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Abstract 

Frequent wildfires emit large amounts of black carbon (BC) into the atmosphere in the 

semiarid regions of the African continent. This atmospheric BC efficiently absorbs shortwave 

radiation and thus modifies the climate system on a regional scale. Therefore, it is essential to 

understand how geographical distribution patterns of BC emissions are controlled by climate 

and vegetation in these regions. In addition, carbonaceous aerosol emissions from wildfires 

are controlled by climatic cycles such as the El Niño–Southern Oscillation (ENSO) and the 

Indian Ocean Dipole, both of which regulate vegetation productivity related to the fuel load 

available for wildfires. However, the relationship between carbonaceous aerosol emissions 

and climatic cycles has not been evaluated quantitatively. On the other hand, in the future, 

Global Climate Model (GCM) simulation studies predicted the increment of air temperature 

and change of precipitation over the African continent. Other previous studies showed that a 

vegetation biomass increased with climate change in future. Therefore, amount of BC 

emission may increase with changes in fuel load and fire frequency due to those changes of 

climate and biomass. However, future BC emission from wildfire has not been evaluated 

quantitatively because there are high uncertainty of climate, ecosystem, and fire frequency in 

the future. 

First, we studied factors contributing to the variance of geographical distribution patterns 

of BC emissions. We applied a principal component analysis (PCA) to the correlations between 

dry season BC emissions observed by satellite and climate variables during the vegetation 

growing and dry seasons, and to correlations between BC and the leaf area index during the 

growing season, as independent values. We analyzed the burned fraction (BF) in the same 

way, but its factor loadings did not differ significantly from those of BC in sign or magnitude. 

During the growing season, the response pattern of vegetation productivity (an index of 

wildfire fuel loading) to climate variables explained 57.5% of the regional variability in BC 

emissions. This vegetation productivity was more closely correlated with the geographical 

distribution patterns of BC emission than climate variables such as temperature during the 
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dry season. The response pattern of vegetation productivity to climate during the vegetation 

growing season was roughly determined by vegetation parameters such as biome type and 

tree cover, which are heterogeneously distributed in Africa. Therefore, regional BC emission 

patterns would differ even if climate change occurred uniformly throughout semi-arid Africa. 

Second, we studied carbon emission sensitivity to changes in climate temporal variation. 

We conducted two sets of experiments using a spatially explicit individual-based dynamic 

global vegetation model (SEIB-DGVM), which contained a wildfire sub-model. The first set of 

experiments, referred to as precipitation or temperature no-cycle experiments, was forced by 

20 years of climate data with negligible inter-annual variation in annual precipitation or 

annual mean air temperature. The second set, referred to as precipitation or temperature 

cycle experiments, was forced by 20 years of climate data showing cyclic inter-annual 

variability at a frequency of 20, 10, and 6 years for precipitation or air temperature. The 

control experiment, which used observation-based climatic data from 1982 to 2009, 

reconstructed a reasonable spatial distribution of the observed carbon emissions from 

wildfires in Africa. In the no-cycle experiment for precipitation and temperature, carbon 

emissions in the northern hemisphere decreased by 15.4% and 15.1%, respectively, compared 

with emissions in the control experiment, whereas there was little difference in the southern 

hemisphere. In the cycle experiment for precipitation, carbon emissions increased in the 

northern hemisphere when the cycle of precipitation fluctuation was shorter: the increase 

ratios are 2.3 %, 3.0 %, and 5.2 % for the frequency of 20, 10, and 6 years, respectively. 

However, in the cycle experiment for temperature, carbon emissions did not significantly vary 

with fluctuations in the cycle. The pattern of cyclic changes in precipitation controls 

vegetation productivity, which relates fuel load for wildfire, and fraction of tree coverage, 

which relates fire possibility. Therefore, our simulation revealed the importance of the pattern 

of inter-annual variability in precipitation to regulating carbonaceous aerosol emissions in 

the African continent. 

Finally, we studied a future BC emissions from wildfire following previous chapters. We 

estimated future BC emission from wildfire using a dynamic global vegetation model with a 

climate projection provided by the MIROC 3.2 general circulation model, and analyzed the 

cause of changes in amount and spatial distribution of BC emission. In the African continent 

(37°S–34°N, 17°W–59°E), the average of annual BC emission increased by 30.5% during the 

21st century. Range of the increment of BC emission was higher for northern hemisphere 

(0°S–15°N, 17°W–41°E) than for southern hemisphere (30°S–0°N, 5°W–41°E) of the African 

continent: They were, 40.4% and 16.7 %, respectively. In accord with this trend, increment of 

biomass under future climate is higher for northern hemisphere than for southern 
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hemisphere: They were 39.8 % and 26.0%, respectively. These corresponding changes in the 

BC emission and biomass suggest that simulated increment of BC emission is caused by the 

increment of biomass, which is a result of higher atmospheric CO2 concentration under future 

environment. It is also shown that the changes in annual precipitation have intensive impacts 

on the geographical distribution of the BC emission.
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Chapter 1 

Introduction 

1.1 Study Background 

In semi-arid regions of Africa, wildfires occur frequently during the dry season and 

have a large effect on the structure, dynamics, and distribution of vegetation (Higgins et 

al. 2000, 2007; Sankaran et al. 2004, 2005; Bond et al. 2005a). Wildfires also emit large 

amounts of carbon aerosols (e.g., black carbon (BC) and organic carbon (OC)) (Bond et 

al., 2004). The percentage of BC emissions from wildfire to total BC emissions in the 

African continent was 75% (Fig. 1.1) and savanna burning in Africa contributes the 

greatest amount to BC for biomass burning (Fig 1.2). Atmospheric BC and OC have 

ability to change climatic system by absorbing or scattering shortwave radiation and 

thereby decreasing downward shortwave radiation on the land surface (Ramanathan 

and Carmichael 2008; Bond et al. 2011) (Fig. 1.3). Kawase et al. (2011) reported that the 

reduction in net radiation and evapotranspiration at the land surface due to 

atmospheric BC caused a decreasing trend of precipitation in tropical Africa during the 

20th century. Any decrease or increase in atmospheric BC is likely to have a significant 

impact on precipitation over Africa because the African continent is characterized by a 

high recycling ratio, i.e., the ratio of regional precipitation supplied by 

evapotranspiration from the land surface that falls as local precipitation to the total 

precipitation. Van der Ent et al. (2010) estimated this ratio to be 0.49 for a rectangular 

region (37°S–34°N, 17°W–59°E) surrounding the African continent (Fig. 1.4). 
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Fig. 1.1. Sectoral contributions to emissions of black and organic carbon emissions. The gray 

bars behind the colored bars represent the fraction of emissions from ‘‘contained’’ 

combustion (that undertaken for energy use, excluding open burning) in each region. The 

green bars to the left indicate the relative contribution of each region to the total. From 

Bond et al. (2004). 

 

Fig. 1.2. Emissions of BC and organic carbon aerosol. ‘‘Contained’’ combustion, based on 

1996 activity data of (a) BC and (c) organic carbon. Open burning, annual average of (b) BC 

and (d) organic carbon. The color coding is an approximately logarithmic scale. Units are ng 

m-2 s-1. From Bond et al. (2004). 
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Fig. 1.3. Global distribution of BC sources and radiative forcing (W m-2). Atmospheric solar 

heating due to BC (left) and surface dimming (right) due to atmospheric brown clouds (right) 

for the 2001 to 2003 period. This shows the reduction in absorbed solar radiation at the 

surface by all anthropogenic aerosols (BC and non-BC) in atmospheric brown clouds. This 

study integrates satellite aerosol data, surface network of aerosol remote sensing 

instruments and field observations with an aerosol-transport-chemical model and a 

radiative transfer model to obtain the forcing. From Ramanathan and Carmichael (2008). 

 

Fig. 1.4. Average continental precipitation recycling ratio (1999–2008). From van der Ent et 

al. (2010). 
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1.2 Purpose of This Study 

The purpose of this study is to understand the characteristic of spatiotemporal 

variability of BC emission from wildfire in the African continent. First, we estimated 

the factors that influence the occurrence of wildfires and the BC emission geographical 

distribution pattern by comparing the geographical distribution of the factors estimated 

from previous work and the analyzed principal component scores. Second, we 

quantitatively evaluated the effect of the periodic inter-annual variability in annual 

precipitation and annual mean temperature on carbon emissions from wildfires over the 

African continent by use of the spatially explicit individual-based dynamic global 

vegetation model (SEIB-DGVM). Finally, we estimated BC emission from wildfire in the 

future with SEIB-DGVM and future climate data, and then analyzed the cause 

of changes in spatial distribution of BC emission in the African continent.
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Chapter 2 

Geographical Variability of Relations among 

Black Carbon from Wildfires, Climate, and 

Vegetation in Africa 

2.1 Introduction 

Any decrease or increase in atmospheric BC is likely to have a significant impact on 

precipitation over the African continent. Because vegetation productivity determines 

the fuel production rate (Lehsten et al. 2009), an investigation of the relationships 

among fire, climate and vegetation abundance is necessary to understand climate 

system dynamics in Africa.  

The geographical pattern of wildfire frequency and intensity is primarily determined 

by climate, fuel loading and the moisture content of the fuel (Cooke et al. 1996, Bowman 

et al. 2009). The pattern is also affected by the vegetation type (Dwyer et al. 2000), 

lightning frequency, human population density (Keeley et al. 1999), land use 

(Russell-Smith et al. 2007) and tree cover (Archibald et al. 2009). However, the 

integration of these factors to generate the observed geographical pattern of wildfires 

has yet to be adequately evaluated quantitatively. 

Remote sensing studies of the Sahel have suggested that inter-annual perturbations 

in indices of vegetation greenness such as the normalized difference vegetation index 
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(NDVI) and the leaf area index (LAI) are primarily controlled by precipitation 

(Anyamba and Tucker 2005, Hickler et al. 2005). On the African continent generally, 

field studies suggest that precipitation is the primary determinant of plant species 

composition and plant production (Gonzalez 2001, MacGregor and O’Connor 2002, 

Lwanga 2003). Besides precipitation, air temperature and solar radiation intensity also 

affect vegetation productivity (Allen et al. 2010). 

The aim of this study was to estimate the factors that influence the occurrence of 

wildfires and the geographical distribution pattern of BC emissions (e.g. vegetation type, 

lightning frequency, human population density, land use and tree cover) in semiarid 

Africa. However, we were unable to directly analyze the correlations between the BC 

emission and these factors because there are no long-term time series data for, e.g. 

vegetation type and tree cover. Thus, the significant differences in the geographical 

distribution pattern of the 6 correlation coefficients, namely BC−precipitation (growing 

season), BC−temperature (growing, dry season), BC−cloud cover (growing, dry season) 

and BC−LAI (growing season) (i.e. variations in the 6 correlation coefficients across 

semi-arid Africa), were estimated by performing a principal component analysis (PCA). 

Meaningful comparisons of the geographical distribution patterns were analyzed using 

the variations in these 6 correlation coefficients across semi-arid Africa (i.e. the 

principal component scores). Finally, the factors that influence the occurrence of 

wildfires and the BC emission geographical distribution pattern were estimated by 

comparing the geographical distribution of the factors estimated from previous work 

and the analyzed principal component (PC) scores in this study. 

In Section 2.2, the study area and spatial resolution are defined, and the procedures 

for calculating the BC–climate and BC–vegetation parameter correlation coefficients 

and the PCA are described. In Section 2.3, each PC contribution ratio and the 

significant differences in the geographical distribution pattern of the BC–climate and 

BC–vegetation parameter correlations are comprehensively estimated. Then, the 

geographical distribution patterns are analysed using a variation of those correlation 

coefficients across semi-arid Africa using the PC scores. In Section 2.4, the factors that 

influence the BC emission geographical distribution pattern are estimated.
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2.2 Data and Outline of the Method 

2.2.1 Description of Black Carbon and Burned Fraction 

We used existing data sets for our analysis (Table 2.1). We converted the spatial 

resolution of the LAI and tree cover data to a 0.5° × 0.5° grid resolution to match the 

resolution of the other datasets by simple averaging over each grid cell domain.  

Table 2.1. Datasets used for analysis.  

LAI: leaf area index; BC: black carbon; BF: burned fraction

 

The BC is related to the burned fraction (BF) which was calculated by dividing the 

yearly burned area in a grid cell by the total area of that grid cell and to incomplete fuel 

combustion (Schmidt et al. 2001). The fire fuel comprises the hot volatile vapor-phase 

products of the thermal decomposition of vegetation. These vapors and their cracking 

products undergo flaming combustion. However, in competition with this, they can also 

undergo condensation and charring to powdery soot particles. These soot particles may 

combust or be swept into the air away from the fire to become aerosol BC. Thus, the 

distribution of hot volatiles between flaming combustion and thermo-condensation, and 

between aromatization and soot formation, determines the incomplete combustion ratio, 

which is a different quantity from the BF. Therefore, the determinants of BC are more 

complicated than those of BF. 

2.2.2 Analysis Domain and Period 

As the study area, we selected part of sub-Saharan Africa (3°N−12°N, 12°W−34°E and 
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15°S−5°S, 24°W−39°E) where a large amount of BC is emitted every year. In this study, 

we define the dry season, which corresponds to the fire season in Africa (Dwyer et al. 

2000), as the months of December to February (DJF) in the northern hemisphere and 

July to September (JAS) in the southern hemisphere. We define the growing season as 

the months of April to October in the northern hemisphere and the months of November 

to May in the southern hemisphere. We excluded from our analysis data for March and 

November (northern hemisphere) and those for June and October (southern 

hemisphere), because in those months the distinction between the growing and dry 

seasons is unclear. The growing season was defined so as to have no overlap with the 

dry season, and to include the month in which the LAI reached its maximum value in 

that hemisphere. 

We divided our study area into 40 large (3.0° × 3.0°) grid cells (Fig. 2.1). Each large 

grid cell was composed of 36 small (0.5° × 0.5°) grid cells. A large grid cell was included 

in the analysis if more than half of the contained small grid cells had mean BC 

emissions (averaged over the years 1997−2008; Fig. 2.1) 0.05 g C m–2 during the dry 

season in the region in which the large grid cell was located. The selected grid cells 

clustered in 3 regions, which are referred to as Regions 1−3 hereafter (Fig. 2.1). 
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Fig. 2.1. Black carbon (BC) emissions during the dry season in the northern and southern 

hemispheres averaged over 1997−2008: (a) December to February and (b) July to September. 

Data are from the Global Fire Emissions Database v. 3 (see Table 2.1). Red squares: large 

grid cells (3.0° × 3.0°) in the 3 analysis regions. 

