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Abstract

We report the measurement of CP violation in B0(B
0
)→D∗∓π± decays, using fully recon-

struction technique. There are two ways that initial B0 goes to a final state D∗−π+. One

is a Cabbibo-favoured decay (CFD) b→cud and the other is B0 to B
0
mixing followed

by doubly-Cabbibo-suppressed decay (DCSD) b→ucd. Former does not have weak phase
while later has phase of 2ϕ1 + ϕ3 from mixing and decay. An interference between two
decay paths causes CP violation and it can be measured from time dependent analysis.
We measured CP violating parameters S± as

S+ = 0.000±0.017(stat)±0.011(sys) (1)

S− = 0.057±0.017(stat)±0.011(sys) (2)

Complete data set of 710 fb−1 accumulated by the Belle is used for this measurement.
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Chapter 1

Introduction

1.1 The Standard Model

The Standard Model (SM) describes almost all the experimental results with no contradic-
tion. The SM is a gauge theory with fermions which have four flavors. Four flavors are up-
type quark, down-type quark, neutrino and charged lepton. There are three generations
for each flavor. A kind of particle has a counterpart as anti-particle which has opposite
charge from original particle. There are three gauge interaction SU(3)×SU(2)×UY (1).

Fermions roughly consist of two types of particle. One is a quark and another is a
lepton. Quarks don’t exist independently. They can be found the component of hadrons.
There are two types of hadron. One is a baryon which is composed of three quarks or anti-
quarks, for example, proton(uud), neutron(udd). Another is a meson which composed of
a quark and anti-quark, for example, π+(ud), K+(us). Leptons, in contrast to quarks, can
be observed as free particles. Every interaction has its own mediator as a boson. Gluon
mediate the strong force. Photons mediate the electromagnetic force. W± and Z0 bosons
mediate the weak force. In addition, a higgs boson is needed in the SM to give the mass
to the particles. The construction of the SM except Higgs are shown in Figure.1.1.
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Figure 1.1: Construction of the standard model except Higgs.
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1.2 CP violation and KM mechanism

Why the universe is made mostly of the matter and why there is very little anti-matter are
the important questions for modern particle physics. According to the big bang theory
the matter and the anti-matter are generated in equal proportions at the beginning of the
universe. However, the world around us is dominated by the matter. The CP violation
explains this state, as described by A. D. Sakharov [1].

In 1973, M.Kobayashi and T.Maskawa indicated that CP violation can occur within the
SM framework if there are at least three quark generations. In their model, CP violation
arises from a single irreducible complex phase in the Cabibbo-Kobayashi-Maskawa (CKM)
quark mixing matrix [2][3], represented as:

VCKM =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.1)

A matrix element Vij represents the coupling constant through the charged current be-
tween a quark i and j.

If the number of quark family is three or more, there remain irreducible complex
phase(s) that cannot be removed by choosing quark phases.

1.3 The Unitary Triangle

The matrix VCKM is required to be unitary:

V †
CKMVCKM = 1. (1.2)

The Wolfenstein parametrization [4] is useful approximation in comparing the sizes of
the matrix elements:

VCKM =

 1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (1.3)

where A, ρ and η are real numbers whose order is unity. In this parametrization, quark
phases are taken such that only Vub and Vtd have significant complex phases. Hereafter,
we adopt this phase convention. λ is defined as

λ≡ sin θc ≃ 0.22 (1.4)

where θc is Cabbibo angle. From Eq.(1.4) λ2≪ 1, then the diagonal elements ≃ 1. On the
other hand, the elements except diagonal elements are O(λ), O(λ2) and O(λ3). Therefore
VCKM is close to identity matrix.

Eq.(1.2) led to the following expression:

∑
j

V ∗
ijVjk = 0 (i̸=k). (1.5)
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Since a sum of three complex quantities is zero, a triangle is drawn in complex plane by
each of the equations. This triangle is called unitary triangle. The area of triangle has
to be non-zero to establish CP violation. The most commonly used unitary triangle is
obtained from:

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0. (1.6)

The reason is that the magnitudes of three terms are all O(λ3). As shown in Figure.1.2,
all angles have some extent which can be measured. The angles of this triangle are
represented as:

ϕ1 ≡ arg

(
VcdV

∗
cb

−VtdV ∗
tb

)
(1.7)

ϕ2 ≡ arg

(
VtdV

∗
tb

−VudV ∗
ub

)
(1.8)

ϕ3 ≡ arg

(
VudV

∗
ub

−VcdV ∗
cb

)
. (1.9)

Since these phases are fundamental parameters of the standard model, it is important
to determine them. The measurement of ϕ1 is already quite precise. Even though many
different methods are carried out to measure ϕ2 and ϕ3, however, they are still limited by
experimental and theoretical uncertainties.

3
φ

2
φ

1
φ

*

cbcd
VV

*

ubud
VV

*

tbtd
VV

Figure 1.2: The unitary triangle of the CKM matrix.

SM is the successful theory. However, there are still some unsolved problems, fine
tuning, unification of force, etc. The properties of the unitary triangle are hypothesized
on the assumption that SM is established. If there were new physics, we observed in-
consistency with a hypothesis by precise measurement. Polygonization by new flavor or
inconsistency during some measurements can be estimated.

1.4 Motivation for B0(B
0
) → D∗∓π± analysis

The neutral B-meson decay, B0(B
0
) → D∗∓π± provides a sensitivity to sin(2ϕ1 + ϕ3)

[7][8]. There are two ways that initial B0 goes to a final state D∗−π+. One is a Cabbibo-
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favored decay (CFD) b→cud and another is B0 to B
0
mixing followed by doubly-Cabbibo-

suppressed decay (DCSD) b→ucd as shown in figure 1.3. The decay amplitude of CFD
is proportional to the CKM matrix-elements VcbV

∗
ud. The decay amplitude of DCSD is

proportional to the CKM matrix-elements VcdV
∗
ub. In our phase convention, former does

not have CKM phase while later has phase of 2ϕ1 + ϕ3 from mixing and decay.
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Figure 1.3: Diagrams for B0(B
0
) → D∗−π+

At KEK B factory, B mesons produced by the decay, Υ(4s)→BB. We defined ∆t as

the difference between the decay time of B0 and B
0
. If it identified clearly that D∗∓π±

were decayed from either B0 or B
0
, the probability density functions were described as:

P (B0→D∗−π+) =
e
− |∆t|

τ
B0

8τB0

[1+C cos(∆m∆t)− S− sin(∆m∆t)] (1.10)

P (B0→D∗+π−) =
e
− |∆t|

τ
B0

8τB0

[1−C cos(∆m∆t)− S+ sin(∆m∆t)] (1.11)

P (B0→D∗+π−) =
e
− |∆t|

τ
B0

8τB0

[1+C cos(∆m∆t) + S+ sin(∆m∆t)]. (1.12)

P (B0→D∗−π+) =
e
− |∆t|

τ
B0

8τB0

[1−C cos(∆m∆t) + S− sin(∆m∆t)]. (1.13)

where τB0 is the lifetime of the neutral B meson, ∆m is the B0 − B
0
mixing frequency

and C = (1 − R2)/(1 + R2). R is the ratio between DCSD and CFD magnitudes, and
about 0.02. S± are CP violating parameters described as:

S+ = − 2R

1 +R2
sin (2ϕ1 + ϕ3+δ) (1.14)

S− = − 2R

1 +R2
sin (2ϕ1 + ϕ3−δ) (1.15)

where δ is the strong phase difference between DCSD and CFD amplitudes. We extracted
S± by this analysis. The difference between the probability density function of B0 and
B0 is described as:

A(∆t) =
P (B0→D∗∓π±) − P (B0→D∗±π∓)

P (B0→D∗∓π±) + P (B0→D∗±π∓)
= − S+ + S−

2
sin(∆m∆t) (1.16)
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where

P (B0→D∗∓π±) = P (B0→D∗−π+) + P (B0→D∗+π−) (1.17)

P (B0→D∗±π∓) = P (B0→D∗+π−) + P (B0→D∗−π+). (1.18)

We called A(∆t) a asymmetry distribution. The amplitude is the average of S+ and S−.

We identified the B flavor by the tag-side B. Tag-side B is one of the B0(B
0
) from

Υ(4S), which have not decayed to D∗±π∓. We mistake B0 as B
0
by a certain probability.

We defined the wrong tag fraction as the probability to mistake. The probability density
functions including the wrong tag fraction are described as:

Psig(q = −1;Bsig→D∗∓π±) =

(1− w
B0)P (B0→D∗∓π±) + wB0P (B0→D∗∓π±) (1.19)

Psig(q = +1;Bsig→D∗±π∓) =

(1− wB0)P (B0→D∗±π∓) + w
B0P (B0→D∗±π∓). (1.20)

We express the flavor of tag-side B by q. If q is 1, tag-side B is B0. If q is −1, tag-side

B is B
0
. The wrong tag fractions are described as w

B0 and wB0 . We explain flavor tag in
Chapter 3. Using eq.(1.19) and eq.(1.20), A(∆t) becomes:

A(∆t) = (∆w − (1− 2w)
S+ + S−

2
) sin(∆m∆t) (1.21)

where

∆w≡wB0 − w
B0 (1.22)

w≡
wB0 + w

B0

2
(1.23)

If the wrong tag fractions of B0 and B
0
were same, ∆w became zero and A(∆t) was

diluted with (1− 2w) from eq.(1.16).
This decay has been studied by both the Belle and the BaBar. The BaBar introduced

the following notations:

a =
2R

1 +R2
sin (2ϕ1 + ϕ3) cos δ (1.24)

c =
2R

1 +R2
cos (2ϕ1 + ϕ3) sin δ (1.25)

We can express a, c by S±:

a = − S+ + S−

2
(1.26)

c = − S+ − S−

2
. (1.27)

As you can see, a is the amplitude of the asymmetry distribution. The strong phase
difference are expressed by c. If δ equaled zero, c also equaled zero. The summary of the
results for parameters, a and c from the previous the Belle and the BaBar are shown in
figure.1.4
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Figure 1.4: previous results of the Belle and the Babar



Chapter 2

The Belle experiments using KEK B
factory

2.1 Overview

The data set using this analysis is collected with KEK B factory. KEK B factory consists
of two structures, KEKB accelerator[9] and the Belle detector[10]. They are located at
the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan. In this
chapter, we describe both of them.

