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Summary

Many real processes and phenomena in nature, science and technology are characterized by
the fact that they possess contiguous time intervals of slow and fast development. An adequate
apparatus for mathematical simulation of such processes and phenomena are the impulsive dif-
ferential equations. The start of the theory of impulsive ordinary differential equations was
made by Mil’man and Myshkis in the paper On stability of motion in the presence of impulses,
Sib. Math. J. 1 (2) (1960), 233-237. (in Russian). Around 1991, the study of the impulsive
partial differential equations started at several places in the world. Erbe, Freedman, Liu and
Wu provided a natural framework for many evolutional processes in population dynamics in the
paper Comparison principles for impulsive parabolic equations with applications to models of
single species growth, J. Austral. Math. Soc., Ser. B 32 (1991), 382-400, one of the first several
papers in this field. Since then many results have been published.

In this thesis, we consider three kinds of problems with impulsive conditions. The first con-
cerns the existence of a global solution to an impulsive differential equation and its asymptotic
behavior. It is well known that the growth of the solution to the semi-linear parabolic equation
is related to that of the reaction function. We discuss the infinite recurrence of impulsive control
which continues the solution globally in time.

The second concerns blow-up solutions to impulsive differential equations. Such problems
arise from some discrete models of processes and phenomena which occur in discrete technolo-
gies, chemical reactor dynamics, combustion theory, thermal explosions, population dynamics
etc. We are interested in studying the behavior of the solution which is influenced by the reac-
tion function and the impulsive source. In the smooth case (without impulses) it is well known
that if the reaction function is bounded from above by a certain linear growth condition, then
the solution of the problem under consideration converges to a steady-state solution. In the
case when the reaction function is bounded from below by either linear or nonlinear growth
condition then the solution may grow unbounded as t — T*, where T is either a finite time or
infinity. The blow-up time 7* depends on the initial data. If the initial data is small enough,
then 7* becomes large. In our case (with impulses), we fix the initial data which is not too
small. We will investigate how to control the impulsive source to delay the blow-up time 7
and to prevent the solution from growing unbounded in the desired time interval.

Finally, we study a problem derived from the nuclear reactor dynamics. This leads to a sys-
tem of semilinear parabolic equations with an initial condition, Neumann boundary conditions
and impulsive conditions. We are interested in studying the behavior of the solution which is
influenced by the reaction function and the impulsive source. In our case when the reaction
function is bounded from below by nonlinear growth condition then the solution may grow un-
bounded as t — T, where T is either a finite time or infinity. This blow-up time 7 depends
on the initial data and the control. We investigate the influence of the control on the solution.
There are two cases, i.e., effective and ineffective controls, the precise meaning of which will be
given later. We prove the existence of ineffective control, which implies the failure of control,
resulting in the explosion. We restrict ourselves in the problem to the periodic solution to the
semilimear parabolic equation. Although we deal in this thesis with a toy model, we believe
that our results will shed some light on the real problem besides being of much interest from a
theoretical point of view.

In what follows, we state the problems, the principal results and related facts.
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I. We discuss the asymptotic behavior of global solutions to impulsive differential equations
under impulsive control.
Consider the impulsive semilinear evolution equation.

db;(tt) + A@)u(t)= f(u(r)) forte O(ti,ti+1), (D
i=0

u(0) = u, (2)

u(tk) = gk(tk,u(tk—)) (k: 1,2,...), 3)

where g (t,-) : X - X (k=1,2,...) are given continuous maps, u(ty—) = limou(s) and X
S—l—

is a Banach space. We suppose that 0 =1y <t} <1t < --- < fx < --- are given numbers and

lim ¢, = oo.
n—yoo

We give here some assumptions.

HO1. The operator A(t) is a closed operator defined densely in X for each ¢ € [0,00). The
resolvent set p(A(t)) of A(t) contains the half-plane ReA < 0, and (1 +|A|)(A(t) —A)~!
is uniformly bounded in 0 < 7 < e0 and ReA < 0.

H02. The domain D(A(t)) = D of A(t) is independent of ¢ and, accordingly, A(t)A(0) !, being
a bounded operator, is a Holder continuous function of 7 in the norm of B(X). In other
words, there exist positive constants & < 1 and L such that

1ANAO0) " —A(s)A0) " [|< L] —s[*

is satisfied for 0 < s < coand 0 <t < eo.

