally efficient. Inverting in the lens (image) plane provides
additional information but is computationally prohibitive at present. Despite this, they had
excellent results in constraining cosmological parameters in the wX − Ωm plane.

In another study, of COSMOS J095930+023427, by [1], they used optimization in the source
plane. Optimization of the lens models was performed by means of Lenstool, adopting a
Bayesian approach to strong lensing modeling. These investigators chose to use the source
plane minimization algorithm for higher accuracy. In Lenstool, the positions of the images are
the main input observational data to constrain the lens model parameters.

The Lenstool model with image plane optimization for the model in this study is shown in
Figure 9.11, which can be compared to the models shown in Figure 9.7. Qualitatively, these
two models appear quite similar. Quantitatively, they are somewhat different. The rms for the
source plane optimized model is 1.783 arcsec. The minimum χ2 with this model is 91.6. The
rms for the image plane optimized model is 0.48 arcsec. The minimum χ2 for this model is
41.9. Therefore, the model which is optimized in the image plane, is indeed somewhat better
than the model optimized in the source plane, from a quantitative standpoint.

Lens Model Used in this Study

The Lenstool model adopted in this study is slightly different from the other models used, in
that we use a LTM (parametric) model for all five galaxies as separate potentials, but we also
use all 38 images in 13 families as described by Merten [10]. The initial model as obtained from
Limousin with image plane optimization, has a χ2 value of 41.9 and an rms of 0.48′′ which is
an excellent model. The model we used was slightly different, in that we used source plane
optimization and a slightly different image catalog. The chi2 for this model is 91.6 and the rms
is 1.783. This model is not quite as close as the original model. However, due to computing
limitations, source plane optimization was necessary. In addition, based on a limited test
evaluation, the overall shape of the Ωm - wX plane is the same, giving similar constraints on
cosmological parameters. This supports the use of source plane optimization for this study.
The Lenstool model seems acceptable for use in this study.

The glafic model developed so far is not quite as robust as the Lenstool model. The χ2 value
is 66.3, and the rms is 0.92′′. This model uses the same image catalog used in our Lenstool
model, as described above. This was also done with source plane optimization. In the next
phase of this project, we will use a different set of lens potentials to model J1149.5 with glafic.

Constraining the Equation of State

It is extremely interesting to compare the results of the simulation study performed by [2] in
Figure 9.6 and the results from [9] for A1689, shown in Figure 9.10 with the results found here
for J1149.5, in Figure 9.9. All three of these studies were conducted using Lenstool software.

The results of the study to evaluate constraint of cosmological parameters, specifically the
dark energy equation of state parameter, wX , is very interesting when the contour curve in this
study for the Lenstool model of J1149.5 is compared to results of a simulation study and the
study of A1689. These three studies all show quite similar results.

The glafic model did not constrain the equation of state parameter at all. That is, at all
values of wX , from -2.0 to 2.0 and all values of Ωm, the χ2 value did not change appreciably.
There was some variation, but none of this was statistically significant and it was not possible
to make a contour plot in the wX - Ωm plane. This may be due to a problem with the model
which requires further refinement.
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9.6 Conclusions and Future Work

This chapter reports a preliminary study of MACSJ1149.5+2223, using a basic lens model with
both Lenstool and glafic. As of this writing, we have developed models with both Lenstool and
glafic, and tested the constraint of the equation of state parameter using the Lenstool model.
This model used five potentials and the complete image catalog used by Merten in the Frontier
Fields project [10]. This preliminary study found that the Lenstool model was able to constrain
wX in the wX - Ωm plane with a shape very similar to that found with a simulation study [2]and
when Lenstool was used to model A1689 [8]. In the studies to date, the glafic model did not
constrain the values at all.

We also believe that a GRAMOR may be able to constrain the cosmological parameters.
Future work with this project will be in several areas.

• We will refine the glafic model to see if this will provide some constraints in the wX - Ωm
plane, which the current model does not.

• We will test the methods to represent a GRAMOR using Lenstool and glafic.