The conventional definitions of the coordinates in the Belle experiments are as follows.

• x : horizontal direction, outward to KEKB accelerator

• y : vertical direction, upward.

• z : direction of the electron beam.

• r :
√
x2 + y2.

• θ : the polar angle with respect to z axis.

• φ : the azimuthal angle around z axis.

2.2 KEKB accelerator

KEKB accelerator is designed to produced a large number of B mesons via the interaction
of e+e−→Υ(4s)→BB. It consists of two storage rings, a ring for 8 GeV electron and a
ring for 3.5 GeV positron, they are called high energy ring (HER) and low energy ring
(LER) respectively, and an injection linear accelerator. The two rings are side by side in
the underground tunnel used for TRISTAN. The circumference is about 3 km. The length
of the injection accelerator is about 600 m. The crossing point of two ring is located at
one of the straight section of the ring. It is called the interaction point (IP). To separate
e+e− beam after collision, e+e− crossing angle at IP is designed 22 mrad. The purpose
to separate is for reducing backgrounds. Figure 2.1 shows the construction of KEKB.

To produce B mesons, the center-of-mass energy is set at:

√
s = 2×

√
EHER·ELER = 10.58 (GeV ) (2.1)

11
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Figure 2.1: The configuration of KEKB accelerator.

which corresponds to the mass of Υ(4s) resonance. If above expression consists, we
can choose any energies for the beam. One of the most important studies in the Belle
experiments is the measurement of time dependent CP asymmetry. It needs to measure
the difference between the decay times of B0B0 pair. Unfortunately the lifetime of B
meson is too short to measure directly. Then we generate B mesons with Lorentz boost
according to z axis and measure the decay vertices of B mesons instead of decay times.
The difference between the decay times (∆t) can be represented by the difference between
the decay vertices (∆z) as:

∆t≃ ∆z

cβγ
. (2.2)

For this purpose, KEKB has an asymmetric energy as 8 GeV for e− and 3.5 GeV for
e+. The Lorentz boost factor is:

βγ =
EHER − ELER√

s
= 0.425 (2.3)

The typical B0 meson decay length is:

l = cβγτB0 ≃ 200 (µm). (2.4)

The design luminosity of the KEKB accelerator is:

L = 1.0×1034 cm−2s−1 (2.5)
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which corresponds to an approximate production rate of 10 BB pairs per second. In June
2009, the world’s highest luminosity of L = 2.11×1034 cm−2s−1 was achieved, and the
total integrated luminosity is reached to 1000 fb−1. The KEKB luminosity histories are
shown in Figure 2.2 and Figure 2.3

2.3 the Belle Detector

The Belle detector is a large solid-angle magnetic spectrometer that consists of many
sub-detectors:

• Silicon Vertex Detector (SVD)

• Central Drift Chamber (CDC)

• Aerogel Cherenkov Counter (ACC)

• Time of Flight Counter (TOF)

• Electromagnetic Calorimeter (ECL)

• KL and Muon Detector (KLM).

They are located inside a superconducting solenoid coil that provides a 1.5 T magnetic
field without KLM. KLM is located outside the coil. Figure 2.4 and Figure 2.5 shows
overhead view and section view of the Belle detector, respectively.

The purpose of the Belle detector is catch the B meson. B meson almost always will
ultimately decay to some combination of following final state particles:

K±, π±, e±, p±, µ±, γ, K0
L.

Then it is important that these particles can be detected and identified with high
efficiency. For time dependent analysis, the measurement of vertex position is also im-
portant. It needs that a track of a particle is reconstructed separately. The sub-detectors
used for measurement of each particle are summarized in Table2.1.

Table 2.1: The measurement of the sub-detectors.

Particle Position Momentum Energy Particle Identification

K± SVD,CDC CDC ECL ECL,ACC,TOF,CDC
π± SVD,CDC CDC × ACC,TOF,CDC,KLM
e± SVD,CDC CDC × ACC,TOF,CDC
p± SVD,CDC CDC × ACC,TOF,CDC
µ± SVD,CDC CDC × ACC,TOF,CDC
γ ECL × ECL ECL,CDC
K0

L KLM × × CDC,KLM



14 CHAPTER 2. THE BELLE EXPERIMENTS USING KEK B FACTORY

Figure 2.2: The luminosity history of KEKB accelerator.

Figure 2.3: The integrated luminosity of the B factories, the Belle and the BABAR.
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Figure 2.5: KEKB luminosity history.
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Brief descriptions of each sub-detector are given in the following subsections.

2.3.1 Silicon Vertex Detector (SVD)

The Silicon Vertex Detector (SVD) [11] is the one of the most important detector in
the Belle, because it provides a precise measurement of the B meson decay vertices. It
is essential in the study of time-dependent CP asymmetry. For a time-dependent CP
analysis, the z-separation between B vertices must be measured with a precision of about
100µm. In addition, it is also used to measure the decay vertices of other particles. SVD
was upgraded at the summer of 2003. We call the one before upgraded as SVD1 and the
one after upgraded as SVD2 [12].

Figure 2.6 shows the side and the end views of the SVD1. It is the innermost detector
and consists of three concentric layers of double-sided silicon strip detectors (DSSDs) and
covers the polar angle range 23 ◦ ≤ θ≤ 139 ◦ where θ is the angle from the beam axis.
This corresponds to 86% of the full solid angle. The radii of the innermost, middle,
and outermost layers are 30.0mm, 45.5mm and 60.5mm, respectively. The layers are
constructed from 8, 10 and 14 independent ladders from inside to outside. Each ladder
is made up of two half-ladders that are joined by a support structure but are electrically
independent of each other. There are two kinds of half ladder, long half-ladder and short
half ladder. A long half-ladder contains two DSSD and a CMOS-integrated circuit which
processes signals from the DSSD. A short half-ladder contains a DSSD and a CMOS-
integrated circuit. The innermost layers consist of two short half-ladders, the middle
layers consist of a short and a long half-ladder and the outermost layers consist of two
long half-ladders. Each DSSD size is 57.5×33.5mm2 and thickness is 300µm. Each DSSD
consists of 1280 sense strips and 640 readout pads on both sides. One side of the DSSD
(called n-side) has its n+ sense strips. They are oriented perpendicular to the beam
direction to measure the z coordinate and separated by 42µm. The p+ sense strips, each
separated by 25µm, are oriented longitudinally to measure the r−φ position. A DSSD is
basically a p-n junction. When a charged particle passes through the DSSDs, it produces
electron-hole pairs along its trajectory. The charges are then collected at the sense strips
by the applied electric field. The charge distributions on the orthogonally segmented
strips allow one to determine three-dimensional hit positions and hence, to reconstruct
the particle track. The impact parameters of a reconstructed track are defined as the
r − φ and z distances of the closest approach of the track to the interaction point. The
impact parameter resolution σrφ and σz measured using cosmic rays events are shown in
Figure 2.7 and well represented by the following E:

σrφ = 19.2⊕ 54.0

pβsin3/2θ
[µm] (2.6)

σz = 42.2⊕ 44.3

pβsin5/2θ
[µm]. (2.7)

SVD2 also consists DSSD, however, there are many improvements from SVD1. SVD2
consists of four concentric layers and covers the polar angle range 17 ◦≤ θ≤ 150 ◦. The
radii of layers are 20.0mm, 43.5mm, 70.0mm and 88.0mm, and numbers of ladder are 6,
12, 18 and 18 from inside to outside. Figure 2.6 shows the SVD2. There are two kinds
of DSSDs. One is used for inner three layers and has a size of 28.4×79.6mm2 with a
strip pitch of 75µm on the p-side and 50µm on the n-side. For 4th layer, the size is
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Figure 2.6: Configuration of SVD1.

34.9×76.4mm2 with a strip pitch of 73µm on the p-side and 65µm on the n-side. The
impact parameter resolutions are shown in Figure 2.7 and as follows:

σrφ = 21.9⊕ 35.5

pβsin3/2θ
[µm] (2.8)

σz = 27.8⊕ 31.9

pβsin5/2θ
[µm]. (2.9)
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Figure 2.7: Impact parameter resolution of charged tracks with associated SVD hits from
cosmic ray data. In the left plot, p̃≡ pβsin3/2θ, and in the right plot, p̃≡ pβsin5/2θ.

