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Summary

The main theme of this thesis is the relationship between intuitionistic and uniform provabil-
ity in reverse mathematics. A subsystem RCA of second-order arithmetic, which is obtained
by adding full second-order induction scheme to the most popular base system RCA0 of re-
verse mathematics, corresponds to non-uniform computable mathematics. In particular, if a
Π1

2 theorem ∀X(ϕ(X) → ∃Yψ(X, Y)) is provable in RCA, for all X satisfying ϕ(X), there is
an algorithm Φ which computes Y satisfying ψ(X,Y) with the use of X as oracle. However,
they may not be a uniform algorithm Φ which computes the witness Y for any oracle X such
that ϕ(X). Corresponding to this difference, even if a Π1

2 theorem ∀X(ϕ(X) → ∃Yψ(X,Y))
is provable in RCA, its uniform version ∃Φ∀X(ϕ(X) → ψ(X,Φ(X))) or its sequential version
∀⟨Xn⟩n∈N (∀n ϕ(Xn)→ ∃⟨Yn⟩n∈N∀n ψ(Xn,Yn)) may not be provable in RCAω. On the other hand,
the notion of uniform computability is closely related to constructive mathematics, which is
formalized as a system of many-sorted arithmetic based on intuitionistic logic. Historically
constructive mathematics has been developed informally in contrast to the formalist foundation
of mathematics. Along with the development of reverse mathematics and the discovery of the
arithmetical hierarchy of the law-of-excluded-middle principles, however, so-called construc-
tive reverse mathematics, which investigates the interrelations between mathematical statements
and logical principles over intuitionistic arithmetic, has been carried out in this decade.

In fact, there are several corresponding results between constructive reverse mathematics and
classical reverse mathematics of sequential versions. For example, the principle of trichotomy
for reals is intuitionistically equivalent to Σ0

1-LEM whereas its sequential version is equivalent
to ACA. On the other hand, the principle of dichotomy for reals is intuitionistically equivalent
to Σ0

1-DML whereas its sequential version is equivalent to WKL. More directly, ACA and WKL
are intuitionistically equivalent to Σ0

1-LEM and Σ0
1-DML respectively in the presence of a choice

scheme. Based on these facts, we provide a comprehensive analysis of the connection between
intuitionistic provability and classical uniform provability in reverse mathematics. In Chapter 3,
we provide a definitive connection between the aforementioned two notions. In particular, we
first give an exact formulation to represent uniform provability in RCA and show that for any Π1

2

formula of some syntactical form (rich enough), it is intuitionistically provable if and only if it
is uniformly provable in RCA. The primary tool for the direction from left to right is formalized
realizability with functions. The converse direction is shown by using a form of negative trans-
lation. In Chapter 4, along the line of the previous, we study the metatheorems which enable us
to apply reverse mathematics to show intuitionistic unprovability. Whereas all of the previous
metatheorems are now concerned with sequential versions, our metatheorems are concerned
with uniform versions. Applying our metatheorems to the investigation of uniform versions in
higher-order reverse mathematics, one can obtain stronger intuitionistic unprovability results
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than the former case. We use several proof interpretations for the proofs. In Chapter 5, we
observe that one has to pay careful attention to the formalization when one considers sequential
or uniform versions. Using these results, we show that Dorais’ results from [13] are optimal.
In addition, we develop the reverse mathematics of concrete theorems like variants of marriage
theorem and symmetric marriage theorem from the perspective of uniformity. Finally, we in-
vestigate (over the weak extensional variant of RCAω

0 ) the uniform versions of the existence
of Jordan decomposition, the principle of trichotomy for reals and Π0

1 least number principle,
which demonstrates that our metatheorems in Chapter 4 are widely applicable to Π1

2 statements
whose sequential versions imply ACA. In Chapter 6, we investigate logical principles weaker
than Markov’s principle in the context of constructive reverse mathematics. In particular, we
provide the complete classification of Π0

1-DML, ∆0
1-LEM, ∆0

1-CA and WMP. However, the cor-
responding uniform provability in classical reverse mathematics is still missing.
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The heart of man plans his way, but the Lord establishes his steps.
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v



Contents

1 Introduction 1
1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Formalized Existence Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Reverse Mathematics and Uniformity . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Constructive Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Arithmetical Hierarchy of the Law-of-Excluded-Middle . . . . . . . . . . . . . 6

2 Preliminaries 8
2.1 Notations and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Formal Systems and Principles . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Intuitionistic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Intuitionistic Arithmetic in All Finite Types . . . . . . . . . . . . . . . 13
2.2.3 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Conservation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Proof Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Negative Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Realizability with Functions . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Modified Realizability . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 Dialectica Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.5 Elimination of Extensionality . . . . . . . . . . . . . . . . . . . . . . 28

3 Intuitionistic Provability versus Uniform Provability in RCA 31
3.1 Known Uniformization Results . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Exact Formulation of Uniform Provability in RCA . . . . . . . . . . . . . . . . 34
3.3 Characterization of Uniform Provability in RCA . . . . . . . . . . . . . . . . . 34
3.4 Characterization of Uniform Provability in RCA0 . . . . . . . . . . . . . . . . 41
3.5 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vi



Contents

4 Metatheorems for Uniform Versions 43
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Uniformization Theorems Concerned with Uniform Versions . . . . . . . . . . 46
4.3 Further Extended Metatheorem . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Reverse Mathematics from the Perspective of Uniformity 61
5.1 General Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Best Possibility of Dorais’ Uniformization Results . . . . . . . . . . . . . . . . 70
5.3 Investigation of Sequential Marriage Theorems . . . . . . . . . . . . . . . . . 71

5.3.1 Constant Bounded Marriage Theorems . . . . . . . . . . . . . . . . . 73
5.3.2 Constant Bounded Symmetric Marriage Theorems . . . . . . . . . . . 81

5.4 Investigation of Some Uniform Versions over WRCAω
0 . . . . . . . . . . . . . 87

6 Logical Principles Weaker than Markov’s Principle 91
6.1 Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Equivalence between ∆0

1-LEM and ∆0
1-CA . . . . . . . . . . . . . . . . . . . . 94

6.3 Underivability of ∆0
1-LEM from WMP . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Conclusion and Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 101

vii



1 Introduction

This thesis is a contribution to the foundation of mathematics. In this first chapter, we mention
some background of this study.

1.1 Methodology

In the history of foundation of mathematics, there were three major schools (or four schools
including predicativism [39]): logicism, intuitionism and formalism. In this thesis, we follow
Hilbert’s formalism which is the origin of proof theory and is the most popular in modern
foundation of mathematics, and thus study formalized mathematics. Here we briefly compare
the three schools. See e.g. [61] for more information.

Logicism: The basic idea of this school is to reduce all of mathematics to logic. The first
systematic study was done mainly by G. Frege in the late 19th century. However, his attempt
failed due to the discovery of well-known Russel’s paradox at the beginning of 20th century.
Nowadays there are some more attempts at accomplishing the goal of logicism.

Intuitionism: Intuitionism originates from the work of L. E. J. Brouwer at the beginning of
20th century. According to him, mathematics deals with mental constructions, which are imme-
diately graspable by the mind. He tried to reformulate mathematics based on this philosophy.
His work is the origin of constructive mathematics, which is a key subject in this thesis and
will be introduced in Section 1.4. It should be mentioned that Brouwer rejected Hilbert’s early
formalism (1905) in his dissertation (1907).

Formalism: The origin of this school is the work of D. Hilbert in the early 20th century.
The original concept of formalism is to consider mathematics as a formal game. That is, the
statements of mathematics are uninterpreted strings of symbols, and proving such statements is
a game in which symbols are manipulated according to fixed rules. In particular, Hilbert thought
of a mathematical theory as an axiomatized formal system and a theorem in that theory as the
corresponding sentence in the system respectively. In fact, he tried to find a consistent axiom
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1 Introduction

system which was rich enough to formalize mathematics and the consistency proof was carried
out using only ‘finitistic’ methods.1 This is known as Hilbert’s program. While Hilbert’s turns
out to be impossible due to Gödel’s second incompleteness theorem, it is coherent to maintain
that mathematics is the science of formal systems. In fact, reverse mathematics, which is the
main subject in this thesis and will be introduced in Section 1.3, is one of the research programs
in the extended line of Hilbert’s work (See [67] and [10] on this issue).

1.2 Formalized Existence Theorems

Along the lines of Hilbert’s formalism, we investigate formalized mathematical theories, in
particular, formal systems of many-sorted arithmetic. Then our attention is focused on existence
theorems, namely, theorems of type that “for all . . . (which is implicit in some case) there exists
. . . ”. In fact, an enormous number of mathematical statements are of this type. Under the
identification between theorems and formulas, we treat Π1

2 sentences (i.e. closed formulas)
having the form

∀ f (ϕ( f )→ ∃gψ( f , g)) ,

where f and g are (possibly tuples of) sets of (or functions on) natural numbers. In fact, one
can encode a real number, a complete separable metric space or a continuous function over a
compact metric space as a function over natural numbers (See e.g. [55, 68]). Consequently, a
large amount of existence theorems in ordinary mathematics (not only discrete mathematics) can
be represented asΠ1

2 sentences in second-order arithmetic, which is the most popular framework
for reverse mathematics (See Section 1.3). In many cases, the idea of such representations
comes from constructive analysis [5, 6] or computable analysis [76].

1.3 Reverse Mathematics and Uniformity

Reverse mathematics is a research program, which was initiated by H. Friedman [19, 20] in
the 1970’s and extensively developed by S. G. Simpson [68] and others in the 1980’s. The
aim of reverse mathematics is classifying mathematical theorems from a perspective of logical
complexity. The methodology of Reverse mathematics is based on Hilbert’s formalism (See
Section 1.1). Thus we formalize mathematical statements in some formal system, and investi-
gate the interrelations between the sentences and logical axioms. The most popular framework
for reverse mathematics is (set based) second-order arithmetic Z2, in which one can treat natural
numbers and sets of natural numbers. For each (formalized) mathematical theorem, we look for

1Nowadays the system PRA of primitive recursive arithmetic is widely-accepted as the system capturing the
finitism (See [71] for details).
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1 Introduction

the equivalent set existence axiom (e.g. WKL, ACA) over a weak subsystem RCA0 of Z2. Note
that second-order arithmetic Z2 consists of basic axioms of arithmetic, the comprehension (set
existence) scheme CA:

∃X∀n(n ∈ X ↔ ϕ(n))

and the (second-order) induction scheme IND:

ϕ(0) ∧ ∀y(ϕ(y)→ ϕ(y + 1))→ ∀yϕ(y).

Then RCA0 is the subsystem of Z2 consisting of basic axioms of arithmetic, ∆0
1 comprehension

scheme ∆0
1-CA (:≡ CA only for ∆0

1 formulas) and Σ0
1 induction scheme Σ0

1-IND (:≡ IND only
for Σ0

1 formulas). In addition, RCA consists of basic axioms of arithmetic, ∆0
1-CA and IND. The

acronym RCA stands for “recursive comprehension axiom” and the subscript 0 in RCA0 denotes
the restriction of induction scheme to Σ0

1 formulas. The following empirical phenomenon has
been confirmed from the early age of reverse mathematics:

Fact 1.3.1. A large number of ordinary2 mathematical theorems are classified into the following
three3:

1. provable in RCA0;

2. equivalent to weak Kőnig’s lemma WKL (expressing that every infinite subtree of 2<N has
an infinite path) over RCA0;

3. equivalent to arithmetical comprehension scheme ACA (:≡ CA only for arithmetical
formulas) over RCA0.

Importantly, the corresponding subsystems form a strict hierarchy, namely,

1. RCA !WKL (and hence, RCA0 !WKL);

2. WKL0 :≡ RCA0 +WKL ! ACA;

3. ACA0 :≡ RCA0 + ACA ⊢WKL.

It is remarkable that RCA or RCA0 roughly corresponds to computable (or recursive) mathe-
matics [16] via well-known Post’s theorem (See Section 6.1) and the equivalence to WKL or
ACA corresponds to degree of non-computability. In fact, there are many results connecting
between reverse and computable mathematics.

2Simpson [68] calls the body of mathematics which is prior to or independent of the introduction of abstract
set-theoretic concepts, “ordinary” mathematics.

3In fact, the main observation of reverse mathematics is that most of the ordinary mathematical theorems are
classified into the big five: RCA0, WKL0, ACA0, ATR0 and Π1

1-CA0 (See [68]).
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1 Introduction

In addition, it is well-known that there is also a first-order hierarchy (i.e., hierarchy of in-
duction schemes). An important first-order scheme is the following BΣ0

n (called ‘bounding’ or
‘collection’ principle):

∀b
(∀a ≤ b∃cA(a, b, c)→ ∃d∀a ≤ b∃c ≤ dA(a, b, c)

)
,

where A is a Σ0
n formula. BΠ0

n is defined in the same manner.

Fact 1.3.2 (First-Order Hierarchy).

Σ0
1-IND < BΠ0

1 ≡ BΣ0
2 < Σ

0
2-IND < . . . < Σ0

n-IND < BΠ0
n ≡ BΣ0

n+1 < Σ
0
n+1-IND < . . . .

In particular, the following holds:

• RCA0 ! BΠ0
1;

• RCA0 + BΠ0
1 ! Σ

0
2-IND (:≡ IND only for Σ0

2 formulas);

• RCA0 + Σ
0
n-IND " RCA.

Most results in reverse mathematics are formulated in classical logic4. To distinguish this
mainstream from constructive reverse mathematics (See Section 1.4) based on intuitionistic
logic, we call this “classical” reverse mathematics. For a comprehensive treatment of classical
reverse mathematics, see Simpson’s monograph [68].

As we already mentioned in Section 1.2, a large number of existence theorems are formalized
as Π1

2 sentences of the form
∀ f (ϕ( f )→ ∃gψ( f , g)) ,

and known to be provable in RCA0. However, in some cases, the construction of the witness
g from a problem f is not uniform. Let us consider the case of well-known intermediate value
theorem: if f is a continuous function on the unit interval 0 ≤ x ≤ 1 such that f (0) < 0 < f (1),
then there exists x ∈ (0, 1) such that f (x) = 0. In fact, it is provable in RCA0 as follows (See
[68] for details). If there exists x ∈ Q such that 0 < x < 1 and f (x) = 0, we are done. Otherwise,
one can construct x ∈ (0, 1) by the method of nested intervals (and it is verified) in RCA0. In
this proof, the construction of the intermediate point x from f depends on whether there is a
rational intermediate point (although the construction is trivial if there is). To reveal such a non-
uniformity, sequential versions of Π1

2 statements, which assert to solve infinitely many instances
of a particular problem simultaneously (See Definition 3.1.1 precisely), have been investigated.
In fact, the sequential version of intermediate value theorem is equivalent to WKL over RCA0

4This is the logic on which standard mathematics is based.
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1 Introduction

([9]), and hence it is not provable even in RCA. Consequently, it follows that there is no uniform
algorithm to construct an intermediate point x from an arbitrary given continuous function f on
the unit interval 0 ≤ x ≤ 1 such that f (0) < 0 < f (1). The reason why the above proof in RCA0

does not work is that one needs to decide in RCA whether there exists a rational intermediate
point or not for each problem simultaneously (rather than just an application of the law-of-
excluded-middle) in the sequentialized case. However, this is not possible in RCA having only
the ∆0

1 (≈ computable) set existence scheme. As suggested by this example, uniform provability
in RCA (in the presented sense) is closely related to the notions of uniform computability and
constructivity. In Chapter 3, we pay strict attention to them and analyze their connections. In
addition, as we will mention below (See Section 3.1 and Chapter 4), interesting applications of
the investigation of sequential versions to constructive mathematics has been recently formu-
lated ([37, 14, 13]). Furthermore, along with the recent development of uniform computability
in computable analysis (e.g. [7, 8]), the uniform relationships between Π1

2 statements have been
interested in the context of reverse mathematics (e.g. [15, 28]). See [15] (and also Section 3.2
below) for the exhaustive comparison between uniform computability and reverse mathematical
provability.

1.4 Constructive Mathematics

As mentioned earlier, the origin of constructive mathematics is Brouwer’s work in the early 20th
century. The basic idea of constructive mathematics is interpreting the phrase “there exists” as
“we can construct” in all discussions. In order to work fully constructively, we need to rein-
terpret not only the existential quantifiers but all the logical connectives as instructions on how
to construct a proof of the statement involving these logical expressions. Such interpretation of
logical connectives is known as the BHK(Brouwer-Heyting-Kolmogorov)-interpretation (See
[75] for details).5 While there are a number of schools of constructive mathematics, the com-
mon thing to all these schools is that they are based on intuitionistic logic, namely, all of them
reject the use of classical reasoning like A∨¬A or ¬¬A→ A. Importantly, intuitionistic analysis
EL (See Subsection 2.2.1) or intuitionistic finite type arithmetic E-HAω (See Subsection 2.2.2)
serves as a system for formalizing (Bishop’s) constructive mathematics, while it was originally
carried out in an informal manner [5, 6]. Recently, the constructive variant of reverse mathe-
matics over such an intuitionistic system, which is called constructive reverse mathematics
[43, 3], has been developed. We refer the reader to e.g. [12] for basic knowledge of intuitionistic
predicate logic and see e.g. [75] for more information on constructive mathematics.

5Brouwer himself never dealt with the formal interpretation of the logical connectives. That step was made by
Heyting and Kolmogorov.
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1.5 Arithmetical Hierarchy of the Law-of-Excluded-Middle

Akama et al. [1] considered the following restricted variants of classical principles (under the
name of Σ0

1-LLPO for Σ0
1-DML) and showed that there is a strict hierarchy as in Figure 1.1. Note

that all of the implications in Figure 1.1 are proper, namely, each of the converse directions does
not hold. In addition, it is also known that Σ0

1-DNE andΠ0
1-LEM (or Σ0

1-DML) are incomparable.

• Σ0
1-LEM: A ∨ ¬A, where A is purely existential.

• Π0
1-LEM: A ∨ ¬A, where A is purely universal.

• ∆0
1-LEM: (A↔ A′)→ (A ∨ ¬A), where A is purely existential and A′ is purely universal.

• Σ0
1-DNE: ¬¬A→ A, where A is purely existential.6

• Σ0
1-DML: ¬(A ∧ B)→ (¬A ∨ ¬B), where A and B are purely existential.

Figure 1.1: Arithmetical hierarchy of the law-of-excluded-middle

While their base theory is intuitionistic first-order arithmetic HA, inspecting their proofs reveals
that the corresponding hierarchy also exists over intuitionistic second-order arithmetic EL7 (or
intuitionistic finite type arithmetic E-HAω). In Chapter 6 below, we will investigate Π0

1-DML
and other principles weaker than Markov’s principle MP (equivalent to Σ0

1-DNE) in the spirit of
constructive reverse mathematics.

In addition, it is remarkable that there is a beautiful correspondence between the hierarchy of
law-of-excluded-middle and the hierarchy of (classical) reverse mathematics. At first, one can
easily see the following.

• Σ0
1-LEM is intuitionistically equivalent to Σ0

1-DNE + Π0
1-LEM.

6In the following chapters, we employ the notation MPPR (or MP in second-order setting) instead of Σ0
1-DNE as

in [72].
7In this case, each principle may contain function parameters in addition to number parameters.
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• Arithmetical comprehension axiom ACA is (intuitionistically) equivalent to Σ0
1-LEM +

Π0
1-AC0,0(numbers-numbers choice scheme for Π0

1 formulas) over EL0.

On the other hand, Ishihara [43] showed that weak Kőnig’s lemma WKL is (intuitionistically)
equivalent to Σ0

1-DML + Π0
1-AC∨0 (weaker form of Π0

1-AC0,0) over EL0. Thus Σ0
1-LEM (equiva-

lently, Π0
1-LEM in the presence of Σ0

1-DNE) corresponds to ACA and Σ0
1-DML corresponds to

WKL. The same correspondence also exists in constructive reverse mathematics and reverse
mathematics of sequential versions. For example, Dorais, Hirst and Shafer [14] verified the
following.

• The principle of trichotomy of reals, namely ∀α ∈ R(α < 0∨α = 0∨α > 0), is equivalent
to Σ0

1-LEM over EL0 and its sequential version is (classically) equivalent to ACA over
RCA0.

• The principle of dichotomy of reals, namely ∀α ∈ R(α ≤ 0 ∨ α ≥ 0), is equivalent
to Σ0

1-DML over EL0 and its sequential version is (classically) equivalent to WKL over
RCA0.

Furthermore, as we introduce in Section 3.1, Dorais [13] has recently established that for any
Π1

2 statements of some syntactical form,

1. if it is provable in EL0 + Σ
0
1-DNE, then its sequential version is provable in RCA0;

2. if it is provable in EL0+WKL+Σ0
1-DNE, then its sequential version is provable in WKL0.

All of these results suggest the strong connection between the hierarchy of law-of-excluded-
middle and uniform investigations in classical reverse mathematics.
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2 Preliminaries

2.1 Notations and Conventions

Throughout this paper, we use the following notations and conventions.

• The superscript of each variable denotes the type of the variable. For example, we write
like ∀x0 or ∃α1.

• x denotes a finite tuple of terms x0, x1, . . . , xk.

• A formula containing terms x is denoted like A(x) or A[x] with x in brackets.

• A notation t[z] expresses that z is contained in the term t.

• A[s/x] is the formula obtained by replacing every free occurrence of x in the formula A(x)
by s. This notation is also used for terms like t[s/z].

• f · g stands for the composite function of f and g, namely, λx. f (g(x)).

• j denotes a pairing function and j1, j2 are its inverses, namely, they satisfy j1 · j(x, y) =
x, j2· j(x, y) = y and j( j1(z), j2(z)) = z. In fact, one can choose a surjective pairing function
j as 2 j(x + y) = (x + y)(x + y + 1) + 2x (See [72, 1.3.9.A]).

• α(x, y) is the abbreviation for α( j(x, y)) for a function term α and number terms x, y.

• We mean by ⟨·⟩ a (code for a) finite sequence.

• For a (code for a) finite sequence s, lh(s) denotes the length of s, si denotes the i-th
element of s for i < lh(s), and s!⟨t⟩ denotes the concatenation of s and ⟨t⟩.
• Seq is an auxiliary symbol used like s ∈ Seq to denote that the number term s is manipu-

lated as a code for a finite sequence in the context.

• sg : N→ N is a primitive recursive function such that sg(0) = 1 and sg(y + 1) = 0.

• −̇ : N × N → N is a primitive recursive function such that x−̇0 = 0 and x−̇(y + 1) =
x − (y + 1).

• ∀i < mA(m) stands for ∀i0 < m0∀i1 < m1 . . .∀ik < mkA(m0,m1, . . . ,mk) for some k.
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• For function (type 1) term β, βn denotes the (code of) finite sequence ⟨β(0), β(1), . . . , β(n−
1)⟩.
• FV(A) denotes the set of free variables in A.

• We sometimes use the notation Λx. or Λα. in a suitable setting (See Notation 2.2.23).

• The subscripts “p”, “q f ” and “b” are used for prime formulas, quantifier-free formulas,
and bounded formulas respectively (See Notation 2.2.5).

• In the discussion of finite type arithmetic, following [55], we make use of the notation
yx := y1x, . . . , ynx where y = y1, . . . , yn and x = x1, . . . , xk are tuples of functionals of
suitable types and yix := yix1 . . . xk.

• For a given set B, X⊂finB denotes that X is a (code of) finite subset of B.

• Q+ denotes the set of positive rational numbers.

2.2 Formal Systems and Principles

In this section, we present the precise definitions of the systems and principles which we use
throughout this thesis. In addition, we show some basic properties for the systems, which is
used for our investigation in the next chapters.

2.2.1 Intuitionistic Analysis

We start with the description of an intuitionistic two-sorted arithmetic (usually called “intu-
itionistic analysis”) EL in a Hilbert-type axiomatization. Our axiomatization of intuitionistic
first-order predicate logic is due to Gödel [27]. One can find in [72, 1.1.5 & 1.1.11] the equiv-
alence between the latter and axiomatization using natural deduction. Our description of EL is
based on [72, 1.9.10], [13, Section 2] and [55, Chapter 3]. It is known that EL is a conservative
extension of first-order (Heyting) arithmetic HA. We refer the reader to [59] for a comprehensive
treatment on EL.

Language L(EL) of EL L(EL) consists of the following:

• number variables1, which are usually denoted by Roman small letters x, y, z and so on;

• function variables2, which are denoted by Greek lower case letters α, β, γ and so on or
sometimes by Roman small letters f , g, h and so on (the type of a variable is explicitly
denoted by superscript when it is not clear from the context);

1A number variable is also called a variable of type 0 in the following.
2A function variable is also called a variable of type 1 in the following.
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• logical constants: ∧,∨,→,∃xρ,∀xρ (ρ ∈ {0, 1});
• function constants: a zero constant 0 (with arity 0), the Lambda abstraction operators λx.

for each number variable x, a recursor R0, a constant function symbol S for the successor,
constant function symbols for all of other primitive recursive functions and application
operators Ap;

• a binary predicate constant “=” (equality for numbers).

Terms of EL The number terms and function terms (called functors in [72]) of EL are built as
follows:

• number variables are number terms;

• function variables are function terms;

• the zero constant 0 is a number term;

• the successor constant S is a function term;

• if t1, . . . , tk are number terms and f is a constant function symbol for a k-ary primitive
recursive function, then Ap( f , t1, . . . , tk) is a number term (As usual, however, we suppress
this cumbersome description and simply write f (t1, . . . , tk) throughout this thesis as well
as for finite type arithmetic);

• if t is a number term and τ is a function term, then Ap(τ, t) (abbreviated as τ(t)) is a
number term;

• if t and t′ are number terms and τ is a function term, then R0(t, τ, t′) is a number term3;

• if t is a number term and x is a number variable, λx. t is a function term.

Formulas of EL The formulas of EL are built as follows:

• if t and t′ are number terms, then t = t′ is a “prime” (also called “atomic”) formula;

• if A and B are formulas, then (A ∧ B), (A ∨ B), A→ B are also formulas;

• if A is a formula and x is a (number or function) variable, then (∀xA) and (∃xA) are
formulas.

Abbreviations

• As usual, we drop many parentheses around formulas under the agreement that negation
and quantifiers bind stronger than∧ and∨which bind stronger than→ and↔. In addition,
A↔ B :≡ ((A→ B) ∧ (B→ A)), ⊥:≡ 0 = 1, ¬A :≡ (A→⊥), and t ! t′ :≡ ¬(t = t′).

3For notational simplicity, we sometimes use the abbreviation R0tτt′ for R0(t, τ, t′).
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• It is well-known that the relation < is primitive recursive, and the symbol f< for the char-
acteristic function of < is contained in the language of EL. We use the notation x < y for
f<(x, y) = 0 as usual. In addition, x ≤ y stands for x < y ∨ x = y.

Remark 2.2.1. One can assume that L(EL) has ⊥ as a logical constant and that ⊥ is a prime
formula of EL since ⊥↔ 0 = 1 is provable in the extended EL (See [55, Remark 3.3]).

Axioms and Rules of EL

• The logical axioms and rules (the names are taken from [72]) of EL are the following:

(PL2) A, A→ B⇒ B;

(PL3) A→ B, B→ C ⇒ A→ C;

(PL7) A ∧ B→ C ⇒ A→ (B→ C);

(PL8) A→ (B→ C)⇒ A ∧ B→ C;

(PL9) ⊥→ A;

(PL10) A ∨ A→ A, A→ A ∧ A;

(PL11) A→ A ∨ B, A ∧ B→ A;

(PL12) A ∨ B→ B ∨ A, A ∧ B→ B ∧ A;

(PL13) A→ B⇒ C ∨ A→ C ∨ B;

(Q1i) B→ A(x)⇒ B→ ∀x iA(x), where i ∈ {0, 1};
(Q2i) ∀x iA(x)→ A[t/x], where i ∈ {0, 1};
(Q3i) A[t/x]→ ∃x iA(x), where i ∈ {0, 1};
(Q4i) A(x)→ B⇒ ∃x iA(x)→ B, where i ∈ {0, 1}.
In (Q1i) and (Q4i), x is not free in B. In (Q2i) and (Q3i), x is a variable of type i and t is a
term of type i such that t is free for x in A.

• The equality axioms are the following:

(i) x = x;

(ii) x = y ∧ z = y→ x = z;

(iii) x1 = y1 ∧ · · · ∧ xn = yn → f (xi, . . . , xn) = f (y1, . . . , yn).

• The successor axioms are the following:

(iv) S (x) ! 0;

(v) S (x) = S (y)→ x = y.

11
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• The defining axioms of the symbols for primitive recursive functions.

• The defining axioms of λ-operators, namely,

λx. t(t′) = t[t′/x].

• The defining axiom of the recursor R0, namely,
⎧⎪⎪⎨
⎪⎪⎩

R0(t, τ, 0) = t,
R0(t, τ, S (t′)) = τ( j(R0(t, τ, t′), t′)),

where j denotes the symbol for the (primitive recursive) pairing function.

• The axiom scheme of induction IND:

A(0) ∧ ∀y(A(y)→ A(S (y)))→ ∀yA(y),

where A(y) may contain parameters.

• The axiom scheme of quantifier-free axiom of choice QF-AC0,0:

∀x0∃y0Aq f (x, y)→ ∃g1∀xAq f (x, g(x)),

where Aq f (x, y) is quantifier-free (See Definition2.2.3) and may contain parameters.

Remark 2.2.2. In fact, the successor axiom S (x) ! 0 is redundant as mentioned in [55, Remark
3.3].

Definition 2.2.3. • A formula A is said to be “quantifier-free” if no quantifiers occur in A.

• A formula A is said to be “bounded” if all of the quantifiers in A are bounded, namely,
the quantifiers occurs only in the form ∃x0(x < t ∧ B(x)) or ∀x0(x < t → B(x)) with some
number term t which does not contain x freely.

The same notations are also used for formulas of finite type arithmetic.

Notation 2.2.4. For a number variable x and a number term t which does not contain x freely,
∃x < t A(x) and ∀x < t A(x) is the abbreviation for ∃x(x < t ∧ A(x)) and ∀x(x < t → A(x))
respectively. We also use the abbreviations ∃x ≤ t A(x) and ∀x ≤ t A(x) as well. The same
notations are also used for formulas of finite type arithmetic.

Notation 2.2.5. • The subscript “p” (like Ap) denotes that the formula in question is prime.

• The subscript “q f ” (like Aq f ) denotes that the formula in question is quantifier-free.

• The subscript “b” (like Ab) denotes that the formula in question is bounded.
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Description of EL0 ([13]) The system EL0 is the fragment of EL where the axiom scheme of
induction IND is replaced by QF-IND:

Aq f (0) ∧ ∀y0(Aq f (y)→ Aq f (S (y)))→ ∀y0Aq f (y),

where Aq f (y) is quantifier-free and may contain parameters.

2.2.2 Intuitionistic Arithmetic in All Finite Types

Here we describe some systems of intuitionistic arithmetic in all finite types. Our description
follows [55, Chapter 3], which is based on [72]. However, note that our WE-HAω is defined in
the sense of [55], which is essentially different from that in [72, 1.6.12] (See [51] for details).

Types The set T of all finite types is generated inductively by the clauses 0 ∈ T and ρ, τ ∈
T ⇒ τ(ρ) ∈ T. Note that type 0 is assigned to natural numbers and type τ(ρ) is assigned
to functions which map type ρ objects to type τ objects. The degrees of types (denoted as
‘deg(ρ)’) are also defined inductively as follows:

deg(0) := 0, deg(τ(ρ)) := max{deg(ρ) + 1, deg(τ)}.

The set P ⊂ T of pure types is defined by the clauses 0 ∈ P and ρ ∈ P ⇒ 0(ρ) ∈ P. The pure
types are often denoted by natural numbers:

0(n) := n + 1 (e.g. 0(0) = 1, 0(0(0)) = 2).

Notation 2.2.6. We often omit brackets which are uniquely determined and write e.g. 0(00)
instead of 0(0(0)). Every type ρ ! 0 can uniquely be written as ρ = 0(ρk) . . . (ρ1), which is
denoted just as 0ρk . . . ρ1 when there is no danger of confusion. Note that the superscripts on
quantified variables or constants indicate their type (and x ρ denotes the tuple of variables with
corresponding types). In addition, we sometimes use the notation ρ → τ instead of τ(ρ) to
indicate directly the formation of a function space.

language L(E-HAω) of E-HAω L(E-HAω) consists of the following:

• variables for all finite types;

• logical constants: ∧,∨,→,∃xρ,∀xρ (ρ ∈ T);

• function constants: a zero constant 00 (with arity 0), a constant function symbol S 1 for
the successor, projectors Πρτρρ,τ for ρ, τ ∈ T, combinators Σδ,ρ,τ of type τδ(ρδ)(τρδ) for
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δ, ρ, τ ∈ T, recursors Rρ of type ρ0(ρ0ρ)ρ;

• a binary predicate constant “=0” (equality for numbers)4.

Remark 2.2.7. Kohlenbach’s formulation of E-HAω [55], which has the simultaneous primitive
recursors Rρ, is essentially the same as our formulation as explained in [55, Remark 3.14(1)].