Here B(X) denotes the set of all bounded linear operator from X into X.

HO3. A(1)A(s)~! is uniformly bounded, i.e., sup | A(t)A(s) ' ||< oo.
0<t,5<00

HO4. f is a nonlinear mapping from the whole of X into X. For every C > 0 there exists a
constant kc > 0 such that

1f @) [[< ke, || f(w) = f() [|[< ke [ u—v]]
hold for || u ||< C and || v ||< C. The constant k¢ may be an increasing function of C.
Let &y be an arbitrary element such that
| U(t,5) [|< Cem (=), 4)
Here U (t,s) is the fundamental solution of d/dt + A(t). We assume

HOS. || f(u()) [|< fo(t), where fp : Ry — Ry is a bounded function and Ry = [0, o).



HO6.
| gx(tr, u(ti—) ||x < My || u(ti—) ||x,

where M (k=1,2,...) are constants and

C T (M) < Loe?' ™,
s<t<t

where Ly > 0, 7y are constants and the constant C was given in (4).
We estimate the growth of the solution u.

Theorem 1 We suppose HOI-HO6 are satisfied. Then the following estimate holds.
t
) 1< Lo gl o7 8 4+ Loelv @ [ o8 fy(syas,
0

where & is defined in (4).

Further on, suppose that y < &y and let there exits limsup fo(t) < +oo. Then we have that
1—oo

. Ly .
< .
Jim [ u(t) [lx< 5= limsup fo(¢)

Suppose the following condition in the place of HOS.

HO5'. The function f: X — X is continuous and satisfies that || f(u(z)) ||x< M || u(z) ||x,
where M > 0 is a constant.

Now we investigate the estimate of the growth of the solution u.

where & is defined as above.
1. If we suppose that Y+ CM = &, then || u(t) ||x< Lo || uo ||x-
2. If we suppose that Y+ CM < &, then

lim || u(f) [|x= 0.

{—»oo

We consider the following impulsive semilinear parabolic Cauchy problem.

5 0

a_L; = Autu? in g{(rk,rk+1)x1e"}, (5)
u(0,x) = o(x) inR", (6)
u(ty,x) = gr(u(ty—,x)) forx € R" (k=1,2,...), (7)



where A is the Laplace operator, p > 1 is a constant and ¢ is a nonnegative bounded continuous

function in R"*. We suppose that 0 =19 <t; <fp < -+ <t < --- are given numbers, lim t, = oo,
n—soo

g :R' = R' (k=1,2,...) are continuous and each g;(v) is increasing for v € R'.

Due to the possible nonuniqueness of solutions to the Cauchy problem (5) - (7), we shall
restrict our attention to a certain class of solutions u(z,x), namely, those with the following
properties.

(i). u(t,x)>0 in U {(tx,tr1) X R"}.
k=0

(ii). u(r,x) satisfies the integral equation in [fz,f;1 1) x R* (k=0,1,2,...).

wtx) = (dr(r—n))"2 /

R
+/t:/n(47t(t—s))—n/2exp [_|X—y|2/(4(t—s))] up(S,y)dyds,

exp [~ v~y /(4 — )] u(te.y)dy

Gii). u(ty,x) = gr(u(ty—,x)) (k=1,2,...).

On the other hand, it is proved that if u satisfies the integral equation and is bounded in
[tr,tier1) X R (k=0,1,2,...) then u is unique and is a classical solution to the differential
equation, i.e., uis in C'2((tx,trp1) x RN C([txs tre1) X R"), (k=10,1,2,...) and u satisfies the
differential equation (5)-(7).

The behavior of the initial value near x = oo is essential to existence and non-existence of
a global solution of the Cauchy problem. Instead of such a condition, we would like to make
a sufficient impulsive condition to construct a global solution and investigate the behavior as ¢
tends to infinity.

Theorem 3 We put Mo =|| Y ||;=~(gn). We assume that each gy : [0,00) — [0,0) is a continuous
function such that g (v) is increasing and

| 8k(V) lz=(rmy < M | v || p=rny (K= 1,2,...).
Let M{,M53,--- ,My,--- be constants and satisfy
MoM; My, < [2(p— 1) (11 — )]/ =P2K0=P)(k=0,1,2,...).
Then there exists a unique solution u(t,x) to (5) - (7) and we have
alt,) lmen < 277 200 = 1) (110 — 1))/ 07 @)
fors € [tr,txr1) (k=0,1,2,...).

