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Introduction

There is a one to one correspondence between Markov processes and Markov gener-
ators. We denote therfiX }t>o and.Z. When a Markov procesgX }i>o on RY is

given, the behavior of its harmonic functiafx) and the estimates of transition density
function p(t,x,y) play a crucial role for knowing the properties of the Markov process.
Here, the harmonic function is probabilistically defined as a bounded function such
that{u(X) };>o0 is @ martingale and the transition density function is characterized by

ET(4)] = [ pltxy)F(y)dy.

The harmonic function(x) is also characterized a&®u = 0 andp(t,x,y) is the fun-
damental solution of equatiatu/dt = Zu. A most important Markov process is the
standard Brownian motion, whose Markov generator is equél t@)A. In this case
p(t,x,y) is the fundamental solution of the partial differentiable equatiofiot =
(1/2)Au. We often callp(t, x,y) heat kernel

There are a lot of preceding results on the continuity of harmonic functions and
estimates of heat kernels. For example, when Markov genet&tis a uniformly
elliptic second order differential operator, the corresponding Markov process is a dif-
fusion process and the continuity of harmonic functions is well known. Moreover, this
heat kerneb(t,x,y) admits the Gaussian estimate as follows:

Cylx— y|2>
—4 )
HereC;’s are positive constants. The studies on the continuity of harmonic functions
and estimate of heat kernels for jump Markov processes have been developed for the
last decade. Jump Markov processes have discontinuous sample paths. A most typ-
ical example is the rotationally invariant-stable process generated by the fractional
Laplacian—(—A)%/2, where 0< a < 2. Unlike diffusion processes, harmonic func-
tions of jump Markov processes are not necessarily continuous (Barlow, Bass and et.
al. [3]). Thus, for the continuity of harmonic functions we need to impose some
conditions on the generator. This problem is considered by Bass and Levin [5], Bass
and Kassmann [4] and Husseini and Kassmann [14]. Moreover, it is proved that heat
kernels of jump Markov processes admit two-sided estimates different from those of
diffusion processes. Chen and Kumagai [9] treatestable-like processes, which is

a generalization of the rotationally invariamtstable process. In Chen, Kim and Ku-
magai [7], they gave two-sided estimates for heat kernel of relativistitable-like
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processes. These processes are symmetric with respect to the Lebesgue metsure
analyze symmetric Markov processes, the Dirichlet form theory is a powerful tool. We
introduce the Dirichlet forni&’, %) corresponding to the Markov proce®% }i>o:

E(u,v) = (—=Zu,v),

where(-,-) is the inner product of?(RY) and.# is the domain of the forn#®, the
closure of the domain of/. We define a Sclidinger form&* by

EH(u,v) = &(u,v) — /d u(x)v(x)u(dx). (0.2)
JR

Here i is a suitable positive measure. We note that the second term of (0.1) con-

tributes not killing but creation of the process. We consider the fundamental solution

of du/dt = ¥Hu, whereZH is the Schiddinger type operator defined by

(—Z*u,v) = EH(u,v).

We denote bypH(t,x,y) the fundamental solution. Since the perturbation in a &chr
dinger form is defined by creatiomp(t,x,y) is no longer a transition density of a
Markov process. However, we can define the corresponding semigroup by using the
positive continuous additive functionaf'. HereA!' is determined uniquely from by

the Revuz correspondence. Thef(t,x,y) is the integral kernel of the Feynman-Kac
semigroup:

Exexp(A) (%)) = [, P*(txy)T(y)dy 02)

We comparepH (t,x,y) with p(t,x,y). If p#(t,x,y) has the same type two-sided es-
timate asp(t,x,y) up to positive constants, we call this phenometton stability of
fundamental solutiondntuitively, if the potentialu is large,pH(t,x,y) has a different
estimate fronp(t,x,y). Thus we need to formulate the smallness of the megsufe
this end, we use the bottom of spectrum of the time changed process be recall

a result for a transient Brownian motion. Assupnés in a certain class. Takeda [32]
showed that under a certain condition @nthe stability of fundamental solution holds
if and only if

Au) = inf{;ﬂ)(u, u); ue HY(RY), /d wldy = 1} > 1, (0.3)
R
whereD is the Dirichlet integral defined by
D(u,v) = /d Ou(x) - Ov(x)dx
R

andH!(RY) is the 1-order Sobolev spack(u) is regarded as the bottom of spectrum
of the operato(1/2u)A, the generator of the time changed process of the Brownian
motion byAf'. The formula (0.3) describes the smallness of the megsuhedeed, if



p1 < Uo, thenA (u1) > A(u2). Moreover, the following each statement is equivalent to
(0.3):

SUPEx[eXp(AL)] < e, (0.4)
xeRd
GH(x,y) ::/O pH(t,x,y)dt <o for x#£y. (0.5)

If the measureu satisfies (0.4) and (0.5), thenis said to begaugeableandsubcritical
respectively. For the proof of the stability of fundamental solutions, the equivalence of
(0.3)—(0.5) is crucial. In this thesis, the measurs said to be subcritical if (1) > 1.
Furthermore,

(1) pis said to beeritical if A(u) =1,
(2) p is said to besupercriticalif A (u) < 1.

In two cases above, we cannot expect &t x,y) have the same two-sided estimate
asp(t,x,y). We have not been able to give a two-sided estimat# ¢f, x,y). However,

there exist some papers which deal with large time asymptotics of the Feynman-Kac
semigroupsEx[exp(Af')], if u is critical or supercritical. We see from (0.2) that

Exlexp(Al)] = [ pH(txy)dy ©6)

Since the subcriticality is equivalent to the gaugeability, the Feynman-Kac semigroup
diverges a$ — . Takeda [28, 30] showed that

lim < log E exp(Al)] = C(s), ©.7)

where
C(u) = —inf{é“‘“(u,u) ; /d udx= 1},
R

that is,—C() is the bottom of spectrum of the operatelZ* = —(.Z + ). Hence
we see that ifu is supercritical, thel€(t) is positive and the expectation (0.6) grows
exponentially.

If u is critical, C(u) = 0 and the expectation (0.6) seems to have polynomial
growth. This conjecture is proved by Simon [25] and Cranston, Kolokoltsov and et.
al. [8] in case thay is absolutely continuous with respect to the Lebesgue measure.
More precisely, whep =V (x)dxfor V € C¥ (RY), the growth of the expectation (0.6)
has the following asymptotics:

Cut? (d=3)
Ex[exp(A{')] ~ { Cat/logt  (d = 4)
Cat (d>5).



In this thesis we extend these results to jump Markov processes. The Dirichlet form
associated with jump Markov proceg¥ }1>o is expressed by

£ = [, () = u)) (vy) ~v(0)I(x y)dxay

HereJ(x,y) is a positive symmetric Borel function callf@mp intensity measur&he

terms ‘o-stable-like process’ and ‘relativistia-stable-like process’ come from the
behavior of jump intensity measure. In this thesis, we introduce three classes of Radon
measures: th&ato-classk, Green-tight Kato clas&. andconditional Green-tight

Kato classS. (For the definitions, see Section 2.2). In particular, the diasplays

a crucial role. Fomu € K., we consider the Schdinger form&* defined in (0.1)

and denote by{P"} a semigroup generated #/. Using a harmonic functioh(x)

of Schiddinger operator, the Sdbdtigner form can be transformed to a Dirichlet form.
This method is called Doob’k-transformused intensively in Chen and Zhang [12].

We consider the transformed semigratRf""}=o : L2(h2m) — L2(h2m),

h(x)
h(Xo)

The transformed semigroup generates Markov proce& amith symmetric measure
h?m. Moreover, we see that the associated Dirichlet forn.&ii?m) is expressed as

EHNu,v) :/Rded(U(Y)*U(X))(V(y)*V(X))J(X,Y)h(x)h(Y)dXdy (0.8)

a“*“mx):Ex[ exp(A) 1(X) |

namely, the jump intensity measuré,y) is transformed td(x,y)h(x)h(y).

First we establish a necessary and sufficient conditionudor the stability of
fundamental solution when the Markov proc€36}i>o is a-stable-like or relativis-
tic a-stable-like. Ifu is subcritical, the gauge functidm(x) = Ex[exp(Ak)] satisfies
1 < h(x) <C; for some positive constant. Hendgx, y)h(x)h(y) is equivalent tal(x, y)
and consequently the transition density function of the transformed process is equiv-
alent to the original one. Noting that”(t,x,y)/h(x)h(y) is equal to the transition
density function of the transformed process, we can conclude the stability of funda-
mental solutions. For example, IEX }+~o be a transientr-stable-like process oR‘.
In this case, the jump intensity measufe, y) satisfies

C G
—<J < —
|X_y|d+a - (X7y) - |X_y|d+a

for some positive constan€, andC,. The transformed Dirichlet form (0.8) is also
a-stable-like if and only if the measuyesatisfies

inf{@@(u,u) lue 7, /duzduzl} >1 (0.9)
R

From Chen and Kumagai [9], we know the two-sided estimate for the heat kernel of
o-stable-like process:

d t d t
S LI <C(taA g |
C1 (t A |X—y|d+a> = p(tﬂ(,y) <G (t A X_y|d+6{>
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Therefore, we can conclude that the stability of fundamental solution is equivalent to
the condition (0.9), which is an extension of (0.3).

We next consider large time asymptotics of the expectafigaxp(Af')], whenu
is critical or supercritical. Since (0.7) is valid for the rotationally invariamstable
process ([33]), the expectation (0.6) grows exponentially i supercritical.

If u is critical, we have a concrete growth order of (0.6) b= 2 anda = 1,
which is the same as that of 4-dimensional Brownian motion. Takeda [34] proved that
for the rotationally invariantr-stable process witd/a > 2, the growth of (0.6) is
proportional to the time. In this case the functioh(x) belongs toL?(RY) and, as a
result, the transformed Markov process has the finite invariant mela&uaré\pplying
the ergodic theory, we can obtain the growth order of (0.6). But when< 2, we
cannot use this argument becahge) is not inL?(RY). Hence, we apply an analytical
methods due to Simon [19].

If u is critical, the construction dfi(x) is based on Takeda and Tsuchida [35], in
which they proved thal(x) is continuous and satisfi¢gx) =< 1A |x|°~9. Hence, in
order to estimate the heat kernel of thtransformed process, we need to treat the jump
intensity likeh(x)h(y)/|x—y|9+9, which depends not onli —y| but also|x| and|y|.

The estimate of heat kernels for these type jump processes is an interesting problem.

We finally consider harmonic functions with respect to the Markov generators. Bass
and Levin [5] showed the #lder continuity of harmonic functions far-stable-like
generators. Bass and Kassmann [4] showed the continuity of harmonic functions for
more general jump-type Markov generators. They impose two conditions on the jump
intensity measurd(x,y): one issingularity of small jumpsnamely how the amount
of jumps with sizer grows ag tends to 0. The other iguasi rotationally invariance
namely how the process jumps in any direction to some extent. In this paper we prove
the continuity of harmonic functions under conditions weaker than those in Bass and
Kassmann [4]. For instance, we consider the cHggy) satisfies

C1
|X_y|d+1

<Ixy) < —2

lo LY) < lo
=y = x—y[@ T P9y

0<x=yl<2)
for some positive constan@ andC,. This jump intensity measure is a bit different
from that ofa-stable-like processes. For detail, see Example 4.1.

This thesis is organized as follows: In Chapter 1, we prepare the basic material:
Dirichlet forms, Hunt processes, smooth measures and additive functionals. In Chapter
2, we establish a necessary and sufficient conditiop &r the stability of fundamen-
tal solutions when the processasstable-like or relativistiax-stable-like. In Chapter
3, for the rotationally invariant 1-stable processkf we consider the growth order of
Feynman-Kac expectations and differentiability of spectral functions associated with
critical Schidinger forms . In Chapter 4, we study the continuity of harmonic func-
tions for a class of jump-type Markov generators contairingtable-like ones. Our
result is an extension of preceding ones in Bass and Kassmann [4], and Husseini and
Kassmann [14].



Chapter 1

Preliminaries

In this chapter we introduce basic material that will be used through this paper. In
Section 1, we review basic properties of Dirichlet forms and Markov processes. In
Section 2, we mainly treat the smooth measures and additive functionals.

1.1 Dirichlet forms and symmetric Hunt processes

Let(&,.7) be a Dirichlet form oriL.?(RY). Here& is a non-negative definite symmetric
bilinear form and% is an appropriate subspaceldf(RY) called domain. Define the
norm on.% by

&1(u,v) = &(u,v) +/]Rd u(x)v(x)dx

Then.# is a Hilbert space with respect tql/z-norm. LetC.(RY) be the family of
continuous functions oR® with compact supports equipped with the uniform norm. If
the domain# is both dense ih?(RY) with respect to th&?-norm and inC.(RY) with
respect to the uniform norm, the Dirichlet forf#,.%#) is said to baegular.

It is known that a regular Dirichlet form o?(RY) has a unique representation as
follows:

£ =&+ [ (uly)—utx)

(v(y) = v(x))J(x,y)dxdy+ /Rd u(x)v(x)k(dx). 1.1)

We call (1.1)formulae of Beurling-Deny and LeJairor further arguments, s¢8.2

of [13]. Furthermore, by the general theory of regular Dirichlet forms, there exists
a unique Hunt process di? associated with{&',.#) (See Chapter 7 of [13]). Hunt
processes oiRY consists of three parts according to the behaviors of sample paths.
(1.1) enables us to distinguish these behaviors of sample paths: The first part of (1.1)
is calleddiffusion partwhich satisfies strong local property: i.e.vifs equal to some
constant on the support of it follows that £¢(u,v) = 0. Diffusion part describes



the continuous movement of a particle, such as the Brownian motion. The second
part of (1.1) is calleqump partwhich satisfies non-local property and describes the
discontinuous movement of a particle. The most typical example is the rotationally
invarianta-stable process for & a < 2 (See Example 1.1). The last part of (1.1) is
calledkilling part which describes the disappearance of a particle in the state space.
Next we review definitions and properties of Hunt process.(Qet#, {X; }t>0,P)
be a stochastic process with state spéR& 2(RY)), where #(RY) stands for the
Borel o-field onRY, i.e. (Q,.#,P) is a probability space and eakhis a measurable
map fromQ to RY. The last condition of the measurability is explicitly indicated
by X € .#/%(RY). We say that the family{.# }+>o of sub-o-fields of .# is an
admissible filtrationif {.# }i>o is increasing irt andX; € .#; /% for eacht > 0. An
admissible filtration{.# }+>o is calledright continuousf for anyt > 0,

My = My = Dy My
Adjoining an extra poinf to a measurable spacg?, Z(RY)), we set
RI=RIUA, BRY) = BRI U{BUA : Be BZRY)}.

A quadrupleM = (Q,.#, {X }>0,{Px},_ga) is said to benormal Markov processn
(RY, (RY)) if the following conditions are satisfied:

(M-1) For eachx € RY, (Q,.#,{X }t>0,Px) is a stochastic process &
(M-2) Py(X € E) is measurable far> 0 andE € Z(RY).
(M-3) There exists an admissible filtrati§nz }i>0 such that

Py(Xits € E | #) =Px (X € E), Py-a.s.

for anyx € RY,t,s> 0 andE € A(RY).
(M-4) Pp(X% =A) =1 foranyt > 0.
(M-5) Py(Xo = x) = 1 for anyx € RY.