Terms of E-HAω The terms of E-HAω are built as follows:

• constants cρ and variables xρ of type ρ are terms of type ρ;

• if tτρ is a term of type τρ and sρ is a term of type ρ, then t(s) is a term of type τ.

Notation 2.2.8. We sometimes write simply ts1 . . . sk instead of t(s1) . . . (sk).

Formulas of E-HAω The formulas of E-HAω are built as follows:

• if t and t′ are terms of type 0, then t =0 t′ is a “prime” (also called “atomic”) formula;

• if A and B are formulas, then (A ∧ B), (A ∨ B), A→ B are also formulas;

• if A is a formula and x is a variable (or any type), then (∀xA) and (∃xA) are formulas.

Abbreviations

• Higher type equations s =ρ t between terms s, t of type ρ = 0ρk . . . ρ1 (k ≥ 1) are abbrevi-
ations for

∀y1
ρ1 , . . . , yk

ρk(sy1 . . . yk =0 ty1 . . . yk),

where y1, . . . , yk are variables which do not occur in s, t.

• We use the standard abbreviations A ↔ B,⊥,¬A etc. as in the case of EL (See Section
2.2.1).

Axioms and Rules of E-HAω

• The logical axioms and rules of E-HAω are the same as those for EL except that it has the
quantifier axioms and rules for all finite types.

• The equality axioms for =0: x =0 x, x =0 y→ y =0 x and x =0 y ∧ y =0 z→ x =0 z.

• The extensionality axiom EA:

⋃

ρ=0ρk...ρ1, ρi∈T
∀zρ, xρ1

1 , y
ρ1
1 , . . . , x

ρk
k , y

ρk
k

⎛
⎜⎜⎜⎜⎜⎝

k∧

i=1

(xi =ρi yi)→ zx =0 zy

⎞
⎟⎟⎟⎟⎟⎠ .

4We often omit the subscript 0 when it is clear from context.
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• The successor axioms as in EL.

• The axiom scheme of induction IND:

A(0) ∧ ∀y0(A(y)→ A(S (y)))→ ∀y0A(y),

where A(y) may contain parameters of any type.

• The defining axiom of Πρ,τ, Σδ,ρ,τ and Rρ:

(Π): Πρ,τx ρyτ =ρ x ρ;

(Σ): Σδ,ρ,τxyz =τ xz(yz), where xτρδ, yρδ, zδ;

(R):

⎧⎪⎪⎨
⎪⎪⎩

Rρxy0 =ρ x,
Rρxy(S z) =ρ y(Rρxyz)z,

where xρ, yρ0ρ, z0.

Description of other finite type systems

• The system WE-HAω is obtained from E-HAω by replacing the full extensionality axiom
EA with a quantifier-free rule of extensionality QF-ER:

Aq f → s =ρ t
Aq f → rτ[s/xρ] =τ r[t/xρ]

.5

• The systems E-PAω and WE-PAω are defined respectively from E-HAω and WE-HAω by
adding the law-of-excluded-middle scheme LEM:

A ∨ ¬A (for arbitrary formula A).

• The system Ê-HA
ω
! is the fragment of E-HAω where there is only the recursor R0 for type

0 objects and the axiom scheme of induction IND is replaced by QF-IND:

Aq f (0) ∧ ∀y0(Aq f (y)→ Aq f (S (y)))→ ∀y0Aq f (y),

where Aq f (y) is quantifier-free and may contain parameters of any type. In addition,
ŴE-HA

ω
!, Ê-PA

ω
!, ŴE-PA

ω
! are the corresponding fragments of WE-HAω, E-PAω, WE-PAω

respectively.

• RCAω
0 := Ê-PA

ω
! + QF-AC1,0, where QF-AC1,0 is the following axiom scheme:

∀x1∃y0Aq f (x, y)→ ∃Y1→0∀xAq f (x, Y x),

5Note that WE-HAω is a (proper) subsystem of E-HAω.
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2 Preliminaries

where Aq f (x, y) may contain parameters of any type.

• RCAω := E-PAω + QF-AC1,0.

• WRCAω
0 := ŴE-PA

ω
! + QF-AC1,0.

• WRCAω := WE-PAω + QF-AC1,0.

Remark 2.2.9. The fragments of finite type systems were first introduced by Feferman [17].
Later the system RCAω

0 was formulated by Kohlenbach [54] as a candidate of base system for
reverse mathematics. In addition, RCAω is defined in [37]. Here we introduce WRCAω

0 and
WRCAω with respect to the application of our metatheorems in Chapter 4 (See Section 4.4 and
Section 5.4 below).

Warning. The weakly extensional systems do not satisfy the deduction theorem (See [51]).

2.2.3 Principles

Throughout this thesis, we treat a large number of principles over many-sorted intuitionistic
arithmetic. Here we list the primary principles in this thesis.

We consider the following principles in second-order arithmetic. GC may have parameters.

• MP (Markov’s principle): ∀α(¬¬∃x(α(x) = 0)→ ∃x(α(x) = 0)).

• GC (generalized continuity principle):

(∀ξA(ξ)→ ∃ζB(ξ, ζ)
)→ ∃γ(∀ξA(ξ)→ γ | ξ ↓ ∧ B(ξ, γ | ξ)),

where A(ξ) is almost negative (See Definition 2.3.6).

In addition, we consider the following axiom schemes in finite type arithmetic. They may
have parameters of arbitrary type.

• ACρ,τ : ∀xρ∃yτA(x, y)→ ∃Yτρ∀xρA(x, Y x).

AC :=
⋃

ρ,τ∈T{ACρ,τ} (axiom scheme of choice).

AC0 :=
⋃

τ∈T{AC0,τ} (axiom scheme of countable choice).

• AC!ρ,τ : ∀xρ∃yτ (A(x, y) ∧ ∀zτ (A(x, z)→ y = z))→ ∃Yτρ∀xρA(x,Y x).

AC!1 :=
⋃

ρ,τ∈T, deg(ρ)≤1{AC!ρ,τ} (axiom scheme of unique choice for functions).

• QF-ACρ,τ is the restriction of ACρ,τ to quantifier-free A.

QF-AC :=
⋃

ρ,τ∈T{QF-ACρ,τ} (quantifier-free axiom of choice).
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• IPρef : (Aef → ∃xρB(x))→ ∃xρ(Aef → B(xρ)), where Aef is ∃-free (i.e. Aef does not contain
∃,∨) and does not contain x free.

IPωef :=
⋃

ρ∈T{IPρef} (independence-of-premise schema for ∃-free premises).

• IPρ¬ : (¬A→ ∃xρB(x))→ ∃xρ(¬A→ B(xρ)), where A does not contain x free.

IPω¬ :=
⋃

ρ∈T{IPρ¬} (independence-of-premise schema for negated premises).

• IPρ,τ∀ :
(
∀uτAq f (u)→ ∃xρB(x)

)
→ ∃xρ

(
∀uτAq f (u)→ B(x)

)
, where Aq f does not contain x

free.

IPω∀ :=
⋃

ρ,τ∈T{IPρ,τ∀ } (independence-of-premise schema for universal premises).

IP≤1,≤1
∀ is the restriction of IPω∀ types ρ and τ of degree ≤ 1 (note that B may contain other

variables of arbitrary type).

• Mρ := ¬¬∃xρAq f (x)→ ∃xρAq f (x)

Mω :=
⋃

ρ∈T Mρ (Markov’s principle for finite types).

M≤1 is the restriction of Mω to types ρ of degree ≤ 1.

Remark 2.2.10. In this thesis, we formulate the axioms with single variables for simplicity.
Note that the version with single variables (xρ, yτ etc.) implies the one with tuples (xρ, yτ etc.)
since one can show in WE-HAω that finite tuples of variables of different types can be coded
together into a single variable (See e.g. [72] for details).

2.2.4 Basic Properties

Lemma 2.2.11. EL0 ⊢ x = y→ (A[x/u]↔ A[y/u]).

Proof. If the assertion holds for quantifier-free Aq f , the general case is verified by induction on
the structure of A. Then it suffices to show only the case for quantifier-free Aq f . We reason in
EL0. It is well-known that there is a term t0 such that t = 0↔ Aq f [u] (See e.g. [55, Proposition
3.8]). Consider a function term λu.t. Then x = y implies (λu.t)(x) = (λu.t)(y) by the equality
axiom. Therefore Aq f [x/u] ↔ t[x/u] = 0 ↔ (λu.t)(x) = 0 ↔ (λu.t)(y) = 0 ↔ t[y/u] = 0 ↔
Aq f [y/u]. !

Lemma 2.2.12. For each bounded L(EL)-formulas Ab (which may contain parameters), there
exists a term t0 of EL such that EL0 ⊢ t = 0↔ Ab.

Proof. Let Aq f (i,m) be a quantifier-free formula (which may contain parameters) where m does
not contain i freely. By [55, Proposition 3.8], there is a term s0[i,m] such that s = 0 ↔
Aq f (i,m). Let f 1[m] be a function such that f (0) = 1 and f ( j + 1) = f ( j) · sg(s[ j,m]). Then it
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is straightforward to see in EL0 that ∀i < mAq f (i,m) ↔ sg( f (m)) = 0. On the other hand, let
g1[m] be a function such that g(0) = 0 and

g( j + 1) =

⎧⎪⎪⎨
⎪⎪⎩

g( j) if s[g( j),m] = 0,
j + 1 otherwise.

Then one can show in EL0 that ∃i < mAq f (i,m) ↔ g(m) < m as follows. The direction from
the right to the left is obvious from the definition of g. For the converse direction, it suffices
to show ¬g(m) < m → ¬∃i < mAq f (i,m). Assume that ¬g(m) < m, i < m and Aq f (i,m). By
(quantifier-free) induction, it follows that for all j > g(i), g( j) = g(i). Since m > i ≥ g(i),
we have g(m) = g(i) < m, which is a contradiction. Therefore the induction step has been
established. By the observation that f and g are constructed from s as function terms of EL
(using recursors and λ-operators), we complete the proof of our lemma. !

Lemma 2.2.13. For any bounded L(EL)-formulas Ab (which may contain parameters), EL0

proves Ab ∨ ¬Ab.

Proof. As in the proof of [55, Lemma 3.4], we have EL0 ⊢ ∀x(x = 0 ∨ x ! 0). Then our lemma
follows from Lemma 2.2.12. !

Lemma 2.2.14. EL0 proves

Σ0
1-IND : ∃zAb(0, z) ∧ ∀y(∃zAb(y, z)→ ∃zAb(S (y), z))→ ∀y∃zAb(y, z),

where Ab(y, z) is a bounded formula which may contain parameters.

Proof. This follows from the proof of [55, Proposition 3.21] with Lemma 2.2.12. !

The following lemmas are used in Chapter 6.

Lemma 2.2.15. EL0 proves

BΣ0
0 : ∀b

(∀a ≤ b∃cAq f (a, b, c)→ ∃d∀a ≤ b∃c ≤ dAq f (a, b, c)
)
,

where Aq f (a, b, c) is a quantifier-free formula which may contain parameters.

Proof. Fix b ∈ N and assume
∀a ≤ b∃cAq f (a, b, c). (2.1)

We show ∀n ≤ b∃d∀a ≤ n∃c ≤ dAq f by Σ0
1 induction (See Lemma 2.2.14) on n. In the case of

n = 0, by (2.1), there exists c0 such that Aq f (0, b, c0). Then one can take d as c0. For induction
step, suppose ∀a ≤ n∃c ≤ dnAq f (a, b, c). If n + 1 > b, take dn+1 as dn. If n + 1 ≤ b, then by
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(2.1), there exists cn+1 such that Aq f (n + 1, b, c), and take dn+1 as max(dn, cn+1). Then clearly
∀a ≤ n + 1∃c ≤ dn+1Aq f (a, b, c) holds. This completes the proof. !

Lemma 2.2.16.

EL0 ⊢ ∀α, x,m, k
⎛
⎜⎜⎜⎜⎜⎝

R0xαm = k ↔
∃s ∈ Seq

(
lh(s) = m + 1 ∧ s0 = x ∧ ∀i < m(si+1 = α(si, i)) ∧ sm = k

)
⎞
⎟⎟⎟⎟⎟⎠ .

Proof. Fix α, x,m, k. If there exists a finite sequence s satisfying the condition, then one can
easily show ∀n ≤ m(R0xαn = sn) by quantifier-free induction, and hence R0xαm = sm = k. For
the converse direction, assume R0xαm = k. We show that ∀n ≤ m∃s ∈ Seq

(
lh(s) = n + 1 ∧ s0 =

x ∧ ∀i < n(si+1 = α(si, i)) ∧ sn = k
)

by Σ0
1 induction on n. The initial step is verified by using

the axiom R0xα0 = x. Assume that there exists s ∈ Seq such that lh(s) = n + 1 ∧ s0 = x ∧ ∀i <
n(si+1 = α(si, i))∧ sn = k. Let s′ := s"⟨α(R0xαn, n)⟩. Then si+1 = α(R0xαn, n) = R0xα(n+ 1) by
the defining axiom for R0. On the other hand, ∀i < n+1(si+1 = α(si, i)) holds from our induction
hypothesis. Thus s′ satisfies the condition for n + 1. This completes the proof. !

Lemma 2.2.17. For any L(EL)-formula A[R0xαm],

EL0 ⊢ A[R0xαm]↔ ∃s ∈ Seq
(
lh(s) = m + 1 ∧ s0 = x ∧ ∀i < m(si+1 = α(si, i)) ∧ A[sm/R0xαm]

)
,

where A[sm/R0xαm] is the formula obtained from A[R0xαm] by replacing each occurrence of
R0xαm with sm and may have parameters.

Proof. It is easy to see that A[R0xαm] is equivalent to ∃k(A[k/R0xαm]∧R0xαm = k) via Lemma
2.2.11. By Lemma 2.2.16, this is equivalent to ∃k∃s ∈ Seq

(
lh(s) = m + 1 ∧ s0 = x ∧ ∀i <

m(si+1 = α(si, i)) ∧ sm = k ∧ A[k/R0xαm]
)
. Again by Lemma 2.2.11, this is equivalent to

∃s ∈ Seq
(
lh(s) = m + 1 ∧ s0 = x ∧ ∀i < m(si+1 = α(si, i)) ∧ A[sm/R0xαm]

)
. !

Lemma 2.2.18. For any prime formula t = 0 of EL, there exists an equivalent (provably in
EL0) formula of the form ∃n∀i < m(t′ = 0) where m and t′ are terms not containing recursors,
λ-operators and free variables not in t.

Proof (communicated with Takeshi Yamazaki). By the defining axiom for λ-operator and Lemma
2.2.11, one can assume that t contains λ-operators only in the form of R0x(λl.u)m. We show our
assertion by induction on the occurrence of recursors in t. If t contains no recursors, then we
are done. For the induction step, let t1 be a term containing a recursor R∗0 in the form of R∗0xβm
with free variables n′, z and α. Without loss of generality, one can assume that x and m contain
neither recursors nor λ-operators and β contains no recursors. Then by Lemma 2.2.17, we have
that ∃n′∀i′ < m′(t1[n′, z,α,R∗0xβm] = 0) is equivalent to

∃s∃n′∀i′ < m′∀i < m
(
lh(s) = m+1∧ s0 = x∧ si+1 = β(si, i)∧ t1[n′, z,α, sm/R∗0xβm] = 0

)
. (2.2)
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If β has the form of (λl∗.u), si+1 = β(si, i) in (2.2) is equivalent to si+1 = u[(si, i)/l∗]. Then (2.2) is
equivalent to some formula of the form ∃z∀i′ < m′∀i < m(t2 = 0) where t2 is a term containing
recursors and λ-operators only in t1 except R∗0 (and λl∗. if β ≡ λl∗.u). Thus the induction step
has been established. !

The following fact is (implicitly in many cases) used throughout this thesis.

Lemma 2.2.19. EL0 ⊢ ∀ f 1, g1(∀x0( f (x) = g(x))→ (A[ f ]↔ A[g/ f ])
)
.

Proof. If the assertion holds for quantifier-free Aq f , the general case is verified by induction on
the structure of A. Then it suffices to show only the case for quantifier-free Aq f . We reason in
EL0, assuming ∀x0( f (x) = g(x)). It is well-known that there is a term t0[ f ] such that t[ f ] = 0↔
Aq f [ f ] (See e.g. [55, Proposition 3.8]). By Lemma 2.2.18, there exists an equivalent formula of
the form ∃n∀i < m(t′[ f ] = 0) where m and t′ are terms containing no recursors, λ-operators or
free variables not in t. Since f appears only in the form of f (·) in t′, one can show t′[ f ] = t′[g/ f ]
by the multiple use of Lemma 2.2.11. Then we have

Aq f [ f ]↔ t[ f ] = 0↔ ∃n∀i < m(t′[ f ] = 0)↔ ∃n∀i < m(t′[g/ f ] = 0)↔ t[g/ f ] = 0↔ Aq f [g/ f ].

!

Definition 2.2.20 (Partially defined application operations). For α, β : N→ N,

α(β) :=

⎧⎪⎪⎨
⎪⎪⎩
α(β̄n) − 1 where n is the least n′ such that α(β̄n′) ! 0.
↑ if there is no such n′.

Then
α | β := λn.α (⟨n⟩⌢β),

where ⟨n⟩⌢β is the function such that ⟨n⟩⌢β (0) = n and ⟨n⟩⌢β (y + 1) = β(y).

Definition 2.2.21 (P-functors, See Subsection 1.9.12 in [72]). The partially defined expressions
constructed from terms of EL and the partially defined application operations ·(·) and · | · are
called p-terms of EL. In particular, type 1 p-terms are called p-functors.

Proposition 2.2.22.

• For all p-functor ϕ[α, v] of EL0 with free variables α1 and v (of type 0 or 1), there exists a
term t1 of EL0 with FV(t) = {v} such that

EL0 ⊢ t | α ≃ ϕ.
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• For all p-functor ϕ[z, v] of EL0 with free variables z0 and v (of type 0 or 1), there exists a
term t1 of EL0 with FV(t) = {v} such that

EL0 ⊢ t | λw.z ≃ ϕ.

Proof. By inspecting the proof of [72, Theorem 1.9.14]. !

The previous proposition allows us to use the following notation ([72, 1.9.17]).

Notation 2.2.23.

• For a p-functor ϕ of EL0, Λα.ϕ denotes a term t1 of EL0 with FV(t) = FV(ϕ) \ {α} such
that EL0 ⊢ t | α ≃ ϕ.

• For a p-functor ϕ of EL0, Λz.ϕ denotes a term t1 of EL0 with FV(t) = FV(ϕ) \ {z} such
that EL0 ⊢ t | λw.z ≃ ϕ.

2.2.5 Conservation Results

Proposition 2.2.24. E-HAω is a conservative extension of EL under the identification of EL with
its canonical embedding into E-HAω. This also holds for Ê-HA

ω
" and EL0 instead of E-HAω

and EL.

Proof. Straightforward from the discussion in [72, Section 2.6]. In addition, a careful inspection
shows that this is also the case for the fragments (See also [54, Proposition 3.1]). !

In particular, we have the following classical counterpart to the previous proposition.

Proposition 2.2.25.

1. RCAω
0 and WRCAω

0 are conservative extensions of RCA0(:= EL0 + LEM).

2. RCAω and WRCAω are conservative extensions of RCA(:= EL + LEM).

Proof. See [54, Proposition 3.1] and [37, Theorem 2.8]. !

2.3 Proof Interpretations

In this section, we present several proof interpretations which are crucial tools for our investi-
gation in the next chapters.
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2.3.1 Negative Translation

It is well-known that many theories based on classical logic can be embedded into their intuition-
istic variants by means of various syntactic translations. Such translations are called “negative
translation”, for such translations A !→ A′ have in common that A′ is (or is intuitionistically
equivalent to) a negative formula. In fact, the well-known negative translations are intuition-
istically equivalent each other. What we chose in this thesis is originally due to Kuroda [60],
and the results presented here is based on [55, Section 10.1]. For more general information on
negative translations, see e.g. [72, Section 1.10] or [75, Section 2.3].

Negative translation can be a strong tool to show the conservativity of a classical theory
over its intuitionistic variant. In Chapter 3 below, we use the negative translation to show that
classical uniform provability ensures intuitionistic provability.

Definition 2.3.1 (Kuroda’s negative translation [60]). Aq is defined as Aq :≡ ¬¬A∗, where A∗ is
defined by induction on the logical structure of A:

• A∗ :≡ A, if A is a prime formula,

• (A!B)∗ :≡ (A∗!B∗), where ! ∈ {∧,∨,→},

• (∃xρA)∗ :≡ ∃xρA∗,

• (∀xρA)∗ :≡ ∀xρ¬¬A∗.

Lemma 2.3.2. If RCA ⊢ A, then EL +MP ⊢ Aq.

Proof. The proof is straightforward by induction on the length of the derivation as for [55,
Proposition 10.3 (ii)]. Note that MP is used only to derive

(
QF-AC0,0

)q
intuitionistically from

QF-AC0,0 (See [55, Proposition 10.6]). !

Lemma 2.3.3. For every formula A and B of L(WE-PAω), if

WE-PAω +
− QF-AC +

− ∆
+
− A ⊢ B,

then
WE-HAω +

− {QF-AC +Mω} +− ∆ +− Aq ⊢ Bq,

where T +− T indicates that we consider both case: T and T + T.

Proof. Induction on the length of the derivation as for [55, Proposition 10.3] (See also [55,
Proposition 10.6& Proposition 10.19]). Note that Mω is only used to verify the negative trans-
lation of QF-AC. !

Remark 2.3.4. The corresponding results to Lemma 2.3.2 and Lemma 2.3.3 for the fragments
also hold.
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2.3.2 Realizability with Functions

Realizability with functions was first introduced by Kleene and Vesley [47]. We employ its
formalized variant. Our treatment is based on [72, Section III. 3], but most of the proofs are in
fact based on Kleene’s work [46]. This is the crucial tool for our investigation in Chapter 3. See
e.g. [74] for a comprehensive treatment of formalized realizability.

Definition 2.3.5. For each formula A of L(EL), we define a formula α rf A of L(EL), where α
is a new (possibly empty) function variable, namely, free variables of α rf A are contained in
that of A and α. The definition is by induction over the logical structure of A.

• α rf A is A for prime A,

• α rf (A ∧ B) is j1 · α rf A ∧ j2 · α rf B,

• α rf (A ∨ B) is
(
j1 · α(0) = 0→ j2 · α rf A

) ∧ (
j1 · α(0) ! 0→ j2 · α rf B

)
,

• α rf (A→ B) is ∀β (β rf A→ α | β ↓ ∧ α | β rf B),

• α rf ∀xA(x) is ∀x (α | λw.x ↓ ∧ α | λw.x rf A(x)),

• α rf ∃xA(x) is j2 · α rf A( j1 · α (0)),

• α rf ∀βA(β) is ∀β (α | β ↓ ∧α | β rf A(β)),

• α rf ∃βA(β) is j2 · α rf A( j1 · α),

where ji ·α is the composition of ji and α (i ∈ {1, 2}), | is the continuous operation in Definition
2.2.20 and (α | β ↓ ∧ α | β rf B) is the abbreviation of

(
∀n∃m(α(βm) > 0) ∧ ∀γ1

(
∀n∃m

(
α(βm) = γ(n) + 1 ∧ ∀m′ < m(α(βm′) = 0)

)
→ γ rf B

))
.

Definition 2.3.6. A formula A ∈ L(EL) is said to be almost negative if it built up from purely
existential formulas (i.e. ∃xρAq f (x), ρ ∈ {0, 1}) by means of ∧,→ and ∀ only.

Lemma 2.3.7 (Lemma 3.3 in [13]). For any almost negative formula A(ξ1) ∈ L(EL), there
exists a function term tA such that

EL0 ⊢ A(ξ)↔ tA | ξ ↓ ∧ tA | ξ rf A(ξ).

Proof. See [72, Lemma 3.3.8]. !

In the following, we show the formalized soundness theorem for realizability with functions.
The original proof of the formalized soundness theorem in a somewhat different formulation
can be found in [46, Theorem 50]. However, the author does not find its proof in more recent
literature. Thus we now present a sketch of the proof in our formulation (cf. Subsection 2.2.1).
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Theorem 2.3.8 (Soundness theorem for realizability with functions [72]). Let Γ,Γ′ be sets of
closed L(EL)-formulas such that Γ ⊂ Γ′ and for each ϕ ∈ Γ′, there is a closed p-functor ψϕ such
that EL + Γ ⊢ ψϕ ↓ ∧ ψϕ rf ϕ. For any L(EL)-formula A, if EL + GC + Γ′ ⊢ A, then there exists
a p-functor ψ with FV(ψ) ⊂ FV(A) such that EL + Γ ⊢ ψ ↓ ∧ ψ rf A.

Proof. The proof is by induction on the length of deductions. Then it suffices to show the
following;

(A) For each axiom Ax of EL, there exists a p-functor ψ1 with FV(ψ1) ⊂ FV(Ax) such that
EL ⊢ ψ1 rf Ax.

(B) For each rule D ⇒ D′ of EL, if EL + Γ ⊢ ψ1 ↓ ∧ ψ1 rf D with a p-functor ψ1 such
that FV(ψ1) ⊂ FV(D), then there exists a p-functor ψ2 with FV(ψ2) ⊂ FV(D′) such that
EL + Γ ⊢ ψ2 ↓ ∧ ψ2 rf D′.

(C) [72, Lemma 3.3.10]: For any universal closure A of an instance of GC, there exists a
closed p-functor ψA such that EL ⊢ ψA ↓ ∧ ψA rf A.

We now prove (A) and (B) while freely using the notation Λ. (See Proposition 2.2.22 and Nota-
tion 2.2.23). The Greek lower-case letter ψi is used for a p-funcor.

(PL2). Assume EL + Γ ⊢ ψ0[z]↓ ∧ ψ0[z] rf A[z] and EL + Γ ⊢ ψ1[z, z′]↓ ∧ ψ1[z, z′] rf (A[z] →
B[z′]) where z contains all of the free variables occurring in A and z′ contains all of the free
variables occurring in B. Note that ψ1[z, z′] rf (A[z] → B[z′]) means that ∀g(g rf A[z] →
ψ1[z, z′] | g ↓ ∧ ψ1[z, z′] | g rf B[z′]). Let ψ2[z′] be a p-functor with free variable z′ obtained
from ψ1 | ψ0 by replacing all the variables occurring in A but not occurring in B by 0 or λw.0
(depending on their types). Then it is straightforward (using (PL2)) to show EL + Γ ⊢ ψ2[z′]↓
∧ ψ2[z′] rf B[z′].

For notational simplicity, we suppress parameters in the following.

(PL3). Assume EL + Γ ⊢ ψ0 ↓ ∧ ψ0 rf (A → B) and EL + Γ ⊢ ψ1 ↓ ∧ ψ1 rf (B → C). Let
ψ2 be a p-functor obtained from Λγ. ψ1 | (ψ0 | γ) by taking zeros for parameters occurring in B
but occurring neither in A nor in C (as for (PL2)). Then FV(ψ2) ⊂ FV(A→ C) and one can
straightforwardly show that EL + Γ ⊢ ψ2↓ ∧ ψ2 rf (B→ C).

(PL7). Assume EL + Γ ⊢ ψ0↓ ∧ ψ0 rf ((A ∧ B)→ C). Defining ψ1 as
ΛγA.ΛγB. ψ0 | λx. j(γA(x), γB(x)), we have that EL + Γ ⊢ ψ1↓ ∧ ψ1 rf (A→ (B→ C)).

(PL8). Assume EL + Γ ⊢ ψ0↓ ∧ ψ0 rf (A→ (B→ C)). Defining ψ1 as Λγ.
(
ψ0 | ( j1 · γ)

)∣∣∣( j2 · γ),
we have that EL + Γ ⊢ ψ1↓ ∧ ψ1 rf ((A ∧ B)→ C).

(PL9). It follows from (PL9) that EL ⊢ Λγ. (λw.0) rf (⊥→ A).

24



2 Preliminaries

(PL10). EL ⊢ Λγ. ( j2 · γ) rf (A ∨ A→ A) and EL ⊢ Λγ.(λx. j(γ(x), γ(x))
)

rf (A→ A ∧ A).

(PL11). EL ⊢ Λγ.(λw. j(0, γ(x))
)

rf (A→ A ∨ B) and EL ⊢ Λγ. ( j1 · γ) rf (A ∧ B→ A).

(PL12). EL ⊢ Λγ. (λx. j(1−̇ j1·γ(0), j2·γ(x))) rf (A∨B→ B∨A) and EL ⊢ Λγ. (λx. j( j2·γ(x), j1·
γ(x))) rf (A ∧ B→ B ∧ A).

(PL13). Assume EL + Γ ⊢ ψ0↓ ∧ ψ0 rf (A → B). Define ψ1 as Λγ.λx. j
(
j1 · γ(x), (1−̇ j1 · γ(0)) ·

( j2 · γ(x)) + sg( j1 · γ(0)) · (ψ | ( j2 · γ) (x)
))

. Then we have EL + Γ ⊢ ψ1 rf (C ∨ A → C ∨ B) for
any C.

(Q10). Assume EL + Γ ⊢ ψ0↓ ∧ ψ0 rf (B→ A(x0)) where FV(ψ0) ⊂ FV(B→ A(x)). Define ψ1

as Λγ.Λx.ψ0 | γ. Then FV(ψ1) ⊂ FV(B→ ∀xA(x)) and we have EL + Γ ⊢ ψ1 rf (B→ ∀xA(x)).

(Q11). Same as for (Q10).

(Q20). EL ⊢ Λγ. (γ | λw. t) rf (∀x0A(x)→ A(t)).

(Q21). EL ⊢ Λγ. (γ | ξ) rf (∀β1A(β)→ A(ξ)).

(Q30). EL ⊢ Λγ. (λx. j(t, γ(x))) rf (A(t)→ ∃x0A(x)).

(Q30). EL ⊢ Λγ. (λx. j(ξ(x), γ(x))) rf (A(ξ)→ ∃β1A(β)).

(Q40). Assume EL + Γ ⊢ ψ0 ↓ ∧ ψ0 rf (A(x0) → B) where FV(ψ0) ⊂ FV(A(x) → B). Define
ψ1 as Λγ.ψ0[ j1 · γ (0)/x]

∣∣∣( j2 · γ). Then FV(ψ1) ⊂ FV(∃xA(x) → B) and it is not hard to see
EL ⊢ ψ1 rf (∃xA(x)→ B) (using (Q4i) if ψ0 does not contain x as free variable).

(Q41). Same as for (Q40) but defining ψ1 as Λγ.ψ0[ j1 · γ/x1]
∣∣∣( j2 · γ) in this case.

(Equality axioms and the defining axioms for primitive recursive functions, recursor R0

and λ-operators). All of these axioms have a form of ∀z(x = y). They are realized by terms of
the form Λz.λw.0.

(QF-AC0,0). Define ψ0 as Λγ.λz. j
(
j1· (γ | λw.z) (0), (Λx. j2· (γ | λw. x))(z)

)
. Then by a careful in-

spection, one can see EL ⊢ ψ0 rf
(∀x∃yAq f (x, y)→ ∃ f 1∀xAq f (x, f (x))

)
. In fact, EL ⊢ ψ0 rf AC0,0

holds.

(IND). We shall construct a p-functor (in fact, a function term) ψ0 such that EL ⊢ ψ0 rf
(
A(0) ∧

∀y(A(y)→ A(y + 1))→ ∀yA(y)
)
. Note that ψ0 rf

(
A(0)∧ ∀y(A(y)→ A(y + 1))→ ∀yA(y)

)
is the

following formula:

∀ f

⎛
⎜⎜⎜⎜⎜⎝

f rf (A(0) ∧ ∀y(A(y)→ A(y + 1)))
→ ψ0 | f ↓ ∧ ∀y

(
(ψ0 | f ) | λw.y↓ ∧ (ψ0 | f ) | λw.y rf A(y)

)
⎞
⎟⎟⎟⎟⎟⎠ .
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Once we have obtained a p-functor t such that
⎧⎪⎪⎨
⎪⎪⎩

(t | f ) | λw.0 ≃ j1 · f ,
(t | f ) | λw.S (y) ≃ (( j2 · f ) | λw.y)

∣∣∣(t | f ) | λw.y,
(2.3)

for given f satisfying the condition, one can show by (analytical) induction that for all y,

(t | f ) | λw.y↓ ∧ (t | f ) | λw.y rf A(y).

Therefore our goal is to construct such a p-functor. Now there exists a numeral e such that

EL ⊢ {e}(β, t, f , y) ≃
⎧⎪⎪⎨
⎪⎪⎩

j1 · f (t) if y = 0,
(
( j2 · f ) | λw.y−̇1

)∣∣∣(β | f ) | λw.y otherwise.

As in the proof of [72, Theorem 1.9.14], take a function term te such that te ≃ {e}. By the
recursion theorem analogue [72, Theorem 1.9.16], we have a p-functor (in fact, a function term)
t such that EL ⊢ ((

te | t
)∣∣∣ f

)∣∣∣λw.y ≃ (
t | f )

∣∣∣λw.y. It is straightforward to see that this t satisfies the
condition (2.3). !