Figure 2.8: Configuration of SVD2.
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2.3.2 Central Drift Chamber (CDC)

The Central Drift Chamber (CDC) [13] has been designed for efficient reconstruction of
charged particle tracks and precise determination of their momenta. the Belle detector
is in the uniform magnetic field induced by the solenoid magnet, the momentum of a
charged particle can be measured from their tracks, according to the relation:

p [GeV/c] = 0.3Br [Tm]. (2.10)

The CDC is also used to measure the energy loss (dE/dx) of charged tracks for their
particle identification.
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Figure 2.9: Configuration of CDC.

Figure 2.9 shows the CDC geometry. The coverage is 17 ◦ ≤ θ≤ 150 ◦ which corresponds
to 92% of the solid-angle. The CDC is a cylindrical chamber with inner radius 83mm,
outer radius 874mm, and length along the beam pipe 2400mm. It is filled with gas.
Since the majority of the decay products of a B meson have the momentum lower than
1GeV/c, the minimization of multiple coulomb scattering is important for achieving the
precious momentum resolution. For this purpose, a low-Z gas consisting of 50% helium
and 50% ethane is chosen. The pT resolution of the CDC is given by:

σpT =

(
0.28pT ⊕ 0.35

β

)
% (2.11)

and this is improved with SVD information as:

σpT =

(
0.19pT ⊕ 0.30

β

)
%. (2.12)

The typical pT resolution is shown in Figure 2.10.
Figure 2.11 shows the measured dE/dx as a function of the particle momentum, to-

gether with the expected mean values for different particle species. Populations of pi-
ons, kaons, protons and electrons are clearly seen. The dE/dx resolution is measured
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Figure 2.10: The pT resolution using cosmic ray data.

to be 7.8%. The dE/dx information provides ≥ 3σ K/π separation up to 0.8 GeV/c.
The dE/dx also provides more than 3 σ e/π separation for the momentum range from
0.3GeV/c to 3GeV/c.
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Figure 2.11: dE/dx vs momentum taken from collision data.
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2.3.3 Aerogel Cherenkov Counter (ACC)

The Aerogel Cerenkov Counter (ACC) [14] is used for the Belle particle identification sys-
tem. It brings the capability of identifying high momentum particles (from 1.2GeV/c to 3.5GeV/c),
which is beyond the reach of dE/dx measurements by CDC and time-of-flight measure-
ments by TOF. Thus, we can distinguish kaons from pions. When a charged particle passes
a medium by the speed that exceeds the speed of light in the same medium, Cerenkov
radiation is emitted as:

n >
1

β
=

√√√√1 +

(
m

p

)2

(2.13)

where m and p are the mass and momentum of the particle, and n is the refractive index
of the medium. For a fixed n, the threshold energies for the particles to emit Cerenkov
photons are proportional to their masses. Thus, we can distinguish kaons from pions to
detect emitting Cherenkov radiation, by selecting appropriate medium.

The configuration of ACC is shown in Figure 2.12. The ACC consists two regions,
the barrel region and the forward end-cap region. The barrel region consists of 960
counter modules segmented into 60 cells in the φ direction. The forward end-cap region
is 228 modules arranged in 5 concentric layers. All the counters are arranged in a semi-
tower geometry, pointing to the interaction point, covering a total polar angle range from
17 ◦ to 127 ◦. A counter module consists of silica aerogel encased in an aluminum box. One
or two photomultiplier tubes are attached to the sides of each box to detect Cherenkov
radiation pulses. In order to obtain good K/π separation for the whole kinematic range,
the refractive indices of silica aerogel are selected to be between 1.01 and 1.03, depending
on their polar angle. For the barrel modules, n = 1.010, 1.013, 1.015, 1.020 and 1.028 are
used. Silica aerogel with n = 1.030 is used in the forward end-cap modules, to distinguish
lower momentum particles. A typical ACC module is shown in Figure 2.13.
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Figure 2.12: The configuration of ACC

Figure 2.14 shows the measured pulse height distributions in the ACC for π± and K±

candidates from D∗± decays, which are selected by TOF and dE/dx measurements. It
shows a clear separation between kaons and pions. Good agreement between data and
Monte Carlo simulation also can be seen.



2.3. THE BELLE DETECTOR 23

Figure 2.13: ACC barrel module and end-cap module.
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Figure 2.14: Pulse-height spectra in units of photo-electrons forK± and π± inD∗± decays.
Each plot corresponds to the different refractive index.
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2.3.4 Time of Flight counter (TOF)

The Time of Flight counter (TOF) [15] provides the particle identification information
to distinguish charged kaons from pions in the low momentum region, below 1.2GeV/c,
which encompasses 90% of the particles produced from Υ(4S) decays. The flight time T
is expressed as:

T =
L

cβ
=

L

c

√√√√1 +

(
m

p

)2

(2.14)

where L is a flight length of the particle. The momentum can be provided from CDC,
then, TOF can be used for particle identification by calculating the mass of the particle.

TOF system consists of 64 TOF modules. One of TOF modules consists of two
plastic scintillation counters (TOF counter) and one thin Trigger Scintillation Counters
(TSC). Each TOF (TSC) counter is read out by two (one) fine-mesh photo-multipliers.
TOF modules located at a radius of 1.2m from the IP cover a polar angle range from
33 ◦ to 121 ◦. The module geometry is shown in Figure 2.15.
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Figure 2.15: TOF module geometry.

Figure 2.16 shows the mass distribution calculated from measured T by TOF. The
histogram shows the Monte Carlo results obtained by assuming σTOF = 100 ps. The
data points are consistent with the simulation prediction. Figure 2.17 shows the K/π
separation performance according to the particle momentum.
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Figure 2.16: Distributions of hadron masses calculated from the measured time-of-flight
for particles with momenta less than 1.25GeV/c.
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Figure 2.17: K/π separation performance of the TOF.
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2.3.5 Electromagnetic Calorimeter (ECL)

The Electromagnetic Calorimeter (ECL) [16] are designed to detect photons and electrons
with high efficiency and good resolutions in energy and position. The roles are identifi-
cation of electrons and reconstruction of π0 from photons. When an electron or a photon
hits the ECL, it loses their energy by bremsstrahlung or electron-positron pair production.
These processes repeat over and over again, producing electromagnetic showers. and all
of the incident energy is deposited in calorimeter. Other charged particles deposit a small
amount of energy by ionization. Therefore, the ratio of the cluster energy measured by
the ECL to the momentum of the charged track measured by the CDC, E/p, is close to
unity for electrons and lower for other particles. In this way, electron can be identified.

The geometry of the ECL is shown in Figure 2.18. The ECL consists of a barrel section
of 3.0m in length with an inner radius of 1.25m and annular end-caps at z = + 2.0m
and z = −1.0m from the interaction point. The ECL consists of 8736 thallium-doped
(Tl) CsI crystal counters. They cover the polar angle region of 17 ◦ ≤ θ≤ 150 ◦. A CsI(Tl)
crystal is in a tower shape and its length is 30 cm, which corresponds to 16.2 radiation
lengths. Each CsI(Tl) crystal points toward the IP. The barrel section has 6624 crystals
divided into 46 in θ and 144 in φ. The forward end-cap has 1152 crystals divided into 13
in θ and 48∼ 144 in φ depending on θ. The backward has 960 crystals divided into 10
and 64∼ 144 in θ and φ, respectively. The geometrical parameters are shown in Table.2.2

Figure 2.18: ECL geometry.

The energy and position resolution of the ECL are:

σE

E
=

(
1.34⊕ 0.066

E
⊕ 0.81

E1/4

)
[%] (2.15)

σpos =
(
0.27 +

3.4

E1/2
+

1.8

E1/4

)
[mm]. (2.16)
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Table 2.2: The geometrical parameters of the ECL.

Section θcoverage θ segment φ segment # of crystals

Forward end-cap 12.4 ◦ to 31.4 ◦ 13 48∼ 144 1152
Barrel 32.2 ◦ to 128.7 ◦ 46 144 6624

Backward end-cap 130.7 ◦ to 155.1 ◦ 10 64∼ 144 960

Figure 2.19 shows the energy and position resolution of the ECL. Measurements from
the ECL combined those from the CDC, ACC and TOF provide an electron identification
efficiency of about 80% and the π fake rate is less than 1% in the momentum range from
500MeV/c to 2GeV/c.
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Figure 2.19: Energy and position resolutions of the ECL.
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2.3.6 KL and Muon Detector (KLM)

The purpose of KL and Muon Detector (KLM) [17] is the identification of KL and muon
with high efficiency. The particle with enough momentum to reach the KLM, greater
than 600MeV/c, is the target to detect. Since they like to penetrate materials, a lot of
material is needed to detect them efficiently.

The KLM consists of 4.7 cm thick iron plates and glass resistive plate counters (RPCs)
[18]. The KLM is made up of the barrel region and the end-caps in forward and backward.
The geometry of the barrel region is shown in Figure 2.20. The barrel region around the
IP covers the angular range 45 ◦ ≤ θ≤ 125 ◦ and consists of 15 detector layers and 14 iron
layers. Each end-cap consists of 14 detector layers and 14 iron layers and extends the
coverage to 20 ◦≤ θ≤ 155 ◦. The iron layers have the another role as a return yoke for the
magnetic flux provided by the superconducting solenoid. Two RPC modules are consisted
RPC super-layer, to provide 2-dimensional θ φ information. Figure 2.21 shows the RPC
super-layer.

Figure 2.20: The geometry of the KLM.

