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ABSTRACT 

The vast territory of Mongolia occupies a large part of the Central Asian Orogenic Belt (CAOB) or 

Altaids, that developed between the Siberian Craton to the north and the Tarim and Sino-Korean 

Cratons to the south. Tectonic history of the CAOB has important implications for the growth 

mechanisms of continental crust in Eurasia. The Hangay-Hentey belt is situated in central Mongolia 

and made up of a Pacific-type accretionary orogen, which were formed through evolution and closure 

of the Hangay-Hentey paleo-ocean in the period from Paleozoic to Early Mesozoic. From this belt, 

new geochemical and petrological results are presented for greenstones from the Erdenetsogt 

Formation hosted by the Tsetserleg accretionary terrane in the Hangay region with particular 

emphasis on newly found picritic and andesitic rocks. These rocks occur mostly in the lower portion of 

Erdenetsogt Formation as massive lavas, sills, and dikes closely associated with varicolored bedded 

ribbon-cherts and siltstones. The protoliths of the studied greentones comprise (1) enriched, plume-

derived tholeiitic greenstones including picrites and ferrobasalts with oceanic plateau basalt affinity, (2) 

non-enriched, plume-derived tholeiitic basalts with E-MORB affinity, and (3) arc-derived high-Mg 

andesites (HMAs). The plume-derived rocks are characterized by chemical signatures such as slight 

LREE enrichment similar to that of tholeiitic OIB and the existence of ferropicrite with high FeO* (>14 

wt%) and MgO (12-22 wt%), which is characteristic of large igneous provinces (LIPs) including 

oceanic plateaus. Their tholeiitic composition and high-Fe and -Ti contents require melting of the 

source mantle peridotite with addition of some recycled Fe- and Ti-rich basaltic material. The non-

enriched basalts may have been generated by a higher degree of melting of the same source mantle. 

The HMAs are characterized by glassy texture, high MgO content (up to 7 wt%), and significant LREE 

enrichment with depletion in Nb, and resemble sanukite of the Setouchi volcanic belt, SW Japan. I 

infer that the Hangay tholeiitic greenstones probably represent an accreted upper section of an 

oceanic plateau, that developed in the deep-water region of the Hangay-Hentey paleo-ocean in the 

Devonian. In contrast, the Hangay HMAs may have been produced by subduction of young oceanic 

plate, which took place after an oceanward back-stepping of the subduction zone that was a result of 

the collision of the oceanic plateau and the active continental margin of the Central Mongolian Massif 

during the Carboniferous.  
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CHAPTER 1 INTRODUCTION 

1.1  Background 

The vast territory of Mongolia occupies a large part of the Altaids (Şengör et al., 1993; Şengör and 

Natal’in 1996; Yakubchuk, 2004) or Central Asian Orogenic Belt (CAOB) which extends from the Ural 

Mountains to the Pacific Ocean and from the Siberian craton to the Tarim and Sino-Korean cratons 

and which formed by the accretion of island arcs, ophiolites, oceanic islands, seamounts, accretionary 

wedges, oceanic plateaus, and microcontinents (Zonenshain et al., 1990; Mossakovsky et al., 1994; 

Zorin, 1999; Badarch et al., 2002; Khain, 2002; Windley et al., 2007; Xiao, 2008) (Fig. 1.1). The CAOB 

is probably the largest accretionary orogeny of earth, which evolved from about 1 Ga to 250 Ma 

(Windley et al., 2007), and thus overlaps in time with the accretionary orogeny of the Japanese Islands. 

The origin and evolution the CAOB is still controversial and two main models merge to account for the 

evolution of the CAOB (see review of Wilhem et al., 2012): 1) tectonic duplication and amalgamation 

of one or several major arcs of same origin; and 2) multiple amalgamation of many microcontinents 

and island arcs of different origins. 

The Hangay-Hentey (or Khangai-Khentei in some literature) belt is located in central Mongolia 

(Fig.2.1) and records a progressive accretionary orogeny of the CAOB from the Middle Cambrian to 

the Early Mesozoic. In recent years, numerous oceanic crust fragments have been found and 

identified within this belt, especially in the Hentey region. Nevertheless, the geology and petrology of 

its western part (Hangay region) that comprises a Devonian-Carboniferous accretionary complex 

remain unstudied. In the 1990s, some basaltic greenstones intercalated with siliceous-turbidite-

terrigenous sequences were reported from the lower portion of the thick Erdenetsogt Formation 

(~4000 m) of the Tsetserleg terrane of the Hangay-Hentey belt during 1:50,000 scale geological 

mapping in the southern flank of the Hangay Range (Lhundev et al., 1994). However, the 

geochemistry of these greenstones has not been studied in detail, except for brief descriptions by 

Orolmaa and Erdenesaikhan (2008) and Tsukada et al. (2013). The geochemical characteristics of 

Middle Paleozoic greenstones are of particular interest for understanding the geodynamic evolution of 

western end of the Hangay-Hentey belt (Orolmaa et al., 2008; Safonova et al., 2009, 2012). To 

address these issues, geological fieldworks were conducted in summers of 2011 and 2012 in the 

Uyanga area of the southern Hangay region.  
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In this doctoral thesis, newly identified occurrences of picritic (Le Bas, 2000; >12 MgO wt%) and 

andesitic greenstones within the Middle Paleozoic Tsetserleg accretionary terrane in central Mongolia 

are presented. In western Mongolia and adjacent areas, picritic and picrodoleritic magmatism formed 

in various geodynamic settings including accretionary-collision, intraplate including large igneous 

provinces (LIPs), island arc, and backarc-basin spreading during various periods ranging from 

Cambrian to Early Carboniferous have been studied (Oyunchimeg et al., 2009; Izokh et al., 2011; 

Shkol'nik et al., 2013). However, picrites (especially ferropicrites) have yet to be reported from the 

Hangay-Hentey belt. On the other hand, although andesites have been documented from accretionary 

complexes (e.g., the Zag-Haraa, Asralthairhan, and Onon) terranes within the Hangay-Hentey belt 

(Tomurtogoo, 2002, 2006, 2012; Badarch et al., 2002, 2003; Byamba et al., 2009), the high-Mg 

andesite (HMA) from the Hangay region was discovered for the first time and is reported in this study.  