Remark 2.3.9. The variant of Theorem 2.3.8 where EL is replaced by EL0 is also true. In fact,
by the fact that QF-IND is almost negative and Lemma 2.3.7, one can construct a function term
ψ0 of EL0 such that EL0 ⊢ ψ0 rf QF-IND.

Remark 2.3.10. The proof of Theorem 2.3.8 shows that if A (possibly containing free variables)
is provable in EL + GC + Γ′ without using axioms Q2 and Q3, then one can extract a “closed”
p-functor ψ such that EL + Γ ⊢ ψ ↓ ∧ ψ rf A.

2.3.3 Modified Realizability

Modified realizability was first introduced by Kreisel [57, 58]. Our treatment is based on [72]
and [55]. We use the results presented in the next chapters. See e.g. [74] for more background
information.

Definition 2.3.11. For each formula A of L(E-HAω), we define a formula x mr A of L(E-HAω)
where x is a (possibly empty) tuple of variables (of suitable types) which do not occur freely in
A. The definition is by induction over the logical structure of A.

• x mr A is A for prime A,

• x, y mr (A ∧ B) is x mr A ∧ y mr B,

• z0, x, y mr (A ∨ B) is
(
z =0 0→ x mr A

) ∧ (
z !0 0→ y mr B

)
,
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• y mr (A→ B) is ∀x
(
x mr A→ yx mr B

)
,

• x mr (∀yρA(y)) is ∀yρ(xy mr A(y)),

• zρ, x mr (∃yρA(y)) is x mr A(z),

where yix := yix1 . . . xk and yx := y1x, . . . , ynx of suitable types.

Theorem 2.3.12 (Soundness theorem of modified realizability, Theorem 5.8 in [55]). Let A be
an arbitrary L(E-HAω)-formula and ∆ef be an arbitrary set of ∃-free sentences. If E-HAω +

AC + IPωef + ∆ef ⊢ A, then there exists a tuple t of terms of E-HAω of suitable types such that
FV(t) ⊂ FV(A) and E-HAω + ∆ef ⊢ t mr A

Proof. See [55, Theorem 5.8]. !

Definition 2.3.13 ([72, 55, 37]).

1. A formula of L(E-HAω) is ∃-free if it is built up from prime formulas by means of ∧,→
and ∀ only.

2. Γ1 is the syntactic class of formulas of L(E-HAω) defined inductively as follows.

a) Prime formulas are in Γ1.

b) If A, B are in Γ1, then A ∧ B, A ∨ B,∀xA(x),∃xA(x) are in Γ1.

c) If A is ∃-free and B ∈ Γ1, then (∃xA→ B) ∈ Γ1.

Lemma 2.3.14 (Lemma 5.20 in [55]). For A ∈ Γ1, E-HAω ⊢ (x mr A)→ A holds.

Remark 2.3.15. The corresponding results to Theorem 2.3.12 and Lemma 2.3.14 for the frag-
ments also hold.

2.3.4 Dialectica Interpretation

The Dialectica interpretation was introduced by Gödel [27]. Our treatment is based on Kohlen-
bach [55], where a detailed exposition is given. Here we present the basic results on the Di-
alectica interpretation, which are used in the next chapters as crucial tools. See e.g. [2] for a
comprehensive treatment of the Dialectica interpretation.

Definition 2.3.16. For each formula A of L(WE-HAω), we define a formula AD ≡ ∃x∀yAD(x, y)
of L(WE-HAω) where x, y are (possibly empty) tuples of variables (of suitable types), AD is
quantifier-free, and the free variables of A are that of AD. The definition is by induction over the
logical structure of A.

• AD(≡ AD) is A for prime A,
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• (A ∧ B)D is ∃x, u∀y, v(AD(x, y) ∧ BD(u, v)) (namely, (A ∧ B)D is (AD(x, y) ∧ BD(u, v))),

• (A ∨ B)D is ∃z0x, u∀y, v
(
z = 0→ AD(x, y) ∧ z ! 0→ BD(u, v))

)
,

• (A→ B)D is ∃U,Y∀x, v
(
AD(x,Y xv)→ BD(U x, v)

)
,

• (∀zρA(z))D is ∃X∀z, yAD(Xz, y, z),

• (∃zρA(z))D is ∃z, x∀yAD(x, y, z),

where AD is ∃x∀yAD(x, y) and BD is ∃u∀vBD(u, v).

Theorem 2.3.17 (Soundness theorem of the Dialectica interpretation, Theorem 8.6 in [55]).
Let A(a) be a formula of L(WE-HAω) containing only a free. If WE-HAω + AC + IPω∀ + Mω

proves A(a), then there exists a tuple t of closed terms of WE-HAω such that WE-HAω proves
∀yAD(t a, y, a).

Proof. See [55, Theorem 8.6]. !

Definition 2.3.18 ([72, 55, 37]). Γ2 (⊆ Γ1) is the syntactic class of formulas of L(E-HAω)
defined inductively as follows.

1. Prime formulas are in Γ2.

2. If A, B are in Γ2, then A ∧ B, A ∨ B,∀xA(x),∃xA(x) are in Γ2.

3. If A is purely universal ∀yρAq f (y) and B ∈ Γ2, then (∃xA→ B) ∈ Γ2.

Lemma 2.3.19 (Lemma 8.11 in [55]). For A ∈ Γ2, WE-HAω ⊢ AD → A holds.

Remark 2.3.20. The corresponding results to Theorem 2.3.17 and Lemma 2.3.19 for the frag-
ments also hold.

2.3.5 Elimination of Extensionality

We discuss a syntactic method for elimination of the extensionality axiom from proofs in E-HAω

(or Ê-HA
ω
"), which enables us to apply the soundness theorem of the Dialectica interpretation.

Our treatment is based on [55, Section 10.4], which is a simplification of Luckhard’s original
work [63].

Definition 2.3.21 (Translation for elimination of extensionality, [55]). Let A be a formula of
L(E-HAω) . Ae is defined by induction on the logical structure of A:

• Ae :≡ A, if A is a prime formula,

• (A!B)e :≡ (Ae!Be), where ! ∈ {∧,∨,→},
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• (∃xρA)e :≡ ∃xρA(x =e
ρ x ∧ Ae),

• (∀xρA)e :≡ ∀xρ(x =e
ρ x→ Ae),

where the relation x =e
ρ y is defined by induction on ρ as follows:

• x =e
0 y :≡ x =0 y,

• x =e
τρ y :≡ ∀uρ, vρ

(
u =e

ρ v→ xu =e
τ xv ∧ xu =e

τ yv
)
.

Remark 2.3.22. As observed by Ferreira [18], this definition can be shown to be equivalent to
the simpler version where the first conjunct in x =e

τρ y is dropped.

Proposition 2.3.23 (Proposition 10.45 in [55]). Let A(a) be a formula of L(E-HAω) containing
only a free. If

E-HAω + QF-AC0,1 + QF-AC1,0 ⊢ A(a),

then
WE-HAω + QF-AC0,1 + QF-AC1,0 ⊢ a =e a→ A(a).

This also holds for Ê-HA
ω
! and ŴE-HA

ω
! instead of E-HAω and WE-HAω.

Proof. See [55, Proposition 10.45]. The same proof also works for the fragments as mentioned
in [55, Section 10.5]. "

Lemma 2.3.24. For xρ1, x
ρ
2 where ρ = 0ρk . . . ρ1, x1 =

e
ρ x2 ↔

(
x1 =ρ x2

)
e
∧ x2 =

e
ρ x2.

Proof. Note that by [55, Lemma 10.40.2],

x1 =
e
ρ x2 ↔ ∀yρ1

1 , ỹ
ρ1
1 , . . . , y

ρk
k , ỹ

ρk
k

⎛
⎜⎜⎜⎜⎜⎝

k∧

i=1

yi =
e
ρi

ỹi → x1y =0 x1ỹ ∧ x1y =0 x2ỹ

⎞
⎟⎟⎟⎟⎟⎠ .

On the other hand, x1 =ρ x2 is the abbreviation of

∀yρ1
1 , . . . , y

ρk
k (x1y1, . . . , yk =0 x2y1 . . . yk) .

One can verify the equivalence by a careful inspection using [55, Lemma 10.37 and Lemma
10.39]. "

Lemma 2.3.25 (Elimination of extensionality). For every formula A(a) of L(E-HAω) where a
are all the free variables of A, if

E-HAω + AC!1 + AC0 ⊢ A(a),
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then
WE-HAω + AC ⊢ a =e a→ A(a).

This also holds for Ê-HA
ω
! and ŴE-HA

ω
! instead of E-HAω and WE-HAω.

Proof. By induction on the derivation. In fact, the proof is the same as for [55, Proposition
10.45] (See also [55, Remark 10.46.2]) except the interpretation of AC!1 and AC0. We only
discuss their interpretation in WE-HAω + AC (See [63] for more details).

Since x =e
ρ x holds for xρ such that deg(ρ) ≤ 1 ([55, Lemma 10.41]), (AC!ρ,τ)e where deg(ρ) ≤

1 is equivalent to the following formula (with implicit parameters p);

∀xρ∃yτ
(
y =e

τ y ∧ A(x, y)e ∧ ∀zτ
(
z =e

τ z ∧ A(x, z)e → (y =τ z)e
) )

(2.4)

→ ∃Yτρ(Y =e
τρ Y ∧ ∀xρA(x,Y x)e

)
.

Assume (2.4). Then we have

∃Yτρ∀x
(
Y x =e

τ Y x ∧ A(x, Y x)e ∧ ∀zτ
(
z =e

τ z ∧ (A(x, z)e → (Y x =τ z)e
) )

by ACρ,τ. What we have to show is only that such a Y is extensional, i.e.

∀xρ1, x
ρ
2

(
x1 =

e
ρ x2 → Y x1 =

e
τ Y x2

)
.

Note that

Y x1 =
e
τ Y x2 ≡ ∀vτ1

1 , v
τ1
2

(
v1 =

e
τ1

v2 → Y x1v1 =
e
τ2

Y x1v2 ∧ Y x1v1 =
e
τ2

Y x2v2

)

where τ = τ2τ1. On one hand, Y x1v1 =
e Y x1v2 is a direct consequence of Y x1 =

e
τ Y x1. On

the other hand, Y x1v1 =
e Y x2v2 follows form Y x2 =

e Y x2 and Y x2 =
e Y x2 ∧ A(x1, Y x2)e →

(Y x1 =τ Y x2)e via Lemma 2.3.24, since A(x1, Y x2)e follows from x1 =
e x2 and A(x2, Y x2)e (note

that each term t[p] occurring in A(x, y) is extensional under the assumption p =e p [55, Lemma
10.42]).

Next we turn to the interpretation of AC0. For any type τ, (AC0,τ)e is equivalent to

∀x0∃yτ
(
y =e

τ y ∧ A(x, y)e
)→ ∃Yτ(0) (Y =e

τ Y ∧ ∀x
(
A(x,Y x)e

))
.

This is derived from AC0,τ applied to ∀x0∃yτ
(
y =e

τ y ∧ A(x, y)e
)

using the fact that the full ex-
tensionality for equality of type 0 holds in WE-HAω ([55, Remark 3.13.2]).

The same proof works for the analogous result for Ê-HA
ω
! and ŴE-HA

ω
!. "
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3 Intuitionistic Provability versus Uniform
Provability in RCA

In this chapter, we give an exact formulation to represent uniform provability in RCA and show
that for any Π1

2 formula of some syntactical form (rich enough), it is intuitionistically provable
if and only if it is uniformly provable in RCA.

Notation 3.0.26. The most popular base system RCA0 of reverse mathematics, presented in
[68], and its extension RCA having full induction scheme use the set-based language (namely,
has variables for numbers and sets of numbers) with the membership relation symbol.1 On the
other hand, the systems EL0 and EL use the function-based language. However, as mentioned
in [37] (See also [54]), one can identify EL0 + LEM with RCA0 and EL + LEM with RCA
respectively in the sense that each is included in a canonical definitional extension (See [72,
Section 1.2]) of the other. In fact, one can see sets in RCA0 as their characteristic functions in
EL0 + LEM and conversely see functions in EL0 + LEM as their graphs in RCA0. Throughout
this thesis, we also write RCA0 and RCA instead of EL0 + LEM and EL + LEM under this
identification.

3.1 Known Uniformization Results

Definition 3.1.1 (Sequential version). The sequential version of a Π1
2 statement having a form

(♠) : ∀ f (ϕ( f )→ ∃gψ( f , g))

is the statement
∀⟨ fn⟩n∈N (∀n ϕ( fn)→ ∃⟨gn⟩n∈N∀n ψ( fn, gn)) ,

where f is possibly a tuple of function (or set) variables. Throughout this thesis, we denote the
sequential version of a statement T having the form (♠) as Seq(T).

It has been recently established in [37] and [13] that for Π1
2-statements of some syntactical

1The original base system proposed by Friedman [20] had function variables.
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form, the provability in certain (semi-)intuitionistic systems guarantees the sequential prov-
ability in RCA (or +WKL). Such kind of results are called “uniformization theorems”. As
demonstrated in [37] and [13], uniformization theorems enable us to use the investigation of se-
quential versions in classical reverse mathematics to show intuitionistic unprovability of some
Π1

2 statements.
In this section, we bring together the existing uniformization theorems for sequential versions.

The first results of this kind was established by Hirst and Mummert [37]. The following are their
(slightly refined) uniformization results.

Proposition 3.1.2 (Theorem 3.6 and Theorem 5.6 in [37]).

1. For any L(E-HAω)-formula T :≡ ∀ f (ϕ( f )→ ∃gψ( f , g)) such that ϕ( f ) is ∃-free and
ψ( f , g) is in Γ1 (See Definition 2.3.13), if

E-HAω + AC + IPωef ⊢ T,

then
RCAω ⊢ Seq(T).

2. For any L(WE-HAω)-formula T :≡ ∀ f (ϕ( f )→ ∃gψ( f , g)) such that ϕ( f ) is purely uni-
versal and ψ( f , g) is in Γ2 (See Definition 2.3.18), if

WE-HAω + AC + IPω∀ +Mω ⊢ T,

then
RCAω ⊢ Seq(T).

On the other hand, Dorais [13] showed the similar uniformization theorems in second-order
setting.

Definition 3.1.3 ([13]).

• NK is the class of almost negative formulas (Definition 2.3.6). In other words, NK is
defined inductively as:

– Aq f , ∃xρAq f are in NK, where ρ ∈ {0, 1}.
– If A1, A2 are in NK, then A1 ∧ A2, A1 → A2, ∀xρA1 are in NK, where ρ ∈ {0, 1}.

• ΓK is the class of formulas defined inductively as:

– Aq f is in ΓK.

– If A1, A2 are in ΓK, then A1 ∧ A2, ∀xρA1 and ∃xρA1 are in ΓK, where ρ ∈ {0, 1}.
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– If A1 is in NK and A2 is in ΓK, then A1 → A2 is in ΓK, where ρ ∈ {0, 1}.
• NL is the class of formulas defined inductively as:

– Aq f , ∃xρAq f are in NL, where ρ ∈ {0, 1}.
– ∃x ≤ t∀yAq f , where t is a number term in which x does not occur, is in NL.

– ∃ξ ≤ τ∀yAq f
2, where τ is a function term in which x does not occur, is in NL.

– If A1, A2 are in NL, then A1 ∧ A2, A1 → A2, ∀xρA1 are in NL, where ρ ∈ {0, 1}.
• ΓL is the class of formulas defined inductively as:

– Aq f is in ΓL.

– If A1, A2 are in ΓL, then A1 ∧ A2, ∀xρA1 and ∃xρA1 are in ΓL, where ρ ∈ {0, 1}.
– If A1 is in NL and A2 is in ΓL, then A1 → A2 is in ΓL, where ρ ∈ {0, 1}.

Definition 3.1.4 ([13]).

• CN is the set of all sentences ϕ from NK such that RCA ⊢ ϕ.

• CNL is the set of all sentences ϕ from NL such that RCA +WKL ⊢ ϕ.

The following are Dorais’ Uniformization results.

Proposition 3.1.5 (Corollary 3.9 and Corollary 4.9 in [13]).

1. For any T :≡ ∀ f (ϕ( f )→ ∃gψ( f , g)) such that ϕ( f ) is in NK and ψ( f , g) is in ΓK, if

EL + GC + CN ⊢ T,

where GC is Troelstra’s generalized continuity principle (Subsection 2.2.3), then

RCA ⊢ Seq(T).

2. For any T :≡ ∀ f (ϕ( f )→ ∃gψ( f , g)) such that ϕ( f ) is in NL and ψ( f , g) is in ΓL, if

EL +WKL + GCL + CNL ⊢ T,

where GCL is van Oosten’s Lifschitz generalized continuity principle (See [13]), then

RCA +WKL ⊢ Seq(T).

2Here ξ ≤ τ stands for ∀i(ξ(i) ≤ τ(i)).
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3.2 Exact Formulation of Uniform Provability in RCA

Uniform Provability in RCA Consider a Π1
2 sentence ∀ξ(A(ξ) → ∃ζB(ξ, ζ)). In terms of

computability theory, its provability in RCA corresponds to that ζ : N → N is Muchnik re-
ducible to ξ : N → N, namely, for all ξ satisfying A(ξ), there is a program Φ (depending on ξ)
which computes ζ satisfying B(ξ, ζ) with the use of ξ as oracle. On the other hand, what one
intends to represent by its sequential provability in RCA is that ζ is Medvedev reducible to ξ,
i.e., there is a (uniform) program Φ such that for all ξ satisfying A(ξ), Φ compute ζ satisfying
B(ξ, ζ) with the use of ξ as oracle. We consider the strict formulation which represents this
notion in terms of reverse mathematics, and call that “uniform provability in RCA”. Based
on this observation, we propose the following two candidates of the formulation to represent
uniform provability in RCA:

1. There exists a (primitive recursive) closed term t1 of RCA such that

RCA ⊢ ∀ξ (A(ξ)→ t | ξ ↓ ∧B(ξ, t | ξ)) ,

where (·) | (·) is the partial continuous operation in Definition 2.2.20.

2. There exists a (Gödel primitive recursive) closed term t1→1 of RCAω such that

RCAω ⊢ ∀ξ (A(ξ)→ B(ξ, tξ)) .

In fact, as we show below, these two formulations are equivalent if A is purely universal and B
is not too complicated.

Remark 3.2.1. As indicated in [13], the sequential provability in RCA seems not to fully repre-
sent uniform provability in RCA. In addition, the provability of uniform versions ∃Φ∀ξ(A(ξ)→
B(ξ,Φ(ξ))

)
in RCAω also seems not to be an “exact” formulation in the sense that it may just

ensure the provability of ¬¬∃Φ∀ξ(A(ξ)→ B(ξ,Φ(ξ))
)

in RCAω.

Remark 3.2.2. Technically, with the aid of the term existence, the syntactical form of the sen-
tence in question is such that the negative translation works (See the proof of Proposition 3.3.6).
In fact, the proof of Proposition 3.3.6 does not work if we interpret uniform provability in RCA
by sequential or uniform versions as in Proposition 3.1.5(1) or Proposition 4.2.3.

3.3 Characterization of Uniform Provability in RCA

We first present the refinement of Dorais’s result [13, Proposition 3.7] with a witness term,
which is based on Kleene’s realizability with functions (cf. Subsection 2.3.2).
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Proposition 3.3.1. Let CN (Definition 3.1.4) be the set of all sentences ϕ from NK such that
RCA ⊢ ϕ, A(ξ) ∈ NK and B(ξ, ζ) ∈ ΓK. If

EL + GC + CN ⊢ ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)) ,

then there exists a function term t of RCA such that

RCA ⊢ ∀ξ (A(ξ)→ t | ξ ↓ ∧ B(ξ, t | ξ)) .

Proof. Note that for each sentence ϕ ∈ CN, there exists a function term tϕ such that EL ⊢ ϕ ↔
tϕ rf ϕ (See Lemma 2.3.7), and hence EL + CN ⊢ tϕ rf ϕ. Then, by Theorem 2.3.8, there exists
a p-functor ψ such that

EL + CN ⊢ ψ ↓ ∧ ψ rf ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)) .

By Proposition 2.2.22, there exists a function term tψ of EL such that EL ⊢ tψ | ξ ≃ ψ | ξ, and
hence,

EL + CN ⊢ ∀ξ
(
tψ | ξ ↓ ∧tψ | ξ rf (A(ξ)→ ∃ζB(ξ, ζ))

)
.

Since A(ξ) is in NK and B(ξ, ζ) ∈ ΓK, as in the proof of [13, Proposition 3.7], one obtains a
function term t such that

EL + CN ⊢ ∀ξ (A(ξ)→ t | ξ ↓ ∧ B(ξ, t | ξ)) .

!

Remark 3.3.2. MP is in CN.

Remark 3.3.3. Dorais’ first uniformization theorem [13, Corollary 3.9] (Proposition 3.1.5(1))
follows from Proposition 3.3.1 as a corollary.

Next we show the converse direction, namely that uniform provability in RCA implies intu-
itionistic provability by means of Kuroda’s negative translation (cf. Subsection 2.3.1).

Definition 3.3.4. NM is the class of formulas defined inductively as:

• Aq f is in NM.

• If A1, A2 are in NM, then A1 ∧ A2, A1 ∨ A2, ∀xρA1, ∃xρA1 are in NM, where ρ ∈ {0, 1}.

• If A is in NM, then ∀uρ∃v0Aq f → A is in NM, where ρ ∈ {0, 1}.

Lemma 3.3.5. For any formula A ∈ NM, EL +MP ⊢ A→ A∗ where A∗ is as in Definition 2.3.1.
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Proof. The proof is by induction on the structure of NM. For quantifier-free Aq f , this is triv-
ial. Suppose that A1, A2 ∈ NM are provable in EL + MP. Then it is straightforward to see
that (A1 ∧ A2)∗, (A1 ∨ A2)∗, (∀xρA1)∗ and (∃xρA1)∗ is provable in EL + MP, where ρ ∈ {0, 1}.
For the case of ∀uρ∃v0Aq f → A1, using MP and the induction hypothesis, one can see that
∀uρ∃v0Aq f → A1 implies ∀uρ¬¬∃v0Aq f → A1

∗, which is identical to
(
∀uρ∃v0Aq f → A1

)∗
since

Aq f
∗ ≡ Aq f . !

Proposition 3.3.6. Assume that A(ξ) ∈ NM and that B(ξ, ζ) is equivalent to ∀wρ∃s0Bq f (ξ, ζ,w, s)
(ρ ∈ {0, 1}) over EL +MP. If there exists a function term t of RCA such that

RCA ⊢ ∀ξ (A(ξ)→ t | ξ ↓ ∧ B(ξ, t | ξ)) ,

then
EL +MP ⊢ ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)) .

Proof. Suppose RCA ⊢ ∀ξ
(
A(ξ)→ t | ξ ↓ ∧ ∀wρ∃s0Bq f (ξ, t | ξ,w, s)

)
. Expressing more pre-

cisely, it asserts that RCA proves

∀ξ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(ξ)→ ∀n∃m(t(⟨n⟩⌢ξm) > 0)∧

∀γ1

⎛
⎜⎜⎜⎜⎜⎝
∀n∃m

(
t(⟨n⟩⌢ξm) = γ(n) + 1 ∧ ∀m′ < m(t(⟨n⟩⌢ξm′) = 0)

)

→ ∀w∃sBq f (ξ, γ,w, s)

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.1)

By Lemma 2.3.2 along with Lemma 2.2.12 and standard intuitionistic equivalences, it follows
that EL +MP proves

∀ξ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A∗(ξ)→ ∀n¬¬∃m(t(⟨n⟩⌢ξm) > 0)∧

∀γ
⎛
⎜⎜⎜⎜⎜⎝
∀n¬¬∃m

(
t(⟨n⟩⌢ξm) = γ(n) + 1 ∧ ∀m′ < m(t(⟨n⟩⌢ξm′) = 0)

)

→ ∀w¬¬∃sBq f (ξ, γ,w, s)

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, using MP and Lemma 3.3.5, we have

EL +MP ⊢ (3.1). (3.2)

In the following, we reason in EL + MP. For ξ satisfying A(ξ), by (3.2) with the use of
QF-AC0,0, we have g1 such that t(⟨n⟩⌢ξ(g(n))) > 0 and ∀m′ < m(t(⟨n⟩⌢ξm′) = 0) for all
n. Then ζ := λn.t(⟨n⟩⌢ξ(g(n)))−̇1 satisfies the condition in (3.1). Thus EL + MP proves
∀ξ

(
A(ξ)→ ∃ζ∀w∃sBq f (ξ, ζ,w, s)

)
, equivalently, ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)). !

Definition 3.3.7. NKM is the class of formulas defined inductively as:

• Aq f and ∃xρAq f are in NKM, where ρ ∈ {0, 1}.
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• If A1, A2 are in NKM, then A1 ∧ A2, ∀xρA1 are in NKM, where ρ ∈ {0, 1}.

• If A is in NKM, then ∀uρ∃v0Aq f → A is in NKM, where ρ ∈ {0, 1}.

Lemma 3.3.8. NKM ⊂ NK ∩ NM.

Proof. Straightforward by induction on the construction of NKM. !

We are now prepared to state our first characterization theorem.

Theorem 3.3.9. Let ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)) be a L(EL)-formula where A(ξ) ∈ NKM and B(ξ, ζ)
is equivalent to ∀wρ∃s0Bq f (ξ, ζ,w, s) (ρ ∈ {0, 1}) over EL + MP. Then there exists a function
term t of RCA such that

RCA ⊢ ∀ξ (A(ξ)→ t | ξ ↓ ∧ B(ξ, t | ξ))

if and only if
EL +MP ⊢ ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)) .

Proof. By Lemma 3.3.8, this follows immediately from Proposition 3.3.1 (with Remark 3.3.2)
and Proposition 3.3.6. !

Remark 3.3.10. The Markov’s principle MP is not provable in EL. However, MP is allowed in
Markov-style constructive mathematics (see [75] for details).3

Remark 3.3.11. A lot of mathematical statements have been investigated in computable anal-
ysis ([76]). For a theorem S represented as a Π1

2 sentence ∀ξ(A(ξ) → ∃ζB(ξ, ζ)), the fact that
S is provable in computable analysis (in the sense of [76, 7, 8]) roughly means that there is a
uniform algorithm which transforms ξ into ζ. This is conceptually the same as the intended no-
tion expressed by sequential provability in RCA. However, there is a crucial difference between
provability in computable analysis and uniform provability in RCA. In the former case, the ver-
ification that the algorithm works is carried out in a usual mathematical manner. On the other
hand, in the latter case, the verification has to be carried out in the restricted mathematical
universal having only the ∆0

1 (≈ computable) set existence axiom. In this sense, uniform prov-
ability in RCA is more restrictive than provability in computable analysis. On the other hand,
the choice of EL as a theory for formalizing constructive mathematics is based on considering
the meaning of “constructive” as the existence of algorithm.4 Under this interpretation, the
fact that S is provable in EL suggests that there is an algorithm which transforms ξ into ζ, and

3Troelstra considers HA + ECT0(extended Church’s thesis)+MPPR (See Section 6.3 for definitions) to be a for-
malization of Markov-style constructive mathematics ([75, 4.4.12]).

4Troelstra [73] suggests an analogy between Weihrauch’s computable analysis and constructive mathematics.
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in addition, the verification is carried out in the uniformly computable manner. In this sense,
the provability in EL is seemingly further restrictive than uniform provability in RCA. How-
ever, Theorem 3.3.9 states that the constructive provability is equivalent to uniform provability
of in RCA at least for ‘practical’ Π1

2 sentences because the syntactical class which our results
covers is rich enough to involve a large amount of practical statements (under the standard rep-
resentation in e.g. [75, 55]) as suggested from Remark 3.4.4 and the observation at the end of
Subsection 5.3.1. In addition, as we show in Theorem 3.3.18 below, even the Markov’s principle
can be removed for simpler statements.

Remark 3.3.12. From a philosophical point of view, it is remarkable that all of our proofs are
constructive, namely, they are just explicit syntactic translations. Thus we constructively (from
a meta-perspective) establish the equivalence between constructive provability and classical
uniform provability.

In the following, we show that in Theorem 3.3.9, if A(ξ) is in particular a purely universal
formula (which is of course in NKM), one can remove even MP from the intuitionistic system.
We first restate Hirst and Mummert’s result [37, Theorem 5.6] (Proposition 3.1.2(2)) in a for
our purpose most useful form.

Proposition 3.3.13. For a sentence ∀xρ(A(x) → ∃yτB(x, y)) of L(WE-HAω) where A(x) is
purely universal (i.e., of the form ∀uAq f (x, u)) and B(x, y) is in Γ2, if

WE-HAω + AC + IPω∀ +Mω ⊢ ∀xρ(A(x)→ ∃yτB(x, y)),

then there exists a term tρ→τ of WE-HAω such that

WE-HAω ⊢ ∀xρ(A(x)→ B(x, tx)).

Proof. Without loss of generality, let A(x) ≡ ∀uAp(x, u) with prime Ap(x, u) (cf. [55, Proposi-
tion 3.17]). By using IPω∀ , we have that ∀x∃y

(
∀uAp(x, u)→ B(x, y)

)
is provable in WE-HAω +

AC + IPω∀ +Mω. Note that ∀x∃y
(
∀uAp(x, u)→ B(x, y)

)
is in Γ2 since B(x, y) is in Γ2. The dis-

cussion below is same as in the proof of [37, Theorem 5.6]. Let (B(x, y))D ≡ ∃v∀wBD(x, y, v,w)
(note that (∀uAp(x, u))D ≡ ∀uAq f (x, u)). By Theorem 2.3.17, there exist closed terms tY , tV , tU

such that WE-HAω ⊢ ∀x,w
(
Ap(x, , tU xw)→ BD(x, tY x, tV x)

)
. Then, without difficulty, one can

see
WE-HAω ⊢ ∀x∃v∀w∃u

(
Ap(x, u)→ BD(x, tY x, v,w)

)
.

Since this is equivalent to WE-HAω ⊢ ∀x
(
∀uAp(x, u)→ (B(x, y))D

)
and B(x, y) is in Γ2, applying

Lemma 2.3.19, we have WE-HAω ⊢ ∀x(∀uAp(x, u)→ B(x, tx)). !

38



3 Intuitionistic Provability versus Uniform Provability in RCA

The following conservation result is an immediate consequence from the previous proposi-
tion.

Proposition 3.3.14. For a sentence ∀xρ(A(x) → ∃yτB(x, y)) of L(WE-HAω) where A(x) is
purely universal (i.e., of the form ∀uAq f (x, u)) and B(x, y) is in Γ2, if

WE-HAω + AC + IPω∀ +Mω ⊢ ∀xρ(A(x)→ ∃yτB(x, y)),

then
WE-HAω ⊢ ∃Yρ→τ∀xρ(A(x)→ B(x,Y x)),

and hence, WE-HAω ⊢ ∀xρ(A(x)→ ∃yτB(x, y)).

Remark 3.3.15. In the same manner, one can show the analogous results obtained by replacing
WE-HAω with ŴE-HA

ω
! in Theorem 3.3.13 and Proposition 3.3.14 respectively (cf. [55, Section

8.3]).

Proposition 3.3.16. Assume that A(ξ) has Π0
1 form ∀uAb(ξ, u) and B(ξ, ζ) is equivalent to

∀wρ∃s0Bq f (ξ, ζ,w, s) (ρ ∈ {0, 1}) over EL +MP. If there exists a function term t of RCA such
that

RCA ⊢ ∀ξ (A(ξ)→ t | ξ ↓ ∧ B(ξ, t | ξ)) ,

then
EL ⊢ ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)) .

Proof. Without loss of generality, one can assume that A(ξ) is a purely universal formula
∀uAp(ξ, u) with prime Ap(ξ, u) by Lemma 2.2.12.

Since each purely universal formula is in NM, by Proposition 3.3.6, EL +MP proves

∀ξ(A(ξ)→ ∃ζ∀wρ∃s0Bq f (ξ, ζ,w, s)).

By identifying EL +MP with its canonical embedding into WE-HAω +M0, we have

WE-HAω +M0 ⊢ ∀ξ
(
A(ξ)→ ∃ζ∀wρ∃s0Bq f (ξ, ζ,w, s)

)
.

Since ∀wρ∃s0Bq f (ξ, ζ,w, s) is in Γ2 (cf. Definition 2.3.18), by Proposition 3.3.14, we have

WE-HAω ⊢ ∀ξ
(
A(ξ)→ ∃ζ∀wρ∃s0Bq f (ξ, ζ,w, s)

)
.

Since WE-HAω is conservative over EL for L(EL) formulas (Proposition 2.2.24), it follows that
EL proves ∀ξ

(
A(ξ)→ ∃ζ∀wρ∃s0Bq f (ξ, ζ,w, s)

)
, equivalently, ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)). "
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3 Intuitionistic Provability versus Uniform Provability in RCA

Proposition 3.3.17. Let ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)) be a L(EL)-formula where A(ξ) has Π0
1 form

∀uAb(ξ, u) and B(ξ, ζ) is equivalent to ∀wρ∃s0Bq f (ξ, ζ,w, s) (ρ ∈ {0, 1}) over EL +MP. Then

EL ⊢ ∀ξ (A(ξ)→ ∃ζB(ξ, ζ))

if and only if there exists a term t1→1 of RCAω such that

RCAω ⊢ ∀ξ (A(ξ)→ B(ξ, tξ))

under the canonical embedding.