• We will alter the models (using both Lenstool and glafic) to represent image 1.1 as a
GRAMOR, to see if this further constrains the cosmological parameters in the wX - Ωm
plane.
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Chapter 10

Conclusions and Outlook

The modern science of gravitational lensing was born just 100 years ago with the advent of
general relativity and then rapidly proceeded to sleep for another 64 years, awakening in 1979
with the observation of the first gravitational lens. Since that time, gravitational lensing has
rapidly become one of the most important tools in modern cosmology. The value of strong
gravitational lensing comes from our ability to analyze observational data.

In this dissertation, we have reviewed the state of strong gravitational lens model software,
starting with a catalog of available software (Chapter 4), comparative lens model studies (Chap-
ters 5 and 7), development of a program to translate lens model input files (Chapter 6) and
then comparative studies of the results of lens model studies for time delays (Chapter 8) and
the ability of lens models to constrain cosmologic parameters (Chapter 9). The extensive use
of various strong gravitational lens model software codes in comparative studies has allowed us
to make some conclusions about the overall state of the field, and raise some issues relevant to
future studies.

10.1 Gravitational Lens Model Software

As we found in the study presented in Chapter 4, there are many different codes for strong
gravitational lens models, including both LTM and non-LTM codes. Some of these codes have
been in existence for many years (e.g. Lenstool) and are used around the world. Others are
much more recent and used only by their authors.

There is great variability both in the ease-of-use of these codes as well as the volume of
information that they produce. It seems that the more complex codes provide more data. All
of the codes are subject to the old computer programming axiom of ”garbage in - garbage out”.
The quality of the input model will determine the quality of the data produced.

10.2 Comparative Studies: Strong Gravitational Lens Mod-

els

There were two groups of studies conducted in this general area, including a study of time delays
and mass calculations for two different systems by four lens model codes (Chapter 5) and a
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comparison of lens model parameters calculated for four different systems by four different lens
model codes (Chapter 7). In the study of two systems (a mock system and SDSSJ1004+4112),
we compared time delay and mass calculations for four different codes and found a wide variation
in results. The methodology was to look at the results using identical input models, rather than
allowing each code to optimize the models. In Chapter 7, we did a similar analysis looking at
the calculation of best fit lens parameters by four codes for four different systems. Again, we
used models that were as identical as possible to see the differences in the results produced by
each code. This methodology has a weakness in that due to differences in the codes, it is not
always possible to use an identical model. Once again, as in Chapter 5, there were significant
differences in the results produced by each code.

10.3 Gravitational Lens Model Translation

Creating lens model input files is extremely complex because there is a lot of information which
must be entered in a specific format, and the format varies so much among the many software
codes available. There does not seem to be a good solution to this problem. As a partial
solution, the HydraLens program was written (Chapter 6 and Appendix A). This software is
somewhat limited at present, as it only works for four different codes and cannot translate every
feature. Despite this, the program could be very useful for beginners in the field, and should
encourage the conduct of comparative lens models studies in the future.

10.4 Comparative Studies: Time Delay Calculations

Based on the observations of variability in Chapter 5, we performed a comparison of time
delay calculations which was enhanced by this study of B1608+656 and RXJ1131−1231 which
have been extremely well characterized in previous studies. The results of this study shown in
Chapter 8 showed reasonable agreement with observational results, and variability among the
results from several codes was less than that observed in Chapter 5. The best lens parameters
were fairly close among the various codes tested. Further work is needed to refine the models
used and to examine the effects of these differences on the calculation of H0.

10.5 Comparative Studies: Constraining Cosmological Pa-

rameters

The study in Chapter 9 is a careful study of MACSJ1149.5+2223, with lens models using both
Lenstool and glafic. We tested the ability of these models to constrain the equation of state
parameter. The Lenstool model uses five PIEMD potentials and the complete image catalog
used in the Hubble Frontier Fields project. This preliminary study found that the Lenstool
model was able to constrain wX in the wX - Ωm plane with a shape very similar to that
found in other studies of A1689. In the studies performed to date, the glafic model did not
constrain the values at all. We also believe that a GRAMOR may be able to further constrain
the cosmological parameters. Future work with this project will be in several areas. We will
refine the glafic model to see if this will provide some constraints in the wX - Ωm plane, which
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the current glafic model does not. We will then test the methods to represent a GRAMOR
using Lenstool and glafic. Finally, we will alter the models (using both Lenstool and glafic) to
represent image 1.1 as a GRAMOR, to see if this further constrains the cosmological parameters
in the wX - Ωm plane.