The main part of this thesis is published as Erdenesaihan et al., (2013). The basic characteristics 

of these particular important rocks are given in following sections. In this thesis, figures are set in the 

text, but tables are attached at the end of the text. 

Figure 1.1 (a) Insert map showing outline of the Central Asian Orogenic Belt (CAOB) as shaded area 

and surrounding Precambrian Cratons, and location of Mongolia. (b) Simplified lithotectonic map of 

Mongolia, showing the location of the Hangay-Hentey belt (Modified after Badarch et al., 2002). 
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1.1.1 Ferropicrite 

Ferropicrites are sub-alkaline or mildly alkaline primitive rocks that were first recognized by Hanski and 

Smolkin (1989) and Hanski (1992) in the Early Proterozoic Pechenga volcanic belt in the Kola 

Peninsula of the Baltic shield and in this study, the criterion for designating picritic rocks >14 wt% 

FeO* (Fe2O3*>15.5 wt%) is adopted. Since this time, not only Precambrian but also Phanerozoic 

ferropicrites have been recognized from some LIPs and greenstone belts (LIPs: e.g., Siberian Traps, 

Parana-Etendeka, and greenstone belt of Mino-Tamba, SW Japan) as relatively less amount of lava 

flows or dikes (Arndt et al., 1998; Gibson et al., 2000; Gibson, 2002; Ichiyama et al., 2006, 2007, 

2008). The ferropicrites have long been misidentified as enriched-komatiites or Al-depleted komatiites. 

Besides significantly higher FeO* contents (Fig 1.1), they differ from komatiites in that they have 

enriched in Ti (1-2 wt% TiO2), incompatible trace elements and significantly lower Al2O3 contents 

(generally <10 wt%). These geochemical differences require a different petrogenesis for ferropicrites. 

Various petrogenetic models have been proposed for the origin of ferropicrites with mantle 

heterogeneities, i.e., streaks of Fe-rich peridotite (Hanski and Smolkin, 1995; Gibson et al., 2000; 

Goldstein and Francis, 2008) or recycled oceanic crust (Gibson et al., 2002; Ichiyama et al., 2006).  

 

Figure 1.2 Variations of FeO* (total Fe) and MgO for Archean to Recent high-Mg rocks. Data sources 

from: Hawaii (Norman and Garcia, 1999), Caribbean (Revillion et al., 1999), Parana-Etendeka (Gibson 

et al., 2000), Siberia (Arndt et al., 1995), Pechenga (Hanski and Smolkin, 1989; Hanski, 1992), 

Western Superior Province (Goldstein and Francis, 2008), Gorgona (Kamnetsky et al., 2010). Abitibi 

(Stone and Stone, 2000). 
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1.1.2 High-Mg andesite (HMA) 

The HMA are peculiar island arc volcanic rocks that are currently thought to form by reaction between 

the sub-arc mantle wedge and SiO2-rich partial melt from subducted sediments or adakitic melt from 

hot subducted crust (Tatsumi and Ishizaka 1982; Li et al., 2013). Compositionally, the HMAs are 

generally classified into four types as sanukitic HMA (Setouchi volcanic belt in SW Japan), adalkitic 

HMA (Adac Island in the Aleutian arc), bajaitic HMA (Baja California Peninsula), and boninitic HMA 

(Bonin Island, Western Pacific) (Kamei et al., 2004). The adakitic and bajaitic HMA show high Sr/Y, 

and TiO2 compared with the boninitic HMA, whereas the sanukitic HMA have TiO2 and lower Sr/Y 

ratios (Fig.1.3). The boninitic HMA are very low in TiO2 and Y relative to other HMAs. Discrimination 

diagrams on the basis of above chemical features of HMAs show that the Hangay high-Mg andesites 

are can be classified into the sanukitic HMA.  

 

 

Figure 1.3 Discrimination diagrams for high-Mg andesites (after Kamei et al., 2004). Trace element 

compositions of the Hangay high-Mg andesites (this study) plotted in the field of the sanukitic HMA. 

Data sources are from Ishiwatari et al., 2006; Li et al., 2013; Rogers et al., 1985; Rogers and 

Saunders, 1989; Tatsumi et al., 2003, 2006; Yogodzinski et al., 1995.  

 



5 
 

1.2 Objective of this study 

The main emphasis in this study was on newly discovered picrite (ferropicrite) and high-Mg andesites 

from the lower portion of much thick Erdenetsogt Formation in the Tsetserleg terrane of the Hangay-

Hentey belt. The goals of this research was to clarify the petrogenesis of these greenstones, and 

examine the Middle Paleozoic oceanic magmatism and subduction-accretionary history related to the 

crustal growth processes of the Central Asian Orogenic Belt by presenting new field geological, 

petrological, and geochemical data and comparison with volcanic rocks from presently well-

established geologic settings. 

1.3 Material and method 

Nineteen samples selected for the geochemical study based on their relative freshness under 

microscopic observation. The samples were analyzed for their mineral chemical, major, and trace 

element compositions and the results are listed in Tables 1-6. 

Whole rock major element (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, and P) and nine trace element (V, 

Cr, Ni, Rb, Sr, Ba, Y, Zr, and Nb) compositions were analyzed by X-ray fluorescence spectroscopy 

(RIX2100, Rigaku Corp.) at the Graduate School of Science, Tohoku University, using the glass bead 

method. After grinding and drying at 105°C, 1g of rock powder was mixed with 5 g of lithium 

tetraborate flux and fused at 1150°C. The resultant glass bead was irradiated using X-rays from a Rh 

tube. The accelerating voltage and current were 50 kV and 50mA, respectively. Quantitative analyses 

of major and trace elements were performed using calibration curves determined by measurement of 

standards from the GSJ Igneous Rock Series.  