2.2.3 Analysis Variable and Data Processing 

We analyzed the effect of climate variables during both the growing and dry seasons, 

and the effect of LAI during the growing season on BC emissions during the dry season 

and BF. First, we averaged the BC, BF, air temperature and cloud cover during the dry 

season for each year and each large grid cell. We did not average precipitation during 

the dry season because its quantity was negligible. We used the normalized probability 



2.2. DATA AND OUTLINE OF THE METHOD 

10 

 

density of annual BC emissions in the large grid cells to calculate the correlation 

coefficients between BC and each climate variable. Wildfire consumes its fuel load, and 

thus it rarely occurs every year in the same small grid cell (0.5° × 0.5°). As a result, the 

probability density of annual BC emissions in a single grid cell is unlikely to have a 

normal distribution. The distribution of the probability density of annual BC emissions 

averaged in each large grid cell (3.0° × 3.0°), however, is likely to be closer to a normal 

distribution. If an even larger grid size were employed, the probability density 

distributions of BC would become even closer to a normal distribution, but the 

heterogeneity of climate variables within a grid cell would be obscured. Therefore, we 

used trial and error to determine that a grid size of 3.0° × 3.0° gave the best balance in 

this trade-off.  

We similarly averaged the climate variables, i.e. precipitation (Fig. 2.2), temperature 

and cloud cover, along with the LAI over the growing season of each year in each large 

grid cell. We did not average the BC emissions and BF during the growing season, when 

wildfires rarely occurred. 
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Fig. 2.2. Precipitation integrated over the 7 month vegetation growing season in the 

northern and southern hemispheres, averaged over 1997−2008: (a) April to October and 

(b) November to May. 

Normally distributed variables can be represented by their normalized deviations, 

which allow comparisons to be performed among regions. We calculated the normalized 

deviation of variable   (  ) as follows: 
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     ̅

  
                                                                          (   ) 

where   ,   ̅, and    show the values for both the dry and growing season variable   in 

grid cell  , the value of    averaged over the analysis period and the standard 

deviation of   , respectively;   = 1, 2 . . .  , where   is the total number of large grid 

cells in each region. We used Eq. (2.1) to obtain the normalized deviations of air 

temperature and cloud cover data during the dry and growing seasons, precipitation 

and LAI during the growing season only, and BC and BF during the dry season only.  

2.2.4 Principal Component Analysis 

We used the normalized deviations of the variables to calculate the correlation 

coefficients between BC and climate variables during the dry season (i.e. temperature 

and cloud cover), and between BC and climate variables during the growing season (i.e. 

precipitation, temperature, cloud cover and LAI). In the same way, we also calculated 

the correlation coefficients between BF and the climate variables during each season. 

We then used these correlation coefficients to perform PCA, which is a technique for 

extracting informative orthogonal linear combinations of variables. By this analysis, we 

extracted ‘fire factors’ that expressed the geographical distribution pattern of BF in 

relation to precipitation, temperature, cloud cover and LAI, and other factors that 

expressed the geographical distribution pattern of BC emissions in relation to those 

variables. We then compared the BF and BC results.  

For the PCA, we used data sets composed of the independent variables     to     in 

each large grid cell  , where   is the correlation coefficient between BC emissions (or 

BF) during the dry season and 1 of 6 variables (LAI [growing], precipitation [growing], 

temperature [growing], temperature [dry], cloud cover [growing], cloud cover [dry]) (Fig. 

2.3).  
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Fig. 2.3. Correlation coefficient (r) between black carbon (BC) and (a) dry season 

temperature, (b) dry season cloud cover, (c) growing season precipitation, (d) growing season 

temperature, (e) growing season cloud cover, (f) growing season leaf area index during 

1997−2008. DJF: December to February; JAS: July to September. 

The data matrix   was 40 × 6 in size. The sample size (i.e. the number of grid cells) was 

40, and the number of independent variables (i.e. the correlation coefficient) was 6. In 

this way, we converted this multidimensional data set to low-dimensional factors with 

the least information loss. The  -dimensional data set     could be reduced to   

dimensions (   ) by linear combination with 

    ∑   

 

   

                                                                (   )  

where     is a coefficient matrix (i.e. for the  th PC). In PCA, the linear combination 

of variables that explains the maximum variance of a multidimensional data set is 

called the first PC (PC1); the second PC (PC2) is the linear combination of the variables 
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oriented orthogonally to PC1 that explains the maximum residual variance. This 

procedure solves the equations (     )     for    (eigenvalues) and   , where   

is the covariance matrix for     and    is the vector of coefficients on the  th PC for 

each variable.   is the unit matrix. The cross-covariance matrix ( ) of the correlation 

coefficient matrix of each region     (the independent variable, i.e. the correlation 

coefficient,   = 1~6 in each grid cell   = 1~40) can be calculated as follows:  
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where   ̅̅̅̅  is the area-averaged value of    for all the grid cells. Eigenvalues    are 

derived to diagonalise this cross-covariance matrix (i.e.   
    , where   

  is 

transposed matrix of   .).    represents the variance explained by the  th PC, and its 

contribution ratio    is calculated as: 

   
  

            
 

  
∑   
 
   

                                             (   )  

where the total number for the  th PC is 6. The cumulative contribution of the   PC is 

defined as the integrated contribution from PC1 to the  th PC.     is the score of the 

 th PC, which is calculated using Eq. (2.2). This score is an expression of the spatial 

variations of the correlations between BC (or BF) and the climate variables, or between 

BC (or BF) and LAI.
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2.3 Results 

2.3.1 Contribution Ratios 

The contribution ratios of PC1 to PC3 were 41.5, 18.7 and 13.6%, respectively, in the 

BF analysis, and 39.5, 18.0 and 14.1%, respectively, in the BC analysis. The cumulative 

contribution of PC1 to PC3 was 73.8% for BF and 71.6% for BC. Therefore, the first 3 

PCs explained >70% of the observed variations of the correlations between BC (or BF) 

and the climate variables, or between BC (or BF) and LAI.  

The correlation coefficient between a PC and each independent variable (i.e.      ) 

(Fig. 2.4), which is referred to as the factor loading on that PC, can help in the 

interpretation of each PC. We obtained similar factor loading patterns for both BF (Fig. 

2.4a) and BC emissions (Fig. 2.4b). Here we focus on the BC results.  

2.3.2 Factor Loadings 

PC1 represents the most prominent geographical distribution variation pattern. The 

3 factor loadings on PC1 with the largest absolute values were BC−temperature 

(growing) (0.52), BC−temperature (dry) (0.57), and BC−precipitation (growing) (−0.48). 

These factor loadings indicated that the BC−temperature (growing and dry) and 

BC−precipitation (growing) correlation coefficients differed considerably in sign and 

magnitude among large grid cells (Fig. 2.3a, c, d). Therefore, PC1 reflects a 

large-grid-cell-specific response of BC emissions to variations in temperature during the 

growing and dry seasons and precipitation during the growing season.  
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Fig. 2.4. Factor loadings on principal components (PCs) 1−3: (a) burned fraction (BF) and (b) 

black carbon (BC) emission. A large absolute value means that the factor strongly affects BF 

or BC. The sign of the factor loading corresponds to the sign of the correlation coefficient 

between BF (or BC) and the respective variable. LAI: leaf area index. 

The 3 factor loadings on PC2 with the largest absolute values were BC−LAI (growing) 

(0.49), BC− precipitation (growing) (0.54) and BC−cloud cover (growing) (−0.56). These 

factor loadings showed that the correlation coefficients BC−precipitation (growing), 

BC−LAI (growing) and BC−cloud cover (growing) differed slightly in sign or magnitude 

among large grid cells (Fig. 2.3c, e, f). Therefore, PC2 reflects a large-grid-cell-specific 

response of BC emissions to variations in precipitation, cloud cover and LAI during the 

growing season.  

The factor loadings on PC3 with the 3 largest absolute values were BC−LAI (growing) 

(0.67), BC−temperature (dry) (−0.54) and BC−cloud cover (dry) (0.39). These factor 

loadings showed that the correlation coefficients for BC−LAI (growing), BC−cloud cover 

(dry) and BC−temperature (dry) differed slightly in sign or magnitude among large grid 

cells (Fig. 2.3a, b, f). Therefore, PC3 reflects a large-grid-cell specific response of BC 
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emissions to variations in temperature and cloud cover during the dry season and LAI 

in the growing season. 

2.3.3 Principal Component Scores 

The PCs were normalized to unit variance. The spatial variations of the correlations 

between BC and the climate variables, or between BC and LAI, across the grid cells of 

PC2 and PC3 were small compared with those of PC1 because these variations became 

small in turn compared with PC1. There was a pattern of opposite correlations between 

BC and climate among the grid cells with different signs and large scores. The PC2 and 

PC3 scores can be interpreted in the same way. However, the geographical patterns of 

contrary correlations of BC with climate or the plant parameters of PC2 and PC3 were 

smaller than those of PC1. It is difficult to make meaningful comparisons with the 

patterns of variation in the geographical distribution of the correlation coefficients 

across the grid cells of PC3 because the characteristic geographical distribution pattern 

of the PC3 score is unclear. Therefore, we focused on PC1 and PC2.  

The average PC1 score in Region 1 was −0.43, which indicates that the BC emission 

rate increased as temperature decreased and precipitation increased. In Regions 2 and 

3, the average PC1 scores were 0.26 and 0.27, respectively, indicating that the BC 

emission rate increased with temperature and decreased with precipitation (Fig. 2.5a).  

The average PC2 score in Region 3 was 0.36, indicating that the BC emission rate 

increased slightly with precipitation and LAI, and decreased with cloud cover. In 

contrast, in part of Region 1 (9°N−3°N, 16°E−25°E), the average PC2 score was −0.47, 

and it was −0.16 in part of Region 2 (8°S−15°S, 15°E−33°E). These scores indicate that 

the BC emission rate increased slightly as the precipitation and LAI de creased, and 

increased with cloud cover in these areas (Fig. 2.5b). 



2.3. RESULTS 

18 

 

 
Fig. 2.5. Principal component (PC) scores in each large grid cell during the dry season 

obtained in the black carbon (BC) analysis: (a) PC1 and (b) PC2. Positive scores (warm 

colors) indicate the same tendency as the factor loadings on that PC, and negative scores 

(cool colors) indicate the opposite tendency to the factor loadings. DJF: December to 

February; JAS: July to September. 
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2.4 Discussion 

2.4.1 Comparison with Black Carbon and Burned Fraction 

The factor loadings on each PC and the PC scores were similar for BC emission and 

the BF (Fig. 2.4). In the Global Fire Emission Database (Table 1), BC emissions were 

estimated from 3 variables: the BC emission factor, the burned area and the dry matter 

mass (see the Appendix). The burned area and dry matter mass changed with time, but 

the BC emission factor did not. The inter-annual differences in BC emission should 

depend strongly on the burned area and the available dry matter mass. The BF is 

calculated from the burned area, so it is not surprising that in our results, the 

geographical distribution patterns were similar between BC emissions (i.e. the factor 

loadings and the PC scores) and the BF.  

2.4.2 1st Principal Component 

Higher vegetation productivity would result in a larger fuel load and a larger burned 

area, and hence more BC emission. However, temperature and precipitation during the 

growing season were negatively correlated in most large grid cells (Fig. 2.6). This means 

that the BC−precipitation and BC−temperature correlation coefficients had opposite 

signs in each large grid cell (Fig. 2.3c, d). Therefore, the factor loadings of 

BC−temperature (growing and dry) and BC−precipitation (growing) on PC1 had 

opposite signs. The correlation coefficient between growing and dry-season temperature 

was positive in nearly all large grid cells (Fig. 2.7) because the tendency of the growth 

season temperature carried over to the dry-season temperature. As a result, the factor 

loading of BC−temperature (dry) on PC1 was large.  
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Fig. 2.6. Correlation coefficients between precipitation and temperature during the growing 

season during 1997−2008. AO: August to October; NM: November to May. 

 

Fig. 2.7. Correlation coefficients for temperature between the growing and dry seasons 

during 1997−2008. AO: August to October; DJF: December to February; NM: November to 

May; JAS: July to September. 

We interpreted PC1 as the response pattern of vegetation productivity to temperature 

and precipitation during the growing season. The geographical distribution pattern of 

PC1 depended greatly on the geographical distribution of biomes (Fig. 2.8).  



2.4. DISCUSSION 

21 

 

 

Fig. 2.8. Biome distributions in central Africa. 

In Region 1, the dominant biome is savannah throughout. The northern part of Region 2 

is dominated by tropical deciduous forest, and the southern part is dominated by 

savannah. Both tropical evergreen forest and savannah are also found in Region 3. The 

PC1 scores differed among these 3 biome types (Fig. 2.9). In the savannah, 68% of the 

large grid cells had negative PC1 scores, and 67% of the large grid cells in tropical 

deciduous and evergreen forest had positive PC1 scores. This indicates that the BC 

emission rate increased with the growing-season precipitation in the savannah and the 

growing-season temperature in tropical deciduous and evergreen forests. Hickler et al. 

(2005) and Anyamba and Tucker (2005) showed that in semi-arid regions with 

abundant herbaceous species, NDVI and LAI are sensitive to precipitation changes. In 

contrast, in forested regions, Allen et al. (2010) showed that vegetation productivity is 

more affected by temperature and solar radiation than by precipitation. These differing 

dependencies of vegetation production among the biomes would explain the 

differentiation in the sign of PC1.  
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Fig. 2.9. Principal component 1 (PC1) scores averaged by biome type. Circles: PC1 score in 

each grid cell classified into a biome type; bottom and top of each box: lower and upper 

quartiles, respectively; bold horizontal line in the middle of the box: median value. 

2.4.3 2nd Principal Component 

PC2 can be more intuitively understood if the factor loading of BC−cloud cover 

(growing) on PC2 is compared with that of BC−Sd ( growing), where Sd indicates the 

intensity of the downward shortwave radiation. Sd is inversely correlated with cloud 

cover, so the correlation coefficients for BC− cloud cover (growing) and BC−Sd (growing) 

should have opposite signs.  

In large grid cells with positive PC2 scores, LAI increased in years with more 

precipitation, and Sd was higher during the growing season. This suggests that both the 

BC emission rate and the burned area increased during years of higher vegetation 

productivity. We therefore interpret positive PC2 scores as the response patterns of 

vegetation productivity (i.e. the fuel-loading response pattern) to precipitation and Sd 
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during the growing season.  

In contrast, in large grid cells with negative PC2 scores, the BC emission rate either 

increased or showed no relation to decreases in precipitation, Sd and LAI during the 

growing season. Archibald et al. (2009) and Bond et al. (2003) explained the smaller 

burned areas in regions with higher tree cover as follows. Higher tree cover reduces the 

intensity of sunlight reaching the forest floor, thus hindering the growth of grass. 

Furthermore, the ignition frequency is reduced because grass and litter on the forest 

floor are prevented from drying out, and wildfires do not spread. Archibald et al. (2009) 

and Scholes (2003) suggested that wildfires rarely occur when the tree cover exceeds 

about 40%. We compared the PC2 scores for tree cover and LAI with PC2 scores in some 

subsets of large grid cells (Fig. 2.10). The mean ± SD tree cover was 42.4 ± 5.5%, and the 

average LAI was 2.2 ± 0.5       in large grid cells with PC2 scores lower than −0.2. 