Proof. Without loss of generality, one can assume that A(ξ) is a purely universal formula
∀uAp(ξ, u) with prime Ap(ξ, u) by Lemma 2.2.12.

Soppose EL ⊢ ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)). Then E-HAω ⊢ ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)) under the canon-
ical embedding. Since A(ξ) is ∃-free and ∀wρ∃s0Bq f (ξ, ζ,w, s) is in Γ1, as in the proof of Propo-
sition 4.2.3 (based on modified realizability interpretation) below, one can show that there exists
a term t1→1 of RCAω such that RCAω ⊢ ∀ξ (A(ξ)→ B(ξ, tξ)).

The converse direction is the same as for Proposition 3.3.16 except the use of elimination of
extensionality technique. Suppose that RCAω proves ∀ξ (A(ξ)→ B(ξ, tξ)). Since our sentence
contains quantifiers only of type 0 and 1, it follows by [55, Proposition 10.45] that WRCAω

(i.e. WE-PAω + QF-AC1,0) proves ∀ξ (A(ξ)→ B(ξ, tξ)). Then using Kuroda’s negative trans-
lation [55, Proposition 10.6], the Dialectica interpretation (Proposition 3.3.14) and the conser-
vativity (Proposition 2.2.24) just as in the proof of Proposition 3.3.16, we have that EL proves
∀ξ (A(ξ)→ ∃ζB(ξ, ζ)). !

The following is our second characterization theorem.

Theorem 3.3.18. Let ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)) be aL(EL)-formula where A(ξ) hasΠ0
1 form ∀uAb(ξ, u)

and B(ξ, ζ) is equivalent to ∀wρ∃s0Bq f (ξ, ζ,w, s) (ρ ∈ {0, 1}) over EL +MP. Then the following
are pairwise equivalent.

(1) EL ⊢ ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)).

(2) There exists a function term t of RCA such that RCA ⊢ ∀ξ (A(ξ)→ t | ξ ↓ ∧ B(ξ, t | ξ)).

(3) There exists a term t1→1 of RCAω such that RCAω ⊢ ∀ξ (A(ξ)→ B(ξ, tξ)) under the canon-
ical embedding.

Proof. The equivalence between (1) and (2) follows from Proposition 3.3.1 and Proposition
3.3.16. On the other hand, (1) is equivalent to (3) by Proposition 3.3.17. !
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3 Intuitionistic Provability versus Uniform Provability in RCA

Remark 3.3.19. Theorem 3.3.18 reveals that the representation of uniform provability by the
partially defined application operation (·) | (·) and the representation by primitive recursive
functional in the sense of Gödel is equivalent for a large number of practical statements in
reverse mathematics.

3.4 Characterization of Uniform Provability in RCA0

By a careful inspection, one observes that all proofs in the previous section also work for the
fragments EL0, RCA0, RCAω

0 instead of EL, RCA, RCAω (cf. [13, Rremark 3.10], [55, Section
8.3] and [55, Section 10.5]). Since the proofs are completely parallel to before, in this section,
we state our theorems without proofs.

Firstly, the following is a counterpart of Theorem 3.3.9.

Theorem 3.4.1. Let ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)) be a L(EL0)-formula where A(ξ) ∈ NKM and B(ξ, ζ)
is equivalent to ∀wρ∃s0Bq f (ξ, ζ,w, s) (ρ ∈ {0, 1}) over EL0 +MP. Then there exists a function
term t of RCA0 such that

RCA0 ⊢ ∀ξ (A(ξ)→ t | ξ ↓ ∧ B(ξ, t | ξ))

if and only if
EL0 +MP ⊢ ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)) .

The following theorem is a counterpart of Theorem 3.3.18. Notice that the class of type
1→ 1 functional terms of RCAω

0 (containing only type 0 recursor R0) is proper subclass of type
1 → 1 functional terms of RCAω (possibly containing higher type recursors) while the class of
function terms of RCA0 is the same as RCA.

Theorem 3.4.2. Let ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)) be a L(EL0)-formula where A(ξ) has Π0
1 form

∀uAb(ξ, u) and B(ξ, ζ) is equivalent to ∀wρ∃s0Bq f (ξ, ζ,w, s) (ρ ∈ {0, 1}) over EL0 +MP. Then
the following are pairwise equivalent.

1. EL0 ⊢ ∀ξ (A(ξ)→ ∃ζB(ξ, ζ)).

2. There exists a function term t of RCA0 such that RCA0 ⊢ ∀ξ (A(ξ)→ t | ξ ↓ ∧ B(ξ, t | ξ)).

3. There exists a term t1→1 of RCAω
0 such that RCAω

0 ⊢ ∀ξ (A(ξ)→ B(ξ, tξ)) under the canon-
ical embedding.

Remark 3.4.3. The corresponding result to the equivalence between 2 and 3 in Theorem 3.4.2
can be found in [53, Section 4], where the relation between the continuous notion in finite-type
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3 Intuitionistic Provability versus Uniform Provability in RCA

arithmetic and the continuous notion by means of the operation (·) | (·) has been investigated
with respect to higher order reverse mathematics.

Remark 3.4.4 (on Application). For example, by a careful inspection, one can see that Kier-
stead’s effective variant of marriage theorem [44] (see also [23]) is formalized as a Π1

2 sentence
such that both of the premise and the conclusion haveΠ0

1 form. In addition, as indicated in [23],
it is uniformly provable in RCA0 (in particular, the verification of the solution-constructing al-
gorithm is carried out in RCA0). Therefore, by Theorem 3.3.18, it follows that Kierstead’s
effective marriage theorem is provable in EL0.

3.5 Future Works

The author thinks that there are several possible extensions of this work. Here we list three of
them.

1. Characterize the hierarchy of relative uniform provability with respect to WKL and ACA
by the hierarchy of the law-of-excluded-middle over EL (cf. Section 1.5).

2. Characterize uniform provability in stronger systems (like ACA) by (semi-)intuitionistic
systems, which aims the characterization of computable analysis by constructive mathe-
matics (cf. Remark 3.3.11 as well as [73]).

3. Compare formalized Markov-style constructive mathematics with uniform provability in
RCA (cf. Remark 3.3.10).
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4 Metatheorems for Uniform Versions

The uniformization theorems (See Section 3.1) allow us to use sequential reverse mathematics
to demonstrate the unprovability of several mathematical principles in (semi-)intuitionistic sys-
tems. The following table 4.1 gives the picture of existing uniformization theorems concerned
with sequential versions.

Higher-order setting Second-order setting
RCA +WKL [⋆] Dorais [13, Cor. 4.9]

RCA Hirst-Mummert [37, Thm. 3.6 & Thm. 5.6] Dorais [13, Cor. 3.9]

Table 4.1: Uniformization theorems

As shown in [13], not only the uniformization theorem for RCA but also the uniformization the-
orem for RCA+WKL holds in a second-order setting. Now, what can we show in a higher-order
(finite type) setting? In this chapter, we focus on the relationship between classical uniform
provability and intuitionistic provability with respect to WKL in a higher-order setting ([⋆] in
table 4.1).

Let us consider a stronger form to represent uniform provability than just sequentialization.
For a sentence S := ∀X (A(X)→ ∃YB(X,Y)), one can consider a sentence

∃F∀X (A(X)→ B(X, F(X))) ,

which expresses the existence of a uniform procedure F to construct a solution for each prob-
lem X. We call this sentence the uniform version of S and denote it as Uni(S). Unfortunately,
for a Π1

2 sentence, this uniform version is not naturally represented in the language of second-
order arithmetic since F is a third-order object. To treat uniform versions, we need systems of
arithmetic in all finite types (See Subsection 2.2.2). In fact, uniform versions of ordinary math-
ematical theorems have been investigated in the context of higher-order reverse mathematics
[54, 66].

In Section 4.2, we show the uniformization theorem concerned with uniform versions for
RCA. In addition, we discuss about that for RCA +WKL (positioned at [⋆] in table 4.1). The
proof is respectively based on modified realizability and the monotone Dialectica interpretation
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4 Metatheorems for Uniform Versions

with the use of the technique of elimination of extensionality. The uniformization results con-
cerned with sequential versions in [37] are the immediate corollaries of our results since the
sequential version follows from the uniform version.

In Section 4.3, we show a related metatheorem which states that (in particular) for every
Π2 statement S of some syntactical form, if its uniform version Uni(S) derives the uniform
variant (∃2) of ACA over a classical higher-order system with weak extensionality, then S is
not provable in extremely strong semi-intuitionistic systems T which include bar induction
BI in all types but also weak Kőnig’s lemma WKL and even uniform weak Kőnig’s lemma
UWKL and Kőnig’s lemma KL. In particular, T is strong enough (even without UWKL and
KL) to interpret classical analysis with full dependent choice via negative translation. That is,
by applying this metatheorem, one can obtain stronger unprovability results than what follows
from uniformization theorems. In this sense, one can think of our metatheorem as an extended
variant of the higher-order uniformization theorem positioned at [⋆] in table 4.1. In the proof,
we use (a variant of) the Dialectica interpretation, negative translation, a nonstandard axiom
F− and the model of all strongly majorizable functionals. Roughly speaking the metatheorem
often allows one to detect using classical reasoning on Uni(S) that S intuitionistically implies at
least the Π0

1-law-of-excluded-middle principle Π0
1-LEM (and so - in the presence of Markov’s

principle - Σ0
1-LEM) rather than only the strictly weaker principle Σ0

1-DML (as WKL already
does; see Section 1.5).

In Section 4.4, we demonstrate that our metatheorem in Section 4.3 is applicable to concrete
mathematical principles to show, using classical reasoning on the uniform versions of principles
S only, the unprovability of S in the semi-intuitionistic systems mentioned above. The investiga-
tion of the strength of uniform versions in higher-order reverse mathematics plays an important
role in the application of our metatheorem. In addition, as demonstrated in Section 5.4 below,
our metatheorem is applicable to statements whose sequential versions imply ACA.

The content of this chapter is due to a joint work with Ulrich Kohlenbach and contained in
[24]. Most of the technical tools used in this chapter are taken from Kohlenbach’s monograph
[55]. See Section 2.2 for the basic definitions and properties on finite type arithmetic.

4.1 Definitions

We first recall the definitions of key principles in this chapter (cf. [55, 52, 54]).

• (∃2) : ∃E2∀ f 1
(
E f = 0↔ ∃x0( f x = 0)

)
.

• (µ2) : ∃µ2∀ f 1
(
∃x0( f x = 0)→ f (µ f ) = 0

)
.
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• WKL (weak Kőnig’s lemma): ∀ f 1
(
T∞( f )→ ∃b ≤1 λk.1∀x0

(
f
(
bx

)
= 0

))
, where T∞( f )

expresses that f represents an infinite binary tree.

• UWKL (uniform weak Kőnig’s lemma): ∃Φ ≤1(1) 1∀ f 1
(
T∞( f )→ ∀x0

(
f
((
Φ f

)
x
)
= 0

))
.

Note that (∃2) is the uniform variant of ACA and UWKL is the uniform version of WKL.
The modelMω of all strongly majorizable functionals, which was first introduced in Bezem

[4], is a crucial tool for our result in Section 4.3.

Definition 4.1.1 ([55, 48, 50]). The type structureMω of all hereditarily strongly majorizable
set-theoretic functionals of finite type is defined as follows:

•

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n s-ma j0 m :≡ n ≥ m ∧ n,m ∈ N;
M0 := N;
x∗ s-ma jτ(ρ) x :≡ x∗, x ∈ Mτ

Mρ ∧ ∀y, y∗(y∗ s-ma jρ y→ x∗y∗ s-ma jτ x∗y, xy);
Mτ(ρ) :=

{
x ∈ Mτ

Mρ : ∃x∗ ∈ Mτ
Mρ

(
x∗ s-ma jτ(ρ) x

)}
(ρ, τ ∈ T);

• Mω := ⟨Mρ⟩ρ∈T.

(Here Mτ
Mρ denotes the set of all total set-theoretic functions from Mρ to Mτ.)

In addition, we recall some principles which are used mainly in Section 4.3. See [55, Chapter
12] for the detailed discussion on F(−) and Σ0

1-UB(−) and see e.g. [2, 40, 41, 55] for general
information on (BI) and (BR).

• For zρ(0), (z, n) (k0) :=ρ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zk if k <0 n,

0ρ otherwise,

where 0ρ is constant-0 functional of type ρ.

• F : ∀Φ2(0), y1(0),∃y0 ≤1(0) y∀k0, z ≤1 yk
(
Φkz ≤0 Φk (y0k)

)
.

F− : ∀Φ2(0), y1(0),∃y0 ≤1(0) y∀k0, z1, n0(∧
i<0n zi ≤0 yki→ Φk (z, n) ≤0 Φk (y0k)

)
.

• Σ0
1-UB : ∀y1(0)

(
∀k0∀x ≤1 yk∃z0A(x, y, k, z)→ ∃χ1∀k0∀x ≤1 yk∃z ≤0 χkA (x, y, k, z)

)
,

Σ0
1-UB− : ∀y1(0)

(
∀k0∀x ≤1 yk∃z0A(x, y, k, z) → ∃χ1∀k0, x1, n0(∧

i<n(xi ≤0 yki) → ∃z ≤0

χkA ((x, n) , y, k, z)
))
, where A ≡ ∃lAq f (l) and l is a tuple of variables of type 0 and Aq f is

a quantifier-free formula which may contain parameters of arbitrary type.

• KL (Kőnig’s lemma): ∀ f 1
(
T̃∞( f )→ ∃b1∀x0

(
f
(
bx

)
= 0

))
, where T̃∞( f ) expresses that

f represents a finitely branching infinite tree.

• DCρ : ∀x0, yρ∃zρA(x, y, z)→ ∃ f ρ(0)∀x0A(x, f (x), f (S (x))).
DC (dependent choice) :=

⋃
ρ∈T{DCρ}.
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• (BIρ) : ∀xρ0, n0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∃k0P
(
x, k; k

)
∧

P (x, n; n)→ P
(
x, n + 1; n + 1

)
∧

P (x, n; n) = 0→ Q (x, n; n) ∧
∀uρQ (x, n ∗ u; n + 1)→ Q (x, n; n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→ Q(0ρ0; 00),

where P, Q are arbitrary formulas and

(x, n ∗ u) k =ρ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk if k < n,
u if k = n.
0ρ otherwise.

BI (bar induction) :=
⋃

ρ∈T{BIρ}.
BI≤1 :=

⋃
ρ∈T,deg(ρ)≤1{BIρ}.

• BRρ,τ :

⎧⎪⎪⎨
⎪⎪⎩

y (x, n) <0 n→ Bρ,τyzunx =τ zn (x, n)
y (x, n) ≥0 n→ Bρ,τyzunx =τ u

(
λDρ.Bρ,τyzunx(n + 1) (x, n ∗ D)

)
n (x, n)

for all xρ(0) and n0.

BR (bar recursion) :=
⋃

ρ,τ∈T{BRρ,τ}.
If the system in question has BR, we implicitly assume that new constants Bρ,τ for bar
recursion are added. The important thing for our analysis is that BR is a purely universal
axiom scheme.

Remark 4.1.2. Bar induction in all finite types is a generalization of Brouwer’s ‘bar theorem’
considered first by Spector [70]. Spector also defined the new concept of bar recursion. The
precise formulations of (BI) and (BR) used above are taken from [63] (See also [40] and Section
11.1 from [55]).

4.2 Uniformization Theorems Concerned with Uniform
Versions

Proposition 4.2.1. 1. Let A be an arbitrary formula of L(E-HAω). Then one can construct
an ∃-free formula Bef such that

E-HAω + AC + IPωef ⊢ ¬A↔ Bef.

2. Let Aef be an ∃-free formula of L(E-HAω). Then

E-HAω ⊢ Aef ↔ ¬¬Aef .
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These also hold for Ê-HA
ω
! instead of E-HAω.

Proof. 1. See [55, Proposition 5.14]. 2. One can show E-HAω ⊢ ¬¬Aef → Aef by easy induction
on the structure of Aef with the use of the fact that prime formulas are decidable. The opposite
direction is obvious. The same proof also works for the analogous result for Ê-HA

ω
!. "

As corollary to Proposition 4.2.1, we get that IPωef and IPω¬ are equivalent in the presence of AC.

Corollary 4.2.2. 1. E-HAω + AC ⊢ IPωef → IPω¬ .

2. E-HAω ⊢ IPω¬ → IPωef .

We first show a uniformization theorem for uniform versions via modified realizability. The
proof is essentially the same as for the main theorem of Hirst and Mummert [37, Theorem 3.6].

Proposition 4.2.3. Let ∆RCAω
ef be the class of ∃-free sentences provable in RCAω. For a sentence

S := ∀xρ(A(x)→ ∃yτB(x, y)) of L(E-HAω) where A(x) is ∃-free and B(x, y) is in Γ1, if

E-HAω + AC + IPωef + ∆
RCAω
ef ⊢ S,

then
RCAω ⊢ Uni(S).

This also holds for Ê-HA
ω
! and RCAω

0 instead of E-HAω and RCAω.

Proof. Since A(x) is ∃-free, ∀x∃y (A(x)→ B(x, y)) is provable in E-HAω + AC + IPωef + ∆
RCAω
ef .

Note that ∀x∃y (A(x)→ B(x, y)) is in Γ1 since B(x, y) is in Γ1. Then one can construct a closed
term t such that E-HAω +∆RCAω

ef ⊢ ∀x (A(x)→ B(x, tx)) by using modified realizability interpre-
tation as in the proof of [37, Lemma 3.5] (actually using Theorem 2.3.12 and Lemma 2.3.14).
Since RCAω is an extension of E-HAω+∆RCAω

ef , we have RCAω ⊢ Uni(S). The same proof works
for the analogous result for Ê-HA

ω
! and RCAω

0 . "

Warning. Proposition 4.2.3 does not hold for every sentence ∀xρ(A(x) → ∃yτB(x, y)) in Γ1. In
fact, ∀ f 1(∃y1( f y = 0) → ∃x1( f x = 0)) ∈ Γ1 is logically valid, but its uniform version (µ2) is
not provable in RCAω. This means that it is essential to restrict the syntactical form of A(x) to
∃-free in Proposition 4.2.3.

Remark 4.2.4. All sentences ∀xρ∃yτAq f (x, y) provable in RCAω, where the degree of the type
ρ is not greater than 1, the type τ is arbitrary and Aq f is quantifier-free, are included in
E-HAω + AC + IPωef + ∆

RCAω
ef , since one can show WE-HAω ⊢ ∀xAq f (x, tx) (∈ ∆RCAω

ef ) via elimi-
nation of extensionality (Lemma 2.3.25), negative translation (Lemma 2.3.3) and the Dialectica
interpretation (Theorem 2.3.17).
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Remark 4.2.5. While the proof of Proposition 4.2.3 is based on modified realizability inter-
pretation, by using modified realizability interpretation with truth instead (actually using [55,
Theorem 5.23 and Lemma 5.6] instead of Theorem 2.3.12 and Lemma 2.3.14 in the proof of
Proposition 4.2.3), one can show that for a sentence S := ∀x (¬A(x)→ ∃yB(x, y)) of L(E-HAω)
where A(x) is arbitrary, if

E-HAω + QF-AC1,0 + IPω¬ + ∆
RCAω
¬ ⊢ S,

then
RCAω(actually E-HAω + QF-AC1,0 + IPω¬ + ∆

RCAω
¬ ) ⊢ Uni(S),

where ∆RCAω
¬ be the class of negated sentences provable in RCAω. Compared to Proposition

4.2.3, the syntactical restriction of B(x, y) is dropped. In addition, since we don’t have AC now,
IPω¬ and ∆RCAω

¬ seem to be proper extensions of IPωef and ∆RCAω
ef respectively.

As for Proposition 4.2.3, one can also show another uniformization theorem on uniform ver-
sions via the Dialectica interpretation, which is the counterpart of [37, Theorem 5.6]. In this
case, the syntactic class involved is restricted little more than in Proposition 4.2.3 and the base
system is weakened to the weakly extensional one, but the non-intuitionistic scheme Mω can
be added to the system in the assumption. (Note that WE-HAω ⊆ E-HAω and ŴE-HA

ω
! ⊆

Ê-HA
ω
!.) Furthermore, in the sense of applications to sequential reverse mathematics, one can

extend this result so that the system in the assumption includes WKL and even Kőnig’s lemma
KL, whereas the classical system in the conclusion contains UWKL. Such an extension (in the
absence of Mω) is also possible for Proposition 4.2.3, but the result would be less meaningful
as in the presence of extensionality UWKL already proves uniform arithmetical comprehension
(∃2) (See [52, Proposition 3.4]) while UWKL is still weak relative to WRCAω (See again [52]).

The following syntactical form is important in our results.

Definition 4.2.6 ([49]). ∆ denotes a set of sentences of the form

∀aδ∃b ≤σ ra∀cγBq f (a, b, c),

where Bq f (a, b, c) is quantifier-free and does not contain any further free variables than those
shown, r is a closed term (of suitable type) of E-HAω (or Ê-HA

ω
! in context), the types δ, σ, γ

are arbitrary, and ‘b ≤σ r a’ is defined pointwise, i.e x ≤σ y := ∀v(xv ≤0 yv).
Moreover, ∆̃ denotes a corresponding set of the Skolem normal forms of the sentences in ∆

{
T̃ :≡ ∃B ≤ r∀a∀cBq f (a, Ba, c) : T :≡ ∀aδ∃b ≤σ r a∀cγBq f (a, b, c) ∈ ∆

}
.
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Throughout this paper, for a sentence T of the form of ∆, we denote the corresponding sentence
of the form of ∆̃ as T̃.

Remark 4.2.7. A purely universal sentence ∀u Aq f (u) has the form of ∆ and ˜∀u Aq f (u) =
∀u Aq f (u).

Definition 4.2.8 ([49, 55]). Let (̂·)1(1)
be a functional such that

f̂ n :=

⎧⎪⎪⎨
⎪⎪⎩

f n if f n ! 0 ∨ (∀k, l (k ∗ l = n→ f k = 0) ∧ ∀i ≤ lth n
(
(n)i ≤ 1

) )
,

10 otherwise,

and (·)(·)
1(1)(1) be a functional such that

fgn :=

⎧⎪⎪⎨
⎪⎪⎩

f n if f (g(lth n)) = 0 ∧ lth (g(lth n)) = lth n,
10 otherwise,

Then
WKL′ :≡ ∀ f 1, g1∃b ≤1 λk.1∀x0

(
(̂ f̂ )g(b̄x) =0 0

)
.

Note that WKL′ has the form of ∆. We recall that WKL is equivalent to WKL′ over ŴE-HA
ω
!

([55, Proposition 9.18.2]). See [52] and [55, Chapter 9, 10] for the detailed discussion on WKL′.
The next proposition is the extended variant of Theorem 5.6 in Hirst-Mummert [37].

Proposition 4.2.9. For a sentence S := ∀xρ (A(x)→ ∃yτB(x, y)) of L(WE-HAω) where A(x) is
purely universal and B(x, y) is in Γ2, if

WE-HAω + AC + IPω∀ +Mω + ∆ ⊢ S,

then
WE-PAω + ∆̃ ⊢ Uni(S).

In particular, if
WE-HAω + AC + IPω∀ +Mω + UWKL + KL ⊢ S,

then
WE-PAω + UWKL ⊢ Uni(S).

This also holds for ŴE-HA
ω
! and ŴE-PA

ω
! instead of WE-HAω and WE-PAω.

Proof. Since A(x) is purely universal, ∀x∃y (A(x)→ B(x, y)) is provable in WE-HAω + AC +
IPω∀ +Mω + ∆. Let denote A(x) → B(x, y) as C(x, y) for convenience. Applying Theorem 9.1
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from [55] (‘soundness theorem for monotone functional interpretation’) to the assumption, we
have

WE-HAω + ∆̃ ⊢ ∃Y,U
(
∀x, v CD(x,Y x,Ux, v)

)

where CD = ∃u∀v CD(x, y, u, v). Then, a fortiori, ∃Y∀x∃u∀v CD(x,Y x, u, v) follows. Since
C(x,Y x) is in Γ2, applying Lemma 2.3.19, we have

WE-HAω + ∆̃ ⊢ ∃Y∀x C(x,Y x).

Then, a fortiori, WE-PAω + ∆̃ ⊢ Uni(S). Taking ∆ as W̃KL′ (equivalent to UWKL, [55, Lemma
10.32]), in particular, ∆̃ = ∆. UWKL gives WKL and so, together with AC (See [55, Lemma
9.20]), KL.

The same proof works for the analogous result for ŴE-HA
ω
! and ŴE-PA

ω
!.

"

Next, we refine the previous proposition to replace WE-HAω by the full extensional system
E-HAω. For that, we use the elimination of extensionality techniques developed in Subsection
2.3.5. Taking applications into account, we state the refined one in the form of being able to
obtain the best possible unprovability results from the results in reverse mathematics.

Proposition 4.2.10. Let ∆∗1 be the class of sentences ∀aρ∃b ≤1 ra∀cτBq f (a, b, c) (where r is a
closed term and ρ, τ are arbitrary types) such that ∆̃∗1 is provable in WE-PAω+QF-AC+UWKL.

For every statement S := ∀xρ (A(x)→ ∃yτB(x, y)) of L(E-HAω) where A(x) is purely univer-
sal, B(x, y) is in Γ2 and the types of all variables quantified in S by positively occurring ∀ or
negatively occurring ∃ are not greater than 1 (in particular, ρ ≤ 1), if

E-HAω + AC!1 + AC0 + IP≤1,≤1
∀ +M≤1 + KL + ∆∗1 ⊢ S,

then
WE-PAω + QF-AC + UWKL ⊢ Uni(S).

This also holds for Ê-HA
ω
! and ŴE-PA

ω
! instead of E-HAω and WE-PAω.

Proof. We may assume that IP≤1,≤1
∀ , M≤1 and ∆∗1 are finite, so can form the conjunction of their

elements. We also denote them as IP≤1,≤1
∀ , M≤1 and ∆∗1 for readability. Take the universal closures

of IP≤1,≤1
∀ and M≤1, and denote them as IP≤1,≤1

∀ and M≤1 respectively (note that IP≤1,≤1
∀ and M≤1

may have parameters of arbitrary type). Then we have

E-HAω + AC!1 + AC0 ⊢
(
IP≤1,≤1
∀ ∧M≤1 ∧ KL ∧ ∆∗1

)
→ S
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by the deduction theorem. Applying Lemma 2.3.25, we have

WE-HAω + AC ⊢
((

IP≤1,≤1
∀

)

e
∧

(
M≤1

)
e
∧ (KL)e ∧

(
∆∗1

)
e

)
→ (S)e,

since S has no parameter as well as IP≤1,≤1
∀ , M≤1, KL and ∆∗1. By a careful inspection with the

use of [55, Lemma 10.41] and the restriction of the types of variables in IP≤1,≤1
∀ , M≤1 and S, one

can intuitionistically show that IP≤1,≤1
∀ →

(
IP≤1,≤1
∀

)

e
, M≤1 →

(
M≤1

)
e
, KL↔ (KL)e, ∆∗1 →

(
∆∗1

)
e

and (S)e → S. Therefore we have

WE-HAω + AC + IP≤1,≤1
∀ +M≤1 + KL + ∆∗1 ⊢ S.

Then WE-PAω + QF-AC + UWKL ⊢ Uni(S) follows from Proposition 4.2.9.
The same proof works for the analogous result for Ê-HA

ω
! and ŴE-PA

ω
!. "

Remark 4.2.11. 1. Since QF-AC1,0 ↔ QF-AC!1,0 over ŴE-HA
ω
!, the intuitionistic version

iWKLω
0 := Ê-HA

ω
!+QF-AC1,0+WKL of WKLω0 in [54] is a subsystem of Ê-HA

ω
!+AC!1+

AC0 + IP≤1,≤1
∀ +M≤1 + KL. That is to say, the contrapositive of the previous proposition

yields the unprovability of S in iWKLω
0 or iWKLω := E-HAω + QF-AC1,0 +WKL.

2. All sentences ∀xρ∃yτAq f (x, y) provable in RCAω, where the degree of the type ρ is not
greater than 1, the type τ is arbitrary and Aq f is quantifier-free, are included in E-HAω +

AC!1 + AC0 + IP≤1,≤1
∀ +M≤1 + KL + ∆∗1 as in Remark 4.2.4.

3. The type restriction for S in the previous proposition still covers Π1
2 sentences treated in

reverse mathematics.

Corollary 4.2.12. Let ∆∗1 be the same as in Proposition 4.2.10. For every statement S :=
∀x1(A(x)→ ∃y1B(x, y)) of L(E-HA2) where A(x) is purely universal and B(x, y) is in Γ2, if

E-HAω + AC!1 + AC0 + IP≤1,≤1
∀ +M≤1 + KL + ∆∗1 ⊢ S,

then

WE-PAω + QF-AC + UWKL ⊢ Seq(S) (:= ∀x1(0)
(
∀n0A(xn)→ ∃y1(0)∀nB(xn, yn)

)
).

Proof. Immediate consequence of Proposition 4.2.10 since Uni(S) derives Seq(S). "

Remark 4.2.13. The above corollary is applicable to some results in sequential reverse math-
ematics. Suppose the sequential version of a statement S where A(x) is purely universal and
B(x, y) is in Γ2 derives ACA over RCAω. Then we have WE-PAω + QF-AC1,0 + Seq(S) ⊢ ACA
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by elimination of extensionality [55, Proposition 10.45]. It is known that WE-PAω+ACA proves
the totality of the α < ϵϵ0-recursive functions ([17]). On the other hand, the provably recursive
functions of WE-PAω +QF-AC+UWKL are the α < ϵ0-recursive functions (See [55, Corollary
33] and note that Gödel primitive recursive functionals of type degree 1 coincide with provably
recursive functions of PA). Therefore Seq(S) is not provable in WE-PAω + QF-AC + UWKL.
By applying the previous corollary, we have the unprovability of S in E-HAω + AC!1 + AC0 +

IP≤1,≤1
∀ +M≤1 + KL + ∆∗1. That is to say, one can think of Corollary 4.2.12 (essentially Propo-

sition 4.2.10) as a kind of higher-order uniformization theorem for RCA +WKL ([⋆] in table
4.1). As we see in the subsequent sections, nevertheless, one can obtain the much stronger semi-
intuitionistic unprovability for such statements by investigating the strength of uniform versions
over a weakly extensional classical system like WRCAω.

4.3 Further Extended Metatheorem

The following is our main result in this section.

Theorem 4.3.1. Let ∆Mω be a set of sentences of the form ∆ which are true inMω. For every
statement ∀xρ∃yτA(x, y) of L(WE-HAω) in Γ2, if

(i) WE-PAω + QF-AC + DC + ∆M
ω

+ ∃Yτ(ρ)∀xρA(x,Y x) ⊢ (∃2),

then

(ii) WE-HAω + AC + IPω∀ +Mω + BR + F− + ∆M
ω

! ∀x∃yA(x, y).

In particular, if

WE-PAω + QF-AC + DC + UWKL + ∃Yτ(ρ)∀xρA(x,Y x) ⊢ (∃2),

then
WE-HAω + AC + IPω∀ +Mω + UWKL + KL + Σ0

1-UB− + BI ! ∀x∃yA(x, y).

We should note that F− and Σ0
1-UB− are involved primarily for technical reasons (See also Re-

mark 4.3.7). The proof is based on the Dialectica interpretation without extracting terms/bounds
(Lemma 4.3.4) and negative translation along with the model Mω of all strongly majorizable
functionals.

Remark 4.3.2. To obtain the conclusion of Theorem 4.3.1 it is not enough to check that over
WE-PAω +QF-AC the uniform version (or even just the sequential version) of ∀x1∃y1A implies
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ACA: define

A := ∀ f 1(0),ϕ2,ψ2∃g1( f (ϕ(g),ψ(g)) = 0→ f (ϕ(g), g(ψ(g))) = 0
) ∈ Γ2

and add ‘dummy variables’ to get ∀x1∃y1A. Then this statement coincides with its sequential
(as well as its full uniform) version and implies (using classical logic and QF-AC) ACA since
it implies

∀ f 1(0)∃g1∀n0, k0( f (n, k) = 0→ f (n, g(n)) = 0).

But A is provable in WE-HAω + BR since it has a functional interpretation in this theory.

Prior to the proof of Theorem 4.3.1, we first show some lemmas.

Lemma 4.3.3. ŴE-HA
ω
!+M0 ⊢

(
∃2

)q → ¬¬(∃2), where
(
∃2

)q
denotes the negative translation

(See Definition 2.3.1) of (∃2).