10.6 Outlook and Challenges for the Future of Lens Model

Studies

Perhaps the most important result of the studies highlighted in this dissertation is that com-
parative studies are an important part of the future of gravitational lensing. Until the very
recent past, this has rarely been a routine part of lens model studies, but it has been designed
into the Hubble Frontier Fields lens study and hopefully will be an important part of major
studies in the future.

There are two major barriers identified as a result of these studies, for the future conduct
of comparative lens models studies. First, the input data used in each model code is highly
dependent on the code used. There is absolutely no attempt to have a standard input format.
Some of these differences are necessary because of the differences in the codes, and some of
the differences are artificial. It would greatly benefit the future of lens model science if there
were some standard core for data input which could then be augmented for each code. This
would encourage and simplify future comparative studies. The HydraLens software was a basic
attempt to accomplish this goal. There are surely other better ways that need implementation.

The other barrier to comparative studies is that it is often impossible to reproduce the data
in a published study because the software has been made unavailable to anyone but the author
of the software, and the study. Without the ability to reproduce a study, there can be little
confidence in the voracity of the results. The lensing community must become more open with
the tools it uses to obtain these important scientific results.

Overall, the future of comparative strong gravitational lens model studies is bright (pun
intended)!
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Appendix A HydraLens User

Manual
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.1 Introduction

HydraLens is software to aid in the generation of lens model files for supported lens model
software. The HydraLens distribution includes 4 parts:

User’s Manual .pdf file (This document)

Manuscript .pdf file

HydraLens source code Written in Visual Basic

HydraLens.exe Compiled program, runs under the Windows (Microsoft Corp, Redmond WA)
operating system

At the present time the following strong gravitational lens model software is supported:

glafic

gravlens / lensmodel

Lenstool

PixeLens

There are a few caveats to using this software.

Purpose HydraLens has two purposes, lens model generation and lens model translation.
However, this software is not magic. It cannot take the place of scientific insight into
designing a model. The best way to view this software is as a first step toward making
models for several lens modeling codes.

Model File Generation Model generation features are fully implemented for the four types
of lens model software implemented. HydraLens greatly simplifies the task of preparing
a lens model input file, by doing this through a GUI rather than a text editor.

Translation: Beta For model translation, this software should be considered as ’beta’ soft-
ware. It is not ’fully baked’.

Features I will implement more features over the next few months, and am happy to take
suggestions from any users.

The purpose of this manual is to explain how to use HydraLens, not to explain how it works.
Please refer to the manuscript for further information about the internal structure and function
of HydraLens.

HydraLens has 4 modules plus a data module: Generate, Write, Translate and Parse. When
the software is loaded, the user is presented with two choices, either to generate a new model
or to read an existing model (for translation). This window is shown in Figure 1, and the main
”actions” are easily shown with bright blue buttons in the GUI.

.2 Generate a Lens Model

This uses the Generate and Write Modules.
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Figure 1: Initial window on program load allows generating a new model or reading an existing
model. One of the two ”action” buttons (enabled, in dark blue) is pressed after selecting the
target software with the radio buttons.

Pixelens

glafic

Upon selecting glafic as the target software (Figure 1), the user is presented with a screen to
decide which glafic file to generate (Figure 2).

Figure 2: After selecting glafic as the output target, the user selects which of the glafic files will
be generated. Usually, one starts with the ’Main Model File’

After selecting to generate the Main Model file, the user is presented with the glafic model
generation screen (Figure 3) for further data entry.
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Figure 3: After selecting the Main Model File generation, the user is presented with this window
to enter all of the data for a glafic model

gravlens / lensmodel

lensmodel Data File

The lensmodel data file cannot be generated until you add the data command (secondary).
Once that command is added, a button appears to create the data file.