Therefore, in large grid cells with negative scores, lower precipitation and Sd reduced 

the tree cover and increased the burned area, increasing BC emissions. 
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Fig. 2.10. Relationships among the principal component 2 (PC2) scores (color scale), tree 

cover and leaf area index (LAI). The average for grid cells with scores smaller than −0.2 is 

shown by a blue X, and the average for grid cells with scores larger than +0.2 is shown by a 

red X. The standard deviations of tree cover and LAI are respectively shown by the vertical 

and horizontal gray lines passing through each average.
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2.5 Summary 

We used PCA to extract factors accounting for the spatial variations of the 

correlations between BC and the climate variables, or between BC and LAI. We 

interpreted PC1 (contribution ratio, 39.5%) as mainly reflecting the response of 

vegetation productivity to temperature and precipitation during the growing season. 

This pattern is regulated primarily by biome type. We interpreted PC2 (contribution 

ratio, 18.0%) as a geographical distribution pattern primarily regulated by tree cover, 

which in turn regulates the abundance of herbaceous vegetation. The cumulative 

contribution ratio of the vegetation productivity response (57.5%; PC1 and PC2) was 

much higher than the contribution ratio of climate variables in the dry season (14.1%; 

PC3). From these findings, we concluded that the spatial variations of the correlations 

between BC and the climate variables, or between BC and LAI, primarily reflect biome 

type and tree cover, both of which differed considerably among the 3 regions studied.  

The geographical distribution patterns of BC emissions may change if the distribution 

of vegetation types changes under future climate change in Africa. Therefore, future 

studies should examine the impact of predicted changes in vegetation and biome 

distributions on BC emission patterns and how, in turn, BC emission pattern changes 

are likely to affect future climate.
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Chapter 3 

The Relationship between Wildfire Carbon 

Emissions and Cyclic Variations in Precipitation 

and Temperature over Africa 

3.1 Introduction 

Precipitation primarily controls the spatio–temporal patterns of wildfires in terms of 

frequency and intensity through regulation of vegetation biomass, which functions as 

the fuel load (Bowman et al. 2009; Ishii et al. 2013). For example, an analysis of 

NOAA-AVHRR data revealed that the spatial distribution of annual precipitation and a 

marked dry season primarily control the spatial distribution of wildfire frequency (Koffi 

et al. 1995; Jennifer et al. 1999) and the amount of BC emissions from wildfires (Cooke 

et al. 1996). It has also been shown that wildfires in southern Africa occur more 

frequently in years with higher annual precipitation (Jennifer et al. 1999). However, the 

frequency of wildfires is reduced in areas with more than 1000 mm of annual 

precipitation because these climatic conditions allow forest ecosystems to develop, 

ensuring that land surfaces remain moist (Archibald et al. 2009). Using a dynamic 

global vegetation model (DGVM) and a fire model, Lehsten et al. (2009) revealed that 

the burned area and carbon emissions from wildfires were highest in regions with an 

annual precipitation of approximately 1000 mm. 

Spatiotemporal patterns of carbon emission from wildfires in Africa are also 
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controlled by periodic climatic perturbations that regulate vegetation productivity 

(Patra et al. 2005; Riaño et al. 2007). One of the major causes of these periodic 

perturbations is the inter-annual variability of sea surface temperature (SST) (Lu and 

Delworth 2005), including the Atlantic multi-decadal oscillation (Zhang and Delworth 

2006), the Indian Ocean dipole (Black et al. 2003), and the El Niño–Southern 

Oscillation (ENSO) (Hulme et al. 2001). The ENSO is strongly correlated with the 

normalized difference vegetation index (NDVI) in Africa. The NDVI is an index of 

vegetation greenness and therefore is associated with biomass production (Anyamba et 

al. 2003). However, the effects of such periodic perturbations of climate on the emission 

of carbon aerosols from wildfires have not been analyzed in a systematic way.  

Here, we quantitatively evaluated the effect of the periodic inter-annual variability in 

annual precipitation and annual mean temperature on carbon emissions from wildfires 

over the African continent. We used the spatially explicit individual-based dynamic 

global vegetation model (SEIB-DGVM) (Sato et al. 2007). The SEIB-DGVM reconstructs 

the geographical distributions of observed vegetation indices including biome, net 

primary production, and fire frequency (Sato et al. 2007). Additionally, the SEIB-DGVM 

explicitly considers the size-dependent mortality of trees when a fire occurs. In Africa, 

this size-dependency has been shown to be a necessary prerequisite for maintaining 

savanna by permitting the coexistence of trees and grasses (Hanan et al. 2008; Higgins 

et al. 2000; Sankaran et al. 2004), particularly in areas where the mean annual 

precipitation exceeds 650 mm (Sankaran et al. 2005). 
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3.2 Methods 

3.2.1 Overview of the Modified Model 

We evaluated how cyclical variation in precipitation and temperature influenced 

carbon emissions from wildfires over the African continent using a dynamic global 

vegetation model, namely SEIB-DGVM (Sato et al. 2007). In the study, we used a 

version of the model that was modified for the African continent (Sato and Ise 2012). 

Here, we provide only a brief description of the major processes and the fire sub-model 

of the SEIB-DGVM. Each grid cell is represented by a 100 × 100-m spatially explicit 

virtual forest, where individual trees become established, compete, and die. A grass 

layer can establish under the tree canopy layer. Simulations begin from bare ground 

with several plant functional types (PFTs) that are favored by the environmental 

conditions of each grid cell (1 × 1 m). Two woody PFTs (evergreen and rain-green) and 

two grass PFTs (C3 and C4) are assigned for Africa in the model. A woody PFT and a 

grass PFTs usually coexist in the model.  

In the modification of the model for the African continent, Sato and Ise (2012) 

replaced the fire sub-model of the SEIB-DGVM with a sub-model of the adaptive 

dynamic global vegetation model (aDGVM) (Scheiter and Higgins 2009), which is well 

trained and validated for Africa. This is a semi-empirical sub-model that is based on 

field observations made in the savanna of southern Africa. In the sub-model, fire can 

only occur when the potential intensity of the fire energy exceeds a site threshold. This 

intensity of potential energy is estimated as a function of the fuel load, fuel moisture, 

and wind speed. The probability of fire (𝐹 𝑟𝑜𝑏) diminishes with an increase in the 

proportion of tree canopy coverage in the stand (TC: 0–100 %). 

𝐹 𝑟𝑜𝑏(𝑇𝑐)      5(    8 33 ×   
  × TC)                                   (3  ) 

The 𝐹 𝑟𝑜𝑏 is reduced by 80% when TC is 40–65% and by 100% when TC is 65–100% 

(Archibald et al. 2009). This sharp deceleration in 𝐹 𝑟𝑜𝑏 occurs because higher TC 

reduces the amount of sunlight on the forest floor, resulting in greater retention of 

moisture in the fuel load. Lower levels of sunlight arriving at the forest floor also 

decrease the grass biomass, which is a major source of fuel load. Refer to Appendix B for 

a more detailed description of the fire model. 
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3.2.2 Climate Data for Simulation 

We simulated wildfires in the African continent using 0.5° × 0.5° grid cells. For 

climatic data to drive the spin-up and the control runs, we used the Climate Research 

Unit (CRU) observation-based climatic data [CRU-TS 3.0 (0.5 Degree) 1982–2009 

monthly climate time series (Mitchell and Jones 2005)] (Fig. 3.1). The time interval of 

these data is monthly, and hence we supplemented the daily climatic variability within 

each month using NCEP/NCAR daily climate data (Kalnay et al. 1996) during the 

corresponding period. Refer to Appendix C for the detailed procedures used to process 

these data sets.  

 

Fig. 3.1. Distribution of precipitation and air temperature over the African continent from 

CRU data during the period of 1982–2009. (a) average and (b) standard deviation of annual 

precipitation, and (c) average and (d) standard deviation of annual mean temperature. 

To evaluate the influences of inter-annual cyclic variability on the amount of carbon 
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emitted from wildfires, we conducted no-cycle experiments and cycle experiments. To 

force each of the no-cycle and cycle experiments, we produced a 20-year climate dataset 

using the standard climate data. The no-cycle experiment was forced by climate data 

containing negligible inter-annual variability in either annual air temperature or 

annual precipitation. The cycle experiment was forced by climate data containing a 20-, 

10-, or 6-year cycle of fluctuation for either annual precipitation or annual mean 

temperature, with either an increasing or decreasing inter-annual trend in the initial 

phase. We referred to this difference in the phase as phase (±) in this study. Therefore, 

the no-cycle experiment used two different sets of climate data, whereas the cycle 

experiment used 12 different climate datasets. Note that the climate data with a 6-year 

cycle of fluctuation covered only 18 years, so the average annual precipitation or annual 

mean temperature for this dataset was the same as those for the climate datasets with 

20- and 10-year cycles of fluctuation. Refer to Appendix D for the detailed procedures 

used to process these data sets. 

3.2.3 Simulation Procedure 

A 2000-year spin-up run from bare ground was conducted by repeatedly inputting 

climate data and an annual time-series of atmospheric CO2 during the period 1982–

2009. A spin-up of 2000 years is required for soil carbon pools to reach equilibrium. 

Wildfires occasionally occur during the spin-up run, delivering stochastic variability in 

the state after a spin-up run. To reduce this effect on the simulations, we prepared five 

initial states by appending simulations of 5 years after the spin-up of 2000 years by 

inputting climate and CO2 data for the periods of 1982–1986, 1987–1991, 1992–1996, 

1997–2001, or 2002–2006. In the control run, an annual time series of atmospheric CO2 

during the period 1982–2009 was used. The cycle and no-cycle experiments used an 

atmospheric CO2 value of 362.9 ppm, which was the global mean over the period from 

1982 to 2009.
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3.3 Results 

3.3.1 Control Experiment 

The spatial distribution of carbon emissions was almost the same as that produced by 

the Global Fire Emissions Database (GFED) version 3 (Giglio et al. 2010) (  𝑟  

     (𝑃 <      ) 𝑆𝐷𝑅     8 𝑆𝑆    68 ) for Africa (30°S–15°N, 17°E–41°E) (Fig. 3.2). 

Here, 𝑟 is the spatial correlation between simulation and observation, 𝑆𝐷𝑅 is the 

spatial standard deviation ratio of simulation to observation, and 𝑆𝑆 is a skill score 

representing a comprehensive evaluation the indices of both spatial correlation and 

spatial standard deviation. 𝑆𝑆 approaches 1.0 when the simulation is consistent with 

observation (See Appendix E for a detailed description).  

 

Fig. 3.2. Time-averaged annual carbon emissions from fires during the period of 1997–2009 

over the African continent: average of 10 simulations for SEIB-DGVM (right) and GFED 

(left). 

The average (± standard deviation) carbon emission (g C m-2  year-1) from the 

simulation was 81.4 ± 2.7 in the northern hemisphere (0°S–15°N, 17°W–41°E) and 

101.3 ± 2.6 in the southern hemisphere (30°S–0°N, 5°E–41°E), whereas the observed 

value was 53.4 in the northern hemisphere and 58.3 in the southern hemisphere. The 

carbon emission of the simulation was 1.5 and 1.7 times higher than the observed 

values in the northern and the southern hemisphere, respectively.  
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The distribution of simulated proportion of tree canopy coverage in the stand (TC%) 

was coincident with that of the AVHRR Continuous Fields Tree Cover Product (DeFries 

et al. 2000) for Africa (30°S–15°N, 17°E–41°E) ( 𝑟    76 (𝑃 <      ) 𝑆𝐷𝑅    33 𝑆𝑆  

  8  ) (Fig. 3.3).  

 

Fig. 3.3. Annual mean tree cover over the African continent: (right) average of 10 

simulations using SEIB-DGVM during 1997–2009 and (left) AVHRR Continuous Fields Tree 

Cover Product (DeFries et al. 2000). 

The simulated results of the segmented 0–10, 10–25, 25–40, 40–65, and 65–100% TC in 

the southern or northern hemispheres agreed with observed values (Fig. 3.4). However, 

the simulation was 9.6% and 7.9% higher than satellite observations for the 65–100% 

TC segment of the southern and northern hemispheres, respectively. This tendency to 

overestimate was particularly strong in central Africa (5°S–5°N, 10°E–30°E).  
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Fig. 3.4. The percentage of the total number of grid cells of each tree cover segment (0–10, 

10–25, 25–40, 40–65, and 65–100%) in the northern hemisphere and the southern 

hemisphere. Green: SEIB-DGVM, orange: VHRR Continuous Fields Tree Cover Product. 

The simulated fire intervals for each virtual forest in the savanna region (8°N–13°N, 

10°E–35°W and 20°S–10°S, 15°E–35°W) ranged from 2 to 16 years. These values were 

consistent with the observed fire intervals of 1 to 12 years (Thonicke et al. 2001). The 

simulated spatial distribution of biomass was approximately the same as the observed 

biomass distribution estimated by Kindermann et al. (2008) in Africa (30°S–15°N, 

17°E–41°E) ( 𝑟    69 (𝑃 <      ) 𝑆𝐷𝑅    76 𝑆𝑆    6 ). On the other hand, the 

simulation overestimated total biomass; the simulated and observed total biomasses in 

Africa (30°S–15°N, 17°E–41°E) were 4.8 and 2.7 kg C m-2, respectively. The total 

biomass of the simulation was 1.8 times larger than the observed value in Africa.  

3.3.2 Precipitation and Temperature No-cycle Experiments 

Precipitation and temperature no-cycle experiments shared a similar spatial 

distribution in the deviation of annual carbon emissions from those observed in the 

control experiment (Fig. 3.5). This deviation (no-cycle − control) manifested as negative 

values for the central tropical region (8°S–5°N, 10°E–32°E) and the coast of the Gulf of 

Guinea (4°N–8°N, 10°W–10°E) and as positive values for the area south of Angola 

(17°S–15°S, 12°E–20°E) and Tanzania (10°S–0°S, 35°E–40°E). On average, deviations 

in the northern hemisphere were −15.4 ± 1.4% and −15.1 ± 2.0% for precipitation and 

temperature in the no-cycle experiments, respectively. In contrast, the southern 

hemisphere showed negligible deviation in either the precipitation or temperature 

no-cycle experiments.  
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Fig. 3.5. The spatial distribution pattern of the difference in annual carbon emission 

between no-cycle experiments and control experiments (no-cycle − control): (a) precipitation 

no-cycle experiments and (b) temperature no-cycle experiments. This annual carbon 

emission is the average value of 10 simulations over 20 years. 

In the precipitation no-cycle experiment, total biomass increased by 9.7 ± 1.4% and 

8.3 ± 1.1% in the northern and southern hemispheres, respectively, and in the 

temperature no-cycle experiment, total biomass increased by 9.4 ± 1.7% and 7.8 ± 1.1% 

for the northern and southern hemispheres, respectively. Changes in the precipitation 

and temperature no-cycle experiments showed a similar spatial pattern. Additionally, in 

both the precipitation and temperature no-cycle experiments, the frequency of fires in 

central parts of the African continent (5°S–5°N, 10°E–30°E) decreased, by 25.8% and 

22.7%, respectively. 