Before we define a Hunt process, we introduce stopping time and giddd defined
by stopping time. A0, «]-valued functiono on Q is called an#;-stopping timef
{o <t} € # for eacht > 0. For a stopping time, we define the sulofield .#, by

Mg ={Ne #:Nn{o <t} e #forallt > 0}.

Markov proces®1 is said to beHunt processif the following additional conditions are
satisfied:
(M-8) (i) Xw(w)=Aforanywe Q.

(i) X(w)=Afort > {(w), wherel (w) is thelife time defined byl (w) =
inf{t >0:X%(w)=A}



(iii) for eacht € [0, ], there exists a maf} from Q to Q such thaiso 6 = X
fors> 0.

(iv) For eachw € Q, the sample path— X;(w) is right continuous orj0, )
and has the left limit ori0, «).

(M-7) (i) The admissible filjatior{///t}izo is right continuous and for any probabil-
ity measurey onRRY, E € Z(RY) ands > 0,

Py(Xo4+s € E | Ay) =Px,(Xs € E), Py-a.s,

whereag is {.#; }1>o-stopping time.

(i) Let v be an arbitrary probability measure BA. For any{.#; }+>o-stopping
time g, increasing tag, it holds that

Pv(r!mo)(gn = Xo‘70— < OO) = ]Pv(o_ < OO)

The properties in (M-7) are called tis&rong Markov propertyand thequasi left conti-
nuity respectively.

In the sequel, we abbreviate the Hunt proces$ X0 for the convenience. Let
{R }t>0 be the semigroup generated by the Hunt proess >o:

RI(0 = Ef(X)] = [, Pty f(y)dy

wherep(t,x,y) is the transition probability density dfX; }i>o. If we use the unique
operatorZ satisfyingé'(u,v) = —(.Zu,v), p(t,x,y) is the fundamental solution of the
equationdu/dt = Zu. Forp > 0, we define the resolvent kernel@forder as follows:

Gol(xy) = [ e Ppltxydt

If we admit the case the right hand side is equal to infinity, this formula is valid for
B = 0. We denote bys(x,y) the resolvent kernel of 0-order, which we call teen
kernel The Hunt proces$§X: }1>o or the associated Dirichlet for(&’,.%) is said to be
transientif G(x,y) < o for x#y. In order to characterize transience property, we often
use theextended Dirichlet spac&.. % is defined as a family of measurable functions
onRY satisfying the following two conditions:

o |U <o mae.

e There exists a#’-Cauchy sequencn }nen Of functions in. such that
limu,=u ma.e.
n—oco
Obviously.# is a subspace aofr., and we see tha#.N LZ(IR{d) = .% from Theorem
1.5.2 of [13]. The following proposition is taken from Theorem 1.5.3 of [13], which
describes necessary and sufficient conditions for the transience of Dirichlet form.

Proposition 1.1. .%; is the extended Dirichlet space of transient Dirichlet fofif
and only if the following conditions are satisfied.

10



() Zeis areal Hilbert space with inner produét.

(i) There exists an m-integrable bounded function g strictly positive m-a.e. such that
Fe C LY(g-m) and

/ﬂ% U gm(dy) < v/E(uU), Yue Ze.

(i) .ZenL?(RY) is dense both in#(RY) and in(Fe, &).

(iv) Forany ue %, and its normal contraction v, it follows thate.%. and
&(v,v) < &(u,u). Here we say v is a normal contraction of ujvfx)| < |u(X)|
for all x € RY and |v(x) — v(y)| < |u(x) — u(y)| for all x,y € RY.

In this thesis, we consider the Hunt process which consists of only discontinuous
sample paths. These Hunt process is cajledp processes(1.1) implies that the
jump procesg X }t>o is characterized by a regular Dirichlet forf#,.#) on L?(RY)
as follows:

1/2
suu= [ Wy)-uydxdy  F =GR

whereJ(x,y) is a symmetric Borel functionJ(x,y) describes the frequency of jump
and is called jump intensity measure. We close this section by introducing three im-
portant examples of jump processes.

Example 1.1. If J(x,y) = Cq/|x —y|9"® for 0 < a < 2 and positive constant £
{X }t>0 is called the rotationally invarianti-stable process. The characteristic func-
tion satisfies

Eolexp(iu-X;)] = exp(—t|ul¥).

Example 1.2. We call the associated proceg; }i>o a-stable-like, if Jx,y) satisfies

C1 C:2
—<J < —
|X_y|d+a - (X’y) - |X_y|d+a

for some positive constantg @nd G.
Example 1.3. {X }i>0 is called relativistica-stable-like if Jx,y) satisfies

_ G
‘X_ y|d+a

C
exp(—Mmolx—y|) < J(x,y) < Wexp(frruxfyw

for some positive constantsg ©, and ny.

11



1.2 Smooth measures and additive functionals

In this section we define smooth measures and positive continuous additive functionals.
In order to define smooth measures, we first review the definition of capacity. Denote
by & the family of all open subset @Y. ForA € ¢, we define

rh={ueZ;u>1 ma.e. oA},

Cap(A) = {::fueffA é&1(u,u), :g;::@q)

For any sefA C RY, we set

CapA)= inf CapB).
F( ) Beo,ACB F( )
We call this thecapacityof A. The setA is said to beexceptionalf Cap(A) = 0. We
use the ternguasi everywhere (in abbreviation, g.er) order to mention ‘except for
an exceptional set'.

A positive Radon measuge onRY is said to beof finite energy integraif

[ MOolu(@0 <CE(wy) - (ve FNC(®?)

for some positive constaft We denote by, the family of positive Radon measures
of finite energy integral. Since” is a Hilbert space with respect #-norm, Riesz
representation theorem implies that there exists a unigues .% such that

(U v) = [ VOou(d.
We call the functiorJ; u 1-potential Moreover, we define a subs®&jy of Sy by
Soo={H € So; H(RY) <, [[Usp]|w < o},

where|| - || stands for the norm df*(RY).
Using these material, we defimenooth measuresnd smooth measures in the strict
sense

Definition 1.1. (i) A positive Borel measurg is said to be smoothu(e S) if u
charges no set of zero capacity and there exists an increasing seq{férieey
of closed sets such thatF,) < « for all n € N andlim_,., Cap(K\F,) = O for
any compact set K.

(i) A positive Borel measurg is said to be smooth in the strict senged ) if
there exists a sequen¢&y },>1 of Borel sets increasing a9 such that
1g, - p4 € Spo for each n andP’x(Iimn%mTRd\En = o) =1 for any xe RY, where

Tea\g, := inf{t > 0; % € RY\Eq}.

Next we introduce additive functionals. THevalued stochastic proce$sy }+>o
is calledpositive continuous additive function@CAF in abbreviation) if it satisfies
the following conditions:

12



(A-1) A is Fi-measurable{.%;} being the minimum completed admissible filtration
of the Hunt process.

(A-2) There exist a sehk € .7, and an exceptional st C RY such thafPy(A) = 1 for
anyx € RI\N, A C A for anyt > 0, and moreover for eaal € A, A (w) is
right continuous and has the left limit d8, { (w)),Ao(w) = 0, |A(w)| < o for
t < {(w), A(w) = Az(w)(w) for t > {(w) andA s(w) = As(w) + A (Bsw) for
anyt,s> 0.

If we can choose the empty set as an exceptional set in (AA2},is calledPCAF in

the strict senselt is known from Theorem 5.1.3 (Theorem 5.1.7) of [13] that there is

one to one correspondence between the set of smooth measures (in the strict sense) and
the set of PCAFs (in the strict sense). This relation is calledRevuz correspondence

for all positive bounded Borel measurable functioandy-excessive functioh,

{0 () = lim LB | [ 1008

Rd

In particular, ifu is absolutely continuous with respect to the Lebesgue measangl
consequentlys = V (x)dx, it holds thatAf' = fév(xs)ds

13



Chapter 2

Perturbation of Dirichlet forms
and stability of fundamental
solutions

In this chapter we assume that the Hunt proc§si>o or the associated Dirichlet
form (&,.%#) is a-stable-like or relativistier-stable-like. Denote byR } the associated
semigroup and lep(t,x,y) be the transition density function dfX; }i>o. It is well
known that{R } admits the integral kerngl(t,x,y).

We consider the perturbation of Dirichlet form defined by

EH(u,u) = éa(u,u)—/ uzdu:—(.i”u,u)—/ udp.
JRd JRd

Herep is a positive measure in the Kato class satisfying Green tightness (in abbrevi-
ation u € Ko,). Let {R"} be the associated semigroup. This semigroup also admits
the integral kernep (t, x,y) defined on(0, ») x RY x RY. We comparepH (t, x,y) with
p(t,x,y). Chen, Kim and Kumagai [7] and Chen and Kumagai [9] proved that both
upper estimates and lower estimatespdf,x,y) are the same function up to positive
constants. Ifp#(t,x,y) has the same estimate pf&,X,y) up to positive constants,

we call this phenomenaostability of fundamental solutionSuppose that the measure

U € Ko is of 0-order finite energy integral, namely,and the Green kernéb(x,y)
satisfies

La.s SOYH@u(dy) <
RIxR

Our goal is to prove that the subcriticality pfis the necessary and sufficient condition
for the stability of fundamental solutions.

For the construction of the necessary condition, we need to check some classes
of measures. Takeda [29] showed that there are some conditions equivalent to the
subcriticality of the measurg. However, this equivalence is valid for the class of
conditionally Green-tight measur&s, which is in general a subclass Kf,. In order
to apply this argument to the claks,, we first proveK ., = S using 3G-inequality.
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For the construction of the sufficient condition, we apply Doditsansformation.
Hereh(x) is a harmonic function of the perturbed operatét := £ + u. If h(x) =
exp(u(x)) for u € %, we can apply the argument of Chen and Zhang [12], and thus
construct a transformed semigro@ﬁ“’h} on L?(h?dm). We can describe the associ-
ated Dirichlet form(&# @(&£#M)), which is equivalent to the origingls,.#) and
then conclude the stability of fundamental solutions. In order to apply this argument,
we assume that is of 0-order finite energy integral.

This chapter is organized as follows: in Section 1 we review two properties-for
stable-like processes and relativistiestable-like processes: one is the conservative-
ness of processes given by Masamune and Uemura [21], and the other is the two-sided
heat kernel estimates given by Chen, Kim and Kumagai [7] and Chen and Kumagai
[9]. We also give the two-sided estimates for Green kernels. In Section 2 we will give
the definition of some classes of smooth measures: the KatoKlas®e Green-tight
Kato classK. and the conditional Green-tight Kato cleSs. In Section 3 we prove
the main result following the arguments of Chen and Zhang [12] and Takeda [31].

2.1 Heat kernel estimates for jump Markov processes

We first define the Dirichlet forms associated witkstable-like process and relativistic
a-stable-like process. Léts,.%) be a jump type regular Dirichlet form drf(RY) as
follows:

£1/2
s = [y -u)Byaxdy  F=GERDY @)

whereC.(RRY) is the family of all continuous functions di® with compact supports,
&1(u,u) = &(u,u) + [ra U(x)dxandJd(x,y) is a symmetric Borel function called jump
measure. Here we consider the two cases:

C G

WSJ(X,Y)SW (0<a<2), (2.2)
< < . .
|X_y|d+a f\](Xay) = |X—y\d+0’ (0<C¥<2, mo>0) (2 3)

In the sequeCi’s are unimportant positive constants varying line to line. Denote by
{X}t>0 the associated Hunt process. Jifx,y) satisfies (2.2){X }+>o is calleda-
stable-like. IfJ(x,y) satisfies (2.3){X }t>o is called relativistica-stable-like.

The Hunt proces$X: }+>o is said to beconservativef

Py({ =) =1 g.exeRY
where( is the life time of{X; }+>o defined by
{:=inf{t >0, X =A}.

We first show the conservativeness ¥f }+~o. Masamune and Uemura [21] established
some sulfficient conditions for conservativeness of jump Markov processes on locally
compact metric spaces. If we rewrite their theorem in the framework of jump Markov
processes oRY, we have the following assertion.

15



Theorem 2.1. Let (&,.%) be a jump regular Dirichlet form defined K2.1). The
associated Hunt processx }i>o is conservative if the following two conditions are
satisfied:

(i) sup (LA x=y[?)I(x,y)dy < oo.
xerd /RN {x}

(i) Forany a> 0, it holds that e e L1(RY).

If J(x,y) satisfies (2.2) or (2.3), we see tHag }1>0 is conservative from this theo-
rem. Indeed, in the both cases, the upper bouritixfy) implies

C

1/\—2J,d</ IA|x—y?) —=—d
Lo g A DYPIONIY [(ANKYP) - gy

Cl C1
— 1 4 +/ 1 4y
-/\x—y\g oy a2 f o e yjdra

Using the spherical coordinates, the last line of the above formula is equal to

Cz(/olrl‘“dw/lwr‘l‘“dr).

Since 0< a < 2, this value is bounded by some positive constant not depending on
x € RY. Hence we obtain (i). Moreover, we see that

/dexp(fa|x|)dx:03/ rd~lexp(—ar)dr < oo.
R 0

Thus we obtain (ii).
Next we review the two-sided heat kernel estimates. Chen and Kumagai [9] showed
heat kernel estimates for-stable-like processes.

Theorem 2.2. Let { X }t>0 be ana-stable-like process oRY. Then there exist positive
constants ¢and G such that forallt>0and xy € RY,

t

d
afitn Lo
1 |X_y|d+a

) < ptxy) SCz(t*%Am)- (2.4)

Furthermore, Chen, Kim and Kumagai [7] gave heat kernel estimates for relativistic
a-stable-like processes.

Theorem 2.3. Let {X }i>0 be ana-stable-like process oRRY. Then the heat kernel
p(t,x,y) has different two-sided estimates according to the sizes of pang|.

() fo<t<land|x—y| <1, p(t,xYy) satisfies the same two-sided estimates as
a-stable-like processes:

t

_d
el e

) < p(t,xy) Sf32<t7g Am) (2.5)
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(i) Fo<t<land|x—y|>1, p(t,xY) satisfies

exp(—Cax—y))
X —y[dta

exp(—Calx—Yl)

Cyt
1 |X_y‘d+a

< p(t,x,y) < Cgt (2.6)

(i) If1<t<|x—y], p(t,xy) satisfies
Cit~ 2 exp(—Colx—y|) < p(t,xy) <Cat Zexp—Calx—y]).  (2.7)

(iv) If 1v|x—y| <t, p(t,x,y) satisfies

Calx—y|?
t

_yl2
Clt*%eXD(— )Sp(t,x,y)scst*%eXp(—M). (2.8)

In the sequel, we assume tHag }i>o is transient and consequentl} }t>o admits
the finite Green kernel. We obtain the two-sided estimates for Green kernels from
Theorems 2.2 and 2.3.

Proposition 2.1. Let {X; }+>0 be the transient Hunt process generated by a Dirichlet
form (&, .%#) satisfying(2.1).