Major element compositions of igneous minerals were determined by energy-dispersive X-ray 

spectrometer (JEOL JSM-5410) at the Graduate School of Science, Tohoku University. The analyses 

were performed under an accelerating voltage of 15kV and a beam current of 1 nA on Co standard. 

The REE and trace element concentrations of whole rock (embedded fragments of whole rock 

glass beads in thin section) and clinopyroxene were determined by laser ablation (193 nm ArF 

excimer: MicroLas GeoLas Q-plus)-inductively coupled plasma mass spectrometry (Agilent 7500S) 

(LA–ICP–MS) at the Incubation Business Laboratory Center of Kanazawa University. The analytical 

details and quality of data are decribed in Morishita et al. (2005). Each analysis was performed by 
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ablating 50-60 μm diameter spots at 5 Hz with an energy density of 8 J/cm2 per pulse. Signal 

integration times were 50 s for the gas background and the ablation intervals. NIST SRM 612 glass 

was used as the primary calibration standard and was analyzed at the beginning of each batch of <3–

4 unknowns, with a linear drift correction applied between each calibration. The element 

concentrations of NIST SRM 612 were selected from the preferred values of Pearce et al. (1997). 

Data reduction was facilitated using Si as an internal standard for clinopyroxene, based on SiO2 

content obtained by EPMA analysis, following a protocol essentially identical to that outlined by 

Longerich et al., (1996). The accuracy of measurements estimated from analyses of the reference 

material (NIST SRM 614), was better than 4% in relative standard deviation for all elements. 
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CHAPTER 2 GEOLOGY AND TECTONICS OF THE HANGAY-

HENTEY BELT 

2.1 Review of geology and tectonics of the Hangay-Hentey belt 

Traditionally, the territory of Mongolia has been divided broadly into northern and southern orogenic 

domains, each with a distinct crustal structure (Badarch et al., 2002). The northern domain consists 

dominantly of Precambrian to Middle Paleozoic rocks and may belong to the southern counterpart of 

the Siberian Craton, whilst the southern domain is dominated by Early to Late Paleozoic rocks and 

may belong to the northern counterpart of the Tarim and Sino-Korean (or North-China) Cratons. These 

domains are separated by the Main Mongolian Lineament (Fig. 1.1). The Hangay-Hentey belt 

occupies the southeastern margin of the northern domain. The tectonic nature of this belt has been a 

subject of discussion since the first plate tectonic synthesis of Mongolia by Zonenshain, (1973), who 

was interpreted the Hangay-Hentey belt as “miogeosyncline basin” filled with much thick Paleozoic 

turbidites and underlying by continental crust. Until recent, the similar interpretations (turbidite 

terranes) has been shared by Kovalenko et al. (1996, 2004), Buchan et al. (2001), Badarch et al. 

(2002, 2003), and Jahn, (2004), viewing it as a continental block (“hidden” Archean-Neoproterozoic 

basement) overlain by a thick sedimentary cover. Beside this idea, the first idea that explaining its 

origin related to the subduction-accretionary process was suggested by Şengör et al., (1993), and 

Şengör and Natal’in, (1996), taking into consideration the presence of pelagic chert lenses in turbidites 

and complicated deformation of the belt. They envisaged that the Hangay-Hentey belt has been 

formed by development of the Hangay-Hentey Ocean between the Siberian Craton and the Tarim and 

Sino-Korean Cratons from Vendian-Cambrian to Permian period. Presently, the latter hypothesis is 

widely accepted and evidenced by recent comprehensive sedimentological, biostratigraphical, and 

geochemical studies conducted on rocks of oceanic plate stratigraphy, which occur as thrust slices 

(Tomurtogoo, 2002, 2006, 2012; Kurihara et al., 2006, 2009, Tsukada et al., 2006, 2013; Kelty et al., 

2008; Safonova et al., 2009; Bussien et al., 2011; Purevjav and Roser, 2012, 2013), and the 

hypothesis is partly demonstrated in the new tectonostratigraphic subdivision map of Mongolia 

(Tomurtogoo, 2012). The opening time of the Hangay-Hentey ocean or Mongol-Okhotsk ocean has 

been variably interpreted in the literatures: Vendian (Şengör et al., 1993; Şengör and Natal’in, 1996; 
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Tomurtogoo et al., 2005), Silurian (Zorin, 1999; Badarch et al., 2002; Windley et al., 2007; Bussein et 

al., 2011), or Permian (Zonenshain et al., 1990). Although the most recent studies show that both 

Vendian and Silurian times are acceptable (Wilhem et al., 2012, references therein). However, the 

closure process and tectonic setting of the Hangay- Hentey paleo-ocean are still debated. The paleo-

ocean existed between ancient cratons has been assigned various names, such as the Paleo-Asian, 

Paleo-Pacific, Khangai-Khantey, Hangay-Hentey, and Mongol-Okhotsk paleo-ocean. In this research, 

I use the term “Hangay-Hentey paleo-ocean” to present the western extension of the Mongol-Okhotsk 

paleo-ocean. Published paleolatitudinal data and reconstruction indicate that the Central Mongolian 

(or Tuva-Mongolian microcontinent) Massif, beneath which the Hangay-Hentey oceanic plate 

subducted, was already adjacent to the Siberian craton in the Vendian (Late Proterozoic) and Early 

Cambrian time (Kravchinsky et al., 2001). 

2.2 Geology of the Uyanga area 

Figure 2.1a shows the terrane subdivision of the Hangay-Hentey belt proposed by Tomurtogoo (2012). 

As demonstrated by Byamba et al. (2009), the ages of accretionary complexes within the Hangay-

Hentey belt young progressively eastward from Ordovician-Late Silurian through Devonian-

Carboniferous to Permian-Triassic. The Devonian–Carboniferous turbidite sequences within this belt 

are notable for their great thickness (reaching 10,000 m in the Hangay region; Amantov et al., 1970). 

