
Cosmological evolution of pseudo-moduli and
its impact on the gravitino relic abundance

著者 Fukushima  Hiraku
学位授与機関 Tohoku University
学位授与番号 11301甲第15562号
URL http://hdl.handle.net/10097/58792



博士論文

Cosmological evolution of pseudo-moduli and its

impact on the gravitino relic abundance

(
擬モジュライの宇宙論的進化と
グラヴィティーノ暗黒物質

)

福島　　啓

平成２５年



Ph.D thesis

Cosmological evolution of pseudo-moduli and its
impact on the gravitino relic abundance

Hiraku Fukushima

Department of Physics, Tohoku University, Sendai, Japan



Contents

1 Introduction 5

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I Thermal production of gravitino as the Dark Matter of the Universe 8

2 Thermal production of gravitino 8

2.1 Generalities of gravitino thermal production . . . . . . . . . . . . . . . . . . . 9

2.2 Estimate in supergravity Lagrangian . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Goldstino analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Supergravity calculation in GMSB . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Additional contribution from the tree-level messenger scatterings . . . . . . . 16

2.6 The gravitino relic abundance . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 A new scenario of gravitino Dark Matter 18

3.1 Compatibility with thermal leptogenesis . . . . . . . . . . . . . . . . . . . . . 19

3.2 Late-time entropy release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II SUSY-breaking and pseudo-moduli 21

4 General properties of O’Raifeartaigh-type models 21

4.1 The existence of pseudo-moduli . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 SUSY breaking at a meta-stable vacuum . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 R-symmetry and SUSY-breaking . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Vacuum structure and the gaugino mass . . . . . . . . . . . . . . . . . 27

5 Examples of low-energy SUSY breaking models 29

2



5.1 The basic O’Raifeartaigh model . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 The minimal gauge mediation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 SUSY breaking by rank condition . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Gravitational gauge mediation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Cosmological constraints on SUSY breaking sector 38

6.1 Moduli problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Vacuum selection in a model with multiple vacua . . . . . . . . . . . . . . . . 40

III Realization of the gravitino Dark Matter scenario 42

7 Cosmological evolution of pseudo-moduli 42

7.1 Vacuum selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Coherent oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2.1 The case with S0 ≃ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2.2 The case with S0 ∼ Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Realization of the scenario 51

8.1 Gravitino Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.2 Comments on a light higgsino . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9 Summary 56

A High energy behavior of gravitino production 58

A.1 Calculation with global SUSY Lagrangian . . . . . . . . . . . . . . . . . . . . 58

A.2 Calculation with supergravity Lagrangian . . . . . . . . . . . . . . . . . . . . 62

B Interactions and decays of S 72

B.1 Pseudo-moduli interactions with the MSSM fields . . . . . . . . . . . . . . . . 72

B.2 Decays of pseudo-moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3



C µ-problem and a light higgsino 74

C.1 A solution to the µ-problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C.2 Constraints from BBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4



1 Introduction

1.1 Overview

The existence of dark matter (DM) is fairly confirmed by various observations, and about

twenty percent of the total energy density of the Universe is occupied by the unknown particle;

the candidate of DM is absent in the Standard Model (SM). Among various candidates,

the hypothesis of gravitino dark matter is very attractive as gravitino always exists in

supersymmetric (SUSY) theories and is often the lightest superparticle (LSP) since its mass is

suppressed by the Planck scale. The gauge mediated SUSY breaking (GMSB) scenario [1, 2]

is an explicit realization of the gravitino LSP. The superpartners of the SM particles are fed

masses through the SM gauge interactions which can be mach heavier than gravitino.

Gravitinos are produced in the early Universe from the thermal bath of the particles in the

minimal supersymmetric standard model (MSSM). The production rate has been calculated

in the literature [5, 6, 7, 8, 9, 10, 11, 12, 13, 14], by using the supergravity Lagrangian.

According to the studies, the production process is more effective at high temperatures,

and thus the relic abundance is proportional to the reheating temperature after inflation,

ΩDM ∝ TR. This gives an upper bound on TR so as not for the gravitino abundance to

exceed the observed DM abundance, ΩDMh
2 ≃ 0.1. The upper bound is TR . 106GeV for

m3/2 ∼ 1 GeV and it becomes more severe for a lighter gravitino. It is, therefore, difficult to

realize the gravitino DM compatible with the thermal leptogenesis [16], where the maximal

baryon asymmetry is also proportional to TR. In order to explain the baron asymmetry of

the Universe, we need TR & 109 GeV [17, 18, 19, 20]. The ratio ΩDM/ΩB is predicted to be

too large compared to the observed one, i.e., ΩDM/ΩB ≫ 5. The situation does not change

even if there is an entropy injection at late-time since both the baryon and DM are diluted

while fixing the ratio, ΩDM/ΩB.

In the GMSB models, however, the above estimates should be modified if the reheating

temperature of the Universe is extremely high, i.e., higher than the messenger scaleMmess. It

has been argued in Ref. [22], and recently confirmed in Ref. , that for temperature T ≫Mmess,

the production rate of gravitino is suppressed by ∼ M2
mess/T

2 compared to the one for

T ≪ Mmess. This indicates that the relic abundance of the gravitino is proportional to the

messenger scale, ΩDM ∝Mmess rather than TR for TR ≫ Mmess. Therefore, in this occasion,

there is no reason to abandon thermal leptogenesis. Given that the gravitino abundance does

not depend on TR, the ratio ΩDM/ΩB can be fixed to the observed value, ∼ 5, with a suitable

TR. We study this possibility in this thesis.
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Although the observed DM-baryon ratio can be explained by the thermal leptogenesis, the

scenario requires a late-time entropy production by some mechanism, because the produced

amount of gravitino is still larger than the observation, ΩDMh
2 ≫ 0.1, in order to explain the

ΩDM/ΩB ratio. Interestingly, we already have a source of the entropy production in GMSB

models; there is a pseudo-moduli field in generic low-energy SUSY breaking models, which

can supply a large amount of entropy by its decay.

It has been recently found in Ref. [33] that a wide class of dynamical SUSY breaking

(DSB) models reduces to a weakly-coupled description at low-energy, which always has a

pseudo-moduli field. Therefore, the cosmological scenario is well motivated also from the

viewpoint of model buildings. We study the general features of the pseudo-moduli in low-

energy SUSY breaking models together with a few examples.

One general symptom of realistic SUSY breaking models is the meta-stability; in many

models of SUSY breaking including the one in Ref. [33], there is a SUSY preserving true

vacuum other than the SUSY breaking one. In such a model, the existence of a SUSY

breaking local minimum is not a sufficient condition to be adopted as a mechanism of SUSY

breaking. One should check that the SUSY breaking state is actually selected along the

thermal history of the Universe, not falling into SUSY preserving true vacuum. Together

with other cosmological constraints, we summarize the requirements that should be equipped

with in a realistic SUSY breaking model.

As seen from above, in order for the gravitino DM scenario to be realized, the SUSY

breaking sector should pass through a distinctive thermal history. We demonstrate the

scenario in a simple model of gauge mediation and confirm that the scenario indeed works as

the mechanism to produce the right amount of the gravitino DM.

The sketch of the scenario is as follows; the reheating of the Universe occurs at a high

TR so that the gravitino abundance is independent of TR. With an appropriate reheating

temperature, the ratio of energy densities ΩDM/ΩB can be fixed at the observed value,

ΩDM/ΩB ∼ 5. Then, during the radiation dominated era, the SUSY breaking pseudo-moduli

starts coherent oscillation about the minimum of the potential, and the oscillation energy

eventually dominates the Universe. A sizable amount of entropy is released by the subsequent

decay, and the pre-existing gravitinos and baryons are diluted by a same amount to realize the

observed values. While the model exhibits meta-stable SUSY breaking, the SUSY breaking

vacuum is selected in the course of cosmological evolution.
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1.2 Outline of the thesis

This thesis is composed of three parts. In part I, the thermal production of gravitino is

studied in detail. We calculate the scattering amplitude of gravitino production using both

the global SUSY Lagrangian and the supergravity Lagrangian and show that the production is

suppressed for
√
s > Mmess. This implies that the relic abundance of gravitino is proportional

to Mmess rather than TR for TR > Mmess. Inspired by this feature, we present a scenario of

gravitino DM which is compatible with the thermal leptogenesis.

In part II, we study general features of a O’Raifeartaigh-type model which serves as a

low-energy description of wide class of DSB. SUSY is linearly realized and there is always

a tree-level flat direction called the pseudo-moduli, which plays an important role in the

cosmological scenario presented in part I. Several cosmological constraints on SUSY breaking

sectors are also mentioned here.

Finally, we demonstrate the cosmological scenario in a simple model of gauge mediation

in part III. We see that the cosmological constraints presented in part II is totally satisfied

in the demonstration, and confirm the scenario indeed works as a mechanism to produce the

right amount of the gravitino DM.
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Part I

Thermal production of gravitino as the
Dark Matter of the Universe

Gravitino is a hypothetical particle which has spin-3/2 and is always contained in local SUSY

(supergravity) theories. Once SUSY is spontaneously broken, the mass is supplied by the

SUSY-breaking sector, which is suppressed by Planck scale. At the same time, the goldstone-

fermion (the goldstino) is absorbed into the longitudinal component of the gravitino. In

GMSB models, gravitino is the leading candidate of DM since the superpartners of SM are

much heavier than gravitino due to SM gauge interactions.

In this part, we first offer a comprehensive view about the thermal production of gravitino

in section 2. The production rate has been calculated by using the supergravity Lagrangian

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14], which leads the result that the abundance is proportional to

TR. In GMSB models, the production is dominated by that of the longitudinal mode which

can be evaluated by identifying the longitudinal mode as the goldstino in the global SUSY

Lagrangian. Moreover, in GMSB models, one can use a framework of a linearly realized

SUSY-breaking model with a singlet superfield S, whose F -component VEV breaks SUSY.

An explicit calculation of the goldstino production shows that the goldstino relic abun-

dance is not necessarily proportional to TR [22, 56], which contradicts with the estimation

in supergravity. We examine this apparent contradiction by calculating the scattering am-

plitudes of goldstino/gravitino production process both with a global SUSY Lagrangian and

a supergravity Lagrangian. We confirm that the supergravity result should be modified at

high energy.

In section 3, we present a new scenario of gravitino DM which incorporate the thermal

leptogenesis. The scenario is based on the fact that the relic abundance of gravitino does not

depend on TR once the temperature of the Universe exceeds the messenger scale Mmess.

2 Thermal production of gravitino

We first review the production mechanism of gravitino and reproduce the famous result that

the relic abundance is proportional to the reheating temperature of the Universe. Next we

calculate the scattering amplitude of the gravitino production processes both with the global

SUSY Lagrangian and the supergravity one and show that the amplitude is suppressed at
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high energy region, which makes the relic abundance insensitive to the reheating temperature

if TR > Mmess. The analysis is based on Ref. [56], and detailed calculations of the scattering

amplitude are found in appendix A.

2.1 Generalities of gravitino thermal production

Since the interactions of gravitino are suppressed by the Planck scale Mpl, it is never ther-

malized if the temperature of the Universe is lower than Mpl. Nevertheless, gravitinos are

produced from the scattering processes of the bath particles in the MSSM. The evolution of

number density of the gravitino, n3/2, in the expanding Universe is governed by the Boltzmann

equation [4],

ṅ3/2 + 3Hn3/2 = ⟨σv⟩n2R, (2.1)

where ⟨σv⟩ is the thermally averaged cross section of gravitino production, and nR is the

number density of radiation, nR = ζ(3)
π2 T

3. H is the Hubble parameter and defined by

H2 =
1

3M2
pl

ρtotal, (2.2)

where ρtotal is the total energy density of the Universe. If the energy density of the Universe is

dominated by radiation, i.e., ρtotal ≃ ρR = π2

30 g∗T
4, the Hubble parameter can be represented

as a function of the temperature,

H =

√
π2g∗
90

T 2

Mpl
, (2.3)

where g∗ is the effective number of the massless degrees of freedom. It is useful to define a

yield value of gravitino,

Y3/2 =
n3/2

s
, (2.4)

where s is the entropy density of the Universe, s = 2π2

45 g∗T
3. As the number density of

gravitino and the entropy density decrease both as ∼ a−3 along the expansion of the Universe

(a is the scale factor which defines the radius of the Universe), the yield is constant as long

as the total entropy of the Universe is conserved. The Boltzmann equation (2.1) can be

rewritten in terms of the yield value as

dY3/2

dT
= −

⟨σv⟩n2R
sHT

. (2.5)
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We also define the reaction rate,

Γ ≡ ⟨σv⟩nR, (2.6)

and rewrite Eq. (2.5) in more suggestive way,

dY3/2

dT
= −45ζ(3)

2π4
Γ

g∗HT
. (2.7)

We can estimate the gravitino relic abundance by integrating Eq. (2.7) from T = TR to

T0 ≪ TR, where T0 is the temperature of the current Universe. As we see from Eq. (2.7), if the

temperature dependence of the reaction rate Γ is stronger than that of the Hubble parameter,

namely Γ ∝ Tn with n > 2, the gravitino abundance at T = T0 ≪ TR is determined by TR.

For example, if the thermal averaged cross section has only a weak dependence on T and

the reaction rate is almost proportional to ∼ T 3, the gravitino relic abundance is almost

proportional to TR,

Y3/2 ∼
45ζ(3)

2π4

[
Γ

g∗HT

]
TR

TR. (2.8)

This situation realizes, as we see later, if the temperature of the Universe is always lower

than the messenger scale On the other hand, if the reaction rate has a weak dependence on

temperature, Γ ∝ Tn with n < 2, the abundance is determined by the lowest temperature

in the period when the interaction is effective. This is the case when the temperature of the

Universe once exceeds Mmess in GMSB models.

2.2 Estimate in supergravity Lagrangian

Here we briefly review the studies on the thermal production of gravitino using the supergrav-

ity Lagrangian. The relic abundance is proportional to TR. We first quote the known results

of the relic abundance. Then we focus on one particular process of gravitino production and

understand the origin of the TR dependence which is related to the high energy behavior of

the reaction rate,

Gravitinos are produced from the scattering process of the MSSM fields and the ampli-

tudes are calculated using the supergravity Lagrangian,

LMSSM
sugra ∋ − 1√

2Mpl

(Dνϕi)
∗ψ̄3/2µγ

νγµPLψi −
i

4Mpl
λ̄aγµ[γν , γρ]ψ3/2µF

a
νρ + h.c., (2.9)

where the gravitino field is denoted by ψ3/2µ. The gravitino has the tree-level interactions

with every chiral multiplet (ϕi, ψi) or gauge multiplet (Aaµ, λ
a) in the MSSM and the form of

interactions is uniquely fixed by local SUSY.
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For the gravitino production, there are ten two-body processes involving left-handed

quarks (qi), squarks (q̃i), gluons (g
a) and gluinos (g̃a), which are called process A to process J

in the literatures [5, 6, 7, 9, 10]. The thermal averaged cross section has been calculated gen-

erally for SU(N) super Yang-Mills model with nf pairs of fundamental and anti-fundamental

chiral superfields [10],

⟨σv⟩ =

[
1 +

m2
g̃

3m2
3/2

]
g2(N2 − 1)

32πM2
pl

π2

ζ(3)

{[
ln(T 2/m2

g,th) + 0.3224
]
(N + nf ) + 0.5781nf

}
,

(2.10)

where mg,th is the thermal mass of the gauge boson which is given as m2
g,th = 1

6g
2(N+nf )T

2.

The cross section is dominated by that of the QCD processes in the MSSM. The contribution

proportional to 1 and m2
g̃/m

2
3/2 is from the transverse and the longitudinal component of the

gravitino, respectively.

The gravitino relic abundance is obtained by solving the Boltzmann equation (2.7) with

the cross section in Eq. (2.10). Since the cross section depends very weakly on the temper-

ature, the relic abundance is, as mentioned below Eq. (2.7), almost proportional to TR. A

numerical analysis is found in Ref. [14],

Y3/2 ≃1.9× 10−12

×
(

TR
1010 GeV

) (
1 +

m2
g̃

3m2
3/2

)[
1 + 0.045 ln

(
TR

1010 GeV

)][
1− 0.028 ln

(
TR

1010 GeV

)]
.

(2.11)

In terms of the density parameter,

Ω3/2h
2 ≡

m3/2Y3/2h
2

(ρc/s)0

≃ 0.45

(
TR

106GeV

)(
GeV

m3/2

)( mg̃

5 TeV

)2
, (2.12)

where we assumed m3/2 ≪ mg̃ as is always the case in GMSB.

