
Infinite Games, Inductive Definitions and
Transfinite Recursion

著者 吉居  啓輔
学位授与機関 Tohoku University
学位授与番号 11301甲第15407号
URL http://hdl.handle.net/10097/57119

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235955918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


博士論文

Infinite Games, Inductive Definitions and
Transfinite Recursion

(無限ゲーム, 帰納的定義, 超限的再帰)

吉居 啓輔

平成25年

1



Contents
1. General introduction

2. Introduction

3. Preliminaries

3.1 Major subsystems of second order arithmetic

3.2 Some relations of subsystems of second order arithmetic

4. Difference sets

4.1 Hausdorff’s difference sets

5. Inductive definitions

5.1 Inductive definitions

5.2 Transfinite recursion of inductive definitions

5.3 Multiple inductive definitions

6. Conclusion and future studies

2



Motivation of this research

The purpose of this research is to investigate the logical strength of determinacy

of Gale-Stewart games from the standpoint of reverse mathematics. More precisely,

we observe the determinacy of infinite games on the hierarchy between Σ0
2 and ∆0

3 by

using variations of inductive definitions. The inductive definition is first formalized as

a subsystem of second order arithmetic by K. Tanaka in [17] in order to characterize

the determinacy of Σ0
2-games. The determinacy of ∆0

3-games are pinned down with

the inductive definition with transfinitely many operators ([9]). In this research,

we prove that the determinacy on finer classes, so-called difference classes, can be

characterized by inductive definitions with multiple operators and their transfinite

recursion.

This thesis consists of six chapters. In chapter 1, we give an overview of back-

grounds on most important concepts in this thesis. In chapter 2 and 4, we explain the

basic knowledge and fundamental results for this research. In chapter 5, the proofs

of the main theorem begins, theorem 5.2.2. We also explain some proofs which had

been obtained by previous researches especially in [17] and [9] because theorem 5.2.2

can be viewed as a general version of them. Thus, we, in some parts, modify their

proofs in order to be used for the proof of the main theorem.

We explain the some key topics in thesis thesis such as reverse mathematics,

determinacy of Gale-Stewart games, inductive definitions and so forth below.

【Reverse Mathematics Program】

This research is a part of the reverse mathematics program, founded by Harvey

Friedman in 1970’s.

In the study of reverse mathematics, we formalize ordinary mathematics by using

an language of second order arithmetic L2. This is a two-sorted language, whose

variables are ranging over natural numbers and subsets of natural numbers. An

arithmetic with two-sorted language is called second order arithmetic, denoted by

Z2. Z2 consists of infinitely many axiom systems with different strengths. We explain

the major subsystems of Z2 in section 3.1 of chapter 3.

The main theme of the reverse mathematics program is the following:

Find out necessary and sufficient axiom systems to prove theorems of ordinary

mathematics.

By the decades of studies, it is proved that most of classical mathematical the-

orems are equivalent to one of five subsystems of Z2. These systems are called a

big five and extensively studied by many researchers. A book titled “Subsystems of
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Second order arithmetics”, by Stephen G. Simpson, is the standard text book of this

area [13].

【Determinacy of Gale-Stewart games】

In this research, we investigate logical strength of determinacy of Gale-Stewart games

in second order arithmetic Z2. This game is named after D. Gale and F. M. Stewart.

This is a very simple game as follows: Let A ⊆ NN be a set of infinite sequences

of natural numbers. Two players, player I and player II, choose natural numbers

in turn, and eventually an infinite sequence of natural numbers n0, n1, n2 . . . will

be constructed. Then, Player I wins if n0, n1, n2 · · · ∈ A, and player II wins if

n0, n1, n2 · · · 6∈ A.

In such a game, it may be natural to think that computing a winning strategy

becomes harder if a set A becomes more complicated, such as, a clopen, open, Borel,

and so on. If one of the players has a winning strategy in a game GA for any open

set A, then we call the open game GA is determinate, or simply open determinacy.

(So, if the same thing holds for any Borel sets A, we call Borel game is determinate,

or Borel determinacy.)

Indeed, Borel determinacy is too strong for second order arithmetic Z2 to prove it.

In order to prove Borel determinacy, we need stronger axiom systems, and actuary

D. Martin in 1975 showed that Zermelo-Fraenkel set theory plus axiom of choice,

denoted by ZFC, can prove Borel determinacy. However, it is known that ZFC can

not prove the determinacy of all projective sets. Determinacy of games can be a

quite strong statement, and it easily goes beyond axiom system Z2 or even ZFC.