When hadrons hit the iron plates, a shower of ionizing particles are produced and
detected at the RPC layers. KL may not leave an associated track in the CDC, then, it
can be identified. Muons leave the charged tracks, however, they can be distinguished from
another charged hadron because of their strong penetration. Hadrons strongly interacts
with iron, their trace have wide clusters and are stopped within a few layers of iron.
Muons only interact by electromagnetic multiple scattering, so their clusters tend to be
thinner and they have far greater penetration depth.
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Figure 2.21: Cross section of a RPC super-layer.
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2.3.7 Trigger and Data Acquisition

The trigger system (TRG) and the data acquisition system (DAQ) are also important for
the Belle experiments. The purpose of the trigger system is to distinguish the interesting
events of physics from the large amount of background. Since the background rates
are very sensitive to the accelerator conditions at that instant, it is difficult to estimate
correctly. Therefore, the trigger system is required to select the interesting events for high
efficiency unrelated to the background rates. It is also required to keep the amount of
data within the tolerance of the data acquisition system (DAQ). The Belle trigger system
consists of the hardware trigger and the software trigger.

The decision to accumulate the events in the data acquisition system (DAQ) is made by
the sub-detector trigger systems and the central trigger system called the Global Decision
Logic (GDL). Figure 2.22 shows their flow. The trigger system provides a trigger signal
at a fixed time, 2.2µs, after the beam collision. The trigger efficiency for BB events is
greater than 99.5%. The sub-detector trigger systems consists with the track triggers and
the energy triggers. The CDC and TOF are brought the charged track trigger signals.
The ECL provides triggers based on the total energy deposit and the cluster counting of
crystal hits. The KLM provided muon trigger. These trigger informations are provide to
the GDL.

G
lo

b
a
l 

D
ec

is
io

n
 L

o
g
ic

CDC

EFC

TOF

KLM

ECL

Cathode Pads

Stereo Wires

Axial Wires Track Segment

z track count

r-φ track count

Z finder

High Threshold

Trigger Cell Threshold
Bhabha

Two photon

Hit

multiplicity

topology

timing

Hit µ hit

4x4 Sum
Trigger Cell

Energy Sum

Cluster count

Timing

Low Threshold

Bhabha

Trigger 

G a t e/ St

Beam Crossing

2.2 µsec after event crossing

Figure 2.22: Flow of the sub-detector trigger systems and the GDL.

The Belle DAQ system consists of three parts: a front-end readout part, an event
building part and a mass storage part. The event builder combines the signals from
sub-detectors into a single event and passes it to an online computer farm. In an online
computer farm, the events are selected or rejected. The requirements are at least one
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track originating from the IP, dr < 1.0 cm and dz < 4.0 cm, with pt > 300MeV/c.
Events passing this requirement are then stored in a mass storage system.



Chapter 3

B reconstruction

3.1 Analysis Overview

We explain the extraction procedure of S± in Chapter 3 and 4.
We first find the signal decay chain from BB pairs accumulated by the Belle detector,

which is explained in this chapter. Then S± are extracted from time-dependent decay
rates of signal, which is explained in chapter 4.

3.2 Data set

3.2.1 Experimental data

Complete data set of 710 fb−1 accumulated by the Belle detector is used for this anal-
ysis. It contains 770 ×106 BB pairs. Finite 152 ×106 BB pairs were collected with
SVD1(chapter 2) and the rest were collected with SVD2(chapter 2).

3.2.2 Monte Carlo

For tuning the selection criteria, studying background sources and tuning ∆t PDF fitter,
we used Monte Carlo (MC) events. They are generated by EVTGEN [19] and detector
response is simulated by GSIM. We used two kinds of MC. One is the generic MC where
each B decays to all known final states with known branching fractions. It was used for
tuning the selection criteria and studying background sources. We generated generic MC
events 5 times of the data accumulated by the Belle detector. The other is the signal
MC. B-mesons contained in signal MC decay into signal events. The ratio was generated
according to the known branching fractions. It was used for tuning ∆t PDF fitter. We
generated signal MC events 32 times of the real data.

3.3 Event selection

We reconstructed signal events ”B0(B0) → D∗∓π±” from following decay chains, charge
conjugate modes are implied unless explicitly stated:

• B0 → D∗+π− ,

33
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• D∗+ → D0π+, D+π0 ,

• D0 → K−π+, K−2π+π−, K−π+π0, Ksπ
+π− ,

• D+ → K−π+π+.

The reconstruction was according to the following selections.

3.3.1 Charged track selection

To select charged kaons and pions from signal decay, we discarded the tracks which did
not have more than one SVD hits in both r − ϕ and z directions. Kaons and pions are
distinguished by particle identification method defined in Chapter 2. For this analysis,
LR(K,π) > 0.3 and LR(K, π) < 0.7 are applied for kaons and pions, respectively.

We adopted different selection for slow pions from D∗+, with no requirement on SVD
hit.

3.3.2 Neutral pion selection

Neutral pions were reconstructed from photon pairs. We selected photon with invariant
mass for photon pairs as 0.118 GeV/c2 to 0.150 GeV/c2. In addition, to reduce fake π0

such as wrong combinations of two photons, the photon energy greater than 0.04 GeV
was required.

3.3.3 Neutral K selection

We first reconstructed Ks → π+π− in 30 MeV mass window from PDG value. Then we
applied the cut on the following four variables.

• dr : The distance from IP to the tracks in x-y plane.

• dϕ : The azimuthal angle between the momentum vector and the decay vertex
vector of a Ks candidate.

• zdist : The distance between the two daughter tracks at their interception points.

• fl : The flight length of Ks candidate in x-y plane.

Selection criteria for neutral K are shown in Table 3.1.

Table 3.1: Ks Selection
Momentum (GeV) dr (cm) dϕ (rad) zdist (cm) fl (cm)

< 0.5 > 0.05 < 0.3 < 0.8 -
0.5 - 1.5 > 0.03 < 0.1 < 1.8 > 0.08
> 1.5 > 0.02 < 0.03 < 2.4 > 0.22
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3.3.4 D0 reconstruction

D0 was reconstructed from K−π+, K−2π+π−, K−π+π0, Ksπ
+π− in this analysis. Invari-

ant mass of D0 reconstructed from K−π+π0 was required to be within ± 30 MeV/c2 of
PDG value. Others were required to be within ± 20 MeV/c2. In addition, a mass con-
straint fit for D0 is done with all of it’s daughter tracks. A vertex fit was done with the
charged daughter tracks. Figure 3.1 (a)∼ (d) shows mass distributions for reconstructed
D0 from real data.

3.3.5 D+ reconstruction

D+ was reconstructed from K−2π+ in this analysis. Invariant mass was required to be
within ± 20 MeV/c2 of PDG value. A mass constraint fit and a vertex fit were done on
the same condition with D0. Figure 3.1 (e) shows D+ mass distributions.

3.3.6 D∗+ reconstruction

D∗+ was reconstructed from D0π+ and D+π0 in this analysis. Invariant mass difference
between D∗+ and D0 (D+) is used the selection of D∗+. We call the invariant mass differ-
ence between D∗+ and D0 (D+) as ∆M . The selection criteria for D0π+ final state and
D+π0 final state were 138 MeV/c2 < ∆M <143 MeV/c2 and 143 MeV/c2 < ∆M <148
MeV/c2, respectively. Figure 3.2 shows ∆M distributions.

3.3.7 B0 reconstruction

B0 was reconstructed from D∗+π−. To select B0 candidate, we used two variables, ∆E
and Mbc. ∆E is defined as:

∆E = Ecms
B − Ecms

beam (3.1)

where Ecms
B is the energy of reconstructed B and Ecms

beam is the beam energy. Superscript
”cms” means the value in the center-of-mass system of Υ(4S). Mbc is the beam constrained
mass and defined as:

Mbc =
√
(Ecms

beam)
2 − (P cms

B )2 (3.2)

where P cms
B is the momentum of reconstructed B. Because of higher precision than sum

of reconstructed particles, Ecms
beam are used for calculation.

Signal region was defined as |∆E| < 0.045 GeV and 5.27 GeV/c2 < Mbc < 5.29
GeV/c2. To check the background events underneath the signal region, grand side band
region was defined as -0.15 GeV < ∆E < 0.5 GeV and 5.2 GeV/c2 < Mbc < 5.3 GeV/c2.
Best candidate were selected by requiring the minimum χ2 for Mbc and ∆M . Figure 3.3
shows ∆E distributions and figure 3.4 shows Mbc distributions.

All selection criteria are shown in Table 3.2. Reconstruction efficiencies for each sub-
decay are calculated from signal MC and shown in table 3.3. Number of reconstructed B
from real data is shown in Table 3.4.
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Table 3.2: Selection criteria.

