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Abstract

It is well-known that crystallographic structures are commonly observed in solid.
The structures in reality are not globally perfect, but there are defects of from
0 to 3 dimension instead. Defects are regarded as a singular set which violates
symmetries of the crystal. In this thesis, we mainly study 1-dimensional defects,
called dislocations and 2-dimensional defects, called grain boundaries. Dislocations
and grain boundaries are closely related. There are two types of dislocations: of
an edge type and of a screw type. Mixed types of those, however, are common in
general. The results of this thesis contain as follows:
1. mathematical formulations for selected topics on the study of dislocations in
materials science,
2. determination of the stress fields over a manifold with a mixed dislocation and
the stability of a mixed dislocation, and
3. a joint work on the study of grain boundaries with materials scientists.

Crystallographic structures are distorted as a consequence of the existence of
dislocations. A material body is considered as a continuum body from a macro-
scopic viewpoint and defects has been studied in terms of the curvature tensor of
the Levi-Civita connection of some appropriate metric in the framework of Rie-
mannian geometry since more than a century ago. In another approach, defects
can be expressed by the torsion tensor of a connection compatible with the met-
ric. In this thesis, we stand at the latter position following the formulation of K.
Kondo[44]-[46], S. Amari [2]-[4], E. Kröner[48], and A. Yavari and A. Goriely[79]-
[80]. The 3-dimensional non-Riemannian geometry (Riemann-Cartan geometry)
with nonzero torsion matches the concept of the Burgers vector which has been
used to describe the orientation and the magnitude of a dislocation in materials
researches. It is said that one of the motivations E. Cartan introduced torsion in
geometry was to express the existence of defects in a material body. Yavari and
Goriely reformulated the dislocation models via modern differential geometry.
Then they studied the stress fields on a 3-dimensional locally flat manifold with
nonzero torsion tensor. We consider a mixed dislocation and derive ordinary dif-
ferential equations the metric tensor satisfies. And then we calculate stress fields
and the stability conditions of a mixed dislocation from a macroscopic viewpoint.

In recent years, technological developments enable materials scientists to di-
rectly observe atomic structures. One can apply information of defects to estimate
the geometrical structure of a materials body and predict properties or design new
materials. Thus we need microscopic viewpoints; it is done by discrete geometry
rather than geometry in continuum.

We regard a crystalline structure as a lattice in R3 where atoms are vertices
(and, if necessary, bonds between adjacent atoms are edges) in the usual way.
The term lattice always refers to a graph corresponding to a crystalline struc-
ture. In this thesis, we discuss the conditions for ”good matching” of two lattices
which form an interface. Especially, we study the commensurability of two lat-
tices whose vertices are shared at the interface. If the intersection of two lattices
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is not empty, then points in the intersection usually form a sublattice of those
two and we term it a coincidence-site lattice (CSL). In this thesis, we review the
2-dimensional CSL theory and the O-lattice theory. The CSL theory was gener-
alized to the O-lattice theory by W. Bollmann[11]-[18] in the 1960’s and applied
to materials researches. Though CSLs appear only when two lattices are in par-
ticular configurations, one can define an O-lattice for arbitrary configurations of
lattices if they are related by a linear transformation. In this sense, the O-lattice
theory is a way of generalization of the CSL theory. However, the method was
not fully understood in the materials community and not so many researchers
apply the theory nowadays. The author was motivated by an experimental result
by M. Saito et al.[67] on a near CSL configuration of cubic lattices. We revealed
that the distribution of rational numbers implied the periodicity of certain grain
boundary structures in near CSL configurations due to the O-lattice theory. We
present contributions of our theory to the grain boundary physics as a collabora-
tive work with Y. Ikuhara et al.[34] as the main result of this thesis.

The first part of this thesis studies defects from macroscopic viewpoints while
the latter from microscopic viewpoints. In Chapter 2, we review the classification
of defects due to the homotopy theory which was well-studied in the 1970’s. In
Chapter 3, we give an overview of geometrical methods in the elastic deformation
theory and introduce a dislocation model studied by Kondo, Amari, Kröner and
others. We review the reformulated dislocation model due to Yavari and Goriely
and generalize their results in the case of mixed dislocations. In Chapter 5,
we determine the stability conditions for a mixed dislocation under appropriate
assumptions. We mention a two-body interaction energy between dislocations at
the end of the chapter.

We introduce microscopic viewpoints in Chapter 6. Main results are presented
as an application of the O-lattice theory to materials science.
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[26] W. Gorsky, Röntgenographische untersuchung von umwandlungen in der
legierung Cu Au, Z. Phys. 50 (1928), no. 1, 64–81.

[27] H. Grimmer, A reciprocity relation between the coincidence site lattice and
the DSC lattice, Scrip. Metall. (1974), no. 8, 1221–1223.

[28] A. K. Head, S. D. Howison, J. R. Ockendon, and S. P. Tighe, An equilibrium
theory of dislocation continua, SIAM Reviews 35 (1993), no. 4, 580–609.
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[74] G. Toulouse and M. Kléman, Principles of a classification of defects in or-
dered media, J. Phys. Lett. (Paris) 37 (1976), no. 6, 149–152.

[75] M. Uehara, S. Tsurekawa, and H. Nakashima, Description for microstructure
of < 110 > high angle tilt boundaries in pure aluminum by the dislocation
model, Kyusyu Daigaku Sogorikogaku Kenkyuka Hokoku 17 (1996), no. 4,
401–408.

[76] V. Volterra, Sur l’équilibre des corps elastiques multiplement connexes, 1907.

[77] Gui-Jin Wang, A.P. Sutton, and V. Vitek, Relationships between grain bound-
ary structure and energy, Acta Metall. 32 (1984), no. 7, 1093–1104.

8



[78] Gui-Jin Wang and V. Vitek, Relationships between grain boundary structure
and energy, Acta Metall. 34 (1986), no. 5, 951–960.

[79] A. Yavari and A. Goriely, Riemann-Cartan geometry of nonlinear dislocation
mechanics, Arch. Ration. Mech. Anal. 205(1) (2012), 59–118.

[80] , Riemann-Cartan geometry of nonlinear dislocation mechanics, OC-
CAM report 11/58 (2012).

[81] N. Youssff and A. M. Sid-Ahmed, Linear connections and curvature tensors
in the geometry of parallelizable manifolds, Rep. Mat. Phys. 60 (2007), no. 1,
39–53.

9