High energy behavior of the scattering amplitude

We have quoted the cross section and the resultant gravitino abundance from the literatures,

and seen that the abundance is proportional to TR. These are derived by the calculations

using the supergravity Lagrangian Eq. (2.9). However, as we see below the cross section

is modified for a high energy region by the contributions from the messenger fields. In
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e−

e+

λ

ψ3/2γ

ẽ

e+

e− λ

ψ3/2

ẽ

e+

e− λ

ψ3/2

Figure 1: Gravitino production process e−e+ → λψ3/2.

order to understand the modification clearly, we focus on one particular process of gravitino

production and write down the high energy behavior of the amplitude.

We focus on a particular process e−e+ → λψ3/2 (called process I in the literatures).

The tree-level diagrams are shown in Fig. 1. The scattering amplitude is calculated by the

supergravity Lagrangian in Eq. (2.9). Among the polarized amplitudes, the following turns

out to have the highest power in the center-of-mass energy,
√
s, and thus dominates at high

energies,

M(↑↓↑↑)
e−e+→λψ3/2

=
emλ√

6m3/2Mpl

√
s sin θ, (2.13)

where arrows in the parenthesis represent the spins of the electron, the positron, the gaugino

and the gravitino, respectively. The angle θ is the production angle in the center-of-mass

frame. The gauge coupling of QED is denoted by e. Although each of s-, t- and u-channel

diagrams has an energy dependence of O(s), they are canceled out when combined, remaining

the energy dependence of O(
√
s). The above contribution is from the longitudinal component

of the gravitino whose wave function is approximately proportional to
√
s/m3/2 with m3/2

the gravitino mass.

In order to estimate the relic abundance of the gravitino, we should calculate the reaction

rate which is proportional to the square of the amplitude,

Γe−e+→λψ3/2
(T ) ∝

m2
λ

m2
3/2M

2
pl

T 3, (2.14)

where the temperature dependence is determined by dimensional analysis. Note that the

reaction rate is proportional to ∼ T 3, which is higher in power than the Hubble parameter

H(T ) ∝ T 2. Therefore, as mentioned in subsection 2.1, if the process e−e+ → λψ3/2 is

effective and Eq. (2.14) is valid for an arbitrary temperature, the gravitino abundance is

determined by TR.
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e−

e+

λ

ψf

ψs

f

f
e−

e+

λ

ψs

ψf

ψf

f

Figure 2: Goldstino production process e−e+ → λG̃.

2.3 Goldstino analysis

In GMSB models, effects of SUSY-breaking are transmitted to the MSSM sector through the

messenger loop diagrams. A superpotential of the following form is usually assumed,

W = λSff̄ . (2.15)

SUSY is broken by the F -component of the singlet superfield S. f and f̄ represent the

messenger superfields which have SM gauge charges. If FS is the only source of the SUSY

breaking, the fermion component of S (we call it ψS) is the goldstino G̃, which is absorbed

into the longitudinal component of the gravitino. In general, there are additional sources of

SUSY breaking from the F -components of other chiral multiplets. In that case, the goldstino

is composed of the liner combination of the fermions which belong to the multiplets whose

F -components develop VEVs,

G̃ =
FS
F
ψS +

∑
i

Fi
F
ψi, (2.16)

where F =
√

|FS |2 +
∑

i |Fi|2. Therefore, the amplitude for the goldstino production is

given by rescaling that for ψS by a factor FS/F . Unlike the gravitino in the supergravity

Lagrangian, the goldstino does not couple directly to the MSSM fields. The goldstino is

produced through the messenger loop diagrams shown in Fig. 2.3. We expect that the

scattering amplitude of the process e−e+ → λG̃ coincides that of the gravitino production in

Eq. (2.13).

By explicitly evaluating these diagrams, however, a different result from supergravity

estimation comes out. For the same process and the same polarization to Eq. (2.13), the
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scattering amplitude is calculated to be

M(↑↓↑↑)
e−e+→λG̃

= −
2
√

2e3λ

(4π)2
FS
F
MmessC0(

√
s,Mmess)

√
s sin θ (2.17)

= − 2emλM
2
mess√

6m3/2Mpl

C0(
√
s,Mmess)

√
s sin θ, (2.18)

where Mmess = λ⟨S⟩ is the messenger mass scale. We have translated the parameters of

global SUSY, λ and ⟨S⟩, to the parameters of the supergravity, m3/2 and Mpl by using the

formulae in GMSB,

mλ =
2e2

(4π)2
FS
⟨S⟩

, (2.19)

and

m3/2 =
F√
3Mpl

. (2.20)

The function C0(
√
s,Mmess) is the C-function defined in Ref. [21],

C0(
√
s,Mmess) =

∫ 1

0
dx

1

s(1− x)
log

[
1− s

M2
mess

x(1− x)− iϵ

]
. (2.21)

In a low energy limit,
√
s ≪ Mmess, C0 is approximately given by C0 ≃ −1/2M2

mess and

reproduces the result of supergravity calculation in Eq. (2.13). However, for
√
s ≫ Mmess,

C0 scales as 1/s up to a logarithmic factor.

If the external energies are lower than the messenger mass scale, i.e., for T < Mmess, the

reaction rate depends on the temperature as ∝ T 3,

Γe−e+→λG̃(T ) ∝
m2
λ

m2
3/2M

2
pl

T 3, for T ≪Mmess, (2.22)

which reproduces the result of the supergravity calculation in Eq. (2.14). Here we again

squared the amplitude and fixed the temperature dependence by dimensional analysis. How-

ever, for T > Mmess, the reaction rate is suppressed by ∼M2
mess / T

2 compared to Eq. (2.22),

namely

Γe−e+→λG̃(T ) ∝
m2
λM

2
mess

m2
3/2M

2
pl

T, for T ≫Mmess. (2.23)

The point is that the temperature dependence of Γe−e+→λG̃(T )/H(T ) gets suppressed as 1/T

at high temperatures, which makes the goldstino relic abundance irrelevant to the reheating

temperature. Rather, the abundance is determined by the messenger mass scale.
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Figure 3: One-loop diagrams for the gravitino production e−e+ → λψ3/2.

2.4 Supergravity calculation in GMSB

We observe a difference between the two amplitudes, Eq. (2.13) and Eq. (2.18). One of them

should be modified at high energy,
√
s≫Mmess, if we believe in the goldstino equivalence.

We find that the modification appears in the supergravity calculation. In GMSB models,

there are messenger fields, which potentially affect the gravitino production process. In fact,

they contribute to the gravitino production process e−e+ → λψ3/2 through the one-loop

diagrams shown in Fig. 3. Even though they are diagrams at the one-loop level, they cannot

be neglected compared to the tree-level ones in Fig. 1 since the gaugino mass in Eq. (2.13)

is at the one-loop order in GMSB models. Note here that the diagrams in Fig. 3 are not the

microscopic description of the first diagram in Fig. 1. Both diagrams exist as independent

ones in supergravity. The explicit calculation shows

M(↑↓↑↑)
e−e+→λψ3/2

(one loop) = − emλ√
6m3/2Mpl

√
s sin θ

[
2M2

messC0(
√
s,Mmess) + 1

]
, (2.24)

where C0 is again the C-function in Eq. (2.21). The dots in Fig. 3 represent insertions of FS .

A few comments are in order. At a lower energy than the messenger mass scale, the messenger
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fields can be integrated out and absent in the low energy theory. The gravitino interactions

are then completely read off from the supergravity Lagrangian of the MSSM fields (2.9). The

supergravity prediction in Eq. (2.13), therefore, should not be altered for
√
s≪Mmess. The

additional contribution (2.24) indeed respects this consideration. The factor, 2M2
messC0 + 1,

in Eq. (2.24) goes to zero as
√
s → 0, and thus the amplitude is accurately represented by

Eq. (2.13) at low energy. However, the one-loop contribution becomes comparable to that of

tree-level for
√
s≫Mmess since the factor, 2M2

messC0 + 1, approaches to 1.

Combined with the tree-level contribution (2.13), we confirmed that the growing ampli-

tude at
√
s ≫ Mmess in supergravity is completely cancelled by the one-loop diagrams, and

the total supergravity calculation coincides with the result from global SUSY,

M(↑↓↑↑)
e−e+→λψ3/2

= M(↑↓↑↑)
e−e+→λψ3/2

(tree) +M(↑↓↑↑)
e−e+→λψ3/2

(one loop)

=
emλ√

6m3/2Mpl

√
s sin θ − emλ√

6m3/2Mpl

√
s sin θ

[
2M2

messC0(
√
s,Mmess) + 1

]
= − 2emλM

2
mess√

6m3/2Mpl

C0(
√
s,Mmess)

√
s sin θ. (2.25)

2.5 Additional contribution from the tree-level messenger scatterings

For T > Mmess, in addition to the scattering processes of the MSSM particles, the goldstino

is also produced by scattering processes where the messenger fields are in the external lines.

The reaction rate is calculated to be [22]

Γmessengers→λG̃(T ) ∝ λ2
(
FS
F

)2

T

∝
(
4π

α

)2 m2
λM

2
mess

m2
3/2M

2
pl

T. (2.26)

As we see from Eq. (2.23) and Eq. (2.26), the reaction rate of the messenger particles is larger

than that of the MSSM particles by a loop-factor since the messenger fields directly couple

to the goldstino through the superpotential interaction.

2.6 The gravitino relic abundance

Summarizing the previous subsection, in GMSB models, the gravitino is produced from the

scattering processes of the MSSM fields and the messenger fields. Depending on the value of

TR, the resultant gravitino relic abundance is determined by different values; if TR < Mmess,
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Figure 4: Gravitino relic abundance. Blue, purple, and red lines represent m3/2 = 100 MeV,
m3/2 = 1 GeV and m3/2 = 10 GeV, respectively. The gravitino abundance become
insensitive to the reheating temperature for Mmess < TR (solid lines). Dotted lines are
naive extrapolations of Eq. (2.27). For a very high reheating temperature (TR & 1014 GeV),
the transverse mode of the gravitino becomes important.

the abundance is fixed by TR, and if TR > Mmess, it is the messenger mass scale to fix the

abundance,

Ω3/2h
2 ≃ 0.45

(
TR

106GeV

)(
GeV

m3/2

)( mg̃

5 TeV

)2
(TR < Mmess), (2.27)

Ω3/2h
2 ≃ 3.7× 102

(
Mmess

106GeV

)(
GeV

m3/2

)( mg̃

5 TeV

)2
(TR > Mmess). (2.28)

The abundance in Eq. (2.28) is not a straightforward replacement of TR to Mmess in

Eq. (2.27) since the production through the messenger fields are not suppressed by a loop

factor.

The estimates so far do not include a contribution of the transverse mode of the gravitino.

For a very high reheating temperature, the transverse mode becomes relevant,

Ω3/2h
2(transverse) ≃ 0.53

(
TR

1013GeV

)(m3/2

GeV

)
. (2.29)

Including both the longitudinal and the transverse modes, we show the gravitino relic

abundance in GMSB with the messenger scale fixed to be Mmess = 107 GeV in Fig. 4. As
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Figure 5: Since the gravitino abundance becomes constant for Mmess < TR whereas the
maximum value of ΩB is always proportional to TR, the ratio Ω3/2/ΩB eventually reaches
the observed value as TR becomes higher. We plotted a minimum value of the prediction for
Ω3/2/ΩB as a function of TR. We see that the observed value of ΩDM/ΩB can be reproduced
for TR & 1013GeV.

we see from the figure, the gravitino relic abundance is predicted to be constant in a wide

range of the reheating temperature, but the amount is too large compared to the observed

dark matter energy density ΩDMh
2 ≃ 0.1. The overproduced gravitinos must be diluted by

some mechanism. Although the prediction to Ω3/2 is too large, the insensitivity to TR brings

us a new scenario of gravitino DM.

3 A new scenario of gravitino Dark Matter

As we have confirmed in the previous section, the gravitino relic abundance becomes insen-

sitive to TR once the temperature of the Universe exceeds the messenger mass scale. The

results have a crucial impact on the possible mechanism of baryogenesis. In this section, we

present a new cosmological scenario of gauge mediation, where gravitino dark matter and

thermal leptogenesis are compatible. The scenario requires a late-time entropy release by

some mechanism. A promising candidate of entropy production is that from the decay of the

pseudo-moduli field which, as we see later in section 4, always exists in low energy models of

SUSY-breaking.
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3.1 Compatibility with thermal leptogenesis

In a light gravitino scenario, thermal leptogenesis and gravitino DM are thought to be

incompatible with each other. The possible maximum amount of baryon asymmetry produced

by the thermal leptogenesis is proportional to the reheating temperature [17, 18, 19, 20],

ΩB . 0.04

(
TR

109GeV

)
, (3.1)

which puts a lower bound on TR (TR & 109GeV) to realize the observed value ΩB ≃ 0.045. If

the gravitino relic abundance is represented as Eq. (2.27) for any TR, the thermal production

of gravitino DM and the thermal leptogenesis are incompatible; even if we assume a late-

time entropy production to dilute overproduced gravitino to match the abundance to the

observation, baryons are also diluted at the same time and the abundance never reproduces

the observation. In other words, the ratio Ω3/2/ΩB is constant as long as the abundances are

both proportional to TR, and always larger than the observed ratio, ΩDM/ΩB ∼ 5.

However, in GMSB, if the reheating temperature is higher than the messenger mass scale,

the gravitino relic abundance becomes insensitive to TR. Then, the observed ratio of the

energy densities, ΩDM/ΩB ∼ 5, can be realized with thermally produced gravitino and the

thermal leptogenesis. We plot the prediction for Ω3/2/ΩB to visualize the situation in Fig. 5.

If the gravitino abundance is proportional to TR for any TR, the theoretical prediction never

reaches the observed value ΩDM/ΩB ∼ 5 (dotted line). However, if the reheating temperature

is higher than the messenger scale, Ω3/2 becomes independent of TR in GMSB, which allows

Ω3/2/ΩB to achieve the observed value.

3.2 Late-time entropy release

The ratio of the energy densities ΩDM/ΩB ∼ 5 can be realized by thermally produced

gravitino and thermal leptogenesis with an appropriate reheating temperature as we saw

above. However, as is obvious from Fig. 4, the predicted gravitino abundance is too large

compared to the observation, ΩDMh
2 ≃ 0.1. The overproduced gravitino should be diluted

by a late-time entropy release by some mechanism. The required amount of dilution is

∆3/2 ≡
Ω3/2h

2

ΩDMh2
(3.2)

≃ 7.5× 104
(

Mmess

107 GeV

)(
500 MeV

m3/2

)( mg̃

5 TeV

)2
, (3.3)

where TR > Mmess is assumed.
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Actually, a source of entropy production is already incorporated in the scenario: the

scalar component of the singlet superfield S, which is called the pseudo-moduli field. In the

early Universe, it is possible that the pseudo-moduli is displaced from the vacuum and starts

oscillation around the minimum. Since the pseudo-moduli is massless at tree-level and gets

mass only through the quantum effects, it is often much lighter than the SUSY breaking

scale,
√
F , and is long-lived if there is a weakly coupled description for the SUSY breaking

sector. In such a case, the pseudo-moduli can eventually dominate the energy density of the

Universe, and a sizable amount of entropy is produced from its decay.

In part II, we see that the pseudo-moduli always exists in a class of SUSY-breaking models

which serve as low-energy descriptions of a wide class of dynamical SUSY-breaking models.

Therefore, the cosmological scenario presented in this section has a chance to be realized in

many models of SUSY-breaking.
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Part II

SUSY-breaking and pseudo-moduli

If supersymmetry truly explains the hierarchy problem, it should be broken not only spon-

taneously, but also dynamically [26]. Before the appearance of the ISS model [33], the

effort toward making a dynamical SUSY-breaking (DSB) is based on the argument of Witten

index [27]. According to the argument, any N = 1 supersymmetric gauge theory with

massive, vector-like matters has supersymmetric vacua. So theories which break SUSY at

their ground state must either be chiral [28, 29, 30], or if they are vector-like, they must

have massless matters [31, 32]. These models look somewhat complicated, so DSB had been

thought to be non-generic phenomenon in SUSY gauge theories.

Once we abandon SUSY breaking at the ground state and accept meta-stable vacua,

however, the constraints from the Witten index do not have to be taken into account. As

found in Ref [33], a SUSY gauge theory with massive vector-like matters has in general a

meta-stable SUSY-breaking local minimum, and the life-time of the vacuum can be much

longer than the age of the Universe, which suggests that the DSB is a generic phenomenon.

Furthermore, the DSB models turn out to reduce to weakly-coupled descriptions at low-energy

where SUSY is linearly realized. In the low-energy descriptions, SUSY is broken at tree-level,

and there is always a tree-level flat direction called the pseudo-moduli, which potentially has

a sizable impacts on thermal history of the Universe.