We consider the following initial-boundary value problem with an impulsive condition.

?:Au—}—u” in U{(tk,tk+]) XQ.}, 9)
t k=0

u(t,x) =0 on (0,e0) x dQ, (10)
u(0,x) = @(x) in Q, (11)
u(te,x) = ge(u(ti—,x)) inQ (k=1,23,...). (12)



Here p > 1 is a constant, Q is a bounded open set in R” with a smooth boundary dQ. , ¢ is a
nonnegative bounded continuous function in Q and @(x) =0 on dQ. Suppose that 0 =1y < 1} <
ty < -+- <ty <--- are given numbers, I}gn tr=ccand g :R' - R' (k=1,2,...) are continuous
and each g;(v) is increasing for v € R'. We define u(fy—,x) = Slltm Ou(s,x).

The global existence and nonexistence of a solution to the al;(ove equation without an im-
pulsive condition is well known. We here study the relation among the asymptotic behavior, the
nonlinear term u” and the impulsive condition. We will also investigate a sufficient impulsive
condition for the global existence even if there is no global solution of the equation without an
impulsive condition.

Due to the possible nonuniqueness of solutions to the problem (9)-(12), we shall restrict our
attention to a certain class of solutions u(t,x), namely, those with the following properties.

(). u(t,x)>0 in | {(tx,1e11) x Q.
i=0

(ii). u satisfies the integral equation in (#,%41) x Q (k=0,1,2,...)
t
u(t.) = [ Ulexyulndy+ [ [ Ulesixy (s.)dyds
Q e JQ

(ii). u(ty,x) = gr(u(ty—,x)) (k=1,2,...).

On the other hand, it is proved that if u satisfies the integral equation and is bounded in
[te,tir1) X Q (k=0,1,2,...) then u is unique and is a classical solution of the differential
equation, i.e., u is in C12((t, tx1) X QN C([tr, tr 1] X Q) (k=0,1,2,...) and u satisfies the
differential equation (9)-(12).

We make an assumption.

H. Each g : [0,00) — [0, ) is a continuous function such that g (v) is nondecreasing and

| 8k(v) ||L°"(Q)§Mk v ||L°°(Q) (k=1,2,...).

Moreover, if v(x) is continuous in Q with zero boundary condition, then each g (v(x)) satisfies
also zero boundary condition.
We present the following theorem.

Theorem 4 Put My =|| Y || =(q). We assume that H is satisfied. Let M\,M,...,My,... be
constants and satisfy

MM, M, < LD Lt =0)[2(p— 1) () — )]/ - P12k =P) (13)
(k=0,1,2,...).

Then there exists a unique solution u(t,x) to (9) - (12) and it satisfies

Ju(t,) l=@) < 27 '2(p— 1) (ks — )]/ P (14)
fort e [tkvtk—l—l) (k: 0,1,2,...).



II. We consider an impulsive initial-boundary value problem under Robin boundary condi-
tion. We give suitable impulsive conditions and control the blow-up times.

We use the following notation. Let  C R" be a bounded domain with a smooth boundary
dQ and Q = QUAIQ. Supose that 0 =19 < 1] <1 < -+- <1, < tp1 = T are given real numbers.

Define J = [0,T), Jimp = {t1,...,1p}, Or = (0,T) x Q, I'r = (0,T) x dQ, P, = {(tx,x) |
x€ Qb P=U_ P A= {(tx,x) | x € 0Q}, A= U] A, wy = u/0t, uy, = du) 0%y, thyyx; =
9%u/dx;0x;.

Let C1(Qr, P) be the class of all functions u : [0, T] x Q — R as follows.

(i) u(t,x) is continuously differentiable in Q7 \ (PUA).
(ii) There exist uy,y;(,x) (i,j=1,2,...,n) which are continuous in (¢,x) € Qr \ P.

(iii)

lim  u(s,y) = u(t—,x) for s <1,
(.9)= (%)
im  u(s,y) = u(t+,x) for s >1¢, (t,x) € Or
(8,9)—(t,x)
u(ty,x) = u(tp+,x)  for (tg,x) € Jimp x Q.