Proof. Reasoning in ŴE-HA
ω
! +M0,

(∃2)∗ = ∃E∀ f¬¬ (E f = 0↔ ∃x( f x = 0))
→ ∃E∀ f ([E f = 0→ ¬¬∃x( f x = 0)] ∧ [∃x( f x = 0)→ ¬¬E f = 0

]
)

→ ∃E∀ f ([E f = 0→ ∃x( f x = 0)] ∧ [∃x( f x = 0)→ E f = 0]) (using M0)
= (∃2).

Therefore
(
∃2

)q
= ¬¬(∃2)∗ → ¬¬(∃2). "

The next lemma is just the simple variant of Theorem 11.9 in Kohlenbach [55], where we do
not insist on the existence of witnessing terms for (∀aA(a))D (nor uniform bounds) and so can
add axioms ∆ (without having to formalize the majorizability proof of BR as in the monotone
functional interpretation).

Lemma 4.3.4 (Soundness of the Dialectica interpretation without extracting terms/bounds). Let
A(a) be a formula of L(WE-HAω) containing only a free. Then if

WE-HAω + AC + IPω∀ +Mω + ∆ (+BR + DCq) ⊢ A(a),

then
WE-HAω + ∆̃ (+BR) ⊢

(
∀a A(a)

)D
,

where
(
∀a A(a)

)D
is the Dialectica interpretation [55, Definition 8.1] of ∀a A(a) and DCq de-

notes the negative translation of DC.
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Proof. As in the proof of the soundness theorem for the Dialectica interpretation extracting
terms (Theorem 2.3.17), we proceed by induction on the length of the derivation. Note that our
interpretation of A(a) is not the Dialectica interpretation of A(a) but that of the universal closure
of A(a). For the axioms of WE-HAω, AC, IPω∀ and Mω , each induction step immediately follows
from the corresponding step in the proof of Theorem 2.3.17. For the rules of WE-HAω, on the
other hand, each induction step follows by imitating the construction to the witness term from
the given terms in the corresponding step for Theorem 2.3.17 (using [55, Lemma 3.15] and [55,
Remark 3.13.2]). In addition, the interpretation of ∆ is ∆̃ (here we use that ∆ only contains
‘sentences’). DCq is interpreted by BR as in the proof of [55, Theorem 11.9]. !

Remark 4.3.5. By [40] (and [63]), classical analysis E-PAω+DC embeds into WE-HAω +AC+
IPω∀ +Mω + BI by (elimination of extensionality and) negative translation.

The next lemma states that ∆Mω is closed under˜ transformation. Note that for T of the form ∆,
T̃ also has the form of ∆.

Lemma 4.3.6. If a sentence T of L(E-HAω) has the form of ∆ andM |= T, thenM |= T̃ holds.

Proof. Note that T→ T̃ is derived from b-AC where b-AC :≡ ⋃
ρ,τ {b-ACρ,τ} with

b-ACρ,τ :≡ ∀Zτρ
(
∀xτ∃y ≤ρ Zx A(x, y,Z)→ ∃Y ≤ρτ Z∀x A(x,Yz,Z)

)
.

SinceMω models E-PAω + b-AC ([48, Application 3.12.1]),M |= T̃ follows fromM |= T. !

We are now in position to prove Theorem 4.3.1.

Proof of Theorem 4.3.1. Suppose that (i) holds but (ii) does not hold for some ∀x∃yA(x, y) ∈ Γ2.
Note that F− has the form ∆. Applying Lemma 4.3.4 to (the negation of) (ii), we have

WE-HAω + BR + F̃− + ∆̃Mω ⊢ ∃Y∀x∃u∀vAD(x,Y x, u, v)

where AD = ∃u∀vAD(x, y, u, v). Since A(x, Y x) is in Γ2, applying Lemma 2.3.19,

WE-HAω + BR + F̃− + ∆̃Mω ⊢ ∃Y∀xA(x,Y x)

follows. Since BRq,
(
F̃−

)q
and

(
∆̃Mω

)q
are derived from BR, F̃− and ∆̃Mω respectively, we have

(ii)′ WE-HAω + BR + F̃− + ∆̃Mω ⊢ (∃Y∀xA(x,Y x))q

from Lemma 2.3.3. On the other hand, Lemma 2.3.3 applied to (i) yields

(i)′ WE-HAω + QF-AC + DCq + ∆M
ω

+Mω + (∃Y∀xA(x,Y x))q ⊢
(
∃2

)q
.
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Combining the proofs (i′) and (ii)′ (note that ∆Mω is derived from ∆̃Mω), we have a proof

WE-HAω + QF-AC + DCq +Mω + BR + F̃− + ∆̃Mω ⊢
(
∃2

)q
.

Now we show that this leads to a contradiction. Since we have (µ2) intuitionistically from
(∃2) by applying QF-AC1,0 to the formula ∀ f 1∃x0(Ex = 0 → f x = 0), ¬¬(∃2) derives ¬¬(µ2)
over ŴE-HA

ω
! + QF-AC1,0. Together with Lemma 4.3.3, we have

WE-HAω + QF-AC + DCq +Mω + BR + F̃− + ∆̃Mω ⊢ ¬¬(µ2).

Applying (µ2) to the functions λk0.(1, k), (1, k)
(
µ(1, k)

)
= 0 holds for all k. Since ∀k∀k′ <

k(1, k)(k′) = 1, ∀k
(
µ(1, k) ≥ k

)
follows. That is, ¬¬∃µ∀k

(
µ(1, k) ≥ k

)
, which is intuitionisti-

cally equivalent to
¬∀µ¬∀k

(
µ(1, k) ≥ k

)
,

follows from ¬¬(µ2). On the other hand, one can easily see that F− (and a-fortiori F̃−) derives
∀χ2∃b∀n∃z ≤0 b

(
z = χ

(
1, n

))
, and hence ∀χ∃b

(
χ
(
1, b

)
< b

)
follows.

Thus, we have

(iii) WE-HAω + QF-AC + DCq +Mω + BR + F̃− + ∆̃Mω ⊢⊥ .

Using again Lemma 4.3.4 applied to (iii) (note ˜̃T = T̃ for T of the form ∆), we have

WE-HAω + BR + F̃− + ∆̃Mω ⊢⊥ .

However,Mω |= WE-HAω + BR + F̃− + ∆̃Mω follows from the factsMω |= E-PAω + BR ([55,
Theorem 11.17]) andMω |= F− (See [50, Proposition 4.6]) via Lemma 4.3.6. This completes
the proof of Theorem 4.3.1 in the general case.

In particular, one can take ∆Mω as
{
W̃KL′

}
. To see this, it suffices to note thatMω |= WKL′

by Lemma 4.3.6. Since the second-order part M1 of Mω coincides with the class S1 of all
functions from natural numbers to natural numbers,Mω models WKL. Together with the fact
WKL′ ↔ WKL ([55, Lemma 9.18.2]), we haveMω |= WKL′. Therefore, the final assertion of
Theorem 4.3.1 follows from the facts:

• ŴE-HA
ω
! ⊢ W̃KL′ ↔ UWKL ([55, Lemma 10.32]),

• ŴE-HA
ω
! + AC +WKL ⊢ KL ([55, Lemma 9.20]),

• ŴE-HA
ω
! + QF-AC1,0 ⊢ F− → Σ0

1-UB− ([55, Proposition 12.6.2]),

• WE-HAω + AC + IPω∀ +Mω + BR ⊢ BI ([40, Theorem 3B]).
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!

Remark 4.3.7. What the proof of Theorem 4.3.1 actually establishes (together with the simple
fact that formulas B ∈ Γ2 intuitionistically imply Bq) is that T := WE-HAω +AC + IPω∀ +Mω +

BR+F−+∆Mω is consistent but proves ¬∀x∃yA(x, y), i.e. not only T but no consistent extension
of T proves ∀x∃yA(x, y) (here we use that DCq is - via BI - provable in T ). Note that F− is a
classically false principle (in the sense of being inconsistent with (µ2)).

The next corollary is the most useful form of Theorem 4.3.1 in applications to concrete math-
ematical principles (note Remark 4.3.9.(2) below).

Corollary 4.3.8. For a sentence S := ∀xρ (A(x)→ ∃yτB(x, y)) of L(E-HAω) where types ρ, τ
are arbitrary, A(x) is purely universal and B(x, y) is in Γ2, if

WE-PAω + QF-AC + DC + UWKL + Uni(S) ⊢ (∃2),

then
WE-HAω + AC + IPω∀ +Mω + UWKL + KL + Σ0

1-UB− + BI ! S.

Proof. Immediately from Theorem 4.3.1 since S is equivalent to the sentence ∀x∃y(A(x) →
B(x, y)) ∈ Γ2 in the presence of IPω∀ . !

Remark 4.3.9. 1. The previous corollary is false if either WE-PAω is replaced by E-PAω or
WE-HAω is replaced by E-HAω. One can take S := (0 =0 0) in the first case and take
S := (∃2) in the second case, since (∃2) is provable in Ê-HA

ω
" + Mω + UWKL ([55,

Corollary 10.62]).

2. The previous corollary does not hold for every sentence ∀xρ(A(x)→ ∃yτB(x, y)) in Γ2. In
fact, ∀ f (∃y( f y = 0) → ∃x( f x = 0)) ∈ Γ2 is logically valid, but its uniform version (µ2)
derives (∃2) over ŴE-HA

ω
".

Next, as in Proposition 4.2.10, we show the variant of Corollary 4.3.8 where WE-HAω is
replaced by the full extensional system E-HAω. The remarkable thing in the following corollary
is that not only Σ0

1-UB− but even Σ0
1-UB is included as well as BI≤1 in the extensional semi-

intuitionistic system (compare to Proposition 4.2.10).

Corollary 4.3.10. For every statement S := ∀xρ (A(x)→ ∃yτB(x, y)) ofL(E-HAω) where A(x) is
purely universal, B(x, y) is in Γ2 and the types of all variables quantified by positively occurring
∀ or negatively occurring ∃ is not greater than 1 (in particular, ρ ≤ 1), if

WE-PAω + QF-AC + DC + UWKL + Uni(S) ⊢ (∃2),
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then
E-HAω + AC!1 + AC0 + IP≤1,≤1

∀ +M≤1 + KL + Σ0
1-UB + BI≤1 ! S.

Proof. Suppose

E-HAω + AC!1 + AC0 + IP≤1,≤1
∀ +M≤1 + KL + Σ0

1-UB + BI≤1 ⊢ S.

Σ0
1-UB follows from F using QF-AC1,0 (and hence with AC!1). Moreover,

E-HAω + QF-AC1,0 +M0 ⊢ F− → F.

This follows as in [53, Proposition 3.6] (See also [55, Proposition 12.4]), where this is shown
for E-PAω, since an inspection of the proof shows that only M0 is needed. Hence

E-HAω + AC!1 + AC0 + IP≤1,≤1
∀ +M≤1 + KL + F− + BI≤1 ⊢ S.

Since KL↔ (KL)e, F− → (F−)e and BI≤1 → BI≤1
e over WE-HAω, as in the proof of Proposition

4.2.10, one can show

WE-HAω + AC + IPω∀ +Mω + KL + F− + BI≤1 ⊢ S.

Therefore the corollary follows from Theorem 4.3.1 analogously to Corollary 4.3.8. !

We conclude this section by briefly mentioning a variant of Theorem 4.3.1: The fact that
∃Y∀xA(x,Y x) classically implies (∃2) is usually a reflection of the fact that ∀x∃yA(x, y) will
intuitionistically imply Π0

1-LEM or even Σ0
1-LEM. The latter two principles are not really dis-

tinguished in our main theorem as the semi-intuitionistic theory contains Markov’s principle
by which they are equivalent. Markov’s principle is also needed for the negative translation of
QF-AC used in the proof to derive (µ2) from (∃2). However, if ∃Y∀xA(x,Y x) directly implies
(µ2) without the use of QF-AC (which usually will be a consequence of ∀x∃yA(x, y) intuition-
istically implying Σ0

1-LEM) then we can draw some additional information about strong semi-
intuitionistic theories (not containing Mω though) and can allow E-PAω instead of WE-PAω.We
don’t state the most general result here but just give a sample:

Proposition 4.3.11. Let ∀xρ∃yτA(x, y) be a sentence in Γ1.

If
E-PAω + ∃Y∀xA(x,Y x) ⊢ (µ2),

then
E-HAω + AC + IPωef + CAef ! ∀x∃yA(x, y),
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where CAef is the scheme of full comprehension (in all finite types) for ∃-free formulas (See
[55]).

Note that CAef not only implies UWKL but also e.g.

(∃̃2) : ∃E2∀ f 1(E f = 0↔ ∀x0( f x = 0)).

Proof. The proof is similar (but simpler) than that of Theorem 4.3.1 using the monotone modi-
fied realizability instead of the Dialectica interpretation and we only sketch it here. By negative
translation applied to the premise, we get

E-HAω + (∃Y∀yA(x,Y x))q ⊢ (µ2)q

and so
E-HAω + (∃Y∀yA(x, Y x))q ⊢ ¬¬(µ2).

The monotone modified realizability ([55, Theorem 7.1] applied to the negation of the conclu-
sion gives (using that A ∈ Γ1)

E-HAω + CAef ⊢ ∃Y∀xA(x,Y x)

and so by negative translation

E-HAω + CAef ⊢ (∃Y∀xA(x,Y x))q.

Hence
E-HAω + CAef ⊢ ¬¬(µ2)

and so (as in the proof of Theorem 4.3.1)

E-HAω + CAef + F− ⊢⊥

which contradicts
Mω |= E-HAω + CAef + F−.

!

58



4 Metatheorems for Uniform Versions

4.4 Application

In this section, we discuss the application of our metatheorems for uniform versions. The uni-
form versions of the following Π1

2 statements have been investigated in higher-order reverse
mathematics.

1. WKL. [52, 54, 66]

2. Intermediate value theorem. [54]

3. The attainment of the maximum principle. [54]

4. Brouwer’s fixed point theorem. [54]

5. Weak weak Kőnig’s lemma WWKL. [66]

6. Bolzano-Weierstraß theorem. [66]

7. Infinite pigeonhole principle RT(1). [66]

Here continuous functions Φ : [0, 1] → R are represented as elements in the Banach space
C[0, 1] of (equivalence classes of) fast converging (in the uniform norm) sequences of poly-
nomials with rational coefficients (See [68]) which is equivalent to the representation as pairs
(Φ1(0)

r ,ω
1) of objects of type degree 1, where Φr represents the restriction of Φ to the dyadic

rational numbers in [0, 1] and ω is a modulus of uniform continuity, i.e.

∀k0, l0, n0
(
|rk −Q rl| ≤Q 2−ω(n) → |Φrrk −R Φrrl| ≤R 2−n

)

for some standard enumeration (rk) of the dyadic rationals in [0, 1]. Then the premises of 2, 3, 4
are formalized as purely universal formulas since |Φrrk−RΦrrl| ≤R 2−n is purely universal. Note
that every functional of type 1 represents a real number in Kohlenbach’s representation (See [55,
Section 4.1] and also [54]). In fact, it is shown in [54] that even the uniform intermediate value
theorem for uniformly continuous functions with its modulus derives (∃2) over RCAω

0 . Hence
this a fortiori is the case for the uniform intermediate value theorem formulated for codes of
pointwise continuous functions as in [68]. In the same manner, each of the uniform versions of
3, 4 also derives (∃2) over RCAω

0 [54].
For 5, 6, 7, one has to pay attention to the formalization of uniform versions. A sentence

∀x(∃u∀vAq f (x, u, v)→ ∃yB(x, y)) (like 5, 6, 7) is intuitionistically equivalent to ∀x, u(∀vAq f (x, u, v)→
∃yB(x, y)). But their uniform versions may have different strength as suggested in Section 5.1.
Here we call the uniform version of the latter one ‘strict’ uniform version. By inspecting the
proofs in [66], one can easily see that each of the strict uniform versions of 5, 6, 7 derives (∃2)
over RCAω

0 .
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Based on these observations along with the fact that (∃2) is not provable in RCAω, it follows
from Proposition 4.2.3 that all of 1-7 are not provable in E-HAω + AC + IPωef + ∆

RCAω
ef .

Next we turn to discuss some applications of Corollary 4.3.8 and Corollary 4.3.10. As de-
scribed in Subsection 2.2.2, RCAω

0 has the full extensionality scheme (E). To show the un-
provability of a Π1

2 statement in the strong semi-intuitionistic system via Corollary 4.3.8 or
Corollary 4.3.10, we have to show that the (strict) uniform version derives (∃2) over the weakly
extensional system. However, some of the proofs in [66] are carried out still over the weakly
extensional version WRCAω

0 (See Subsection 2.2.2) of RCAω
0 . In fact, the strict uniform ver-

sions of Bolzano-Weierstraß theorem or RT(1) derives (∃2) over WRCAω
0 respectively, and

hence, it follows from Corollary 4.3.8 and Corollary 4.3.10 that they are provable neither in
WE-HAω+AC+ IPω∀ +Mω+UWKL+KL+Σ0

1-UB−+BI nor in E-HAω+AC!1+AC0+ IP≤1,≤1
∀ +

M≤1 +KL+ Σ0
1-UB+BI≤1. Such other examples will be presented in Section 5.4 below. On the

other hand, it immediately follows from Theorem 4.3.1 that the uniform version of WWKL, as
well as WKL, does not derive (∃2) over WRCAω

0 regardless of their formalization (i.e. strict or
not). One can actually see that the proofs for 1, 2, 3, 4, 5 in [54, 66] (i.e. the proofs that their
uniform versions imply ∃2) use the extensionality axioms of type 1(1) or 2.

Conversely, Corollary 4.3.10 can be used to show the underivability of (∃2) from certain
uniform principles over WRCAω

0 (+UWKL + DC). In fact, one can show that each of 2, 3, 4
is provable in Ê-HA

ω
! + QF-AC0,0 +WKL by imitating its uniform proof in WKL0 (See [68])

respectively. Hence it follows via Corollary 4.3.10 that neither of the uniform versions of 2, 3, 4
under representing its continuity as uniform continuity with the modulus, derives (∃2) over
WRCAω

0 . However, it is still open whether each of the uniform versions of 2, 3, 4 in the usual
sense of continuity derives (∃2) over WRCAω

0 (+UWKL + DC).
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Perspective of Uniformity

In this chapter, we investigate some concrete examples from the viewpoint of uniform provabil-
ity in the context of classical reverse mathematics. As the framework for our investigation in
Section 5.1 and Section 5.3, we employ the second-order system with set-based language [68],
but one can imitate the discussion also in the second-order system with function-based language
(cf. Section 2.2). We use the standard notation and terminology, and sometimes suppress the te-
dious formal treatments and state our assertions informally as usual in the literature of classical
reverse mathematics. See Simpson’s monograph [68] for basic knowledge of (classical) reverse
mathematics including techniques for encoding mathematical statements in second-order arith-
metic, and see [29] for the basic discussions on cardinality in weak first-order arithmetic and
the first-order hierarchy. We recall that WKL0 = RCA0 +WKL (weak Kőnig’s Lemma) and
ACA0 = RCA0 + ACA (arithmetical comprehension).

The contents in Section 5.3 and Section 5.4 suggest that our metatheorems in Chapter 3 and
Chapter 4 are applicable to a large number of mathematical statements.

Section 5.1 and Section 5.2 are basically from [22], which is a joint work with Keita Yokoyama.
The results in Subsection 5.3.1 is basically from [23], which is a joint work with Kojiro Higuchi
and Takayuki Kihara. The results in Subsection 5.3.2 are presented here for the first time. Sec-
tion 5.4 is from [24], which is a joint work with Ulrich Kohlenbach.

5.1 General Remark

Many mathematical statements formalized asΠ1
2 sentences of the form (♠) in Definition 3.1.1 are

provable in RCA0. As already mentioned in Section 1.3, it is revealed that the non-uniformity of
some proofs in RCA0 cannot be avoided by showing that their sequential versions implies some
non-constructive principles not provable in RCA. However, the sequential or uniform version
may imply such a principle for another reason. In this section, we illustrate this phenomenon
by investigating the sequential strength of some concrete examples.
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Now we concentrate our attention on Π1
2 statements having the following syntactical form:

(♮′) ∀X (∃Zθ(X,Z)→ ∃Yψ(X,Y)) ,

where θ(X,Z) is arithmetical. Despite the fact that (♮′) is, even in intuitionistic predicate logic1,
equivalent to the following statement:

(♮) ∀X,Z (θ(X,Z)→ ∃Yψ(X,Y)) ,

the sequential version of (♮′) is occasionally stronger than that of (♮) even if θ(X,Z) has a very
weak complexity such as Π0

1. This is caused by the difficulty of obtaining the sequence of Z
in (♮′). Using the finite marriage theorem and the bounded Kőnig’s lemma, we illustrate this
phenomenon. On the other hand, the sequential version of a statement of the form (♮′) is not
always stronger than that of (♮) as we see in the case of the weak weak Kőnig’s lemma. The
important point is that the sequential form of (♮′) captures the difficulty of obtaining a solution
Y from X alone while that of (♮) captures the difficulty of obtaining a solution Y using both X
and Z.

That is to say, whenever we consider the sequential version or the uniform version of a Π1
2

statement, we must pay attention to the formalization and what information can be used to
obtain a solution.2

Notation 5.1.1. As usual, we denote the sequential version of a statement T as Seq(T). In
addition, we use a prime mark, like Seq(F′MT), to indicate which assumption of uniformity is
dropped by sequentializing.

The Finite Marriage Theorem The so-called marriage theorem for finite graphs (See Theo-
rem 5.3.1) states that a finite binary graph (B,G,R) satisfying the Hall condition:

∀x⊂finB∃y⊂finG (|x| ≤ |y| ∧ ∀g ∈ y∃b ∈ x ((b, g) ∈ R)) ,

has an injection M ⊆ R from B to G. It is well-known that there is a uniform algorithm to
construct an injection from a given finite bipartite graph satisfying the Hall condition, which
suggests that the sequential version of the finite marriage theorem is provable in RCA0. How-
ever, it depends on the formalization. We provide the following two formalizations of the finite

1This intuitionistic equivalence will be used to show the best possibility of Dorais’ uniformization results below
(See Section 5.2).

2Kohlenbach [54] indicates that the investigation of uniform versions reveals the difference between principles
from intuitionistic point of view. On the other hand, our investigation suggests that even the uniform strength
of two intuitionistically equivalent statements may be different each other.
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marriage theorem.

FMT :

∀B,G,R, k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(B,G,R) is a bipartite graph
which satisfies the Hall condition

and k bounds B ∪G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→ ∃M

⎛
⎜⎜⎜⎜⎜⎝

M ⊆ R
is injective

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

F′MT :

∀B,G,R

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∃k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(B,G,R) is a bipartite graph
which satisfies the Hall condition

and k bounds B ∪G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→ ∃M

⎛
⎜⎜⎜⎜⎜⎝

M ⊆ R
is injective

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where “k bounds B∪G” denotes that for all v ∈ B∪G, v < k. Note that the premise of (. . .→ . . .)
in FMT can be written by a purely universal formula.

Proposition 5.1.2.

1. RCA0 ⊢ Seq(FMT).

2. RCA0 ⊢ Seq(F′MT)↔ ACA.

Proof. (1) A slight recasting of the proof of the finite marriage theorem in RCA0 ([34, Theorem
2.1]).

(2) ACA ⊢ Seq(F′MT) follows from the fact that the infinite marriage theorem is provable in
ACA ([35, Theorem 2.2]). For the reverse direction, it suffices to find the range of an injection
f : N → N ([68, Lemma III.1.3]). The basic idea is to construct, simultaneously in RCA0,
infinite numbers of finite bipartite graphs ⟨(Bn,Gn,Rn)⟩n∈N such that the solution of the i-th
graph indicates whether i is in the range of f or not. By Σ0

0 comprehension, take ⟨Bn⟩n∈N and
⟨Gn⟩n∈N as

b ∈ Bn ⇔ b = 0 ∨ f
(
b − 2

2

)
= n,

g ∈ Gn ⇔ g = 1 ∨ f
(
g − 3

2

)
= n,

which means that in addition to the underlying sequence {0, 1}n∈N of vertices, the odd numbers
are divided into {Bn}n∈N and the even numbers are divided into {Gn}n∈N according to f , and take
⟨Rn⟩n∈N as

(b, g) ∈ Rn ⇔ (b, g) = (0, 1)

∨
(
b = 0 ∧ f

(
g − 3

2

)
= n

)
∨

(
g = 1 ∧ f

(
b − 2

2

)
= n

)
.
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Then it is easy to see that (Bn,Gn,Rn) satisfies the Hall condition for each n ∈ N. Moreover if n
is in the range of f via j, Bn ∪Gn is bounded by 2 j+ 4, and otherwise, Bn ∪Gn is bounded by 2.
Thus, by Seq(F′MT), there exists a sequence ⟨Mn⟩n∈N of injections. Define S := {n : Mn(0) ! 1},
then S is the range of f by the above construction. !

The previous proposition indicates that ACA is not needed to construct an injection from a
finite bipartite graph satisfying the Hall condition, and only used to take a sequence of bounds.
In fact, the next proposition follows from the previous proposition immediately. (One can even
prove it directly.)

Proposition 5.1.3. The following assertion SeqB is equivalent to ACA over RCA0.

(SeqB) For any sequence of sets ⟨Xn⟩n∈N, if Xn is finite for all n, then there exists a function
g : N→ N such that g(n) bounds Xn.

Proof. ACA ⊢ SeqB is straightforward. For the reverse direction, it suffices to show Seq(F′MT)
from SeqB over RCA0. Let ⟨(Bn,Gn,Rn)⟩n∈N be a sequence of finite bipartite graphs satisfying
the Hall condition. Using SeqB, we have a function g : N → N such that g(n) bounds Bn ∪Gn

for all n ∈ N. Then the existence of a sequence of injections follows from Seq(FMT). !

The Bounded Kőnig’s lemma It is known that the bounded Kőnig’s lemma, which states
that an infinite tree having a bounding function has an infinite path, is equivalent to WKL [68,
Lemma IV.1.4]. As in the previous section, we provide the two formalizations of it.

BKL : ∀T, g

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

T ⊆ N<N is an infinite tree
and g : N→ N bounds T

⎞
⎟⎟⎟⎟⎟⎠→ ∃P

⎛
⎜⎜⎜⎜⎜⎝

P is an infinite
path of T

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ ,

B′KL : ∀T

⎛
⎜⎜⎜⎜⎜⎝∃g

⎛
⎜⎜⎜⎜⎜⎝

T ⊆ N<N is an infinite tree
and g : N→ N bounds T

⎞
⎟⎟⎟⎟⎟⎠→ ∃P

⎛
⎜⎜⎜⎜⎜⎝

P is an infinite
path of T

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ ,

where “g bounds T” denotes that for all σ ∈ T and i < lh(σ), σ(i) < g(i). In addition, we now
treat a weaker version of the bounded Kőnig’s lemma in which a tree in question is bounded by
a constant.

BcKL : ∀T, k

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

T ⊆ N<N is an infinite tree
and k bounds T

⎞
⎟⎟⎟⎟⎟⎠→ ∃P

⎛
⎜⎜⎜⎜⎜⎝

P is an infinite
path of T

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ ,

B′cKL : ∀T

⎛
⎜⎜⎜⎜⎜⎝∃k

⎛
⎜⎜⎜⎜⎜⎝

T ⊆ N<N is an infinite tree
and k bounds T

⎞
⎟⎟⎟⎟⎟⎠→ ∃P

⎛
⎜⎜⎜⎜⎜⎝

P is an infinite
path of T

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ ,

where “k bounds T” denotes that for all σ ∈ T and i < lh(σ), σ(i) < k. Note that the premise of
(. . .→ . . .) in BcKL can be written by a purely universal formula.
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Proposition 5.1.4.

1. RCA0 ⊢ Seq(BKL)↔ Seq(BcKL)↔WKL.

2. RCA0 ⊢ Seq(B′KL)↔ Seq(B′cKL)↔ ACA.

Proof. We reason in RCA0.
(1) WKL implies Seq(WKL) ([36, Lemma 5]), and Seq(WKL) implies Seq(BKL) by imi-

tating the proof of BKL in WKL ([68, Lemma IV.1.4]). The implication from Seq(BKL) to
Seq(BcKL) is obvious. That from Seq(BcKL) to WKL follows immediately from the fact that
binary trees are bounded by 2.

(2) It is straightforward that ACA implies Seq(B′KL) by imitating the proof of Kőnig’s
lemma in ACA ([68, Lemma III.7.2]). Seq(B′KL) implies Seq(B′cKL). The implication from
Seq(B′cKL) to ACA follows from Lemma 5.1.11 below. !

In the reverse mathematics of analysis, the bounded Kőnig’s lemma corresponds to the Heine/
Borel compactness of effectively totally bounded complete separable metric spaces. Thus, to
consider the strength of a sequential version of a mathematical statement which is related to
Heine/Borel compactness, it is important to check which version of bounded Kőnig’s lemma is
needed. Here, we will consider the maximum principle of continuous functions as an example.
The following statement is equivalent to WKL over RCA0. (See [68, Section IV].)

(MP) For any f , if f is a continuous function from [−1, 1] to R, then
there exists a ∈ [−1, 1] such that

max{ f (x) : x ∈ [−1, 1]} = f (a).

By an easy consideration, we can see that MP is equivalent to the following.

(MP+) For any f , if f is a continuous function from (−1, 1) to R
such that f (0) > 0 and limx→±1 f (x) = 0, then there exists
a ∈ (−1, 1) such that

max{ f (x) : x ∈ (−1, 1)} = f (a).

For the sequential version of MP, the following is well-known, actually, it is an easy conse-
quence of RCA0 ⊢WKL↔ Seq(WKL) ([36, Lemma 5]).

Proposition 5.1.5. Seq(MP) is equivalent to WKL over RCA0.
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However, the sequential version of MP+ is strictly stronger than that of MP. (In general, ACA
is required to extend a continuous function f : (−1, 1) → R with limx→±1 f (x) = 0 into a
continuous function from [−1, 1] to R.)

Proposition 5.1.6. The following are equivalent over RCA0.

1. ACA.

2. The sequential version of the following statement: for any f , if f is a bounded support
continuous function from R to R, then there exists a ∈ R such that max{ f (x) : x ∈ R} =
f (a). (Here, f is said to have bounded support if there exists k ∈ N such that the closure
of {x ∈ R : f (x) ! 0} is a subset of [−k, k].)

3. The sequential version of the following statement: for any f , if f is a continuous function
from R to R such that f (0) > 0 and limx→±∞ f (x) = 0, then there exists a ∈ R such that
max{ f (x) : x ∈ R} = f (a).

4. Seq(MP+).

Proof. By modifying the proof of MP ↔ WKL, we can easily see that 2 is equivalent to the
sequential version of the following statement: if T ⊆ NN is an infinite tree such that T ⊆ 2k×2<N

for some k, then T has an infinite path. Note that this is a weaker version of Seq(B′cKL), and still
is equivalent to ACA as in the proof of Lemma 5.1.11 below. For a given continuous function
f from R to R such that f (0) > 0 and lim|x|→∞ f (x) = 0, define a continuous function g as
g(x) = max{0, f (x) − f (0)/2}. Then, g has bounded support and max{g(x) : x ∈ R} + f (0)/2 =
max{ f (x) : x ∈ R}, hence we have 2↔ 3. By an easy rescaling, we have 3↔ 4. Thus, they are
all equivalent to ACA. !

The Weak Weak Kőnig’s Lemma The weak weak Kőnig’s lemma, which states that a binary
tree with positive measure has an infinite path, has an intermediate strength between RCA0 and
WKL0 ([68, Remark X.1.8]). In this case, both of sequential versions are stronger than the
pointwise version and actually equivalent to WKL.

WWKL : ∀T,m

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

T ⊆ 2<N is a tree and
m ∈ Q+ satisfies (W2)

⎞
⎟⎟⎟⎟⎟⎠→ ∃P

⎛
⎜⎜⎜⎜⎜⎝

P is an infinite
path of T

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ ,

W′WKL : ∀T

⎛
⎜⎜⎜⎜⎜⎝∃m

⎛
⎜⎜⎜⎜⎜⎝

T ⊆ 2<N is a tree and
m ∈ Q+ satisfies (W2)

⎞
⎟⎟⎟⎟⎟⎠→ ∃P

⎛
⎜⎜⎜⎜⎜⎝

P is an infinite
path of T

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ ,

where (W2) denotes

lim
n→∞
|{σ ∈ T : lh(σ) = n}|

2n ≥ m.
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Proposition 5.1.7.

1. RCA0 ⊢ Seq(WWKL)↔WKL. ([15, Theorem 4.1.(2)])

2. RCA0 ⊢ Seq(W′WKL)↔WKL.

Proof of 2. It is easy to show within RCA0 that for binary tree T , if there exists m ∈ Q+ such that

lim
n→∞
|{σ ∈ T : lh(σ) = n}|

2n ≥ m, then T is infinite. Therefore WKL ⊢ Seq(W′WKL) immediately
follows from WKL ⊢ Seq(WKL) ([36, Lemma 5]). For the reverse direction, Seq(W′WKL)
obviously implies Seq(WWKL), which is equivalent to WKL over RCA0 from (1). !