In section 4, we study a class of low-energy descriptions of SUSY breaking called O’Raifeartaigh-

type models which break SUSY at tree-level. Several important features of the models are

presented, which include the existence of pseudo-moduli, and the prevalence of meta-stable

SUSY breaking. As we see below, meta-stable SUSY breaking is suggested not only from

the viewpoint of model buildings of DSB, but also from the phenomenological requirements.

Few examples of O’Raifeartaigh-type models are examined in section 5. Later in part III, we

demonstrate the gravitino DM scenario presented in part I using one of the O’Raifeartaigh

models in section 5.

4 General properties of O’Raifeartaigh-type models

In this section we define O’Raifeartaigh-type models and study general features of them. The

discussion consists mostly of a review of Refs. [38, 39, 25].
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4.1 The existence of pseudo-moduli

Here we define O’Raifeartaigh-type models (we often call them just O’Raifeartaigh models)

and see that there is always a tree-level flat direction called pseudo-moduli. O’Raifeartaigh

models are defined as theories of chiral superfields ϕi with a general super potential,

W = fiϕi +
1

2
mijϕiϕj +

1

6
λijkϕiϕjϕk. (4.1)

Kähler potential is assumed to be canonical. The tree-level scalar potential is

V =
∑
i

|Wi|2, (4.2)

where Wi = ∂W/∂ϕi. SUSY breaking requires V > 0, so at least one Wi must be nonzero for

some ϕi. It is well known that there is a massless fermion called the goldstino at a SUSY-

breaking vacuum. We can easily see the existence from Eq. (4.2). If V has an extremum,

∂iV =WijW
∗
j = 0, (4.3)

is satisfied for some ϕi, say ϕi = ϕ
(0)
i , which means matrixWij has an zero eigenvalue if SUSY

is broken. Since the matrix Wij is equivalent to the fermion mass matrix (MF )ij , the zero-

eigenvalue corresponds to the massless fermion, which is the goldstino. The corresponding

zero-eigenvector is, as we see from Eq. (4.3), W ∗
j .

KS-lemma

From this simple set-up, an interesting lemma follows; in any SUSY-breaking vacuum of

O’Raifeartaigh model, if there is a massless fermion at tree-level, then its scalar partner must

also be massless at tree-level.

Let us follow the proof in Ref. [39]. The tree level boson mass-squared matrix is

M2
B =

(
M∗

FMF F∗

F MFM∗
F

)
, (4.4)

where

Fij ≡W ∗
kWijk (4.5)

is the effect of SUSY breaking. The sketch of the proof is to show that the MB has always a

zero-eigenvalue if there is a massless fermion. Suppose MF has a zero eigenvector v at some

field configuration ϕi = ϕ
(0)
i ,

(MF )ijvj =Wijvj = 0, (4.6)
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where Wij is evaluated at ϕi = ϕ
(0)
i . At SUSY-breaking vacuum, v can be identified as

goldstino and, according to Eq. (4.3), we can write vi = W ∗
i . Along its scalar partner

direction (v, v∗), the boson mass term is evaluated as(
v
v∗

)†
M2

B

(
v
v∗

)
=

(
v
v∗

)†(M∗
FMF F∗

F MFM∗
F

)(
v
v∗

)
= viFijvj + h.c., (4.7)

where again all derivatives of W is evaluated at ϕi = ϕ
(0)
i . For positive semi-definite M2

B,

this must vanish, since otherwise we could make it negative by rotating the phase of v. Then,

(v, v∗) is a null eigenvector of M2
B. Therefore there is a massless boson at the vacuum

ϕi = ϕ
(0)
i , and this completes the proof.

Existence of pseudo-moduli space

The lemma immediately leads the existence of pseudo-moduli space: the tree-level flat

direction. Consider a SUSY-breaking vacuum at ϕi = ϕ
(0)
i and shift the field value toward

the massless direction v. At a SUSY-breaking vacuum, v can be identified as goldstino, and

vi =W ∗
i = Fi,

ϕi = ϕ
(0)
i + zFi, (4.8)

where z ∈ C is any complex number and Fi is the F -term expectation value of the field ϕi.

As we can see below, along the pseudo-moduli direction, the F -term and so the tree-level

potential does not change.

To see the above statement, let us utilize the argument below Eq. (4.7). If there is no

tachyon at ϕi = ϕ
(0)
i , the right side of Eq. (4.7) should be vanish, which means

Fijvj = 0. (4.9)

For vi =W ∗
i , this identity can be rewritten as

WijkW
∗
jW

∗
k = 0. (4.10)

Let us now evaluate the F -term at ϕi = ϕ
(0)
i + zFi,

Wi(ϕi = ϕ
(0)
i + zFi) =Wi +Wij(zFj) +

1

2
Wijk(zFj)(zFk)

=Wi + zWijW
∗
j +

1

2
z2WijkWj ∗W ∗

k

=Wi(ϕ = ϕ
(0)
i ), (4.11)
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where we used Eqs. (4.3) and (4.10). All derivatives of W other than the most left side one

are again assumed to be evaluated at the SUSY-breaking vacuum ϕi = ϕ
(0)
i . We see that the

scalar potential is flat along the pseudo-moduli direction parameterized by Fi.

Here after, we denote the pseudo-moduli direction as S, and write the superpotential as

W = S(f +
1

2
λabφaφb) +

1

2
mabφaφb +

1

6
λabcφaφbφc. (4.12)

The fields φa represent the directions orthogonal to S.

One-loop lifting of pseudo-moduli

We saw that there is always a degenerate, SUSY-breaking vacua in O’Raifeartaigh models.

The tree-level flat direction is, however, in general lifted once the quantum corrections

are taken into account. This is why the flat direction is called ”pseudo”-moduli. The

leading correction to the potential for the pseudo-moduli can be calculated using the one-loop

correction to the vacuum energy,

V
(1)
eff =

1

64π2
STrM4 log

M2

Λ2

=
1

64π2

(
Tr M4

B log
M2

B

Λ2
− Tr M4

F log
M2

F

Λ2

)
, (4.13)

where M2
B and M2

F are the tree-level boson and fermion mass matrices, as functions of

the expectation value of the pseudo-moduli. The UV cutoff Λ can be absorbed into the

renormalization of the coupling constants appearing in the tree-level vacuum energy.

The pseudo-moduli is stabilized at somewhere along the tree-level flat direction by the

Coleman-Weinberg potential in Eq. (4.13). Although the pseudo-moduli gets mass from the

quantum corrections, it is often much lighter than the SUSY-breaking scale,
√
F , and is

long-lived, which potentially affects the thermal history of the Universe.

4.2 SUSY breaking at a meta-stable vacuum

As mentioned in the beginning of part II, SUSY breaking at a meta-stable vacuum is suggested

from the viewpoint of model building of DSB. There are also two hints from phenomenological

considerations which imply meta-stable SUSY breaking. One is closely connected to the R-

symmetry, and the other is relevant to the vacuum structure of the SUSY-breaking models.
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4.2.1 R-symmetry and SUSY-breaking

There is a strong constraint from R-symmetry for SUSY to be broken. As found in Ref. [34],

SUSY is broken if and only if there is an R-symmetry. Also, according to Ref. [35], there is

broken SUSY in a meta-stable state if and only if there is an approximate R-symmetry. For

building realistic models, an unbroken R-symmetry is problematic since it forbid Majorana

gaugino masses. Then, to realize broken SUSY and non-zero gaugino mass simultaneously,

meta-stable SUSY breaking is a realistic solution. Let us confirm the statement that the

existence of an R-symmety is a necessary condition for SUSY breaking.

Proof

Consider a generic theory with chiral superfields ϕi with i = 1, ..., n. If SUSY is broken,

we cannot solve all the equations

∂iW (ϕ) = 0 for all i = 1, ..., n. (4.14)

If W is a generic superpotential, however, Eq. (4.14) involves n equations for n quantities ϕi,

so generally they can all be solved.

Even if there is a global non-R symmetry, the situation does not change. For example,

consider there is a non-R U(1) symmetry with charges Q(ϕi) = qi. Then, the superpotential

can be rewritten by n− 1 independent quantities as

W =W (Xj), (4.15)

where

Xj = ϕj ϕ
−qj/q1
1 for j = 2, ..., n, (4.16)

which is neutral under the U(1) symmetry, Q(Xj) = qj + (−qj/q1)q1 = 0. The equation

∂W (Xi)

∂ϕ1
= 0 (4.17)

is always satisfied, and

∂W (Xj)

∂Xj
= 0 (4.18)

give n− 1 equations for n− 1 quantities, so again they can all be solved.

In contrast, if there is an R-symmetry, since the superpotential carries charge 2 under an

R-symmetry, W is rewritten as

W = Φ1 f(Φj), (4.19)
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where

Φ1 = ϕ
2/r1
1 , (4.20)

Φj = ϕj ϕ
−rj/r1
1 for j = 2, ..., n, (4.21)

with r1 ̸= 0. In this case, for SUSY to be unbroken, the n equations

f(Φj) = 0 (4.22)

and

∂f(Φj)

∂Φj
= 0 (4.23)

must be satisfied. They are n equations for n − 1 independent quantities, so generally they

cannot be solved.

There is, however, an exception when a solution with Φ1 = 0 and therefore ϕ1 = 0 is

allowed. This is the case when r1 = 2 and all other rj = 0. In this case, the condition

∂W/∂Φj = 0 can be always satisfied with Φ1 = 0, and there is a n− 2 dimensional space of

supersymmetric vacua at Φ1 = 0, f(Φj) = 0. Later we see this phenomenon in the model of

section 5.2.

An approximate R-symmetry and SUSY-breaking at meta-stable state

We see that the an R-symmetry is an essential ingredient for broken SUSY. Although the

argument above is restricted to an exact R-symmetry, as discussed in detail in Ref. [35], the

argument can be extended to models which have an approximate R-symmetry. They consider

a theory with exact R-symmetry, and slightly deform it by a superpotential of the form

δW = ϵg(ϕi), (4.24)

where ϵ is a small parameter and this deformation breaks the R-symmetry. Although SUSY

is restored by the deformation, they expect that the SUSY-breaking vacuum which exists for

ϵ = 0 is not affected by the small deformation, remaining the vacuum as a local, meta-stable

state. In section 5.1, we see in a explicit example of meta-stable SUSY breaking with an

approximate R-symmetry. Since an exact R-symmetry forbid the Majorana gaugino mass

term, a realistic model is suggested to have an approximate R-symmetry and a meta-stable

SUSY-breaking vacuum.
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4.2.2 Vacuum structure and the gaugino mass

A broken R-symmetry is a necessary condition to obtain a sizable gaugino mass, but it is not

a sufficient condition. As shown in Ref. [39], the size of the gaugino mass is closely related

to the global structure of the pseudo-moduli space. The lemma in Ref. [39] says that if the

pseudo-moduli space represented by S is locally stable everywhere, in other words there is

no tachyonic direction at any S, the determinant of the matrix (λS +m) is a constant,

det(λS +m) = detm, (4.25)

where λ and m are defined in Eq. (4.12), so (λS+m) is a mass matrix for the fields φa which

parameterize the directions orthogonal to S.

This has a crucial impact on models of gauge mediation where the SUSY-breaking sector

is described by O’Raifeartaigh models, such as models of direct gauge mediation [42, 43, 44,

45, 46, 47, 48]. In such models, a subset of global symmetries is identified as the SM gauge

group, and the fields φa play a role of messenger fields. Since the formula for the gaugino

mass at leading order in SUSY breaking is [49, 50]

mλ ∼ f †
∂

∂S
logMmessengers

∼ f †
∂

∂S
log det(λS +m), (4.26)

if the determinant det(λS+m) is constant, gauginos become massless at least at the leading

orders in SUSY breaking, at the vacuum. Since there is no such cancellation for the sermon

masses, this generally implies that gauginos are much lighter than the sfermions in such

models. The connection between the gaugino mass and the structure of the pseudo-moduli

space is further examined in Refs. [40, 41].

Proof

Let us prove the lemma by contradiction. Suppose that the determinant det(λS +m) has S

dependence; then it can be written as a polynomial in S,

det(λS +m) =
∑

ci(λ,m)Si, (4.27)

there must be some place, say S = S0, in the complex S plane where it vanishes,

det(λS0 +m) = 0. (4.28)
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This means that the matrix (λS0 +m) has at least one null eigenvalue. The corresponding

eigenvector v annihilate the matrix,

(λS0 +m)v = 0. (4.29)

This corresponds to a massless fermion direction. Then, from the KS-lemma proved in

subsection 4.1, there exists a massless boson (v, v∗) or there is a tachyon at S = S0. If there

is a massless boson,

M2
B

(
v
v∗

)
=

(
M∗

FMF F∗

F MFM∗
F

)(
v
v∗

)
= 0, (4.30)

where SUSY / SUSY-breaking mass matrices are evaluated at S = S0. This implies

Fabvb = (W ∗
i Wabi)vb = (f∗λab)vb = 0, (4.31)

where we have used a superpotential of the form in Eq. (4.12). From Eq. (4.29) and Eq. (4.31),

we see that λv = mv = 0, which contradicts the assumption that det(λS+m) is not identically

zero. Therefore, there must be a tachyonic direction at S = S0, but this contradicts the

assumption that the pseudo-moduli space is stable everywhere. So the determinant det(λS+

m) cannot have S dependence if the pseudo-moduli space is stable everywhere. This proves

the desired result. The pseudo-moduli space must have a tachyonic direction at some point

(S = S0) if the determinant has a S dependence.

Meta-stable SUSY-breaking at tree-level

The lemma implies that models of tree-level SUSY-breaking is not useful for gauge mediation.

Note here that ”tree-level SUSY-breaking” is defined as a phenomenon that SUSY is broken

at minima of tree-level potential, and the pseudo-moduli space is locally stable everywhere.

Such a situation is realized in, for example, the ISS model [33]. There, SUSY is broken at

tree-level in a low-energy description. Since SUSY is only recovered by a non-perturbative

effects of the strong gauge interactions, the SUSY-breaking pseudo-moduli space are meta-

stable but do not have any tachyonic directions. In accord with this vacuum structure, the

gaugino mass is observed to be vanish in the ISS model even if the pseudo-moduli is stabilized

at a non-R-symmetric point.

On the other hand, it is still possible that SUSY is broken along the pseudo-moduli, but

there is a tachyonic direction at some point along the pseudo-moduli space. In such a model,

if the pseudo-moduli is stabilized at an R-symmetry breaking and non-tachyonic point by

the quantum corrections, it can serve as a realistic model of SUSY breaking which generates
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a sizable gaugino mass. The SUSY breaking vacuum is then inevitably an excited state.

Therefore, also from the argument of the vacuum structure, SUSY is suggested to be broken

at a meta-stable vacuum.

5 Examples of low-energy SUSY breaking models

We present several examples of O’Raifeartaigh type models of SUSY breaking. The aim is

to confirm general features of O’Raifeartaigh models proved above in concrete models. We

see the existence of tree-level flat direction (pseudo-moduli space) and also the connections

between the R-symmetry and the SUSY-breaking, and also between the gaugino mass and

the structure of the pseudo-moduli space.

5.1 The basic O’Raifeartaigh model

First example is the basic O’Raifeartaigh model [37] which contains three chiral superfields

S, ϕ1 and ϕ2,

W = fS +
1

2
λSϕ21 +mϕ1ϕ2. (5.1)

The model has an R-symmetry with R(S) = R(ϕ2) = 2 and R(ϕ1) = 0. So we expect SUSY

to be broken at tree-level. The tree-level scalar potential is

V =

∣∣∣∣∂W∂S
∣∣∣∣2 + ∣∣∣∣∂W∂ϕ1

∣∣∣∣2 + ∣∣∣∣∂W∂ϕ2
∣∣∣∣2

= |f +
1

2
λϕ21|2 + |λSϕ1 +mϕ2|2 + |mϕ1|2 . (5.2)

The structure of the vacuum depends on the parameter

y =

∣∣∣∣ λfm2

∣∣∣∣ . (5.3)

We focus on the case y < 1 for simplicity. At ϕ1 = ϕ2 = 0 and arbitrary S,

V = |f |2 > 0 (5.4)

and SUSY is indeed broken. There is a flat direction along S, which is the pseudo-moduli

space. We show the structure of the vacuum in the ϕ2 = 0 direction in Fig. 6. We can

check that the pseudo-moduli space is locally stable everywhere. The lemma showed in

subsection 4.2 then says that the determinant of the mass matrix for the fields orthogonal to
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Figure 6: Vacuum structure of the basic O’Raifeartaigh model.

S, i.e., fields ϕ1 and ϕ2, is constant along the pseudo-moduli space. Calculating the fermion

mass matrix from the superpotential,

(MF )ij =Wij =

(
λS m
m 0

)
, (5.5)

we see that detM is actually constant for arbitrary S. So even if fields ϕ1 and ϕ2 are charged

under the Standard Model gauge groups, we cannot get a sizable gaugino mass from this

SUSY breaking model.