For both the precipitation and temperature experiments, the annual carbon emission 

found for each grid cell in the no-cycle experiments for the 65–100% TC segment was 

relatively low compared with those in the control experiment in the northern and 

southern hemispheres (Fig. 3.6). In the southern hemisphere, the carbon emissions in 

the no-cycle experiments increased compared with that in the control experiments in 

the 0–40% TC segment. At this time, the percentage of total tree cover in the 40–100% 

TC segment in the no-cycle experiments was relatively low compared with that in the 

control experiment in the northern and southern hemisphere. 
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Fig. 3.6. The dependence of the differences in the percentage tree cover on the TC segment 

and the change in carbon emissions on the TC segment. Bars indicate changes in tree cover 

(no cycle − control) on the left ordinate. Cross marks indicate changes in carbon emission on 

the right ordinate (no cycle − control). Blue: precipitation experiment, red: temperature 

experiment. The abscissa is the TC segment (0–10, 10–25, 25–40, 40–65, and 65–100%). For 

carbon emissions, the TC segment was defined by the control experiment. 

3.3.3 Precipitation and Temperature Cycle Experiments 

Carbon emissions were dependent on changes in the precipitation cycle but did not 

significantly depend on the temperature cycle (Fig. 3.7). In the precipitation cycle 

experiment, the average carbon emission among the phases increased under a shorter 

precipitation cycle in the northern hemisphere. These carbon emissions were 2.3%, 3.0%, 

and 5.2% higher in the precipitation cycle experiment than in the no-cycle experiment 

for 20-, 10-, and 6-year cycles, respectively. However, these carbon emissions did not 

differ much in the southern hemisphere and were 1.8%, 2.3%, and 1.9% higher in the 

temperature cycle experiment than in the no-cycle experiment for the 20-, 10-, and 

6-year cycles, respectively. The average carbon emission in all temperature cycle 

experiments was 1.9%. 
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Fig. 3.7. The rate of change in carbon emissions in each cycle experiment compared with the 

no-cycle experiment. Blue: precipitation experiment, red: temperature experiment. The 

abscissa is the cycle of annual precipitation fluctuation or annual mean temperature 

fluctuation. The triangle / inverted triangle indicates the carbon emission of the phase (+) / 

(−) cycle experiment. In phase (+) / (−), annual precipitation and annual mean temperature 

increase / decrease in the first half of the cycle, and those variables then decrease / increase 

in the second half of the cycle. The black bar is the standard deviation across 10 simulations. 

The cross (X) is the average value of phase (+) and phase (−). 

The precipitation phase (+) cycle experiment estimated larger carbon emission than 

the precipitation phase (−) cycle experiment did, whereas the temperature phase (+) 

cycle experiment estimated lower carbon emission than the temperature phase (−) cycle 

experiment did. The 20-year cycle experiment produced the largest difference in carbon 

emissions among the phases. In the northern hemisphere, the differences in the change 

ratio between the 20-year cycle experiment and the precipitation and temperature 

no-cycle experiments were 6.9% and 5.1%, respectively. In the southern hemisphere, the 

corresponding differences were 8.0% and 2.6%, respectively. In both hemispheres, these 

values were smaller when the cycle of precipitation or temperature fluctuation was 

shorter. 

For the precipitation experiments, the difference between the cycle experiments and 

no-cycle experiment in each TC range was assessed. With shorter cycles of precipitation 

fluctuation, in the northern hemisphere the difference increased in the 0–10% TC range 

and decreased in the ranges with >40% TC (Fig. 3.8). In the southern hemisphere, the 

corresponding differences increased in the 0–25% TC range and decreased in the ranges 
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with >25% TC. However, for the temperature cycle experiment, each TC range varied 

slightly with the cycle of temperature fluctuation (Fig. 3.8). The difference in the spatial 

distribution of TC between the 6-year cycle experiment and the no-cycle experiment 

indicated that TC tended to decline in the precipitation experiment (Fig. 3.9a). However, 

the difference in TC in the temperature experiment was much smaller because the grid 

cells where TC increased or decreased were indiscriminately intermixed (Fig. 3.9b). 

http://ejje.weblio.jp/content/indiscriminately
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Fig. 3.8. The differences in percentage tree cover in grid cells in each hemisphere between 

no-cycle experiments and control experiments (cycle – no-control). (a) 20-year cycle 

experiment, (b) 10-year cycle experiment, and (c) 6-year cycle experiment. The value is the 

average of phase (+) and phase (−) cycle experiments. Blue: precipitation cycle experiment, 

red: temperature cycle experiment. The abscissa is the segment of TC (0–10, 10–25, 25–40, 

40–65, and 65–100%). 
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Fig. 3.9. The phase-averaged difference in tree cover between the 6-year cycle experiment 

and the no-cycle experiment (6-year cycle – no-cycle). (a) precipitation experiment and (b) 

temperature experiment. 

In the grid cells with >40% TC in the precipitation no-cycle experiment, the average 

carbon emission among the phases increased as the cycle of precipitation fluctuation 

grew shorter in both hemispheres (Fig. 3.10). In the grid cells with a range of 40–65% 

TC in the precipitation no-cycle experiment, the change ratio of the 6-year cycle 

experiment to the 20-year cycle experiment for the average carbon emission among the 

phases was +87% and +25% for the northern and southern hemispheres, respectively. In 

the grid cells with >65% TC in the precipitation no-cycle experiment, this change ratio 

was +27% and +21% in the northern and southern hemispheres, respectively. In the 

grid cells with 0–40% TC in the precipitation no-cycle experiment, the carbon emissions 

displayed almost no variation in the northern hemisphere, whereas the carbon 

emissions decreased in the southern hemisphere. For the temperature cycle experiment, 

in the grid cells of each TC range, the average carbon emission among the phases was 

not sensitive to changes in the cycle of temperature fluctuation. 
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Fig. 3.10. The differences in carbon emissions between cycle experiments and no-cycle 

experiments in each TC segment defined by no-cycle experiments. (a) 20-year cycle 

experiment, (b) 10-year cycle experiment, and (c) 6-year cycle experiment. The abscissa is 

the segment of TC (0–10, 10–25, 25–40, 40–65, and 65–100%). Blue: precipitation 

cycle-experiment, red: temperature cycle-experiment. 
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3.4 Discussions 

3.4.1 Control Experiment 

Values of simulated carbon emission, biomass, and TC in the control run were larger 

than the observed values. This overestimation was most conspicuous for the coast of the 

Gulf of Guinea (5N–10°N, 15°W–10°E) and Tanzania (10°S–0°S, 35°E–40°E). We 

suspect that the overestimation for these two regions was the result of deforestation due 

to logging and slash-and-burn agriculture before 1997 because deforestation reduces 

vegetation biomass, resulting in a reduction in the fuel load for wildfires. If this 

explanation is correct, then carbon emissions, biomass, and TC would have been more 

similar to the control run before these land-use changes occurred than the present day 

observations in these regions are. The ratio of carbon emissions from the coast of the 

Gulf of Guinea to emissions from the eastern part of the same latitude zone (5°N–10°N, 

15°E–40°E) was 1.3 during the late 1970s according to FAO observation-based data 

(Hao and Liu 1994). This ratio was also 1.3 in the control run, but it was 0.5 when using 

satellite observed carbon-emissions made during 1997–2009, as reported in the GFED 

(Giglio et al. 2010). Likewise, the ratio of carbon emissions in Tanzania to emissions 

from the western part of the same latitude zone (5°S–10°S, 10°E–30°E) was 0.9 

according to Hao and Liu (1994), 0.7 in the control run, and 0.2 using GFED. Therefore, 

the spatial distribution of carbon emissions during the 1970s was much closer to that 

predicted from the control run than were present-day observations in both the coast of 

the Gulf of Guinea and Tanzania. 

The average annual precipitation and air temperature during 1982–2009 over the 

coast of the Gulf of Guinea were 1681 mm and 26.7°C, respectively. The corresponding 

values over Tanzania were 955 mm and 23.2°C, respectively. These climatic conditions 

correspond to tropical monsoon and tropical savanna climates, respectively, in the 

classification provided by Kottek et al. (2006). The control run resulted in the formation 

of forest ecosystems in both the coast of the Gulf of Guinea and Tanzania, with 40.2% 

and 33.0% TC, respectively. In Liberia, the annual deforestation rate due to 

slash-and-burn agriculture was 1.9% before the civil war in December 1989 (Kofron and 

Chapman 1995; Poore et al. 1989). Côte d’Ivoire has experienced the highest rate of 

deforestation in Africa since 1975 (Watson 1991), with an annual deforestation rate of 

1.1–2.9% during the period 1990–1997 due to the expansion of cropland. A high 

deforestation rate was also observed from NOAA-AVHRR satellite data in Nigeria 
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during the period 1990–1997 (Achard et al. 2002). Tanzania lost 25% of its forest area 

during the period 1955–2000, as confirmed by data from the Landsat Multispectral 

Scanner System (MSS) and Enhanced Thematic Mapper (ETM) (Ahrends et al. 2009; 

Hall et al. 2009).  

3.4.2 Precipitation and Temperature No-cycle Experiments 

Marked differences in simulated annual carbon emissions were found between the 

precipitation cycle and no-cycle experiments (Fig. 3.9), whereas there were no distinct 

differences between the temperature cycle and no-cycle experiments. Precipitation 

no-cycle experiments indicated lower carbon emissions from wildfires compared with 

the control run. We suggest that this difference is because the geographical distribution 

of vegetation in the African continent is more strongly correlated with precipitation 

than with temperature. Stable annual precipitation in the precipitation no-cycle 

experiment would result in a cascade reaction resulting in a lower frequency of drought 

events, lower tree mortality, and higher TC, as shown in Fig. 3.9, which would result in 

a lower frequency of wildfire. Drought is likely to be the primary determinant of tree 

mortality in Africa. For example, remote-sensing studies of the Sahel area have 

suggested that inter-annual perturbations in indices of vegetation greenness such as 

NDVI and LAI (leaf area index) are primarily controlled by precipitation (Anyamba and 

Tucker 2005, Hickler et al. 2005). The results of field studies generally suggest that 

precipitation primarily determines production and plant-species composition in African 

vegetation (Lwanga 2003; Gonzalez 2001; MacGregor and O’Connor 2002).  

In the southern hemisphere, the negligible effect of the no-cycle climate is because the 

effect of a decrease in fire probability near the equator (i.e., decreased carbon emissions) 

is offset by the effect of an increase in biomass (i.e., increased carbon emissions). In the 

southern part of Angola (17°S–11°S, 11°E–17°E), Tanzania (10°S–0°N, 30°E–40°E), and 

the southeastern part of Africa (29°S–20°S, 25°E–35°E), the second effect was stronger 

than the first. In these three regions, the carbon emissions from the no-cycle experiment 

were larger than were those of the cycle experiment. In the control experiment, the 

averaged TC of the three regions was 28.7%. In the precipitation no-cycle experiment, 

the average TC of the three regions increased (by 6.6%), and the probability of fire 

slightly decreased (by 8.2 × 10-5%) compared with the control experiment. However, 

biomass significantly increased (by 11.3%) compared with the control experiment. 

Therefore, we assumed that carbon emissions increased because the increase in biomass 

provided a fuel load for fires. 
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3.4.3 Precipitation and Temperature Cycle Experiments 

Although the temperature cycle experiment did not indicate clear changes in carbon 

emissions from wildfires, it did show higher carbon emissions from wildfires. The 

underlying reason for the higher carbon emissions in the precipitation cycle experiment 

is tree mortality due to drought stress induced by fluctuations in precipitation. While 

higher mortality results in lower biomass and therefore a reduced fuel load, it also 

results in lower TC, which can increase the frequency of fires. The number of grid cells 

with 40–100% TC in the no-cycle experiment was larger than that in all of the cycle 

experiments (Fig. 3.8).    

In the northern hemisphere, carbon emissions increased when the cycle of 

precipitation fluctuation was shorter (Fig. 3.7). This was because the number of grid 

cells with more than 40% TC decreased because the frequency of tree mortality 

increased when the cycle of precipitation fluctuation was shorter (i.e., the frequency of 

extreme droughts increased) (Fig. 3.8). The carbon emissions in grid cells with less than 

40% TC was higher than that in grid cells with more than 40% TC because the 

probability of fire in the former was higher than the in latter. The rate of increase in 

carbon emissions in the cycle experiments was higher in grid cells with more than 40% 

TC in the no-cycle experiment (Fig. 3.10). However, in the southern hemisphere, carbon 

emissions were not significantly affected by the cyclic variation in precipitation. Near 

the equator, carbon emissions increased due to the operation of this mechanism in grid 

cells with intrinsically high TC. However, unlike the northern hemisphere, there was a 

mechanism operating that decreased carbon emissions in the southern hemisphere. The 

biomass significantly decreased in many grid cells during the cycle experiments (Fig. 

3.11), with an accompanying decrease in carbon emissions. Therefore, carbon emissions 

did not vary with cyclic variation in precipitation. 

 

http://ejje.weblio.jp/content/frequency
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Fig. 3.11. The phase-averaged difference in biomass between the 6-year precipitation cycle 

experiment and precipitation no-cycle experiment (6-year cycle – no-cycle). 

There was a significant difference in carbon emissions between phase (+) and phase 

(−) of the cyclic variation in precipitation. A pattern arose whereby precipitation 

increased in the first half of the cycle (i.e., phase (+)), and the average carbon emission 

was output as a high value (Fig. 3.7). Although this tendency was found in all of the 

cycles of precipitation fluctuation, the most significant difference in carbon emissions 

was recorded among the different phases in the 20-year precipitation cycle experiment. 

The reason for the difference in carbon emissions among phases was as follows. In 

phase (+), the increase in the vegetation biomass was large during the first half of the 

cycle because precipitation increased in locations where exuberant vegetation was 

present after the spin-up. This increased biomass burned during the second half of the 

cycle, emitting a large amount of carbon. 

However, because the biomass accumulated during the spin-up burned during the 

early half of cycle, when it was dry due to the limited precipitation. Therefore, the 

biomass could not increase significantly during the second half of the cycle. Therefore, 
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carbon emissions in phase (+) were larger than in phase (−) of the precipitation 

experiment. The 20-year precipitation cycle experiment produced the greatest 

difference in carbon emissions among the phases. In situations where the precipitation 

increased in the early half of the cycle, the average difference in biomass between the 

10-year period when precipitation increased and the last 28 years of the spin-up was 

0.40 kg C m-2 for all of the African continent (30°S–15°N, 17°E–41°E). However, in 

situations where precipitation decreased in the first half of the cycle, the average 

difference in the biomass between the 10-year period when precipitation increased and 

the 10-year period when precipitation decreased was 0.29 kg C m-2 for the entire African 

continent. The latter value was lower than the former, supporting our explanation.  

In the temperature phase experiment, the carbon emission of phase (+), when 

temperatures increased in the first half of cycle, was low compared with the carbon 

emission of phase (−), when there was a decline in temperature in the first half of the 

cycle. The main mechanism underlying this difference is as follows. In all of the 

temperature phase experiments, annual precipitation was suppressed, so inter-annual 

variability was small. Therefore, the biomass increased during the period of simulation. 