The boundary operator B is defined by Bu = du/dv + Bo(x)u, where Boe C(I't \ A), Bo(x) >0
and v is the outward normal vector defined on I'7 \ A. The orerator L is defined by

" )50+ Y by
n lal] o Ebc,-&xj I E}xj

L=
. =

L=

and is an uniformly elliptic operator. The coefficients of L belong to C'*9(Q) (0< 6 < 1).
The impulsive source is presented by the mappings g : R' — R! (k=1,2,...,p).
Consider the following impulsive initial-boundary value problem.

w—Lu = f(t,x,u) in Or\ P, (15)

Bu = 0 on I't\ A, (16)
u(0,x) = up(x) in Q, (17)
u(ty,x) = u(ty—,x)+ gr(u(ty—,x)) in Q (k=1,2,...,p). (18)

By L, (R ) we denote the set of all functions f(z,x,u) which are locally Lipschitz contin-
uous in u € Ry = [0,0). Further, introduce the following assumptions.

HI11l. f € L,.(Ry) and is Holder continuous for (¢,x) € [0,7] x Q. And there exists a
constant & > 0 such that

f(t,x,m) > 2n +an'*t? forn >0,

where 7y is defined as follows. y=0forr € [0,¢,) and Y= (1 = const>0) fort € [t,,T]. The
constant Aq stands for the principal eigenvalue of (—L) and @y is the corresponding eigenfunc-
tion. In what follows we assume ®g(x) is normalized by max{®y(x) : x € Q} = 1.

H12. The mapping g, : R! — R! (k=1,2,...,p) possesses the following properties.
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(i) z+ gk(z) is nondecreasing smooth function in z € R, for each .

(ii) There exists positive numbers E; > 0, ¢; > 0 such that, for n >0, Exn > g(n) >
exn (k=1,2,...,p).

H13. For §,6 >0 i A
0Py (x) > up(x) > 6Po(x),

where g (x) is the eigenfunction corresponding to the principal eigenvalue A of the operator
(—L) defined in H11.

Theorem 5 Assume that HI11-HI12 hold and {et u be the nonnegative solution to (15)-(18). Then
for each constant 6 > 0 and each uy (up > 6Py),

u(t,x) > A(k)6®y(x)explat] for (t,x) € [ti,tre1) xQ (k=0,1,...,p),

where

k
A(0)=1and A(k) =

(I+e) (k=1,2,...,p).

=1

Theorem 6 Assume that H11-HI3 hold. Then there exists T* € (t,,T) such that a unique
solution u(t,x) of the impulsive initial-boundary value problem (15)-(18) in [0,T*) x Q has the
folloeing property.
B(k) 8@ (x) exp[Br] > u(r,x) > A(k ) o(x) explou]
for (Z,X)E(tk,tk_H) (kZ] 2,. .,p—l),

where

k
B(0) =1 and B(k EH (1+E) (k=1,2,...,p).

Moreover, we have 111’;1 [maxu(t,x)] = +oo, where T* satisfies T* <t,+1/[ay1(0,Pn)"], 6, =
1— * xEQ

A(p)S explaty] and @, > 0 is the minimum value in Q of the eigenfunction ®y(x).

Consider the following impulsive parabolic initial-boundary value problem.

—Au = f(t,x,u) in Or\P, (19)
Bu = 0 on I'7\ A, (20)
u(0,x) = up(x) on Q, (21)
u(ty,x) = gilulty—,x)) (k=1,2,...,m) on Q, (22)

where ug(x) is nonnegative and is in C2(Q).
We introduce the following assumptions.

H21. Let f € L;,(R+) and there exist positive constants 7y, i, 0p, o7 such that for each n >0
and x € Q,

ft,x,m) > Aon +oot* 0¥ for t€ [, tr41)

8



and
ft,x,n) < An+oitt g™ for re[t,n) (k=0,1,...,m),

where A stands for the principal eigenvalue of the eigenvalue problem

—AD=AP in Q, B®=0 on 9Q.

H22. The mapping g; : R' — R' (k=1,2,...,m) possess the following properties.