Deformation by R-symmetry breaking operators

The basic O’Raifeartaigh model of Eq. (5.1) has an exact R-symmetry and it exhibits tree-

level SUSY breaking. Let us deform the model with a small parameter ϵ to break the

R-symmetry and examine the vacuum structure. We expect the modified model has a meta-

stable SUSY-breaking vacuum as in the discussion in section 4.2.1.

Consider a model

W = fS +
1

2
λSϕ21 +mϕ1ϕ2 +

1

2
ϵmϕ22. (5.6)

Since the R-symmetry is broken by the last term, there should be a SUSY preserving vacuum

according to the argument in section 4.2.1. The scalar potential is

V = |f +
1

2
λϕ21|2 + |λSϕ1 +mϕ2|2 + |mϕ1 + ϵmϕ2|2 . (5.7)
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Thanks to the R-symmetry breaking deformation, we can minimize the potential to zero at

two supersymmetric vacua,

⟨ϕ1⟩susy = ±
√

− 2f/λ, ⟨ϕ2⟩susy = ∓1

ϵ

√
− 2f/λ, ⟨S⟩susy =

m

λϵ
. (5.8)

Although there are SUSY vacua, for small ϵ and y = |λf/m2| < 1, the potential near the

previous SUSY-breaking minimum ϕ1 = ϕ2 = 0 is not modified a lot. It is found that for a

parameter region ∣∣∣S − m

λϵ

∣∣∣ > ( 1

|ϵ|2
+ 1

) ∣∣∣∣fλ
∣∣∣∣ , (5.9)

the ϕ1 and ϕ2 directions are non-tachyonic along the pseudo-moduli space S. Therefore, most

of the pseudo-moduli space of the previous model remains locally stable, and the tachyon

exists only in a neighborhood of the SUSY vacua [35]. In particular, for small ϵ and y < 1,

the region near S = 0 is locally stable. This is an explicit example of the models which have

an approximate R-symmetry and a meta-stable SUSY breaking state. In the deformed model

of Eq. (5.6), the fermion mass matrix for ϕ1 and ϕ2 directions are

(MF )ij =Wij =

(
λS m
m ϵm

)
, (5.10)

so the determinant detMF depends on the VEV of the pseudo-moduli S. This is also

consistent with the argument in section 4.2.2 in that the model has tachyon at some point

along S and hence detMF has S-dependence. The deformed model may serve as a model of

gauge mediation.

5.2 The minimal gauge mediation

Next we consider a model so called the minimal gauge mediation composed of two chiral

fields, S and ϕ,

W = fS − 1

2
λSϕ2. (5.11)

The model has an R-symmetry with R(S) = 2 and R(ϕ) = 0. The tree-level scalar potential

is

V = |f − 1

2
λϕ2|2 + |λSϕ|2. (5.12)

Since the model has an exact R-symmetry, we naively expect broken SUSY. In the present

model, however, the scalar potential can be minimized at S = 0, and there are SUSY vacua at
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Figure 7: Vacuum structure of the minimal gauge mediation model.

this point. This is the exception of the argument in section 4.2.1 mentioned below Eq. (4.23).

As we see from the potential, the model has two supersymmetric vacua at

⟨S⟩SUSY = 0, ⟨ϕ⟩SUSY = ±
√

2f/λ. (5.13)

So the model does not break SUSY at tree-level. However, there is also a SUSY breaking

pseudo-moduli space with arbitrary ⟨S⟩ and ⟨ϕ⟩ = 0, with V = |f |2. So if S is stabilized at

⟨S⟩ ̸= 0 by some radiative corrections, the model could serve as a model of SUSY breaking.

The vacuum structure of the model is in Fig. 7.

Let us examine the mass matrix for the field ϕ, which is the direction orthogonal to the

pseudo-moduli space. The fermion mass is

MF =Wϕϕ = −λS, (5.14)

and the boson squared mass matrix is

MB =

(
λ2S2 −λf
−λf λ2S2

)
. (5.15)

We see that the pseudo-moduli space has a tachyon for

|S| <
√
f

λ
. (5.16)

Since the model has a tachyon along the pseudo-moduli space, the lemma in section 4.2 is

not applicable to this model, namely the fermion mass matrix of ϕ direction could have a S
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dependence, and actually it has as in Eq. (5.14). So if the field ϕ has Standard Model gauge

charges, gauginos get SUSY-braking masses at leading order in SUSY breaking,

mλ =
g2

(4π)2
f
∂

∂S
log detM = − g2

(4π)2
f

⟨S⟩
. (5.17)

5.3 SUSY breaking by rank condition

The last example is a O’Raifeartaigh-type model with global symmetry groups

SU(N)× SU(Nf )L × SU(Nf )R × U(1)B × U(1)′ × U(1)R, (5.18)

with Nf > N and the following matter content

SU(N) SU(Nf )L SU(Nf )R U(1)B U(1)′ U(1)R

Φ 1 Nf Nf 0 -2 2

φ N Nf 1 1 1 0

φ̃ N 1 Nf −1 1 0

The Kähler potential is assumed to be canonical and the superpotential is

W = hTr φΦφ̃− hµ2Tr Φ, (5.19)

where h is coupling constant and trace is over the global symmetry indices. The first term in

Eq. (5.19) is the most general form of superpotential consistent with the global symmetries.

The second term in Eq. (5.19) breaks the global symmetries to SU(N)×SU(Nf )×U(1)B ×
U(1)R, where the unbroken SU(Nf ) is the diagonal subgroup of the original SU(Nf )L ×
SU(Nf )R.

SUSY is broken when at least one of the F -component does not vanish, which occurs when

Nf > N is satisfied. We treat Φ as a Nf ×Nf matrix and write it as Φij . The F -component

of Φij is

−(F †
Φ)ij =

∂W

∂Φij

= hφiφ̃j − hµ2δij , (5.20)

where the indices i and j are for the global symmetries SU(Nf )L and SU(Nf )R. This is an

Nf ×Nf matrix relation. Since Nf > N , the first term is a matrix of rank N . So the F -term

cannot be simultaneously set to zero, and SUSY is broken.

The minimum of the potential is

V = (Nf −N)|hµ2|2 (5.21)
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and it occurs along the pseudo-moduli space

Φ =

(
0 0
0 Φ0

)
, φ =

(
φ0

0

)
, φ̃ =

(
φ̃0

0

)
, with φ0φ̃0 = µ21IN . (5.22)

Here Φ0 is an arbitrary (Nf − N) × (Nf − N) matrix, and φ0 and φ̃ are N × N matrices.

Since SUSY is broken by the VEV of the F -component of Φ0, F
†
Φ0

= hµ21INf−N , the massless

goldstino comes from the fermionic component of Φ0.

The symmetry enhanced point is

Φ0 = 0, φ0 = φ̃0 = µ1IN , (5.23)

where an unbroken SU(N)×SU(Nf−N)×U(1)B′×U(1)R is preserved. It turns out that the

symmetry enhanced point is stabilized by one-loop effective potential [33], so we expand the

theories around the point, and again see the connection between the stability of the pseudo-

moduli space and the gaugino mass. As one can see that the pseudo-moduli space is locally

stable everywhere in the model, we expect that the gaugino mass vanishes at the leading

order in SUSY breaking according to the lemma showed in subsection 4.2. We parameterize

the fluctuations around this vacuum to be

Φ =

(
Y Z

Z̃ Φ̂

)
, φ =

(
χ
ρ

)
, φ̃ =

(
χ̃
ρ̃

)
, (5.24)

where Φ̂ is a (Nf −N)× (Nf −N) matrix, and ρ, ρ̃ are N × (Nf −N) matrices.

If the size of the global symmetries are N ≥ 5 or Nf − N ≥ 5, we can embed the SM

gauge group SU(3)×SU(2)×U(1) into the SU(N) or SU(Nf −N), respectively. Then, the

model can serve as a model of direct gauge mediation once we gauge the global symmetry

SU(N) or SU(Nf − N). Since the fields ρ and ρ̃ carry quantum numbers of both SU(N)

and SU(Nf −N) and couple to Φ̂ which has a non-vanishing F -component, they play a role

of the messenger fields. The relevant superpotential is

W = hρΦ̂ρ̃+ hµ(ρZ̃ + ρ̃Z). (5.25)

In a matrix notation,

W = h (ρ, Z) M
(
ρ̃

Z̃

)
, (5.26)

where the mass matrix for the messenger fields is written as

M =

(
Φ̂ µ
µ 0

)
. (5.27)
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The determinant of the mass matrix is constant. Then, as we can see from Eq. (4.26), the

gaugino mass is zero at leading order in SUSY breaking. The results is consistent with the

lemma of subsection 4.2.

In Ref. [33], it was shown that a supersymmetric QCD model with massive vector-like

matters exhibits DSB at a meta-stable vacuum. The model turns out to reduce at low-

energy to the model of Eq. (5.19) with the SU(N) symmetry promoted to a gauge symmetry.

Once the SU(N) becomes a gauge symmetry, the R-symmetry becomes only an approximate

one and a supersymmetric ground state appears far from the origin of the field space. The

previous SUSY-breaking vacuum in Eq. (5.23) (ISS vacuum) then becomes a meta-stable

state. Although it is meta-stable, the pseudo-moduli space parameterized by Φ is locally

stable everywhere, so the gaugino mass is still identical to zero at the ISS vacuum.

5.4 Gravitational gauge mediation

Finally, we study a low-energy effective theory of O’Raifeartaigh type SUSY breaking model.

It is a modified model of minimal gauge mediation presented in section 5.2, where the SUSY

breaking pseudo-moduli space exists along the S direction. The minimal gauge mediation

model is phenomenologically favorable in that it can create a sizable gaugino mass. However,

we should modify it and stabilize the pseudo-moduli at S ̸= 0 in some way to use it as a

complete model; we cannot integrate out the messenger fields at S = 0, and it is also a

tachyonic region in the minimal gauge mediation model.

The model of interest is the following [51],

K = f †f + f̄ †f̄ + S†S − (S†S)2

Λ2
+ · · · , (5.28)

W = m2S − λSff̄ + c, (5.29)

where S is a pseudo-moduli as usual, and we have two chiral superfields f and f̄ which act

as messengers in GMSB. We take the messengers to transform as 5 and 5̄ under SU(5), and

the messenger number N = 1 for simplicity. The model includes radiative corrections in the

Kähler potential. Λ represents a cutoff scale of the model, which is typically a mass of heavy

fields we have implicitly integrated out already.

The R-symmetry with R(S) = 2 and R(ff̄) = 0 is explicitly broken by the supergravity

corrections represented by the constant term c. Since the R-symmetry breaking is only

through the supergravity corrections, we expect SUSY-breaking at a meta-stable state. There
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is a quantum correction to the Kähler potential from the interaction term λSff̄ ,

K1−loop = − 5λ2

(4π)2
S†S log

S†S

Λ2
, (5.30)

at the one-loop level. If this radiative correction is too large, the SUSY breaking vacuum

turns out to be destabilize. So the messenger coupling λ is bounded above.

Vacuum structure

Including the supergravity corrections, the scalar potential is calculated by [36]

V = eG(GSGS†GSS
†
+GfGf† +Gf̄Gf̄† − 3) +

1

2
D2, (5.31)

where G ≡ K + log |W |2 in a Planck unit. GX is the derivative of G with respect to the

field X, and GSS
†
is the inverse of the Kähler metric. The last term represents the D-term

contribution. The dominant terms are

V =− 2√
3

m4

Mpl
(S + S†) + 4

m4

Λ2
|S|2

− λm2(ff̄ + f †f̄ †) + λ2|S|2(|f |2 + |f̄ |2) + λ2|f |2|f̄ |2 + 5λ2

(4π)2
m4 log

|S|2

Λ2
. (5.32)

We see that there is a pseudo-moduli space at f = f̄ = 0 with an arbitrary S as it was in the

minimal gauge mediation model, but in this model S is stabilized at S ̸= 0 by the radiative

corrections and the supergravity corrections,

⟨S⟩ =
√

3

6

Λ2

Mpl
, ⟨f⟩ = ⟨f̄⟩ = 0, (5.33)

where Mpl ≃ 2.4 × 1018GeV is the reduced Planck scale. We take the VEV to be real

and positive by redefining the fields by using the U(1)R symmetry. There is also a SUSY

preserving vacuum at

⟨S⟩SUSY = 0, ⟨f⟩SUSY = ⟨f̄⟩SUSY =

√
m2

λ
, (5.34)

so the SUSY-breaking vacuum (5.33) is a meta-stable state. The messenger directions are

tachyonic for

|S| < Src ≡
√
m2

λ
. (5.35)

Therefore, in order to realize meta-stable SUSY breaking in this model, we have to take care

for S not to enter this dangerous region along the cosmological evolution. We mention this

point again in the next section.

36



So far we have neglected the radiative correction (5.30), which could destabilize the SUSY

breaking vacuum. In order to see its effect, let us study the mass terms of the S field and

the messenger fields ( we take f = f̄), including the correction:

Vmass = (S† S)M2
S

(
S
S†

)
+ (f † f)M2

f

(
f
f †

)
, (5.36)

M2
S ≃ m4

Λ2

(
4 −15λ2

8π2

M2
pl

Λ2

−15λ2

8π2

M2
pl

Λ2 4

)
, (5.37)

M2
f =

(
λ2⟨S⟩2 −λm2

−λm2 λ2⟨S⟩2
)
, (5.38)

where we have fixed the SUSY breaking vacuum as (5.33) for simplicity, and dropped terms

proportional to λ2 in the diagonal components of M2
S . In order for the SUSY breaking

vacuum to be (meta)stable, The conditions detm2
S > 0 and detm2

f > 0 must be satisfied,

namely,

12m2Mpl

Λ4
< λ <

4
√

2π√
15

Λ

Mpl
. (5.39)

Note that λ is bounded both above and below.

Independent parameters

We have three independent parameters in this model: λ,Λ,m. These parameters can be

converted to physical quantities, the gravitino mass (m3/2), the gaugino mass (mg̃) and the

messenger mass scale (Mmess), using formulae

m3/2 =
m2√
3Mpl

, (5.40)

mg̃ =
α3

4π

m2

⟨S⟩
, (5.41)

Mmess = λ⟨S⟩, (5.42)

with the VEV relation Eq. (5.33). In the following analysis, we fix the gaugino mass to be

5 TeV to realize the Higgs boson mass mh = 125 GeV, and treat the two parameters m3/2

and Mmess as independent parameters. For example, the mass of the pseudo-moduli is fixed

by the gravitino mass,

mS =
2m2

Λ
= 756GeV

( m3/2

500MeV

)1/2
. (5.43)

The constraint (5.39) between Λ and λ is converted to that between m3/2 and Mmess. We

show in Fig. 8 the allowed parameter region where the SUSY breaking vacuum (5.33) is

meta-stable.
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Figure 8: SUSY-breaking state is meta-stable for the white region.

6 Cosmological constraints on SUSY breaking sector

In the above two sections, we saw that a realistic model of SUSY breaking is suggested to have

a meta-stable non-SUSY vacuum and an approximate R-symmetry. These implications come

from the viewpoint of model building of DMS, or phenomenological requirements of obtaining

sizable gaugino masses. In addition to these, there are also constraints from cosmological

considerations which should be satisfied in realistic models of SUSY-breaking. We list those

constraints in this section.

6.1 Moduli problem

The value of the SUSY-breaking pseudo-moduli S after inflation can be displaced from the

minimum due to the deformation of the scalar potential during inflation. If this is the

case, S starts coherent oscillation about the minimum and the oscillation energy eventually

dominates the energy density of the Universe unless the oscillation amplitude is very small

or the lifetime of S is very short. Then, subsequent decays of S may cause a cosmological
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disaster.

One sever constraint comes from the study of Big-Ban nucleosynthesis (BBN). If a sizable

energy is stored in the SUSY-breaking sector, the energy is released by the decay of S and

the entropy density of the Universe is modified significantly [59, 60]. If the lifetime of S is as

long as O(1) sec, the decay occurs in the middle of the nucleosynthesis, which destroys the

light elements and spoils the success of the standard BBN scenario.

The decay of S may also cause a problem by the pair production of gravitino. If gravitino

is unstable, its subsequent decay is constrained by BBN in a same way to that of the decay

of S. For a stable gravitino, the abundance is also constrained by the observed amount

of dark matter abundance, ΩDMh
2 ≃ 0.1. Non-thermal productions of gravitino from the

SUSY-breaking moduli are studied in Refs. [61, 53, 54, 62]. Other than the SUSY-breaking

moduli, non-thermal production of gravitino has been examined in the context of the decay

of string moduli [63]-[67], and / or inflaton [68]-[72].