These sequences were derived from the Neoproterozoic–Early Palaeozoic basement, its cover, and 

overlying arc volcanoes, based on detrital-zircon age and provenance analysis (Filippova, 1969; Kelty 

et al., 2008; Bussien et al., 2011; Purevjav and Roser, 2012, 2013).  

The Tsetserleg terrane in the western part of the Hangay- Hentey belt consists of the Lower to 

Middle Devonian Erdenetsogt, Middle to Late Devonian Tsetserleg, Lower Carboniferous Jargalant, 

and Permian Baidrag formations. The Erdenetsogt Formation with an area of 10,000 km
2
 is distributed 

widely in the Hangay region and composed predominantly of unmetamorphosed, gently folded, 

turbidite-dominated sediments. According to Lhundev et al. (1994), the formation is further divided into 

two subunits with conformable contact: (1) a lower volcanic-sedimentary sequence including chiefly 

bluish-gray and greenish-gray tuffaceous-siltstones, medium- to fine-grained sandstones, and 

variously colored and bedded radiolarian ribbon-chert intercalated with basaltic greenstones 

(thickness of ~830 m) and (2) an upper sedimentary subunit consisting dominantly of 
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blackish-gray and bluish-gray sandstone and siltstones with minor layers of cherts and limestones 

(thickness of ~1100 m). These are overlain by the Middle to Late Devonian Tsetserleg Formation, 

which is  dominated by terrigenous-sediments (Fig.2.1). Teraoka et al. (1996) described some large 

olistolith containing manganiferous chert and schistose green sandstone in the lower subunit. The age 

of the Erdenetsogt Formation determined by fossils in the sedimentary sequences intercalated with 

Figure 2.1 (a) Insert map shows terrane subdivision of the Hangay-Hentey belt by Tomurtogoo (2012) 

and location of study area. (b) Simplified geological map of the Uyanga area, south Hangay region 

(modified after Geological Map L-48-49-A, B, D, 1:50 000, Lhundev et al., 1994). 
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the greenstones as well as intrusive rocks cut it ranges from Early to Late Devonian. For example, 

Bayarsaihan et al. (1988) found coral and brachiopods, and assigned these to the Lower to Middle 

Devonian. Kurimoto et al. (1997) reported Late Devonian (Famennian) conodonts from the bedded red 

chert. Siliceous tuff in the lower subunit yielded an age of 400 Ma by Sm-Nd dating (Orolmaa and 

Erdenesaihan, 2008). The basement of the Erdenetsogt Formation is uncertain. Late Permian to Early 

Triassic undeformed granitoids interpreted as subduction-collisional (Orolmaa et al., 2008, 2010), are 

widely intruded into the study area. Geochemical studies have revealed that the granitoids in the 

Hangay region were derived mainly from partial melting of juvenile materials with some involvement of 

Precambrian basement (Kovalenko et al., 1996, 2004; Jahn et al., 2000, Jahn, 2004). For this reason, 

several researchers (Buchan et al., 2001; Badarch et al., 2002) have argued that the thick Devonian-

Carboniferous Hangay-Hentey turbidite sediments are underlain by a ‘hidden’ Precambrian terrane. 

These pre-Permian accretionary complexes are overlain unconformably by Permian shallow marine 

molasses (Badarch et al., 2003). Quaternary continental volcanic rocks also occur in this region as 

well.  

The possible eastern extension of the Erdenetsogt Formation as has been suggested by many 

researchers (Dorjsuren, 2006; Tomurtogoo, 2006, 2012; Byamba et al., 2009) in the Hentey area is 

called the Gorkhi Formation in the Ulaanbaatar terrane, which includes similar oceanic plate 

assemblages of Late Silurian to Late Devonian age as constrained by microfossils in chert (Kurihara et 

al., 2009). The associated basaltic greenstone in this formation was studied by Tsukada et al. (2006, 

2013) and Safonova et al. (2009). They suggest that alkali basalts with typical oceanic island basalt 

(OIB) affinity formed as an oceanic island or seamount in an intra-plate oceanic setting of the Paleo-

Asian or Paleo-Pacific paleo-ocean that existed between the Angara (Siberia) craton and North China 

(Sino-Korean) blocks. 
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CHAPTER 3 FIELD OCCURRENCE AND PETROGRAPHY 

The area investigated is located in the Uyanga Village of the Ovurhangay Province, 470 km southwest 

of the Ulaanbaatar City. The basaltic greenstones are exposed mainly along the Uvur-Ult and 

Buuruljuut Valleys (gold mining sites) to the northeast of the Uyanga Village and in the Nariin Jalgiin 

Range to the southeast (Fig.2.1). Sample localities are listed in Table 1. 

3.1 Field occurrence 

The lower part of the Erdenetsogt Formation is characterized by basalt-chert sequences. Although a 

massive limestone cap is absent, a minor amount of limestone was reported by a previous study 

(Lhundev et al., 1994). The greenstones occur as massive lavas, porphyritic and aphyric dikes (up to 5 

m thick and 400 m long), hyaloclastite, and mafic tuffs and sills. In several localities, a conformable 

relationship between cherts and lavas were observed (#35, #02 and #43 in Fig.2.1b). For example, in 

the Uvur-Ult Valley, the varicolored, massive or bedded ribbon cherts attain a thickness of 40 m and 

are always intercalated with greenstones (Figs. 3.2). In the Tsetsengiin Valley, the chert-basalt 

sequences are folded concordantly and tightly and occurr as composite boudins roughly 10 m in size 

in the siltstone matrix (Fig. 3.1c). The basaltic greenstones are divided easily in the field into 

ferrobasalt and normal basalt by using a magnetometer. The ferrobasalts contain abundant magnetite 

and have very high magnetic susceptibility, ranging from 16 to 36×10
-3

SI, whereas the normal basalts 

in the field area have values of 1-0.3×10-3SI. I found, for the first time in this area, picrites at two 