Selection Requirement

Charged track
PID for K LR(K, π) > 0.3
PID for π LR(K, π) < 0.7

SVD hits (r − ϕ plane) ≥ 2 except for slow π from D∗+

SVD hits (z plane) ≥ 2 except for slow π from D∗+

π0

invariant mass 0.118 GeV/c2 < Mπ0 < 0.150 GeV/c2

photon energy > 0.04 GeV

Ks

for momentum of KS < 0.5 GeV
dr (cm) > 0.05
dϕ (rad) < 0.3
zdist (cm) < 0.8

for 0.5 GeV < momentum of KS < 1.5 GeV
dr (cm) > 0.03
dϕ (rad) < 0.1
zdist (cm) < 1.8
fl (cm) > 0.08

for momentum of KS > 1.5 GeV
dr (cm) > 0.02
dϕ (rad) < 0.03
zdist (cm) < 2.4
fl (cm) > 0.22

D0

D0 reconstructed from K−π+π0 invariant mass ±30MeV/c2 from PDG value
other D0 invariant mass ±20MeV/c2 from PDG value

D±

invariant mass ±20MeV/c2 from PDG value

D∗±

MD∗+ −MD0 138 MeV/c2 < ∆M <143 MeV/c2

MD∗+ −MD+ 143 MeV/c2 < ∆M <148 MeV/c2

B0 grand side band
∆E -0.15 GeV< ∆E <0.5 GeV
Mbc 5.2 GeV/c2 < Mbc <5.3 GeV/c2

B0 signal region
∆E -0.045 GeV< ∆E <0.045 GeV
Mbc 5.27 GeV/c2 < Mbc <5.29 GeV/c2
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Table 3.3: Reconstruction efficiency.
Decay mode Efficiency(SVD1) Efficiency(SVD2)

D0 → K−π+ 27.8% 38.3%
D0 → K−2π+π− 13.1% 22.5%
D0 → K−π+π0 11.5% 15.4%
D0 → Ksπ

+π− 9.3% 15.5%
D+ → K+2π− 8.9% 13.8%

Table 3.4: Number of reconstructed B from real data.
Decay mode # of B

D0 → K−π+ 18581±136
D0 → K−2π+π− 22465±150
D0 → K−π+π0 24018±155
D0 → Ksπ

+π− 5344±73
D+ → K+2π− 7657±88
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Figure 3.1: D0(D+) mass distribution
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Figure 3.2: ∆M distribution
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Figure 3.3: ∆E distribution in Mbc signal region.
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Figure 3.4: Mbc distribution in ∆E signal region.
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3.4 Flavor tag

Since B0 and B
0
can decay into D∗±π∓, the flavor of a reconstructed B cannot be de-

termined by itself. The flavor was identified by the other side B. We call it tag-side B.

Υ(4S) is S = 1 and B0(B
0
) is S = 0, then, the orbital angular momentum of B-pair

equals 1. Commutation relation is an anti-symmetrical state. B-pair, therefore, cannot
be identical particles. We identified the flavor of the tag-side B at the decay time of it.

We determined the flavor of the tag-side B based on the informations of the final state
particles. There are several flavor specific decay modes of the b quark that can be used
to determine its flavor.

• high-momentum leptons from B0 → Xl+ν decays (Figure.3.5)

• intermediate-momentum leptons from b → c → sl−ν decays (Figure.3.5)

• kaons, since the majority of them originate from B0 → K+X decays through the
cascade transition b → c → s

• Λ baryons from the cascade decay b → c → s

• high momentum pions coming from B0 → D(∗)π+X decays (Figure.3.6)

• slow pions from B0 → D∗−X,D∗− → D
0
π− decays (Figure.3.6)
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Figure 3.6: Flavor tagging with pions
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We use two parameters, q and r, for the flavor tagging and its accuracy. The parameter

q represents the flavor of the tag-side B. When q = + 1(−1), tag-side B is a B0(B
0
).

The parameter r is an expected flavor dilution factor that ranges from zero for no flavor
information to unity for unambiguous flavor assignment. We prepared the look-up table
which outputs q and r according to the final states. The signed probability, q·r, is given
by:

q·r =
N(B0) − N(B

0
)

N(B0) + N(B
0
)

(3.3)

where N(B0) and N(B
0
) are the numbers of B0 and B

0
in each bin of the look-up table

prepared from a large statistics MC event sample.
We express the wrong tag fraction as w. The relation of r and w is:

r = 1− 2w. (3.4)

If w is calculated from r, it has potential for bias because of the difference between real-
data and MC simulation. To prevent it we segmentalize it according to r (Table.3.5) and
wr−bin(r− bin = 0∼6) in each segment are measured. Semi-leptonic decay B0→D(∗)−l+ν
and hadronic decay B0→D∗−π+, D∗−ρ+ was used for measurement of wr−bin. Events in
the segment of r-bin = 0 hardly has the information for flavor identification, therefore w0

is fixed at 0.5. We measured the wrong tag fraction by signal MC. They consisted with
the wrong tag fraction that measured by MC of above decay mode. The comparisons
of the wrong tag fraction are shown in Table.3.6 and 3.7, where w is the average of the
wrong tag fraction of B0 and B0, and ∆w is the difference between the wrong tag fraction
of B0 and B0. The wrong tag fraction from real data of above decay mode were used for
time dependent analysis of B0→D∗±π∓.

Table 3.5: The flavor tagging category based on r
r-bin r

0 0.1 ≥ r ≥ 0
1 0.25 ≥ r > 0.1
2 0.5 ≥ r > 0.25
3 0.625 ≥ r > 0.5
4 0.75 ≥ r > 0.625
5 0.875 ≥ r > 0.75
6 1. ≥ r > 0.875
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Table 3.6: The comparison of the wrong tag fraction
r-bin w of signal MC reference w of MC reference w of Data

0 0.5 0.5
1 0.418679 0.420827 0.418852 +0.007236 -0.006002
2 0.306554 0.300296 0.329879 +0.007129 -0.006431
3 0.217922 0.219317 0.233898 +0.007418 -0.007693
4 0.157096 0.154636 0.170608 +0.006886 -0.006416
5 0.0912084 0.0916131 0.099791 +0.0067610 -0.0088078
6 0.0241709 0.0228891 0.0228501 +0.0043367 -0.0045876

Table 3.7: The comparison of ∆w

r-bin ∆w of signal MC reference ∆w of MC reference ∆w of Data

0 0.0 0.0
1 0.0002607 0.0583019 0.0569661 +0.0089233 -0.0091655
2 0.00121148 0.00573998 0.0126192 +0.0091807 -0.0091474
3 0.00616917 -0.0392635 -0.0147724 +0.0103518 -0.0099888
4 -0.0042785 0.00474508 -0.000550289 +0.009020215 -0.008879500
5 0.0024612 -0.0118737 0.00887704 +0.00930821 -0.00929498
6 -0.00225408 -0.00585326 0.00465683 +0.00569346 -0.00578797



Chapter 4

Time dependent analysis of
B0 → D∗π decays

4.1 Difference between B0B0 pair decay time ∆t

The difference between B0B0 pair decay time is given by:

∆t ≡ tsig − ttag (4.1)

where tsig and ttag are the decay time of signal-side B(Bsig) and tag-side B(Btag) respec-
tively. Bsig represents B which has decayed into D∗+π−. Btag represents B which has
been generated from the same Υ(4S) as Bsig. ∆t has a time scale of pico-second, there-
fore it cannot be measured directly. We calculate ∆t from the decay vertices of Bsig and
Btag. Since Bsig and Btag are almost stationary with respect to Υ(4S) rest frame, typical
velocity of them is about third part of the speed of light and Υ(4S) is strongly boosted
to the direction of beam-pipe (z−axis), ∆t is expressed as:

∆t ≃ ∆z

βγc
(4.2)

where ∆z is the difference between the decay vertices of Bsig and Btag in z-axis. βγ is
Lorentz boost factor. Since the collision energy at Belle is constant, the velocity of B is
also constant and βγ∼ 0.425.

The decay vertex of Bsig is reconstructed from the charged tracks and D0(D±) mo-
mentum. Because of the finite lifetime of D0 and D±, it is necessary to roll back the
daughter particles of D0(D±) according to D0(D±) momentum. The decay vertex of Btag

is reconstructed from the charged tracks that are not associated with Bsig.

4.2 Fit procedure

Unbinned maximum likelihood fits to the four time-dependent decay rates (B0→D∗+π−,

B0→D∗−π+, B
0→D∗−π+, B

0→D∗+π−) are performed to extract S±. In this fit, −2lnL≡−
2ΣilnLi are minimized, where Li is a likelihood for i-th event given by:

Li = (1− fol)[fsigPsig⊗Rsig + (1− fsig)Pbkg⊗Rbkg] + folPol (4.3)

45



46 CHAPTER 4. TIME DEPENDENT ANALYSIS OF B0 → D∗π DECAYS

Pbkg⊗Rbkg ≡ fB0PB0⊗RB0 + fB±PB±⊗RB± + (1− fB0 − fB±)Pcon⊗Rcon (4.4)

where fsig,B0, B± are the signal/background fractions, Psig,B0, B±, con, ol are the probability
density functions and Rsig,B0, B±, con are the ∆t resolution functions.

The fsig,B0, B± are determined on an event-by-event using ∆E value, r and D0(+) decay
mode. We provided the fixed ∆E PDF with respect to each D0(+) decay mode and each
r-bin as a reference. We reconstructed generic MC and divided the events into signal,
continuum background and the background from B0(±) decay. We fixed the shape of ∆E
PDF for B0(±) background by fitting each samples. We include the self cross feed in signal,
where the self cross feed represents the event which has been mistaken K+ for π+ and π+

for K+ at the same event. The ratio in signal and the shape of ∆E PDF for self cross feed
were fixed by generic MC. Then we reconstructed real data and fitted ∆E PDF to the
events with respect to D0(+) decay mode and r-bin. We use floating double-Gaussian and
a line for signal and continuum background, respectively. ∆E PDFs for each D0(+) decay
mode and each r-bin are determined. The fsig,B0, B± for an event are extracted from the
∆E PDF according to ∆E value. Figure 4.1 shows ∆E plot of real data, combined in all
r-bin of SVD2.