For a realistic cosmology, we must check in the SUSY-breaking sector (i) whether oscilla-

tion energy of S dominates the energy density of the Universe, and if the domination happens,

(ii) that BBN is not spoiled by the decay of S and (iii) that gravitinos are not overproduced.

Displacement from the minimum during inflation

Let us see how the S field is displaced from the minimum during inflation. To be concrete,

we focus on the model of section 5.4. During inflation, since the inflaton potential largely

breaks SUSY, the scalar potential of S is modified through Planck-suppressed couplings. In

particular, the S field generically acquires a so-called Hubble-induced mass, and as long as

the U(1)R remains a good symmetry during inflation, the origin of S is close to the extremum

of the potential. If the Hubble-induced mass is positive, therefore, S is stabilized near the

origin during inflation, and it likely remains there even after the inflation.

On the other hand, it is also possible that the S field couples to the inflaton sector

in a more general manner. For example, S may couple to the inflaton sector through the

superpotential [53],

W =WInflaton

(
1− ξ

Λ

Mpl
S + · · ·

)
, (6.1)

where ξ is a coefficient of O(1), andWInflaton denotes the superpotential of the inflaton sector.
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The scalar potential of S during inflation is then given by

V (S) ≃ 3H2

(
|S|2 − |S|4

Λ4
+ · · ·

)
+ 3H2

∣∣∣∣Mpl − ξ
Λ

Mpl
S

∣∣∣∣2 . (6.2)

In the above expression, we have used the Hubble equation,

H2 =
|FInflaton|2

3M2
pl

, (6.3)

assuming that the F -component of the inflaton dominates the energy density during inflation.

This potential has a minimum at S0 = O(Λ).

In both cases, S is displaced from the SUSY-breaking minimum S = ⟨S⟩, during inflation.

Together with the small mass (remember that S is massless at tree-level and gets mass only

through the radiative corrections), it is likely that S starts oscillations about the minimum

⟨S⟩ and the oscillation energy eventually dominates the Universe.

6.2 Vacuum selection in a model with multiple vacua

In the early Universe after inflation, the MSSM sector is reheated by the decay of inflaton

to a very high temperature. In GMSB models, even if the SUSY breaking pseudo-moduli

field does not couple to the MSSM field directly, its scalar potential can be modified by

thermal corrections through the messenger fields which couple to the MSSM fields through

SM gauge interactions. The minimum of the effective potential lies in general at different

point than that at zero temperature. Then, if the SUSY breaking sector has multiple vacua

at zero temperature, there is no guarantee that the SUSY breaking minimum is selected as

the Universe cools down. The vacuum selection in meta-stable SUSY-breaking models has

been discussed in the literatures for the ISS-type models [73, 74, 75, 76, 77, 78, 79] and

the O’Raifeartaigh-type models [80, 81, 82, 57, 58]. They considered the finite temperature

corrections to the scalar potential and followed the location of the minimum along the cooling

of the Universe.

The finite temperature effective potential up to one-loop is given by[83, 84]

V = Vtree + V1 + Vthermal, (6.4)

where Vtree is the classical potential and V1 is the zero-temperature one-loop potential. Finite
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temperature one-loop correction is

Vthermal =
T 4

2π2

[∫ ∞

0
dxx2

∑
i

log[1− e−
√
x2+(M2

S)i/T
2
]

−2

∫ ∞

0
dxx2

∑
r

log[1 + e−
√
x2+(M2

F )r/T 2
] + 3

∫ ∞

0
dxx2

∑
a

log[1− e−
√
x2+(M2

V )a/T 2
]

]
,

(6.5)

where the three terms represent the contributions from real scalar fields ϕi, Weyl fermions ψr

and vector bosons Aµa with the eigenvalues of the squared mass matrices (M2
S)i, (M

2
F )r and

(M2
V )a. For a high temperature limit of T ≫MS ,MF ,MV , the potential can be expanded as

Vthermal = −π
2T 4

90

(
NB +

7

8
NF

)
+

T 2

24

[
Tr(M2

S) + 3Tr(M2
V ) + Tr(M2

F )
]
+ · · ·, (6.6)

where, for a supersymmetric model with no gauge groups, the sum of the real scalar / Weyl

fermion squared masses is calculated by

Tr(M2
S) = 2W ∗

ikW
ik, Tr(M2

F ) =W ∗
ikW

ik. (6.7)

The point is that the minimum of the thermal potential (6.5) lies at the origin of the field

space. For example, consider the minimal gauge mediation model in Eq. (5.11). Once the

messenger superfield ϕ is thermalized, the vacuum energy is corrected by

Vthermal ≃
T 2

24
[2λ2S2 + λ2S2] =

1

8
λ2T 2S2, (6.8)

which stabilize the pseudo-moduli S at S = 0. Therefore, as pointed out in Ref. [74], if the

SUSY-breaking vacuum lies near the origin and the SUSY-preserving ground state lies at far

from the origin as in the ISS model, the minimum of the potential moves smoothly from the

origin to the SUSY-breaking vacuum as the Universe cools down.

In addition to the conventional moduli problem, one should also take care the vacuum

selection if SUSY is assumed to be broken at a meta-stable state.

41



Part III

Realization of the gravitino Dark Matter
scenario

In part I, we saw a gravitino DM scenario which is compatible with thermal leptogenesis. The

scenario is based on the fact that the relic abundance of thermally produced gravitino does

not depend on TR in GMSB, once the temperature of the Universe exceeds the messenger

scale. Although the scenario is simple, as described in part II, there are several requirements

on SUSY-breaking sector from cosmological consideration which should be met along the

thermal history of the Universe. In this part, to make sure that the scenario is actually

viable, we demonstrate it with a concrete model of gauge mediation.

The model we use for the cosmological study is the gravitational gravitational gauge

mediation presented in section 5.4. As the model exhibit meta-stable SUSY-breaking, we

first check that the SUSY-breaking vacuum is preferred to the SUSY-preserving true vacuum.

Next we estimate the oscillation energy of S about the minimum, and see that the amount

of entropy release is sufficiently large to realize the cosmological scenario.

Throughout our analysis, the SUSY scale is assumed to be MSUSY ≃ 5 TeV to realize

mh = 125 GeV [3] within the MSSM. Although it sounds difficult to confirm the scenario

by the LHC experiments, the framework we use predicts a relatively small µ-term and thus

there is a light higgsino with mh̃ ∼ O(100) GeV . We explain this point in appendix C. Such

a light higgsino may be within the reach of future experiments such as at an International

Linear Collider (ILC). Since the life-time of higgsino can be as long as O(1) sec, we check

the constraints from the Big-Bang nucleosynthesis (BBN) and find that the light higgsino is

cosmologically safe if the gravitino mass is less than ∼ 500 MeV.

7 Cosmological evolution of pseudo-moduli

In this section we follow cosmological evolution of the pseudo-moduli field and the messenger

fields with the SUSY-breaking model presented in section 5.4. The goal is to confirm (i) the

SUSY breaking vacuum is selected along the thermal history of the Universe and (ii) a sizable

amount of entropy is produced from the decay of S.
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7.1 Vacuum selection

Since the model breaks SUSY at a meta-stable state, we have to check whether the SUSY

breaking minimum (5.33) is actually selected in the cosmological evolution. We examine the

deformations of the scalar potential by the finite temperature corrections, and see that the

minimum of the potential smoothly moves from the origin to the SUSY-breaking vacuum as

the Universe cools down.

We assume that the MSSM superfields and the messenger superfields are in thermal

equilibrium in the early Universe. Although S superfield is not in thermal plasma, its scalar

potential receives thermal corrections due to interactions with the messenger fields. The

scalar potential at finite temperature along f = f̄ = 0 direction is, up to O(S2),

VS(T ) = − 2√
3

m4

Mpl
(S + S†) +

4m4

Λ2
S†S +

5λ2T 2

4
S†S, (7.1)

where we have used the high temperature approximation in Eq. (6.6). At that time, the

potential minimum does not lie at (5.33) but at

Smin(T ) ≃
√

3

6

Λ2

Mpl

m2
S

m2
S +mth

S (T )2
, (7.2)

where

mS =
2m2

Λ
(7.3)

is the tree-level mass of S at zero-temperature and

mth
S (T ) =

√
5λT

2
(7.4)

is the thermal mass. We can see from this formula that the potential minimum is near the

origin for a high temperature and moves toward the SUSY-breaking one as the temperature

decreases.

In the absence of the thermal potential, S would fall into the SUSY-preserving vacuum

if |S| < Scr =
√
m2/λ, since the messenger fields become tachyonic. For a sufficiently high

temperature, however, S does not fall into the SUSY-preserving vacuum because the thermal

effects lift the messenger direction. The messenger fields get thermal potentials through

interactions with the standard model gauge bosons, [57, 58],

Vℓ,ℓ̄(T ) =
T 2

16
(3g2 + g′2)(|ℓ|2 + |ℓ̄|2), (7.5)

Vq,q̄(T ) =
T 2

16
(8g2s + g′2)(|q|2 + |q̄|2), (7.6)
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where ℓ(ℓ̄) and q(q̄) denote the scalar components of the messenger superfields f(f̄). For

T = 0, the vicinity of S = 0 is a dangerous region because the messenger directions are

tachyonic (see Eq. (5.35)). However, the messengers are stabilized at f = f̄ = 0 by the

thermal potential for a high temperature and do not fall into the SUSY-preserving true

vacuum. The vicinity of S = 0 becomes tachyonic only after the temperature of the Universe

drops below the critical temperature Tcr:

Tcr = 4m

√
λ

3g + g′2

≃ 7.1× 106GeV
( Mmess

107 GeV

)1/2( mg̃

5 TeV

)1/2
. (7.7)

We also define a temperature TS at which the potential minimum of S direction, Smin(T ),

exits the region where the messenger direction is unstable at zero temperature, i.e.,

Smin(TS) ≡ Scr, (7.8)

which gives

T 2
S ≃

8
√

3

15

m3

λ3/2Mpl
. (7.9)

In terms of m3/2 and Mmess,

TS ≃ 6.5× 108 GeV
( m3/2

500 MeV

)3/2 ( Mmess

107 GeV

)−3/4( mg̃

5 TeV

)−3/4
. (7.10)

In order for the potential minimum to smoothly reach the SUSY-breaking vacuum without

straying into the SUSY-preserving one, the condition

TS > Tcr (7.11)

has to be satisfied∗, i.e., Smin(T ) should leave the dangerous region (the vicinity of S = 0)

before the messenger direction becomes tachyonic. This condition is converted to a constraint

on the model parameters,

λ <

[
8
√

3

15

3g2 + g′2

16

m

Mpl

]2/5
. (7.12)

Again in terms of m3/2 andMmess, the condition put an upper bound on the messenger scale,

Mmess < 3.7× 108 GeV
( m3/2

500 MeV

)6/5 ( mg̃

5 TeV

)−1
. (7.13)

We show the allowed region in Fig. 9. From now on, we focus the discussion on the white

region where the the SUSY-breaking vacuum is selected along the thermal history.
∗Precisely speaking, this is a sufficient condition, but we have confirmed that this is consistent with the

numerical results.
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Figure 9: SUSY breaking vacuum is selected in the white region.

7.2 Coherent oscillations

Next we estimate the oscillation energy of S by solving the equation of motion of S taking into

account the expansion of the Universe. Depending on the initial position of S after inflation,

S exhibits different motions in its field space. As mentioned in section 6.1, S is generally

displaced from the zero temperature minimum of the potential, ⟨S⟩, during inflation. We

examine two cases that the initial position of S, S0, is at around the origin or the cutoff scale,

S0 ∼ 0 or S0 ∼ Λ.

7.2.1 The case with S0 ≃ 0

The evolution of S in this case has been studied in detail in Ref. [55]. We assume that S

was stabilized near the origin by the positive Hubble-induced mass term during the inflation.

After inflation, the S follows the time-dependent minimum (7.2). When the thermal mass

becomes comparable to the tree-level mass, the minimum Smin(T ) quickly moves to the SUSY
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breaking minimum. This transition takes place at T ≃ T0, given by

T0 ≡
4√
5

m2

Λλ
(7.14)

≃ 3.4× 108 GeV
( m3/2

500 MeV

)5/2 ( Mmess

107 GeV

)−1 ( mg̃

5 TeV

)−1/2
. (7.15)

Whether or not the S field catches up the motion of the minimum depends on the competition

between the effective mass of S and the friction caused by the expansion of the Universe.

Here it is assumed that the messenger fields remain thermalized at T = T0. Later we study

the case where the messenger fields decouple from the thermal plasma before the temperature

of the Universe goes down to T0.

The dynamics of S field is governed by the equation of motion

S̈ + 3HṠ +
∂

∂S†V = 0. (7.16)

The effective mass of S field is approximately given by the sum of the tree-level mass and

the thermal mass,

m2
S(T ) ≡ m2

S +
5

4
λ2T 2, (7.17)

where we have neglected the contribution from the radiative correction to the Kähler potential

(5.30), since it does not affect results. In the numerical calculations, the effect of the radiative

correction is properly taken into account.

First let us consider the case that the Hubble parameter is larger than the effective mass

at T = T0, i.e., H(T0) > mS(T0). In this case, even if the potential minimum moves to the

zero temperature value at T = T0, S is still trapped near the origin because of the large

friction. At a later time when the Hubble parameter becomes comparable to the effective

mass, H ∼ mS , S leaves the vicinity of the origin and starts oscillations about the minimum.

We define the temperature Tosc as

H(Tosc) = mS(Tosc), (7.18)

where the temperature dependence of the Hubble parameter is given by H(T ) ∼ T 2

Mpl
as in

Eq. (2.3) in the radiation dominated era, andH(T ) ∼ T 4

MplT
2
R
in the inflaton-matter dominated

era, respectively. The condition H(T0) > mS(T0) is equivalent to T0 > Tosc. In the scenario

presented in section 3, we take the reheating temperature to be very high , say TR & 1013 GeV,

so that the gravitino dark matter and thermal leptogenesis become compatible. With such a
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Figure 10: If the Hubble parameter is larger than the effective mass at T = T0, H(T0) >
mS(T0), S is trapped to S ≃ 0 by a large friction from the expansion of the Universe. Later, S
starts oscillation about the minimum when the temperature reaches Tosc (upper figure). On
the other hand, if H(T0) < mS(T0), S follows the temperature dependent minimum Smin(T )
and gradually reaches the SUSY-breaking minimum. The oscillation amplitude is suppressed
in this case (lower figure).

high reheating temperature, Tosc is lower than TR in most of the parameter region of interest.

Then, Tosc is

Tosc ≃ 4.4× 1010 GeV
( m3/2

15 GeV

)−1 ( Mmess

107 Gev

)( mg̃

5 TeV

)
. (T0 > Tosc) (7.19)

On the other hand, if the Hubble parameter is already smaller than the effective mass at

T = T0, H(T0) < mS(T0), or equivalently T0 < Tosc, the friction from the expansion of the

Universe is small. This is the case if λ is larger than the previous case. In this case Tosc is

represented as

Tosc ≃ 1.0× 1012 GeV
( m3/2

500 MeV

)−1 ( Mmess

107 GeV

)( mg̃

5 TeV

)
. (T0 < Tosc) (7.20)

Then the S field follows the time-dependent potential minimum and gradually reaches the

SUSY-breaking vacuum. The amplitude of oscillations is highly suppressed in this case. The
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Figure 11: If the messenger fields become non-relativistic before S reaches the SUSY-breaking
minimum, ⟨S⟩, the potential minimum suddenly moves from Smin(T ) to ⟨S⟩, and oscillations
are triggered. This happens when Tdec > T0.

suppression was first found in Ref. [85], in which the oscillation amplitude was shown to

be exponentially suppressed in a limiting case† in the context of the cosmological moduli

problem. This adiabatic suppression mechanism was recently examined more carefully in

Ref. [86]. We show in Fig. 10 the typical evolution of S in the above two cases.