localities (Figs. 2.2 and 3.1). The picrites found in the Buuruljuut Valley (46°35’43.1”N, 102°13’27.1”E) 

occur as olivine-rich zones with thickness of 20-40 cm at the base of massive basaltic lavas 

outcropping with shear contact and sometimes showing gradation in olivine concentration, whereas 

the picrite found in the Uvur-Ult Valley occur as cobbles in a river bed. Another new discovery from 

this area is high-magnesian andesite sills (N50°W; 30°SW) that intrude into siltstone along the west 

side of the Tsetsengiin Valley (46°31’13.9”N, 102°21’13.3”E). I observed three parallel andesite sills 

up to 1.7 m thick with a distinct pinkish-green color, which contrasts with the dark-green color of the 

other greenstones (Fig. 3.1d).  
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 Figure 3.1 Field photographs of the Hangay greenstones and their associated cherts. (a-b) Ferropicrite 

at the Buuruljuut area. (c) Folded chert and ferrobasalt at the Tsetsengiin gol area. (d) Andesite sill 

intruded into siltstone at the Tsetsengiin gol area. 
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Figure 3.2 Field photography of the outcrop at the Uvur-Ult area: (a) Outcrop of a chert-greenstone 

complex viewed from NW to SE. (b) Interpretation of (a), showing intercalation of basaltic dikes and 

cherts.  

3.2 Petrography 

Petrographical observations were made on 37 thin sections (Table 1). Representative analysis of the 

minerals are shown in Tables 3-6. Porphyritic basaltic rocks were named according to major 

phenocryst phases, but only where the total abundance of phenocrysts was >1 vol.% (e.g. 

plagioclase-phyric basalt or olivine-clinopyroxene-phyric basalt). Phenocryst phases were always 

listed in order of decreasing abundance so that the dominant phase was listed first. The term 

phenocryst was used for any crystal that was significantly (typically five times) larger than the average 

size of the groundmass crystals, larger than 0.5 mm (MacKenzie et al., 1982), and euhedral or 

subhedral in shape. The prefix micro- was added to the phenocrysts which have diameters between 

0.05 and 0.5 mm (e,g. clinopyroxene microphenocrysts) (MacKenzie et al., 1982), and larger than the 

modal groundmass grain size.  

3.2.1 Picrite (#12) 

The picritic greenstones including ferropicrites are highly olivine-phyric (up to 32 vol.%) with 

clinopyroxene phenocrysts (up to 5 vol.%, but preserved in only sample #12). Intergranular and partly 

intersertal texture. The olivines are subhedral to anhedral and have an average size of 4 mm. They 

are completely replaced (and therefore could not be analyzed) by secondary chlorite, talc, calcite, and 

quartz and always contain fresh spinel crystals as inclusion (Fig.3.3). Scattered large euhedral spinel 

grains (up to 1.5 mm) also occur. The clinopyroxenes are mostly subhedral to anhedral (up to 2 mm) 
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and sometimes form glomerocrysts of microphenocrysts. Groundmass is hypocrystalline and 

composed of well-preserved anhedral aggregates of clinopyroxenes (14 vol.%) and plagioclase laths 

(50 vol%, replaced by albite, chlorite, sericite, and epidote) and chloritized volcanic glass. Accessory 

phases (<2 vol.%), in order of abundance, are fine-grained Ti-Fe oxides and ilmenite needles and 

titanites. The rock shows no resorbed crystals indicating disequilibrium of crystal growth. 

3.2.2 Sparsely clinopyroxene-plagioclase-olivine-phyric basalt (#01) 

This is the most dominant type of basalt in the study area. The basalt composed of plagioclase (5 

vol.%), clinopyroxene (1 vol.%), and olivine (0.5 vol.%) phenocrysts and show intergranular texture 

(Fig.3.4). The glomerophenocrysts of plagioclase and equant clinopyroxenes occur. Euhedral olivines 

ranging in size from 0.5 to 1.2 mm and are completely replased by quartz, calcite, and chlorites. 

Figure 3.3 Thin section photomicrographs of picrite (#12) under cross-polarized light. (a) Highly 

olivine-phyric picrite showing subhedral to anhedral phenocrysts of olivine (now replaced by chlorite) 

and clinopyroxene (well-preserved) set in groundmass of albitized plagioclase laths and fine grained 

clinopyroxene aggregates. Width of scale is 5 mm. (b) Euhedral well-preserved spinel inclusions 

(isotropic) in completely altered olivine phenocrysts. Width of scale is 1 mm. 
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Clinopyroxenes are partly or wholly preserved and show euhedral to subhedral shapes (up to 0.7 mm 

Figure 3.4 Thin section photomicrograph of sparsely phyric basalt (#01) under plane-polarized light. 

Completely altered euhedral olivine phenocryst (replaced by calcite and chlorite), plagioclase and well-

preserved subhedral clinopyroxenes set in the fine grained groundmass. Width of scale is 1 mm. 

 

Figure 3.5 Thin section photomicrograph showing the porphyric doleritic basalt dyke (#11) under 

cross-polarized light. Width of scale is 1mm. 
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in size). The plagioclases are albitized and saussuritized in all cases and some of them show 

polysynthetic twining (up to 2.5 mm in size). The groundmass is hypocrystalline and composed of 

euhedral plagioclase laths and anhedral fine-grained clinopyroxene aggregates, interstitial chloritized 

volcanic glass and opaque minerals. Titanite is the most dominant opaque mineral (up to 1 vol.%). 

Absence of olivine in the groundmass donates the tholeiitic affinity.  

3.2.3 Porphyric dolerite dyke (#11) 

The rock mainly consists of megaphenocrysts of plagioclase (50 vol.%) and  occasional clinopyroxene 

phenocrysts (1 vol.%) (Fig.3.5). The plagioclase phenocrysts with an average size of 25 mm, and 

highly albitized and polysynthetic twinning is well preserved. The clinopyroxenes (1.1 mm in size) 

occur as subhedral phenocrysts and well preserved. The groundmass is coarse-grained 

holocrystalline and consists of fine-grained anhedral aggregates of clinopyroxenes and plagioclase 

laths. Fe-Ti oxide and titanite also occur as accessory phases (<1 vol.%). 