Assuming the determinacy of games, we can get many interesting results, but some

question may arise: “what does the determinacy assert?”

Indeed, determinacy of games can be regarded as statements asserting existences

of sets with certain complexities. In this research, we give a characterization to

relatively weak determinacy of games by subsystems of second order arithmetic Z2,

called inductive definitions.

【Inductive definitions and their transfinite recursion】

Inductive definition as a subsystem of second order arithmetic is first introduced by

K.Tanaka in [17]. That is,

Definition 1 (K.Tanaka, 1991). Let C be a class of L2-formulas. Γ-ID asserts that

for any operator Γ ∈ C, there exists a set W ⊆ N × N such that:

1. W is a pre-well-ordering on its field F ,

2. ∀x ∈ F Wx = Γ(W<x) ∪ W<x,

3. Γ(F ) ⊂ F .
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where, Wx = {y ∈ F : (y, x) ∈ W}, W<x = {y ∈ F : (y, x) ∈ W , and (x, y) /∈ W}.

Inductive definitions are quite natural ways to define sets. We let Γ be an operator

from P(N) to P(N). Then, applying it to an empty set ∅, we obtain a set Γ(∅). After

that, again, apply Γ to Γ(∅) and take a union of them, we have Γ(∅) ∪ Γ(Γ(∅)).
If this procedure is continued and taking unions of them such as Γ(∅) ∪ Γ(Γ(∅)) ∪
Γ(Γ(∅) ∪ Γ(Γ(∅))) ∪ . . . , the axiom scheme of inductive definition asserts that there

exists a fixed points F such that Γ(F ) ⊂ F . In this research, we basically consider

Σ1
1-operators. An operator Γ : P(N) → P(N) is Σ1

1 if its graph is expressed by a Σ1
1

formula. Then, an axiom scheme, inductive definition with a Σ1
1-operator, is denoted

by Σ1
1-ID0.

In 1991, K. Tanaka formalized the inductive definitions in second order arithmetic

and showed that Σ1
1-ID0 is equivalent to the determinacy of Σ0

2 games. This is one of

the most important results, and this research is based on it. One of the importances

can be that Σ1
1-ID0 is introduced as a subsystem of Z2. Sets defined by Σ1

1-ID0

are different from those defined by ordinary comprehension axioms. This difference

makes us possible to investigate the structure of subsystems of Z2 from different

aspects.

In the sense of determinacy, it is not possible to characterize Σ0
2-determinacy

by comprehension axioms. The strongest determinacy which is pinned down by a

subsystem of Z2 is ∆0
3-determinacy, and it is known to be equivalent to [Σ1

1]
TR-ID0

[9]. ([Σ1
1]

TR-ID0 asserts the existance of sets defined by Σ1
1-ID0 with transfinitly

many operators.) In this research, in order to investigate the logical strength of

determinacy between classes of Σ0
2 and ∆0

3, known as Wedge classes, we introduced

the following axiom system. For easiness, we just see the case where the number of

Σ1
1-operators is two.

Definition 2. The formal definition of [S0, S1]-IDTR0 consists of ACA0 and the

following axiom scheme: Let S0 and S1 are collections of operators. The axiom

scheme [S0, S1]-IDTR0 asserts the following. For any well-ordering ¹ and any Γ0 ∈
S0, Γ1 ∈ S1, there exist 〈W r : r ∈ field(¹)〉, 〈V r,x : r ∈ field(¹), x ∈ F r

1 〉 and

〈V r,∞ : r ∈ field(¹)〉 such that the following are all satisfied.

1. W r is pre-well-ordering on its field F r
1 .

2. ∀x ∈ F r
1 ∪ {∞}

• V r,x is pre-well-ordering on its field F r,x
0 .

• V r,x
y = ΓF≺r

1 ⊕W r
<x

0 (V r,x
<y ) ∪ V r,x

<y for all y ∈ F r,x
0 .

• W r
x = ΓF≺r

1
1 (F r,x

0 ) ∪ W r
<x.
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• ΓF≺r
1 ⊕W r

<x

0 (F r,x
0 ) ⊂ F r,x

0 .

3. W r
∞ = W r

<∞ = F r
1 .

where F≺r
1 = ⊕{F ri

1 : ri ≺ r}. Note also that X ⊕ Y = {2x : x ∈ X} ∪ {2y + 1 : y ∈
Y }.

