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Summary

1.1 Topological approach to an accumulation of eigenvalues as-
sociated with traveling waves for reaction diffusion systems

In this thesis, we consider the following reaction-diffusion system given by

Ut = BUxx + F (U, ϵ), U ∈ RN , t > 0, x ∈ R, (1)

where ϵ ∈ Rd is a parameter, and

B = diag{d1, · · · , dk, dk+1, · · · , dN}

is a diagonal diffusion matrix with nonnegative elements. Each component dj satisfies
dj > 0 for j = 1, · · · , k and dj = 0 for j = k +1, · · · , N . Moreover F ∈ Cr(RN , RN), r ≥ 2
for a fixed ϵ, and F is sufficiently smooth with respect to the parameter ϵ. This system
appears in many fields such as the models for the super conductivity, phase transition
phenomena, nerve pulse propagation and the Belousov–Zhabotinsky reaction. In particular,
a special class of solutions called the traveling waves is important. Traveling waves are
solutions of the form u(t, x) = u(x+ ct) for some nonzero constant c. Thus, if we introduce
the moving coordinate ξ = x + ct, then traveling waves are given by the steady state
solutions which do not change shape. Traveling waves of (1) satisfy the following equation

BUξξ − cUξ + F (U, ϵ) = 0. (2)

If traveling waves exist, these are affected by noise externally or internal fluctuations.
Therefore the stability problem is fundamental for the observation of phenomena in nature,
in fact various stationary patterns and pattern dynamics in reaction-diffusion systems are
related to stability properties of solutions ([56]). One of the methods for the stability of
traveling waves is to study the linearized operator associated with traveling waves U(ξ)
given by

LV = BVξξ − cVξ + DUF (U(ξ), ϵ)V,

L : BU2(R, RN) → BU(R, RN),

where

BU(R, RN) := {v : R → Rn | bounded uniformly continuous },

and

BU2(R, RN) := {v ∈ BU(R, Rn) | dv

dξ
,
d2v

dξ2
∈ BU(R, Rn)}.

Alexander–Gardner–Jones [5] showed the relationship between the number of eigenval-
ues of the traveling wave inside a simple closed curve and the first Chern number of vector
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bundle E(K) on the two-dimensional sphere S2. This is called Alexander–Gardner–Jones
bundle or the augmented bundle, and this characteristic number is called the stability index
because it is defined for the stability problem of traveling waves. Moreover, Gardner–Jones
([28]) defined the stability index for reaction-diffusion system (1) on a bounded interval
I = [−ℓ, ℓ] with boundary conditions.

It is important to consider the difference between the properties of reaction-diffusion
systems on the bounded interval and those on the unbounded interval. Sandstede–Scheel
[69] defined the absolute spectrum and the asymptotical essential spectrum, and studied
the accumulation of eigenvalues for several eigenvalue problems with boundary conditions.
Moreover, they compared the spectral structures of relevant operators on unbounded and
bounded domains. They have shown that the absolute spectrum gives a difference in
the spectrum between the unbounded case and the bounded case. The reason for this is
that a lot of eigenvalues accumulate on the absolute spectrum, if the bounded domain is
sufficiently large but they are not on the essential spectrum for operators associated with
the unbounded domain.

In the first part of this thesis, we show the relationship between the topological structure
of several boundary value problems and the absolute spectrum via the Alexander–Gardner–
Jones theory. Moreover, we show the accumulation of eigenvalues of the linearized operator
associated with glued waves on the absolute spectrum. In particular, there is a relation
between a necessary condition of the stability for glued pulses and topological structures
of gluing bifurcations.

The gluing bifurcation forms one of the generating mechanisms of pulses, and it is
given by the combination of the homoclinic and the heteroclinic bifurcations in dynamical
systems theory. We rewrite (2) as the first order system of ordinary differential equations:

u′ = f(u, c, ϵ), u ∈ Rn, (3)

where ′ = d
dξ

and u = (U1, · · · , Uk, U1′ , · · · , Uk′
, Uk+1, · · · , UN) so that n = N + k, while

fj(u, c, ϵ) = uk+j and fk+j(u, c, ϵ) = (cuk+j−Fj(U, ϵ))/dj for j = 1, · · · , k and fk+j(u, c, ϵ) =
Fj(U, ϵ)/c for j = k + 1, · · · , N . If u(ξ, c, ϵ) = (U1(ξ, c, ϵ), · · · , Un(ξ, c, ϵ)) is a solution of
(3), then U(ξ) = (U1(ξ, c, ϵ), · · · , Uk(ξ, c, ϵ), Uk+1(ξ, c, ϵ), · · · , Un(ξ, c, ϵ)) is a traveling wave
of (1) with a speed c.