3.2.4 Sparsely plagioclase-clinopyroxene-microphyric dolerite (#02) 

The rock contains contains occasional phenocryststs (up to 1 mm in size) and mostly 

microphenocrysts of plagioclase and clinopyroxenes set in Intergranular textured groundmass. 

Plagioclase is replaced by albite in all cases. Subhedral to anhedral microphenocrysts of 

Figure 3.6 Thin section photomicrograph of dolerite (#02) under cross-polarized light. Width of scale is 

1mm. 
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clinopyroxenes are well-preserved. Groundmass is holocrystalline and composed of plagioclase laths 

as well as microlits, anhedral clinopyroxenes aggregates (7 vol.%), opaque minerals. Titanite and 

magnetite are the most common opaque minerals.  

3.2.5 Vesicular sparsely plagioclase-phyric basalt (#36) 

Phenocrysts of plagioclase (5 vol.%) are euhedral to subhedral, up to 1 mm in size and sometimes 

occur as glomerocrysts. Occasional subhedral microphenocrysts (up to 0.6 mm in size) of 

clinopyroxenes (0.5 vol.%) occur. Groundmass in this rock is hypocrystalline comprising lath to 

microlits of plagioclases (50 vol.%), clinopyroxene (5 vol.%), opaque minerals and interstitial 

chloritized glass. The rock sparsely vesicular having rounded to anhedral-shaped vesicles ranges from 

0.5 to 2.5 mm in diameter and mostly filled by calcite and rarely chlorite and abundance is ~7 vol.%. 

The most abundant opaque minerals are magnetite (1 vol%) and blotch of sulfides are present (< 0.5 

vol.%).  

 Figure 3.7 Thin section photomicrograph of vesicular basalt (#36) under cross-polarized light. The 

1mm. 
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Figure 3.8 Thin section photomicrographs of aphyric basalts with abundant Fe-Ti oxides under plane-

polarized light. (a) #35B showing trachitic texture. (b) vesicular #43A. Width of scale is 1 mm. 

3.2.6 Aphyric basalt (#35B and 43A) 

This aphyric basalt consists mainly of plagioclase laths, interstices of which are chlorite and smectite 

after volcanic glass. Sample #35B exhibits relatively coarser-grained and show trachytic textured 

groundmass and rich in ilmenite, identified by its elongated needles.  

The sample #43A has aphanitic groundmass and sparsely vesicular (filled by calcite). Vesicles are 

anhedral, up to 0.4 mm in diameter. The magnetite is the dominant opaque mineral, identified by its 

euhedral cubic form. Rare elongate needles of ilmenite and blotch of sulphide also occur.  

3.2.7 Porphyric basalt dyke (#38) 

In hand specimen, plagioclases are can be identified (generally with an average size of 3 mm, and 

have 35 vol.%). The rock consists of euhedral megacrysts of plagioclase with melt inclusions (now 

altered) and clinopyroxene phenocrysts enclosed by aphanitic groundmass.  Although the 



19 
 

plagioclases are highly saussuritized, 

the igneous strongly zoned texture is preserved. The clinopyroxene are euhedral, ranges in size from 

0.5 to 2 mm, and are completely altered in this rock by chlorite. Note that the groundmass crystallinity 

becomes more glassy toward the rim of this dike, implying that the dike were intruded into the chert. 

There were no contact metamorphic effects on overlying chert (Fig. 3.2).  

3.2.8 Andesites (#41 and #42). 

The high-Mg andesite found in the Tsetsengiin Valley (Fig. 2.2) is relatively aphyric and contains less 

than 10 vol.% phenocrysts including completely altered anhedral olivine (2 vol.%, up to 1.2 mm in 

size). Well-preserved euhedral to subhedral microphenocrysts of clinopyroxene (4 vol.%, ranges in 

size from 0.1 to 0.5 mm in size), and brown and green amphiboles (0.5 vol.%) are present in an 

Figure 3.9 Thin section photomicrograph of highly porphyritic basalt dike (#38) under cross-polarized 

light. The rock shows large euhedral plagioclase phenocrysts and occasional clinopyroxene crystals 

set in aphanitic groundmass. The margin of dyke is characterized by a glassy margin. Width of scale is 

5 mm. 
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aphanitic groundmass (Fig. 3.10). The amphiboles are identified as hornblende by electron 

microprobe analysis (Table 6). Notable relict igneous spinel inclusions were observed in both olivine 

and clinopyroxene microphenocrysts of this rock. No phenocrysts of plagioclase or bronzite has 

crystallized in the rock as do in boninites. An absence of plagioclase phenocryst and glassy nature are 

common feature of the sanukitic high-Mg andesites.  

 

Figure 3.10 Thin section photomicrographs of the andesite under cross-polarized light. (a) 

Microphenocrysts of completely altered olivines and well-preserved clinopyroxene glomerocrysts set in 

aphanitc groundmass. Width of scale is 1 mm. (b) Microphenocrysts of euhedral hornblende in sample 

#41. Width of scale is 0.25 mm. 

3.3 Alteration  

As seen on above petrographical description, all of the studied moderately to highly altered Hangay 

greenstones are experienced by pumpellyite-actinolite facies low-temperature metamorphism, which is 

very common metamorphism at the upper extrusive oceanic crust. Chlorite, epidote, albite, 



21 
 

pumphellyite, actinolite, talc, calcite, quartz, and opaque minerals are common secondary minerals 

(Fig.3.11). 

 

 

 

 

Figure 3.11 Thin section photomicrographs of alteration minerals in the Hangay greenstones under 

cross-polarized lights. Corresponding sample numbers are given. 
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CHAPTER 4 RESULTS 

The greenstones in the Hangay area experienced low-temperature alteration and weathering. 