(i) gk(z) are nondecreasing smooth functions in R

(i1) Fork=1,2,...,m, there exist positive numbers Ey, e; such that for n > 0,
Exn > ge(1) > exn.
The constants Ej and e actually control the impulsive source g.

H23. There exist 30 > 0 and & > 0 such that

A

SOCIDO(x) > up(x) > opPp(x) for x e Q.

They satisfy
0.< by < My [yoo(ef' —15)] /7

and _
0 < & < p'"yoy (' — )17,

where W = min®p(x).
x€Q

We first choose & and & suitablly and fix them. Let us introduce the following notation.

N, = 1-}-}/0'0[.1_1 (Sklp())ytlg,
Nk = 1—}-’}/0'1[,L_1512/t£,

M, = YO'OH_I(Sk‘Po)Y/Nk,

M, = yolu_lslzl/Nk (k=0,1,...,m).

We define Sk and Sk so that Sk < Sk inductively.

5 2
k41 - ek+1 9
(Ne(1— My )Y
- 5
i1 = Ep1= ¢ (k=0,1,....,m—1).

(Ne(1 = My )Y



H24. The constants ey, e3,...,e,—1 satisfy the inequalities

UNg_1 (1= My_qt}) e i
0<e < m m (O 1¥o)” (k=1,2,....om—1).
Y00(fi 1 — 1)

We choose ey, e3,...,e, 1 so that they satisfy H24 and fix them. Then we have
0<1—Mp* for r€[t,tr1] (k=0,1,2,....m—1).
The constant ¢,, will be chosen in a different manner.

H25. The constants Ey, E», - -- , E,,_ satisfy the inequalities

_ _ 1y
Ne (1 =M, " <
UNg 1 ( k 1k)} 3/;11 (k=1,2,....m—1).

Y01 (tléﬂrl - tlg)

We choose also Eq, Ey, ..., E,_ so that they satisfy H25 and fix them. Then we have

0<Ek<{

0<1-—M* fort€t,tr 1] (k=0,1,2,....m—1).
The constants £, will be chosen in a different manner.
Theorem 7 Assume that conditions H21-H25 hold and
tw <Ty =M;"* <1 =M, '* < T
Then there exist T* € [T1,T>] and a unique solution u to (19)-(22) such that

lim [maxu(t,x)] = +oo.
=T xcQ

Consider the initial-boundary value problem for impulsive parabolic equations with an im-
pulsive condition.

w—Lu = f(t,x,u) in Or\P, (23)

Bu = h(t,x) on Tr\A, 24)

u(0,x) = up(x) in Q, (25)

u(te,x) = u(ty—,x)+gr(u(iy—,x))  in Q (26)
(k=1,2,....p).

We give here the following assumptions.
H31.

() f € Lip(Ry) and f is Holder continuous for (z,x) € [0,T] x Q.

10



(ii) There exist real numbers & > 0 and 8 > 0 such that for n > 0,

[a(1+1—1) " + 200 < ftxn) <B(+1-1)""n
in [tkatk—l—l) x (k: 1,2,....,p— 1)
and
[a(1+1—1,)"" + 0] < f(t,2,0) in [tp,tp11) X Q.
Here Ay stands for the principal eigenvalue of (—L) defined by

—L®P=ADP inQ, BO=0 ondQ.

H32. The mappings g : R' = R' (k=1,2,...,p) possess the following properties.
(i) z+ gk(z) are nondecreasing smooth functions in z € R for each «.

(ii) There exist positive numbers E; > 0, ¢ > 0 such that, for n > 0, Exn > gr(n) >
exn (k=1,2,....p).

H33. For § > 0, we have up > §®g(x) for x € Q and ug € C*+0(Q), where ®g(x) is the
eigenfunction corresponding to the principal eigenvalue Ay of (—L) defined in H31.
H34. The function & € C'*9(]0, T] x Q) and is nonnegative.

Weputp =  max _A(t,x). Let wy be the solution to the problem
(1.0)€[0,T] x &

—Lw, = 0 in Q,
Bwp = p on JQ.
There exists a constant ¥ > 1 such that ywp, > 1 on Q. We put ¥y = Ywp. Then ¥ satisfies

¥y = 0 inQ,
B¥Yy = yp on 0Q.