(i) Suppose ,y) satisfieg2.2). Then the Green kernel(®y) satisfies

C1 C2
— < < — . 2.
x—ypaa = OOV S [y @9

(i) Suppose X,y) satisfieq2.3). Then the Green kernel(®y) satisfies

1 1
<
ey ¥ pemype) <O

1 1
< C . 2.10
<ColfymaVpoyez) @10

Proof. (i) The transience ofX }i>o impliesa < d. Since we obtain the heat kernel
estimates ofr-stable-like processes in Theorem 2.2, it follows that

0 d t ® _d t
Cuy (08 n ey o= S0 <2 (18 )

We first compare*% with t/|x—y|9*¢. Since it holds that

t
= < Xy o x—y| e <t o Ix—yl@ <t,
we obtain
- S L] Sl T G S i
x—yj@te |ta (t>[x—yl%)
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This estimate implies that

/w(t*g/\ t )dt /X_yla t dt+/°o t—&dt
0 Ix—y|d+a /™" Jo x—y|d+a Xyl

1 d -1 1 Cs
= _— 1 = .
2x—y[ia " (-1 x—y[d-a ~ [x—yda

Hence, we conclude (2.9).

(i) The transience of the process impligé 3. First we assume that—y| < 1. We
have (2.5) for 06Xt < 1 and (2.8) fot > 1. Thus it follows that

0 1 o0
| ptxyat= [ ptxyydt+ [ pitxydt
(i d t © d Cslx—y[?
S/o ( /\m)dH—/l cat fexp(— =2 yar (211)

Here the first term of (2.11) satisfies

® _d t Cy
< tTo N —m—— At < ——— . 2.12
< )y &t A g ) < oy (212)

Moreover, the second term of (2.11) satisfies

2 00 _vl2

b d Cs Cs
< 2 .
*/\xfwzcﬂ U oy S poyea @)

Combining (2.12) and (2.13), we obtain the upper bound:

Ce
/ptxy < oy (2.14)

For the lower bound, we have
°° =y
| eyt [ ptx e
0 0

[x—y|¥ t Cs
> C dt = . 2.15
> Opymet e @19)

Combining (2.14) and (2.15), we have far—y| <1

C1
x—y|d-a =

C

- 2.1
= x—ylee (2.10)

G(xy) <
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We next assume thax—y| > 1. We obtained (2.6) for &t < 1. However,
noting thatx —y| < exp(|x—y|), we can make the left hand side of (2.6) smaller:

exp(—Calx—yl)

Cit
1 |X_y‘d+a

>Citexp(—(Co+d+a)|x—y|)
> Catexp(—Cy|x—V]). (2.17)
Similarly, noting thatx—y| > 1, we can make the right hand side of (2.6) larger:

exp(—Ce|X—Yl)

Cst
S ‘X_y|d+a

< Cstexp(—Celx—y)). (2.18)

Hence (2.17) and (2.18) imply
Catexp(—Co|x—y|) < p(t,x,y) < Cgtexp(—Ca|x—y]).

Moreover, we obtained (2.7) ford t < [x—y| and (2.8) fort > [x—y|. Thus it
follows that

00 1 [x—y|
/ p(t,x,y)dtg/ Cgtexp(—C4\x—y|)dt+/ C5t*%exp(—C6|x—y|)dt
0 0 1

w 2
+[ ctd exp(—M) dt. (2.19)
=yl t

The first term of (2.19) satisfies

Cu

FRvE=S (2.20)

1
/0 Cstexp(—Cy|x—y|)dt < Coexp(—Ciolx—Y|) <
The second term of (2.19) satisfies
[x—y] d ® d
/ Cst™2 exp(—C6|x—y|)dt§/ Cst ™ 2 exp(—Cg|x—y|)dt
1 1

C

< Croexp(—Caglx—y|) < # (2.21)

For the third term of (2.19), we substituge= [x — y|2/t. It follows that

- _vy? [x=yl
x| t 70
O |t o cusass
< =T sz cexp(—Cgs)ds< —————. 2.22
= x—yl9=2 Jo d Jds< x—yld-2 (222

Thus, combining (2.20)—(2.22), we have the upper bound

Cie
< — .
p(t,x,y) < X y0 2 (2.23)
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We can also obtain the lower bound:

[ ptxyde= [ byt
0 Ix=yl

00

2
> Cl7t*% exp(_w)dt
x| t

x=yl
=/ C17\X—y|2*ds%*2exp(—Clgs)ds (2.24)
0
Noting that|x—y| > 1, we can make the right hand side of (2.24) smaller:
[x=y]
/ Crrlx— y[>~9s2~2exp(—Cyg9)ds
0

1 2-d 4-2 Cio
> | Ci7|x—y|* “s2 ?exp(—Cygs)ds> Xy Z (2.25)
0 _

We thus have fojx—y| > 1

G

C
<G(xy) < m

B S 2.26
x—yld=2 ~ (.26)

from (2.23) and (2.25). On account of (2.16) and (2.26), we obtain (2.10).
O

We close this section introducing a certain function space. 4.&e a function
space as follows:

9 = {g ; gis a positive decreasing function ¢d, «),3C;,C;, st. C; <
whereC; andC; are independent af> 0. The following corollary plays a crucial role
in the next section.

Corollary 2.1. Let{X }i>o be either arx-stable-like process or a relativistiz-stable-
like process. Then there exists a functios @ such that for all xy € R with x#y,

Cig(|x—y|) < G(x,y) < Cag(|X—Yl)-

Proof. By Proposition 2.1, we have only to prove that bgiftr) = r®=9 andgy(r) =
r@=dvr2-d pelong to the function spacg. Sinceg;(2r)/gi(r) =299, we conclude
01 € ¢. Similarly, we obtain

20—d (r<1/2)
) <
ggz((rr)) =242 (1/2<r<1)
2 22-d (r>1)
and consequently®® < g»(2r)/ga(r) < 2279, Thus we concludg, € 4. O
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2.2 Properties of Kato class measures

A setB c RY is callednearly Borel measurabléfor each probability measuneonRY,
there exist Borel sef8;, B, € #(RY) such thaB; C B C B, andP, (X € B,\By, 3t >
0) = 0. We introduce some kinds of ‘small sets’ for a Markov proce§s:>o.

Definition 2.1. (i) A set Ac RY is said to be polar if there exists a nearly Borel
measurable set B such that@B andPy(og = ) = 1 for all x € RY. Here
og =inf{t > 0| X € B}.

(i) The subset & R is said to be m-polar if there exists a nearly Borel measurable
set B such that & B andPpy(0g = ») = 1. Here,Pn(A) = [ra Px(A)m(dX).

Moreover, the sef\ is m-polar if and only if A is an exceptional set defined in
Section 1.2. Recall thdtX; }+>0 admits an absolute continuous heat kernel with respect
to the Lebesgue measure. Itis known that the absolute continuity of heat kernel implies
that the polar set or the exceptional set is empty set. Thus, when we consider a smooth
measureu or the associated PCAR', we can strengthen them to the strict ones. We
denote byS; the family of smooth measure in the strict sense. Now we define some
subclasses ;.

Definition 2.2. A smooth measure in the strict sensés said to be in the Kato class
(1 € Kin notation), if it holds that

lim sup/ Gp(x,y)u(dy) = lim sup/ / e Plp(t,xy)dtu(dy) =0. (2.27)

B—oyeRrd B—yeRrd

The following definition on the Green-tight smooth measures of Kato class is taken
from Takeda [29].

Definition 2.3. A measurqu € K is said to be Green-tight( € K« in notation), if for
anye > 0, there exist a compact set Knd a positive constard; such that
sup [ G(x,y)u(dy) <e (2.28)
xeRd /KE
and for any BC K, with u(B) < &, it holds that

sup | G(x,y)u(dy) <e. (2.29)
xeRd /B

The following definition on the conditionally Green-tight smooth measures of Kato
class is also taken from Takeda [29].

Definition 2.4. A measureu € K is said to be in the clasS., if for any € > 0, there
exists a compact set:kand a positive constardf; such that

qup [ GYCHZ

dy)<¢g
x,zeRd / KE G(x,2) H(dy)
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and for any BC K¢ with u(B) < &, it holds that

sup G(x,y)G(y,2)

p(dy) <e.
x,zeRd /B G(X7Z) ( )

There are different definitions fé¢, K. andS. in [6, 36]. We first make sure that
these definitions are equivalent each other.

Proposition 2.2. The following assertions are equivalent each other.
() peK.ie. usatisfies (2.27).
(i) lim supEx[Af']=0.
t—0

xeRd

(iii) lim sup /‘X_yKaG(x,y)u(dy):O.

a—0 xcRd

Proof. As a definition ofK, [6] used (ii) and [36] used (iii) instead of (2.27). Note that

t
BA) = [, [ p(sxyydsu(ay) (2:30)
by [1]. Thus the formula (ii) is rewritten as follows:
t
lim sup / / p(s.x,y)dsu(dy) = O. (2.31)
t—=0 , gd /R4 JO

We see from Lemma 3.1 of [20] that (2.27) and (2.31) are equivalent, which implies
the equivalence between (i) and (ii).

As for the equivalence between (ii) and (i), Kuwae and Takahashi proved in The-
orem 3.2 of [20] for more general Markov processes, but we give another proof here
by checking some conditions in Zhao [38]. Let

Tg) »= inf{t > 0; X ¢ B(x,r)},
Towr) :=inf{t > 0; X € B(x,r)}.

Tg(xr) @NdTg(x ) are calledirst exiting timeandfirst hitting timeof B(x, r) respectively.
On account of Theorem 1 of [38], it is sufficient to prove the following three formulae:

0o = supinf supPx(Tgy) >1) <1, (2.32)
t>07>0ycpd '

Bo := supinf supPx(Tgx) <t) <1, (2.33)
r>0t>0ycpd 7

Ao :=supinf sup Py(Tgiy) <) <1 (2.34)

u>0">0x—yi>u
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Define the functiorp(r) as follows:

(r) = re ({X }t>ois a-stable-likg
or) = ragm’  ({X }i>ois relativistica-stable-likg.

We first show that there exists a positive constansuch that for alk € RY and 0<
r<1/4,

Ex[T(xn)] < C10(r). (2.35)

Indeed, using the &vy system formula and the lower bound of jump measure, we have

PR TB(xr
1> P(Xrgy, & BX20) = Ex [ L u>dud%
’ 0 B(x,2r)

Tg(xr
> By U B”/j C2 duds]. (2.36)
0 Bx2n)® [Xs—u[9@(|Xs—ul)

Note thatXs € B(x,r) for 0 < s < 1) and for fixedw € B(x,r), {u : |w—u| >
3r} C B(x, 2r)°. Applying this to the right hand side of (2.36) and using the spherical
coordinates, we obtain

TB(xr) C © ]
E dudg > C —_dpE
[/o T oLl % 51, () 4Pt

1
>Cy /3r P~ dpE[Ta(x)] = Cs((3r) " — BT (2.37)

Since we assumed thatOr < 1/4, it follows that
(3r) 9 —1=(3r)"%(1—-(3r)%) >Cer 7.

Hence the right hand side of (2.37) is estimated as follows:
- - Cs
CS((3r) o - 1)EX[TB(x.r)] > Cer GEX[TB(x.r)] > WEX[TB(X,I‘)]' (2-38)
Thus (2.36)—(2.38) imply 2 Cg/¢(r) - Ex[Tg(x )] and we have (2.35).This is an exten-
sion of Theorem 5.1 in [9]. It is clear that (2.35) implies

Cao(r)
t

Py(Tgxr > 1) <

and we obtain (2.32) witkrg = 0.
Applying Proposition 4.9 of Chen and Kumagai [10], we see that for arbitrarp
there exists; > 0 such that for < r < 1 andx € R¢

PX(TB(X.I’) <Yyeo(r)) <e.
Thus, for O<r < 1 we obtain

inf sup]Px(TB(x,r) < t) < SUpPX(TB(x,r) < Veqj(r)) <E.
>0y Rrd xcRd
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Forr > 1, we obtain

inf SUpPx(Tg(xr) <t) < SUPPx(Tg(xr) < Ve®(1/2))

>0y cpd xeRd

< supPx(Tx1/2) < ¥eP(1/2)) <.

xeRd

Hence, we obtain (2.33) witBy = 0.

We can prove (2.34) in the same way as is used in Lemma 5 of [38], which deals
with Lévy processes. Corollary 2.1 implies that there exist positive constars
andg € ¢ such that

C1g(x=yl) < G(xy) < Cag(|x—Vyl).

Fixu>0andb>1. If x—y|>u,0<r <u/(2b+1) and|z—x| <r, it follows that
|y — z| > 2br and consequently

Cag(2br) > Co9(|ly—2) > G(y,2).

Thus, we have

Csg(2br)rd > /

B(x,r)

=By |:EXTB(X_r) |:/0 1B(x,r)(xt)dt:| D Texr) < °°:| ; (2.39)

G(y, Z)dZZ ]Ey [[I’ 1B(xAr) (N)dt]
B(x,r)

where we used the strong Markov property in the last equality. Note)@fg&tn €
B(x,r) and

E, [ /O 1B<X,,)(xt)dt} — /B ., G2z

Hence the right hand side of (2.39) satisfies

]Ey |:]EXTB(X,I') |:~/0 1B(><r)(xt)dt] : TB(X,I’) < °°:|

2 ]P)Y(TB(x,r) <o) inf G(w,z)dz

[w—x|<r JB(xr)

> ]P’y(TB(XJ) <o) inf Cig(lw—2)dz (2.40)

[w—x|<r JB(x,r)
Moreover,|w—X| <r andz € B(x,r) imply |w—2z < 2r, and using the monotone
decreasing property @f, we obtain

Py(Ta(xr) < ) inf C19(|w—2|)dz> Cag(2r)r¥Py(Ta(xr) < ®).  (2.41)
lw—x|<r JB(xr)
From (2.39)—(2.41), we see that
Cag(2br)

< 2O\
]P)Y(TB(X,I') < 00) — C4g(2I’)
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for [x—y| > u, 0<r <u/(2b+ 1) andu > 0. We thus see that

inf sup Py(T; <o) < inf sup Py(T, < o
r>0\x—y\gu y( Bxr) )_0<r§u/(2b+1)‘x_y‘gu y( Bxr) )
. C3g(2br)
< inf SUp ——~—~
T 0<r<u/(2b+1) \x—y\gu Cag(2r)
= inf Csg(20r) < IimsupLg(Zbr)

T o<r<u/(20+1) Cag(2r) T 1o Cag(2r)

For a sufficiently largdd, the right hand side of the above formula is smaller than 1.
Hence, we obtain (2.34). O

In the sequel, we assumec K. The following proposition says that the two def-
initions on the Green-tight smooth measures of Kato class from [6] and [29] coincide
with each other.

Proposition 2.3. For u € K, the following assertions are equivalent each other.
() U € K. i.e.u satisfies (2.28)—(2.29).
(ii) For anye > 0 there exist a setdof u-finite measure and a positive constapt

such that

sup [ G(x,y)u(dy) <&

xcRdJFE

and for any BC F¢ with u(B) < &,

sup [ G(x,y)u(dy) <e.
xeRd /B

(iii) 1t holds that

lim sup . G(x,y)u(dy) =0.

F=% xerd Jlyl>r

Proof. We assume (i) and léf; and d; be a compact set and a positive constant in
(2.28)—(2.29) respectively. Singee K andg(|x—y|) — o as|x—y| — 0, (iii) of
Proposition 2.2 implies that(B(x,a)) — 0 asa— 0 uniformly inx € RY. In particular,
there exist positive constards andCp such thaii (B(xp,ap)) < Cp forall x e RY. Since
Ke is compactK, is covered by finite subset dfB(x,a0)},.gs and thus we obtain
U (Ke) < 0. Hence (ii) follows forFy = K¢ andSe = 0.