Remark 5.1.8. Note that the previous proposition does not suggest that the sequential strength
of a mathematical statement equivalent to WWKL is WKL in general. Here, we will consider
Riemann integrability for bounded functions as an example. The following statement is equiva-
lent to WWKL over RCA0. (See [65].)

(Int) For any f , if f is a continuous function from [0, 1] to [0, 1], then
there exists r ∈ R such that

∫ 1

0
f (x) dx = r.

However, Seq(Int) does not imply WKL. This is because Seq(Int) follows from the following
sequential contrapositive of W′WKL :

(A) ∀T

⎛
⎜⎜⎜⎜⎜⎝∀n

⎛
⎜⎜⎜⎜⎜⎝

Tn ⊆ 2<N is a tree
which has no path

⎞
⎟⎟⎟⎟⎟⎠→ ∀n lim

k→∞

|{σ ∈ Tn : lh(σ) = k}|
2k = 0

⎞
⎟⎟⎟⎟⎟⎠ .

The contrapositive of W′WKL does not have the form (♠) in Definition 3.1.1 any more and (A)
is trivially equivalent to WWKL. Therefore Seq(Int) is actually equivalent to WWKL. In fact,
for many sequential versions of mathematical statements which are equivalent to WWKL, we
do not need Seq(WWKL) or Seq(W′WKL) but (A).

Next, we will investigate the effect of uniformity for positive measure more precisely. For
this, we shall consider some more variants, namely, bounded Kőnig’s lemmas with respect to
measure.

• WBKL : ∀T,m, g

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T ⊆ N<N is a tree,
m ∈ Q+ satisfies (Wg),
g : N→ N bounds T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→ ∃P

⎛
⎜⎜⎜⎜⎜⎝

P is an infinite
path of T

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where (Wg) denotes
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lim
n→∞
|{σ ∈ T : lh(σ) = n}|

∏
i<n g(i)

≥ m.

• WBcKL : ∀T,m, k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T ⊆ N<N is a tree,
m ∈ Q+ satisfies (Wk),
k bounds T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→ ∃P

⎛
⎜⎜⎜⎜⎜⎝

P is an infinite
path of T

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where (Wk) denotes

lim
n→∞
|{σ ∈ T : lh(σ) = n}|

kn ≥ m.

Proposition 5.1.9. WBKL and WBcKL are equivalent to WWKL over RCA0.

Proof. We reason in RCA0. WBKL to WBcKL to WWKL is trivial. We will show WBKL from
WWKL. Let T ⊆ N<N be a tree bounded by g : N→ N such that for some q ∈ Q+,

lim
n→∞
|{σ ∈ T : lh(σ) = n}|

∏
i<n g(i)

≥ q.

For σ ∈ N<N, define lg(σ) and rg(σ) as follows:

lg(σ) =
∑

k<lh(σ)

σ(k)
∏

i≤k g(i)
, rg(σ) = lg(σ) +

1
∏

i<lh(σ) g(i)
.

Similarly, for σ ∈ 2<N, define l2(σ) and r2(σ) as follows:

l2(σ) =
∑

k<lh(σ)

σ(k)2−k−1, r2(σ) = l2(σ) + 2−lh(σ).

Note that
⋃

σ∈T,lh(σ)=m[lg(σ), rg(σ)] are disjoint intervals in [0, 1] whose lengths sum to the mea-
sure of level m of T and these intervals can be approximated arbitrarily well from within by
intervals with dyadic rational endpoints. That is, for m ∈ N, there exists N ∈ N such that

∣∣∣∣∣∣∣

⎧⎪⎪⎨
⎪⎪⎩σ ∈ 2<N :

lh(σ) = N ∧
∃τ ∈ T (lh(τ) = m ∧ lg(τ) ≤ l2(σ) ∧ r2(σ) ≤ rg(τ))

⎫⎪⎪⎬
⎪⎪⎭

∣∣∣∣∣∣∣
2N

>
|{σ ∈ T : lh(σ) = m}|

∏
i<m g(i)

− q
2m+2 .

We define h(m) as the least such N.
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Now we define T ∗ ⊆ 2N as

σ ∈ T ∗ ⇔

∀m < lh(σ)
⎛
⎜⎜⎜⎜⎜⎝

h(m) ≤ lh(σ)→ ∃τ ∈ T (lh(τ) = m ∧
lg(τ) ≤ l2(σ ! h(m)) ∧ r2(σ ! h(m)) ≤ rg(τ))

⎞
⎟⎟⎟⎟⎟⎠ .

Then, T ∗ is a tree such that for all n ∈ N,

|{σ ∈ T ∗ : lh(σ) = n}|
2n >

|{σ ∈ T : lh(σ) = n}|
∏

i<n g(i)
−

∑

m<n

q
2m+2 ≥

q
2
.

Thus, by WWKL, there exists a path P∗ through T ∗. For any m ∈ N, there exists a unique τm ∈ T
such that lh(τm) = m and lg(τm) ≤ l2(P ! h(m)) ∧ r2(P ! h(m)) ≤ rg(τm). Then, P =

⋃
m∈N τm is

a path through T . "

Next we investigate the sequential strength of the statements in question. The following propo-
sition means that the uniformity for positive-measure does not help to weaken the sequential
strength of the bounded Kőnig’s lemma.

Proposition 5.1.10.

1. Seq(W′BKL), Seq(WBKL), Seq(W′BcKL) and Seq(WBcKL) are equivalent to WKL
over RCA0.

2. Seq(W′B′KL), Seq(WB′KL), Seq(W′B′cKL) and Seq(WB′cKL) are equivalent to ACA
over RCA0.

Here WB′KL, W′BKL, W′B′KL, WB′cKL, W′BcKL, and W′B′cKL are defined in the same
manner as before, that is, W′ (resp. B′, B′c) means that the universal quantifier ∀m (resp. ∀g,
∀k) is moved into (. . .→ . . .) as the existential quantifier ∃m (resp. ∃g, ∃k).

To show the previous proposition, we first show the following lemma.

Lemma 5.1.11. RCA0 ⊢ Seq(WB′cKL) → ACA, that is, the following statement implies ACA
over RCA0 :

∀⟨Tn⟩n∈N, ⟨mn⟩n∈N
(
∀n∃k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tn ⊆ N<N is a tree,
mn ∈ Q+ satisfies (Wk) for Tn,

k bounds Tn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→ ∃⟨Pn⟩n∈N∀n (Pn is an infinite path of Tn)
)
.
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Proof. As in the proof of Proposition 5.1.2.(2), we will find the range of an injection f : N→ N
([68, Lemma III.1.3]). By Σ0

0 comprehension, we take a sequence ⟨Tn⟩n∈N of trees from the given
injection f as

σ ∈ Tn ⇔
∀i < lh(σ)

(
σ(0) = 0 ∧ σ(i + 1) ≤ 1 ∧ f (i) ! n

)
∨

∃ j < σ(0)
(
∀i < lh(σ) (σ(i) ≤ 2 j + 1) ∧ f ( j) = n

)
.

Then, each Tn ⊆ N<N clearly forms a tree. Define mn :≡ 1/2. We need to find a required bound k
for each n. For given n, if there exists j such that f ( j) = n, then define k := 2 j+2, and otherwise,
define k := 2. In either case, we can check that k bounds Tn and mn(= 1/2) satisfies (Wk) for Tn.
Thus, by Seq(WB′cKL), there exists a sequence ⟨Pn⟩n∈N of paths. Define S := {n : Pn(0) ! 0}. It
is easy to see that Pn(0) ! 0↔ ∃ j ( f ( j) = n), namely, S is the range of f . !

Proof of Proposition 5.1.10. We reason in RCA0.
(1) Each of Seq(W′BKL), Seq(WBKL), Seq(W′BcKL), Seq(WBcKL) follows from

Seq(BKL), then also from WKL by Proposition 5.1.4.(1). On the other hand, each of them
implies Seq(WWKL) which is equivalent to WKL.

(2) Each of Seq(W′B′KL), Seq(WB′KL), Seq(W′B′cKL), Seq(WB′cKL) follows from
Seq(B′KL), then also from ACA by Proposition 5.1.4.(2). On the other hand, each of
Seq(W′B′KL), Seq(WB′KL), Seq(W′B′cKL) implies Seq(WB′cKL) and Seq(WB′cKL) implies
ACA by Lemma 5.1.11. !

5.2 Best Possibility of Dorais’ Uniformization Results

In this section, we discuss about the class of formulas which is covered by uniformization
theorems described in Section 3.1. Dorais’s uniformization theorems (Proposition 3.1.5) are the
following:

(1) For any T :≡ ∀ f (ϕ( f )→ ∃gψ( f , g)) such that ϕ( f ) is in NK and ψ( f , g) is in ΓK, if

EL + GC + CN ⊢ T,

then
RCA ⊢ Seq(T).

(2) For any T :≡ ∀ f (ϕ( f )→ ∃gψ( f , g)) such that ϕ( f ) is in NL and ψ( f , g) is in ΓL, if

EL +WKL + GCL + CNL ⊢ T,
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then
RCA +WKL ⊢ Seq(T).

As mentioned in [13], an advantage of Dorais’ uniformization theorems than Hirst and Mum-
mert’s one is the richness of the formula class to which the uniformization theorem is applica-
ble. In fact, the classes ΓK and ΓL seems to be rich enough for practical Π1

2 statements. Then
the interest is only in the possibility of extending NK and NL. All purely existential and purely
universal formulas are included in NK and all formulas of the form ∃u ≤ t∀vAq f are included
in NL. In addition, it should be remarkable that the formulas of the form ∀u∃vAq f are involved
in NK (and hence also in NL). In the following, we show using the investigation in Section 5.1
that NK and NL cannot be extended to the class involving all formulas of the form ∃u∀vAq f in
Proposition 3.1.5. This reveals that Dorais’ uniformization theorems (Proposition 3.1.5) are the
best possible for the syntactical classes involved.

Proposition 5.2.1. In Proposition 3.1.5.(1), the formula class NK cannot be extended to involve
all the formulas of the form ∃u∀vAq f .

Proof. Suppose not. Since a bounded formula is equivalent to some prime formula in EL0

(Lemma 2.2.12), the assumption of the finite marriage theorem F′MT (intuitionistically equiv-
alent to FMT) in Section 5.1 has the form ∃u∀vAq f . Then Proposition 5.1.2.(2) derives that
function-based F′MT is not provable in EL + GC + CN. However, it is provable in EL0 by the
standard proof of the finite marriage theorem in RCA0 ([34, Theorem 2.1]). !

Proposition 5.2.2. In Proposition 3.1.5.(2), the formula class NL cannot be extended to involve
all the formulas of the form ∃u∀vAq f .

Proof. Suppose not. As in the proof of Proposition 5.2.1, Proposition 5.1.4.(2) derives that
B′cKL (intuitionistically equivalent to BcKL) in Section 5.1 is not provable in EL + WKL +
GCL + CNL. However, it is provable in EL0 + WKL by the standard proof of the bounded
Kőnig’s lemma in WKL0 ([68, Lemma IV.1.4]).

!

5.3 Investigation of Sequential Marriage Theorems

A marriage problem3 is a bipartite graph G = (B,G,R) which consists of a set of vertices
partitioned into B and G and a set of edges such that R ⊂ B ×G. Intuitively, B is a set of boys,
G is a set of girls, and (b, g) ∈ R means boy b knows girl g. Throughout this section, we use

3Matrimonial interpretations of Theorem 5.3.1 and 5.3.3 are popularized by Halmos and Vaughan [32].
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the notation like NG(X) for the set of acquaintances of X. The subscript G may be dropped
when it is clear from the context. The following classical theorem states that any finite marriage
problem has a solution provided that it satisfies the Hall condition, i.e., every n boys knows at
least n girls.

Theorem 5.3.1 (P. Hall [30]). If G = (B,G,R) is a finite bipartite graph such that for all X ⊂ B,
|NG(X)| ≥ |X|, then there exists a matching of B.

Definition 5.3.2. Let G = (B,G,R) is a (possibly infinite) bipartite graph.

• G satisfies the Hall condition (for B) if ∀X⊂finB(|NG(X)| ≥ |X|).

• G is B-locally finite if ∀b ∈ B(|NG(b)| < ∞).

• G has a solution if there exists an injection M ⊂ R from B to G.

Intuitively, B-locally finite means that every boy knows at most finitely many girls. Theorem
5.3.1 can be extended to infinite graphs, but it requires adding B-locally finiteness in assump-
tion.4

Theorem 5.3.3 (Infinite marriage theorem, M. Hall [31]). IfG = (B,G,R) is a bipartite graph
which is B-locally finite and satisfies the Hall condition, then G has a solution.

In the early age of recursive graph theory (cf. [26]), Manaster and Rosenstein [64] found
that a computable bipartite graph satisfying the conditions need not have a computable solu-
tion, even if its locally finiteness is computably confirmed. To render the marriage theorem
computable, Kierstead [44] introduced the notion of expanding Hall condition, which indicates
that the difference between |NG(X)| and |X| tends to infinity as |X| tends to infinity, where X
ranges over all finite subsets of B. Then, he found that there is an effective procedure to obtain
a solution from a computable bipartite graph which is computably locally finite and satisfies the
computable expanding Hall condition.

Based on these facts, Hirst [35] (See also [34]) investigated marriage theorems in the context
of reverse mathematics and showed that the infinite marriage theorem is equivalent to ACA over
RCA0. Moreover, he showed that the infinite marriage theorem under the assumption of com-
putably locally finiteness is equivalent to WKL over RCA0. Furthermore, Fujiwara, Higuchi and
Kihara [23] indicated that Kierstead’s effective variant of infinite marriage theorem [B′′,G′′,H′′]
(so symbolized in [23]) is provable in RCA0 and investigated all of the considerable marriage
theorems in the context of reverse mathematics. As we have already mentioned in Remark 3.4.4,
one can apply Theorem 3.4.2 to [B′′,G′′,H′′], and obtains that [B′′,G′′,H′′] is intuitionistically
provable. Other investigations of marriage theorems with respect to reverse mathematics can be
found in [11, 38].

4If “B-locally finite” is dropped, the assertion does not hold.
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5.3.1 Constant Bounded Marriage Theorems

While Kierstead’s computable expanding Hall condition makes a computable marriage problem
have a computable solution, we introduce another combinatorial condition which also achieves
this.

Definition 5.3.4. A bipartite graph G = (B,G,R) satisfies the constant bounded Hall condition
(expressed by Hcb) if there exists k such that for all X⊂finB, |X| ≤ |NG(X)| ≤ |X| + k holds.

Note that the B-locally finiteness follows from this condition. In fact, if a computable marriage
problem fulfills the constant bounded Hall condition, then this problem will have a computable
solution. However, our results below reveals that there is no uniform algorithm to obtain a
solution from a computable marriage problem fulfilling the constant bounded Hall condition.

Definition 5.3.5. A bipartite graph G = (B,G,R) is computably B-locally finite if there is a
function f : B → N such that f (b) = |NG(b)| for all b ∈ B. The G-locally finiteness (cf.
Definition 5.3.2) and computably G-locally finiteness are defined in the same manner.

Hereafter, we use the following symbols for readability:

• X : no locally finiteness for X, for X ∈ {B,G},
• X′ : X-locally finite, for X ∈ {B,G},
• X′′ : computably X-locally finite, for X ∈ {B,G},
• Hcb : the constant bounded Hall condition.

Then we investigate all marriage theorems having the following form:

Statement (B(·)
Hcb

G(·)-M). If a bipartite graph G satisfies B(·), G(·) and the constant bounded Hall
condition, then G has a solution.

In the proofs below, we often use (implicitly in many cases) the following fact:

Lemma 5.3.6. RCA0 ⊢ FPP(finite pigeonhole principle) : for all n ∈ N, there is no (code of)
injection from {0, . . . , n + 1} to {0, . . . , n}.

Proof. We reason within RCA0. Suppose not. Take the least n such that there exists a (code of
the graph of) injection r from {0, ..., n + 1} to {0, ..., n} (this is possible only by Σ0

0 induction).
If n = 0, this contradicts the injectivity of r. Let n > 0. In the case that there is no i < n + 1
such that r(i) = n. Then r \ (n + 1, r(n + 1)) is an injection from {0, . . . , n} to {0, . . . , n− 1}. This
contradicts the leastness of n. Otherwise, define r′ : {0, . . . , n}→ {0, . . . , n − 1} as

r′(i) :=

⎧⎪⎪⎨
⎪⎪⎩

r(i) if r(i) ! n,
r(n + 1) if r(i) = n.
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Then it is straightforward to see that r′ is an injection from {0, . . . , n} to {0, . . . , n − 1}. Again
this contradicts the leastness of n. !

In contrast to the finite pigeonhole principle, the infinite pigeonhole principle is not provable in
RCA0 as follows:

Lemma 5.3.7 (Theorem 6.4 in [34]). RCA0 ⊢ BΠ0
1 ↔ RT(1)(infinite pigeonhole principle) : for

all k ∈ N and function f : N → k (i.e. {0, . . . , k − 1}), there exists i < k such that f ( j) = i for
infinitely many j.

We start with proving that all of the marriage theorems with the constant bounded Hall con-
dition are provable in RCA0.

Theorem 5.3.8. RCA0 ⊢ BHcbG-M (equivalently B′Hcb
G-M), that is, the following is provable

within RCA0. If G is a bipartite graph which satisfies the constant bounded Hall condition, then
G has a solution.

Proof. We reason in RCA0. Let

Φ(c) ≡ ∀X⊂finB (|NG(X)| ≤ |X| + c) .

Note that the statement |NG(X)| ≤ |X| + c is written as a Π0
1 formula, and then so is Φ(c). Since

G satisfies the constant bounded Hall condition, ∃cΦ(c) holds. By Π0
1 least number principle,

which can be carried out in RCA0, there exists a least c1 such that Φ(c1) holds. By the leastness
of c1, there exists X1⊂finB such that |NG(X1)| = |X1| + c1. We fix such X1. Then the set NG(X1)
exists by Σ0

0 comprehension, and |NG(X1)| < ∞. We first note the following:

For all b ∈ B \ X1, there is at most one g ∈ NG(b) \ NG(X1) (5.1)

since if not, |NG(X1 ∪ {b})| ≥ |X1 ∪ {b}| + c1 + 1. Moreover, we claim that

X2 := {b ∈ B \ X1 : NG(b) ⊆ NG(X1)}

is finite, hence exists by bounded Π0
1 comprehension in RCA0 [68, Theorem II.3.9]. Indeed, X2

has at most c1 many elements. Otherwise, for such a finite set X′ of size c1 + 1 with NG(X′) ⊆
NG(X1), we have |X1 ∪ X′| ≥ |X1| + c1 + 1 > |NG(X1)| = |NG(X1 ∪ X′)|. Next, we claim that

Y1 := {g ∈ G \ NG(X1) : |NG(g) \ X1| ≥ 2}

is finite (actually, of size at most c1), and exists by bounded Σ0
1 comprehension in RCA0 [68,

Theorem II.3.9]. Suppose not. Then there exists a finite set Y ′ of such girls such that |Y ′| = c1+1.
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Moreover, by (5.1) with Y ′ ∩ NG(X1) = ∅, for every different g1, g2 ∈ Y ′, two sets NG(g1) \ X1

and NG(g2) \ X2 are disjoint. It follows that NG(Y ′) ≥ 2|Y ′| = 2(c1 + 1) holds. Let X′ be a finite
subset of NG(Y ′) such that |X′| ≥ 2(c1 + 1). By (5.1), each boy in X′ knows just one girl in Y ′.
Therefore,

|NG(X1 ∪ X′)| ≤ |NG(X1)| + |Y ′| = (|X1| + c1) + (c1 + 1) = |X1| + 2c1 + 1.

On the other hand,
|X1 ∪ X′| = |X1| + |X′| ≥ |X1| + 2c1 + 2.

These contradict the Hall condition.
Now note that the condition (5.1) implies NG(NG(Y1)) ⊆ NG(X1) ∪ Y1. Therefore, we have

|X1| + |NG(Y1)| = |X1 ∪ NG(Y1)| ≤ |NG(X1 ∪ NG(Y1))|
≤ |NG(X1) ∪ Y1| = |NG(X1)| + |Y1| ≤ (|X1| + c1) + c1 = |X1| + 2c1.

Hence, NG(Y1) has at most 2c1 many elements, and NG(Y1) exists by Σ0
0 comprehension. More-

over, |X1 ∪ X2 ∪ NG(Y1)| is finite. On the other hand, NG(X1 ∪ X2 ∪ NG(Y1)) ⊆ NG(X1)∪ Y1 holds
by our choice of X1, X2 and Y1. Thus the following finite subgraph

(X1 ∪ X2 ∪ NG(Y1),NG(X1) ∪ Y1,R)

of G satisfies the Hall condition with the aid of the Hall condition for the original graph G.
Then it has a matching M by the finite marriage theorem in RCA0 ([35, Theorem 2.1]). Again
by (5.1), each boy b ! X1 ∪ X2 ∪ NG(Y1) knows just one girl gb ! NG(X1) ∪ Y1. Moreover, for
any such boys b and b′, if b " b′, then gb " gb′ , since b, b′ ! NG(Y1). Therefore

M ∪ {(b, gb) ∈ R : b ∈ B \ (X1 ∪ X2 ∪ NG(Y1))}

is a solution of G. This completes the proof of our theorem. !

Consequently, all of B′Hcb
G′-M, B′Hcb

G′′-M, B′′Hcb
G-M, B′′Hcb

G′-M and B′′Hcb
G′′-M are probable

in RCA0. As a corollary, it follows that a computable bipartite graph fulfilling the constant
bounded Hall condition has a computable solution. However, the algorithm in the proof of
Theorem 5.3.8 to give a solution for a given instance of B′Hcb

G-M is not uniform, in contrast to
the uniformity of the algorithm in the proof of Kierstead’s effective marriage theorem [44].

Our proof of Theorem 5.3.8 in RCA0 contains an implicit non-uniformity in the use of least
number principle. The next theorem suggests that this non-uniformity can not be avoided. As
before, we use a notation Seq(A) for the sequential version of A.
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Theorem 5.3.9. The following are pairwise equivalent over RCA0.

1. ACA.

2. Seq(B′Hcb
G-M), that is, for all sequence ⟨Bn,Gn,Rn, kn⟩n∈N such that (Bn,Gn,Rn) satisfies

the Bn-constant bounded Hall condition via kn, then there exists a sequence ⟨Mn⟩n∈N of
their solutions.

3. Seq(B′Hcb
G′-M), that is, for all sequence ⟨Bn,Gn,Rn, kn⟩n∈N such that (Bn,Gn,Rn) is Gn-

locally finite and satisfies the Bn-constant bounded Hall condition via kn, then there exists
a sequence ⟨Mn⟩n∈N of their solutions.

Warning (See Section 5.1). In our formalization of the sequential versions of B′Hcb
G-M and

B′Hcb
G′-M, the sequence of kn is given on ahead. This is the suitable way of sequentializing be-

cause our interest is in the non-uniformity of the construction of a solution from given constant
bounded Hall condition via k.

Prior to the proof of Theorem 5.3.9, we first prove the following WKL counterpart:

Theorem 5.3.10. The following are pairwise equivalent over RCA0.

1. WKL.

2. Seq(B′′Hcb
G-M), that is, for all sequence ⟨Bn,Gn,Rn, pn, kn⟩n∈N such that (Bn,Gn,Rn) is

computably Bn-locally finite via pn and satisfies the Bn-constant bounded Hall condition
via kn, then there exists a sequence ⟨Mn⟩n∈N of their solutions.

3. Seq(B′′Hcb
G′-M), that is, for all sequence ⟨Bn,Gn,Rn, pn, kn⟩n∈N such that (Bn,Gn,Rn) is

computably Bn-locally finite via pn, Gn-locally finite and satisfies the Bn-constant bounded
Hall condition via kn, then there exists a sequence ⟨Mn⟩n∈N of their solutions.

Proof. (1 → 2) holds by the facts that WKL ⊢ B′′HG-M ([35, Theorem 2.3]) and that RCA0 ⊢
WKL ↔ Seq(WKL) ([36, Lemma 5]). (2 → 3) is trivial. We shall show (3 → 1). It is suffices
to separate the range of disjoint functions ([68, Lemma IV.4.4]). Let f , g : N → N be given
injections with disjoint ranges.

We construct a sequence of bipartite graphs ⟨(Bn,Gn,Rn)⟩n∈N in RCA0. For each n ∈ N, put
Bn = Gn = N. At first, (0, 0) and (0, 1) are enumerated into each Rn. At the j-th step in the
construction of Ri, if f ( j) = i occurs, then put ( j + 1, 1) ∈ Ri. If g( j) = i occurs, then put
( j + 1, 0) ∈ Ri. Otherwise, put ( j + 1, j + 2) ∈ Ri.

We put ⟨pn⟩n∈N := ⟨p⟩n∈N where p : N → N such that p(n) = n + 1 and ⟨kn⟩n∈N := ⟨1⟩n∈N
in RCA0. Then each i graph (Bn,Gn,Rn) is Gn-locally finite and computably Bn-locally finite
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via pn, and it is also easy to see that for all n and X⊂finBn, |X| ≤ |Rn[X]| ≤ |X| + kn holds
within RCA0. Then Seq(B′′Hcb

G′-M) implies the existence of a sequence ⟨Mi⟩i∈N of solutions for
⟨(Bn,Gn,Rn)⟩n∈N. Define V := {i : (0, 0) ∈ Mi} by Σ0

0 comprehension. Then V separates the
ranges of f and g because of the above construction. !

Proof of Theorem 5.3.9. (1 → 2) is shown straightforwardly by revising the proof of ACA ⊢
B′HG-M by Hirst ([35, Theorem 2.2]) a bit. (2 → 3) is trivial. We show (3 → 1) by revising a
proof of (3 → 1) of Theorem 5.3.10 by using “liberation method” as in the proofs of Lemma
2.3 and Lemma 2.6 in [23].

Let f : N → N be an injection and for each n ∈ N, put Bn = Gn = N. At first, put
(0, 0), (0, 1), (1, 0) ∈ Rn. At the j-th step in the construction of Ri, if f ( j) = i occurs, then put
( j + 2, 1), (1, j + 2) ∈ Ri. Otherwise, put ( j + 2, j + 2) ∈ Ri. Then ⟨Bn,Gn,Rn, 1⟩n∈N satisfies our
assumptions, so has a sequence ⟨Mn⟩n∈N of solutions by Seq(B′Hcb

G′-M). It is easy to see that
V := {i : (0, 0) ∈ Mi} is the range of f . !

By inspecting the proofs of Theorem 5.3.9 and Theorem 5.3.10, one soon notices that if the
Hall condition is bounded just by k = 1, there is no uniform algorithm to obtain a solution of the
marriage problem. In contrast, under the assumption of computably G-locally finiteness, even
if the constant bound of the Hall condition is arbitrarily big k, the marriage problem is solvable
uniformly in RCA0.

Theorem 5.3.11. RCA0 ⊢ Seq(B′Hcb
G′′-M), that is, the following is provable in RCA0. For all

sequence ⟨Bn,Gn,Rn, pn, kn⟩n∈N such that (Bn,Gn,Rn) is computably Gn-locally finite via pn and
satisfies the Bn-constant bounded Hall condition via kn, then there exists a sequence ⟨Mn⟩n∈N of
their solutions.

We first introduce some notions used in the proof of Theorem 5.3.11.

Definition 5.3.12 (R-chain, Properness). Let (B,G,R) be an infinite bipartite graph.

1. A finite sequence s = ⟨sB
j , s

G
j ⟩ j<k is a R-chain with starting point b of length k (> 0) if

⟨sB
j ⟩ j<k and ⟨sG

j ⟩ j<k are nondecreasing sequences of finite subsets of B and G respectively,
where sB

0 = {b}, sG
j ⊆ NG(sB

j ), sB
j+1 = NG(sG

j ), and (sB
j , s

G
j ,R) satisfies the Hall condition

for each j < k.

2. A R-chain ⟨sB
j , s

G
j ⟩ j<k is called proper if ⟨sB

j ⟩ j<k is strictly increasing.

Proof of Theorem 5.3.11. To remove the illegibility from sequentializing a formal proof, we
just give, in RCA0, a uniform proof of B′Hcb

G′′-M for a graph of which B is infinite. It can be
straightforwardly transformed to the proof of Seq(B′Hcb

G′′-M) in RCA0. Let G = (B,G,R) be
a bipartite graph which is computably G-locally finite and satisfies the constant bounded Hall
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condition via k, and {bi : i ∈ N} be an enumeration of B. We shall now construct a solution of G
by a procedure like primitive recursion.

Let θ(u, v) express that u encodes a sequence ⟨ui⟩i<v+1 of length v+1 of chains ui = ⟨uB
i, j, u

G
i, j⟩ j<lh(ui),

where each ui is a least non-proper Ri-chain of finite length in the remaining graph (Bi,Gi,Ri) :=
(B,G,R) \⋃i′<i ui′ and bi is contained in

⋃
i′≤i uB

i′ . Now θ(u, v) is written as Σ0
0 formula with the

aid of the computably G-locally finiteness of G.
Suppose that we have shown ∀v∃uθ(u, v). Then the witness uv for each v is unique and uv1 is

an initial segment of uv2 for v1 ≤ v2 ≤ v because of the minimality of each ui in the description of
θ(u, v). Take a function which outputs the unique uv for each v ∈ N by ∆0

1 comprehension as in
the proof of [68, Theorem II.3.4], and take (by Σ0

0 comprehension) a function g : N→ N as g(v)
is the least matching of

(
(uv)v

)B in R \⋃i<v(uv)i. Since the description of θ(u, v) ensures the Hall
condition for each subgraph (uv)v in each remaining graph, by the finite marriage theorem ([35,
Theorem 2.1]), this g is well-defined. Define M as

⋃
v∈N g(v), then one can straightforwardly

verify in RCA0 that M is an injection from B to G. Therefore, it suffices to show ∀v∃uθ(u, v) by
Σ0

1 induction on v. To show ∃uθ(u, 0), we first show the following key claim.

Claim (RCA0). If a bipartite graph G = (B,G,R) satisfies the constant bounded Hall condition
via k ∈ N, then there is no proper R-chain s = ⟨sB

i , s
G
i ⟩i<lh(s) (with a starting point from B) of

length more than t(k + 1), where t(k) := k(k + 3)/2.

(Proof of Claim.) Suppose not, i.e., assume that s = ⟨sB
i , s

G
i ⟩i<lh(s) be a proper R-chain of length

more than t(k+1). Note that t(k+1)− (t(k)+1) = k+1. Now we shall show that for all n ≤ k+1
there exists X ⊆ sB

t(n) and Y ⊆ sG
t(n) such that Y ⊆ NG(X) and |X| + n ≤ |Y | holds by induction on

n. Note that the above statement can be written as Σ0
0 sentence by using s, then this induction

can be carried out in our system RCA0. The initial step is accomplished obviously. Let Xn and
Yn be witnesses of the case of n, i.e., Xn ⊆ sB

t(n), Yn ⊆ sG
t(n), Yn ⊆ NG(Xn) and |Xn| + n ≤ |Yn| hold.

By properness of R-chain, we can choose gj ∈ sG
j \ sG

j−1 ! ∅ for each t(n) < j ≤ t(n + 1).
In the case that sB

t(n)+1 ∩ NG(gj1) = ∅ for some t(n) + 1 < j1 ≤ t(n + 1), NG(sB
t(n)+1) ∩ {gj1} = ∅

holds. Then, gj1 ∈ sG
j1 ⊆ NG(sB

j1) implies that there is b̂ ∈ sB
j1 \ sB

t(n)+1 such that gj1 ∈ NG(b̂). Now
b̂ ∈ sB

j1 \ sB
t(n)+1 = NG(sG

j1−1) \NG(sG
t(n)) implies that there is ĝ ∈ sG

j1−1 \ sG
t(n) such that b̂ ∈ NG(ĝ). As

gj1 " sG
j1−1, the girls gj1 and ĝ are different, and they are not contained in sG

t(n). Hence, the boy
b̂ " Xn ⊆ sB

t(n) knows two different girls gj1 , ĝ " Yn ⊆ sG
t(n). Therefore, for Xn+1 = Xn ∪ {b̂} and

Yn+1 = Yn ∪ {gj1 , ĝ}, we have Yn+1 ⊆ NG(Xn+1) and |Xn+1| + n + 1 ≤ |Yn|.
Otherwise, i.e., sB

t(n)+1∩NG(gj) ! ∅ for every t(n)+1 < j ≤ t(n+1). Choose x j ∈ sB
t(n)+1∩NG(gj)

for each t(n) + 1 < j ≤ t(n + 1), and put X̂ = {x j}t(n)+1< j≤t(n+1). Since (sB
t(n)+1, s

G
t(n)+1) satisfies the

Hall condition, there exists Ŷ ⊆ sG
t(n)+1 such that |X̂| ≤ |Ŷ | holds. Then we can verify that X̂ and

Ŷ ∪ {gj}t(n)+1< j≤t(n+1) are witnesses of the case of n+ 1 straightforwardly. Therefore the induction
step is also accomplished. Then there exists X ⊆ sB

t(k) and Y ⊆ sG
t(k) such that Y ⊆ NG(X) and
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Figure 5.1: Proof of Claim

|X| + k < |Y | holds. This contradicts our assumption that G satisfies the constant bounded Hall
condition via k and complete the proof of our claim. !