Moreover ¥y > @ on Q since maxPp(x) = 1.
xeQ

Having in maind the above stated function ¥ (x), we introduce the following assumption.
H35. For 6 > 1, we have §¥(x) > up(x) on Q.
Now we have the following theorem.

Theorem 8 Let the hypotheses H31-H35 be satisfied. Then there exists T* € (t,,T) such that
the impulsive initial-boundary value problem (23)-(26) has a unique solution u = u(t,x) in
[0,T*) x Q possessing the following properties.

u(t,x) > A(k)SDo(x)[1 +1—1]%
in [tkatk—l—l) x Q (k: 1,2,...,]))

and

u(t,x) < Bk)SWo(x)[1+1—1]P
in [tk,tk+]) x Q (k: 1,2,...,p— 1)

11



Here
k
A(O) = 1 and A(k) = (1+e,—)[1+t,~—ti,1]a
=1

(k,1,2,...,p)

2

and

(1+Ei)[1+ti_ti—l]ﬁ (k: 1,2,...,p— 1)

=

B(0)=1 and B(k) =
=1

~

Consider the following impulsive parabolic initial-boundary value problem.

u—Au = f(t,x,u) in Or\P, (27)
Bu = h(x) onI'r\ A, (28)
u(0,x) = up(x) in Q, (29)
u(ty,x) = gr(u(ty—,x)) inQ (k=1,2,...,m), (30)

where h(x) is nonnegative and in C'*%(9Q).
Now we consider the linear problem

Aw = 0 in Q,
Bw = h(x) on dQ.
For h € C'9(9Q) (0< 6 < 1), there exists a unique solution w € C>*9(Q) to the above linear

problem. Moreover, if 4(x) is nonnegative, then w > 0 on Q and w > 0 in Q.
Let v(t,x) = u(t,x) — w(x). Then v(¢,x) satisfies the following equation.

vi—Av = f(t,x,v+w) in Or\P, (31)

Bv = 0 onI'r\ A, (32)

v(0,x) = wup(x)—w(x) in Q, (33)

V(te,x) = gr(v(txy—,x) +w(x)) —w(x) in Q (34)
(k=1,2,...,m).

Let us introduce the following assumptions.

H41. Let f € L;,-(R ) and there exist positive constants 7, oy, o] such that forany n > 0
and (t,x) € [0,T) x Q,
oon™' < f(t,x,m) < an?t,

Let Ag be the principal eigenvalue of the eigenvalue problem
—A®=A®P in Q, B®=0 on JQ.

In what follows we assume that ® (x) is the eigenfunction corresponding to Ao and is normal-
ized by max{®p(x) : x € Q} = 1.
H42. The real numbers {t;} (i = 1,2,...,m) are chosen so that

Hh < [Yo'l(VM+WM)y]717

i —te < [Coyor(o+wm)] (k=1,2,--- m—1).

12



Here vy = max[up(x) — w(x)], wy = maxw(x) and Cp > 1 is a constant.
xeQ x€Q
H43. The initial function ug(x) is subjected to the inequality

0 < 6@ (x) < up(x) —w(x) < & in Q

for & > 0 and & > 0. The constant & and w,, = minw(x) satisfy
xeQ

2o 1y

30+wm> (

Here ¢, = min®(x). And the constant & satisfies
xeQ

t1 < [yor(So+wm)"] ! < [yor(vm +wu)?] .

Then 1 — Myt >0 for ¢ € [ty,11]. We first choose 8o and & suitablly and fix them.
H44. Let the mappings g : R' — R' (k=1,2,...,m) be defined as follows.

(i) Let g (¢ (x)) = gr((x) + w(x)) —w(x) for { € C(Q). And g(n) is nondecreasing
smooth functionin n € R,..
(i1) There exist positive numbers Ej, e; which satisfy

E S (x)+ (1 - E)&o®o(x) > Fu(C(x)) > exd(x) + (1 —ex) SoPo(x)
(k=1,2,...,m)

for {(x) such that &(x) > &®@p(x) on Q andisin C(£). The constants Ej and e actually
control the impulsive source gg.
Let us introduce the following notation.
Ne = 1+y01(&+wm)" 1,
My = y01(6c+wm)"/Ng (k=0,1,...,m),
p = oo}/l

We define Sk and Sk so that 5k < Sk inductively.