The Psig, PB0 , PB± and Pcon are signal PDF, neutral B background PDF, charged B
background PDF and continuum background PDF, respectively. Pol explains an outlier
component which has a very long tail described as a single gaussian with a width of about
40 ps. We explain them in next section.

The ∆t resolution functions, denoted by Rsig, R
0
B, R

±
B and Rcon, are determined on

event-by-event basis, using the estimated uncertainties on the z vertex positions [20][21].
R(∆t) is represented by convolution of four resolution components as follows:

R(∆t) = Rrec(∆t)⊗Rasc(∆t)⊗Rnp(∆t)⊗Rk(∆t). (4.5)

• Rrec(∆t) : Bsig decay vertex resolution

• Rasc(∆t) : Btag decay vertex resolution

• Rnp(∆t) : a non-primary track effect in the Btag vertex reconstruction

• Rk(∆t) : an effect from the kinematic approximation that B mesons are produced
at rest frame in the Υ(4S)

The detector resolution functions Rrec(∆t) and Rasc(∆t) are a sum of two gaussians:

Rrec(∆t) = (1− f tail
rec )G(∆t; smain

rec ·σrec) + f tail
rec G(∆t; stailrec ·σrec) (4.6)

Rasc(∆t) = (1− f tail
asc )G(∆t; smain

asc ·σasc) + f tail
asc G(∆t; stailasc ·σasc) (4.7)

where f is a minor part fraction of two gaussians, s is the scale factor and σ is the error
of the vertex reconstruction. G(t; σ) is a gaussian defined by:

G(t; σ)≡ 1√
2πσ

exp (− x2

2σ2
). (4.8)

Rnp(∆t) is a sum of Dirac’s delta function and exponential function:

Rnp(∆t) = fδ·δ(∆t) + (1− fδ)·[fp·Ep(∆t; τp) + (1− fp)·En(∆t; τn)] (4.9)
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where

Ep(t; τ)≡
1

τ
exp(− t

τ
) for t≥ 0, otherwise 0 (4.10)

En(t; τ)≡
1

τ
exp(+

t

τ
) for t≤ 0, otherwise 0. (4.11)

If Btag decays into lepton, fδ is set to 1.
Rk(∆t) is changed to be dependent on cosine of an angle between B momentum in

center of mass system and z-axis (cos θB). If cos θB = 0, Rk(∆t) is delta function.
Otherwise Rk(∆t) is exponential function.
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Figure 4.1: ∆E PDF. Red line is signal PDF, black dashed line is continuum BG PDF,
green line is B0 BG PDF and magenta line is B± BG PDF.
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4.3 Probability Density Function for ∆t

4.3.1 signal PDF

Signal events include an event with correct identification and an event with wrong iden-

tification with respect to flavor, B0 or B
0
. Using the wrong tag fraction w, signal PDF

are described as:

Psig(q = −1;Bsig→D∗∓π±) =

(1− w
B0)P (B0→D∗∓π±) + wB0P (B0→D∗∓π±) (4.12)

Psig(q = +1;Bsig→D∗±π∓) =

(1− wB0)P (B0→D∗±π∓) + w
B0P (B0→D∗±π∓) (4.13)

P (B0→D∗∓π±) =
e
− |∆t|

τ
B0

8τB0

[1±Ccos(∆m∆t)− S∓sin(∆m∆t)] (4.14)

P (B0→D∗±π∓) =
e
− |∆t|

τ
B0

8τB0

[1±Ccos(∆m∆t) + S±sin(∆m∆t)]. (4.15)

tag side interference

Tag-side decay can have a CPV, like signal-side decay, called tag side interference (TSI)
[22]. Measured S± include this effect. S± are described as:

S+
fav = S+ + S−

tag (4.16)

S+
sup = S+ − S+

tag (4.17)

S−
fav = S− + S+

tag (4.18)

S−
sup = S− − S−

tag (4.19)

where subscript fav and sup represent favored mode and suppressed mode, respectively,
and S±

tag is time-dependent CP violating parameters for TSI described as:

S±
tag = −2

R′

1− 2R′2 sin(2ϕ1 + ϕ3±δ′). (4.20)

To measure the S±
tag, B

0→D∗−l+ν sample without lepton tag events were used [23][24].
B0→D∗−l+ν were reconstructed and it has no CPV from reconstructed B. CPV which
is measured by B0→D∗−l+ν therefore come from tag-side B. Observed TSI is as follows:

S+
tag = −0.0096±0.0073 (4.21)

S−
tag = +0.0067±0.0073. (4.22)
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4.3.2 background ∆t shape

Background ∆t shapes were determined for continuum, neutral B and charged B back-
ground with respect to SVD1 and SVD2. For the background PDF, we used:

Pcon = fδ·δ(∆t− µδ) + (1− fδ)exp(−
|∆t− µexp|

τcon
) (4.23)

PB0BG =
exp(− |∆t|

τB0BG
)

8τB0BG

{1− qtagqrec(1− 2wrbin)cos(∆m∆t)} (4.24)

PB±BG =
exp(− |∆t|

τB±
)

8τB±
{1− qtagqrec(1− 2wrbin)} (4.25)

where qtag, rec are the parameters of B flavor, qtag, rec = +1(−1) represent B is a B0(B
0
).

Resolution function for continuum background is described as:

Rcon = (1− f tail
con )G(∆t; smain

con ·σvtx) + f tail
conG(∆t; stailcon·σvtx). (4.26)

The background shape parameters for B0 and B± were determined by the fitting to
generic MC. For continuum BG, real data in ∆E − Mbc sideband region were used for
fitting. The fit results are shown in Table 4.1 and Figure 4.2.
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Table 4.1: Background shape parameters
Parameters SVD1 SVD2

continuum
fmlt
δ 0.557 ± 0.0778 0.436 ± 0.021
fmlt
tail 0.040 ± 0.012 0.033 ± 0.004

smlt
main 1.246 ± 0.048 1.293 ± 0.020
smlt
tail 5.83 ± 0.794 6.257 ± 0.314

f sgl
δ 0.455 ± 0.139 0.281 ± 0.040

f sgl
tail 0.213 ± 0.063 0.060 ± 0.006

ssglmain 0.857 ± 0.087 1.143 ± 0.031

ssgltail 3.302 ± 0.398 12.586 ± 1.683
µcon
exp(ps) 0.127 ± 0.062 -0.005 ± 0.013

µcon
δ (ps) -0.097 ± 0.036 0.008 ± 0.010

τcon(ps) 0.764 ± 0.091 0.809 ± 0.024
neutral B
τB0BG 1.410 ± 0.038 1.480 ± 0.014

∆mB0BG 0.541 ± 0.040 0.545 ± 0.012

wB0BG
1 0.453 ± 0.036 0.450 ± 0.014

wB0BG
2 0.327 ± 0.034 0.320 ± 0.012

wB0BG
3 0.207 ± 0.039 0.228 ± 0.014

wB0BG
4 0.245 ± 0.044 0.209 ± 0.016

wB0BG
5 0.133 ± 0.038 0.111 ± 0.014

wB0BG
6 0.067 ± 0.031 0.067 ± 0.010

charged B
τB±BG 1.648 ± 0.049 1.589 ± 0.015

wB±BG
1 0.496 ± 0.029 0.472 ± 0.010

wB±BG
2 0.352 ± 0.031 0.352 ± 0.009

wB±BG
3 0.222 ± 0.032 0.260 ± 0.011

wB±BG
4 0.133 ± 0.025 0.156 ± 0.010

wB±BG
5 0.074 ± 0.021 0.126 ± 0.010

wB±BG
6 0.016 ± 0.011 0.043 ± 0.006
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(c) neutral B BG of SVD1 generic MC in sig-
nal region
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(d) neutral B BG of SVD2 generic MC in sig-
nal region
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(e) charged B BG of SVD1 generic MC in sig-
nal region
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(f) charged B BG of SVD2 generic MC in sig-
nal region

Figure 4.2: Pbkg plot
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4.4 Extraction of B0 lifetime and B0B0 mixing param-

eter

To check the validity of the fitting procedure, the lifetime of B0 and the mixing parameter
of B0B0 were extracted and compared with world average. To extract them, we have
combined B0 events and B0 events. As a result of the combination, signal PDF for
favored mode and suppressed mode becomes:

Psig, fav = e
− |∆t|

τ
B0

4τB0
[1 + (1− wB0 − w

B0)(Ccos(∆m∆t) + (S+ − S−)sin(∆m∆t)]

≃ e
− |∆t|

τ
B0

4τB0
[1 + C(1− wB0 − w

B0)cos(∆m∆t)] (4.27)

Psig, sup = e
− |∆t|

τ
B0

4τB0
[1 + (1− wB0 − w

B0)(Ccos(∆m∆t)− (S+ − S−)sin(∆m∆t)]

≃ e
− |∆t|

τ
B0

4τB0
[1− C(1− wB0 − w

B0)cos(∆m∆t)] (4.28)

where σ, in any case small, is ignored, then CP violating term are canceled.
We fitted τ 0B and ∆m using the data which were accumulated by Belle. Above resolu-

tion function and background PDF were used. We obtained the values that are consistent
with world averages as shown in Table 4.2. Figure 4.3 and Figure 4.4 show the ∆t plot
and the mixing asymmetry, respectively.