Then glued pulses generated by gluing bifurcations are defined as follows.

Definition 1.1. Up(ξ, c, ϵ) is a glued pulse from Uf (ξ, c0, ϵ0) and Ub(ξ, c0, ϵ0) if

Uf (ξ, c0, ϵ0) = (U f
1 (ξ, c0, ϵ0), · · · , U f

k (ξ, c0, ϵ0), U
f
k+1(ξ, c0, ϵ0), · · · , U f

N(ξ, c0, ϵ0)),

Ub(ξ, c0, ϵ0) = (U b
1(ξ, c0, ϵ0), · · · , U b

k(ξ, c0, ϵ0), U
b
k+1(ξ, c0, ϵ0), · · · , U b

N(ξ, c0, ϵ0)),

Up(ξ, c, ϵ) = (Up
1 (ξ, c, ϵ), · · · , Up

k (ξ, c, ϵ), Up
k+1(ξ, c, ϵ), · · · , Up

N(ξ, c, ϵ)),

satisfy the following conditions.
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At (c0, ϵ0) ∈ Rd+1, there exist hyperbolic equilibria p1 and p2, and solutions

uf (ξ) := (U f
1 (ξ, c0, ϵ0), · · · , U f

k (ξ, c0, ϵ0), U
f ′

1 (ξ, c0, ϵ0), · · · , U f ′

k (ξ, c0, ϵ0),

U f
k+1(ξ, c0, ϵ0), · · · , U f

N(ξ, c0, ϵ0)),

ub(ξ) := (U b
1(ξ, c0, ϵ0), · · · , U b

k(ξ, c0, ϵ0), U
b′

1 (ξ, c0, ϵ0), · · · , U b′

k (ξ, c0, ϵ0),

U b
k+1(ξ, c0, ϵ0), · · · , U b

N(ξ, c0, ϵ0)),

of (3) satisfying

lim
ξ→−∞

uf (ξ) = p1, lim
ξ→∞

uf (ξ) = p2, (4)

lim
ξ→−∞

ub(ξ) = p2, lim
ξ→∞

ub(ξ) = p1, (5)

respectively. In addition, there exists a homoclinic bifurcation set H ⊂ Rd+1 such that
(c0, ϵ0) /∈ H and (c0, ϵ0) ∈ cl(H) and for all (c, ϵ) ∈ H, p1(c, ϵ) and p2(c, ϵ) are families of
hyperbolic equilibria with p1(c0, ϵ0) = p1, p2(c0, ϵ0) = p2, and

up(ξ, c, ϵ) := (Up
1 (ξ, c, ϵ), · · · , Up

k (ξ, c, ϵ), Up′

1 (ξ, c, ϵ), · · · , Up′

k (ξ, c, ϵ),

Up
k+1(ξ, c, ϵ), · · · , Up

N(ξ, c, ϵ)),

are solutions of (3) satisfying

lim
ξ→−∞

up(ξ, c, ϵ) = p1(c, ϵ), lim
ξ→∞

uf (ξ) = p1(c, ϵ). (6)

Moreover, each orbit

Of := {uf (ξ) | ξ ∈ R},
Ob := {ub(ξ) | ξ ∈ R},
Op,(c,ϵ) := {up(ξ, c, ϵ) | ξ ∈ R},

satisfies
dH(cl(Op,(c,ϵ)), cl(Of ∪ Ob)) → 0 as (c, ϵ) → (c0, ϵ0), (7)

where dH(·, ·) is the Hausdorff metric.