Because of the computably G-locally finiteness of G, we can effectively produce a non-proper
R-chain s with starting point b0 ∈ B by the following procedure: Let sB

0 be the set consisting
only of b0, take the fast witnessed set of girls sG

j such that ⟨sB
j′ , s

G
j′ ⟩ j′≤ j forms an R-chain, and

put sB
j+1 = NG(sG

j ). Claim 5.3.1 ensures that this procedure would stop eventually until j is up
to t(k + 1), i.e., ⟨sB

j , s
G
j ⟩ j≤t(k+1) is non-proper. Then, by Σ0

0 least number principle, there exists u0

such that θ(u0, 0) holds. Thus the initial step is accomplished.
Next we turn to the induction step. Assume that ∃uθ(u, v) holds, and let u′ be u such that

θ(u, v) holds. Then R′ = R \⋃ j≤v u′j satisfies the constant bounded Hall condition by the disjoint
property:

NG (B \ B[v]) ∩ NG(B[v]) = ∅

where B[v] denotes the set of boys in
⋃

j≤v u′j. As in the initial step, we can effectively produce
a non-proper R′-chain s′ of finite length, where we take bv+1 as the starting point of s′ if bv+1 !
(u′v)B. Let uv+1 be such a least s′, then θ (u′"uv+1, v + 1) holds. This completes the proof of our
theorem. !

Corollary 5.3.13. Seq(B′′Hcb
G′′-M) is provable in RCA0.

We summarize the sequential strength of marriage theorems with the constant bounded Hall
condition in Table 5.1.
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ACA Seq(B′Hcb
G-M) Seq(B′Hcb

G′-M) Seq(B′Hcb
G′′-M)

WKL Seq(B′′Hcb
G-M) Seq(B′′Hcb

G′-M) Seq(B′′Hcb
G′′-M)

RCA0

Table 5.1: The sequential strength of constant bounded marriage theorems

Applications: As we have already seen in Section 3.1, the uniformization theorems [37, 13]
assert that for Π1

2 statements of some syntactical form, its provableness in (semi-)intuitionistic
systems guarantees its sequential provableness in weak subsystems of second-order arithmetic.
Hirst-Mummert’s uniformization theorems (Proposition 3.1.2) can be applied for Π1

2 statements
of the following syntactical form:

∀X (ϕ(X)→ ∃Yψ(X,Y)) ,

where ϕ(X) is ∃-free and ψ(X,Y) is in Γ1. On the other hand, Dorais’ uniformization theorems
(Proposition 3.1.5) can be applied for more Π1

2 statements, namely, for Π1
2 statements with ϕ(X)

including purely existential formulas as subformula. (See [13, Section 4] for details.) By a
careful inspection, one can see (via Lemma 2.2.12) that the assertion that “a bipartite graph
(B,G,R) satisfies the constant bounded Hall condition via k” has the syntactical form of

∀x∃yAq f

and the assertion that “M is a solution of (B,G,R)” is purely universal5 (and hence, is in ΓK).
That is to say, Dorais’ uniformization theorems can be applied to our marriage theorem with the
constant bounded Hall condition while Hirst-Mummert’s uniformization theorems can not. As
a consequence of Theorem 5.3.9 and 5.3.10, we have the following.

Corollary 5.3.14.

1. B′Hcb
G-M and B′Hcb

G′-M are not provable in EL +WKL + GCL + CNL.

2. B′′Hcb
G-M and B′′Hcb

G′-M are not provable in EL + GC + CN.

On the other hand, one can also see that the assertion that “a bipartite graph (B,G,R) is B-
locally finite, computably G-locally finite via p and satisfies the constant bounded Hall condition
via k” still has the syntactical form of ∀x∃yAq f . Therefore one Theorem 3.4.1 can be applied to
(the proofs of) Theorem 5.3.11 and we obtain the following.

5If we formalize this in the system with set-based language, this has the syntactical form of ∀x∃yAq f because one
has to describe “M is a function” additionally.
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Corollary 5.3.15. B′Hcb
G′′-M and B′′Hcb

G′′-M are provable in EL0

5.3.2 Constant Bounded Symmetric Marriage Theorems

Hirst [35] showed that the symmetric marriage theorem is equivalent to ACA over RCA0 and
that for computably locally finite graphs is equivalent to WKL over RCA0, which were the
threshold for the enriched development of the reverse mathematics of graph coloring. Fujiwara
[21] investigated symmetric marriage theorems with Kierstead’s expanding Hall condition in
the context of reverse mathematics. Here we investigate symmetric marriage theorems with the
constant bounded Hall condition.

Definition 5.3.16. Let G = (B,G,R) is a (possibly infinite) bipartite graph.

• G satisfies the symmetric Hall condition if ∀X⊂finB ∪G (|NG(X)| ≥ |X|).

• G is locally finite if ∀x ∈ B ∪G (|NG(x)| < ∞).

• G is computably locally finite6 if there is a function f : B∪G → N such that f (x) = |NG(x)|
for all x ∈ B ∪G.

• G has a symmetric solution if there exists a bijection M ⊂ R from B to G.

The basic statement of the symmetric marriage theorem is the following:

Theorem 5.3.17 (Symmetric Marriage Theorem). If G = (B,G,R) is a bipartite graph which is
locally finite and satisfies the symmetric Hall condition, then G has a symmetric solution.

Definition 5.3.18. Let G = (B,G,R) is a (possibly infinite) bipartite graph.

• G satisfies the Y-Hall condition, which is expressed by YH, if ∀X⊂finY (|NG(X)| ≥ |X|),
where Y ∈ {B,G}.

• G satisfies the constant bounded Y-Hall condition, which is expressed by YHcb, if there
exists k such that for all X⊂finY , |X| ≤ |NG(X)| ≤ |X| + k holds, where Y ∈ {B,G}.

• G satisfies the constant bounded symmetric Hall condition if there exists k such that for
all X⊂finB ∪G, |X| ≤ |NG(X)| ≤ |X| + k holds.

As in Subsection 5.3.1, we investigate all symmetric marriage theorems having the following
form:

6The corresponding notion in recursive graph theory [26] is called “highly recursive”.
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Statement (B(·)
H(·)

G(·)
H(·)

-Ms). If a bipartite graph G satisfies B(·), G(·), BH(·) and GH(·) , then G has a
symmetric solution.

We first show that the constant bounded Hall condition for one side already makes the sym-
metric marriage theorem provable in RCA0 + BΠ0

1.

Proposition 5.3.19. RCA0+BΠ0
1 ⊢ B′Hcb

G′H-Ms (equivalently BHcbG′H-Ms), that is, the following
is provable in RCA0 + BΠ0

1. If G = (B,G,R) is a locally finite bipartite graph which satisfies
the constant bounded B-Hall condition and G-Hall condition, then G has a symmetric solution.

Proof. The proof proceeds by extending the proof of Theorem 5.3.8. Just as in the proof of
Theorem 5.3.8, take a least c1 such that Φ(c1) holds and consider X1, X2 and Y1 as before. Then
the finiteness of X∗ := NG(NG(X1) ∪ Y1) follows from the G-locally finiteness with the use of
BΠ0

1 as follows. Since G is G-locally finite,

∀g ∈ (NG(X1) ∪ Y1)∃r∀b((b, g) ∈ R→ b < r) (5.2)

holds (note that the (code of) finite set NG(X1) ∪ Y1 exists in RCA0 as mentioned in the proof of
Theorem 5.3.8). Applying BΠ0

1 to (5.2), we have the finiteness of X∗. Take a matching M∗ of X∗

by the finite marriage theorem ([35, Theorem 2.1]). By Σ0
0 comprehension, M := M∗ ∪ {(b, g) ∈

R : b ∈ B \ X∗} exists. Reasoning in RCA0, we show that M is a symmetric solution. First
one can show that M is an injective function from B to G as in Theorem 5.3.8. Furthermore,
each girl g ∈ NG(X∗) \ (NG(X1) ∪ Y1) only knows some boys (in fact, just one boy) in X∗, since
otherwise g should be in Y1. Therefore, by the G-Hall condition, |X∗| = |NG(X∗)| holds and
hence, it follows that M∗ is also a matching of NG(X∗). In addition, each girl g′ ∈ G \ NG(X∗)
knows one boy b′ ∈ B \ X∗ by the G-Hall condition. Thus M is surjective. !

Remark 5.3.20. If the G-locally finiteness is dropped from the assumption of B′Hcb
G′H-Ms, the

assertion is already false.

Remark 5.3.21. In the proof of Proposition 5.3.19, BΠ0
1 is only used to verify the finiteness

of X∗ := NG(NG(X1) ∪ Y1). Since the finiteness is guaranteed from the computably G-locally
finiteness or the constant bounded G-Hall condition without using BΠ0

1, this proof reveals that
BHcbG′′H-Ms or BHcbGHcb-Ms is already provable in RCA0. We show below that this weak vari-
ant B′Hcb

G′H-Ms of the symmetric marriage theorem is equivalent to BΠ0
1 over RCA0 (Theorem

5.3.28).

Notice that the proof of Theorem 5.3.19 also contains a non-uniformity in the use of least
number principle. In fact, our investigation of its sequential version reveals that this non-
uniformity can not be avoided.
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Theorem 5.3.22. The following are pairwise equivalent over RCA0.

1. ACA.

2. Seq(B′Hcb
G′H-Ms), that is, for all sequence ⟨Bn,Gn,Rn, kn⟩n∈N such that (Bn,Gn,Rn) is lo-

cally finite, satisfies the Bn-constant bounded Hall condition via kn and satisfies the G-Hall
condition, then there exists a sequence ⟨Mn⟩n∈N of their symmetric solutions.

3. Seq(B′Hcb
G′Hcb

-Ms), that is, for all sequence ⟨Bn,Gn,Rn, kn⟩n∈N such that (Bn,Gn,Rn) is
locally finite and satisfies the constant bounded symmetric Hall condition via kn, then
there exists a sequence ⟨Mn⟩n∈N of their symmetric solutions.

Proof. By inspecting the proof of Theorem 5.3.9. !

On the other hand, the next theorem states that if we have the G-locally finiteness, the sym-
metric marriage theorem is uniformly provable in RCA0.

Theorem 5.3.23. RCA0 ⊢ Seq(B′Hcb
G′′H-Ms), that is, the following is provable in RCA0. For all

sequence ⟨Bn,Gn,Rn, pn, kn⟩n∈N such that (Bn,Gn,Rn) is Bn-locally finite, computably Gn-locally
finite via pn, satisfies the Bn-constant bounded Hall condition via kn and satisfies the G-Hall
condition, then there exists a sequence ⟨Mn⟩n∈N of their symmetric solutions.

Proof. Extending the proof of Theorem 5.3.11, we shall give a uniform proof of B′Hcb
G′′H-Ms in

RCA0. We reason in RCA0 and let G = (B,G,R) be a bipartite graph satisfying the conditions.
As in the proof of Theorem 5.3.11, consider the same θ(u, v) and take a function u(·) : N → N
such that θ(v, uv) holds for each v ∈ N. Then we take (by Σ0

0 comprehension) a function gs :
N → N as gs(v) is the least complete matching of

(
((uv)v)B , ((uv)v)G ,R \⋃i<v(uv)i

)
. To verify

the well-definedness of this gs, it suffices to show

∣∣∣((uv)v)B
∣∣∣ =

∣∣∣((uv)v)G
∣∣∣ (5.3)

for each v ∈ N. If Gv := (Bv,Gv,Rv) := G\⋃i<v(uv)i satisfies the Gv-Hall condition for all v ∈ N,
then (5.3) holds for each v ∈ N since ((uv)v)B = NGv

(
((uv)v)G

)
and

(
((uv)v)B , ((uv)v)G

)
satisfies

the Bv-Hall condition from the definition of non-proper chain. Then we claim by induction
that Gv satisfies Gv-Hall condition for all v ∈ N. Note that the assertion “Gv satisfies Gv-Hall
condition” can be written as a Π0

1 formula with the aid of the computably G-locally finiteness
of the original graph G, and hence this induction is carried out in RCA0. For the induction step,
suppose that Gv+1 = G \

⋃
i<v+1(uv+1)i does not satisfy the Gv+1-Hall condition. Then there exists

Y⊂finG \
⋃

i<v+1

(
(uv+1)i

)G
such that

∣∣∣NGv+1(Y)
∣∣∣ < |Y |. Since

(
(uv+1)v

)B
= NGv

((
(uv+1)v

)G
)
, we have
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∣∣∣∣
(
(uv+1)v

)B∣∣∣∣ =
∣∣∣∣
(
(uv+1)v

)G∣∣∣∣ as before, and hence

∣∣∣∣∣NGv

((
(uv+1)v

)G ∪ Y
)∣∣∣∣∣ =

∣∣∣∣
(
(uv+1)v

)B ∪ NGv+1(Y)
∣∣∣∣ <

∣∣∣∣
(
(uv+1)v

)G ∪ Y
∣∣∣∣ .

This means that Gv does not satisfy the Gv-Hall condition. Thus the proof of our claim is
complete, and consequently gs is well-defined.

Define Ms as
⋃

v∈N gs(v). The injectivity of Ms is straightforwardly verified. In the following,
we show the surjectivity. Suppose not. Then there exists g′ ∈ G such that g′ !

⋃
i<v ((uv)i)G for

all v ∈ N. On the other hand, by the description of θ(u, v),

∀b ∈ NG(g′)∃vb

⎛
⎜⎜⎜⎜⎜⎜⎝b ∈

⋃

i<vb

((uvb)i)B

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Therefore, by BΣ0
0 (provable in RCA0), there exists v′ such that

∀b ∈ NG(g′)
⎛
⎜⎜⎜⎜⎜⎝b ∈

⋃

i<v′

(
(uv′)i

)B
⎞
⎟⎟⎟⎟⎟⎠ .

Since
∣∣∣∣
(
(uv′)i

)B∣∣∣∣ =
∣∣∣∣
(
(uv′)i

)G∣∣∣∣ for all i < v′ and they are disjoint, we have

∣∣∣∣∣∣∣

⋃

i<v′

(
(uv′)i

)B
∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

⋃

i<v′

(
(uv′)i

)G
∣∣∣∣∣∣∣

by Σ0
0 induction. Since g′ !

⋃
i<v′

(
(uv′)i

)G
, we have consequently

∣∣∣∣∣∣∣
NG

⎛
⎜⎜⎜⎜⎜⎝
⋃

i<v′

(
(uv′)i

)G ∪ {g′}
⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

⋃

i<v′

(
(uv′)i

)B
∣∣∣∣∣∣∣
<

∣∣∣∣∣∣∣

⋃

i<v′

(
(uv′)i

)G
∣∣∣∣∣∣∣
+ 1 =

∣∣∣∣∣∣∣

⋃

i<v′

(
(uv′)i

)G ∪ {g′}
∣∣∣∣∣∣∣
,

which contradict the G-Hall condition of the original graph G. !

Corollary 5.3.24. RCA0 ⊢ Seq(B′′Hcb
G′′H-Ms),Seq(B′Hcb

G′′Hcb
-Ms), Seq(B′′Hcb

G′′Hcb
-Ms).

The remaining problem is the sequential strength of B′′Hcb
G′H-Ms. As we will see below, this

symmetric marriage theorem is uniformly provable in RCA, but the verification for the termina-
tion of algorithm requires a kind of induction axiom BΠ0

1 not provable in RCA0.

Theorem 5.3.25. RCA0 + BΠ0
1 ⊢ Seq(B′′Hcb

G′H-Ms), that is, the following is provable in RCA0 +

BΠ0
1. For all sequence ⟨Bn,Gn,Rn, kn⟩n∈N such that (Bn,Gn,Rn) is computably Bn-locally finite

and Gn-locally finite, satisfies the Bn-constant bounded Hall condition via kn and satisfies the
Gn-Hall condition, then there exists a sequence ⟨Mn⟩n∈N of their symmetric solutions.
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For the proof of Theorem 5.3.25, the exact same construction as for Theorem 5.3.23 works,
but in this case, we interchange the roles between genders, namely, we start to construct chains
from G (not from B as for Theorem 5.3.11 and Theorem 5.3.23). The same verification also
works except for the termination of the chain construction (See Claim in the proof of Theorem
5.3.11). Thus it suffices for Theorem 5.3.25 to show the following lemma in RCA0 + BΠ0

1.

Lemma 5.3.26 (RCA0+BΠ0
1). If a bipartite graph G = (B,G,R) satisfies the constant bounded

B-Hall condition and G-Hall condition, then for all g ∈ G, the R-chain starting from g will be
eventually non-proper, in other words, there is no infinite proper R-chain ⟨sB

i , s
G
i ⟩i<∈N such that

sG
0 = {g}.

Proof. The proof is similar to that for Claim in the proof of Theorem 5.3.11 except that there is
no explicit bound in this case. Suppose not, i.e., there exists an infinite proper R-chain ⟨sB

i , s
G
i ⟩i∈N

such that sG
0 = {g∗} for some g∗ ∈ G.

We claim that for all n ∈ N there exists m ∈ N, X ⊆ sB
m and Y ⊆ sG

m such that Y ⊆ NG(X)
and |X| + n ≤ |Y | holds by Σ0

1 induction on n. The initial step is obvious. For the induction step,
assume that m ∈ N, X ⊆ sB

m, Y ⊆ sG
m, Y ⊆ NG(X) and |X| + n ≤ |Y |. If |X| + n < |Y |, we are done.

Then assume |X| + n = |Y |. Since our R-chain ⟨sB
i , s

G
i ⟩i∈N is proper, for all i ∈ N, there exists

bi ∈ sB
m+i \ sB

m+i−1 and gi ∈ sG
m+i+1 \ sG

m+i such that (bi, gi) ∈ R, and such functions b(·) : N→ N and
g(·) : N→ N exist in RCA0. If we have shown

∃i′, g′
(
g′ ∈ sG

m+i′ ∧ (bi′ , g′) ∈ R ∧ g′ ! Y
)
, (5.4)

then |X ∪ {bi′}|+ n = |Y |+ 1 < |Y ∪ {g′, gi′}|, and hence the induction step is established. To show
(5.4), assume that for all i ∈ N and g ∈ sG

m+i such that (bi, g) ∈ R , g is in Y . By the definition of
proper R-chain, there exists g ∈ sG

m+i such that (bi, g) ∈ R for all i ∈ N. Thus for all i ∈ N, there
exists gY

i ∈ Y such that (bi, gY
i ) ∈ R, and such function gY

(·) exists in RCA0. However, it follows
from the G-locally finiteness and BΠ0

1 (See the proof of Proposition 5.3.19) that NG(Y) is finite,
which is a contradiction. This competes the proof of our claim.

Obviously, our claim contradicts the constant bounded B-Hall condition. !

Next we discuss the “reverse” direction. The following results are also interesting in the sense
that our Π1

2 statements (which assert the existence of sets) imply an induction scheme despite
the fact that a Π1

2 statement is usually equivalent to some set existence axiom in the practice of
reverse mathematics.

Lemma 5.3.27. RCA0 ⊢ B′′Hcb
G′H-Ms → BΠ0

1. That is, the following assertion implies BΠ0
1

over RCA0. If G = (B,G,R) is a finite bipartite graph which is computably B-locally finite
and G-locally finite, satisfying the B-constant bounded Hall condition and satisfying the G-Hall
condition, then G has a symmetric solution.
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Proof. By Lemma 5.3.7, it suffices to show ¬RT(1) → ¬B′′Hcb
G′H-Ms over RCA0. We reason in

RCA0 and suppose that there exists f : N→ k (k > 1) such that

∀i < k∃ j′∀ j( f ( j) = i→ j < j′). (5.5)

We construct a graph G := (B,G,R) which satisfies the conditions but has no symmetric solu-
tion. Define B := N and G := N and construct R as follows:

• put ( j, j), ( j, j + 1) in R for j < k − 1;

• put ( j, j + 1) in R for j ≥ k − 1;

• put ( j + k − 1, f ( j)) in R for all j ∈ N.

Then it is obvious that G is computably B-locally finite and satisfies the constant bounded B-
Hall condition by k. The G-locally finiteness follows from the property (5.5). In the following,
we show that G satisfies the G-Hall condition. Let Y be an arbitrary finite subset of G. In the
case that there exists i∗ < k such that i∗ ! Y . Take

X := {i : i < i∗ ∧ i ∈ Y} ∪ {i − 1 : i > i∗ ∧ i ∈ Y},

then it is straightforward to see |Y | = |X| and X = NG(Y). Assume that there is no i∗ < k such
that i∗ ! Y , in other words, {0, . . . , k − 1} ⊂ Y . Since Y is finite, there exists i′ ! Y (i′ > 0). Take

X := {i : i < f (i′ − 1) ∧ i ∈ Y} ∪ {i − 1 : i > f (i′ − 1) ∧ i ∈ Y} ∪ {(i′ − 1, f (i′ − 1))},

then it is also straightforward to see that that |Y | = |X| and that X = NG(Y) from our assumption.
On the other hand, if G has a symmetric solution Ms : G → B, then Ms(i) must be i − 1 for

all i ≥ k, and hence Ms(i) must be less than k − 1 for all i < k, which contradicts the finite
pigeonhole principle (See Lemma 5.3.6).

This completes the proof of our lemma. !

Theorem 5.3.28. RCA0 ⊢ B′Hcb
G′H-Ms ↔ B′′Hcb

G′H-Ms ↔ BΠ0
1.

Proof. Immediate from Proposition 5.3.19 and Lemma 5.3.27. !

Theorem 5.3.29. RCA0 ⊢ Seq(B′′Hcb
G′H-Ms) ↔ BΠ0

1, that is, the following are pairwise equiva-
lent to BΠ0

1 over RCA0. For all sequence ⟨Bn,Gn,Rn, kn⟩n∈N such that (Bn,Gn,Rn) is computably
Bn-locally finite and Gn-locally finite, satisfying the Bn-constant bounded Hall condition via kn

and satisfying the Gn-Hall condition, then there exists a sequence ⟨Mn⟩n∈N of their symmetric
solutions.

86



5 Reverse Mathematics from the Perspective of Uniformity

Proof. Immediate from Lemma 5.3.25 and Lemma 5.3.27 since B′′Hcb
G′H-Ms of course follows

from Seq(B′′Hcb
G′H-Ms). !

We summarize the sequential strength of symmetric marriage theorems with the constant
bounded Hall condition in Table 5.2.

ACA Seq(B′Hcb
G′Hcb

-Ms) Seq(B′Hcb
G′H-Ms)

Seq(B′Hcb
G′′Hcb

-Ms) Seq(B′Hcb
G′′H-Ms)

Seq(B′′Hcb
G′′Hcb

-Ms) Seq(B′′Hcb
G′′H-Ms) Seq(B′′Hcb

G′H-Ms)
RCA0 BΣ0

2 (↔ BΠ0
1)

Table 5.2: The sequential strength of constant bounded symmetric marriage theorems

5.4 Investigation of Some Uniform Versions over WRCAω
0

We mentioned at the beginning of Chapter 4 that our metatheorems in Section 4.3 are extensively
applicable to statements which are provable in RCA0 but whose sequential versions derive ACA.
For the purpose of confirming that, we investigate the following principles studied in preceding
papers.

1. Jordan decomposition for 2 × 2 matrices.

2. Principle of trichotomy for reals.

3. Π0
1 least number principle.

In the following, we see that each of them has a syntactical form to which Corollary 4.3.8
and Corollary 4.3.10 are applicable, and that each of their uniform versions derives (∃2) over
WRCAω

0 (reflecting the fact that the pointwise versions intuitionistically imply Π0
1-LEM or even

Σ0
1-LEM). The proofs are similar to those in [66]. At first, we consider the Jordan decomposition

for 2 × 2 matrices. As shown in [37, Section 4], it is provable in RCA0 but its sequential
version is equivalent to ACA over RCA0. Note that using the representation of real numbers by
Kohlenbach [55, Section 4.1], every functional of type 1 can be seen to represent a unique real
number. Furthermore, since a complex number is naturally defined as a pair of real numbers,
every functional of type 1 also represents a 2 × 2 complex matrix via the standard encoding.

Definition 5.4.1 (See [37] for details).

JD2 : ∀M1
(
M is a 2 × 2 complex matrix→ ∃U1, J1

(
U, J are 2 × 2 complex matrices such that M = UJU−1 and J consists of Jordan blocks

) )
.
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Note that the tuple of U1 and J1 can be coded as a single variable of type 1.

Theorem 5.4.2. WRCAω
0 + Uni(JD2) ⊢ (∃2).

Proof. We reason in WRCAω
0 . By primitive recursion with a parameter of type 1, define a

functional Ξ of type 1→ 1 such that

Ξ( f )(m) :=

⎧⎪⎪⎨
⎪⎪⎩

1
2nl+1 where nl is a least number such that f (nl) = 0 if ∃n ≤ m f (n) = 0,

1
2m+1 otherwise.

Then for every f of type 1, Ξ( f ) represents a real number. Furthermore, there exists n such
that f (n) = 0 if and only if Ξ( f ) !R 0. By a standard discussion as in linear algebra, one can

show that for every x ∈ C, the Jordan canonical form of
⎛
⎜⎜⎜⎜⎜⎝

1 0
x 1

⎞
⎟⎟⎟⎟⎟⎠ is

⎛
⎜⎜⎜⎜⎜⎝

1 1
0 1

⎞
⎟⎟⎟⎟⎟⎠ if x !C 0, and

⎛
⎜⎜⎜⎜⎜⎝

1 0
0 1

⎞
⎟⎟⎟⎟⎟⎠ if x =C 0. As mentioned in the proof of [37, Lemma 4.4], it is effectively decided

whether the upper right-hand entry of the Jordan canonical form of
⎛
⎜⎜⎜⎜⎜⎝

1 0
Ξ( f ) 1

⎞
⎟⎟⎟⎟⎟⎠ is 0 or 1. Then

∃n ( f (n) = 0) is equivalent to some quantifier-free formula with Ξ, so by [55, Proposition 3.17],
one can construct a term t of type 2 such that t( f ) = 0 ↔ ∃n ( f (n) = 0) for every f . Therefore
we have (∃2). !

Corollary 5.4.3. JD2 is provable neither in WE-HAω+AC+IPω∀+Mω+UWKL+KL+Σ0
1-UB−+BI

nor in E-HAω + AC!1 + AC0 + IP≤1,≤1
∀ +M≤1 + KL + Σ0

1-UB + BI≤1.

Proof. This follows immediately from the previous theorem applied to Corollary 4.3.8 and
4.3.10 (note that ‘M is a 2 × 2 complex matrix’ is dropped in Kohlenbach’s representation and
the conclusion of JD2 is in Γ2). !

Remark 5.4.4. 1. The above corollary extends the unprovability result mentioned at the end
of Hirst and Mummert [37].

2. The Jordan canonical form depends on the eigenvalues of the given matrix. As mentioned
in [13], the fundamental theorem of algebra is provable in E-HAω + QF-AC0,0 +WKL.
That is, one can show that every complex matrix has complex eigenvalues within E-HAω+

QF-AC0,0+WKL but cannot construct its Jordan canonical form even in E-HAω+AC!1+

AC0 + IP≤1,≤1
∀ +M≤1 + KL + Σ0

1-UB + BI≤1.

Next, we consider the principle of trichotomy for reals. As shown in [14, Section 2], it
is provable in RCA0 but its sequential version is equivalent to ACA over RCA0. Note that
α1 ≥R β1 and α1 =R β1 are represented as purely universal formulas and α1 >R β1 is represented
as a purely existential formula.
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Definition 5.4.5.

LPO : ∀ f 1 (∀n( f (n) ≤ 1)→ (∃n( f (n) = 1) ∨ ∀n( f (n) = 0))) .

TRI : ∀α1 (α ∈ R→ α >R 0 ∨ α =R 0 ∨ α <R 0) .

TRI− : ∀α1(α ∈ R ∧ α ≥R 0→ α >R 0 ∨ α =R 0).

Here we think of A ∨ B as an abbreviation of ∃k ((k = 0→ A) ∧ (k ! 0→ B)). Note that α ∈ R
is dropped in Kohlenbach’s [55] representation (in which every α1 represents a unique real
number).

Theorem 5.4.6. WRCAω
0 + Uni(TRI−) ⊢ (∃2).

Proof. We reason in WRCAω
0 . By primitive recursion with a parameter of type 1, define a

functional Ξ of type 1 → 1 as in the proof of Theorem 5.4.2. Then for every f of type 1,
Ξ( f ) is a real number and Ξ( f ) ≥R 0. Let Ψ be a witness of Uni(TRI−). One can easily show
∃n f (n) = 0 ↔ Ψ (Ξ( f )) ! 0. Note that the right side in this equivalence is a quantifier-free
formula. Then we have (∃2). !

Since ‘α ≥R 0’ is purely universal and the proof of [14, Theorem 1] shows LPO↔ TRI↔ TRI−

over ŴE-HA
ω
" + QF-AC0,0, the next corollary immediately follows as before.

Corollary 5.4.7. Each of LPO, TRI and TRI− is provable neither in WE-HAω+AC+IPω∀ +Mω+

UWKL+KL+Σ0
1-UB− +BI nor in E-HAω +AC!1 +AC0 + IP≤1,≤1

∀ +M≤1 +KL+Σ0
1-UB+BI≤1.

At the end, we consider the least number principle with a parameter of type 1. In the practice
of reverse mathematics, the least number principle often appears in non-uniform proofs within
RCA. It is known that Π0

n-least number principle is equivalent to Σ0
n-induction over RCA∗0 (See

[68]). On the other hand, one can show that the sequential version of Π0
1 least number principle

with a set parameter is equivalent to ACA over RCA0 using the idea of the proof of Theorem
5.4.9 below.

Definition 5.4.8.

LΠ0
1(ϕ) : ∀x0, g1

(
ϕ(x, g)→ ∃x0

l
(
ϕ(xl, g) ∧ ∀x′ < xl¬ϕ(x′, g)

))
,

where ϕ is a Π0
1-formula which may have more parameters.

Theorem 5.4.9. Let ϕ1(x,α) be the Π0
1-formula expressing α ≤R ⟨x⟩i∈N where ⟨x⟩i∈N denotes the

infinite constant-x sequence. Then WRCAω
0 + Uni

(
LΠ0

1(ϕ1)
)
⊢ (∃2).

89



5 Reverse Mathematics from the Perspective of Uniformity

Proof. By primitive recursion with a parameter of type 1, define a functional Ξ of type 1 → 1
as in the proof of Theorem 5.4.2. Then for every f of type 1, Ξ( f ) ≤R 1 holds. Let Ψ be a
witness of Uni

(
LΠ0

1(ϕ1)
)
. One can easily show ∃n f (n) = 0 ↔ Ψ (Ξ( f )) ! 0. Hence we can

take E( f ) := sg(Ψ(Ξ( f ))) to derive (∃2). !

Corollary 5.4.10. LΠ0
1 is provable neither in WE-HAω + AC + IPω∀ + Mω + UWKL + KL +

Σ0
1-UB− + BI nor in E-HAω + AC!1 + AC0 + IP≤1,≤1

∀ +M≤1 + KL + Σ0
1-UB + BI≤1.

Question 5.4.11. As suggested from [55] and [66], the hierarchy of the reverse mathematics
of sequential versions collapses if we investigate uniform versions over RCAω

0 . However, our
observation in Section 4.4 suggests that the hierarchy seems to be maintained if we work over
WRCAω

0 .7 On the other hand, our observation in this subsection suggests that for an ordinary
existence theorem whose sequential version implies ACA over RCA0, its uniform version im-
plies (∃2) over WRCAω

0 . Then how about the case for WKL? Thus is the following thesis true
in general for an ordinary existence theorem S:

RCA0 + Seq(S) ⊢WKL ⇒ WRCAω
0 + Uni(S) ⊢ UWKL?

7While WRCAω
0 does not satisfy the deduction theorem [51], this causes no problems in terms of the basic

standpoint of reverse mathematics that the strength of a theorem S is compared by the size of the axiom system
RCA0+S.
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6 Logical Principles Weaker than
Markov’s Principle

In this chapter, we investigate some semi-classical principles weaker than the Markov’s princi-
ple MP in the spirit of constructive reverse mathematics.