However, there is general agreement that the rare earth elements (REEs), high field strength elements 

(HFSEs), and some transition metals are relatively immobile under alteration (Winchester and Floyd, 

1977; Ludden and Thompson, 1978; Condie, 2001). In this paper, I discuss the chemistry of the 

greenstones based on these least mobile elements of the whole rock chemical composition and on the 

mineral chemistry of well-preserved igneous clinopyroxenes and spinels. 

4.1 Whole rock chemistry and classification 

Whole rock major and trace element data for the Hangay greenstones are presented in Table 2. All 

major oxides were normalized to a 100% anhydrous basis before chemical interpretation. The Hangay 

greenstones have basaltic or andesitic compositions with silica contents ranging from 43.4-51.5 wt% 

and 53.4-58.2 wt%, respectively.  

The Hangay greenstones can be divided broadly into three major geochemical types defined by 

their incompatible element distributions: (1) enriched plume-type with slight LREE enrichment similar 

to tholeiitic OIB (average La/YbPM>3.8; Hawaiian tholeiite ~3.0 and alkali basalt ~8.0; Best, 2003), (2) 

non-enriched plume-type approximately equal to E-MORB (average La/YbPM<1.8), and (3) arc-type 

with LREE enrichment, negative Nb and Ta anomalies, and La/YbPM>9.3. The first type is most 

abundant and consists of picrites (ferropicrite), basalt, dolerite and ferrobasalts. The latter two types 

are relatively less common in this area.  

4.1.1 Picritic and basaltic greenstones 

The picrites are characterized by their higher MgO (18-22 wt%) and lower Al2O3 (8.62-12.75 wt%) 

contents. Two of the five picrites sampled (>12 wt% MgO) from the Hangay region showed ferropicritic 

compositions, as defined by Hanski and Smolkin (1989) and Hanski (1992), with >14 wt% FeO*. The 

basalts, dolerites and ferrobasalts have lower MgO (4.4-8.9 wt%) and higher Al2O3 (13-20 wt%). 

However, the ferrobasalts are distinctly enriched in FeO* (14-17 wt%) and TiO2 (3.9-5.4 wt%) (Table 

2).  

 



23 
 

 

 

Figure 4.1 (a) FeO*/MgO versus SiO2 plot for the Hangay greenstones (after Miyashiro, 1974). The 

Shodo-Shima high-Mg andesite of the Setouchi volcanic belt, SW Japan (Tatsumi et al. 2006), is 

shown for comparison. (b) Zr/Ti-Nb/Y plot after Pearce (1996). Ti is recalculated from TiO2. 
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Figure 4.2 Major and trace element variations with respect to MgO of the Hangay basaltic greenstones. 

Data for these and subsequent figures are from: Hawaii (Norman and Garcia, 1999), Ontong Java 

(Tejada et al., 2002), Shatsky Rise (Sano et al., 2012), Kerguelen (Neal et al., 2002), Caribbean (Kerr 

et al., 1996; Révillon et al., 1999), Mino-Tamba (Ichiyama et al., 2006, 2008); Parana-Etendeka 

(Gibson et al., 2000), Siberia (Arndt et al., 1995), and Pechenga (Hanski and Smolkin, 1989; Hanski, 

1992). Rock abbreviations: tholeiites (th.), ferrobasalts (fb.), picrites (p.), and ferropicrites (fp.). 
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The FeO*/MgO-SiO2 and Zr/Ti-Nb/Y diagrams (Fig. 4.1) illustrate that all the basaltic greenstones 

are tholeiitic except for the high-Mg andesites that are calc-alkalic (see next section). The MgO 

variation diagrams (Fig. 4.2) show that the Hangay picrites contain unusually high FeO* contents 

compared to those of common picritic rocks from Hawaii (oceanic island) and the Caribbean (oceanic 

plateau), but their TiO2 and Zr contents are intermediate between those of Hawaiian and Caribbean 

picritic rocks.  

The Ni (14-1514 ppm), Cr (25-2550 ppm), and Co (107-26 ppm) contents gradually increase from 

basaltic rocks to picritic rocks among the Hangay greenstones (Table 2), indicating an olivine-spinel 

crystal accumulation process or increase of the degree of melting in the mantle. The Hangay basaltic 

greenstones exhibit two pronounced distributions in primitive-mantle-normalized plots (Fig. 4.3a-b). 

The most dominant basalts and picrites display a sub-parallel pattern with slight LREE enrichment 

similar to that of tholeiitic OIB in the primitive-mantle-normalized multi-element plot that indicates their 

common source, and for this reason, they are grouped as enriched plume-type. The ferrobasalts also 

exhibit parallel, but elevated patterns, and are thought to be fractionated varieties of enriched plume-

type magma. In contrast to these rocks, some basalts (#35A, and #35B) and one dolerite (#14) exhibit 

a sub-horizontal pattern similar to that of E-MORB, and these are thus grouped as non-enriched 

plume-type (Fig. 4.3b). The enriched plume-type rocks show greater depletion in Y, Yb and HREEs 

and a positive Ti anomaly (except for sample #43B) in comparison with the non-enriched plume-type 

rocks (Fig. 4.3a).  