There is yet another possibility. As the temperature of the Universe decreases and the

value of the pseudo-modului becomes sizable, the high temperature approximation in Eq.(7.1)

breaks down at a certain point. The messenger fields become non-relativistic when the

temperature of the Universe becomes comparable to the messenger mass. Then the finite

temperature potential generated by messenger interactions gets suppressed by the Boltzmann

factor ∼ e−λS/T . We define the decoupling temperature Tdec as

Tdec ≡ λS(T = Tdec). (7.21)

If the messenger fields decouple after S field reaches the SUSY-breaking vacuum, Tdec is

simply the messenger mass scale,

Tdec ≃ Mmess (Tdec < T0). (7.22)

If the decoupling occurs when S is still on the way to the SUSY-breaking vacuum, Tdec is

† The initial condition adopted in Ref. [85] was given at an infinitely large Hubble parameter. There
are various additional contributions in general, which are only power-suppressed [86]. We have numerically
confirmed that the pseudo-moduli abundance is power-suppressed in the present scenario.
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calculated to be

Tdec ≃

[
8
√
3

15

m4

λMpl

]1/3
(7.23)

≃ 4.1× 107 GeV
( m3/2

1 GeV

)( Mmess

109 GeV

)−1/3 ( mg̃

5 TeV

)−1/3
, (7.24)

for Tdec > T0. In this case, at T = Tdec, the position of the potential minimum instantly

moves from Smin(T ) to the SUSY-breaking vacuum, which triggers coherent oscillations about

the minimum (see Fig. 11).

In summary, we have defined three temperatures: T0, Tosc and Tdec.

• The potential minimum quickly moves from the origin to the SUSY-breaking vacuum

at T = T0.

• The Hubble parameter H becomes comparable to the pseudo-moduli mass mS(T ) at

T = Tosc.

• The messenger fields become non-relativistic and disappear from the thermal plasma

at T = Tdec.

The evolution of S, and therefore, its abundance, sensitively depends on the relations

among these temperatures. The following three cases are shown in Fig. 12. The reheating

temperature is fixed to be TR = 1013 GeV, and the figure does not change as long as TR is

higher than all of the T0, Tosc and Tdec. Note that the abundance of S is suppressed in the

second case (white region), while it is significant in the other cases.

• T0 > Tosc (Green region) ; S starts coherent oscillation about ⟨S⟩ at T = Tosc.

• Tosc > T0 > Tdec (White region) ; S follows Smin(T ) and gradually reaches ⟨S⟩ without
sizable oscillations.

• Tosc > Tdec > T0 (Blue region) ; The messenger fields decouple from thermal plasma

when S is on the way to ⟨S⟩. Coherent oscillations are triggered at T = Tdec.

7.2.2 The case with S0 ∼ Λ

Next we consider the case where S was displaced at S0 ∼ Λ after inflation. This situation may

be lead by general interaction between S and the inflaton sector as in Eq. (6.1). The evolution
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Figure 12: The evolution of S exhibits distinctive behavior depending on the model
parameters. In the green region (T0 > Tosc), S starts oscillations when H ≈ mS(T ). The
S abundance is suppressed by the adiabatic suppression mechanism in the white region
(Tosc > T0 > Tdec). In the blue region (Tosc > Tdec > T0) the coherent oscillations are
triggered when the messenger fields disappear from thermal plasma.

in this case was studied in Refs. [53, 54, 56]. In Refs. [53, 54], the reheating temperature

is took lower than the messenger scale, so that messenger fields are not thermalized. In

this case, initial position of S should have a sizable imaginary part so as not for S to fall

into SUSY-preserving minimum. In Ref. [56], on the contrary, the reheating temperature is

assumed to be much higher than the messenger scale. Since the present scenario requires

a very high TR to realize the observation, ΩDM/ΩB ∼ 5, we adopt the initial condition of

Ref [56]. In this case, the arguments on vacuum selection in section 7.1 is applicable, so the

SUSY-breaking vacuum is selected in the white region in Fig. 9.

In this case, S stays at S0 until the Hubble parameter decreases and becomes comparable

to the effective mass of S. Then, at T = Tosc, S starts oscillation around the time-dependent

minimum Smin(T ). If T0 > Tosc, namely Smin(T = Tosc) ≃ ⟨S⟩, the center of the oscillation is

the SUSY-breaking minimum from the beginning. On the other hand, if Tosc > T0, namely
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Figure 13: The evolution of S with S0 = Λ. If the temperature dependent minimum Smin(T )
lies near the origin ant T = Tosc, S at first oscillates about Smin(T ), and later the center of
the oscillations moves from the origin to ⟨S⟩.

the potential minimum lies still near the origin when S starts oscillation, S starts oscillation

around the origin at first. Then, as the temperature drops and reaches T0, the center of the

oscillation moves from the origin to the SUSY breaking-vacuum. A typical evolution of S is

in Fig. 13. S eventually oscillate around the SUSY-breaking minimum, irrespective of the

details of the initial condition.

8 Realization of the scenario

As mentioned in section 2 and 3, the gravitino relic abundance becomes insensitive to TR

if TR > Mmess. However, they should be diluted by a late-time entropy release since the

abundance is too large compared to the observation ΩDM ≃ 0.2. We defined the required

dilution to achieve the observation as ∆3/2 in Eq. (3.3). Now what we have to do is to

estimate the dilution factor in the present model and check that ∆3/2 is supplied by the

decay of S.
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8.1 Gravitino Dark Matter

In order to estimate the amount of entropy production from the decay of S, we define the

dilution factor ∆ as

1

∆
≡ sinf
sS + sinf

≃ Min

[
1,
sinf
sS

]
, (8.1)

where sinf and sS represent the entropy density produced by the decays of the inflaton and

S, respectively. If ∆ > 1, ∆ is well approximated by

∆ ≃ sS
sinf

=
4

3Td
· ρS
sinf

, (8.2)

where ρS is the energy density of S. Pre-existing gravitinos and baryons are diluted by 1/∆.

Td is the decay temperature of S, which is defined by

Td ≡
(
π2g∗
90

)−1/4√
MplΓS , (8.3)

where ΓS is the total decay width of S. The formulae of Td and ΓS are found in appendix B.

If the magnitude of dilution factor ∆ coincides ∆3/2 in Eq. (3.3), the overproduced

gravitinos are diluted to realize the observed dark matter abundance, ΩDMh
2 ≃ 0.1. In order

to realize the right amount of baryons, ΩB ≃ 0.045, at the same time, we need an appropriate

reheating temperature. Since the baryon asymmetry is also diluted by the entropy production,

the reheating temperature should be high enough to produce abundant baryons in advance,

namely 109×∆3/2 . TR is required in the scenario. We show the required set of the dilution

factor (∆3/2) and the reheating temperature (TR) in m3/2 vs Mmess plane in Fig. 14.

In the present set-up, there exists a parameter region where the dark matter and the

baryon asymmetry are explained by thermally produced gravitino and thermal leptogenesis

simultaneously (blue and green regions), with an appropriate combination of ∆ and TR.

In order to estimate the magnitude of the dilution factor from the decay, we numerically

solved the equation of motion of the pseudo-moduli with the initial condition set at the infla-

ton dominated era. The results depend on the initial location of the S field. Unfortunately,

if the initial position is close to the origin, S0 ≃ 0, as studied in section 7.2.1, it turns out

that the required dilution of ∆3/2 cannot be supplied by the decay. On the other hand, if

S0 ∼ Λ as studied in section 7.2.2, ∆3/2 can be achieved in most of the parameter regions.

We choose the initial position of S to be Λ or Mpl for illustration. The results are shown in

Fig. 15. As we see from the figure, by choosing an appropriate value of the initial condition

of S from between Λ and Mpl, the required amount of entropy can be supplied from the

52



oscillation energy everywhere in the blue and green regions in Fig. 14; we have confirmed

that required entropy production can be obtained in this model if S is displaced far from the

origin during inflation.

Non-thermal gravitino production

While the dark matter is explained by thermally produced gravitino in the blue and green

regions in Fig. 14, gravitinos are also produced non-thermally by the rare decay S → ψ3/2ψ3/2.

We calculate the non-thermally produced gravitino abundance in appendix B and found that

the abundance coincides the observed dark matter abundance with m3/2 ∼ 2 GeV. Taking

into account possible theoretical errors, we show the parameter region where 0.03 . ΩNT
3/2h

2 .
0.3 is predicted as a green band in Fig. 14.
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Figure 14: Required amount of the dilution factor (∆3/2) and the reheating temperature
(TR) to realize the observation ΩDMh

2 ≃ 0.1 and ΩB ≃ 0.045. In blue and green regions,
the dark matter is explained by gravitino and baryon asymmetry is supplied by thermal
leptogenesis with an appropriate choice of ∆ and TR. In the green region, the non-thermally
produced gravitino abundance coincides the observed DM abundance. We should discard
the parameter regions shaded by (light)gray color. For gray regions denoted as ”unstable
S” and ”unstable f”, the SUSY breaking minimum is unstable [51]. For a light gray region
”fall into SUSY vacuum”, the pseudo-moduli fall into SUSY preserving vacuum along the
cosmological evolution and never reaches the SUSY breaking vacuum [55]. We define ∆max

as the maximum dilution factor available under the condition that the oscillation amplitude
is small so that S does not fall into SUSY vacuum. So in the region ∆3/2 > ∆max we cannot
get a required amount of dilution factor ∆3/2 while S successfully reaches the SUSY breaking

minimum. Gravitinos are overproduced non-thermally in the gray region ”ΩNT
3/2h

2 > 0.3”.
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Figure 15: The results of numerical study. In the left(right) figure the initial condition of
the position of S right after the inflation is took to be S0 = Λ(S0 = Mpl). The required
amount of dilution factor and the theoretical prediction are denoted as ∆3/2 and ∆. In the
blue regions a sizable amount of entropy enough to dilute overabundant gravitino is produced
by the decay of S. We see that a required amount of dilution factor read off from Eq. (3.3)
can be always supplied by the decay by choosing an appropriate value of S0 from between Λ
and Mpl.

8.2 Comments on a light higgsino

So far we have studied a new cosmological scenario with a high SUSY scaleMSUSY & 5 TeV in

order to realize a 125 GeV Higgs boson mass. If all the SUSY particles are as heavy as 5 TeV,

it is difficult to confirm the scenario by the LHC experiments. However, it is possible that the

µ-parameter in the MSSM is much smaller than other superparticle masses. In the GMSB

model we used for the cosmological study there is a natural solution to the µ-problem (we

mention the prescription in appendix C). The model predicts a light higgsino with its mass

of O(100) GeV. The µ-term is generated by a direct coupling between SUSY breaking chiral

multiplet and Higgs multiplets assumed at the cutoff scale Λ, which results in a relatively

small µ-term compared to Higgs soft mass parameters. For a cosmologically favorable region

of the gravitino mass, the lightest higgsino does not decay inside the detector. In that case,

searches for mono-jet processes at LHC or mono-photon ones at the ILC will be able to find

the light higgsino.

One should check if a light higgsino scenario is compatible with the constraint from the

BBN. If the higgsino mass is so small that the life-time becomes as long as O(1) sec, the
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decay may alter the abundance of the light elements. We have checked the BBN constraints

in the case of mh̃ = 300 GeV and found that such a light higgsino is cosmologically safe if

the gravitino is lighter than ∼ 500 MeV. A detailed discussion is given in appendix C.

9 Summary

This thesis is composed of three parts. In part I, we investigated the thermal production of

the gravitino in general framework of gauge mediation. Calculating the gravitino production

cross section using both the goldstino Lagrangian and the supergravity one, we confirmed that

the relic abundance become insensitive to the reheating temperature if the temperature of

the Universe once exceeds the messenger mass scale. Inspired by this property, we presented

a new cosmological scenario; the gravitino dark matter and the thermal leptogenesis are

compatible, namely the ratio Ω3/2/ΩB coincides the observation, ΩDM/ΩB ∼ 5, with an

appropriate value of reheating temperature. To realize the correct absolute value of each

quantity, ΩDMh
2 ≃ 0.1 and ΩB ≃ 0.045, a late-time entropy release is required, which is

automatically supplied by the oscillation energy of the pseudo-moduli.

In part II, we studied general properties of O’Raifeartaigh-type models which serve as

low-energy descriptions of a wide class of dynamical SUSY-breaking models. We saw that a

realistic model of SUSY-breaking has a meta-stable non-SUSY vacuum and an approximate

R-symmetry. In order to understand deeply the connections between SUSY-breaking and R-

symmetry, and also between the gaugino mass and the structure of the pseudo-moduli space,

several example of O’Raifeartaigh-type models were introduced. We also showed several

cosmological requirements which should be equipped with in a realistic model.

In part III, we examined cosmological evolution of the pseudo-moduli field in a con-

crete model of gauge mediation to demonstrate the scenario presented in part I. With an

appropriate initial condition, we showed that the oscillation energy of the pseudo-moduli

dominates the energy density of the Universe and a sizable amount of entropy needed to fix

the energy densities of gravitino and baryon is released by the subsequent decay. The scenario

is realized when the gravitino mass is 100 MeV . m3/2 . 1 GeV and the messenger scale is

106 GeV .Mmess . 109 GeV. Although we have studied the scenario with MSUSY & 5 TeV

to account for the 125 GeV Higgs boson, the higgsino can be asI light as O(100) GeV. Such

a light higgsino can be discovered in a future experiments. We have checked that a light

higgsino is safe from the BBN constraints if the gravitino mass is smaller than ∼ 500 MeV.
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A High energy behavior of gravitino production

In the appendix we calculate the scattering amplitude of gravitino production process both

with global SUSY Lagrangian and supergravity Lagrangian, and study its high energy behav-

ior. We focus on QED gauge interactions and calculate one particular process e−e+ → λψ3/2.

A.1 Calculation with global SUSY Lagrangian

Lagrangian

Let us consider a U(1) model with chiral super fields

S, f, f̄ (A.1)

and a vector superfield for U(1) gauge field. f and f̄ are charged under U(1) as +1 and −1

and S is neutral. There is a superpotential

W = FSS + λSff̄ . (A.2)

SUSY is broken by the F -component of the singlet field S. f and f̄ act as messenger fields

in gauge mediation. Lagrangian of the model is composed of the following three parts,

L = Lkinetic + Lgaugino + LSff̄ , (A.3)

where

Lkinetic =− 1

4
FµνF

µν +
i

2
λ̄γµ∂µλ+ iψ̄sγ

µ∂µPLψs + iψ̄fγ
µ(∂µ − igAµ)ψf

+ |∂µf − igAµf |2 + |∂µf∗ + igAµf
∗|2

+ iψ̄eγ
µ(∂µ − igAµ)PLψe + |∂µẽ− igAµẽ|2, (A.4)

Lgaugino =− i
√

2g(f∗λ̄PLψf − fψ̄fPRλ) + i
√

2g(f̄∗λ̄PLψ
c
f − f̄ ψ̄cfPRλ), (A.5)

LSff̄ =− λψ̄fPLψsf − λψ̄sPRψff
∗ − λψ̄cfPLψsf̄ − λψ̄sPRψ

c
f f̄

∗

−Mψ̄fψf −M2(|f |2 + |f̄ |2)− λFS(ff̄ + f∗f̄∗). (A.6)

The last term comes from the superpotential. We have defined the supersymmetric mass of

f and f̄ multiplet as

M ≡ λ⟨S⟩ (A.7)
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and taken the VEV to be real. ψf and ψcf are Dirac fermions defined as

ψf ≡

(
ψfα
ψ†α̇
f̄

)
, ψcf ≡

(
ψf̄α
ψ†α̇
f

)
, (A.8)

where ψfα and ψf̄α represent the two component chiral fermions belong to f and f̄ superfields.

Gaugino is treated as a Majorana fermion,

λ =

(
λα
λ†α̇

)
. (A.9)

The Weyl fermion ψS is the goldstino which is absorbed into the longitudinal component of

gravitino once SUSY is promoted to a local symmetry. We study the production processes

of goldstino and compare the result with that of supergravity calculation.

Gaugino mass

Throughout the study we assume that the gaugino mass is generated only via gauge media-

tion. Before entering the calculation of the gravitino (goldstino) production amplitudes, let

us calculate the gaugino mass from the Lagrangian Eq. (A.6). At one-loop level, gaugino two

point function has the following form:

p

+

pp

k

p+ k

=
i

/p
+

i

/p
I
i

/p
. (A.10)

The particles in the loop are the messengers and the dot in the boson line represents the

insertion of FS . The integral I is calculated to be

I =

∫
d4k

(2π)4
(
√

2gPL)
i(/p+ /k +M)

(p+ k)2 +M2
(−
√

2gPL)
i

k2 −M2
(−iλFS)

i

k2 −M2
× 2

+

∫
d4k

(2π)4
(−
√

2gPR)
i(/p+ /k +M)

(p+ k)2 +M2
(
√
2gPR)

i

k2 −M2
(−iλFS)

i

k2 −M2
× 2

= 4g2λFSM

∫
d4k

(2π)4
1

[k2 −M2]2[(p+ k)2 −M2]

= 4g2λFSM × −i
2(4π)2M2

=
−2ig2

(4π)2
λFS
M

. (A.11)
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Compare this with full propagator,

p

=
i

/p−mλ
(A.12)

=
i

/p

1

1− mλ

/p
(A.13)

≃ i

/p

(
1 +

mλ

/p

)
=
i

/p
+
i

/p
(−imλ)

i

/p
, (A.14)

we get a gaugino mass formula at one-loop level,

mλ =
2g2

(4π)2
λFS
M

. (A.15)

Later we use the formula to compare the results of global SUSY calculation and supergravity

calculation.