However, the probability of a fire’s occurring became higher in the high-temperature 

period. Because the probability of fire was higher before the enormous increase in 

biomass in the phase (+) experiment, the amount of biomass burning in the phase (+) 

experiment was lower than that in the phase (−) experiment, in which temperature 

increased in the second half of the cycle. In the 20-year temperature cycle experiments, 

the ratios of carbon emission, amount of biomass, and the probability of fire between 

phase (+) and phase (−) in a high-temperature period were 0.94, 0.90, and 1.02, 

respectively.
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3.5 Summary 

We simulated carbon emissions from wildfires over the African continent using a 

dynamic global vegetation model (SEIB-DGVM) under the following climatic forcing 

conditions: (1) a control condition using observation-based climatic data; (2) negligible 

inter-annual variation in annual precipitation or annual mean air temperature; and (3) 

cyclic inter-annual variability in precipitation or air temperature at a frequency of 20, 

10, and 6 years. The control experiment, reconstructed a reasonable spatial distribution 

of the observed carbon emissions from wildfires in Africa. In the experiment with 

negligible inter-annual variation in annual precipitation and temperature, carbon 

emissions in the northern hemisphere decreased by 15.4% and 15.1%, respectively, 

compared with the control experiment, whereas there was no clear difference for the 

southern hemisphere. In the experiment with negligible inter-annual variation in 

annual precipitation, drought-induced tree mortality decreased, and hence both 

biomass and TC increased. The increase in biomass resulted in greater carbon 

emissions from fire due to the provision of a greater fuel load, while the increase in TC 

decreased carbon emissions from fires because the soil surface remained moist. In the 

northern hemisphere, carbon emissions decreased because the effect of a greater fuel 

load exceeded the effect of moist soil. However, in the southern hemisphere, the change 

in carbon emissions was much smaller because these two effects offset each other.  

Carbon emissions were higher for the precipitation cycle experiment than for the 

precipitation no-cycle experiment at all of the cyclic intervals tested. There was no clear 

difference in the carbon emissions between the temperature cycle experiment and the 

temperature no-cycle experiment. The higher frequency of fire, as a result of higher tree 

mortality and lower TC, is a possible cause of the higher carbon emissions in the 

precipitation cycle experiment. 

In accordance with this explanation, carbon emissions increased under the shorter 

precipitation cycle in the northern hemisphere. The reason for this is that the number of 

grid cells with more than 40% TC decreased due to the increased frequency of tree 

mortality when the cycle of precipitation fluctuation became shorter, resulting in higher 

fire frequency. However, there was little difference in the southern hemisphere. This 

was due to the offsetting of the reduced probability of fire (carbon increasing) due to the 

reduction in TC (i.e., 40–100%) by the effect of increased biomass (carbon decreasing). 

http://ejje.weblio.jp/content/frequency
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There were differences in carbon emissions between the phase (+) and phase (−) cycle 

experiments because the biomass production rate of phase (+) was higher than that of 

phase (−). 

Our study indicates that the pattern of inter-annual variability in precipitation 

changes the amount of carbon emitted from wildfires. Therefore, to improve climate 

predictions over the African continent, there is a need to estimate not only the effect of 

carbonaceous aerosol from wildfires on mean precipitation but also the effect of 

carbonaceous aerosol from wildfires on the pattern of inter-annual variation in annual 

precipitation, such as the presence or absence of cyclic variations, cycles of fluctuation, 

and phases. 
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Chapter 4 

Projection of Future Black Carbon Emission from 

Wildfire in Africa 

4.1 Introduction 

The distriution of vegetation at continental geographic scale is basically under control 

of climatic conditions (Holdridge 1947; Whittaker 1979). While, major determinants of 

vegetation growth (temperature, precipitation, and atmospheric CO2 concentration) 

have been changed significantly since the preindustrial time, and such changes are 

forecasted to be accelalated during 21st century (IPCC 2007). Indeed, a multimodel 

comparison of climatic predictions under the Special Report on Emission Scenarios 

(SRES) A1B carbon emission scenario (Solomon et al. 2007) over the African continent 

at the end of the 21st century showed the increment in annual mean surface 

temperature throughout the African continent, the increment in annual precipitation 

around the eastern part, and the decrease in precipitation around the southern part 

from June to November. 

Climatic conditions and atmospheric CO2 concentration significantly affect the water 

and nutrient use efficiency of vegetation (Drake et al. 1997; Ehleringer et al. 1997). For 

example, paleo-ecological studeies showd that increasing atmospheric CO2 

concentration resulted in increasing abundance of tree species in savanna ecosystem 

(Bond et al. 2003), which is characterized by co-occurance of C3 trees and C4 grasses 
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(Sarmiento 1984). This is suggested to be caused by the fact that higher atmospheric 

CO2 enhances photosynthesis efficiency for of C3 plants but not for C4 grass. 

In the African continent, wildfire substantially affects the structure, dynamics, and 

distribution of vegetation (Higgins et al. 2000, 2007; Sankaran et al. 2004, 2005; Bond 

et al. 2005a), which results in significant discrepancies between potential and actual 

biomasses (Bond et al. 2005b; Sankaran et al. 2005; Higgins et al. 2007). Fire induced 

mortality for trees in Africna savanna is known to have size-dependency; when fire 

occurs, small trees (<2 m height) are often completely die, while large trees (>2 m 

height) escape with a high probability (Higgins et al. 2000). Therefore, for adequate 

reconstruction of the fire related plant-dynamics in the African continent, it is 

necessary to employ an individual-based dynamic global vegetation model. 

A study projects that the African biomass will be doubled during the 21st century 

under the IPCC SRES A1B scenario (Scheiter and Higgins 2009; Higgins and Scheiter 

2012). Their study employed the individual-based adaptive dynamic global vegetation 

model (aDGVM) which contain the above mentioned size-dependent mortality bu fire. 

Sato and Ise (2012) also projected African biomass increase by 42.5% during 21st 

century under the IPCC SRES A1B scenario using the spatially explicit 

individual-based dynamic global vegetation model (SEIB-DGVM) (Sato et al. 2007). 

These study indicate that biomass in African vegetation arose in association with the 

increment in atmospheric CO2 concentration. 

Spatial distributions of BC emission from wildfire over the African continent are 

basically under control of precipitation, because precipitation primarily controls the 

spatio–temporal patterns of wildfires in terms of frequency and intensity through 

regulation of vegetation biomass, which functions as the fuel load (Bowman et al. 2009; 

Ishii et al. 2013). in fact, an analysis of satellite observed data showed that spatial 

distributions of annual precipitation and BC emission have tight correlation in the 

African continent (Koffi et al. 1995; Cooke et al. 1996). An analysis of NOAA-AVHRR 

data revealed that wildfires in southern Africa occur more frequently in years with 

higher annual precipitation because vegetation biomass can supply sufficiency fuel 

(Jennifer et al. 1999). While, we should keep in mind that the increase in tree cover can 

reduced wildfire frequency, because closed canopy of forests keep land surface moist 

(Archibald et al. 2009). In savanna region of Africa, simulation study showed that a 

warmer climate condition have a stimulating effect on frequency of wildfire by drying 
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out fuel (Hoffmann et al. 2002). 

The previous study (i.e., Scheiter and Higgins 2009; Higgins and Scheiter 2012; Sato 

and Ise 2012) suggested that BC emission from wildfire may increase during the 21st 

century due to the increase in biomass. However, the change in BC emission from 

wildfire and frequency of wildfire has yet to be adequately evaluated quantitatively. 

Thus, we evaluated the change of BC emission from wildfire during 21st century under 

the IPCC SRES A1B scenario in the African continent using the SEIB-DGVM (Sato et al. 

2007). Here we conducted two kinds of experiments. One is the future experiment: 

annual time-series of global mean atmospheric-CO2 of the SRES A1B emissions 

scenario during 2001 to 2100 was employed for the 21st century. The other is the 

suppressed CO2 increment experiment: annual time-series of global mean atmospheric 

CO2 concentration was employed during 2001 to 2010, and then global mean 

atmospheric CO2 concentration in 2010 was employed after 2010. 
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4.2 Methods 

4.2.1 Overview of the Modified Model 

We simulated how BC emission from wildfire changes under the forecasted climatic 

condition during 21st century over the African continent (37°S–34°N, 17°W–59°E). For 

all simulations, we employed the SEIB-DGVM (Sato et al. 2007) with modifications to 

the African continent (Sato and Ise 2012). Refer to the subsection 3.2.1 for brief 

SEIB-DGVM description.  

4.2.2 Fire Sub-model 

In the modification for the African continent, Sato and Ise (2012) introduced the fire 

sub-model of the aDGVM (Scheiter and Higgins 2009), which is well trained and 

validated for Africa. Refer to the subsection 3.2.1 and Appendix B for detailed fire 

sub-model description. 

4.2.3 Soil Moisture Content 

To control photosynthetic rate and stomatal conductance as a function of soil 

moisture content, SEIB-DGVM defines the physiological status of water availability 

(𝑠𝑡𝑎𝑡𝑤𝑎𝑡𝑒𝑟) as follows. 

𝑠𝑡𝑎𝑡𝑤𝑎𝑡𝑒𝑟   
 𝑜𝑜𝑙𝑤   𝑤𝑖𝑙𝑡
 𝑓𝑖   𝑤𝑖𝑙𝑡

                                                     (   ) 

where  𝑜𝑜𝑙𝑤 ,  𝑓𝑖 , and  𝑤𝑖𝑙𝑡  indicate the fraction of volumetric soil water content 

within the rooting depth (500 mm), the soil moisture at field capacity, and the soil 

moisture at wilting point, respectively. The non-water stressed photosynthesis rate of 

each PFT is multiplied by 

 × 𝑠𝑡𝑎𝑡𝑤𝑎𝑡𝑒𝑟  𝑠𝑡𝑎𝑡𝑤𝑎𝑡𝑒𝑟
                                                      (   ) 

This function reconstructs a generally observed phenomenon in which the ratio of 

actual evaporation to potential evapotranspiration has high sensitivity to soil water 

content near the wilting point, while sensitivity is reduced near field capacity (Dunne 
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and Leopold 1978). 

4.2.4 Stomatal Conductance 

The single-leaf photosynthetic rate under light saturation ( 𝑠𝑎𝑡 in μ mol CO2 m-2 s-1), 

is calculated by multiplying its potential maximum of photosynthetic rate (𝑃𝑀  ) by 

the coefficients of temperature (𝑐𝑒𝑡  ), CO2 level (𝑐𝑒𝑐𝑜 ), and soil water effects (𝑐𝑒𝑤𝑎𝑡𝑒𝑟). 

 𝑠𝑎𝑡   𝑃𝑀  × 𝑐𝑒𝑡  × 𝑐𝑒𝑐𝑜 × 𝑐𝑒𝑤𝑎𝑡𝑒𝑟                                        (  3) 

where 𝑐𝑒𝑡   is a bell-shaped curve that reaches the maximum (1.0) at the optimum 

temperature.  𝑐𝑒𝑐𝑜  depend on atmosphric CO2 consentration. 𝑐𝑒𝑤𝑎𝑡𝑒𝑟  is the water 

availability effect coefficient as follows: 

𝑐𝑒𝑤𝑎𝑡𝑒𝑟  √𝑠𝑡𝑎𝑡𝑤𝑎𝑡𝑒𝑟                                                          (   ) 

Refer to Appendix F for a detailed Stomatal Conductance description.  

4.2.5 Climate Data for Simulation 

We simulated the African continent with 0.5°×0.5° grid cells. In simulations for the 

first 10 years of the 21st century, we used observation-based climatic data of the Climate 

Research Unit (CRU) [CRU-TS3.2 0.5 degree 2001–2010 monthly climate time series 

(Mitchell and Jones 2005)]. In simulations for the rest of 21st century, we used 

MIROC-AGCM output (Emori et al. 2005; K-1 Model Developers 2004) simulated with 

the SRES A1B CO2 emission scenario. Because spatial resolution of the MIROC data 

was provided at the spatial resolution of 126×64 global grids, this data was linearly 

interpolated to 0.5° grid mesh for our simulations. In order to achieve consistency 

between the data sets of MIROC and CRU for the period of 2001~2010, MIROC data 

were converted using the CRU data of the period of 2001~2010. For each climatic item 

in each month in each grid cell, averages of MIROC results during the period of 

2001~2010 were subtracted from the MIROC 21st century projections, and then 

averages for 2001~2010 of the CRU were added. Because both the CRU and MIROC 

data sets are provided as monthly data, diurnal variability within each month was 

supplemented using NCEP/NCAR reanalysis daily climatic data (Kalnay et al. 1996). 

See Appendix A8 of Sato and Ise (2012) for detailed procedures for processing these data 
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sets. 

Figure 4.1 shows the annual precipitation and annual mean surface temperature 

during 2001-2010, and their changes during 2001-2010 to 2081-2100. Annual 

precipitation increased for the eastern part and the Sahel, but decreased for the western, 

southern, and northern parts during the 21st century. An increase in annual mean 

surface temperature occurred in all regions of the African continent during the 21st 

century. Ranges of temperature increment are higher for dried subtropical regions than 

for moist tropics. Those future change patterns are qualitatively consistent with the 

average projection of the 21 GCMs used for the Fourth Assessment Report of the IPCC 

(Solomon et al. 2007), although the patterns of a projected annual precipitation in the 

Sahel differs among those GCMs. 
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Fig. 4.1. Present climate data from CRU and its future change predected by MIROC-AGCM. 

(a) Annual precipitation and (c) annual mean surface temparature during 2001 -2010, and 

the changes of (b) annual precipitation and (d) annual mean surface temperature during 

2001-2010 to 2081-2100. 

4.2.6 Simulation Procedure 

A 2000-years spin-up run from bare ground was conducted by repeatedly inputting 

the modified MIROC climate data and annual time-series of atmospheric CO2 during 

the period 2001-2010. Wildfire occasionally occurs during the spin-up run, resulting in 

stochastic variability within the state after a spin-up run. For reducing this effect on the 

simulations, we prepared 10 initial states by appending 10 years simulations after the 

1990-years spin-up by inputting climate and CO2 data during 2001 to 2010. After the 

spin-up run, simulations for the 21st centuries from 10 initial states were conducted 

under each CO2 concentration. In the future experiment, annual time-series of global 

mean atmospheric CO2 of the SRES A1B emissions scenario during the period 



4.2. METHODS 

55 

 

2001-2100 was employed for the 21st century. In the suppressed CO2 increment 

experiment, annual time-series of atmospheric CO2 was employed during the period 

2001-2010, and then the 362.9 ppm of atmospheric CO2 which is the global mean in 

2010 was employed after 2010. Here, the climatic variables (for example, precipitation, 

temperature, and so on) same as the future experiment were used for the suppressed 

CO2 increment experiment. 

4.2.7 Conversion from Carbon emission to Black Carbon emission 

As the spatial resolution of original climate data of MIROC 3.2 was coarse (128×64 

global points, which corresponds to approximately 2.8°×2.8° grid resolution), analysis at 

the resolution of the simulation (0.5°×0.5°) should contain much "noise". Thu, to extract 

meaningful trends, BC emissions from the SEIB-DGVM were converted to the spatial 

resolution of 5.0° × 5.0° by simply averaging over each grid cell domain. 