We consider the eigenvalue problems associated with a glued pulse Up(ξ, c, ϵ):

Lp(c, ϵ)V = BVξξ − cVξ + DUF (Up(ξ, c, ϵ), ϵ)V = λV, V ∈ CN , (8)

where
Lp(c, ϵ) : BU2(R, RN) → BU(R, RN). (9)

(8) can be rewritten as the following ODE:

Y ′ = Ap(ξ, c, ϵ; λ)Y (10)
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where Y = (V1, · · · , Vk, V
′
1 , · · · , V ′

k , Vk+1, · · · , VN),

Ap(ξ, c, ϵ; λ) = Duf(ξ, c, ϵ) + λB,

and the matrix B is given in block structure with three blocks of size k, k and N − k,
respectively, by

B =

 O O O
B−1

k Idk O O
O −c−1IdN−k O

 , (11)

where Bk = diag{d1, · · · , dk} and Idj is a j × j the identity matrix.
Let A1(λ) = Duf(p1, c0, ϵ0) + λB and A2(λ) = Duf(p2, c0, ϵ0) + λB be the asymptotic

matrices. We label the eigenvalues νj
1(λ) and νj

2(λ) of A1(λ) and A2(λ) according to their
real parts, and repeated with multiplicity, respectively, i.e.,

Re ν1
1(λ) ≥ Re ν2

1(λ) ≥ · · · ≥ Re νn
1 (λ),

Re ν1
2(λ) ≥ Re ν2

2(λ) ≥ · · · ≥ Re νn
2 (λ).

Definition 1.2. (Absolute spectrum) Let Ω ⊂ C be an open bounded and connected domain.
Then the absolute spectrum for p2 is defined by

Σ2,Ω
abs := {λ ∈ Ω | Re νi1

2 (λ) = Re νi1+1
2 (λ)}. (12)

1.1.1 The topological structure of the absolute spectrum

The goal of the results of the first part is a topological characterization of the absolute
spectrum. We reformulate the eigenvalue problems (10) as the following separated bound-
ary problems. Let Φ(ζ, ξ; λ) be the fundamental solution matrix of (10). Define the stable
and unstable subspaces as

Es(ξ; λ) := {Y ∈ Cn | lim
ζ→∞

Φ(ζ, ξ; λ)Y = 0}, (13)

Eu(ξ; λ) := {Y ∈ Cn | lim
ζ→−∞

Φ(ζ, ξ; λ)Y = 0}. (14)

For solutions uf (ξ) and ub(ξ), we take the cross sections Σf and Σb close to the equilib-
rium p2. Let ξf (c, ϵ) and ξb(c, ϵ) be intersection points of up(ξ, c, ϵ) and Σ∗, ∗ = f, b. Then
we have the following boundary value problems:

Y ′ = Ap(ξ, c, ϵ)Y, Y ∈ Cn, ξ ∈ [ξf (c, ϵ), ξb(c, ϵ)] = I, (15)

Y (ξf (c, ϵ); λ) ∈ U−(λ), Y (ξb(c, ϵ); λ) ∈ U+(λ), (16)

where

U−(λ) := Eu(ξf (c, ϵ); λ), (17)

U+(λ) := Es(ξb(c, ϵ); λ). (18)
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We consider a system on ∧mCn which is induced by (15):

Y (m)′ = A(m)
p (ξ, c, ϵ; λ)Y (m), Y (m) ∈ ∧mCn, (19)

where m = dim U−(λ).

Then, the system (19) induces a flow on the τ =

(
n
m

)
− 1-dimensional complex pro-

jective space CPτ . For a disk D ⊂ C, this flow induces a map

G(c,ϵ) : S2 ∼= (∂D × I) ∪ (D × ∂I) → CPτ . (20)

Alexander–Gardner–Jones theory gives the following theorem.

Theorem 1.3. (Alexander–Gardner–Jones [5], Gardner–Jones [28], Nii [51]) Assume that
m is a constant for any λ ∈ D. Then,

[G(c,ϵ)] ∈ π2(CPτ ) ∼= Z

counts the number of eigenvalues of Lp(c, ϵ) in the interior of D.

The topological characterization of the absolute spectrum is given by the following
theorem.

Proposition 1.4. ([70]) Assume that m is a constant for any λ ∈ D, Σ2,Ω
abs ⊂ D satisfies

several generic conditions.

Ĝ(c,ϵ) = Pr ◦ G(c,ϵ)

∣∣
Σ2,Ω

abs×{ξb(c,ϵ)}
: Σ2,Ω

abs → S1 ⊂ CP1 \ {N ∪ S}, (21)

is a continuous map if |ξf (c, ϵ) − ξb(c, ϵ)| is sufficiently large, where

Pr : CPτ \ {[Z1 : · · · : Zτ ] | (Z2, · · · , Zτ ) ̸= 0} → CP1 = {[Z1 : Z2] | (Z1, Z2) ̸= 0},

is a projection. That is, the vector field (19) induces the attractor–repeller pair decomposi-
tion for the flow on CPτ .