We next show (i) implies (i). We follow the proof of Theorem 2.1 (3) in [6]. Let
Fe andd; be a set ofu-finite measure and a positive constant satisfying (ii). Since

U(BO,R NF) =0 (R— o),
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there exists a positive constaRt such that

sup /4C G(x,y)u(dy) <e.
B(0,Re) NFe

xeRd

We thus obtain

sup/ G(X,y)u(dy)
NSICE B(O,Re¢)

< sup( [ Goeyman+ [ o Gooyuay) <2e

xeRd

It holds that forB C B(0,R;) with (B) < &

sup [ G(xy)u(dy) < sup(/émF G(x,y)u(dw+/FCG(x,y)u(dy>) < 2e.

xeRd /B xeRd

Hence, (i) follows forKe = B(O, R%) ando; = 5%.

We easily see that (iii) follows from (i) by choosing the empty seBasdB(0,r)
askK respectively.

If (iii) is valid, it follows that for arbitrarye > 0 there exists a sufficient large > 0
such that

&
sup Gxy)u(dy) < 5.

xcRd JYI>Te

SetKe = B(0,r¢). Sinceu € K, (iii) of Proposition 2.2 implies that there exists a
sufficient small positive constaat such that

£
sup G(x,y)u(dy) < 5.
xeRd 7 [X—y|<ag
Thus, it holds that for a measurable et K,
[exyu@y < [ exyu@)+ [ Gxyudy
JA JB(x,a¢) JANB(x.a¢)¢
£
< 5 +Cig(@e)H(A). (2.42)

If we choose a sufficient small positive constapt the second term of (2.42) can be
smaller thare /2 for any setA with t(A) < &. Hence we have (j). O

Denote byK ., the class of measures satisfying the conditions in (i) of Proposition
2.3. This is the definition of Green-tight smooth measures of Kato class taken from [6].
Next we compare the definition &, with that in [6]. The following definition on the
conditionally Green-tight smooth measures of Kato class is taken from Chen [6].
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Definition 2.5. The measurg belongs to the clasS,, if for any £ > O there exist a set
F¢ of u-finite measure and; > 0 such that

sup /chu(dy) <g,

x,zERIx RA\A G(x,2)

A= {(x,x) ; x€ RY} and for any Bc F; with u(B) < &

xzeRIxRA\A VB G(x,2)

The following proposition can be proved in the same way as is used in the proof of
(i) = (ii) in Proposition 2.3.

Proposition 2.4. It holds thatS., C S..

Proof. Let u is in the classSe. Sinceu € K from Definition 2.4, we can refrain the
argument of the beginning of the proof for Proposition 2.3. In particular, we can choose
K¢ andd; in Definition 2.4 ag~ andd; respectively. O

The next theorem is proved by means &-theorem.
Theorem 2.4. It holds thatKe, = S = Se.

Proof. Let g be a function in Corollary 2.1. Note that eithpr—y| > |x—2|/2 or
ly—2 > |x—2]/2 holds. Ifjx—y| > |x—2]/2, it follows that

GxY)G(y,2) _ Cag(Ix—yl)
< G(y,z
Gd ol 2)
_ Cog(x—2/2)
C19(/x—2))
by Proposition 2.1. Ify—z| > |x—Z|/2 we can similarly obtain

G(x,y)G(y,2)
G(x,2)

G(ya Z) < C3G(y7 Z) = C3G(Z? y) (243)

< CyG(X,Y). (2.44)

Combining (2.43) and (2.44) we see that

G(x,Y)G(y,2)

G2 <Cs(G(xy) +G(zy)),

and thuK ., C S... Moreover, we se&., C K., from Corollary 3.1 of [11] and p.4663 of
[6]. Itis also proved thaK ., C K by Proposition 2.3 of [6]. Thus we obtaB, C K.
Combining with Proposition 2.4, we obtaifi, C S C S C K and this is the desired
assertion. O

We close this section introducing an important property of the measieg.in

27



Corollary 2.2. For u € Ko,
SUPEL[AY] < o. (2.45)

xeRd

Proof. The left hand side of (2.45) is rewritten as follows:

EAL] = [ Gxy)u(dy).

We see that the right hand side of the above formula is equal to

[ cxyu@y+ [ Gxymdy)+ Giy)u(dy,  (246)
[x—yl<ae Ke KeNlx=y|>ae

wherea; is a positive constant such that the first term of (2.46) is smaller ¢hami-
formly in x € RY andK, is a compact set taken from Definition 2.3. Thus the first
and the second terms of (2.46) are uniformly bounded. Sfads of finite u-measure
from Proposition 2.3 an@(x,y) is bounded onx—y| > &, the third term of (2.46) is
also uniformly bounded. Hence, we have the desired result. O

Remark 2.1. In [6], the property (2.45) is proved for the wider class of measites
U is said to be in the clags; if there is a Borel set F of finita-measure and a constant
d such that

sup _sup [ G y)u(dy) < 1.
BCF:u(B)<8xeRrd /FCUB

If 4 € Ke, we can make the left hand side arbitrarily small.

2.3 Stability of fundamental solutions

In this section we assumeec K, is positive and satisfies

Lo SOYH@u(dy) < @247)
REXR

U is said to be of 0-order finite energy integralyif satisfies (2.47). Consider the
Schibdinger form(&#,.%#) defined by

EH(u,u) == &(u,u) — /]Rd uldp. (2.48)

Denote by{P!};>0 the corresponding semigroup. It is known tRAtis written by
R f(x) = Ex[exp(A) f (X)),

whereAf' is a positive continuous additive functional in the Revuz correspondence with
u. Following [1, 2], we see thaP" 11~ admits the integral kerngd* (t, x,y) defined
on (0,0) x R4 x RY. Our goal is to prove the following theorem:
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Theorem 2.5. Let (&£,.%) be a transient Dirichlet form associated withstable-like
process or relativistiar-stable-like process. Suppogeis a Green-tight measure of
O-order finite energy integral. Then the stability of fundamental solution is valid if and
only if u satisfies

inf{é"(u, u); ue .#, /d u’dp = 1} > 1 (2.49)
R

For the proof of Theorem 2.5, the following proposition plays a crucial role.

Proposition 2.5. For u € K, the following assertions are equivalent.
() GH(xy)i= [ pAtxydt<eo forxy;
0
(i) inf{&(u,u); ue .z, /duzdu =1} >1;
R

(i) sup Ex[exp(AL)] < co.

xeRd

Proof. This proposition is proved fgu € S, in Theorem 2.4 and Theorem 3.9 of [29].
Since we see th#.,, = S. from Theorem 2.4, we obtain the desired result. O

We can prove the ‘only if’ part of Theorem 2.5 from equivalence between (i) and
(i) in Proposition 2.5. Suppose the stability of fundamental solution holds. Using the
Green kernel estimates similarly obtained as in Proposition 2.1, we seg'tbay) <
. This is equivalent to (2.49).
Before proving the ‘if’ part, we introduce the definition of gaugeability.

Definition 2.6. The Green-tight measune is calledgaugeabléf Al satisfies (iii) of
Proposition 2.5.

Now we prove the ‘if’ part of Theorem 2.5. The equation (2.49) and Proposition
2.5 imply that

1 < h(x) := Ex[exp(A)] < C1 < o.
In order to apply Theorem 3.4 in [12], we need to show that there exists#. such

thath(x) = exp(u(x)), where.%, is the extended Dirichlet space, namely the closure of
Z with respect to the'/2-norm.

Lemma 2.1. For u € K, define

Gu(x) = /R , G y)u(dy).

Under assumptioi2.47), Gu € Ze.
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Proof. This lemma is an extension of Lemma 3.1 in [31]. ke€ K. Then it holds
that

[, vdu < [GH [l (uw (2.50)
R

for u € %.. This is the modification of Theorem 3.1 in Stollmann and Voigt [27].
Definepk (1) = u(KnN-) for a setK of y-finite measure. Applying (2.50), we have

[ b < ()2 gPdp)M?
]Rd Rd
< (W(K)Y2)| G | Y26 (i, w) /2.

By (2.45), we sed Gk ||o < ||GH | = SUR,re Ex[Ak] < o and consequently is of
0-order finite energy integral in the sense of [13]. We thus have

/]Rd Yduk < co@(GuK,GyK)l/Zg(w’ w)l/z
1/2
< ( AdedG(X,y)duK(X)duK(y)) &Y, )2,

We see thap is also of 0-order finite energy integral a@l: € %, by lettingK to
RY, O

Lemma 2.2. Supposg! € K, is gaugeable. Then it holds that

h(x) = 1+ G(hu)(x).

Proof. This is an extension of Lemma 3.2 of [31]. L&t }i>o be the filtration
equipped with the Hunt proce$; }i>o0. SetM; = Ex[exp(Aéi) | .#]. By the Markov
property, we have

h(X) = Ex [exp(AG)] = Ex[exp(AL o & )|.4]
#;-measurability ofAf' and the property of additive functionals imply

Ex[exp(Al o & )|.24] = exp(—A¢ )Ex[exp(A + AL o &)|.4]
= exp(— A )Ex[exp(AL) | ] = exp(—A{ )M,

where®g, is the shift operator satisfying s = Xso 6 for all s> 0. Hence, we have

t t
Ex [/ h(XS)dAg} By {/ exp(—AMdAL | . (2.51)
0 0
Noting that

exp(—Ag)dAS = —d(exp(—AS))
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and using the integral by parts, the right hand side of (2.51) is equal to
PE— — t —
Ex[Mo] — Ex[exp(—A )My] + Ex [/O exp(—Aé‘)dMs} = h(x) — Ex[h(X)],
where we use the martingale property{#; };>o in the last equality. Thus, we have

t
B [ 0618 | = — Bnx)] (252)
and note that

lim h(X) = lim exp(~Af )V = exp(—AL) exp(Al) = 1

We then have the desired result by letting « in (2.52). O

Recall thatZ, is a Hilbert space with inner produétt/? if £ is transient. Sincé
is a positive bounded function al@ € .%e, G(hp) € Ze. Moreover, define

u(x) := logh(x) = log(1+ G(hu)(x)).

Sinceu(x) is a normal contraction o&(hu)(x), u € .% and hence we conclude that
h(x) = exp(u(x)) foru € Fe.
Next, consider Fukushima’s decompositionGihu):

G(hu) (%) — G(hy) (Xo) = M{CMI - NJCWIL (2.53)

whereMt[G(h“)] is a martingale additive functional of finite energy dnﬁs(h“)] is a

continuous additive functional of zero energy. Since the left hand side of (2.53) equals

h(X) —h(Xo) by Lemma 2.2,Mt[G(h“)] equaIth[h]. Moreover we see from Lemma

5.4.1 of [13] that

etw] _ _ [ u
N | noxaa
We thus have
t
(%) (%) =M — [ hxe)dag.

Furthermore, we define a martingale by

t 1 .
M :/ aml
= hixe ) OV

and denote by the unique solution of Doleans-Dade equatiopn= 1+ fé Ls_ dMs.
From Theorem 9.39 of [15], we know thiat is expressed as

Lt :exp(Mt—;<M°>t> [T (1+AMs)exp(—AMs).

O<s<t
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whereM€ is the continuous part of martingaié and(M°¢) is the quadratic variation of
MC. Noting that

we obtain
e EXp(Mt - ;<Mc>t> oL, hr&)) exp(1- hrE(XtS)) ):

In order to calculatd;, we apply 16 formula to the semimartingale(X;) and the
function logx. Thus, we have

t
logh(X) = logh(Xo) + |

+ Y (Iogh(Xs)—Iogh(Xs)—h()i's)AMéh]>+;/Oth(;sl)2d<h(X)°>s. (2.54)

0<s<t
The right hand side of (2.54) is equal to

logh(Xo) +M; — t h*;;f*)w

h(Xs) ( h(Xs) > } 1t 1 h
+ log +(1- = dmihiey
0<zs<t{ h(Xs-) h(Xs-) 2 Jo h(Xs-)? ( )s
Noting that the sefs; Xs # Xs_ } is at most countable, the above formula is equal to

logh(Xo) +M; — Af' +0<zs§t {Iog hiXs) | (1— h(Xs) > } = E<M°>t

(%) (%)) [ 2

Hence we obtain
L P9
h(Xo)
We consider the transformed semigro[Lﬁ‘;fl’h}tzo by L;,
1
h(x)
We then know from Theorem 3.4 of [12] that the Dirichlet form generateW}tzo
is identified.

Proposition 2.6. There exists a Dirichlet formi&# ", #(£#M)) on L2(h?dx) corre-
sponding to the semigroum“‘h} and it has the representation as follows:

exp(Af).

R (x) = Ex[Le F(%)] = = Ex[h(X) exp(Al) £ (X%)].

EH(u,v) =/ (U(y) — u(x)) (v(y) = v(x))J(x, y)h(x)h(y)dxdy (2.55)

RA xRA
(60N = 7. (2.56)
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Using this proposition, we can prove the ‘if’ part of Theorem 2.5. Note E{ﬁ‘a{i
admits the integral kern&l(x) ~1pH (t, x, y)h(y) % with respect to the measuné(y)dy.
Since 1< h(x) < C; for some positive constai@l;, we see that the form defined by
(2.55)—(2.56) is the regular Dirichlet form drf(RY) with jump measurey(x,y) :=
J(x,y)h(x)h(y). Moreover, there exists positive consta@tsandCz such that

N S <G
x=yl4(]x—y|) ~ x=ylhe(x—yl)’
where@(r) =r? (o(r) =r®exp(mor)) if {X }i>o0is a-stable-like (relativistia-stable-

like). Hence, we see thai(x)~1pH(t,x,y)h(y)~* has the same two sided estimates
as those given in Theorems 2.2 and 2.3 figr, x,y). Since 1< h(x) < Cy, so does

pH(t,XY).
The following example is constructed by Takeda and Uemura [36].

< Ji(x,y)

Example 2.1. Let g; be a surface measure of spheétB, = {|x| =r}. Since the sym-
metric a-stable process hits the sphel8; if 1 < a < 2(seee.g.,E44.19 in [23]), the
measuregy is in K. The measure; is then gaugeable if and only if

inf{& (u,u) : / uwdo, =1} > 1.

{Ix|=r}
Since the measurg is spherically symmetric, the infimum is attained by the function
u(x) = cPx(0yg, < ), x€ RY,

where c=1//0;(B;). Let Cap?(-) be theO-order capacity with respect to the
symmetriax-stable process. Then the infimum above equals to

Cap® (9B)
o (0B;)

because
&9 (P (0gg, < ),P.(0pp, < ®)) =Cap®(dB;).
It is known (see.g.,Corollary 2.2 in [22]) that
2OV (51T ()
M) () (%)
Therefore, the measurg is gaugeable if and only if
1
{x/ﬁr(dz"—l)r(‘z')}ﬁN
r(eH) T (%) '

We close this chapter introducing the extension of the stability by Kim and Kuwae.

a

Capg® (9B;) =

Remark 2.2. The assumption that is of 0-order finite energy integral is unnecessary.
Kim and Kuwae [16] extends the argument of h-transformation to more general class of
function. Moreover, Kim and Kuwae [17] proved the stability of fundamental solutions
for perturbations containing non-local parts.
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Chapter 3

Critical Schr odinger forms and
spectral functions

Let {X }t>0 be a transient jump Markov processfiandu be a green-tight measure

in the Kato class. In the previous chapter, we established the necessary and sufficient
condition on the measurg for the fundamental solution to satisfy the stability i.e.
pH(t,x,y) has the same two sided estimateésx,y) up to positive constants. This
condition is said to be subcriticality @f, which describes the smallness of measure

u. If pis not subcritical, there are two cases to be considered: critical case and super-
critical case. In these two cases, we expect f#dt,x,y) has different behavior from
p(t,x,y). We have not determined the estimategbft, x,y) however, there are some
papers mentioning the estimates of the intedgalp (t,x,y)dy. Note that this integral

is equal to the expectatidiy[exp(Af')]. Furthermore, we see from the previous section
that 1 is subcritical if and only if sup pa Ex[exp(Ak)] < «. Hence, the expectation
Ex[exp(Af')] diverges as — « if y is critical or supercritical. To know the growth of
Ex[exp(Al')], we first consider the limit defined by

1

lim = logEx[exp(A{)].
Takeda [30, 33] and Tsuchida [37] proved this limit is equal to the spectral bound as
follows:

2 —
o u“(x)dx= 1} .