Lenstool

.3 Read an Existing Lens Model

This uses the Parse module only.

General Tips

• Be sure there are no blank lines in an existing model file

Pixelens

HydraLens can read any existing Pixelens input file, in preparation to translate it to any of the
supported target model types. This includes double, quad and multi file types.

glafic

This feature is not yet implemented.
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gravlens / lensmodel

This feature is not yet implemented

Lenstool

This feature is not yet implemented.

.4 Translate a Lens Model

This uses the translate and write modules.

General Tips

• Get the lens geometry, specifically the locations of the images

• Use PixeLens to rapidly prototype the system, check geometry and image position

• Translate PixeLens into Lenstool, lensmodel and glafic, which generates 2 files for each
software including a model file and a data file. The models generates all have a single
lens to make a ”working model”, but this will likely be changed.

• Models for lensmodel and lenstool (both model files and data files) need post processing
to remove the seemingly empty last line (with gedit) and then use vi to get rid of all the
ctrl-M characters on each line. This is not necessary for the glafic files.

• Add the correct potentials (lenses) to each model. Add optimization parameters if desired.
Add fluxes to images in glafic and/or lensmodel.

• Add errors to glafic for flux and/or position

• You now have 4 functional models that can be easily refined, and edited with almost any
text editor.

PixeLens

Limitations

Translations to and from Pixelens are somewhat limited because PixeLens is a non-LTM code,
and therefore has no mass models. Translations from PixeLens do not provide a mass model.
Translations from PixeLens basically provide the data files with coordinates for target model
types.
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Translations from Pixelens

Lenstool Lenstool models generated from pixelens have no potential, no lens model. The user
must add parameters to the Primary Command ’Potential’ and ’Limit.

Glafic Glafic models have a single SIS model. They start with 1 lenses and 0 extended sources.
Point sources are added from the Pixlens model file. User must add lens models and
optimizations.

gravlens / lensmodel gravlens /lensmodel models have a single SIS mass model. The user
should modify the lens model and any desired optimization parameters.

Translations to Pixelens

Lenstool

Glafic

gravlens / lensmodel

What to do after a Translation to PixeLens

• You may want to adjust Pixrad

• Check the parity on the images. Parity is not carried over from glafic which does have
that parameter but could have a different meaning. Parity in Pixelens files is important
(see page 6, Sec 5.2.3)

glafic

Limitations

Translations to Glafic

Lenstool

Pixelens

gravlens / lensmodel

What to do after translation to Glafic

• From PixeLens you probably want to modify the initial mass model

• From PixeLens Set optimization flags, add fluxes to data file, add errors in flux and
position to data file
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Translations from Glafic

Lenstool

PixeLens

gravlens / lensmodel

gravlens / lensmodel

Limitations

Translations to gravlens / lensmodel

Lenstool

Glafic

PixeLens

What to do after translation to gravlens / lensmodel

• From PixeLens you probably want to modify the initial mass model

• From PixeLens Set optimization flags, add fluxes to data file, add errors in flux and
position to data file

Translations from gravlens/lensmodel

Lenstool

Glafic

PixeLens

Lenstool

Limitations

• Spacing: No tab characters

• Potentials: Only one Potential

Translations to Lenstool

PixeLens

Glafic

gravlens / lensmodel
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What to do after translation to Lenstool

• Translating from Pixelens, the software adds a simple SIE potential at (0,0) with vdisp=300.
This is just to give a working model.

• Very important. Because of the vagaries of Windows and Linux interactions, you must
edit the Lenstool model produced. Remove the last ”line feed” so that ”fini” is on its
own line as the last line. Then, when you start Lenstool, you automatically enter the vi
editor. Issue the command ”:percents/ctrlVctrlM//g” to eliminate all the ctrlM control
characters. This is essential to use the model file.

• The models generated all include ”inverse 3” in the run mode section, which performs
Bayesian optimization. If you don’t want this, then comment out the line. If you leave it
set to 3, there should be parameters to be optimized in the ”limit” section (at baseline
they are all set to 0)

Translations from Lenstool

Pixelens

Glafic

gravlens / lensmodel
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