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Summary

In 1972, A. Gierer and H. Meinhardt proposed the following activator-inhibitor system as a
model of the head regeneration in hydra:

(GM)



∂A
∂t
= ε2∆A − µa(x)A + ρa(x)

(caAp

Hq + ρ0(x)
)

in Ω,

∂H
∂t
= D∆H − µh(x)H + ρh(x)

chAr

H s in Ω,

∂A
∂ν
=
∂H
∂ν
= 0 on ∂Ω.

Here, Ω is a bounded domain in Rn with smooth boundary ∂Ω, ν denotes the unit outer normal
to ∂Ω, ∆ =

∑n
j=1 ∂

2/∂x2
j is the Laplace operator, ca, ch, ε, D are positive constants, µa(x), ρa(x),

ρ0(x), µh(x), ρh(x) are positive functions. They hypothesized that the head of hydra is formed
at the place the activator concentrates. Moreover, since the activator grows auto-catalytically,
they assumed that the inhibitor has the role of reducing the growth of activator to prevent the
explosion of the activator concentration. In numerical situations, the system (GM) exhibits
various type of patterns. Most typical one is the formation of spike-like patterns in which
the activator concentrates in a very narrow region around finitely many points. Sometimes
the activator concentrates around curves or surfaces. Some Patterns are stationary, and others
are nonstationary, depending on the parameters and initial data. From a mathematical point of
view, it is very difficult to understand rigorously the process of the formation of pattern in (GM).
For example, we do not know how to find all stationary solutions, and hence it is hopeless to
understand the global behavior of a solution with an arbitrary initial data. Therefore, it is natural
to consider a simplified system. Keener [3] proposed to take the limit of D → ∞. Formally
speaking, in this limit, ∆H → 0 and hence H(x, t) → ξ(t) because of the no-flux boundary
condition. Here ξ(t) is an unknown. To derive an equation for ξ(t), we integrate the second
equation of (GM) over Ω to obtain

∂

∂t

∫
Ω

H(x, t) dx = −
∫
Ω

µh(x)H(x, t) dx +
∫
Ω

ρh(x)ch
A(x, t)s

H(x, t)s dx.

Hence, as formal limit, we are led to

(SS)



∂A
∂t
= ε2∆A − µa(x)A + ρa(x)

(caAp

ξq + ρ0(x)
)

for x ∈ Ω, t > 0

|Ω|dξ
dt
= −ξ

∫
Ω

µh(x) dx +
1
ξs

∫
Ω

ρh(x)chAr dx for t > 0.

∂A
∂ν
= 0 for x ∈ ∂Ω, t > 0.

which is called the shadow system for (GM). This shadow system is regarded to preserve
some of the essential properties of the original system, and therefore the initial-boundary value
problem for (SS) is an important one that should be investigated first in theoretical studies.
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Stationary solutions of the shadow system are of particular interest, since we often observe a
spike-like stationary solution in numerical simulations. We note that ξ is an unknown constant
if we consider the stationary problem for (SS). Therefore it is convenient to scale the activator
as A(x) = ξq/(p−1)u(x), which yields

(SSS)



ε2∆u − µa(x)u + ρa(x)caup + ξ−q/(p−1)ρa(x)ρ0(x) = 0 in Ω,

ch

∫
Ω

ρh(x)ur dx − ξs+1− qr
p−1

∫
Ω

µh(x) dx = 0,

∂u
∂ν
= 0 on ∂Ω.

If ρ0(x) ≡ 0, then any (positive) solution of the Neumann problem for the single equation
ε2∆u − µa(x)u + caρa(x)up = 0 in Ω,
∂u
∂ν
= 0 on ∂Ω

determines the value of ξ by the second equation of (SSS). A fundamental question is whether
this Neumann problem has a nontrivial solution or not. There have been a huge amount of
literature concerning this question in the case where µa(x) and ρa(x) are constants. However,
not much has been known about the case of variable coefficients.

The purpose of this thesis is to study the structure of nontrivial solutions of the boundary
value problem for the following single equation with variable coefficients when the parameter
ε > 0 is sufficiently small:

(P)
{
ε2A(x)u − a(x)u + b(x)up + δσ(x) = 0, u > 0 in Ω,
B(x)u = 0 on ∂Ω.