C(1) == —inf {é”“(u, Wue .7, /
[30] treats the standard Brownian motion, [33] treats the rotationally invemiestable
process and [37] treats the relativistiestable process. Itis known thatu) > 0 if p is
supercritical, and hend®[exp(Af')] grows exponentially. Ift is critical,C(u) = 0 and
the growth is slower than the exponential one. Simon [25] and Cranston, Kolokoltsov
and et. al. [8] considered the same problem wk¥}i>0 is the transient Brownian
motion andu =V - mfor non-negative/ € C3(RY). The growth order of the expecta-
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tion Ex[exp(Af')] depends on the dimensidrand satisfies

Cih(x)-t¥2  (d=3)
Ex[exp(Af')] ~ < Coh(x)-t/logt  (d = 4)
Csh(x) -t (d>5),

whereh(x) is the harmonic function of—A —V). In the sequel, we assume that
u is critical and{X }+>o is the rotationally invariantr-stable process. Takeda [34]
proved thatEy[exp(Al')] is proportional tot if d/a > 2. This is an analogy of the
d-dimensional Brownian motion fadl > 5. The outline of the proof is based on the
probabilistic theory and as follows:

First we rewrite the expectation as follows:

Ex[exp(Af)] = 1+ Ex [/Ot exp(Ag‘)dAg‘} .

Next we consider the transformation of Sgtinger semigroup by the harmonic func-
tion h(x). In the critical case, we can also construct the harmonic function following
the argument of Takeda and Tsuchida [35]. Usingtheansformed semigroup defined

by

h(X)
h(Xo)

ER[F (X)] = Ex [ exp(A#)f(xo} ,

we conclude that

Ey[exp(Al)] = 1+ Ey [/Ot exp(Ag)dAg] — 1+ h(xE" {/Ot rifi)} .

Moreover, [35] proved that the harmonic functibfx) satisfies
CL(IA[X|%7%) < h(x) <Cp(1A |x|2~9).

The functionh(x) is in L?(RY) for d/a > 2. Thus, the transformed process is an ergodic
process with the finite invariant measire mand consequently, we obtain

I

Hence we determine the growth Bf[exp(Al)].

However, we cannot apply this method for the cdge < 2 becausé(x) is not in
L2(RY). Thus, we use other analytical method based on the argument of Simon [25]. In
this chapter, we consider the ca§ }1>o is the rotationally invariant 1-stable process
onRR? andu is absolutely continuous with respect to the Lebesgue measure. This chap-
ter is organized as follows: In Section 1, we calculate the transition density function
of {X }t>0 and give the asymptotic expansion of the resolvés } when tends to
0. In Section 2 we consider the asymptotic behavio{@fg}, namely the resolvent of
Schibdinger form. Furthermore we apply the Tauberian theorem, which describes the
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relation between the asymptotic behavior of resolvent and that of semigroup. In Section
3 we consider the behavior of the spectral function. For fixed measutee spectral
functionC(A) is defined a€(A) = C(A ), whereC(A u) stands for the spectral bound

of A u. Takeda and Tsuchida [35] established the criterion of differentiabili€y(af).

Using the asymptotic expansion obtained in Section 2, we can determine the precise
behavior ofC(A).

3.1 The asymptotic behavior of the resolvent

We first calculate concrete transition density function and resolvent of the Markov
process. Le{X; }t>o be the rotationally invariantr-stable process. The characteristic
function of {X; }+>osatisfies

Eolexp(iu- X% )] = exp(—t|u|?). (3.1)

Using the transition density function, (3.1) is rewritten as follows:

| expliu- (y =) p(t. xy)dy = exp(~t]ul).

Furthermore, we obtain the explicit transition density function by the inverse Fourier
transform:

1 a
PLXY) = e [ 4exp—tlul —iu- (y=)du (32)
Proposition 3.1. Let p(t,x,y) be the heat kernel of 1-stable processivh Then it

follows that

t

. (3.3)
27(t2 + [x—y|2)?

p(t,x,y) =

Proof. We have only to substitutd = 2 anda = 1 in (3.2). Using the polar coordi-
nates, we obtain

p(t,x,y) = (2;2 '/ﬂ%z exp(—t|u|+i(x—y)-u)du

21T o0
- (27;2/ / F exp(—tr +ir[x—y| cos8)drde
JO JO

1 /-2" de _i/" de
(2m2Jo (t—i|lx—y|cosB)2 2m Jo (t—i|x—y|cosH)?’

Moreover we can calculate the integral of the right hand side as follows:

s

/’T do _/7( 1 n 1 )d@
o (t—ijx—y|cosB)2 Jo \(t+iJx—y|cosB)2 = (t—i|x—y|cosH)2
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. [7 t2—|x—Yy|?co¢6
_2/0 (t2+\xfy|zco§9)2d9

. [% (C—Bcos®) . (T (C—Bcosh)
_2./0 (A+Bcosz9)2d9_/o (A+Bcos€)2d6’ (34)

whereA = t? + |x—y|?/2,B = [x—y|?/2 andC =t — |x—y|?/2. Here we consider the
integrals as follows:

/" 1 40 /7 cosf

Jo (A+BcosB)2" "’ o (A+BcosH)?2

The former is calculated as follows:
n 1 1-t2 2
— - df = / A B- dt
/o (A+Bcosh)?2 * 1+t2) 1+t2

_/ 2(1+1t?) dt
(A+B)+ (A—B)t?)2

B 2/(A—B) 4B/(A—B) it
A+B (A— B)tZ*((A+B)+(A—B)t2)2) '

Here we used the substitution of {#72) =t in the first equality. Since botA+ B
andA — B are positive, the right hand side of the above formula is equal to

. (3.5)

2 (A—B)% mo 4B (A—B)% m_ A
(A—B)2 \A+B 2 (A-B)® \A+B 4 (A_B)S(M_B)%

The latter is calculated as follows:

™ cos@ 1-t2\-2 1-t2 2
0O g / (a+B- 202t
/0 (A+Bcos0)? B e) e T
2(1—t2
_/ ) dt
(A1B)+ (A—B)?)?

o —2/(A-B) n/(A-B)
_/0 (( 2+((A+B)+(AfB)t2)2)dt

A+B)+ (A-B)t
2 (E)% T 4A (ﬂ)% n
~ (A-B)2 \A+B 2 (A-B)® \A+B 4
-B
=TT 3 7 (3.6)
(A—B)2(A+B)2
(3.5) and (3.6) imply that the right hand side of (3.4) is equal to
AC+B? t4 t
n 3 3 7 =1 3"
(A-B)2(A+B)2 B3(t2 + x—y[?)2 (t2+|x—y|?)2
Thus, we obtain (3.3). O



We next consider the behavior of tieorder resolvent whefi tends to 0.

Lemma 3.1. The 3-order resolvent kernel gx,y) has the asymptotic expansion as
follows:

y—log2+log|x—y]|
21T

Gp(x.y) = Go(xY) + 5-Bl0gB + B+o(Bd). @)

Proof. (3.3) implies that

) 1 00 tefﬁ[
G X,y :/ p(t,x,y eﬁBtdt: 7/ — . dt.
pxy) = | PLXY) ol oty

Substituting = |x—y| sinhz, we have

Go(x,y) = 1/ %dt:i/ P(_};‘ismhzﬂxfy\coshzdz
2mfo (12+[x—y2)3  2mJo |x—y*cosz
1 ® sinhz 1
B Z= 3.8
2rx—y| Jo cosfz = 2mx—y]| (3.8)
and
(X y) 1 /0O te—f’t dt = 1 ® sinhz e—ﬁlx—y\sinhzdz
2o (124 x—yP)% 2rx—y| Jo costfz

1 -1
_ —[3|x y| sinhz B|x—y]|sinhz,
2nx—y|{{coshz ] / Blx=yle dz}

_ 1 E ° —B|x—y|sinhz4, _ 7&/ —B|x—y|sinhz,
= omx—y 2o e dz= Gp(x,y) 72 Jo e dz (3.9

Now we evaluate the second term of (3.9). We see that

/Om e Bix-visinhzg7 /Ooo exp(fwez) ‘exp(Bp(%W)dz
—/ exp(~ Blx— y'ez) S (W%W)ndz

Using the Fubini's theorem, the right hand side of the above formula is equal to

exp —nz—mx_yleZ dz=: S In,
s 2 2

First we consider the integré). Substitutingw = 3|x— y|€?/2, we see that

_ e Blx-y| < (=Bx=y)"
|0f/ﬁ‘x27y‘ € —dw=—log( 2 - =3 (3.10)
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wherey is Euler's Gamma and we use the residue integral as follows:

w g=W 7 © (7x)n
/X def —logx— V*nglin-n! .
Furthermore, fon > 1, I, has the upper bound as follows:

(le_y|)n ® —Nz _(le_yDn
'”SW/O ez = XY (3.11)

Thus, for fixedx,y € RY, we obtain’y In = &/(8) and
n=1

/°° o Blylsinhzy, |og(5‘x_y|) —y+6(B) (B—0). (3.12)
o 2

Hence we obtain (3.7). O

3.2 Growth of Feynman-Kac semigroups

Let (&,.%) be the symmetric jump Dirichlet form associated with }+>o, i.e.
Ko 1
&(u,u :/ uly) —u(x))?————dxdy .Z =H2(R?),
() = [, o (U) — U)oy (B?)

wherekg is an appropriate positive constant and (R?) is the Sobolev space with
order 1/2. LetH is a non-local operator satisfying

&(u,v) = (Hu,v),

where the right hand side is the inner product fR?).
Let i be a Green-tight measure in Definition 2.3 and define thedslamger form

by

&H(u,u) :(g’(u,u)f/ u?dp.
Rd

We divide the class of Green-tight measures into three subclasses according to the
smallness of measures.

Definition 3.1. For u € K, define

A(M) :=inf{&(u,u); uE Fe, /]Rd wdu =1}

(1) pis said to be subcritical i (1) > 1.
(2) uis said to be critical ifA (u) = 1.
(3) p is said to be supercritical if (1) < 1.
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We proved that the stability of fundamental solution is equivalent to the subcriti-
cality of u in Theorem 2.5. Thus we see that the behaviop/ft,x,y) is different
from that of p(t,x,y) wheny is critical or supercritical. We have not determined the
behavior ofpH(t,x,y). Instead, we consider the behavior of

Exlexp(Al)] = [ | pH(txy)dy (3.13)

Note that the subcriticality off is equivalent to the gaugeability &', namely,
SUPEx[exp(AL)] < e

xeRd
Thus, the valu@,[exp(Al')] diverges as tends tox in the other cases. First we define
the spectral boun@(u) by
C(u) = —inf{&H(u,u); ue fz,/d W(x)dx= 1}. (3.14)
R

The following theorem is given in Theorem 5.2 of [33].

Theorem 3.1. For Green-tight measurg, it follows that

lim < logE, [exp(Al)] = C(s).

Moreover we can characterize supercriticality ofoy using the spectral bound
C(). The following proposition is proved in Lemma 2.2 of [35].

Proposition 3.2. The measure is supercritical if and only if Gu) > 0.
Combining Theorem 3.1 and Proposition 3.2, we can obtain the following corollary.

Corollary 3.1. Suppose the Green-tight measyrés supercritical. Ex[exp(A')] has
exponential growth as+» co.

If u is critical, C(u) = 0 and thusEx[exp(A')] does not have the exponential
growth. We first introduce two items: one is the ground state, equivalently the har-
monic function with respect to Sdabilinger operatoH — u and the other is the result
for Brownian motion.

The following theorem is proved in Theorem 3.4 of Takeda and Tsuchida [35].

Theorem 3.2. For i € Ko, the extended Dirichlet spac&. is compactly embedded
into L2(p)

Thus we see that there existb@c % such that
&(ho,ho) = A (), [ hedu =1

We callhg ground state of the Sctdinger form&H. Moreover, they showed the precise
behavior ofhy as follows:
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Lemma 3.2. The function B(x) is continuous and there exist positive constanta
C, such that

Cl(l/\ |>1(|) < ho(x) < Cz(l/\ |)1()

Proof. We know from Lemma 4.7 and Proposition 4.14 of [35] that the ground state
ho(x) satisfies

&1 (11 g ) < o) < Co(1 55 )

for the rotationally invariantr-stable process oRY. Sinced = 2 anda = 1, the
assertion follows. O

Our goal is to prove the following theorem:

Theorem 3.3. Suppose X }1>0 is the 1-stable process &? and u is critical. Assume
p =V -m for positive Ve C§ (R?). Then there exists a positive constaatsDch that

lim 9, fexpiAl')] = Caho(x). (3.15)

where ly(X) is the ground state of the Sdidinger operator H-V.

In the sequel, we consider the growth®fexp(Af')] ast — o whenV s criti-
cal. Denote the semigroup and the resolvent associated4#itby {P"} and {GE}
respectively. Recall that

R f (x) = Ex[exp(A') f ()]
and consequentl 1(x) = Ey[exp(Al)].

Proposition 3.3. The semigroug P!} satisfies the following formula:

t
A1 = 1+/ PUV ds (3.16)
0

Proof. Noting that the absolute continuity of the measureve have

t t
expA) —1= [ expa)ant = [ expAlv (x)ds

Thus, it follows that
BHf(x) = By [(1+/0t exp(Ag)V(xs)ds> f()(t)}
—RI+ B | [ XtV 061 (%)e
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—RT0+ [ Bifexpal V() f(X)]ds
Using the Markov property, we can rewrite the above formula as follows:
RE)+ [ BLfEexsAV 06 (4)1 73]
AT+ [ Blexnal V(G (4)] 73]
A1)+ [ PEVR SN)(9ds
Hence, we obtain
R0 =R+ [ PEVR SH0ds

If we substitutef by the constant 1, the conservativenes&6#~o implies (3.16). O

In order to evaluat®'V, we consider its Laplace transfor@gv. The following
proposition is proved by the resolvent equation.

Proposition 3.4. It follows that
GpV (x) = (1—Lp) H(GpV)(X), (3.17)

where GV is defined by

GaV(x) = [ ,Gplxy)V(y)dy
and Lg is an operator defined bydf (x) = Gg(V f)(X).
Proof. SinceGg = (H+ ) * andGy = (H —V + ), we obtain
(H-V+B) t=(H+B) T=H+B) VH-V+B)™

by the resolvent equation. If we solve this equation with respe@tite V + )1, we
have

(1= (H+B) V)H-V+B) t=(H+p)™*
and consequently
(H-V+B) t=1—-(H+p) V) ' (H+p) ™
If we operate the functio on both sides, we can have the desired result. O

For the calculation of the resolveﬁlﬂ, we have to consider the behavior of the
functionGgV and operatok g. We begin with functiorGgV.
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Lemma 3.3. For B > 0 and V € C3(R?), GgV belongs to the class(R?) and con-
verges uniformly to @/ asf3 — 0.