Amplitude at one-loop level

Let us calculate the scattering amplitude of the goldstino production process e−e+ → λψS .

Since the goldstino couples to MSSM fields only through the messenger particles, tree-level

diagrams are absent in the process. There are in total four 1-loop diagrams. We label the

diagrams as A and B as in Fig. 16 and Fig. 17 and evaluate them in tern.

e−

e+

λ

ψf

ψs

f

f e−

e+

λ

ψs

ψc
f

f̄

f̄

Figure 16: Goldstino production diagrams A

e−

e+

λ

ψs

ψf

ψf

f

e−

e+

λ

ψs

f̄

ψc
f

ψc
f

Figure 17: Goldstino production diagrams B
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The amplitudes for diagrams A and B have a universal form,

M = [v̄(p2)(igγ
µPL)u(p1)]×

−igµν
(p1 + p2)2

×
[
M̃
]ν

=
g

s
[v̄(p2)γ

µPLu(p1)]gµν

[
M̃
]ν
, (A.16)

where u(p1) and v(p2) represent the wave functions of electron and positron. For diagrams

A, [
M̃A

]ν
=

∫
d4k

(2π)4
ūs(p3)(−iλPR)

i(/k + /p3 +M)

(k + p3)2 −M2
(−
√

2gPR)vλ(p4)

× i

k2 −M2
× ig(2k + p3 + p4)

ν × i

(k + p3 + p4)2 −M2

× 2

= i2
√

2λg2M

∫
d4k

(2π)4
1

k2 −M2

1

(k + p3)2 −M2

1

(k + p3 + p4)2 −M2

× ūs(p3)PRvλ(p4)× (2k + p3 + p4)
ν , (A.17)

where us(p3) and vλ(p4) are the wave function of goldstino and gaugino. Diagrams B can be

evaluated in a same manner,[
M̃B

]ν
= i2

√
2λg2M

∫
d4k

(2π)4
1

k2 −M2

1

(k + p3)2 −M2

1

(k + p3 + p4)2 −M2

× ūs(p3)PRvλ(p4)× (−2k − 2p3)
ν . (A.18)

Combining these contributions,[
M̃
]ν

=
[
M̃A

]ν
+
[
M̃B

]ν
= i2

√
2λg2M

∫
d4k

(2π)4
1

k2 −M2

1

(k + p3)2 −M2

1

(k + p3 + p4)2 −M2

× ūs(p3)PRvλ(p4)× (p4 − p3)
ν . (A.19)

The integral can be written as a so called C-function defined in Ref.[21],

i

(4π)2
C0(
√
s,M) ≡

∫
d4k

(2π)4
1

k2 −M2

1

(k + p3)2 −M2

1

(k + p3 + p4)2 −M2
. (A.20)

Then,

M =
−2
√

2λg3

(4π)2
M

s
C0(
√
s,M2)[v̄(p2)γ

µPLu(p1)][ūs(p3)PRvλ(p4)](p4 − p3)µ. (A.21)

Inserting the explicit formulae for the wave functions, we get a helicity amplitudes:

M(↑↓↑↑) = −
2
√

2g3λ

(4π)2
MC0(

√
s,M)

√
s sin θ, (A.22)

M(↑↓↓↓) =
2
√

2g3λ

(4π)2
MC0(

√
s,M)

√
s sin θ. (A.23)
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The formula in Eq. (A.22) has been quoted in Eq. (2.18) in section 2. As mentioned below

Eq. (2.18), the amplitude for the goldstino production is suppressed for the energy region of√
s≫Mmess by ∼M2

mess/s compared to that of
√
s≪Mmess.

A.2 Calculation with supergravity Lagrangian

Next we evaluate the amplitude for the gravitino production process e−e+ → λψ3/2 using

supergravity Lagrangian. In addition to the tree-level diagrams, there are messenger one-loop

diagrams which turn out to contribute the amplitude with the same magnitude to that of

tree-level diagrams.

Lagrangian

We consider a supergravity model with vector like matters f and f̄ which are charged under

U(1) gauge symmetry. Lagrangian of the model is the following:

L = Lkinetic + Lgaugino + Lsugra + Lmass, (A.24)

where

Lkinetic =− 1

4
FµνF

µν +
i

2
λ̄γµ∂µλ− 1

2
ϵµνρσψ̄µγ5γν∂ρψσ

+ iψ̄fγ
µ(∂µ − igAµ)ψf + |∂µf − igAµf |2 + |∂µf∗ + igAµf

∗|2

+ iψ̄eγ
µ(∂µ − igAµ)PLψe + |∂µẽ− igAµẽ|2, (A.25)

Lsugra =− 1√
2Mpl

(∂νf
∗ + igAνf

∗)ψ̄µγ
νγµPLψf −

1√
2Mpl

(∂νf − igAνf)ψ̄fPRγ
µγνψµ

− 1√
2Mpl

(∂ν f̄
∗ − igAν f̄

∗)ψ̄µγ
νγµPLψ

c
f −

1√
2Mpl

(∂ν f̄ + igAν f̄)ψ̄
c
fPRγ

µγνψµ

− i

8Mpl
ψ̄µ[γ

ν , γρ]γµλFνρ, (A.26)

Lgaugino =− i
√

2g(f∗λ̄PLψf − fψ̄fPRλ) + i
√

2g(f̄∗λ̄PLψ
c
f − f̄ ψ̄cfPRλ, (A.27)

Lmass =−Mψ̄fψf −M2(|f |2 + |f̄ |2)− λFS(ff̄ + f∗f̄∗). (A.28)
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Gravitino is denoted by ψµ. We have assumed that the chiral multiplets f and f̄ get their

SUSY / SUSY-breaking masses from the superpotential Eq. (A.2).

Wave function of gravitino

The wave function of gravitino is given by the products of the spinor u(p, s) and the polar-

ization vector ϵµ(p,m) as [7]

ψ̃µ(p, λ) =
∑
s,m

⟨(
1

2
,
s

2

)
(1,m)

∣∣∣ (3

2
, λ

)⟩
u(p, s)ϵµ(p,m), (A.29)

where ⟨
(
1
2 ,

s
2

)
(1,m)|

(
3
2 , λ
)
⟩ is the Clebsch-Gordan coefficient. Since we are interested in the

parameter region where m3/2 ≪ mλ is always satisfied (this is the case in GMSB), dominant

contribution to the amplitude comes from the longitudinal mode of gravitino. So we only

extract the spin-half component of the gravitino which is proportional to 1/m3/2,

ψ̃µ(p,
s

2
) ∋

√
2

3
u(p, s) ϵµ(p, 0), (A.30)

where s is a spin quantum number and take±1 and the polarization vector for a massive parti-

cle (pµp
µ = m2

3/2 ̸= 0)with the momentum vector pµ = (E, |p| sin θ cosϕ, |p| sin θ sinϕ, |p| cos θ)
is ,

ϵµ(p, 0) =
1

m3/2
(|p|,−E sin θ cosϕ,−E sin θ sinϕ,−E cos θ). (A.31)

The wave function ψ̃µ satisfies the following equations;

γµψ̃µ(p, λ) = 0, (A.32)

pµψ̃µ(p, λ) = 0, (A.33)

(/p−m3/2)ψ̃µ(p, λ) = 0. (A.34)

We repeatedly use these equations in evaluating the amplitude.

Amplitudes at tree-level

First we calculate the amplitude at tree-level. There are three diagrams of s-, t- and u-

channels.
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Figure 18: Gravitino production process at tree-level.

s-channel

Let us evaluate the diagrams in turn. For the s-channel,

Ms = [v̄(p2)(igγ
µPL)u(p1)]×

−igµν
(p1 + p2)2

×
[
¯̃
ψρ(p3)

[
− i

4Mpl
(p1 + p2)σ[γ

σ, γν ]γρ
]
v(p4)

]
=

−ig
4Mpl

1

s
[v̄(p2)γ

µPLu(p1)]
[
¯̃
ψρ(p3) ((/p1 + /p2)γµγ

ρ − γµ(/p1 + /p2)γ
ρ) v(p4)

]
. (A.35)

Inserting the explicit formula for wave functions, we get helicity amplitudes,

M(↑↓↑↓)
s =

ig√
6Mplm3/2

s

(
1−

m2
λ

s

)3/2

(1 + cos θ), (A.36)

M(↑↓↓↑)
s =

−ig√
6Mplm3/2

s

(
1−

m2
λ

s

)3/2

(1− cos θ), (A.37)

Ms(others) = 0. (A.38)

t-channel

For t-channel,

Mt =

[
v̄(p2)

[
− 1√

2M
(p1 − p4)νPRγ

ργν

]
ψ̃cρ(p3)

]
× i

(p1 − p4)2
×
[
ū(p4)(

√
2gPL)u(p1)

]
=

−ig
M

1

t

[
v̄(p2)PRγ

ρ(/p1 − /p4)ψ̃
c
ρ(p3)

]
[ū(p4)PLu(p1)] , (A.39)
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and

M(↑↓↑↓)
t =

−ig√
6Mplm3/2

s

(
1−

m2
λ

s

)1/2

(1 + cos θ), (A.40)

M(↑↓↑↑)
t =

igmλ√
6Mplm3/2

√
s

(
1−

m2
λ

s

)1/2

sin θ, (A.41)

Mt(others) = 0. (A.42)

u-channel

For u-channel,

Mu =

[
¯̃
ψρ(p3)

[
1√
2M

(p1 − p3)νγ
νγρPL

]
u(p1)

]
× i

(p1 − p3)2
×
[
v̄(p2)(−

√
2gPR)v(p4)

]
=

−ig
M

1

u

[
¯̃
ψρ(p3)(/p1 − /p3)γ

ρPLu(p1)
]
[v̄(p2)PRu(p4)] , (A.43)

and

M(↑↓↓↑)
u =

−ig√
6Mplm3/2

s

(
1−

m2
λ

s

)1/2

(1− cos θ), (A.44)

M(↑↓↓↓)
u =

igmλ√
6Mplm3/2

√
s

(
1−

m2
λ

s

)1/2

sin θ, (A.45)

Mu(others) = 0. (A.46)

Combine

At first sight, the amplitude behaves as M ∼ s for a high energy. However, as pointed out

in Ref. [7], the leading high energy behavior should cancel out in the total amplitude. The

reason can be understood in the following way. The helicity ±1
2 components of gravitino

is unphysical in the supersymmetric phase; they become physical only after absorbing the

goldstino. So the total amplitude should vanish for a supersymmetric limit if the gravitino

has helicity ±1
2 . That is ,the total amplitude for the helicity ±1

2 gravitino production should

be proportional to some SUSY-breaking parameters. We can explicitly confirm the statement

by summing up the three diagrams,

M = Ms +Mt −Mu. (A.47)
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The relative minus sign comes from the exchange of fermionic quantities. For each helicity,

we get

M(↑↓↑↓) =
−igm2

λ√
6Mplm3/2

(
1−

m2
λ

s

)1/2

(1 + cos θ) (A.48)

M(↑↓↓↑) =
igm2

λ√
6Mplm3/2

(
1−

m2
λ

s

)1/2

(1− cos θ) (A.49)

M(↑↓↑↑) =
igmλ√

6Mplm3/2

√
s

(
1−

m2
λ

s

)1/2

sin θ (A.50)

M(↑↓↓↓) =
−igmλ√
6Mplm3/2

√
s

(
1−

m2
λ

s

)1/2

sin θ (A.51)

M(others) = 0 (A.52)

We see that the high energy behavior M ∼ s is actually canceled out and the amplitude is

proportional to the SUSY-breaking parameter, the gaugino mass mλ, for every helicity.

Amplitudes at one-loop level

In GMSB models, there are messenger fields which contribute to the gravitino production

through one-loop diagrams. There are 16 diagrams in total. We part them into four groups

and label them as diagrams C, D, E and F.

Diagram C

There are four diagrams in group C which have a universal form

M(1)C
s = [v̄(p2)(igγ

µPL)u(p1)]×
−igµν

(p1 + p2)2
×
[
M̃(1)C1

s + M̃(1)C2
s + M̃(1)C3

s + M̃(1)C4
s

]ν
=
g

s
[v̄(p2)γ

µPLu(p1)] gµν

[
M̃(1)C1

s + M̃(1)C2
s + M̃(1)C3

s + M̃(1)C4
s

]ν
. (A.53)

For the first and second diagrams,[
M̃(1)C1

s

]ν
=

∫
d4k

(2π)4
¯̃
ψρ(p3)

[
1√
2Mpl

/kγρPL

]
i(/k + /p3 +M)

(k + p3)2 −M2
(−
√

2gPL)v(p4)

× i

k2 −M2
(−iλFS)× ig(2k + p3 + p4)

ν × i

(k + p3 + p4)2 −M2

=
−g2λFSM

Mpl

∫
d4k

(2π)4
1

[k2 −M2]2
1

(k + p3)2 −M2

1

(k + p3 + p4)2 −M2

× ¯̃
ψρ(p3)PLv(p4)× 2kρ(2k + p3 + p4)

ν , (A.54)
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Figure 19: Gravitino production process at at one-loop level: diagrams C

and [
M̃(1)C2

s

]ν
=

∫
d4k

(2π)4
¯̃
ψρ(p3)

[
1√
2Mpl

PR/kγ
ρ

]
i(/k + /p3 +M)

(k + p3)2 −M2
(
√

2gPR)v(p4)

× i

k2 −M2
(−iλFS)×−ig(2k + p3 + p4)

ν × i

(k + p3 + p4)2 −M2

=
−g2λFSM

Mpl

∫
d4k

(2π)4
1

[k2 −M2]2
1

(k + p3)2 −M2

1

(k + p3 + p4)2 −M2

× ¯̃
ψρ(p3)PRv(p4)× 2kρ(2k + p3 + p4)

ν . (A.55)

Diagram C3/C4 gives exactly the same contribution as C1/C4. Then,[
M̃(1)C

s

]ν
= 2

[
M̃(1)C1

s

]ν
+ 2

[
M̃(1)C2

s

]ν
=

−2g2λFSM

Mpl

∫
d4k

(2π)4
1

[k2 −M2]2
1

(k + p3)2 −M2

1

(k + p3 + p4)2 −M2

× ¯̃
ψρ(p3)v(p4)× 2kρ(2k + p3 + p4)

ν . (A.56)

The denominators in the integral can be combined using the Feynman parameters,

1

[k2 −M2]2
1

(k + p3)2 −M2

1

(k + p3 + p4)2 −M2
=

∫ 1

0
dxdydxδ(x+ y + z − 1)

6x

D4
, (A.57)

where

D = x(k2 −M2) + y((k + p3)
2 −M2) + z((k + p3 + p4)

2 −M2)

= k2 + 2((y + z)p3 + zp4) · k + sz −M2. (A.58)
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Figure 20: Gravitino production process at at one-loop level: diagrams D

We have used the relations

p23 = m2
3/2, p24 = m2

λ, 2p3 · p4 = s−m2
λ (A.59)

and took the limit of m3/2 → 0. We shift the loop momentum k to complete the square,

D = ℓ2 −∆, (A.60)

where

ℓ = k + (y + z)p3 + zp4, (A.61)

and

∆ = −z(1− y − z)s− yzm2
λ +M2. (A.62)

We get[
M̃(1)C

s

]ν
=

−2g2λFSM

Mpl
[
¯̃
ψρ(p3)v(p4)]

∫ 1

0
dxdydzδ(x+ y + z − 1)6x

×
∫

d4ℓ

(2π)4
ℓ2gνρ − 2z(1− 2y − 2z)pν3p

ρ
4 − 2z(1− 2z)pν4p

ρ
4

(ℓ2 −∆)4
. (A.63)

Diagrams D

With almost the same calculation to diagrams C, the amplitude for the diagrams D is

M(1)D
s =

g

s
[v̄(p2)γ

µPLu(p1)] gµν

[
M̃(1)D

s

]ν
, (A.64)
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Figure 21: Gravitino production process at at one-loop level: diagrams E

with [
M̃(1)D

s

]ν
=

−2g2λFSM

Mpl
[
¯̃
ψρ(p3)v(p4)]

∫ 1

0
dxdydzδ(x+ y + z − 1)6z

×
∫

d4ℓ

(2π)4
ℓ2gνρ − 2z(1− 2y − 2z)pν3p

ρ
4 − 2z(1− 2z)pν4p

ρ
4

(ℓ2 −∆)4
. (A.65)

Diagrams E

The loop structure of diagrams E is somewhat different from that of diagrams C and D in

that there are two fermion lines in diagrams E, but the final formula reduces to a similar one

to that of C and D,

M(1)E
s =

g

s
[v̄(p2)γ

µPLu(p1)] gµν

[
M̃(1)E

s

]ν
, (A.66)

with [
M̃(1)E

s

]ν
=

−2g2λFSM

Mpl
[
¯̃
ψρ(p3)v(p4)]

∫ 1

0
dxdydzδ(x+ y + z − 1)6y

×
∫

d4ℓ

(2π)4
ℓ2gνρ − 4z(1− y − z)pν3p

ρ
4 + 4z2pν4p

ρ
4

(ℓ2 −∆)4
. (A.67)

Diagrams F

Also for diagrams F,

M(1)F
s =

g

s
[v̄(p2)γ

µPLu(p1)] gµν

[
M̃(1)F

s

]ν
, (A.68)
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Figure 22: Gravitino production process at at one-loop level: diagrams F

with [
M̃(1)F

s

]ν
=

2g2λFSM

Mpl

∫
d4k

(2π)4
1

[k2 −M2]2
1

(k − p4)2 −M2
× ¯̃
ψρ(p3)γ

νγρv(p4)

=
4g2λFSM

Mpl
[
¯̃
ψν(p3)v(p4)]

∫
d4k

(2π)4
1

[k2 −M2]2
1

(k − p4)2 −M2
. (A.69)

The integral can be explicitly implemented,∫
d4k

(2π)4
1

[k2 −M2]2
1

(k − p4)2 −M2
= − i

2(4π)2
1

M2
. (A.70)

We get [
M̃(1)F

s

]ν
= − 2ig2λFS

(4π)2MplM
[
¯̃
ψν(p3)v(p4)]. (A.71)

Combine

First let us combine the amplitudes of diagrams C, D and E,[
M̃(1)C

s

]ν
+
[
M̃(1)D

s

]ν
+
[
M̃(1)E

s

]ν
=

−12g2λFSM

Mp
[
¯̃
ψρ(p3)v(p4)]

∫ 1

0
dxdydzδ(x+ y + z − 1)

×
∫

d4ℓ

(2π)4
ℓ2gνρ − 2z(x− z)(pν3p

ρ
4 + pν4p

ρ
4)

(ℓ2 −∆)4
.