Here, Ω is a bounded domain in Rn with smooth boundary ∂Ω, and p satisfies 1 < p <
(n + 2)/(n − 2) if n ≥ 3, while 1 < p < ∞ if n = 1, 2, ε > 0 and δ ≥ 0 are sufficiently
small constants, A(x) =

∑n
i, j=1(∂/∂xi)ai j(x)(∂/∂x j) is a strictly and uniformly elliptic operator

with ai j ∈ C1,α(Ω); ai j = a ji, both of a and b are of class C2 on Ω and bounded from below
by positive constants; and σ is a nonnegative C2 function on Ω with ∥σ∥L∞(Ω) = 1. Moreover,
B(x) =

∑n
i, j=1 νiai j(x)(∂/∂x j) is the co-normal differential operator, and ν = (ν1, · · · , νn) is the

unit outward normal to ∂Ω.
We are interested in point condensation phenomena, or point concentration phenomena,

observed in solutions of the problem (P) by which we mean that as ε ↓ 0, the distribution of a
solution concentrates around a finitely many points on Ω. In this thesis, however, we consider
mainly the case of only one concentration point. Problem (P) is a generalization of [5], [6]
where all coefficients are constants and [7] where only b(x) is not a constant, and we would like
to know the effect of the spatial heterogeneity on the concentration point, especially in the case
where the inhomogeneous term δσ(x) does not vanish identically.

First, we introduce an energy functional Jε(u) corresponding to (P):

(1)
Jε(u) :=

1
2

∫
Ω

(
ε2

n∑
i, j=1

ai j(x)
∂u
∂xi

∂u
∂x j
+ a(x)u2

)
dx

− 1
p + 1

∫
Ω

b(x)up+1
+ dx − δ

∫
Ω

σ(x)u dx,
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for u ∈ W1,2(Ω), where u+(x) = max{u(x), 0}. Then we can prove the following

Proposition 1 (Minimal Solution) There exists a positive number δ∗ such that for each δ ∈
[0, δ∗) the functional Jε(u) has a unique local minimizer um,ε in W1,2(Ω), regardless the size of
ε > 0. Moreover, if δ = 0, then um,ε(x) ≡ 0, while if δ > 0, then

0 < um,ε(x) ≤ δ

minx∈Ω a(x)
for all x ∈ Ω.

Definition 1 We call the solution obtained in Proposition 1 the minimal solution for the problem
(P).

Next, we put

(2) Iε(v) := Jε(um,ε + v) − Jε(um,ε) for v ∈ W1,2(Ω).

We can apply the mountain pass lemma ([1], [?, Theorem 2.2]) to this functional Iε and conclude
as follows:

Lemma 2 (Mountain Pass Solution) Let δ∗ be the positive constant given by Proposition 1 and
0 ≤ δ < δ∗. Then zero is a local minimum of Iε in W1,2(Ω) for each ε > 0. In addition, there
exists an e ∈ W1,2(Ω) such that Iε(e) < 0. Let Γ = {γ ∈ C0([0, 1]; W1,2(Ω)) | γ(0) = 0, γ(1) = e}.
Then

cε = inf
γ∈Γ

max
t∈[0,1]

Iε(γ(t))

is a positive critical value of Iε. Moreover, cε is the smallest positive critical value of Iε.

We remark here that a critical point uc ∈ W1,2(Ω) of Jε is a weak solution of Problem (P).
Then by the elliptic regularity theory we conclude that uc is a classical solution of (P). In
particular, uc ∈ C2,α(Ω) (see [?, Theorem 6.31 and pp.130]). Clearly, a classical solution of (P)
gives rise to a critical point of Jε. Hence, finding a solution of (P) is equivalent to finding a
critical point of Jε. On the other hand, vc ∈ W1,2(Ω) is a critical point of Iε if and only if um,ε+vc

is a critical point of Jε. Consequently our problem is reduced to finding a critical point of Iε.
Now let vε be a critical point of Iε corresponding to cε: Iε(vε) = cε and I′ε(vε) = 0. Then

uε = um,ε + vε

is a solution of (P). We call uε a ground-state solution of (P).
To treat a point-concentration phenomenon in a family of ground-state solutions of (P), we

define the following:

Definition 2 A family {uε}0<ε<ε0 of solutions of (P) is said to exhibit a point concentration
phenomenon if there exists positive constants c0 and C0 with c0 < C0 such that

(3) c0ε
n ≤ Jε(uε) − Jε(um,ε) ≤ C0ε

n.