Proof. Since the integral kernel§Gg(x,Y) } g~ is increasing ag — 0, it suffices to
proveGoV € L*(R?). We know from (3.8) that

&

x=|

SetR > 0 satisfyingsupdV) c B(0,R), whereB(0,R) is a ball inR? with centerO
and radiuRR. If [x| > 2R, it follows that

Cl CZ
dy<

Go(x,y) =

GoV (x) <

(3.18)

As for |x| < 2R, we obtain

G (9 < | VO v, / Y o (319

x—y|<3R [X—Y| = x-y|<3R [X—=Y|

Thus we can conclud&oV € L®(RY) and so isGgV.

Next we prove ling_,o[|GoV — GgV||» = 0. We may assume that] is bounded. In-
deed, for any > 0, (3.18) implies that there exisi& > 0 such thatGgV (x) < € for
|| > Re. We may also assume that the suppoi¥ a$ contained iBp(R¢). We recon-
sider the error term in asymptotic expansion of the resolvent kernel as follows:

Golxy) ~ Gglxy) = - [ ePrismmigz (320
Estimations in (3.10) and (3.11) imply
B/ e Blx-ylsinhzg, mog( Blx= y') By+2ﬁexp( Blx= |) (3.21)

Noting that the third term in (3.12) is uniformly fory € R? satisfying|x—y| < 2R,
we obtain

) ey

GV (- Cav 00l < [ - (~Blog( B | 2B

0

g—BlogB/ Vy y

+B/ (‘Iog x— y')‘+2e p(mx y'))V(y)dy

If we chooseB sufficiently small according t&, the right hand side of the previous
formula is bounded by. Therefore we have proved thg®eV — GgV||. — 0 asf —
0. O

We next consider the behavior of operatfks } g-o.
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Lemma 3.4. The operator |z defined by f— Gg(V f) is a compact operator from
L®(R?) to L*(R?). Furthermore it is continuous with respect to norm wigens 0.

Proof. Since the multiple operat® is compact and the resolvent opera®y(3 > 0)
is bounded| g is a compact operator. Furthermokg, converges td in the space of
bounded operators dif*(R?). Indeed, for anyf € L?(R?) with || f|le = 1, V(X)f(X)
has a compact support. Thus, using the same argument of Lemma 3.3 we obtain

ILgf —Loflle =[IGg(Vf) =Go(V ) =0  (B—0).

Moreover, the space of compact operators is a closed subspace in the space of bounded
operators. Hence, is also a compact operator and we obtain the desired restli.

Next we consider the operator definedldiiR?).

Lemma 3.5. Define the operator K : L%(R?) — L?(R?) by
Kgf(X) =V2Gg(V2)(x)
Then g is an eigenvalue of A if and only if it is an eigenvalue of K

Proof. Suppose the functiog satisfiesLgg = egg for someeg > 0. Forh = V%g, it
follows thatkgh = egh. O

The following lemma is based on Theorem 6.1 of Klaus and Simon [19].

Lemma 3.6. Supposeu is critical and u =V - m for positive Ve C3 (R?). Denote by
eg the principal eigenvalue of K Then g has the expansion as follows:

eg = 1+CiBlogB+... (C1>0). (3.22)

Proof. Note thatA u is supercritical forA > 1. ForA > 1 andf > 0, consider the
equation

(H—=AV)u, = —PBu,. (3.23)
(3.23) is rewritten as follows:
(H+B)uy, =AVuy,
Noting that(H 4 8)~ is the resolvent operator with ordgt we have
A~tuy = Gg(Vyy)
Moreover, if we substitutey, = V%uA, we have

A 71W)\ = Vl/ZGB (Vl/ZW)\ ),
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Thus (3.23) is equivalent to the equatisgw, = A~ wy,. SinceGg(x,y) satisfies
asymptotic expansion (3.7), the operatarhas asymptotic expansion as follows:

K[;:K0+BI09BD1+BD2+... (3.24)

whereD; andD, are operators defined by

le(x):V;(TX) ~/Rdv%(y)f(y)dy

0210 = Y293 [ Vi tmay+ 52 [ loglx-yvEm) Ty

The expansion (3.24) is the same form as that of 4-dimensional Brownian motion
treated in Klaus and Simon [19]. Moreover/?hy satisfiesKo(VY/2hg) = V/?hg
wherehg is the ground state of# defined in Lemma 3.2. Sinchy is positive,
(V12 v1/2hy) + 0 and the proof of Theorem 6.1 in [19] implies

eg=1+C1BlogB +...

for C; # 0. Moreover, noting thatg = A7 1< 1 wese€; > 0. O

Now we obtain the behavior of the principal eigenvalue of the compact operator
Lg. We consider the decomposition of the operdfior LB)*1 as follows:

Lemma 3.7. Denote by R the projection operator associated witlg LThen it holds
that

(1-Lg) *=(1—e) P +Qp(1—Pp)
where ( is norm continuous with finite limit g8 — 0.

Proof. SinceLg is a compact operator fg8 > O, Lg has a spectral decomposition.
Denote bye; the second largest eigenvaluelgf. Thene < e =1 and||Qg|[« is

smaller than 21— €)1 if B is sufficiently small. O

The previous lemma and (3.17) imply that
lim [|GEV — (1—e3) P3GV e < .
B—>0HB (1—-eg) "PGgV|lew <o

MoreoverPy = hol (), wherel is a suitable linear functional arg is the harmonic
function satisfyingH —V)hg = 0. Thus, combining (3.22), we have

II;iLnO—B IogBGg (V) = Cho(x) (3.25)

whereC; is some positive constant. Note tii3t=~ 0 follows becauséV, hy) # 0. Now
we obtain the behavior @gv asf — 0. Applying the Tauberian theorem in [24], we
can prove Theorem 3.3:

45



Proof of Theorem 3.3 First we fix x € R? and define the class of measures

{vg}p>0 ONR, :=[0,) by
VA(A) = —BIogB/BilAPS“V(x)ds: —BlogB/APg,lsV(x)-ﬁflds

Denote the Lebesgue measure®n by v. We have only to prove thatg([o, 1))

converges taC1hp(x)v([0,1]) asf8 — O up to positive constant multiple. Indeed, it

follows that
Bfl
v3[0,1) = fBIogB/O PAV (x)ds
and substitutingg—! =t, we obtain the desired result. First, (3.25) implies
—Blogﬁ/ e PRV (x)dt = —BIogB/ e*SPg,lsV(x)-Bflds
0 0
_ /0 e *dvj(s) — Caho(x). (B —0)

Moreover we see that ti& ho(x) = C1hg(x) J;° € Sv(ds) and thus it follows that

lim e’sdvé(s):clho(x)/ e >dv(s).
B—0Jo 0

For integem, we consider
P ® —NSH, ,X i e —nNs M -1
lim e de(s)flI;Lno/O e ~(7BIog[3)PB,lSV(x)'B ds

B—0Jo
:)3@0 A e‘t'(fﬁlogB)P(‘r‘]B),ltV(x)~(nB)‘1dt. (3.26)

Noting that

im [ et " (nB)dt = lim [ etdvX,(t) —
im [ et (-nBlognB)Plsy .V (- (nB) Tt = Iim /0 & vy (t) = Crho(x),
we obtain

. ® _ Ciho(x) ©

to(_ U . 1 1110 ns,
LIZImO/o e BIogB)P(nﬁ),ltV(x) (nB) Hdt= — = Clho(x)/0 e dv(s).
Thus, forf € {€ "}y, it follows that

/Omf(s)dvg(s) —>clh0(x)/o°°f(s)dv(s) (B—0). (3.27)

Since polynomials in{e "S},cn are dense irC.(R+) by the Stone-Weierstrass
theorem, (3.27) is valid fof € C.,(R ). Finally we prove (3.27) forf (s) = 1/g 1(S),
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namely the main assertiowﬁ 0,1] — Ciho(x)v[0,1]. Here 1 4(s) is the indicator
function of the sef0, 1]. Set the sequences of functioff, }n>1 and{gn}n>1 by

1 (0<s<1)
fa(s)=¢1-n(s—1) (1<s<1+1/n)
0 (1+1/n<s),

1 (0<s<1-1/n)
on(s)=q¢nl-s (1-1/n<s<1)
0 (1<y9

Note that these functions satisfies
0<0n(s) <Lpy(s) < fa(s) <1, (seRy)
lim fn(s) = 1py(s) (SER+)
lim gn(s) = Loxy(s) (€ R:\{1}),

Then it follows that
V5[0, 1] 2/ Loy (s)vp(ds) S/ fa(s)vg(ds)
Ry R,

Noting thatf, € Co(R+) and limg o fg’ fndvj; = C1ho(x) fg’ fndv, we obtain for arbi-
traryne N

limsupv[0,1] < Ciho(x / fadV. (3.28)
B—0

Letting n — « in (3.28), the dominated convergence theorem implies the right hand
side converges te[0, 1] and thus we have

Ilmsupvﬁ [0,1] < Ciho(x)v[0,1]. (3.29)
B—0

Conversely, it follows that

Vs3> [“an(sv(ds
and thus we obtain
iminf V(0. > Cifo(x /0 " an(9)v(ds). (3.30)
Note that limh—« gn(S) = 10,1 (S) for s# 1. However, using/({1}) = 0, this conver-

gence is valid fowv-a.e.s. Thus, applying the dominated convergence theorem in the
right hand side of (3.30), we have

iminf v%[0,1] > C1ho(x)v[0,1]. (3.31)

Combining (3.29) and (3.31), we have Jim, vg [0,1] = Ciho(X)V[0, 1]. O
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Remark 3.1. (i) Theorem 3.3 is an extension of the result for 4-dimensional Brown-
ian motion. The result by Takeda [34] is an extension of d-dimensional Brownian
motion for d> 5. Thus the growth dEy[exp(Af')] seems to depend or/d.

(i) Since we use an analytic method in the proof, we assume the absolute continuity
of u. However, Takeda [34] treated general measures. Thus, it seems to extend
the result to the case of general measures.

3.3 Differentiability of spectral functions

In the previous section we define the spectral bound lo§ formula (3.14). FoA > 0,
we define the spectral functi®@(A) by

CA) = —inf{é”‘(u, - A /Rd uzo|y|/IRd W(x)dx— 1}. (3.32)

Supposeu is critical andy =V -mfor V € C(R?). Lemma 3.6 shows that (3.22) is
valid for eg = A~tandB =C(A) for A > 1. Thus, if we apply the inverse function
theorem, we can determine the behavior of the spectral function. In [35], Takeda and
Tsuchida gave the criterion for the differentiability of the spectral function as follows:

Theorem 3.4. Let {% }t>0 be the rotationally invariantr-stable process oY and
u be a Green-tight, smooth measure in the Kato class. The spectral fungtion€
differentiable if and only il < d/a < 2.

We justify their result considering the concrete behavioC@k) in the case of
d=2a=1.
Theorem 3.5. The spectral function @) satisfies
1-271
In particular, it follows
lim 1At Cm A
A»1—(A —1)log(l—A-1) As1log(l—A-1)
and hence Q1) is differentiable aA = 1, which has consistency with Theorem 3.4.

=0

In order to prove this theorem, we begin with the inverse function theorem contain-
ing logarithm.

Proposition 3.5. Let f and g be analytic function nedr= 0 and real-valued foré
real. Suppose (0) = f(0) =0and g0) =g (0) =0and d'(0) <0andn = f(&) +
g(&)logé. Thené (n) satisfies

Em= Y Cumko"T"a,

n>1mk>0
1 -1
B n 3 1 __log(logn—")
9= (Iogr]—l) » 1= logn—1’ w= logn—1
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Proof. Without loss of generality we may assume that
fE) = ané", g(§) = —28%l0gé +logé § bné"
It follows that
n=>% a"+logé y bpé" (3.34)
HZZ n; )
and substituté = o(1+ 2). (3.34) is rewritten as follows:
n= Zancr”(lJrZ)” —20%(142)?log(0(1+2)) +log(1+2) ;bna”(l—&-z)”
n=. n=.
= 0? ( Z)an+20”(1+ 2)"2 - 2(1+2)%log(0o(1+2)
n=
+0olog(a(1+2) zobn+3o”*3(l+z)”) (3.35)
n=
Noting thato? = n/(logn 1), we have
logn~t= Zbanﬁo”(l—k 2)™2_2(1+2)%log(c(1+2))
n=|
+olog(o(1+2) Z}bn+3o”*3(1+z)” (3.36)
n=
Multiplying T in the both side of (3.36), we obtain
1=1 Z)an+20”(1+ 2)"2 - 2(1+2)%tlog(a(1+2))
n=
+otlog(o(1+72)) %bn+3a”(l+z)”+3 (3.37)
n=
log(o(1+2)) is rewritten as follows:

1
logo +log(1+z) = E(Iogr] —log(logn 1)) +log(1+2)

1+ w
= _TT+|Og(1+Z)

Thus, we obtain
1=1 Zoan+20"(1+z)”+2+ (14+2)%(1+ w)
n=

—2(142)?tlog(1+2) — (

>+ 20 —otlog(1+2)) 3 bris”(L+ 2™
n=
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SetF(z, 0,1, w) by
F(z0,1,w) =Z+2z+ (1+2)°w— 21(1+2)?log(1+2)

hd g ow hd
T o"(1+2)™?— (= +——orlog(1l+z bn.30"(1+2)"3
+TY 80120”14977 (45 (1+2)) 3 bria0"(1+2)

Then we see thd(z,0,7,w) = 0 anddF /dz(0,0,0,0) £ 0, and thus we conclude

z= dn,mvka”rmwk

n,mk>0
for z sufficiently near 0. Noting thaf = o(1+z), we have the desired result.  [J

Now we prove Theorem 3.5.
Proof of Theorem 3.5  In order to apply the inverse function theorem, we need to
substituteB = &2 andeg = n in (3.22). Thus we obtain

N =14C1&%logé +Cr&%+ ...

andC; > 0. Applying Proposition 3.5, we obtain the expansiorf afs follows:

E= Y dumko"T"w" (3.38)
n>1mk>0
where
_(_1-n \z _ 1 _ log(log(1—n)™)
o= (ogi=nrt) g T logdon)

Sincen — 1 asé — 0, the principal term of (3.38) i1 000. Noting thatn =eg =A -1
andC(A) = &2, we obtain the desired result. [
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Chapter 4

Continuity of harmonic
functions for non-local Markov
generators

We treated harmonic functions for Sédinger operator in Chapters 2 and 3. Here
we consider the harmonic function for Markov generatér We assume that?-
martingale problem is well-posed. We denote the associated jump proc€Xgstby.
That is to say, the following two conditions are satisfied,;

e Forallxe RY, Py(Xo=x) = 1.
o Forallf e G2, {f(X)— f(x) - [5L F(Xs)dS},. is aPy-martingale.