This axiom system asserts the existence of sets defined by transfinite recursion of

Σ1
1-ID0 with multiple operators. Then, by using this axiom system, we characterize

the determinacy of classes between Σ0
2 and ∆0

3.

Theorem 3 (Main Theorem). Over RCA0, the following are equivalent. For any

k > 0,

(1) ∆((Σ0
2)k+1)-Det.

(2) Sep(∆0
2, (Σ

0
2)k)-Det.

(3) [Σ1
1]

k-IDTR0.

Conclusion

The following diagram shows the results on determinacy strength of ∆0
3 games

in second order arithmetic. The left column contains subsystems of second order

arithmetic from weaker to stronger. The right column contains classes of the games

in the Baire space. Each row represents that a certain axiom is equivalent to the

determinacy of the corresponding games over appropriate systems (RCA0, but with

Π1
3-TI for the last row).

Subsystem of SOA Determinacy in Baire space

ATR0

∆0
1

Σ0
1

Π1
1-CA0

∆((Σ0
1)2) = Sep(∆0

1,Σ
0
1)

(Σ0
1)2

Π1
1-TR0 ∆0

2

Σ1
1-ID0

Σ0
2

Sep(∆0
1, Σ

0
2)

Sep(Σ0
1, Σ

0
2)

Σ1
1-IDTR0 ∆((Σ0

2)2) = Sep(∆0
2,Σ

0
2)

...
...

[Σ1
1]

k-ID0 (Σ0
2)k

[Σ1
1]

k-IDTR0 ∆((Σ0
2)k+1) = Sep(∆0

2, (Σ
0
2)k)

...
...

[Σ1
1]

TR-ID0 ∆0
3
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In this thesis, we introduced the axiom of transfinite recursion of Σ1
1 inductive

definitions with k operators, denote [Σ1
1]

k-IDTR0, and showed that it is equivalent to

the determinacy of ∆((Σ0
2)k+1) sets. A key fact used in the proof is that a ∆((Σ0

2)k+1)

set is expressed as a Sep(∆0
2, (Σ

0
2)k) set, namely a ∆0

2-separated union of a (Σ0
2)k set

and (Π0
2)k set. By virtue of this fact, we can utilize a difference hierarchy for a ∆0

2

set (cf. [16], [9]) to construct a winning strategy for a ∆((Σ0
2)k+1) game.

In [9], the exact determinacy strength of ∆0
3 sets has been pinned down in terms

of transfinte combinations of Σ1
1 inductive definitions. We should notice that their

axiom for transfinte combinations of Σ1
1 inductive definitions is much stronger than

[Σ1
1]

k-IDTR0. However, it is worth studying such an axiom as [Σ1
1]

α-IDTR0, where α

is an ordinal, to refine their result on ∆0
3-games.

Montalbán ans Shore [11] show that for any m ≥ 1, Π1
m+2-CA0 proves the de-

terminacy of (Σ0
3)m sets, but ∆1

m+2-CA0 does not. Thus, (Σ0
3)ω-determinacy is not

provable over Z2. Then, Montalbán [10] raises Question 28 to classify the precise

strength of (Σ0
3)m-determinacy.

In [1], Bradfield has shown that the sets of Player I’s winning positions of a (Σ0
2)k-

game are exactly the same as the (k + 1)-level of µ-calculus alternation hierarchy

Σµ
k+1. Then, Bradfield [2] claims that the hierarchy 〈Σµ

n, n ∈ ω〉 is strict, that is, for

any k in ω, we have Σµ
k & Σµ

k+1. This result easily follows from the previous result

on multiple inductive definitions ([9]) together with observation that for any k in

ω, Π1
2-CA0 proves the consistency of ∆1

2-CA0 + (Σ0
2)k-determinacy, while it does not

prove the consistency of (Σ0
2)<ω-determinacy. (cf. Heinatsch and Möllerfeld [4])

From the main result of this paper, we will also obtain the following refinement.

First of all, the hierarchy 〈Πµ
n, n ∈ ω〉 is naturally defined and so is 〈∆µ

n, n ∈ ω〉.
Then, by the argument of this paper, we can associate a ∆µ

n+1 formula with transfi-

nite recursion of a Σµ
k formula. Moreover, for any k in ω, we have Σµ

k & ∆µ
k+1 & Σµ

k+1

by a similar observation as above.
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