Because SEIB-DGVM cannot output BC emission directly, we converted the carbon 

emissions into BC emission by using a ratio between BC and carbon emission (α) of 

Global Fire Emissions Data (GFED) version 3 (Giglio et al. 2010). Future BC emission 

during 2081-2100 in the African continent was calculated as following equation, 

BC(  00  08 )  BCGFED( 00   0 0)  𝛼(CSEIB( 08    00)  CSEIB( 00   0 0))       (  5) 

where α is 1.00×10-3, which is the aveage of 71 grid cells where the coverage of the land 

area in each grid cell domain (5.0° × 5.0°) is more than a quarter. The standard 

deviation of α was 0.04×10-3. In order to reduce the influence of a difference of carbon 

emission between simulation and observation, we converted the difference of carbon 

emission between 2081-2100 and 2001-2010 into BC emission from wildfire.
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4.3 Results 

4.3.1 Control Experiment 

First, we validated the results of the simulations under current climatic condition 

during 2001 to 2010. The model faily reconstructs the spatial distribution of BC 

emissions over the African continent (Fig. 4.2, r=0.83, P<0.001). The average BC 

emission of simulation was 5.4×10-2 g BC m-2 year-1, while that of observation was 

6.3×10-2 g BC m-2 year-1 in the African continent; The Simulated BC emission was 1.16 

times higher than the observed values. 

 

Fig. 4.2. Time average of annual BC emission from wildfire during 2001-2010: (right) 

average of 10 simulations by SEIB-DGVM and (left) GFED. 

The average of 10 simulation of fire intervals for each virtual forest (spatial 

resolution: 0.5°×0.5°) during 2001 to 2010 in savanna region (8°N–13°N, 10°E–35°W 

and 20°S–10°S, 15°E–35°W) ranged from 2 to 16 years (Fig. 4.3). This range was 

consistent with the observed fire intervals of 1 to 12 years (Thonicke et al. 2001). The 

simulation was able to reproduce the low probability of fire in African central part (5°S–

5°N, 10°E–30°E), which was consistent with satellite observation. Sato and Ise (2012) 

validated that the SEIB-DGVM fairly reproduces spatial distribution of biomass and 

net primary production (NPP) over the African continent under current climatic 

condition. 
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Fig. 4.3. Simulated time average of fire intervals for each virtual forest during 2001-2010. 

4.3.2 Future Experiment 

Figure 4.4 shows the change in BC emission, and figure 4.5 shows changes in biomass, 

NPP, tree coverage, and fire frequency over the African continent during the 21st 

century (i.e., averages value during 2081-2100 was subtracted by the average value of 

2001-2010). Table 4.1 summarizes these changes. 

The change of annual BC emissions was +30.5% over the African continent. This 

increase of BC emission was more apparent for the northern hemisphere than for the 

southern hemisphere; they were +40.4% and +16.7%, respectively. Biomass increased by 

33.6±1.3% (± standard deviation) over the African continent. In correspondence with the 

changes in BC emission, this increment was more apparent for the northern 

hemisphere (+39.8±1.4%) than for the southern hemisphere (+26.0±1.9%). The changes 

of NPP and fire frequency was +8.3±0.3% and −7.4±0.7%, respectively, over the African 

continent. 

As was seen before, there was apparent spatial-heterogeneity for these changes. 
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Therefore, for enabling region specific analysis, we defined following four regions, where 

intensive changes of BC emissions occurred: (1) the western Africa (5°N–10°N, 15°W–

0°W); (2) the central Africa and the western coast of Africa (5°S–10°N, 0°W–20°E); (3) 

the eastern Africa (10°S–10°N, 20°E–50°E); and (4) the southern Africa (25°S–15°S, 

20°E–35°E). The BC emission increased in the regions 1, 2, and 3, while it decreased in 

the region 4. 

 

Fig. 4.4. Change of annual BC emission of wildfire from 2001-2010 to 2081-2100. Four 

regions where there was a characteristic change of BC emission are indicated by broken line 

squares. 
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Fig. 4.5. The difference of (a) biomass, (b) NPP, and (c) tree coverage in 2081-2100 from 

2001-2010 years. (b) The change ratio of fire frequency in 2081-2100 from that in 2001-2010. 
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Table 4.1. Changes in BC, biomass, NPP, tree coverage, and fire frequency of each region in 

the future experiment during the 21st century. Numbers for regions refer to the Fig. 4.4, 4.5. 

4.3.3 Suppressed CO2 increment Experiment 

Figure 4.6 shows the changes in BC emission, and figure 4.7 shows changes in 

biomass, NPP, tree coverage, and fire frequency over the African continent during the 

21st century. Table 4.2 summarizes these changes. 

The change of annual BC emissions was +32.5% over the African continent. This 

increase of BC emissions was −29.9% in the northern hemisphere and −35.1% in the 

southern hemisphere. Biomass increased by 2.6±1.5% over the African continent. This 

change ratio of biomass was +1.7±1.3% in the northern hemisphere and −7.2±2.0% in 

the southern hemisphere. The range of increase in biomass under the suppressed CO2 

increment experiment was very small compared to that of the future experiment (Fig. 

4.8). The changes of NPP, fire frequency, and tree coverage were −17.4±0.2%, −7.8±0.7%, 

and −14.1±0.6%, respectively, over the African continent. 

There was apparent spatial-heterogeneity for these changes. We defined following 

Area BC 

(g BC m-2 

yr-1) 

Biomass 

(kg C m-2 

yr-1) 

NPP 

(g C m-2 yr-1) 

Tree 

Coverage 

(% yr-1) 

Fire 

Frequency 

(% yr-1) 

African 

continent 

+0.014   +1.6    +0.05   +0.3    

   

−7.4    

Northern 

Hemisphere 

+0.017   +2.1    +0.06   +2.8    +2.1    

Southern 

Hemisphere 

+0.011   +1.2    +0.04   −2.0    −17.0    

Region 1 +0.057   +4.3    +0.01   +1.6    −8.6    

Region 2 +0.019   +0.7    −0.01   −1.3    +12.5    

Region 3 +0.047   +4.6    +0.32   +16.1    −13.1    

Region 4 −0.015   +0.6    −0.06   −6.8    −34.2    
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three regions, where intensive changes of BC emissions occurred: (5) the 

near-equatorial Africa (10°S–10°N, 15°W–25°E); (6) the northeastern Africa (5°S–10°N, 

35°E–50°E); and (7) the southern Africa (35°S–10°S, 10°E–40°E). The annual BC 

emission increased very little in the regions 5 and 6, while it decreased in the region 7. 

In the region 7, in correspondence with the decrease in BC emission, biomass decreased 

by −4.2±3.7%. 

 

Fig. 4.6. Change of annual BC emission from 2001-2010 to 2081-2100 in the suppressed CO2 

increment experiment. Three regions where there was a characteristic change of BC 

emission are surrounded with broken lines. 
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Fig. 4.7. Same as Fig. 4.5 but by the suppressed CO2 increment experiment. 
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Table 4.2. Changes in BC, biomass, NPP, tree coverage, and fire frequency of each region in 

the future experiment during the 21st century under suppressed CO2 increment. Numbers 

for regions refer to the Fig. 6. 

 

 
Fig. 4.8. Annual BC emission from wildfire. Gray: present (2001-2010), vermilion: future 

(2081-2100) and blue: future by suppressed CO2 increment experiment. All indicate the 

African continent. 

Area BC 

(g BC m-2 

yr-1) 

Biomass 

(kg C m-2 

yr-1) 

NPP 

(g C m-2 

yr-1) 

Tree 

Coverage 

(% yr-1) 

Fire 

Frequency 

(% yr-1) 

African 

continent 

−0.018   −0.1    −0.10   −4.8    −7.8    

Northern 

Hemisphere 

−0.012   +0.1    −0.10   −3.5    +4.5    

Southern 

Hemisphere 

−0.023   −0.3    −0.09   −6.1    −20.2    

Region 5 −0.008   −1.0    −0.21   −9.3    +30.8    

Region 6 +0.003   +1.9    +0.08   +6.1    −1.5    

Region 7 −0.026   −0.1    −0.10   −6.0    −33.3    
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4.4 Discussions 

4.4.1 Control Experiment 

Simulated BC emission under current climatic condition (i.e., years of 2001 to 2010) 

was a little larger than those of observation. We consider this overestimation was 

caused by the overestimation of vegetation biomass, which would be caused by the fact 

that the SEIB-DGVM does not consider human land-usage such as deforestation. The 

overestimation of biomass was also occurred in the previous study with the 

SEIB-DGVM in the African continent (Sato and Ise 2012).  

This overestimation of BC is conspicuous in Angola (15°S–5°S, 10°E–25°E), east Sahel 

of Africa (5°S–15°N, 30°E–45°E), Tanzania (10°S–0°S, 35°E–40°E), and the coast of gulf 

of Guinea (5°N–10°N, 15°W–10°E). All of these regions are significantly deforested 

through logging and slash-and-burn agriculture before 2005. 

In Angola, the deforestation rate was 11.0%, and bare soil and farmland increased by 

6.9% during 1990-2005 due to decrease in a savanna-woodland and grassland (Cabral et 

al. 2010). In east Sahel of Africa (Ethiopia, Kenya, Somalia, Sudan, Uganda, and 

Djibouti), Barbier (2001) showed forest area decreased by 9 % and this was found by 

FAO data (FAO 1993). FAO (2005) showed forest area decreased by 27.1% during 

1990-2005 in Uganda (0°N–5°N, 30°E–35°E). Refer to the subsection 3.4.1 for the 

situation of the coast of gulf of Guinea and Tanzania. 

4.4.2 NPP and Biomass of the Future Experiments 

The annual NPP and biomass showed an increase trends in the future experiment. 

However, it showed a decrease trend under the suppressed CO2 increment experiment 

during 21st century. Those results indicate that the enhanced annual NPP and biomass 

were primary caused by increase of atmospheric CO2 concentration. This result would 

be associated with the fact that higher atmospheric CO2 increase photosynthesis 

efficiency by fertilization effect and higher water-use efficiency (Larcher 1995). This 

tendency of carbon storage is consistent with previous studies. Scheiter and Higgins 

(2009) showed amount of African biomass was projected to nearly double during the 

21st century under the IPCC (2007) SRES A1B scenario. As well, Joos et al. (2001) 
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found an increase in terrestrial carbon storage of Africa during the 21st under the A1B 

scenario, but the carbon storage decrease when CO2 fertilization was suppressed. 

4.4.3 BC emission of the Future Experiments 

In the future experiment, the increased BC emission in the African continent 

associated with the increased biomass as fuel load due to the enhanced atmospheric 

CO2 concentration. On the other hand, the spatial distribution of change in BC emission 

pattern was very sensitive to change in annual precipitation pattern rather than annual 

mean temperature pattern. We converted the spatial resolution of NPP, biomass, 

annual precipitation, and annual mean temperature to a 5.0°×5.0° grid resolution by 

simple averaging over each grid cell domain, and calculated the change in those values 

from 2001-2010 to 2081-2100. Those values were normalized, and then the spatial 

correlations coefficients of NPP-precipitation, NPP-temperature, biomass-precipitation, 

and biomass-temperature were calculated. Result of this analysis showed that the 

changes in NPP and biomass were under strong control of annual precipitation; the 

spatial correlation coefficients of NPP-precipitation and biomass-precipitation were 0.69 

(P < 0.001) and 0.40 (P < 0.001), respectively. On the other hand, the spatial correlation 

coefficients of NPP-temperature and biomass- temperature were negative and weaker; 

they were −0.21 (P < 0.05) and −0.30 (P < 0.01), respectively. Because BC emission was 

affected significantly by change in biomass and NPP, the spatial distribution of change 

in BC emission pattern was also controlled by change in precipitation pattern. Actually, 

remote-sensing studies of the Sahel area showed that inter-annual variations in indices 

of vegetation greenness such as NDVI (Normalized Difference Vegetation Index) and 

LAI (leaf area index) are primarily controlled by precipitation (Anyamba and Tucker 

2005; Hickler et al. 2005). The results of field studies have suggested that precipitation 

primarily determines production and plant-species composition in African vegetation 

(Lwanga 2003; Gonzalez 2001; MacGregor and O’Connor 2002). 

In the future experiment, there is an increasing trend in the amount of BC emission 

in both hemispheres. However, the causes of this change in BC emission would be 

different among regions and hemispheres. We categorized the causes into three types. 

First, in the eastern Africa (1) and southern Africa (3), the BC emission was increased 

due to the increase in biomass as fuel load for wildfire (Fig. 4.5a). This increase in 

biomass was caused by an increment of atmospheric CO2 concentration in the eastern 

Africa (1), and it caused by an atmospheric CO2 concentration and annual precipitation 
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in southern Africa (3) (Fig. 4.5a, Fig. 4.7a). Second, in the central and western coast of 

Africa (2), the BC emission was increased due to the increase in biomass and fire 

frequency (Fig. 4.5a, d). The increase in biomass as carbon storage also was caused by 

an increment of atmospheric CO2 concentration. On the other hand, the fire frequency 

increased due to the decrease in annual precipitation which dry out fuel load (Fig. 4.1b) 

and the decrease in tree cover (i.e., the proportion of tree canopy coverage in the stand) 

(Fig. 4.5c). Tree cover decreased because the reduction of annual precipitation leads to 

higher tree mortality due to water stress. Third, in the southern Africa (4), annual NPP 

increased due to the increment of CO2 concentration, but an increase rate of NPP was 

low because annual precipitation decreased, so that there is little change in biomass. 

This low production rate of fuel load was hard to satisfy the required conditions of 

occurrence of wildfire. Consequently, the fire frequency decreased (Fig. 4.5d) and BC 

emission slightly decreased (Fig. 4.4).
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4.5 Summary 

We simulated how BC emission from wildfire changes during the 21st century in the 

African continent (37°S–34°N, 17°W–59°E) with a dynamic vegetation model 

SEIB-DGVM employing forecasted climatic condition under the SRES A1B CO2 

emission scenario with an AGCM MIROC3.2. Simulations were conducted under two 

conditions. First one is the future experiment: both climate and atmospheric CO2 

concentration develops during the 21st century. Second one is the suppressed CO2 

increment experiment: only climatic condition develops, while atmospheric CO2 

concentration stays at the same level of the year of 2010. 

Simulation under current climatic condition fairly reconstructed the observed 

geographical-distribution of annual BC emission. In the future experiment, the average 

annual BC emission, biomass, and fire frequency over the Africa changed by +30.5%, 

+33.6%, and −7.4%, respectively, during the 21st century. For both increments of BC 

emission and biomass, the northern hemisphere were more responsible than for the 

southern hemisphere. On the other hand, in the suppressed CO2 increment experiment, 

the average annual BC emission, biomass, and fire frequency changed by −32.5%, −2.6%, 

and −7.8%, respectively. These results indicated that BC emission would be caused by 

the increased biomass, which functions as fuel load. As the increment of atmospheric 

CO2 concentration is responsible for the biomass increment, CO2 emission scenario 

would largely control the amount of BC emission over the African continent in future. 

As well, for forecasting geographical distribution of BC emission over the African 

continent, precise forecasting for annual precipitation is important. This is because, 

geographical destribution of changes in NPP and biomass are more tightly correlated 

with changes in annual precipitation than with changes in annual mean temperature. 