Table 4.2: life time and mixing parameter fit results of the data which were accumulated
by Belle

Parameters fit results world average

τB0(ps) 1.532±0.007 1.519±0.007
∆m(ps−1) 0.505 ± 0.005 0.507 ± 0.004
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Figure 4.3: ∆t distribution of the data which were accumulated by Belle. Left plot is
suppressed mode and right plot is favored mode. Black line is continuum BG, green line
is B0 BG and magenta line is B± BG.
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Figure 4.4: Mixing asymmetry for the data which were accumulated by Belle of
SVD1+SVD2
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4.5 Linearity check of S±

We found that the fit procedure was the appropriate way. Then we needed to confirm
that S± which were returned from the fitting program were true S±. In order to check it,
we generated 14 kind of signal MC and fitted them. These samples were generated with
different combinations of R = |A(DCSD)

A(CFD)
|, weak phase ϕ1 +

ϕ3

2
and strong phase δ shown

in Table 4.3. The number of generation events for each parameter sets is 6.5 million. It is
≃ 32 times of the expected number of the events in the data which were accumulated by
Belle. Calculated S± from input parameters and the fit results also are shown in Table
4.3. We fitted these results with a linear function as shown in Figure 4.5 and Table 4.4.
As you can see, there are some bias in S± fit.

Table 4.3: MC parameter set and fit results of linearity check.
R ϕ1 +

ϕ3

2
δ input S± S+ fit result S− fit result

0.05 −π
4

0. 0.10 0.109±0.003 0.096±0.003
0.04 −π

4
0. 0.08 0.086±0.003 0.071±0.003

0.0245 −π
4

0. 0.049 0.061±0.003 0.044±0.003
0.02 -0.89685 0. 0.039 0.040±0.003 0.034±0.003
0.02 -0.40552 0. 0.029 0.033±0.003 0.023±0.003
0.02 -0.18547 0. 0.0145 0.016±0.003 0.011±0.003
0.02 π

2
0. 0.0 0.010±0.003 -0.003±0.003

0. 0.89685 0. 0.0 0.006±0.003 -0.008±0.003
0.02 0.18547 0. -0.0145 -0.006±0.003 -0.021±0.003
0.02 0.40552 0. -0.029 -0.023±0.003 -0.032±0.003
0.02 0.89685 0. -0.039 -0.037±0.003 -0.049±0.003
0.0245 π

4
0. -0.049 -0.044±0.003 -0.056±0.003

0.04 π
4

0. -0.08 -0.074±0.003 -0.088±0.003
0.05 π

4
0. -0.10 -0.091±0.003 -0.104±0.003

Table 4.4: S± linearity.
Gradient Y-intercept

S+ 1.00±0.01 0.0060±0.0007
S− 1.00±0.01 -0.0058±0.0007
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Figure 4.5: S± linearity. Solid line is fit line. Dashed line is a line of x = y.
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4.5.1 Vertex shift bias

We studied an occasion of the bias in MC and we found that the events with wrong
identification with respect to flavor caused the bias.

On investigation we found that came from non-primary effect. If non-primary particle
was used as primary particle at flavor tag, flavor identification was mistaken. For example,
a lepton from charm was mistaken for a lepton from bottom. And the vertex of tag-side
B has bias from the flight length of the mother particle of non-primary particle.

We investigated the differences between the vertices of the events with correct iden-
tification and the events with wrong identification. Then we found that the vertices of
tag-side B were different an average of 5µm.

Figure 4.6 shows the difference between measured z and generated z of signal MC.
The mean of the difference is 26µm for events with correct identification and 31µm for
events with wrong identification. We checked the correlation between the bias of the
vertex and y-intercept of S± linearity. We added the correction to ∆z of the events with
wrong identification and checked S± linearity. As shown in Figure 4.7, y-intercepts are
proportional to the bias of the vertex. The result of −4.35µm correction are shown in
Figure 4.8 and Table 4.5. There is no bias. Thus, we concluded that the source of the
bias in S± is due to mistaken flavor identification which affect vertex position.

Table 4.5: S± linearity with the bias of the vertex of the events with wrong identification.
Gradient Y-intercept

S+ 1.00±0.01 -0.0004±0.0007
S− 1.00±0.01 0.0005±0.0007
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Figure 4.6: Difference between measured z and generated z of signal MC (6.5 million
events)
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Figure 4.7: Correction of the vertex of the events with wrong identification vs. y-intercept
of S

±
linearity. Ever-increasing line is S+ and ever-decreasing line is S−.
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Figure 4.8: S± linearity with the bias of the vertex of the events with wrong identification.
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4.5.2 Effect from tag side interference

We investigated tag side interference (TSI) effect to S± by toy-MC.

To check the influence of the bias in vertex position on tag side interference, we
prepared toy-MC like D∗lν. We generated 2 kind of toy-MC. In order to reproduce the
bias of the vertex, the vertex of the events with wrong identification were shifted from
the calculated value from PDF. Other parameters were generated according to PDF. We
prepared 14 kind of toy-MC samples. Then Stag were fitted by the same method as S±.
Table 4.6 shows generation condition and fit results.

Table 4.6: S±
tag in toy-MC.

Generation condition fit results

input S±
tag bias of the events with wrong identification S+

tag S−
tag

0.10 0µm 0.100±0.002 0.097±0.002
0.08 0µm 0.081±0.002 0.079±0.002
0.049 0µm 0.050±0.002 0.049±0.002
0.039 0µm 0.038±0.002 0.040±0.002
0.029 0µm 0.027±0.002 0.032±0.002
0.0145 0µm 0.016±0.002 0.016±0.002
0.0 0µm 0.000±0.002 0.001±0.002
0.0 0µm 0.000±0.002 0.001±0.002

-0.0145 0µm -0.019±0.002 -0.011±0.002
-0.029 0µm -0.030±0.002 -0.029±0.002
-0.039 0µm -0.040±0.002 -0.039±0.002
-0.049 0µm -0.051±0.002 -0.046±0.002
-0.08 0µm -0.083±0.002 -0.078±0.002
-0.10 0µm -0.100±0.002 -0.102±0.002
0.10 4µm 0.092±0.002 0.109±0.002
0.08 4µm 0.073±0.002 0.089±0.002
0.049 4µm 0.040±0.002 0.057±0.002
0.039 4µm 0.030±0.002 0.048±0.002
0.029 4µm 0.021±0.002 0.039±0.002
0.0145 4µm 0.004±0.002 0.026±0.002
0.0 4µm -0.007±0.002 0.008±0.002
0.0 4µm -0.008±0.002 0.008±0.002

-0.0145 4µm -0.026±0.002 -0.006±0.002
-0.029 4µm -0.035±0.002 -0.023±0.002
-0.039 4µm -0.049±0.002 -0.031±0.002
-0.049 4µm -0.062±0.002 -0.040±0.002
-0.08 4µm -0.089±0.002 -0.073±0.002
-0.10 4µm -0.111±0.002 -0.090±0.002

We fitted S±
tag fit results with a linear function and found that the bias of vertices also

makes the bias of S±
tag as shown in Figure 4.9.
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The fit results of S±
tag are described as:

S+
tag → S+

tag −∆S (4.29)

S−
tag → S−

tag +∆S (4.30)

where ∆S is the S bias. As seen from above S±
tag are the addition of TSI and the bias

which comes from the bias of vertices. Using eq.4.29, 4.30, eq.4.16 ∼ 4.19 are represented
as:

S+
fav = S+ + S−

tag (4.31)

S+
sup = S+ − S+

tag (4.32)

S−
fav = S− + S+

tag (4.33)

S−
sup = S− − S−

tag. (4.34)

Then S± can be extracted even if the precise value of ∆S is unknown.
It confirmed by toy-MC that ∆S is canceled. First, to obtain S±

tag include ∆S, we made
toy-MC like D∗lν with the bias of the vertices. Input values for Stag are S+

tag = −0.0096
and S−

tag = 0.0067 for the events which has no lepton in the children of tag side B (non-
lepton tag events) and S±

tag = 0. for the other events (lepton tag events). Then fits to
obtain Stag were performed. Fit results of S±

tag for non-lepton tag are:

S+
tag = −0.0223 (4.35)

S−
tag = 0.0180. (4.36)

Fit results of S±
tag for lepton tag are:

S+
tag = −0.0051 (4.37)

S−
tag = −0.0013. (4.38)

Second, we made toy-MC with TSI and the bias of the vertices. Input values for S±

were varied from -0.1 to 0.1. Input values for S±
tag are S+

tag = −0.0096 and S−
tag = 0.0067

for non-lepton tag events and S±
tag = 0. for lepton tag events. Then fits to obtain S±

were performed. For S±
tag in fitted PDF, we used fit results of Stag (eq.4.36 ∼ 4.38). The

condition of generation and fit are in Table 4.7.
S± linearity fit results are shown in Figure 4.10. Comparison with Figure 4.5 shows

that ∆S in S±
tag cancel ∆S in S±.