Siv1 = Eipr (Sc+wan)[Ne(1 = Myt 1)) ™7 = Exywag + (1 — Exi1) o,
Sip1 = expre MU [(§ 4 wy) T — p(1— e Tl 1)y 1Y

—erwm+ (1 —ery1) &
(k=0,1,...,m—1).

H45. Each E; (k=1,2,...,m— 1) satisfies
Ec{ (81 +wan)[Ne—1 (1= My 1) 77— way — o}
< (€Y= 1)(6y+wm).

Under the hypothesis H45, we have 0 < 1 — Mt fort € [ty,t;11] (k=0,1,2,...,m—1).

Put Ty =ty + 1/01Y(8p +wi)? = M, and T> = 1, + (Aoy) " 10g[0 (8 + W)Y/ {p (8 +
wpm)? — 1}]. Then we have the following.
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Theorem 9 Assume that conditions H41-H45 hold and
thn<Ti<h<T.
Then there exist T* € [Ty, T»] and a unique solution u to (27)-(30) such that

lim [maxu(t,x)] = +-co.
t=T* xeQ

III. We consider effective and ineffective impulsive controls. We treat the problem which
arises from the nuclear reactor dynamics. The general formulation of this problem is too com-
plicated. So we restrict ourselves in the initial and periodic boundary value problem. We explain
the meaning of effective and ineffective impulsive controls and show the existence of ineffective
control.

Namely, we consider the following initial and periodic boundary value problem.

W — ey = U fort >0, t #t, x €R' (i=1,2,...), (35)

u(t,x+2m) = u(t,x) fort >0, xeR', (36)
1

0,x) = Lim u(t,x)=={ li N+ i ! 37

u(0,x) Jimu(t,x) = 2{ lim up(c) + 1im ‘uo(x)}, (37)

where 1, = du/dt,uy, = 0%u/dx*, up(x+27) = up(x) x € R' and u is a nonnegative function
of bounded variation.
We add the first type of impulsive control.

maxu(t,x) < S fort €[t 1,t), (38)
XER!
maxu(t;i—,x) = S, (39)
xER!
u(ti,x) = lim u(t,x) = au(ti—,x) (40)
t—t;+0
forxe R' (i=1,2,...),
0 = <<~ < <e-n,
where maxu(t;—,x) = lim [maxu(t,x)]. Let S and o (0 < o < 1) be given constants. Let ug
XER1 t—1;—0 xeR!
satisfy maxug(x) < S.
XER!

Then the solution u(t,x) will be continued globally in time. And the length of each time
interval (1;11 —1;) (i=1, 2, ...) is greater than (1 — a)/aS.

Secondarily we replace the first type of impulsive control by the following one. Let a se-
quence {f;} be given and satisfy the following. 0 =t <t; <tHr <---<t; <--- and t; —t;_ | =
50 (i=1,2,...). Here s¥ is a positive constant and satisfies s < 2nUy I We put the following
impulsive control:

u(tix) = 1im u(r,x) = au(ti—,x) forxe R' (i=1,2,..).

We put U; = " u(t;,y)dy (i=0,1,...). Itis easy to see that

2T
U>—U,_ =1,2,....
[ 27[—S0U,'_1 i—1 1 Ed)
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If we assume that a constant o satisfies 2wa/ (27 — s°Up) > 1, then we have Uy > Uy. We
generally have U; > (2ra /(27 — s°Up) ) Uy. Then there exists the maximum integer n such that

27 —s°U, > 0. This means that there exists 7 (0 < T < +oo) and we have lim O[ma>1(u(t,x)] =
I=1—=0xeR
oo,

Finally we replace the first type of impulsive control by

minu(t,x) < S fort e [ti_1,t), 41)
xXER!

minu(ti—,x) = S, (42)
XER!

W) = 3 m QW= X)+ Tim o0 yuli—X)),

forxe R' (i=1,2,..)) (43)
0 = << - << em,

where minu(fj—,x) = lim [minu(z,x)] and @(x) =1 for —a+2nx <x<a+2nmw (0<a<
XER! t—1;—0 xeR!

m, n:integer) and @(x) =0 otherwise. Let S be a given constant. Let ug satisfy min ug (x) <
XER

S. A function u and a sequence {¢;} are unknown. We will consider whether the solution u
will grow unbounded or not. Namely, we consider whether the total mass of u(z,x) will grow
unbouded or not. If it occurs, the length of each time interval [t;,#; 1) may decrease. It is
not easy to compare the amount of increase of the total mass and the amount of loss which is
caused by the impulsive control. In the above second case, the relation between U; and U;_1
is clear. But in the last case, we have nothing about the relation. We will mainly consider the
phenomenon of the last type.