We define.Z-harmonic function as a bounded functiarsuch that{u(X)}t=o is a
martingale. Note that satisfies.Zu = 0. If £ is a uniform elliptic second order
operator,{X }:>o is the diffusion process and harmonic functieiis continuous. In
this chapter, we consider the same problem for non-local Markov generators_Zhus,
is given by

LU(X) = /Rd\{o}(u(x+ h) —u(x) —h- Ou(X)1n <13 )n(x, h)dh,

wheren(x, h) is a non-negative measurable function®hx RY. The functionn(x, h)
is called a jump measure or a jump density frete x+ h. Whenn(x, h) satisfies

C

0

- |h|d+a

for some constants @ C; < C; and 0< a < 2, the associated jump process is called
the a-stable-like process in Chen and Kumagai [9]. Bass and Levin [5] is one of the
earliest papers which deals with this class of jump processes with non-sm{adtih

They establish elliptic Harnack inequalities and théldér continuity for harmonic
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functions. In [26], Song and Vondtak consider a wider class of jump processes, such
as a sum of symmetric stable processes with different order.

In general, the exponemt depends orx andh, and the associated operator is of
variable order. One of the difficulties of variable order case is that we cannot use scaling
property, unlike the stable-like case. It is a very delicate problem whether harmonic
functions for operators of variable order are continuous or not. Indeed, Barlow and
coauthors [3] prove that harmonic functions are not necessarily continuous in general.
To guarantee the continuity of harmonic functions, we impose some conditions on
n(x,h). Bass and Kassmann [4] established sufficient conditions for the continuity of
harmonic functions. These conditions are divided to two parts:

(SSJ) Singularity of small jumps, i.e. how the amount of jumps with sig®ws as
tends to O.

(QRI) Quasirotationally invariance, i.e. how the process jumps in any direction to some
extent.

Husseini and Kassmann [14] treated weaker conditions than those of Bass and Kass-
mann [4]. In this chapter we reconsider conditions (SSJ) and (QRI) to extend their
results. This chapter is organized as follows: In Section 1, we review a main result by
Bass and Kassmann [4] which describes the sufficient condition dtddd continuity

of harmonic functions. We refer where the conditions (SSJ) and (QRI) contributes to
the Holder continuity. In Section 2, we consider the condition (SSJ) and extend the
result of Bass and Kassmann [4]. In Section 3, we weaken the condition (QRI) and
prove the continuity of harmonic functions.

4.1 Preceding results on continuous harmonic functions

Let . be a non-local operator of form (4.1) given by

Zu(x) = /R o (O 1) 009 - DU Ty e, (4.)
and suppose the jump measu(g, h) satisfies
sup [ (Jh|2A1)n(x,h)dh < c. (4.2)
xeRd /R

Let A be a Borel set. For the procegX; }i>0, denote the first exiting time ok by 14
and the first hitting time of\ by Ta respectively; i.e.

Ta:=inf{t > 0: X% ¢ A}, Ta:=inf{t > 0: X% € A}
Now we give the definition of harmonic functions.

Definition 4.1. The bounded function u dk? is called harmonic with respect t&
on Dc RYif {u(Xar ) >0 is @ martingale.

Roughly speaking, a harmonic function u satisfi€a(x) = 0 for x € D.
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The following definition ofS(x,r), L(x,r) and N(x,r) are taken from Bass and
Kassmann [4].

S(x,r) = / n(x,h)dh,

Jlh|>r
1
hnx,hdh+—/ h[2n(x, h)dh,
/rg\mg Ge) ‘ rz |h|gr|| Goh)

B(x,1)]
3.2d }

L(x,r) :S(x,r)—i—%

N(x,r) = inf{/ n(x,h)dh : AcC B(x,2r) and|A| >
heA—x

whereB(x,r) and|A| stand for an open ball iRRY centered ak with radiusr and the
Lebesgue measure Afrespectively. The following assumption is also taken from Bass
and Kassmann [4].

Assumption 4.1. Let Ry be a constant such th& < Ry < 1. Suppose the following
conditions hold.

(SSJ-1) There exigy > 0ando > 0such thatforallxc RY, r € (0,Ry) and1 < A < 1/r,

SAD) e
S 1)

(QRI-1) There existg, > 0 such that for all xc RY, r € (0,Ry) and ye B(x, 2r),

N(x,r) > KoL(y,r/2).

In [4], Bass and Kassmann prove théllier continuity of harmonic functions un-
der the assumptions (SSJ-1) and (QRI-1). Precise statement of their theorem is the
following.

Theorem 4.1. ([4] Theorem2.2.) Let Rbe a constant such th@t< Ry < 1. Suppose
0 < R< Ry and let u be bounded iR and harmonic in Bz, R) with respect taZ.
Then, under the assumptions (SSJ-1) and (QRI-1), there exist0,1) and C> 0
depending only or1, K2, and o such that

Z— v
ua -yl <clul.(21) zyeBarm. @
DefineLo(xp,r) andNp(xo, r) as follows:

Lo(Xo,r) :== sup L(xr). No(Xo,r) := inf N(xr)
XEB(Xo,r) XEB(xo,r)

For the proof of Theorem 4.1, we begin with three lemmas.

Proposition 4.1. ([4] Proposition 3.1.) There exists;Guch that

]P’XO(TB(XOJ) <t) <Citlo(Xo,r).
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Proof. Let u be aC?(RY) function with bounded first and second partial derivatives
that satisfies the following;

e U(X) = |[x—xo|?/r? for [x—xo| <.

e 1<u(x) <Csfor |x—xg| >r.

o |Oul <Cg/r.

e The second partial derivatives are bounded:b)yrz.
SincelPy, is a solution to the martingale problem f&f startedxo,

tATg(xo s
Bl U011 U00) =g | [ 200

The left hand side is larger thaly, (Tg(x,r) <t), while the right hand side is bounded
from above by
t sup |Zu(x)| < (Ca+C3+Ca)tlo(xo,r).
XeB(Xg,r)

We thus obtain the assertion. O

Denote the left limit ofX; by X;_ and sefAX; := X — % _. LetQ be a Borel set and
U :=inf{t: |AX%]| >r} forr < Ry. We then have the following.

Proposition 4.2. ([4] Proposition 3.3. ) Under the condition (SSJ-1), we have
forr <Rp,1< A <1/rand xe RY.

Proof. By the Lévy system formula, for every bounded stopping ti&wend disjoint
Borel setsB andC, we have

Ey LZsl(XS_EB’XSGC)

Using this formula and the condition (SSJ-1), for arbitriary 0 we have

—E, { /0 Slg(XS)n(XS,CXS)ds]. (4.5)

]PX(|AXU/\TQ/\t| > A I’) - IEx

1(Axszm>1

s<U /\TQ/\t

U/\TQ/\I .
— U / n(Xs, h)dhd%
0 [h|>Ar
U/\TQ/\t U/\TQ/\t
_E, [ / s<xs,Ar)ds] < KaA By [ / s<xs,r>ds] (4.6)
JO JO

By the Lévy system formula, the right hand side of (4.6) is estimated as follows:

U/\TQ/\I U/\TQ/\I
KiA Oy [ / S(Xs,r)ds] — KA Oy [ / / n(Xs, h)dhd%
0 0 [h|>r
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= K1A “9Ey l 1(AXS|2r)‘| = K1A OPx(|AXuargnt| > 1) < k1A 7.

SSU/\TQ/\{
Thus, we obtain
PX(|AXU/\TQ/\’[| >Ar) <kiA 9.

Now lettingt — o and using the dominated convergence theorem, the assertion (4.4)
follows. O

Proposition 4.3. ([4] Proposition 3.2.) Suppose the condition (QRI-1) holds. Suppose
0 <r < Ryg,AC B(Xo,r),y € B(x,r/2), and|A|/|B(xo,r)| > 1/(3-29). Then, there
existsks > 0 not depending ongsr,or A such that

Py(TA < TB(Xo,r)) > Ks.

Proof. Sett = g, ). If Py(Ta < T) > 1/4, there is nothing to prove. Therefore,
we may assum@y(Ta < 1) < 1/4 without loss of generality. Note th&(xo,r) O
B(y,r/2). Combining with Proposition 4.1, we have

Py(T <to) < Py(Tgyr/2) <to) < Catolo(y,r/2).

Therefore, for sufficiently smat; if we set

to— 2
T Lo(yr/2)’
thenPy (T <tg) < 1/2.
Moreover, ifx € B(Xo, ), we have
n(x,A—X) ::/ n(x,h)dh> No(xo,r). 4.7)
A—X

Combining this estimate with theglvy system formula (4.5), we obtain

Py(Ta<1) > EY

Lixe #%6, XseA}
S<TAATAlg

TANT Ay
Z Ey |:/ n(XSaA_XS)dS:| 2 NO(XO,r)Ey(TA/\T/\tO).
0
Furthermore, we have
Ey(TA AT Aty) > to]Py(TA >T1>1p)

> to[1—Py(Ta < T) = Py(T <to)] >

INPO

Therefore, we conclude

- % No(Xo,I’) > Coka
~ 4 Loyr/2) T 4

and the assertion follows, where in the last inequality we used (QRI-1). O

1
Py(Ta < T) > ZONO(X&")
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These three propositions are the keys to prove Theorem 4.1.
Proof of Theorem 4.1. Supposé|u||. < K and choose & pp < ;11 appropriately. Set

R .
rn:zl—ngl (neN).

Then, we hav(z, 2r1) C B(zp,R/2) for arbitraryz; € B(zy,R/3). SetB, M, andmy,
as follows.

Bn:=B(z,mnm), Mp := supu(x), m, := inf u(x).

XEBn x€Bhn
Leta < 1 andf; > 2K be positive constants chosen later appropriately. Set
ss=6a" (neN).
We will prove by induction that
Mp—m, < s, (VneN). (4.8)

We assume thal, — me < s¢ for 1 < k < nand consider the case b= n+1. Choose
Y,Z € Bp11 such that

u(z) > M1 — €, u(y) <M1 +e,
whereg is an arbitrary positive number. Set
An={z€B, : u(2) < (My+my)/2}.

Without loss of generality, we may assudg|/|Bn| > 1/2. (If |An|/|Bn| < 1/2, con-
sider the function-u(x) instead ofu(x).)
Choose a compact sBt, such that

Dn CAn,  [Dnl/[Bn| = 1/3.

Note that Proposition 4.3 impliéB,(Tp, < Tg,) > Ks. Let py :=P,(Tp, < Tg,) and
definet, := 1g,,. Harmonic property ofi and the optional sampling theorem imply that

u(z) — u(y) = Ez[u(Xeaatp, ) — U(y)]
EZ[U(XTHATDn) - U(y) . TDn < TnaXTn € Bn—l]
+EZ[U(XTn/\TDn) —u(y) : Tp, > Tn, Xg, € Bn-1]

n—2
+ Z]EZ[U(XTn/\TDn) —u(y) : Xg, € Bnoi—1\Bn-i]
=

+E[u(Xpatp, ) —U(Y) & X, & Ba]
= l1+l+I3+14. (49)

Here we defin@i(Xs) := limi_,» Uu(X ) and assum&;, € B,_1 whent, = . Now we
estimate each term of (4.9). First, we consideaindls.
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Mn — My
2
l2 < (Mn—1—Mh_1)P2(Tnh < Tp,) < Sn—1(1—pn). (4.11)

In order to estimatéz andl,4, we first define

I1 < Py(Tp, < Tn) <

N[

Pn, (4.10)

F:= Pz(xrn ¢ ani)

and consider this value. X, ¢ B,_j, the process cannot have a jump larger than
2r, before the timer, and | Xy, — Xg,—| > rn—i — rn. Note thatpp < %1 and therefore
2r, <rn_j —rn. Then we can apply Proposition 4.2 and conclude that

(i 20 ) () <o

Then we can obtain the following estimate;
n—2 n-2
I3< Yy (Mni-1—myi—1)(F—Fy1) <) sica(Fi—Fiy)
5 2

n—2 n-2
=soF1 —siFn-1+ g(&qfl*&q)ﬁ <s-oF + Z(Snfiflfsnfi)l:l
i= i=

n—-2

o
<5 2Cof 3Gt -1 Y (%), (4.12)
S\ a

3 < 2K -Fy 1 < 6.Co0{" V7. (4.13)

Combining the estimates (4.10)—(4.13), we conclude that

1 n—-2
u(z) —u(y) < >SPn+ Si-1(1—pn) +Sh2F + %(Sw—i—l —si)FR+2K-Foa
i=

1
< Esnpn+sq71(1— Pn) + Sn—2C2pf

+sCo(at-1) nfz(p*g)i +61Cop5" 7. (4.14)
i; a 0

g
In the rest of the proof, we assumés large enough. Choosesuch thaip? <a< 1,
then we have

niz(pfg)i <Cs, and B1p" Vo< Cyspl?/3.
i; 3 ) =% o S o

Moreover, recall that there exiskg > 0 such thatp, > ks for arbitraryn € N. Com-
bining these facts, we obtain that

Ks

R.H.S. 0f(4.14) < sy(at >

+a 2Cop§ +Cs(at — 1) +Cepy”"?)
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Ks

5 +a ’Copf +Cr(at ~ 1) +Copp”?).  (4.15)

<s(1-

If we choosea sufficiently close to 1 angyg sufficiently small, there existg € N such
that for arbitraryn > ng,

R.H.S. 0f(4.15) < s(1— %) < St (4.16)

Furthermore, if we choos@; such that9;a™ > 2K, then the induction hypothesis is
satisfied for 1< n < ng. Therefore, we have proved (4.8) and this implies tliddidr
continuity ofu. Indeed, sez =z and choosg € B(z, %). If there existsr € N such
that

R n R n—1
—pL <|z— — .
1oP0 S 12=Y < 5P0 (4.17)

then, we have
loga
lz—y| ) 090

loga
|u(z) —u(y)| < 61a" = CgK (exp(nlog o)) o0 < CgIIUIIoo( R

If there is non that satisfies (4.17), then—y| > R/12. Therefore, there exisBio > 0
such that

loga
Z—Y|\ rogpg
U@) - u(y)| < 2 < Crofu (Z22) .
Noting thatz = z; € B(z,R/3) is arbitrary, this completes the proof of thélder
continuity ofu in B(z, R/3). O

Remark 4.1. There is a minor error in the proof of Theorem 2.2 in [4] by Bass and
Kassmann. One of the keys to prove this theorem is the oscillation arguments; i.e. we
choose appropriate sequencis} and{s,} decreasing to 0 as > « and show that

u@-uy)l<s  (lz=yl<m) (4.18)

by induction. Where the choicg £ 6,/4" is specified, it is necessary to take+ 6,p"

for somed < p < 1/4. They choose,r= 6,/4", whereb, is a sufficiently small positive
constant. With this choice, the proof does not necessarily work well. We may resolve
this by choice § = 6,p" with appropriate0 < p < 1/4.

4.2 Condition (SSJ) and continuous harmonic functions

We consider the following assumption instead of (SSJ-1);

(SSJ-2) There existz > 0 andy > 1 such that for alk € RY, r € (0,Rp) and 1< A < 1/r,

S(x,Ar)
S(x,r)

< Kk3(logA)~".
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It is clear that (SSJ-1) implies (SSJ-2). In this section, we will prove the equivalence
of the conditions (SSJ-1) and (SSJ-2) wjth- 0. The following proposition plays a
crucial role in proving this equivalence.