This study assumed that changes in BC emission does not affect climate, although 

previous studies showed that the atmospheric BC caused a decreasing trend of 

precipitation over tropical Africa during the 20th century. In the future studies, such 

feedback of BC emission to the climatic conditions would be also studied for more 

precise forecast of BC emission. 
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Chapter 5 

Conclusions 

First, we studied the factors contributing to the variance of geographical distribution 

patterns of BC emissions. The response pattern of vegetation productivity to climate 

variables explained 57.5% of the regional variability in BC emissions during the 

growing season. This vegetation productivity was more closely correlated with the 

geographical distribution patterns of BC emission than climate variables such as 

temperature during the dry season. The response pattern of vegetation productivity to 

climate during the vegetation growing season was roughly determined by vegetation 

parameters such as biome type and tree cover, which are heterogeneously distributed in 

Africa. Therefore, regional BC emission patterns would differ even if climate change 

occurred uniformly throughout semi-arid Africa. 

Second, we studied the relationship between wildfire carbon emissions and cyclic 

variations in precipitation and temperature over Africa. We simulated carbon emissions 

from wildfires over the African continent using a SEIB-DGVM under the following 

climatic forcing conditions: (1) a control condition using observation-based climatic data 

(i.e., the control experiment); (2) negligible inter-annual variation in annual 

precipitation or annual mean air temperature (i.e., the no-cycle experiment); and (3) 

cyclic inter-annual variability in precipitation or air temperature at a frequency of 20, 

10, and 6 years (i.e., the cycle experiment). In the no-cycle experiment for precipitation 

and temperature, carbon emissions in the northern hemisphere decreased by 15.4% and 

15.1%, respectively, compared with emissions in the control experiment, whereas there 

was little difference in the southern hemisphere. In the cycle experiment for 

precipitation, carbonaceous aerosol emissions increased in the northern hemisphere 

when the cycle of precipitation exhibited less fluctuation. However, in the cycle 
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experiment for temperature, carbonaceous aerosol emissions did not significantly vary 

with fluctuations in the cycle. Therefore, our simulation revealed the importance of the 

pattern of inter-annual variability in precipitation to regulating carbonaceous aerosol 

emissions in the African continent. 

Finally, we estimated BC emission from wildfire in the future with a dynamic 

vegetation model SEIB-DGVM employing forecasted climatic condition under the SRES 

A1B CO2 emission scenario with an AGCM MIROC3.2, and then analyzed the cause 

of changes in the spatial distribution of BC emission. The average annual BC emission 

over the Africa changed by +30.5% during the 21st century. Range of the increment of 

BC emission was higher for northern hemisphere (40.4%) than for southern hemisphere 

(16.7 %) of the African continent. Biomass increased by 33.6% over the African 

continent. In correspondence with the changes in BC emission, this increment was more 

apparent for the northern hemisphere (+39.8%) than for the southern hemisphere 

(+26.0%). Those results of the increased BC emission and biomass suggest that 

simulated increment of BC emission is caused by the increment of biomass as fuel load 

for fire, which is a result of higher atmospheric CO2 concentration under future 

environment. It is also shown that the change of geographical distribution of BC 

emissions is caused by the change of annual precipitation pattern because the spatial 

destribution of change in NPP and biomass pattern were very sensitive to change in 

annual precipitation pattern.  

In the future, BC emission increased and it was sensitive to an atmospheric CO2 

concentration in the African continent. The spatial distribution of change in future BC 

emission pattern was controlled according to the change in future annual precipitation 

pattern. In addition, the spatial distribution of BC change was also affected by not only 

the pattern of inter-annual variability in precipitation, but also spatial distribution 

patterns of biome type and tree cover which correlate with vegetation productivity and 

fire probability. Furthermore, it is necessary to estimete the influence of this increment 

of atomosphric BC on climate system (for example, radiation forcing) because it caused 

a decreasing trend of precipitation in tropical Africa during the twentieth century.
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6. Appendixes 

A. Satellite Observation of BC Emission  

In the Global Fire Emissions Database (GFED) version 3, BC emissions were 

estimated by computing three variables: burnt area, dry matter, and the BC emission 

factor, which depends on the biome type. First, the burnt area
 
 (  𝑡) in each 0.5° × 

0.5° grid cell was estimated using a non-linear function of the number of active fires 

in a month,  𝑓(  𝑡), as 

 (  𝑡)  𝛼( )  𝑓(  𝑡)
 (𝑖)                                                              (  ) 

where   is the grid cell, 𝑡 is the month, and 𝛼( )     ( )    (Giglio et al. 2010). 

The parameters 𝛼 and   were estimated independently in each grid cell. Second, 

the dry matter mass was estimated from the living biomass pool size by use of the 

allocation scheme (Hui and Jakson 2006), which was derived from the net primary 

productivity (NPP). The NPP was derived from satellite remote sensing data by 

   (  𝑡)       (  𝑡) ×    (  𝑡) ×  (𝑇 𝑃)                                          (  ) 

where    (  𝑡) is the photosynthetically active radiation,      (  𝑡) is the fraction of 

available photosynthetically active radiation absorbed by vegetation,  (𝑇 𝑃) is the 

maximum light use efficiency, 𝑇 is temperature, and 𝑃 is moisture. Third, the BC 

emission was computed by multiplying the dry matter mass burned, which was derived 

from Eq. (A1) and the dry matter, by its emission factor (g BC / kg dry matter mass 

burned), which depends on the biome (van der Werf et al. 2010). The results of a Monte 

Carlo simulation indicated that globally, uncertainties were around 20% (1 ) for annual 

BC estimates during 2001–2009. The uncertainties for Africa (both northern and 

southern hemisphere regions) were of the same magnitude (van der Werf et al. 2010). 



B. FIRE SUB-MODEL 

71 

 

B. Fire Sub-model  

The fire sub-model in aDGVM (Scheiter and Higgins 2009) was introduced into 

SEIB-DGVM. This fire model is a semi-empirical model based on a study of the savanna 

in southern Africa. Fire only occurs when the stand average potential energy intensity 

( 𝑓 𝑟𝑒 in J s-1 m-1) exceeds a threshold value, which is estimated as a function of the fuel 

load (𝑓𝑢𝑒𝑙), fuel moisture (𝜃), and wind speed (𝑤  𝑑). 

 𝑓 𝑟𝑒(𝑓𝑢𝑒𝑙 𝜃 𝑤  𝑑)   689 × (𝑓𝑢𝑒𝑙
𝑓𝑢𝑒𝑙

𝑓𝑢𝑒𝑙    9 7
) 

× (
3  × arctan(𝑤  𝑑)

  6 ×    × 𝜃    6 ×   5(  𝜃)
)               (B ) 

where 16890 (in J g-1) is the heat yield when fuel is consumed, 119.7 and 301 are 

constants, 2.6 × 103 J g-1 is the pre-ignition heat of moisture, and 1.61 × 105 J g-1 is the 

pre-ignition heat of fuel. The term in the first set of brackets is the weight of fuel 

consumed (in g DM m-2), and the term in the second set of brackets is the rate of fire 

spread (m s-1). Fire can occur when the stand average of  𝑓 𝑟𝑒 exceeds a minimum 

intensity of 300 kJ s-1 m-1 (van Wilgen and Scholes 1997).  

Fuel load (𝑓𝑢𝑒𝑙) is calculated using the total amount of living (moist) fuel (𝑓𝑢𝑒𝑙𝑙𝑖𝑣𝑖𝑛𝑔) 

and dead (dry) fuel ( 𝑓𝑢𝑒𝑙𝑑𝑒𝑎𝑑 ). The value of 𝑓𝑢𝑒𝑙𝑙𝑖𝑣𝑖𝑛𝑔  is estimated from the 

aboveground grass biomass (𝑔𝑚𝑎𝑠𝑠𝑙𝑒𝑎𝑓) and one-half of the standing dead mass of grass 

(𝑓𝑢𝑒𝑙𝑆𝐷𝐺), as shown in equation (B2). 𝑓𝑢𝑒𝑙𝑑𝑒𝑎𝑑 is estimated from the lying dead mass 

(𝑓𝑢𝑒𝑙𝑙𝑖𝑣𝑖𝑛𝑔), and one-half of 𝑓𝑢𝑒𝑙𝑆𝐷𝐺 as shown in equation (B3). 

𝑓𝑢𝑒𝑙𝑙𝑖𝑣𝑖𝑛𝑔  𝑔𝑚𝑎𝑠𝑠𝑙𝑒𝑎𝑓    5 × 𝑓𝑢𝑒𝑙𝑆𝐷𝐺                                (B ) 

𝑓𝑢𝑒𝑙𝑑𝑒𝑎𝑑  𝑓𝑢𝑒𝑙𝑙𝑦𝑖𝑛𝑔    5 × 𝑓𝑢𝑒𝑙𝑆𝐷𝐺                                      (B3) 

The moisture content of the living fuel is assumed to be equal to the relative air 

humidity (𝑟ℎ). The moisture content of dead fuel decreases by an exponential function 

and is assumed to tend toward 0% (Higgins et al. 2000). The average fuel moisture (𝜃) is 

estimated as follows: 
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𝜃  𝑟ℎ ×
𝑓𝑢𝑒𝑙𝑙𝑖𝑣𝑖𝑛𝑔

𝑓𝑢𝑒𝑙𝑙𝑖𝑣𝑖𝑛𝑔  𝑓𝑢𝑒𝑙𝑑𝑒𝑎𝑑
                                                      (B ) 

If the stand average of the 𝑓𝑢𝑒𝑙 exceeds 300 kJ s-1 m-1, the daily probability of fire 

(𝐹 𝑟𝑜𝑏) is 0.0015% when the fraction of the tree canopy coverage of the stand (TC: 0–

100%) is 0.0 (Scheiter and Higgins 2009), and 𝐹 𝑟𝑜𝑏  decreases as TC increases. 

Additionally, when TC is 40–65% or >65%, 𝐹 𝑟𝑜𝑏  is reduced by 80% or 100%, 

respectively (Archibald et al. 2009).  

Because the burning rate is diminished at high altitudes where atmospheric pressure 

is low (Wieser et al. 1996), 𝐹 𝑟𝑜𝑏 is reduced as altitude increases by the use of terms for 

fire frequency (Along Track Scanning Radiometer (ASTR-2) during 1997–2009) and 

altitude (Global Soil Wetness Project (GSWP-2)) (Dirmeyer et al. 2002). The number of 

fire occurrences (in N year-1) was calculated for each grid cell (0.5° × 0.5°), and then the 

10% of grid cells with the most frequent occurrence of fire over Ethiopia (4°N–15°N, 

33°E–42°E) and the 5% of grid cells with the most frequent occurrence of fire over Africa 

(except Ethiopia) were selected. We applied a regression analysis with a quadratic 

function to the fire frequency (𝑓𝑓) as the dependent variable and altitude ( 𝐿𝑇) as the 

independent variable in each selected grid cell. The regression formula for Ethiopia was 

𝑓𝑓    9     ×     ×  𝐿𝑇    9 ×    5 ×  𝐿𝑇  and for other regions was 𝑓𝑓  9 9  

  6 ×     ×  𝐿𝑇  9 8 ×     ×  𝐿𝑇 . We set the value to 1.0 if 𝑓𝑓 was larger than 1.0 

and 0.0 if 𝑓𝑓 was smaller than 0.0 (i.e., 𝑓𝑓 cannot have a minus value). For the grid 

cells with a higher altitude than the altitude of the maximum value of 𝑓𝑓 (i.e., 1102 m 

for Ethiopia and 807 m for other regions), 𝐹 𝑟𝑜𝑏 was reduced by multiplication with the 

changed fire frequency formula (𝑓𝑓𝑐). This conversion was applied to the grid cells at a 

TC range of 0–40%. For the grid cells at a TC range of 40–65%, we used a minimum 

value of 𝐹 𝑟𝑜𝑏 that was reduced by 80% (i.e., 𝐹 𝑟𝑜𝑏 = 0.0003) and set using a quadratic 

function of altitude (i.e., 𝐹 𝑟𝑜𝑏      5(       833 × 𝑇𝑐) × 𝑓𝑓𝑐). 

All of the aboveground biomass of grass, standing dead mass of grass and tree leaves, 

lying dead mass, and half of the trunk litter is consumed when fire occurs. Grass species 

become dormant, and trees are burned when fire occurs. This burned tree mortality due 

to wildfire is an empirically derived function of tree ℎ𝑒 𝑔ℎ𝑡 (m) and  𝑓 𝑟𝑒 (Higgins et al. 

2000). 
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𝑚𝑜𝑟𝑡𝑓𝑖𝑟𝑒(ℎ𝑒 𝑔ℎ𝑡  𝑓 𝑟𝑒)  
exp[𝑑  𝑑 ln(ℎ𝑒 𝑔ℎ𝑡)  𝑑 √ 𝑓 𝑟𝑒]

  exp[𝑑  𝑑 ln(ℎ𝑒 𝑔ℎ𝑡)  𝑑 √ 𝑓 𝑟𝑒]
               (B6) 

here, the coefficients 𝑑 , 𝑑 , and 𝑑  are 4.3, 5.003, and 0.004408, respectively.
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C. Climate Data for Simulation  

The African continent was divided into 0.5° × 0.5° grid cells in this simulation. 

SEIB-DGVM needs daily climatic variables: air temperature, soil temperature (at 

depths of 0–10 cm, 10–200 cm, and 300 cm), precipitation, total cloudiness, wind velocity, 

and specific humidity. We used the National Centers for Environmental 

Prediction/National Center for Atmospheric Research (NCEP/NCAR) daily climate data 

for the period of 1982–2009 (Kalnay et al. 1996). Because the spatial resolution of the 

NCEP/NCAR data was 192 × 94 global points, these data were linearly interpolated to a 

0.5° grid mesh, which corresponds to the spatial resolution in our simulation. We 

corrected this interpolated NCEP/NCAR data using the Climate Research Unit (CRU) 

observation-based climatic data [CRU-TS 3.0 (0.5 Degree) 1901–2009 Monthly Climate 

Time Series (Mitchell and Jones, 2005)] as follows. The air temperature was linearly 

scaled by adding a constant (month and location specific) so that the monthly mean was 

the same as the value for the corresponding month and location in the CRU data. The 

soil temperature was linearly scaled by adding a constant (year and location specific) so 

that the annual mean was the same as the air temperature for the corresponding year 

and location of the CRU data. We then substituted air temperature for soil temperature 

because the CRU data do not contain soil temperature. The daily precipitation and 

specific humidity were linearly scaled by multiplying a constant (month and location 

specific) so that the monthly means were the same as the values for the corresponding 

month of the CRU data. The interpolated NCEP/NCAR daily wind and cloudiness data 

were used for simulations. The annual global mean atmospheric concentrations of CO2 

from 1982 to 2009 were used in the simulations.
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D. Climate Data for the Cycle Experiments  

For the no-cycle experiments, we created new climate data sets to estimate the effects 

of carbon emissions from wildfires on the small inter-annual variation in annual 

precipitation and annual mean air temperature over the 20-year period. The new 

climate data sets were close to the average observed annual precipitation or annual 

mean temperature for 28 years (1982–2009), and inter-annual variation was adjusted to 

be below one-tenth of the standard deviation of the average values over 28 years (1982–

2009). We created 10 members of these climate data sets for the 20-year period by 

adjusting precipitation ( 𝑃𝑛𝑒𝑤 0 ) or temperature ( 𝑇𝑛𝑒𝑤 0 ). First, daily corrected 

NCEP/NCAR reanalysis data were separated into 24 groups by half-monthly intervals 

(e.g., the first group was 1–15 January for each year from 1982 to 2009, and the second 

group was 16–31 January for each year from 1982 to 2009). Each group contained from 

392 days (i.e., 28 (years) × 14 (days)) to 448 days (i.e., 28 (years) × 16 (days)) of climate 

data. There was no way of obtaining day and year within each group of daily data. Next, 

for each group, classified climate data were selected at random to form the days of half a 

month, and then the selected climate data were combined with other selected climate 

data. In this way, we obtained the climate data for half-month periods. A new climate 

dataset (𝐷𝑛𝑒𝑤) for one year was obtained by placing all of the groups of half-monthly 

climate data in order of bimonthly time. Subsequently, we determined whether to adopt 

this 𝐷𝑛𝑒𝑤. The decision criterion to adopt the 𝐷𝑛𝑒𝑤 was that annual precipitation (𝑃new) 

should fall within the range 𝑃̅      𝑃  𝑃new  𝑃̅      𝑃  or the annual mean 

temperature (𝑇new) should fall within the range 𝑇̅        𝑇new  𝑇̅       . Here, 𝑃̅ 

and   𝑃 are the average and standard deviation of annual precipitation (Fig. 3.1a, b) 

and 𝑇̅ and    are the average and standard deviation of annual mean air temperature 

(Fig. 3.1c, d) of the CRU data from 1982 to 2009. We conducted the same step described 

above repeatedly and got 20 𝐷𝑛𝑒𝑤 datasets. Climate datasets for 20 years of 𝑃𝑛𝑒𝑤 0 and 

𝑇𝑛𝑒𝑤 0  were obtained by concatenating those 20 𝐷𝑛𝑒𝑤  datasets at random, which 

satisfied the decision criterion for precipitation and temperature, respectively. The 10 

climate data sets were created by repeating the above process. 