Moreover, a point P0 ∈ Ω is said to be a concentration point of {uε} if {uε} satisfies (3) and there
is a sequence {εk}k∈N such that εk ↓ 0 and Pεk → P0 as k → ∞ where Pε is a local maximum
point of uε on Ω.
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The purpose of this thesis is (i) to show that the ground-state solutions {uε} exhibit a point-
condensation phenomenon, and they concentrate at exactly one point P0 ∈ Ω; and (ii) to give a
method to locate P0 by introducing a locator function.

Definition 3 For any Q ∈ Ω, let

Φ(Q) := a(Q)1−n/2+2/(p−1) b(Q)−2/(p−1)(det AQ)1/2,

where AQ := (ai j(Q))1≤i, j≤n.

We call Φ(Q) the primary locator function.

Let um(Q) denote the smaller of the two non-negative roots of the algebraic equation

(4) −a(Q)ζ + b(Q)ζ p + δσ(Q) = 0.

Put

(5) γ(Q) :=
{

b(Q)
a(Q)

}1/(p−1)

um(Q).

Finally we define an important integral as follows:

(6)
I(γ(Q)) := I(γ(Q); w)

=
1
2

∫
Rn

(
|∇w|2 + w2

)
dy − 1

p + 1

∫
Rn

{
(γ(Q) + w)p+1 − γ(Q)p+1 − (p + 1)γ(Q)pw

}
dy

where w = wγ(Q) is a unique positive solution of the following boundary value problem:

(GS-γ)

∆w − w + (γ(Q) + w)p − γ(Q)p = 0 in Rn,

lim
|y|→∞

w(y) = 0, w(0) = max
y∈Rn

w(y).

Definition 4 For each Q ∈ Ω, let

Λ(Q) := Φ(Q)I(γ(Q)).

We call Λ(Q) the locator function for the boundary value problem (P).

A few remarks are in order here. First, wγ(Q) is known to be spherically symmetric with
respect to the origin, and decays exponentially as |y| → ∞ (see [?]). Second, we shall prove that
(GS-γ) has at most one solution if δ is sufficiently small by making use of the implicit function
theorem and the uniqueness of solution of ∆w − w + wp = 0 (due to, e.g., [4]). Third, note that
γ(Q) is constant on Ω if and only if either (i) δ = 0 or (ii) σ(x) = Ca(x)p/(p−1)b(x)−1/(p−1) where
C is constant. In the case where γ(Q) is a constant function, the locator function Λ(Q) reduces
to a constant multiple of the primary locator function Φ(Q). Here, in the case of δ > 0, we do
not know what the upper bound of γ depends on since we use the implicit function theorem to
prove the uniqueness of solution of (GS-γ). However, we can know that the upper bound of
∥γ∥L∞(Ω) depends on only p, n and γ in the cases of 1 < p < ∞ if n = 1, p ≤ 2 if n = 2, and
1 < p ≤ n/(n − 2) if n ≥ 3 by the shooting theory of the ordinary equation, [2] and [4].

The main results of this thesis are stated as follows.
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Theorem 3 Suppose that P0 ∈ Ω is a concentration point of a family {uε}ε>0 of the ground-state
solutions. Then, the following holds:

(i) If minQ∈∂ΩΛ(Q) < 2 minQ∈Ω Λ(Q), then P0 ∈ ∂Ω. Moreover, P0 is a minimum point of the
locator function Λ(Q) over ∂Ω,

(ii) If minQ∈∂ΩΛ(Q) > 2 minQ∈Ω Λ(Q), then P0 ∈ Ω. Moreover, P0 is a minimum point of
Λ(Q) over Ω.

We prove this theorem by finding the limit of Iε(vε) as ε ↓ 0, assuming that a family {uε} of
ground-state solutions of (P) exhibits a point concentration phenomenon around a point P0.
Here, we note that Iε(vε) = Jε(uε) − Jε(um,ε). To do this, we derive an asymptotic form uε near
a local minimum point Pε. From this limit formula, we see that Iε(vε) has to converge to the
minimum of Λ(Q) either over the boundary or over Ω as ε ↓ 0 because Iε(vε) is the minimum
of the positive critical values of Iε(v).

By the definition ofΛ, if γ is constant, then I(γ(·)) is constant, henceΛ becomes the product
of Φ and a constant I(γ). We note that γ(x) is constant in both cases of (i) δ = 0 and (ii)
σ(x) = Ca(x)p/(p−1)b(x)−1/(p−1) by (4) and (5). Thus, we have the following corollary:

Corollary 4 Assume either (i) that δ = 0 or (ii) that σ(x) = Ca(x)p/(p−1)b(x)−1/(p−1) where C is
constant. Suppose that P0 ∈ Ω is a concentration point of a family {uε}ε>0 of the ground-state
solutions of (P). Then, the following holds:

(I) If minQ∈∂ΩΦ(Q) < 2 minQ∈Ω Φ(Q), then P0 ∈ ∂Ω. Moreover, P0 is a minimal point of the
primary locator function Φ(Q) over ∂Ω.