(A.72)
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Integrals can be implemented explicitly,∫
d4ℓ

(2π)4
ℓ2

(ℓ2 −∆)4
= − i

3

1

(4π)2
1

∆
, (A.73)∫

d4ℓ

(2π)4
1

(ℓ2 −∆)4
=
i

6

1

(4π)2
1

∆2
. (A.74)

Inserting these formula,[
M̃(1)C

s

]ν
+
[
M̃(1)D

s

]ν
+
[
M̃(1)E

s

]ν
=

4ig2λFSM

(4π)2Mp
[
¯̃
ψρ(p3)v(p4)]

∫ 1

0
dxdydzδ(x+ y + z − 1)

×
[
1

∆
gνρ +

1

∆2
z(x− z)(pν3p

ρ
4 + pν4p

ρ
4)

]
. (A.75)

We define dimensionless functions f1(s,M
2) and f2(s,M

2),

f1(s,M
2) ≡M2

∫ 1

0
dxdydzδ(x+ y + z − 1)

2

∆
, (A.76)

f2(s,M
2) ≡M4

∫ 1

0
dxdydzδ(x+ y + z − 1)

2

∆2
z(x− z), (A.77)

to make the amplitude more simple,[
M̃(1)C

s

]ν
+
[
M̃(1)D

s

]ν
+
[
M̃(1)E

s

]ν
=

2ig2λFS
(4π)2MplM

[
¯̃
ψρ(p3)v(p4)]

[
f1(s,M

2)δρµ +
1

M2
f2(s,M

2)(p3µp
ρ
4 + p4µp

ρ
4)

]
. (A.78)

Together with the contribution from diagrams F,[
M̃(1)C

s

]ν
+
[
M̃(1)D

s

]ν
+
[
M̃(1)E

s

]ν
+
[
M̃(1)F

s

]ν
=

2ig2λFS
(4π)2MplM

[
¯̃
ψρ(p3)v(p4)]

[
[f1(s,M

2)− 1]δρµ +
1

M2
f2(s,M

2)(p3µp
ρ
4 + p4µp

ρ
4)

]
.

(A.79)

Altogether,

M(1)
s =

g

s
[v̄(p2)γ

µPLu(p1)] gµν

[
M̃(1)

s

]ν
=

2ig3λFS
(4π)2MplM

1

s
[v̄(p2)γ

µPLu(p1)] [
¯̃
ψρ(p3)v(p4)]

[
[f1(s,M

2)− 1]δρµ +
1

M2
f2(s,M

2)(p3µp
ρ
4 + p4µp

ρ
4)

]
.

(A.80)

Inserting the explicit formula for each spinor, we get helicity amplitudes. We can see that

the terms proportional to f2(s,M
2) vanish for a high energy limit. The function f1(s,M

2)

can be rewritten by the C-function,

f1(s,M
2) = −2M2C0(

√
s,M). (A.81)

71



The final results are

M(1)(↑↓↑↑)
s = − 2ig3λFS√

6(4π)2MplM
[2M2C0(

√
s,M) + 1]

√
s sin θ, (A.82)

M(1)(↑↓↓↓)
s =

2ig3λFS√
6(4π)2MplM

[2M2C0(
√
s,M) + 1]

√
s sin θ, (A.83)

M(1)
s (others) = 0. (A.84)

Together with the tree-level contributions, we see that the calculations with supergravity

Lagrangian indeed reproduce the formulae given by global SUSY calculations, as in Eq. (2.25).

B Interactions and decays of S

B.1 Pseudo-moduli interactions with the MSSM fields

The pseudo-moduli S interacts with the MSSM fields through the messenger loop diagrams.

The interactions can be read off from the ⟨S⟩ dependence of the low energy parameters [53, 54].

Since we follow the cosmological evolution of the real component of S field, we only list the

interactions between the real component of S and the MSSM fields which are needed to

study the decay of S. In the following in this section we have implicitly took the imaginary

component of S to be zero.

For scalar fields f̃ , the effective interaction Lagrangian is written as

Lf̃ =
(mf̃

eff)
2

⟨S⟩
Sf̃ †f̃ + h.c. (B.1)

The effective mass parameter (mf̃
eff)

2 is a part of the scalar mass that is proportional to

1/|⟨S⟩|2. One element of the scalar mass is the contribution from the gauge mediation,

(mf̃
GM)2 =

[
g2

(4π)2

]2
· 2C2

∣∣∣∣m2

⟨S⟩

∣∣∣∣2 , (B.2)

which is induced at the messenger mass scaleMmess. If the gauge mediation is the only source

of the scalar mass, mf̃
eff is identical to their mass. In that case, mf̃

eff is the gauge mediation

contribution plus the radiative corrections. In the model of interest, mHu consists of two

sources; one is from the gauge mediation and the other is from the direct coupling to the

pseudo-moduli (C.1). The latter piece does not depend on ⟨S⟩ so is nothing to do with the

effective coupling constant.
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Since we evaluate the abundance of non-thermally produced higgsino to check the BBN

constraint later, we list the interaction with higgsino,

Lh̃ = −µeff
⟨S⟩

S (h̄cd · PLhu) + h.c. (B.3)

The coefficient µeff is a part of µ that is proportional to 1/⟨S⟩. Actually, in the model µ-term

is generated at the cutoff scale Λ through the Kähler potential Eq. (C.1) and it does not have

⟨S⟩ dependence. The VEV dependence of µeff appears only through the renormalization

group running, but the effect is very small for the µ-term. The effective coupling µeff is

suppressed compared to the µ-term, typically

|µeff | ∼ 0.01× |µ|. (B.4)

Among the effective coupling, the Higgs mass parameter mHu
eff is enhanced by the large

renormalization group running [54],

−(mHu
eff )2 = (κmB̃)

2, (B.5)

with

κ ≃ 3− 4. (B.6)

B.2 Decays of pseudo-moduli

Main decay mode

The S field mainly decays into the MSSM particles. Since the mass parameter mHu
eff is

enhanced over other SUSY breaking parameters, the decay rate into the Higgs boson is

enhanced. For mS > 2mh, the main decay channel turns out to be S → hh,ZZ and WW ,

where the gauge bosons are longitudinally polarized [54],

ΓS→hh + ΓS→ZZ + ΓS→WW ≃ 1

8πmS

(
(mHu

eff )2 sin2 β

⟨S⟩

)2

. (B.7)

We define the decay temperature of S by

Td ≡
(
π2g∗
90

)−1/4√
MplΓS , (B.8)

where ΓS is the total decay width of S. By approximating the total decay width by that of

the main channel, we get

Td ≃ 68GeV
( g∗
15

)−1/4 ( mHu
eff

5 TeV

)2 ( mg̃

5 TeV

)3/4 ( m3/2

500 MeV

)−5/4

. (B.9)
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Non-thermal gravitino production

Gravitinos are also produced non-thermally by the rare decay S → ψ3/2ψ3/2. The interaction

between the pseudo-moduli field and the gravitino (goldstino) appears from the higher term

of the Kähler potential in Eq. (5.28), and the decay width is calculated to be [53, 54]

Γ3/2 =
1

96π

m3
S

M2
pl

(
mS

m3/2

)2

. (B.10)

If S dominates the energy density of the Universe, non-thermal gravitino abundance is

calculated to be

ΩNT
3/2 =

3

4
m3/2

Td
mS

× 2B3/2/(ρc/s)0, (B.11)

where (ρc/s)0 ≃ 1.8 × 10−9GeV is the critical density divided by the entropy density at

present. The main decay mode of S is S → hh, ZZ and WW , and the non-thermal gravitino

is estimated as

ΩNT
3/2 ≃ 0.2

( m3/2

2 GeV

)9/4 ( mg̃

5 TeV

)5/4 ( mHu
eff

5 TeV

)−2
. (B.12)

The Dark Matter is also explained by non-thermally produced gravitino with m3/2 ∼ 2GeV.

This statement does not depend on the initial condition of S as long as the pseudo-moduli

once dominates the energy density of the Universe. Taking into account possible theoretical

errors, we show the parameter region where 0.03 . ΩNT
3/2h

2 . 0.3 is predicted as a pink band

in Fig. ??. In the pink region thermal leptogenesis is also possible with a suitable value of

the reheating temperature

C µ-problem and a light higgsino

C.1 A solution to the µ-problem

Here we present a possible solution to the µ-problem. As we see below, the solution predicts

a relatively light higgsino compared to MSUSY. We check whether a light higgsino scenario

is allowed by the BBN constraint.

In order to avoid too large µ-term, we assume an approximate Peccei-Quinn (PQ) U(1)

symmetry with a charge assignment PQ(Hu) = PQ(Hd) = 1. Also, to realize the relation

µ2 ∼ m2
Hu

, we assume the following general interactions between S and the Higgs superfields

at the cutoff scale [52],

K(Higgs) =

(
cµ
S†HuHd

Λ
+ h.c.

)
− cH

S†S(H†
uHu +H†

dHd)

Λ2
, (C.1)
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where the PQ charge of S is fixed as PQ(S) = 2. Once the F -component of S develops a

VEV, µ-term and the Higgs scalar mass terms emerge at the scale Λ. The relation µ2 ∼ m2
Hu

,

which is needed for satisfying the condition of electroweak symmetry breaking without a

serious fine-tuning, naturally realizes if the coefficients cµ and cH are both O(1).

Possible origins of the Kähler potential (C.1) are discussed in Ref. [52] by studying

dynamics of UV models above the cutoff scale Λ. There, it is found that the coefficients cµ

and cH tend to have a mild hierarchy, and we typically have µ/mH ∼ 1/10. This hierarchy

implies that the Higgs scalar mass parameter mHu tends to be above the order of TeV scale

for a moderate value of µ-term, namely mHu & O(1) TeV for µ & O(100) GeV.

We do not regard this small hierarchy as catastrophic; actually, this hierarchy is consistent

with the relatively heavy Higgs boson mass. In order for the electroweak symmetry to be

broken radiatively, the condition

M2
Z

2
≃ −µ2 −m2

Hu
(Λ)− δm2

Hu
(C.2)

must be satisfied. δm2
Hu

is a contribution from the radiative corrections. With positive

m2
Hu

(Λ) and µ2 ≪ m2
Hu

(Λ), δm2
Hu

must be negative and large to satisfy the condition (C.2),

which is realized by the contributions from the stop-loop diagrams if the stop mass mt̃ is

large. Large stop mass subsequently induce a large contribution proportional to m2
t̃
to the

Higgs boson mass again through the stop-loop diagram to realize a relatively heavy Higgs

boson. In summary, in this set-up, the µ-problem is ameliorated by the generalized version

of the Giudice-Masiero mechanism with the Kähler potential in Eq. (C.1), which in turn

leads the relatively small µ-term and the relatively heavy Higgs boson mass in accord with

mh = 125 GeV.

Although it is difficult to discover a SUSY particles at the LHC experiments when

MSUSY ∼ 5 TeV, it predicts a light higgsino with mh̃ ≃ O(100)GeV. Therefore, in this

scenario, there is a chance to discover a light higgsino in the future experiment.

C.2 Constraints from BBN

The light higgsino in GMSB is subject to the constraints from BBN. The constraints on the

primordial abundance of the lightest neutralino χ is studied in Ref. [87]. They analyzed the

decay process of the neutralino and presented constraints on Yχ = nχ/s, the yield of χ, in a

Bino-like NLSP case. We use the constraints to derive those for the higgsino.

Since the life-time of a neutralino χ is approximately proportional tom2
3/2/m

5
χ, constraints
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on the primordial abundance are more severe for larger m3/2 or smaller mχ. We focus on

a case that the mass of NLSP (in our case higgsino) is 300 GeV. According to Ref. [87], if

the gravitino is heavier than ∼ 500 MeV, the stringent bound on the bino abundance comes

from the overproduction of the Deuterium. For 10 MeV . m3/2 . 500 MeV, the bound is

from the overproduction of 4He,

mB̃YB̃ . 10−13GeV (500 MeV . m3/2 . 100 GeV), (C.3)

mB̃YB̃ . 10−9GeV (10 MeV . m3/2 . 500 MeV). (C.4)

The bound is much weaker for m3/2 . 10 MeV. We estimate the higgsino abundance in the

scenario and check whether a light higgsino is allowed by BBN.

Higgsinos are produced non-thermally from the decay of the pseudo-moduli,

Yh̃ =
3

4

Td
mS

× 2Bh̃, (C.5)

where Bh̃ is the branching ratio of the decay process S → h̃h̃ and the decay temperature Td

is well approximated by Eq. (B.9). Yh̃ depends on two effective couplings : mHu
eff and µeff

defined in appendix ??. Remaining these parameters, the higgsino abundance is estimated

as

mh̃Yh̃ ≃ 1.2× 10−7GeV
( m3/2

500 MeV

)−3/4 ( mHu
eff

5 TeV

)−2 ( µeff
5 GeV

)2
. (C.6)

The abundance of the non-thermally produced higgsinos is decreased by the subsequent

annihilation process. This effect can be taken into account by solving the Boltzmann equation,

ṅh̃ + 3Hnh̃ = −⟨σv⟩n2
h̃
, (C.7)

where ⟨σv⟩ is the thermal averaged annihilation cross section of higgsino [88] † ,

⟨σv⟩ = g4

128πµ2

(
3

2
+ tan2 θW +

tan2 θW
2

)
, (C.8)

where θW is Weinberg angle. The solution of the Boltzmann equation (C.7) is approximated

by a simple analytic formula [89, 54]. In terms of the yield value Yh̃ = nh̃/s,

Yh̃(T ) ≃

[
1

Yh̃(Td)
+

√
8π2g∗(Td)

45
⟨σv⟩Mpl(Td − T )

]−1

. (C.9)

†We have not included co-annihilation effects to make a conservative estimate.

76



If the initial abundance Yh̃(Td) produced by the decay of S is large enough, the resultant

abundance for T ≪ Td is independent of Yh̃(Td). In this case, the abundance is estimated by

Yh̃ ≃ 8.2× 10−13

(
15

g∗

)1/2(10 GeV

Td

)(
10−8 GeV−2

⟨σv⟩

)
. (C.10)

For higgsino with mh̃ = 300 GeV,

mh̃Yh̃ ≃ 3.9× 10−11GeV
(15
g∗

)3/4( mHu
eff

5 TeV

)−2 ( mg̃

5 TeV

)−3/4 ( m3/2

500 MeV

)5/4 ( µ

300 GeV

)2
.

(C.11)

Compared with Eq. (C.3) and (C.4), we see that the higgsino abundance is below the BBN

constraint for m3/2 . 500 MeV with the help of the annihilation process.
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