The climate datasets for the precipitation cycle experiments ( 𝑃𝑐𝑦𝑐𝑙𝑒 0 ) and 

temperature cycle experiments (𝑇𝑐𝑦𝑐𝑙𝑒 0), in which only annual precipitation or only 

annual mean temperature changed periodically through the 20-year period and a 

maximum amplitude of 2.0 𝑃 or  , were created using the following equation: 

http://ejje.weblio.jp/content/falls+within+the+range
http://ejje.weblio.jp/content/falls+within+the+range
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𝑃𝑐𝑦𝑐𝑙𝑒 0  𝑃𝑛𝑒𝑤 0
𝑃̅ ±   𝑃 sin (

 𝜋
𝑙
𝑥)

𝑃̅
                                            (D ) 

𝑇𝑐𝑦𝑐𝑙𝑒 0  𝑇𝑛𝑒𝑤 0 ±    sin (
 𝜋

𝑙
𝑥)                                                (D ) 

where, 𝑙 is 20, 10, and 6 which correspond to 20, 10, and 6 year cycle, respectively. 𝑥 

indicates simulation year (=1, 2, 3, …, 20). The maximum amplitude was adjusted 2.0 

 𝑃 or    to include heavy rain and drought in climate data. On the other hand, the 

climate data sets of 6-year cycle-experiment were created for 18 years, in order to adjust 

the same time average of annual precipitation or annual mean temperature for whole 

experimental period as that of other cycle-experiments. A positive / negative sign in 

equations (D1) and (D2) indicate annual precipitation and annual mean temperature 

increase / decrease in early half of cycle, and then those variable decrease / increase in 

latter half of cycle. We described this different of phase as phase (±) in this study. The 10 

climate data sets for 20 years were created for each phase and each cycle (i.e., 20, 10, 

and 6-year cycle). For precipitation, the daily climate data set for 20 years which annual 

precipitation change periodically was created by multiply a daily precipitation of 𝑃𝑛𝑒𝑤 0 

by the ratio of annual precipitation data that change periodically (𝑃𝑐𝑦𝑐𝑙𝑒 0) to small 

inter-annual variation in annual precipitation (𝑃𝑛𝑒𝑤 0) for each year (𝑃𝑐𝑦𝑐𝑙𝑒 0 𝑃𝑛𝑒𝑤 0⁄ ). 

However, the climate data does not change except daily precipitation. For temperature, 

the daily climate data set for 20 years which annual mean temperature change 

periodically was created by adding the difference between annual mean temperature 

data that change periodically (𝑇𝑐𝑦𝑐𝑙𝑒 0) and little inter-annual variation in annual mean 

temperature (𝑇𝑛𝑒𝑤 0) for each year (𝑇𝑐𝑦𝑐𝑙𝑒 0  𝑇𝑛𝑒𝑤 0) to a daily mean temperature of 

𝑇𝑛𝑒𝑤 0. However, the climate data does not change except daily temperature. 

where 𝑙 is 20, 10, or 6, corresponding to the 20-, 10-, and 6-year cycles, respectively, and 

𝑥 is the year of simulation (= 1, 2, 3, …, 20). The maximum amplitude was adjusted to 

2.0  𝑃 or    to include heavy rain and drought in the climate data. However, the climate 

data sets of the 6-year cycle experiment were created for an 18-year period in order to 

adjust the average annual precipitation or annual mean temperature for the whole 

experimental period to the same time period as the other cycle experiments. A positive / 

negative sign in equations (D1) and (D2) indicates an increase / decrease in the annual 

precipitation and annual mean temperature in the first half of the cycle, and those 

variables then decrease / increase in the second half of the cycle. We referred to this 
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difference in the phase as phase (±) in this study. The 10 climate data sets for the 20 

years were created for each phase and each cycle (i.e., 20-, 10-, and 6-year cycles). For 

precipitation, the daily climate data set for 20 years in which annual precipitation 

changed periodically was created by multiplying the daily precipitation of 𝑃𝑛𝑒𝑤 0 by the 

ratio of the annual precipitation data that changed periodically (𝑃𝑐𝑦𝑐𝑙𝑒 0) to the small 

inter-annual variation in annual precipitation (𝑃𝑛𝑒𝑤 0) for each year (𝑃𝑐𝑦𝑐𝑙𝑒 0 𝑃𝑛𝑒𝑤 0⁄ ). 

However, the climate data did not change, with the exception of daily precipitation. For 

temperature, a daily climate dataset for 20 years, in which the annual mean 

temperature changed periodically, was created by adding the difference between annual 

mean temperature data that changed periodically (𝑇𝑐𝑦𝑐𝑙𝑒 0) and the small inter-annual 

variation in annual mean temperature (𝑇𝑛𝑒𝑤 0) for each year (𝑇𝑐𝑦𝑐𝑙𝑒 0  𝑇𝑛𝑒𝑤 0), to the 

daily mean temperature of 𝑇𝑛𝑒𝑤 0. However, the climate data did not change, with the 

exception of daily temperature.
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E. Skill Score  

To validate the spatial distribution of carbon emissions, biomass, and tree cover for 

simulations, we introduced the skill score (𝑆𝑆) proposed by Taylor (2001). This index has 

been widely used to evaluate the spatial distribution patterns produced by climate 

models. SS is defined as follows: 

𝑆𝑆  
 (  𝑅)

(𝑆𝐷𝑅   𝑆𝐷𝑅⁄ ) (  𝑅0)
                                                       (E ) 

Here, 𝑅 is the spatial correlation coefficient between observations and the simulation. 

𝑆𝐷𝑅  is the spatial standard deviation of the simulation divided by that of the 

observation. 𝑅0 means the maximum correlation attainable, and we assumed 𝑅0   . 

𝑆𝑆 can be used to evaluate both the spatial correlation coefficient and the spatial 

standard deviation. The spatial distribution pattern of simulation results is completely 

in accord with that of the observation when the 𝑆𝑆 approaches 1.0.
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F. Stomatal Conductance 

The daily averages of photosynthetic rates ( 𝑎𝑣𝑒 in μ mol CO2 m-2 s-1) was calculated 

for each plant functional type (PFT) was calculated for each PFT of each scale of one of 

to ten relative PAR intensity (10%, 20 %, …, 100% relative PAR to top pf the forest 

canopy of day), using Eq. (F1)  

 𝑎𝑣𝑒   
 𝑠𝑎𝑡 × 𝑙𝑢𝑒 × 𝜒

 𝑠𝑎𝑡  𝑙𝑢𝑒 × 𝜒
                                                             (F ) 

where  𝑠𝑎𝑡 (μ mol CO2 m-2 s-1) is single-leaf photosynthetic rate under light saturation. 

𝜒 (μ mol photon m-2 s-1) is the daily average of PAR receiving for grass layer (for grass 

PFTs) of for foliage of each tree (for woody PFTs). 𝑙𝑢𝑒 is the light-use efficiency of 

photosynthesis (mol CO2 mol photon-1), which is formulated to conform to the data in 

Osmond et al. (1980) as follows: 

𝑙𝑢𝑒  𝐿𝑈𝐸 × 
5  𝑡𝑚 𝑎𝑖𝑟

3 5    75(5  𝑡𝑚 𝑎𝑖𝑟)
×

𝑐𝑜 𝑐𝑒𝑙𝑙
9    6 × 𝑐𝑜 𝑐𝑒𝑙𝑙

     ( or C   FTs)            (F ) 

𝑙𝑢𝑒  𝐿𝑈𝐸                                                                                                   ( or C4  FTs)            (F3) 

where 𝐿𝑈𝐸  is the potential maximum value. 𝑐𝑜 𝑐𝑒𝑙𝑙  is the intercellular CO2 

concentration (in μ mol mol-1). The single-leaf photosynthetic rate,  𝑠𝑎𝑡, under light 

saturation (in μ mol CO2 m-2 s-1), is calculated by multiplying its potential maximum of 

photosynthetic rate (𝑃𝑀  ) by the coefficients of temperature, CO2 level, and soil water 

effects (𝑐𝑒𝑡  , 𝑐𝑒𝑐𝑜 , and 𝑐𝑒𝑤𝑎𝑡𝑒𝑟, respectively). 

 𝑠𝑎𝑡   𝑃𝑀  × 𝑐𝑒𝑡  × 𝑐𝑒𝑐𝑜 × 𝑐𝑒𝑤𝑎𝑡𝑒𝑟                                              (F ) 

𝑐𝑒𝑡  , the temperature-dependent function of  𝑠𝑎𝑡, is a bell-shaped curve that reaches 

the maximum (1.0) at the optimum temperature and tapers off in warmer or cooler 

temperatures (Raich et al. 1991): 

𝑐𝑒𝑡    
(𝑡𝑚 𝑎𝑖𝑟  𝑇 𝑎𝑥)(𝑡𝑚 𝑎𝑖𝑟  𝑇 𝑖𝑛)

(𝑡𝑚 𝑎𝑖𝑟  𝑇 𝑎𝑥)(𝑡𝑚 𝑎𝑖𝑟  𝑇 𝑖𝑛)  (𝑡𝑚 𝑎𝑖𝑟  𝑡𝑜 𝑡) 
                         (F5) 
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where 𝑡𝑚  𝑎𝑥 , 𝑇 𝑖𝑛 , 𝑡𝑜 𝑡  (℃) and are the PFT-specific maximum, minimum, and 

optimum temperature for photosynthesis, respectively. 𝑡𝑜 𝑡  increases with the 

intercellular CO2 concentration because of photorespiration: 

𝑡𝑜 𝑡  𝑇𝑜 𝑡0       𝑐𝑜 𝑐𝑒𝑙𝑙                                                          (F6) 

where is the minimum value of at a very low 𝑐𝑜 𝑐𝑒𝑙𝑙. For grass PFTs, topt is assumed to 

be a 20-year running mean of air temperature in the growth phase (maximum range 

  ℃ 3 ℃  for temperate-herbaceous and   ℃ 3 ℃  for tropical-herbaceous), 

because grass PFTs includes a varieties of species adapted to a wide range of climatic 

zones. The 𝑐𝑒 𝑐𝑜 , the CO2-dependent function of  𝑠𝑎𝑡, is expressed by a Michaelis-type 

function: 

𝑐𝑒𝑐𝑜    3    7 ×
𝑐𝑜 𝑐𝑒𝑙𝑙  𝑐𝑜 𝑐  

𝐾𝑀  𝑐𝑜 𝑐𝑒𝑙𝑙
     ( or C   FTs)                          (F7) 

𝑐𝑒𝑐𝑜    5    5 ×
𝑐𝑜 𝑐𝑒𝑙𝑙  𝑐𝑜 𝑐  

𝐾𝑀  𝑐𝑜 𝑐𝑒𝑙𝑙
     ( or C4  FTs)                          (F8) 

where 𝐾𝑀  is the coefficient of CO2 concentration sensitivity; 𝑐𝑜 𝑐   is the CO2 

compensation point, which is adjusted by temperature for C3 species (Brooks and 

Farquhar 1985). 

𝑐𝑒 𝑐    𝑂 𝑐  [      5 (𝑡𝑚 𝑎𝑖𝑟    )        3 7(𝑡𝑚 𝑎𝑖𝑟    )] ( or C   FTs)  (F9) 

𝑐𝑒 𝑐    𝑂 𝑐                                                                                                        ( or C4  FTs)  (F  ) 

where  𝑂 𝑐   is the control value of 𝑐𝑒 𝑐   at 20 ℃; 𝑐𝑒𝑤𝑎𝑡𝑒𝑟, the water availability 

effect coefficient of  𝑠𝑎𝑡, is calculated as follows: 

𝑐𝑒𝑤𝑎𝑡𝑒𝑟  √𝑠𝑡𝑎𝑡𝑤𝑎𝑡𝑒𝑟                                                             (F  ) 

The mean daytime crown stomatal conductance of H2O 𝑔𝑠𝑎𝑣𝑒  (mol H2O m-2 s-1) is 

obtained as follows: 
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𝑔𝑠𝑎𝑣𝑒  𝐺𝑆𝑏  
𝐺𝑆𝑏 ×  𝑎𝑣𝑒

(𝑐𝑜 𝑎𝑡  𝑐𝑜 𝑐  )(  𝑣 𝑑 𝐺𝑆𝑏 ⁄ )
                                     (F  ) 

where 𝑣 𝑑 is the vapor pressure deficit between saturated and actual vapor pressures. 

𝐺𝑆𝑏 , 𝐺𝑆𝑏 , and 𝐺𝑆𝑏  are PFT-specific parameters; 𝑔𝑠𝑎𝑣𝑒affects the intercellular CO2 

concentration (𝑐𝑜 𝑐𝑒𝑙𝑙 in μ mol mol-1) following Leuning (1995): 

𝑐𝑜 𝑐𝑒𝑙𝑙  𝑐𝑜 𝑎𝑡  
 𝑎𝑣𝑒

𝑔𝑠𝑎𝑣𝑒   56⁄
                                                   (F 3) 

where 1.56 is a factor to convert 𝑔𝑠 into CO2 conductance. Using Eq (F1) through (F13), 

we calculated  𝑎𝑣𝑒, 𝑙𝑢𝑒, and 𝑔𝑠𝑎𝑣𝑒 of each PFT every simulation day. 
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