One motivation of this investigation is from classical reverse mathematics. We mentioned
in Notation 3.0.26 that EL0 + LEM can be identified with the most popular base system RCA0

(presented in [68]) for reverse mathematics. To distinguish RCA0 in [68] from EL0+LEM, here
we call the former as “set-based RCA0” and the latter “function-based RCA0” for convenience.
The aforementioned identification between the function-based RCA0 and the set-based RCA0

is due to the fact that the function-based RCA0 implies Σ0
1 induction scheme Σ0

1-IND and ∆0
1

comprehension scheme ∆0
1-CA:

∀α, β(∀y
(∃x(α(y, x) ! 0)↔ ¬∃x(β(y, x) ! 0)

)→ ∃γ∀y
(
γ(y) = 0↔ ∃x(α(y, x) ! 0)

))
.1

In fact, Σ0
1-IND intuitionistically follows from QF-IND and QF-AC0,0 by inspecting the proof of

[55, Proposition 3.21]. On the other hand, the following observation suggests that the situation is
somewhat different for ∆0

1-CA. Since quantifier-free formulas are decidable in EL0 (See Lemma
2.2.13), ∆0

1-CA intuitionistically implies a weak law-of-excluded-middle principle ∆0
1-LEM :

∀α, β(∀y
(∃x(α(y, x) ! 0)↔ ¬∃x(β(y, x) ! 0)

)→ ∀y
(∃x(α(y, x) ! 0) ∨ ¬∃x(α(y, x) ! 0)

))
.

However, as shown in [1], the first-order variant of ∆0
1-LEM is not provable in HA. This means

that ∆0
1-CA is not provable in EL. On the other hand, it is straightforward to see that ∆0

1-CA
is provable in EL0 +MP. Then one can think of ∆0

1-CA as a logical principle, and hence it is
natural to ask the logical strength of ∆0

1-CA. In addition, there is a further important reason to
explore ∆0

1-CA. As we have mentioned in Section 1.5 (and also at the end of Section 4.3), the
hierarchy of the law-of-excluded-middle principles is closely related to uniform provability in
classical reverse mathematics. In the recent development of reverse mathematics, many (recur-

1In this definition (and others as well), one can use equality “=” instead of non-equality “!”, but here we use
non-equality following the convention from constructive mathematics.
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sion theoretic or combinatorial) principles have been found in between RCA0 and WKL0. In the
light of our results in Chapter 3 along with the correspondence between WKL and Σ0

1-DML (See
Section 1.5), it is expected that such intermediate principles (in between RCA0 and WKL0) also
correspond to some weak logical axioms weaker than Σ0

1-DML. Thus it is natural to investigate
the logical strength of ∆0

1-CA as a first target also from this standpoint.
Another motivation is from the interest of the arithmetical hierarchy of the law-of-excluded-

middle itself. As shown in [1], ∆0
1-LEM is implied by both of MP (also follows from the

discussion in the previous paragraph) and Σ0
1-DML (See Figure 1.1 in Section 1.5). On the other

hand, Ishihara [42] showed that MP is intuitionistically equivalent to the combination of WMP :

∀α(∀β(¬¬∃n(β(n) ! 0) ∨ ¬¬∃n(α(n) ! 0 ∧ β(n) = 0)
)→ ∃n(α(n) ! 0)

)
.

with Π0
1-DML(called MP∨):

∀α, β(¬(¬∃x(α(x) ! 0) ∧ ¬∃x(β(x) ! 0)
)→ (¬¬∃x(α(x) ! 0) ∨ ¬¬∃x(β(x) ! 0)

))
,

and that Σ0
1-DML(called SEP) intuitionistically implies Π0

1-DML. Therefore, a natural question
occurs on the relation between ∆0

1-LEM and Π0
1-DML.

In conclusion, we provide the complete classification of the principles presented above. The
reader is assumed to be familiar with a modicum of intuitionistic logic. We often suppress a
cumbersome formal discussion and just give an informal proof.

The content of this chapter is a joint work with Hajime Ishihara and Takako Nemoto (Some
of the contents will be contained in [25]).

6.1 Basic Results

Post’s famous theorem from computability theory, which is the motivation for ∆0
1-CA, states that

if a set and its complement are both recursively enumerable, then the set is recursive. Troelstra
and van Dalen [75, 4.5.3 and Exercise 4.5.1] discuss the abstract version of Post’s Theorem PT:

∀α, β(∀y
(¬∃x(α(y, x) ! 0)↔ ∃x(β(y, x) ! 0)

)→ ∀y
(∃x(α(y, x) ! 0) ∨ ¬∃x(α(y, x) ! 0)

))
.

This looks very similar to our formulation of ∆0
1-LEM. However, as we show below, PT is

equivalent to MP whereas ∆0
1-LEM is strictly weaker than MP. In the following, the subscript

“c” is assigned to the closed variant and the subscript “u” is assigned to the universal variant.

Proposition 6.1.1. The following are pairwise equivalent over EL0.

1. MP : ∀α(¬¬∃x(α(x) ! 0)→ ∃x(α(x) ! 0)
)
.
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2. PTc : ∀α, β((¬∃x(α(x) ! 0)↔ ∃x(β(x) ! 0))→ (∃x(α(x) ! 0) ∨ ¬∃x(α(x) ! 0)
))
.

3. PT.

Proof. We reason in EL0 (note that we do not use any law-of-excluded-middle principles and
induction scheme in the following discussion).

We first show that MP implies PTc. Suppose that ¬∃x(α(x) ! 0) ↔ ∃x(β(x) ! 0). Define
γ : N→ N as

γ(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if α(x) ! 0 ∨ β(x) ! 0,
0 otherwise.

Then it is straightforward to see that ¬∀x(γ(x) = 0), equivalently ¬¬∃x(γ(x) ! 0) holds. There-
fore, by MP, we have ∃x(γ(x) ! 0), equivalently ∃x(α(x) ! 0)∨∃x(β(x) ! 0). In the latter case,
we have ¬∃x(α(x) ! 0) by our assumption.

Next we show the converse direction. Suppose ¬¬∃x(α(x) ! 0). Since now ¬∃x(α(x) !
0) ↔ ∃x(λn.0(x) ! λn.0(x)) holds, by PTc, we have ∃x(α(x) ! 0) ∨ ¬∃x(α(x) ! 0). In the
latter case, we have contradiction again by our assumption. Thus ∃x(α(x) ! 0) holds.

To show that PTc implies PT, consider the universal variant PTu:

∀y∀α, β((¬∃xα(y, x) ! 0↔ ∃xβ(y, x) ! 0)→ (∃xα(y, x) ! 0 ∨ ¬∃xα(y, x) ! 0)).

Since PTu implies PT, it suffices to show that PTc implies PTu. Fix y, α and β such that
¬∃xα(y, x) ! 0 ↔ ∃xβ(y, x) ! 0. Take α′ as α′(x) := α(y, x) and β′ as β′(x) := β(y, x).
Then α(y, x) ! 0 ↔ α′(x) ! 0 and β(y, x) ! 0 ↔ β′(x) ! 0. Therefore, by PTc, we have
∃xα(y, x) ! 0 ∨ ¬∃xα(y, x) ! 0.

Finally we show that PT implies PTc. Fix α and β such that ¬∃xα(x) ! 0 ↔ ∃xβ(x) ! 0.
Take α′ as α′(y, x) := α(x) and β′ as β′(y, x) := β(x). Then for all y,

α(x) ! 0↔ α′(y, x) ! 0 and β(x) ! 0↔ β′(y, x) ! 0. (6.1)

Therefore, by PT, we have ∀y(∃xα′(y, x) ! 0 ∨ ¬∃xα′(y, x) ! 0). Again by (6.1), we have
∃xα(x) ! 0 ∨ ¬∃xα(x) ! 0. !

It follows from [1] that Σ0
1-DML implies ∆0

1-LEM over EL0. The next proposition states that
even the weaker principle Π0

1-DML implies ∆0
1-LEM.

Proposition 6.1.2. EL0 + Π
0
1-DML ⊢ ∆0

1-LEM.

Proof. We reason in EL0. It suffices to show that Π0
1-DML implies ∆0

1-LEMc:

∀α, β((∃x(α(x) ! 0)↔ ¬∃x(β(x) ! 0)
)→ (∃x(α(x) ! 0) ∨ ¬∃x(α(x) ! 0)

))
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by the discussion in the proof of Proposition 6.1.1. Suppose ∃x(α(x) ! 0) ↔ ¬∃x(β(x) ! 0).
Then it is straightforward to see ¬(¬∃x(α(x) ! 0) ∧ ¬∃x(β(x) ! 0)

)
. By Π0

1-DML, we have
¬¬∃x(α(x) ! 0) ∨ ¬¬∃x(β(x) ! 0). In the former case, ¬¬∃x(α(x) ! 0) is equivalent to
¬¬¬∃x(β(x) ! 0) by our assumption, which is intuitionistically equivalent to ¬∃x(β(x) ! 0),
which is equivalent to ∃x(α(x) ! 0) again by our assumption. In the latter case, ¬¬∃x(β(x) ! 0)
is equivalent to ¬∃x(α(x) ! 0) by our assumption. !

Remark 6.1.3. It was recently shown by Kohlenbach [56] that ∆0
1-LEM is strictly weaker than

Π0
1-DML.

6.2 Equivalence between ∆0
1-LEM and ∆0

1-CA

Our original aim was to decompose ∆0
1-CA to some logical axiom and some choice scheme

in the spirit of constructive reverse mathematics [43, 3]. As we already mentioned at the
beginning of this chapter, ∆0

1-CA intuitionistically implies ∆0
1-LEM. We discuss the converse

direction. First we sketch the proof of ∆0
1-CA from ∆0

1-LEM using the countable choice scheme:
Suppose ∀y

(∃x(α(y, x) ! 0) ↔ ¬∃x(β(y, x) ! 0)
)
. Then ∀y

(∃x(α(y, x) ! 0) ∨ ¬∃x(α(y, x) !
0)

)
holds. By ∆0

1-LEM, for all y, ∃x(α(y, x) ! 0) is decidable, and hence there exists z[y]0 such
that z = 0 ↔ ∃x(α(y, x) ! 0). Therefore, using the choice scheme, we have a function γ such
that γ(y)↔ ∃x(α(y, x) ! 0) for all y.

This proof shows that if we have the choice scheme Π0
1-AC0,0 for purely universal formulas,

∆0
1-CA is derivable from ∆0

1-LEM, since one can see that z = 0 ↔ ∃x(α(y, x) ! 0) is intuition-
istically equivalent to some purely universal formula using our assumption ∃x(α(y, x) ! 0) ↔
¬∃x(β(y, x) ! 0). However it is not clear that ∆0

1-CA is derivable from ∆0
1-LEM without the use

of the choice scheme. Despite the fact, we show in the following that ∆0
1-CA is equivalent to

∆0
1-LEM over EL0 using modified realizability interpretation.

Theorem 6.2.1. EL0 ⊢ ∆0
1-CA↔ ∆0

1-LEM.

Proof. EL0 ⊢ ∆0
1-CA → ∆0

1-LEM is obvious. In the following, we show EL0 ⊢ ∆0
1-LEM →

∆0
1-CA. First note that as in the proof of Proposition 6.1.1, we have the equivalence (over

Ê-HA
ω
") between ∆0

1-CA, the closed variant ∆0
1-CAc:

∀α, β((∃xα(x) ! 0↔ ¬∃xβ(x) ! 0)→ ∃s(s = 0↔ ∃xα(x) ! 0)
)

and the universal variant ∆0
1-CAu:

∀α, β, y((∃xα(x, y) ! 0↔ ¬∃xβ(x, y) ! 0)→ ∃γ(γ(y) = 0↔ ∃xα(x, y) ! 0)
)
.
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On the other hand, ∆0
1-CAu implies ∆0

1-CAu
−:

∀α, β, y
⎛
⎜⎜⎜⎜⎜⎝
∃x′′∀x′

(
α(x′, y) ! 0→ ¬∃xβ(x, y) ! 0 ∧ ¬∃xβ(x, y) ! 0→ α(x′′, y) ! 0

)

→ ∃γ(γ(y) = 0↔ ∃xα(x, y) ! 0)

⎞
⎟⎟⎟⎟⎟⎠ .

Thus Ê-HA
ω
!+∆0

1-CA ⊢ ∆0
1-CAu

−. Since ∆0
1-CA is mr-interpretable in Ê-HA

ω
! (See [56, Lemma

3]), there exists a term t of Ê-HA
ω
! such that Ê-HA

ω
! ⊢ t mr ∆0

1-CAu
−. Since ∆0

1-CAu
− is in Γ1, by

[55, Lemma 5.20], we have
Ê-HA

ω
! ⊢ ∆0

1-CAu
−. (6.2)

As in the proof of Proposition 6.1.1, one can see that ∆0
1-LEM implies

∆0
1-LEMu : ∀α, β, y((∃xα(y, x) ! 0↔ ¬∃xβ(y, x) ! 0)→ (∃xα(y, x) ! 0 ∨ ¬∃xα(y, x) ! 0)

)
.

In addition, one can see without difficulty that ∆0
1-LEMu implies IP(∆0

1,∞)c :

∀α, β, y
⎛
⎜⎜⎜⎜⎜⎝

(
(∃xα(y, x) ! 0↔ ¬∃xβ(y, x) ! 0) ∧ (¬∃xβ(y, x) ! 0→ ∃zψ(z, y))

)

→ ∃z(¬∃xβ(y, x) ! 0→ ψ(z, y))

⎞
⎟⎟⎟⎟⎟⎠ .

Since ∆0
1-CAu

− implies ∆0
1-CAu assuming IP(∆0

1,∞)c, we have Ê-HA
ω
! + ∆0

1-LEM ⊢ ∆0
1-CAu

− →
∆0

1-CA. Combining this with (6.2), we have Ê-HA
ω
! + ∆0

1-LEM ⊢ ∆0
1-CA. Therefore, by the

conservativity of Ê-HA
ω
! over EL0 (Proposition 2.2.24), EL0 ⊢ ∆0

1-LEM→ ∆0
1-CA follows. "

6.3 Underivability of ∆0
1-LEM from WMP

In this section, we show that ∆0
1-LEM is not derivable from WMP. Our result itself does not

conflict with classical mathematics. In the proof, however, we use some principles from con-
structive mathematics, which are false in classical mathematics. In addition, all proofs are com-
pletely syntactical, namely, we provide a constructive proof that WMP does not imply ∆0

1-LEM
from a meta-perspective.

Note that HA is the usual system of intuitionistic first-order (Heyting) arithmetic in [72, Sec-
tion 1.3]. We first recall some definitions, where T denotes Kleene’s (primitive recursive) T -
predicate and U denotes the (primitive recursive) result-extracting function, namely, T (x, y, z)
expresses that the Turing machine with Gödel number x applied to the input y terminates with
a computation whose Gödel number is z and U(z) is its output (See e.g. [75] for more informa-
tion).

• MPPR : ¬¬∃x(t(x) ! 0)→ ∃x(t(x) ! 0), where t is a (primitive recursive) term of EL.
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• MPc
PR : ¬¬∃x(t(x) ! 0)→ ∃x(t(x) ! 0), where t is a closed (primitive recursive) term of

EL (following the notation in [72]).

• CT (Church’s Thesis) : ∀α∃e∀y∃z(T (e, y, z) ∧ α(y) = U(z)).

• CT0 : ∀x∃yB(x, y, z)→ ∃u∀x∃v(T (u, x, v) ∧ B(x,U(v), z)),
where z stands for a tuples of number variables

• ECT0 (Extended Church’s Thesis) :
∀x(A(x, z)→ ∃yB(x, y, z))→ ∃u∀x

(
A(x, z)→ ∃v(T (u, x, v) ∧ B(x,U(v), z))

)
,

where z stands for a tuples of number variables and A(x, z) is almost negative.

Warning. We treat the axiom scheme ECT0 for first-order arithmetic HA also in second-order
arithmetic (EL or EL0). That is, we mean by CT0 and ECT0 Church’s thesis and the extended
Church’s thesis only for L(HA)-formulas instead of those for L(EL)-formulas.

Definition 6.3.1. We consider the following slightly extended variants of CT0 and ECT0 in
second-order arithmetic.

• CT+0 : ∀x∃yB(x, y,α)→ ∃u∀x∃v(T (u, x, v) ∧ B(x,U(v),α)),
where α stands for a tuples of function variables, A(x,α) is almost negative and all of
quantifiers in B are number quantifiers.

• ECT+0 : ∀x(A(x,α)→ ∃yB(x, y,α))→ ∃u∀x
(
A(x,α)→ ∃v(T (u, x, v) ∧ B(x,U(v),α))

)
,

where α stands for a tuples of function variables, A(x,α) is almost negative (See Definition
2.3.6) and all of quantifiers in A and B are number quantifiers.

Remark 6.3.2. ECT+0 implies CT+0 .

Proposition 6.3.3. EL0 ⊢ MP→ MPPR → MPc
PR.

Proof. Straightforward. !

Proposition 6.3.4. EL0 + CT+0 ⊢WMP.

Proof. By inspecting the proof of Lemma 1 and Proposition 2 in [42]. !

Proposition 6.3.5 (due to Hajime Ishihara). EL0 + ECT+0 + ∆
0
1-LEM ⊢ Π0

1-DML.

Proof. We first show that EL0 + ECT+0 + ∆
0
1-LEM proves

∀α, β((¬¬∃x(α(x)) ! 0↔ ¬β(x) ! 0
)→ (¬¬∃x(α(x)) ! 0 ∨ ¬∃x(α(x)) ! 0

))
. (K)
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Note that ∆0
1-LEM implies ∆0

1-LEMc:

∀α, β((∃x(α(x) ! 0)↔ ¬∃x(β(x) ! 0)
)→ (∃x(α(x) ! 0) ∨ ¬∃x(α(x) ! 0)

))
.

We reason in EL0 + ECT+0 + ∆
0
1-LEM. Suppose ¬¬∃x(α(x) ! 0) ↔ ¬∃x(β(x) ! 0). If

¬¬∃x(α(x) ! 0) → ∃x(α(x) ! 0), then ∃x(α(x)) ! 0 ↔ ¬∃x(β(x) ! 0). Hence, by ∆0
1-LEMc,

we have

(¬¬∃x(α(x) ! 0)→ ∃x(α(x) ! 0)
)→ (∃x(α(x) ! 0) ∨ ¬∃x(α(x) ! 0)

)
.

Since the premise of the previous formula is almost negative and all quantifiers are type 0, ECT+0
yields a number e such that

∀m

⎛
⎜⎜⎜⎜⎜⎝

(¬¬∃x(α(x) ! 0)→ ∃x(α(x) ! 0)
)→

∃u
(
T (e,m, u) ∧ (

U(u) = 0→ ∃x(α(x) ! 0)
) ∧ (

U(u) ! 0→ ¬∃x(α(x) ! 0)
))

⎞
⎟⎟⎟⎟⎟⎠ . (6.3)

Consider the primitive recursive function γe : N→ N such that

γe(u) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if T (e, 0, u) ∧ U(u) ! 0,
0 otherwise.

In the following, we show the equivalence between ∃u(γe(u) ! 0) and ¬∃x(α(x) ! 0). Sup-
pose ¬∃x(α(x) ! 0). Then ¬¬∃x(α(x) ! 0) → ∃x(α(x) ! 0) holds, and hence by (6.3) there
exists u0 such that

T (e, 0, u0) ∧ (
U(u0) = 0→ ∃x(α(x) ! 0)

) ∧ (
U(u0) ! 0→ ¬∃x(α(x) ! 0)

)
.

Therefore, we have T (e, 0, u0) ∧ U(u0) ! 0, and so γe(u0) ! 0. For the converse direction,
suppose γe(u′) ! 0 and ∃x(α(x) ! 0). Then T (e, 0, u′) ∧ U(u′) ! 0 holds. On the other hand,
since ¬¬∃x(α(x) ! 0)→ ∃x(α(x) ! 0) holds, again by (6.3), there exists u′′ such that

T (e, 0, u′′) ∧ (
U(u′′) = 0→ ∃x(α(x) ! 0)

) ∧ (
U(u′′) ! 0→ ¬∃x(α(x) ! 0)

)
.

By the uniqueness of u in T (e, 0, u), u′ = u′′ holds. Therefore we have U(u′′) ! 0, and hence
¬∃x(α(x) ! 0). This contradicts our assumption ∃x(α(x) ! 0).

Therefore, by ∆0
1-LEMc, we have ∃u(γe(u) ! 0) ∨ ¬∃u(γe(u) ! 0), equivalently, ¬∃x(α(x) !

0) ∨ ¬¬∃x(α(x) ! 0). Thus (K) is proved.
To complete the proof of our proposition, it suffices to show that (K) implies Π0

1-DML. Sup-
pose that ¬(¬∃x(α(x) ! 0) ∧ ¬∃x(β(x) ! 0)

)
. In EL0, one can define α′, β′ : N → N such
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that

α′(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if α(x) ! 0 ∧ ∀k < x(α(k) = 0 ∧ β(k) = 0),
0 otherwise;

β′(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if α(x) = 0 ∧ β(x) ! 0 ∧ ∀k < x(α(k) = 0 ∧ β(k) = 0),
0 otherwise.

Then obviously ∃x(α′(x) ! 0) → ¬∃x(β′(x) ! 0) holds. On the other hand, since ¬∃x(α′(x) !
0) ∧ ¬∃x(β′(x) ! 0) implies ¬∃x(α(x) ! 0) ∧ ¬∃x(β(x) ! 0), we have ¬∃x(β′(x) ! 0) →
¬¬∃x(α′(x) ! 0) by our assumption. Thus ¬¬∃x(α′(x) ! 0) ↔ ¬∃x(β′(x) ! 0) holds. By
(K), we have ¬¬∃x(α′(x) ! 0) ∨ ¬∃x(α′(x) ! 0). Since ∃x(α′(x) ! 0) → ∃x(α(x) ! 0) and
∃x(β′(x) ! 0) → ∃x(β(x) ! 0), it is straightforward to see ¬¬∃x(α(x) ! 0) ∨ ¬¬∃x(β(x) !
0). !

Proposition 6.3.6 (Proposition 1(1) in [42]). EL ⊢ MP↔WMP + Π0
1-DML.

In the following, we shall show that MPc
PR is not provable in EL+ECT+0 . Combined this with

the above propositions, we have that ∆0
1-LEM is not derivable from WMP (Theorem 6.3.11).

Lemma 6.3.7. EL0 ⊢ ECT+0 ↔ ECT0 + CT.

Proof. We reason in EL0. It is obvious that ECT+0 implies ECT0. In addition, one can easily see
that ECT+0 implies CT by taking A(x,α) as 0 = 0 and B(x, y,α) as α(x) = y.

We show that ECT+0 can be derived from ECT0 and CT. Without loss of generality, one
can assume ∀x(A(x,α) → ∃yB(x, y,α)) with only one function parameter α. For each prime
subformula t[x, y,w,α] = 0 in A(x,α) or B(x, y,α)2, by (the proof of) Lemma 2.2.18, there
exists an equivalent formula of the form ∃n∀i < m[x, y,w,α](t′[n, i, x, y,w,α] = 0) where m
and t′ contain neither recursors nor λ-operators. Then α occurs in t′ and m only in the form of
(α(y))0 since t′ contains neither recursors nor λ-operators. On the other hand, there exists e such
that

∀y∃z(T (e, y, z) ∧ α(y) = U(z)) (6.4)

by CT. By (6.4) together with the uniqueness of z in T (e, y, z) and Lemma 2.2.11, it is not hard
to see that

A[α(y)]↔ ∃z(T (e, y, z) ∧ A[U(z)/α(y)]) for any formula A[α(y)]. (6.5)

In the following, we claim that there is a (primitive recursive) function symbol f of EL such
that ∀i < m[x, y,w,α](t′[n, i, x, y,w,α] = 0) ↔ ∃z f (z, n, x, y,w, e) = 0. We only discuss in the

2Note that all prime subformulas in A(x,α) or B(x, y,α) do not contain function parameters except α since all of
quantifiers in A and B are number quantifiers.
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case that i and m are single tuples for simplicity (one can show the case for k-tuples just by k
iterations of the discussion below). By repeatedly applying (6.5) for each occurrence of α in t′,
we have that t′[n, i, x, y,w,α] = 0 is equivalent to some formula ∃zAq f (z, n, i, x, y,w, e) and con-
tains neither recursors nor λ-operators. Therefore there is a primitive recursive function symbol
f0 of EL such that Aq f (z, n, i, x, y,w, e) ↔ f0(z, n, i, x, y,w, e) = 0 (cf. [55, Proposition 3.8]).
Thus ∀i < m(t′[n, i, x, y,w,α] = 0) is equivalent to ∀i < m∃z( f0(z, n, i, x, y,w, e) = 0), which
is equivalent to ∃z′∀i < m∃z < z′( f0(z, n, i, x, y,w, e) = 0) by Lemma 2.2.15. By the proof of
Lemma 2.2.12, there is an primitive recursive function symbol f1 of EL such that ∀i < m∃z <
z′( f0(z, n, i, x, y,w, e) = 0) ↔ f1(m, z′, n, x, y,w, e) = 0. Note that m may contain α. Again by
repeatedly applying (6.5) for each occurrence of α in m, we have that f1(m, z′, n, x, y,w, e) = 0
is equivalent to some formula ∃z′′Bq f (z′′, z′, n, x, y,w, e), and hence there is a primitive recursive
function symbol f2 such that Bq f (z′′, z′, n, x, y,w, e)↔ f2(z′′, z′, n, x, y,w, e) = 0 as before. Con-
sequently, it follows that ∀i < m(t′[n, i, x, y,w,α] = 0) is equivalent to ∃z′∃z′′ f2(z′′, z′, n, x, y,w, e) =
0, which establishes our claim.

Therefore, each prime subformula t[x, y,w,α] = 0 in A(x,α) or B(x, y,α) is equivalent to
some purely existential L(HA)-formula containing e. Applying this procedure to all prime
subformulas in A(x,α) and B(x, y,α), we obtain the equivalent L(HA)-formulas A′(x, e) and
B′(x, y, e) respectively. In addition, by the construction above, A′(x, e) is still almost negative.
Therefore, by ECT0, we have ECT+0 . !

Lemma 6.3.8 (due to Takako Nemoto). HA + ECT0 ! MPc
PR

Proof. Suppose that HA+ECT0 ⊢ MPc
PR. Then by [72, Theorem 3.2.18(ii)], HA ⊢ ∃u(u r MPc

PR).
Thus ∀v

(
(v r ¬¬∃x(t(x) ! 0)) →!{u}(v) ∧ {u}(v) r ∃x(t(x) ! 0)

)
holds. On the other hand, since

¬¬∃x(t(x) ! 0) is almost negative, HA ⊢ ¬¬∃x(t(x) ! 0) → ∃v(v r ¬¬∃x(t(x) ! 0)) by [72,
Lemma 3.2.11]. Therefore HA ⊢ ¬¬∃x(t(x) ! 0) → ∃u, v(!{u}(v) ∧ {u}(v) r ∃x(t(x) ! 0)) →
∃x(t(x) ! 0). Thus HA ⊢ MPc

PR, which is a contradiction [72, 1.11.5]. !

Lemma 6.3.9. EL + ECT+0 ! MPc
PR.

Proof. Suppose EL+ECT+0 ⊢ MPc
PR. Then by Lemma 6.3.7, EL+CT+ECT0 ⊢ MPc

PR. Therefore,
there exists a conjunction F of closed instances of ECT0 such that EL+CT ⊢ F → MPc

PR (using
the deduction theorem). Since EL + CT is conservative over HA for L(HA)-formulas (cf. [72,
Theorem 3.6.2]), we have HA ⊢ F → MPc

PR, and hence HA + ECT0 ⊢ MPc
PR follows. This

contradicts Lemma 6.3.8. !

Proposition 6.3.10. EL + ECT+0 ! ∆
0
1-LEM.

Proof. Suppose EL + ECT+0 ⊢ ∆0
1-LEM. Then by Proposition 6.3.5, EL + ECT+0 ⊢ Π0

1-DML.
By Proposition 6.3.4, Proposition 6.3.6 and Remark 6.3.2, we have EL + ECT+0 ⊢ MP. This
contradicts the combination of Lemma 6.3.9 with Proposition 6.3.3. !
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Theorem 6.3.11. EL +WMP ! ∆0
1-LEM.

Proof. Suppose EL +WMP ⊢ ∆0
1-LEM. Then EL + ECT+0 ⊢ ∆0

1-LEM by Proposition 6.3.4 and
Remark 6.3.2. This contradicts Proposition 6.3.10. !

Remark 6.3.12. Using the extensional model ECF of the hereditarily continuous functionals,
one can show the conservativity of E-HAω +QF-AC + CT over EL + CT (cf. [72, Section 2.6]).
Therefore, Lemma 6.3.9 can be extended to E-HAω + QF-AC + ECT+0 ! MPc

PR, and hence,
E-HAω + QF-AC + ECT+0 ! ∆

0
1-LEM and E-HAω + QF-AC +WMP ! ∆0

1-LEM follows in the
same manner.

Remark 6.3.13. Recently, Hendtlass and Lubarsky [33] have shown the underivability of MP
from WMP by using a semantical method. In fact, there is an alternative proof for the underiv-
ability of ∆0

1-LEM from WMP in the semantical method ([62]).

On the other hand, the converse underivability, namely, the underivability of WMP from
∆0

1-LEM follows from the next strong result due to Kohlenbach.3

Proposition 6.3.14 ([52]). EL + Π0
1-LEM !WMP.

6.4 Conclusion and Questions

In conclusion, we summarize the established interrelations between logical principles in Figure
6.1.

Figure 6.1: Interrelations between Logical Principles over EL

3Proposition 6.3.14 is optimal in the sense that Σ0
1-LEM already imply MP, and hence WMP.

100



6 Logical Principles Weaker than Markov’s Principle

Question 6.4.1. In the formulation of RCA0, is there any role of ∆0
1-CA more than just ensuring

that the universe of sets (or functions) is closed under “recursive in”? In fact, for the function-
based systems, QF-AC0,0 requires that the universe of functions is closed under “recursive in”.
Then our concrete question is the following:

Is there some mathematical statement which is equivalent to ∆0
1-CA over EL0 (or EL)?

Question 6.4.2. As we already mentioned at the beginning of this chapter, the existing results
suggest that intermediate principles in between RCA0 and WKL0 correspond to some logical
axioms weaker than Σ0

1-DML. Then a possible question is the following:

What is the classical (computational) counterpart of Π0
1-DML?

In fact, the author thinks that it is still open whether the logical principle corresponding to
RCA0 is ∆0

1-LEM because of the issue mentioned in the previous question.
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man, C. Parsons, S. Simpson (eds.) Kurt Gödel: Essays for His Centennial, Cambridge:
Cambridge University Press (for the Association for Symbolic Logic), pp. 128–141, 2010.

[11] D. Cenzer and J. B. Remmel, Proof-theoretic strength of the stable marriage theorem and
other problems in Reverse mathematics 2001, S. Simpson ed., pp. 67–103, Lecture Notes
in Logic 21, Assoc. Symbol. Logic and A. K. Peters, Wellesley MA 2005.

[12] D. van Dalen, Logic and Structure, 5th ed., Springer, London, 2013.

102



Bibliography

[13] F. G. Dorais, Classical consequences of continuous choice principles from intuitionistic
analysis, Notre Dame Journal of Formal Logic, 55 (2014), no.1, pp. 25–39.

[14] F. G. Dorais, J. L. Hirst and P. Shafer, Reverse mathematics, trichotomy, and dichotomy,
Journal of Logic and Analysis 4(13), (2012) 1–14.

[15] F. G. Dorais, D. D. Dzhafarov, J. L. Hirst, J. R. Mileti, P. Shafer, On uniform relationships
between combinatorial problems, Transactions of the American Mathematical Society, to
appear.

[16] Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek (editors),
Handbook of Recursive Mathematics: Recursive Algebra, Analysis and Combinatorics.
Vol. 2, Studies in Logic and the Foundations of Mathematics, vol. 139, North-Holland,
Amsterdam, 1998

[17] S. Feferman, Theories of finite type related to mathematical practice, in J. Barwise (ed.)
Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, 913–971.

[18] F. Ferreira, Proof interpretations and majorizability. In: Delon, F. et al (eds.), Logic Collo-
quium 2007, Lecture Notes in Logic 35, Cambridge University Press 2010, pp. 32–81.

[19] H. Friedman, Some systems of second order arithmetic and their use, Proceedings of the
International Congress of Mathematicians, Vancouver 1974, vol. 1, Canadian Mathemati-
cal Congress, 1975, pp. 235–242.

[20] H. Friedman, Systems of second order arithmetic with restricted induction, I, II (abstracts),
The Journal of Symbolic Logic, vol. 41 (1976), pp. 557–559.

[21] M. Fujiwara, On the strength of marriage theorems, master thesis, Tohoku University,
2012.

[22] M. Fujiwara and K. Yokoyama, A note on the sequential version of Π1
2 statements, Lecture

Notes in Computer Science vol. 7921 (2013), pp. 171–180.

[23] M. Fujiwara, K. Higuchi and T. Kihara, On the strength of marriage theorems and unifor-
mity, Mathematical Logic Quarterly vol. 60 No. 3 (2014), pp. 136–153.

[24] M. Fujiwara and U. Kohlenbach, Classical provability of uniform versions and intuition-
istic provability, Mathematical Logic Quarterly, to appear.

[25] M. Fujiwara, H. Ishihara and T. Nemoto, Some principles weaker than Markov’s principle,
preprint, 2015.

103



Bibliography

[26] W. Gasarch, A survey of recursive combinatorics, In: [16], Stud. Logic Found. Math., 139,
Amsterdam: North-Holland (1998), pp. 1041–1176.
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