Theorem 4.2. Let f: (0,0) — (0,) be a non-increasing function satisfying

f(Ar)
(r)
for a function g: (1, %) — (0,) such thatiminf, ., g(A) < 1. There exist constants
¢ > 0,0 > 0such that (4.19) holds for(@ ) =cA 2, i.e.

f(Ar)
f(r)

<g(A) forall re(0,1) and Ae(l,:) (4.19)

—h

<cA 9 forall re(0,1) and A€ (1,:)

Proof. Letr € (0,1) andA € (1,1/r). Chooséb > 1 so thatg(b) < 1. Letn€ Z, be
such thab” < A < b™1. Assume first thah > 1.
Sinceb" < 1/r, we see thab™1r < b~ < 1 and so we can apply (4.19) with~r ¢
(0,1) andb € (1,1/b"1r) to get
f(br)  f(b-bM1r)
= < . 4-2
forin ~ o = 9P (4.20)

Iterating (4.20), it follows that

f (b"r) n _1 logg(b)
< = — = — .
fr) = 9" =ab)exp(n—1)logg(b)) = g(b)exp{ (n—1)log =- 170 =7
_ g(b) . (bf(nfl)cr) _ g(b) .b%9. b*(rH'l)O')
whereo := —logg(b)/logb > 0. Sincef is non-increasing, we finally obtain
f(Ar) _ f(b"r)

<

20 —(n+1)o 20 -0
) 1 <b*g(b)b < b™g(b)A 7.

The casen = 0 follows from the fact thaf is non-increasing:
f(Ar)
f(r)

Thus, it is enough to choose= g(b)b?° v b°. O

<1l<b%A7C.

Applying Theorem 4.2 witlg(A ) = k3(logA)~Y, (SSJ-2) implies (SSJ-1) and thus
we can see the equivalence of (SSJ-1) and (SSJ-2)witld. Consequently, we can
obtain the Hlder continuity of harmonic functions even if we change the condition
(SSJ-1) into (SSJ-2) with > 0. Thus, combining this equivalence and Theorem 4.1,
we can obtain the following corollary.

Corollary 4.1. Supposd < R< Ry < 1 and let u be bounded iR and harmonic
in B(z,R) with respect taZ. Then, under the assumptions (SSJ-2) with 0 and
(QRI-1), there exist € (0,1) and C> 0 depending only on ik2, k3 andy such that

wa -yl <clula(Z). zyesare. @2y
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4.3 Condition (QRI) and continuous harmonic functions

We next consider the following condition which is weaker than (QRI-1);

(QRI-2) There existg4 > 0 such that for alk € RY,r € (0,Rg) andy € B(x, 2r),

NG > L /2),

If we change the condition (QRI-1) into (QRI-2), we can prove the uniform continuity
of harmonic functions. The precise statement is as follows;

Theorem 4.3. Let 0 < R< Ry < 1 and suppose (SSJ-1) or (SSJ-2) with- 0 and
in addition (QRI-2). Then there exists a monotone increasing continuous function P
R4 — R, with P(0) = 0 such that for anyZ’-harmonic function on By, R)

u@2) —u(y)| < [lull«P(z=Yl), 2 yeB(z0,R/2).

Although Husseini and Kassmann [14] also obtain similar theorem under the as-
sumptions (SSJ-1) and (QRI-2), it seems that there is a gap in their proof. (See Remark
4.3 for details.) Thus, we will give a full proof there. We first consider an example
where the assumption (SSJ-1) and (QRI-2) are satisfied.

Example 4.1. Let ko be a given positive constant. If the jump density functiogh)
satisfies foi0 < |h| <2
Ko _

Ko
|h|d+"’ Iogw n(x, h) < h |d+a (4.22)

Iog i

with1 < a < 2andsugrd S(X,1) < o, then the uniform continuity of harmonic func-
tion holds.

Proof. Due to Theorem 4.3, it is enough to verify (4.2), (SSJ-1) and (QRI-2). (4.2) is
easy to verify. By (4.22), we have

Ko

h2nx,hdh§/ h2. log -~ dh
/Ih\sl" Geh) Ih<1 d Ihld*" Ih|

_Cl/ pa1% wdw Cz/ (X +10g3)e® PXdy < o,

where we usay = e X in the last equality. Thus, combining with the assumption
SURcRrd S(X, 1) < o, we obtain
Ko~

Wlogl |dh<0°

sup [ (lh2A1)n(x,h)dh< supS(x, 1)+
xeRd /R xeRd lhj<1
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Letr be 0<r < Ry < 1. To see (SSJ-1) follow, we begin with the estimate of

1 3
———log—dh.
/rs\h\§1|h|d+" ITh
Using the spherical coordinate, we can obtain that
/ 1 og3dh= c/ log = du
<<a I g\h| 2Je wen gw
B 1 4,1 alog3-1, ,
7C2(ar IogFJrT(r —1))
1 1
_ —a - _ - —a _
_Cg(r Iogr+(log3 a)(r 1)).

We now estimat&(x, r) from below. The above formula and (4.22) imply

S(x,r):/ n(x,h)dhz/ n(x,h)dh
[h[>r r<fhj<1
—-a 1 1 —a —a 1
204(r log =+ (log3— =) (r —1)) >Car“log (4.23)

where we used the assumptiorlo < 2 in the last inequality. Moreover, if we esti-
mateS(x, r) from above, we obtain that

Sx 1) S(x1+/ hydh

<|h\<1
< C5+Ce<r*" Iogf + (log3— E)(r*" - 1))
- r a
§C5+C6r*"log§ §C7r’alog?. (4.24)
Combining (4.23) and (4.24), we see that

S(x,Ar) _ Ca(Ar) @log(3/Ar) _q109(3/Ar)
< — <CA T —r—=
S(x,r) Cir—%log(1/r) log(1/r)
where we used the assumptior: Ry < 1 in the last inequality. We thus obtain the
condition (SSJ-1).
We next prove (QRI-2). Using (4.22) and (4.24), we have fer0< Ry,

<CsA 7,

N(x,r) > (2’;7‘”“ ng 3 2d [B(x,1)]| >C6—Iogf (4.25)

and

L(y.r/2) = Syr/2) + = h n(x, h)dh| -+ iz / , Inn0c

J5<lh<1

§03< 7a §+9/ 4’“ dw+r2/ l,U"lngwa
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=:L1+Lo+L3

Itis clear thatLq < Cior—?log(1/r). L3 satisfies the upper estimate as follows:

5 1 1 1
L3 < C7]é3/2 log—dy < C14I’70|ng.
r 0 r

gty
Moreover,L, satisfies the upper estimate as follows:
Casel. ka < 2.
Ci1 (—log(r/2)+log3/2\a-1 1 a
L < —= = < log -
2= ( a—1 (r) +(a_1)2 < Casr "log
Case2a = 1.

L, < % ((Iog;)2+log3~ (—IogL)) < % (Iog?)z.

Consequently, we conclude that

Cur “log(1/r)  (a#1)
CiorY(log(1/r))? (a =1).

Combining (4.25) and (4.26), we see that there exis&ich that the condition (QRI-2)
holds. O

L(y,r/2) < { (4.26)

Remark 4.2. As we see in the proof above, wher: o < 2, (QRI-1) holds. Conse-
quently, we have thedtder continuity of harmonic functions.

Now we prove Theorem 4.3. We use the similar method as the case of Theorem
4.1. Note that Proposition 4.1 and 4.2 are valid under the assumption of Theorem 4.3.
Moreover, the following lemma is obtained by easy modification of Proposition 4.3

Proposition 4.4. ([14] Lemma 2.5.) Suppose (QRI-2) holds. Then there ekists 0

such that Ke

|logr|
forr € (0,Ry),y € B(Xo,r/2) , and AC B(xo,r) such thatA| > |B(xo,r)|/(3-2%).

Py(Ta < Tg(xg,r)) =

We now prove Theorem 4.3.

Proof of Theorem 4.3.  Itis sufficient to prove the assertion under the assumptions
(SSJ-1) and (QRI-2). The idea of the proof is the same as Theorem 4.1. Suppose
lulle =K, z1 € B(z0,R/2) and define

6 6
NN n-— "5
(log(n+1))* nfen

where6; is chosen large enough to satidly > 2K, and 8, is chosen small enough
to satisfy6, < R/4. In addition, suppose € B; <1 andf; > 1 which are chosen
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appropriately later. Note that lijn,. r, = 0 and lim,_,» s, = 0. SetBy,, M, andm,, as
follows.

Bn :=B(z,n), Mn = supu(z), my == inf u(2).

2€Bp zeBn
As in the proof of Theorem 4.1, we will prove by induction that
Mn—my <&, (VneN).

We assume thail, — me < s¢ for 1 < k < nand consider the case b= n+1. Choose
Y,Z € Bn11 such that

Uz >Mni1—&,  Uu(y) <Mhpr+é,
whereg is an arbitrary positive number. Define
An={z€Bn : u(z) < (Mn+my)/2}
and assume thaf,|/|Bn| > 1/2. LetD,, be a compact set that satisfies
Dn CAn,  [Dnl/[Bn| = 1/3.
Let
pn :=Py(Tp, < Tn), Fi :=P,(Xg, € Bni),

wherert, := 15,. The harmonic property af and the optional sampling theorem imply
that

u(z) — u(y) = Ez[u(Xeaatp, ) — U(y)]

Ez[u(xrn/\TDn) - U(y) : TDn < TnaXTn S Bn—l]

+EZ[U(XTn/\TDn) —u(y) : Tp, > Tn, Xp, € Bn—:l.]
n—-2

+ ZEZ[U(XTn/\TDn) —Uu(y) : Xg, € Bnoi—1\Bn-i]
=

+ Ez[u(Xeap,, ) — UY) & e, ¢ By
=1+ la+ 13+ 4. (4.27)

Here we defin@i(Xs) := lim{_,» u(X ) and assum&;, € B,_1 whent, = . Now we
estimate each term of (4.27). First, we consideandl.

Il < Mn — My,

Pz(TDn < Tn) § pn, (428)
lo < (Mn—1 —M—1)P2(Th < Tp,) < Sa—1(1— pn). (4.29)

In order to estimatéz andl,4, we useF.

N[y

n—2 n—-2
I3 < 'Z‘(Mnfifl —Ma_i—1)(F—Fy1) < Z S-i—1(F —Fit1)
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n—-2
=soFi—siFh-1+ Z(%fifl —sn-i)F
i=

n—-2
<soF1+ ;(Snfifl—snfi)lzl- (4.30)
i=

lg < 2K -Fn_1. (4.31)

Combining the estimates from (4.28) to (4.31), we can obtain

1 n-2
u(z) —u(y) < ésnpn'f‘snfl(l— Pn) + Sh—2F1 + ;(Sqfi—l—Sﬁ—i)H +2K-Fo_1
i=

1 n-2
SS-1-5SPatsh2Fit %(Snfifl —Si)F+2K-Foa
if

Si-1 SaPn | Si2. | e Sheiol— Sni
=% <7— +—FRh+) —F+— kK
+ Sl 251 St ! i; Sh+1 ! Sh+1 " l>

= Sy1(+R+B+A+ ). (4.32)
Our goal is to prove that
N+b+B+h+I< 1L (4.33)

Now, we estimate each. In the rest of the proof, we assume thas large enough.
J; andJ; are easily estimated.

log(1+ 2

y=1_ (log(n+2))ﬁl_ (1+ og( +n))ﬁl
Shil logn logn

B

) P o1y 2B

nlogn’

<(1 4.34

- ( + nlogn ( )
where we used the assumptiorc@3; < 1 in the last inequality. Note that Lemma 4.4
implies p, > Kg/|logrp|. Then, we obtain

Ks

~ 2[logry|

_ Kg <_ K7
2(|log 6|+ B2nlogn) —  Benlogn’

wherekyz is a constant that does not dependfanf; or n. In order to estimatds, Js
andJs, we begin with the estimate & := P*(Xq, ¢ Bn_i). If X¢, ¢ Bn_j, the process
cannot have a jump larger thamdefore the timay and| Xy, — Xr,—| > rn—i —rn. Note
thatr,/rn—1 < 1/4 and thereforerz < rn—j — rn. Then, we can apply Lemma 4.2 and
obtain

< } <
< an_

(4.35)

2rn )U (1<i<n).

M—i—"TIn

FuSKl(
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Thus, noting that 6&< ; <1 < 3, we have

2K
J= o Fo1< (log(n+2))P -k
Sh+1

2rn )0
f1—"n

= (log(n+2))f sy (2 ) <logn+2)-ws ()

<Cie"logn<C; exp(—%) : (4.36)

The estimates af; andJ, are a little complicated.

S-2 log(n+2)\ A 2, o
J < (=) K
3= Shil (Iog( )) 1(rn,1frn)
log(n+2)\ A 2 o log(n+2)\ A 4 \o
< (= 7 . < . _
- (Iog(n—l)) K1<n52—1> = (Iog(n—l)) Kl(nﬁz)
3 B 1 Cs Ca
< 1 . . 4.37
—Cs( + (n—1)log(n 1)) o = kot nf20+1logn (4-37)
In order to estimatd,, we begin with the following decomposition.
% Snoio1— Snoi
s = = "Rk
‘T |; Sh+1 !
n-2 o .
_anll ) .+ZM-E:!K1+K27 (4.38)
i=ng Sh+l

whereng is an integer that satisfies — 1 < /n < ny. Note thatrp,1/rh < 1/4 and
therefore

Rea(—) <a(5) < e (4.39)

Noting that (logx) At is a convex monotone decreasing function>on 1, we can
estimateK; as follows;

ﬁ 1 Np— 1 C5
K1 < (I 2))Ft —
1< 000+ 2 (oo s~ (g v D) 2 A
1
< Gl 2))Pr.
= Celloan 2 A U ogn— )T
2P1+2 C7B1

< Bl, . .

< Cs(2l0gn) Bln(logn)ﬁﬁl < hlogn (4.40)
The estimate oK, is much easier;

log(n+2) 1 G
Ko < ( 002 ) 4 5 <Cslog(n+2)- 7 < 2. (4.41)
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From (4.40) and (4.41), we obtain

< CrB1 n GCo

4= nlogn = 2vho' (4.42)

Combining all the estimates dfs, we conclude that

IH+D+IB+h+Is
2B K7 Cs Cs C7B1 Co no
o con( 1)
=i nlogn  Bznlogn e T nB20+llogn ' nlogn ' 2vho theexp m 5
k7 1 Cs Cu1
<1 (C - *) : 4.43
< 14 (Caoha B2/ nlogn + nf20 - nho+llogn ( )

Now, choose3, > 1 so that,0 > 1, and then takg; small enough so tha&t;of3; —
K7/B2 < —K7/2[3. Then, we conclude that there existandn; € N such that the right
hand side of (4.43) is bounded from above by &g/(nlogn) for n > n;. If we choose
6, sufficiently large so that

Mp—mh<2K<s,  (n<ng),

the induction hypothesis also holds forakl n;. Now we concludéu(z) — u(y)| < s,
for z, y € B(2,R/2) such thatz—y| < r,. Noting thats; > 2K, we can obtain the
desired continuity. O

Remark 4.3. In the proof, we should choosg and r, very carefully. In Theorem 1.2
of [14], they set
2 0

S“:rTZ’ rnZE,

where{ > 0. However, this does not work well. The trouble is thathy go to 0 as
n — oo, while % does not depend on n. To avoid this trouble, it is essential to chgose r
so that i; also depends on n.

Recently Kassmann and Mimica provélder continuity of harmonic functions for
more general non-local operators in [18].
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