Using the above topological characterization, we show the accumulation of eigenvalues
of Lp on the absolute spectrum Σ2,Ω

abs .

Theorem 1.5. ([70]) For any K ∈ N, Ĝ(c,ϵ)(Σ
2,Ω
abs) covers S1 more than K-times and

[G(c,ϵ)] ≥ K, (22)

if |ξf (c, ϵ) − ξb(c, ϵ)| is sufficiently large. That is, there is δ > 0 such that for any α ∈ N
and λ∗ ∈ Σ2,Ω

abs , Lp has at least K eigenvalues in B(λ∗, δ) if |ξf (c, ϵ)− ξb(c, ϵ)| is sufficiently
large, where B(λ∗, δ) is an open disk of center λ∗ and radius δ.
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1.1.2 Stability properties of glued pulses

Theorem 1.5 implies the following necessary condition for the stability of glued pulses.

Theorem 1.6. ([70]) Under the several generic conditions, if glued pulses Up(ξ, c, ϵ) are
stable for any (c, ϵ) ∈ H, then for any open bounded and connected domain Ω which A1(λ)
has no eigenvalues with zero real parts for any λ ∈ Ω,

Σ2,Ω
abs ⊂ {λ ∈ C | Re λ < 0}. (23)

In particular, eigenvalues µ1
2, · · · , µn

2 of Duf(p2, c0, ϵ0) = A2(0) satisfy

Re µ1
2 ≥ · · · ≥ Re µn

2

and µm+1
2 is a complex conjugate of µm

2 , i.e., µm+1
2 = µm

2 , µm
2 ̸= µm+1

2 and m = dim W u(p1(c, ϵ)),
then 0 is contained in the absolute spectrum and hence, glued pulses Up(ξ, c, ϵ) are unstable
if (c, ϵ) sufficiently close to (c0, ϵ0).

1.2 Topological and computational approach to eigenvalue prob-
lems for a class of one-dimensional Schrödinger operators

In the second part of this thesis, we present a powerful tool to investigate the behaviors
of eigenvalues of the Schrödinger operator when a perturbation is added to the periodic
potential of it. We use the topological approach in the first part combined with rigorously
computational methods. The topological approach is soft and flexible, however it some-
times lacks the information on the precise location of eigenvalues. The verified numerical
computations are rigorous in mathematical sense. We combine this soft machine with the
verified numerical computations and show the distribution of eigenvalues of the Schrödinger
operator.

The Schrödinger operator is given by:

Lu := −u′′ + q(x)u + s(x)u, (24)

where the periodic potential q(x) with period T (i.e., q(x + T ) = q(x)) and a localized
perturbation s(x) are Cr functions with r being sufficiently large. In particular, we assume
that s(x) satisfies s(x) → 0 exponentially as |x| → ∞.

It is well known that the spectrum of unperturbed operator:

L0u := −u′′ + q(x)u, (25)

consists of only the essential spectrum σess(L0). In particular, it has spectral bands [25].
The essential spectrum is invariant under relatively compact perturbations and hence, the
essential spectrum of L satisfies σess(L) = σess(L0) ⊂ R ([42], [50]). Moreover, we can
restrict λ to real values because L is a self-adjoint operator.

Let us consider the spectral problem:

L0u = λu. (26)
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It can be rewritten as the first order system:(
u
v

)′

= A0(x; λ)

(
u
v

)
, (27)

where

A0(x; λ) =

(
0 1

(q(x) − λ) 0

)
(28)

is a T -periodic matrix-valued function depending on a real parameter λ.
We consider the time-T map Φ(T, 0; λ).

Definition 1.7. Let Φ(x, y; λ) be the fundamental solution matrix of (27). We define stable
and unstable subspaces for the point at infinity as follows:

Es
∞(λ) := {Y ∈ R2 | lim

n→∞
Φ(nT, 0; λ)Y = 0}, (29)

Eu
∞(λ) := {Y ∈ R2 | lim

n→−∞
Φ(nT, 0; λ)Y = 0}. (30)

We consider the eigenvalue problem

Lu = −u′′ + q(x)u + s(x)u = λu. (31)

It can be also rewritten as the first order system:(
u
v

)′

= A(x; λ)