(II) If minQ∈∂ΩΦ(Q) > 2 minQ∈Ω Φ(Q), then P0∈Ω. Moreover, P0 is a minimal point of Φ(Q)
over Ω.

Although we can locate the concentration point P0 by finding the minimum points of Λ over
Ω and ∂Ω, it is in general very difficult to calculate these minimum points. For, we must solve
the boundary value problem (GS-γ) in Rn and know the dependence of the energy I(γ(Q);Rn)
on Q explicitly. However, if δ is sufficiently small, then the minimal points of the primary
locator function Φ gives us a first approximation:

Theorem 5 Suppose that P0 ∈ Ω is a concentration point of a family {uε}ε>0 of the ground-state
solutions. In addition, in the case of p < 2, assume that

(S) if σ(x) = 0 for some, x0 ∈ ∂Ω then
∂σ

∂ν
(x0) = 0.

Then, the following holds:

(I) If minQ∈∂ΩΦ(Q) < 2 minQ∈Ω Φ(Q), then P0 ∈ ∂Ω. Moreover, if all the minimum points of
Φ|∂Ω on ∂Ω are nondegenerate (as a critical point), then there exists a minimum point Q0

of Φ over ∂Ω such that |P0 − Q0| = O(δ).
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(II) If minQ∈∂ΩΦ(Q) > 2 minQ∈Ω Φ(Q), then P0 ∈ Ω. Moreover, if all the minimum points of
Φ in Ω are nondegenerate, then there exists a minimum point Q0 of Φ over Ω such that
|P0 − Q0| = O(δ).

Consequently, we know the location of P0 by calculating the minimum of Φ over Ω and that
over ∂Ω. Moreover, we find that if the inhomogeneous term δσ is sufficiently small, then δσ
does not affect much the location of the concentration point.

So far, we have been concerned with a concentration phenomena observed in groud-state
solutions whose existence is guranteed by the mountain pass lemma. However, it is quite pos-
sible that solutions with higher energy Jε(u) > cε exist and exhibit a point-concentration phe-
nomenon, as in the case of spatially homogeneous equations. The following result reveals the
role of the primary locator function Φ in locating the concentration point.

Theorem 6 Let {uε}0<ε<ε0 be a family of positive solutions of the following Neumann problem:

(7)


ε2∆u − a(x)u + b(x)up = 0, u(x) > 0 in Ω,
∂u
∂ν
= 0 on ∂Ω.

Assume that there exists a positive constant C0 such that 0 < Jε(uε) ≤ C0ε
n for 0 < ε < ε0.

Assume that uε attains a local maximum at Pε ∈ Ω and Pε → P0 ∈ Ω as ε ↓ 0. Then P0 is a
critical point of the primary locator function Φ, that is, ∇Φ(P0) = 0. Moreover, for any R > 0,

uε(Pε + εz) = vPε(z) + O(ε) in C2(BR(0)) as ε ↓ 0,

where vQ(z) = (a(Q)/b(Q))1/(p−1)w(a(Q)1/2z) and w is a unique positive solution of the boundary
value problem

(GS-0)

∆w − w + wp = 0 in Rn,

lim
|y|→∞

w(y) = 0, w(0) = max
y∈Rn

w(y).

This theorem says that any solution uε with 0 < Jε(uε) ≤ C0ε
n looks like vPε((x − Pε)/ε)

near a local maximum point Pε as long as Pε stays away from the boundary. Moreover, this
result is a counterpart of that by Wei [8] where the case of constant coefficients is considered.

This thesis is organized as follows: In Chapter 2, we construct the minimal solution um,ε and
then prove the existence of mountain-pass solution stated in Lemma 2. Moreover, we prove the
uniqueness of entire solution which appears as the first approximation of ground-state solutions.
In the last section of Chapter 2 we derive an upper bound of energy of a ground-state solution,
which is crucial in proving Theorem 3. Chapter 3 is concerned with the asymptotic behavior of
ground-state solutions as ε ↓ 0. In Chapter 4 we prove Theorem 3, Corollary 4 and Theorem 5.
Finally in Chapter 5 we consider the boundary value problem (7) and prove Theorem 6.
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