We state the meanings of effective and ineffective impulsive controls. If there exists a global
solution to an impulsive differential equation and the length of each time interval between con-
tiguous controls is greater than some positive constant, then we say that the impulsive control
is effective. If the control is not effective, then we say that it is ineffective. For example,
the impulsive control (38)-(40) is effective. We discuss the existence of ineffective impulsive
control.

We consider the system in each time interval (;_1, t;_1 +T;). Forx € R',

u,(i) — u,(&) = {u(’.)}2 in (ti_1,ti1+Tj), (44)

WD (t,x+2m) = ud(t,x) in (ti-1,tio1 +T), (45)
. 1

u (tl,I,X) 2{)(’1—1)1)‘5110”(”7],#)+x’glj‘cr~1kou(tl7],.x,)}7 (46)

lim  maxu((z,x) = +oo, (i=1,2,...). (47)

t—=t;_1+T;—0 xeR!

Here u is a solution to (35)-(37) with (41)-(43). It is easy to see that each ul) (t,x) coincides
with u(t,x) in [t;_1,£;) x R'. The constant T is called the blow-up time and represents the growth
of ul), Tt is well known that 7; is finite. There are two cases. One is that there exists #; such that
t; < t; 1 +T; for each i. Another is that there does not exist #; for some i, i.e., uld) (t,x) blows
up before the minimum value of u(?) (t,x) arrives at S. If the latter case occurs, then this process
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will be suspended suddenly. So, this control is ineffective. In what follows, we assume that the
number of recurrences of control is infinite.

We define the set IN of initial functions as follows. The function u is in the set IN if u
satisfies the following.

1. ug is defined in R! and uo(x +27) = up(x) for x € R'.

2. ug is a nonnegative function and has at most a finite number of discontinuous pionts in
[—m, ]
3. up(—x) = up(x) forx € [—m, .

4. up(x) =0forx € [—w+2nm, —a+2nw)U (a+2nw, m+2nn). Herea (0 <a < m)isa
positive constant and # is an integer.

5. up(x) is non-increasing in [0, 7].
We assume that uq in (37) is in IN.

We have two theorems related to ineffective control.

Theorem 10 We assume that there exists a positive constant kK (> 1) such that T,U;—; > 1/x
fori=1,2,... and K is independent of a and S . Here U; = [* _u(t:,y)dy. If we choose the
constants a and S suitably, then we have

Ui>U; (i:1,2,...).

Moreover there exists T® (0 < T® < o) such that lim [maxu(t,x)] = +co. Here u(t,x) is

t—=T?—0 xeR!
the solution to (35)-(37) and (41)-(43).

Theorem 11 We assume that there does not exist a positive constant K (> 1) such that T;U; | >
1/k fori=1,2,... and K is independent of a and S . If we take a and S suitably for any € > 0,
then there exists i such that T; < € , i.e., 0 <t;—t; 1 <E.

Moreove, we give the theorem which states the growth of the solution. We consider the follow-
ing.

2

Vi— Vg = Vv for0<t<T,xeR', (48)
v(t,x+2m) = v(t,x) for0<t<T,xecR, (49)
1
0 = lim v(t,x) = ={ lim ! lim . 50
v(0,%) z—>+ov( %) z{qukouo(x)+x,%+0u0(x)} 0)
We assume that
minv(t,x) < S for t € [0,11),
XER!
minv(t;—,x) = S,
XER!

v(t,x) = @x)v(ti—,x) for x € R',

where ¢(x) is defined in (43). Moreover, we assume that a constant a satisfies the inequalities
a*+ CoCra— nCyCy > 0 and w/2<a<m Wefix a.
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Theorem 12 Let ug be in IN. Under the above assumptions, there exists a positive constant S,
such that for each S (S > S;) we have
Vi > W, (51)

where V) = ffnv(O,y)dy and Vi = ff”v(tl,y)dy.
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