(
u
v

)
, (32)

or simply,
Y ′ = A(x; λ)Y, Y ∈ R2, (33)

where

A(x; λ) =

(
0 1

(q(x) + s(x) − λ) 0

)
. (34)

Let θ = tan−1( v
u
), and we rewrite (32) in θ coordinates:

θ′ = (q(x) + s(x) − λ + 1) cos2 θ − 1. (35)

Let Es(λ) and Eu(λ) be points in θ coordinates corresponding to the stable and unsta-
ble subspaces Es

∞(λ) and Eu
∞(λ), respectively, and θ(x; λ) be the unique solution of (35)

satisfying limn→−∞ θ(nT ; λ) = Eu(λ), and define θ̂(n; λ) := |θ(nT ; λ) − θ(−nT ; λ)|. Let
Λ ⊂ R \ σess(L) be the spectral gap.

Then, the following theorem holds.

Theorem 1.8. ([71]) Let [λ1, λ2] ⊂ Λ be an interval. For any m ∈ N, there exists n ∈ N
such that, if |θ̂(n; λ2) − θ̂(n; λ1)| > 2mπ, then there are at least m eigenvalues of L in
[λ1, λ2].

Let Nλ and Mλ be the compact neighborhood of Eu(λ) and Es(λ) with Nλ ∩Mλ = ∅.
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Theorem 1.9. (Counting intersection number [71]). Let I = [λ−, λ+] be an interval in
the gap Λ and M = ∪λ∈IMλ. If n is sufficiently large, M ⊂ RP1, and I has the following
properties, then there exists at least one eigenvalue of L in I.

θ(nT ; λ−) < minM,

θ(nT ; λ+) > maxM.
(36)

1.2.1 Computer assisted results

Our presented method is summarized as the following 3 steps.
Step 1. Construction of an interval [λ−, λ+] in the spectral gap.
Step 2. Determination of an integral interval [−nT, nT ] and enclosure of Eu(λ), Es(λ).
Step 3. Enclosure of a heteroclinic orbit θ(nT ; λ) from Eu(λ) to Es(λ).

We verify eigenvalues of LC by the above method for the case

LCu = −u′′ + 5 cos(2πx)u + Ce−x2

u (37)

where C ∈ R is a parameter. We obtain the following results using the software package
CAPD (ver 2.0) [74] in step 2 and 3 to obtain the rigorous results.

Computer Assisted Result 1.10. ([71]) When C = 7.0, there is at least one eigenvalue
of LC in the interval [7.6151, 7.6160].

We are interested in the asymptotic behavior of eigenvalues in a given subinterval of
the gap as the constant C tends to infinity. A variety of studies is concerned with such
behavior (e.g. Deift–Hempel [35], Hempel [34]).

Let F be the set of floating point numbers and IF be the set of intervals whose end-points
are in F. Similarly, IFn is the set of n-dimensional cubes, that is,

IFn := {I1 × I2 × · · · × In|Ii ∈ IF}. (38)

We define the parameter space as (λ,C) ∈ Λ × C = ∪iΛi × ∪iCi ⊂ IF2 where Λi =
[λi, λi+1] and Ci = [Ci, Ci+1]. First, using our method, we obtain intervals IC containing
eigenvalues for each fixed C. Next, for any j, we check off Qkℓ = Λk × Cℓ if Λk × {Cℓ}
or Λk × {Cℓ+1} contains eigenvalues. By the above procedures, we obtain enclosures of
eigenvalue branches in C × Λ as follows.

Computer Assisted Result 1.11. ([71]) There exists at least one pair (λ,C) in each
shaded rectangle Q in [7.3, 12.2]× [6.0, 30.0] in Figure 1, such that the connecting orbit from
Es(λ) to Eu(λ) exists. Therefore, at least one eigenvalue of LC exists with the parameter
C.
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Figure 1: Distribution of the eingenvalues: The horizontal axis is λ-coordinate and the
vertical axis is C-coordinate. The upper figure indicates the behavior of eigenvalues and
the spectral gap. Two shaded lines in Λ × C = [7.3, 12.2] × [6.0, 30.0] consist of rectangles
Qkℓ which contain at least one eigenvalue of LC , and the outer region (blue-colored region)
of region Λ × C contains essential spectra (two different spectral bands) of LC . The lower
figure is a magnification of the area enclosed by dotted line in the upper figure, and each
shaded (red-colored) rectangle Qkℓ contains at least one eigenvalue of LC .
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