By varying TSI in fitted PDF according to the error of D∗lν fit for the data which were
accumulated by Belle(Table 4.8), we estimate the systematic errors of TSI. It is smaller
than estimated statistical error as shown in Table 4.9.
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Table 4.7: The condition of linearity check of toy-MC with TSI
Generation condition Fitted PDF

S± -0.1 to 0.1 Fit parameters
S+
tag (non-lepton tag) -0.0096 -0.0223 (fit result of toy-MC)
S+
tag (lepton tag) 0.0 -0.0051 (fit result of toy-MC)

S−
tag (non-lepton tag) 0.0067 0.0180 (fit result of toy-MC)
S−
tag (lepton tag) 0.0 -0.0013 (fit result of toy-MC)

the bias of wrong tag events 4µm 0

Table 4.8: The error of Stag

error

S+
tag +0.0073 -0.0073

S−
tag +0.0073 -0.0073

S+
tag, lepton tag +0.0106 -0.0106

S−
tag, lepton tag +0.0107 -0.0107

Table 4.9: Estimated systematic errors of TSI
source S± error

S+
tag S+ +0.0024 -0.0038

S− +0.0022 -0.0003
S−
tag S+ +0.0014 -0.0011

S− +0.0024 -0.0037
S+
tag, lepton tag S+ +0.0025 -0.0038

S− +0.0021 -0.0002
S−
tag, lepton tag S+ +0.0005 -0.0018

S− +0.0041 -0.0022
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Figure 4.9: S±
tag linearity.
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Figure 4.10: S± linearity with TSI.
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We also changed fit parameters S± to a and c and estimated systematic errors. This
parameterization are used at babar and described as:

a = −(S+ + S−)

2
(4.39)

c = −(S+ − S−)

2
. (4.40)

Table 4.10 is fit result for a toy-MC sample that of input parameters are a = −0.039
and c = 0.

Table 4.10: Fit parameters a and c fit results
a c

input -0.039 0.0

0.0396±0.0014 0.0004±0.0014

systematic error source difference difference

S+
tag +1 σ 0.0387±0.0014 -0.0009 -0.0017±0.0014 -0.0021
S+
tag -1 σ 0.0405±0.0014 +0.0009 0.0026±0.0014 +0.0022

S−
tag +1 σ 0.0387±0.0014 -0.0009 0.0026±0.0014 +0.0022
S−
tag -1 σ 0.0405±0.0014 +0.0009 -0.0017±0.0014 -0.0021

S+
tag, lepton tag +1 σ 0.0386±0.0014 -0.0010 -0.0017±0.0014 -0.0021
S+
tag, lepton tag -1 σ 0.0406±0.0014 +0.0010 0.0026±0.0014 +0.0022

S−
tag, lepton tag +1 σ 0.0386±0.0014 -0.0010 0.0026±0.0014 +0.0022
S−
tag, lepton tag -1 σ 0.0406±0.0014 +0.0010 -0.0017±0.0014 -0.0021
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4.6 Extraction of S±

We fitted the CP violating parameters S± using the data which were accumulated by
Belle. The PDF include Stag are given as:

P (q = −1;Bsig→D∗∓π±) =

(1− w
B0)P (B0→D∗∓π±) + wB0P (B0→D∗∓π±) (4.41)

P (q = +1;Bsig→D∗±π∓) =

(1− wB0)P (B0→D∗±π∓) + w
B0P (B0→D∗±π∓) (4.42)

P (B0→D∗−π+) =
e
− |∆t|

τ
B0

8τB0

[1 + C cos(∆m∆t)− (S− + S+
tag) sin(∆m∆t)] (4.43)

P (B0→D∗+π−) =
e
− |∆t|

τ
B0

8τB0

[1− C cos(∆m∆t)− (S+ − S+
tag) sin(∆m∆t)] (4.44)

P (B
0→D∗+π−) =

e
− |∆t|

τ
B0

8τB0

[1 + C cos(∆m∆t) + (S+ + S−
tag) sin(∆m∆t)] (4.45)

P (B
0→D∗−π+) =

e
− |∆t|

τ
B0

8τB0

[1− C cos(∆m∆t) + (S− − S−
tag) sin(∆m∆t)] (4.46)

where wB0 and w
B0 are the probability of wrong identification with respect to B0 and B0,

respectively. Because measured Stag are include ∆S, we used S±
tag which are measured

from D∗lν sample with lepton tag events for D∗π events with lepton tag. Stag are shown
in Table 4.11.

Table 4.11: Stag which are measured from D∗lν sample

S+
tag (non-lepton tag events) -0.0096±0.0073

S−
tag (non-lepton tag events) +0.0067±0.0073
S+
tag (lepton tag events) -0.0192±0.0106

S−
tag (lepton tag events) +0.0103±0.0106

The fit results are:

S+ = 0.000±0.017 (4.47)

S− = 0.057±0.017 (4.48)

where the error is statistical error. Distributions of ∆t are shown in Fig.4.11.
The asymmetry plots using all events and the good quality flavor tagging (0.75 < |r| <

1.0) events are shown in Fig.4.12 and Fig.4.13, respectively.
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Figure 4.11: ∆t plot
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Figure 4.12: Asymmetry plots using all events
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Figure 4.13: Asymmetry plots using the good quality flavor tagging (0.75 < |r| < 1.0)
events
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4.7 Systematic error

The systematic errors come from the uncertainties of parameters that are fixed in the
fit. For estimating contributions from the uncertainties to the fit results, we repeated
the fit by varying each parameter by a certain amount, and assigned systematic errors at
differences from nominal fit results. The source of systematic errors that has correlation
between S+ and S− are listed.

• ∆t resolution
The parameters, f , s, σ, τ are the sources and shown in chapter.4.

• background ∆t shape

The parameters in Table.4.1 were varied by ±1σ.

• signal fraction

The signal/background fraction were varied by ±1σ.

• wrong tag fraction

The w and ∆w in Table.3.6 were varied by ±1σ.

• vertexing

We changed the cut and repeated the S± fit. The cuts are listed in Table 4.12.

Table 4.12: Value of vertexing cut
parameters default changed value

Vertex fit quality h < 50 20, 100
Track selection for multi-track vertex σz < 200µm no-cut
Track selection for single-track vertex σz < 500µm no-cut

Realistic lifetime |∆t| < 70 ps 40 ps, 100 ps

• physics parameters (τB0 , ∆m)

We changed according to PDG error.

• tag-side interference

We changed according to the measurement of D∗lν.

Although it is expected that there are some CP violating background, neutral B
background is almost negligible. Therefore systematic error from CP violating background
can be ignored.

Total systematic error is ±0.011 for both S+ and S−. Table.4.13 summarizes the
systematic errors. The error of previous analysis is ±0.014 for both S+ and S− as shown
in Table.4.13. In this analysis, we found the occasion of S± fit bias. The bias was included
in tag-side interference and their systematic errors were combined.
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Table 4.13: Systematic error
Sources S+ S− previous analysis

∆t resolution +0.010 -0.010 +0.010 -0.010 ±0.005
background ∆t shape +0.0001 -0.0001 +0.0001 -0.0001 ±0.0001

signal fraction +0.0010 -0.0005 +0.0007 -0.0007 ±0.002
wrong tag fraction +0.0006 -0.0005 +0.0005 -0.0004 ±0.002

vertexing +0.0008 -0.0001 +0.0004 -0.0005 ±0.004
physics parameters (τB0 , ∆m) +0.0001 -0.0001 +0.0007 -0.0005 ±0.001

tag-side interference +0.005 -0.005 +0.005 -0.006 ±0.005
S± fit bias ±0.010
combined +0.011 -0.011 +0.011 -0.011 ±0.014





Chapter 5

Conclusion

5.1 Result

The results of this analysis are

S+ = − 2R

1 +R2
sin (2ϕ1 + ϕ3 + δ) = 0.000±0.017±0.011 (5.1)

S− = − 2R

1 +R2
sin (2ϕ1 + ϕ3 − δ) = 0.057±0.017±0.011 (5.2)

where the first error is statistical and the second error is systematic. These results are
shown in Figure.5.1. The vertical axis is S− and the horizontal axis is S+. In this plot,
we ignored the difference of detection efficiency that originated from charge conjugate.
The shaded regions indicate allowed regions. The darkened circled regions displays 1σ,
2 σ and 3 σ uncertainties.

We can also express the results as parameters a, c:

a =
2R

1 +R2
sin (2ϕ1 + ϕ3) cos δ = − (S+ + S−)

2
= − 0.029±0.012±0.011 (5.3)

c =
2R

1 +R2
cos (2ϕ1 + ϕ3) sin δ = − (S+ − S−)

2
= 0.029±0.012±0.011. (5.4)

Since a is the amplitude of the asymmetry distribution, the deviation of a from zero is
the significance of CP violation. We obtained that the significance was 2.0σ. While the
deviation of c∝ cos (2ϕ1 + ϕ3) sin δ from zero means the possibility that δ has some value.
Figure.5.2 shows the comparison with previous results of the Belle and the Babar.

The next step for the analysis of B0B
0 → D∗∓π± is the constraint on (2ϕ1 + ϕ3). We

have two measurements, S+ and S−, while they include three unknowns, (2ϕ1 + ϕ3), R
and δ. It can be calculated by the following procedure:

1. δ is assumed to be a value that consists with the theoretical value and the measure-
ment value.
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Figure 5.1: Result of the S± measurements. The vertical axis is S− and the horizontal
axis is S+.

2. We fix δ and generate many parameterized MC experiments with the same sensi-
tivity as the data sample. Parameters are (2ϕ1 + ϕ3) and R.

3. We compare observed a, c from MC with measured a, c. Then we get the confidence
level for each MC parameters.

In addition, R can be estimated by following equation:

R =

√√√√B(B0→D∗+
s π−)

B(B0→D∗−π+)

fD∗

fD∗
s

tan θC . (5.5)

Using it, the parameter of MC can be reduced only to (2ϕ1 + ϕ3).
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Figure 5.2: comparison with the previous results of the Belle and the Babar
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