4.1.2 Andesitic greenstones 

The Hangay andesites have higher contents of MgO (up to 7 wt%), and SiO2 (53-58 wt%), lower TiO2 

(0.7-1.0 wt%), and calc-alkalic compositions (Fig. 4.1). I refer to these rocks as “high-Mg andesite”. In 

this study, the Hangay andesites are compared with boninite from the Bonin Ridge forearc-seamount 

and high-Mg andesite (sanukite) from the Setouchi volcanic belt of SW Japan. The FeO*/MgO ratios 

(1.0-1.4) and TiO2 (0.7-1.0 wt%) contents are higher than those of boninite (FeO*/MgO=0.5-0.9 and 

TiO2<0.5 wt%) (Li et al., 2013) and closer to that of the Setouchi high-Mg andesites (FeO*/MgO =0.5-

1.0 and TiO2 0.4-0.9 wt%), (Tatsumi and Ishizaka, 1982) (Fig. 4.1). The most important characteristic 

of the Hangay high-Mg andesites is a pronounced depletion of Nb and Ta relative to neighboring 

incompatible elements in the primitive-mantle-normalized plot (Fig. 4.3d). These anomalies are 
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attributed to the strong immobility of Nb and Ta in aqueous fluids rising from subducted slab into the 

mantle wedge (Condie, 2001; Tatsumi and Ishizaka, 1981, 1982; Tatsumi et al., 2006). In addition to 

the Nb and Ta depletion, the Hangay high-Mg andesites are consistently enriched in the most 

incompatible elements compared with boninites (Fig. 6d) but their enrichment is similar to that of 

Setouchi high-Mg andesites.  

Figure 4.3 Primitive-mantle-normalized trace element profiles of the Hangay greenstones. The pattern 

for the Hangay picrites is reproduced, as green area, on diagrams a, b and c for comparison. (a) 

Enriched plume-type greenstones compared with the average of high-Nb type basalts of Shatsky Rise 

(Sano et al., 2012). (b) Non-enriched plume-type basalts are compared with the averages of the low-Ti 

type of Shatsky Rise (Sano et al., 2012), Singgalo type of Ontong Java (Fitton and Godard, 2004, and 

Hawaiian tholeiitic and alkali basalts (Best, 2003). (c) For comparison, terrestrial tholeiitic and picritic 

basalts, ferrobasalts and ferropicrites (references as in Fig.5) are shown. (d) Arc-type greenstones. 

Data used for comparison from Setouchi and Choshi, Japan as shaded area (Tatsumi et al., 2006; 

Hoang et al., 2009), and boninite from the Hahajima Seamount (Li et al., 2013). Primitive-mantle, 

enriched mid-ocean ridge basalt (E-MORB), and normal mid-ocean ridge basalt (N-MORB) values are 

from Sun and McDonough (1989). 
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4.2 Mineral chemistry 

Well-preserved igneous clinopyroxenes, hornblendes, and spinels were analyzed from the picrites, 

basalts, and high-Mg andesites. Representative mineral analyses are summarized in Tables 3-6, and 

plotted in Figs 4.4-4.7. 

4.2.1 Clinopyroxene composition 

The analyzed clinopyroxenes (n=82) from the basaltic greenstones correspond to augite with an 

average composition of Wo42En48Fs10 and follow a characteristic tholeiitic fractionation trend, whereas 

clinopyroxenes (n=15) from the high-Mg andesite show Ca-enriched diopsidic rim (average of 

Wo43En48Fs9), on a ternary plot (Fig. 4.4a). Figure 4.4b, shows that the clinopyroxene from both the 

basaltic and andesitic greenstones plot in the tholeiitic and calc-alkalic field. Although no 

compositional differences are observed in their Mg# (=Mg/(Mg+Fe
2+

) atomic ratio), which ranges from 

0.77 to 0.87 (in cores), distinct magmatic trends are observed in the Si versus Mg# plot (Fig. 4.4c). 

These differences are also observed in the core-to-rim major element concentrations of the 

clinopyroxenes (Fig. 4.4b and Table 3). Crystal rims in basaltic rocks are Fe- and Ti-enriched 

compared with the Ca- and Mg-enriched cores. In contrast, some crystal rims in andesites (sample 

#42) show Fe- and Ti-depletion compared with the Ca- and Mg-depleted cores. This suggests that the 

crystal cores in the basaltic rocks formed in Mg-rich melts whereas their rims crystallized from more 

fractionated Fe-rich magmas. In contrast, the andesitic rocks contain reversely zoned clinopyroxene 

phenocrysts, possibly due to magma mixing.  

Trace element compositions were measured mostly on phenocryst cores (Table 3). In terms of 

the chondrite-normalized REE patterns (Fig. 4.5), the relict clinopyroxenes from the Hangay basaltic 

greenstones exhibit convex patterns with slight depletion in both LREEs and HREEs. On the other 

hand, clinopyroxenes and hornblendes from the high-Mg andesites show a sub-parallel and an 

enriched-LREE pattern with Ti-depletion. A crystal rim measured in picrite (sample #12) shows higher 

trace element concentrations than does its core and is similar to compositions measured on 

clinopyroxene cores of the basalt. This could mean that the picrite represents a primitive, less evolved 

portion of the basaltic magma, and is not a simple olivine accumulation product.  
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Figure 4.4 Chemical characteristics of clinopyroxenes in the Hangay greenstones: (a) Classification 

plot after Morimoto et al. (1988). (b) Discrimination diagram after Leterrier et al. (1982). Cores and 

rims of the reversely zoned clinopyroxenes in the high-Mg andesites are connected by broken lines. 

(c) Si-Mg# (Mg#=Mg/(Mg+Fe
2+

) atomic ratio) relationship plot. A linear reduction is shown for each 

group. Clinopyroxenes from the Setouchi high-Mg andesite (outlined) are shown for comparison 

(Tatsumi et al., 2003, 2006). 
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Figure 4.5 Chondrite-normalized trace element profiles of clinopyroxenes and hornblendes in the 

Hangay greenstone. Chondrite value is from Sun and McDonough (1989). 

4.2.2 Spinel composition 

The chemical compositions of spinels were analyzed mostly in picrites, high-Mg andesites, and some 

sparsely olivine-phyric basalts (Table 5). The Cr# (=Cr/(Cr+Al) atomic ratio) of 0.54-0.70 of spinels in 

the Hangay basaltic-picritic greenstones is higher than that of spinel in MORB, resembling that of 

Hawaiian tholeiitic basalt and picrite, which these spinels also resemble in terms of Ti (Fig. 4.6), but 

Figure 4.6 TiO2-Cr# (Cr#=Cr/(Cr+Al)atomic ratio) relationship plot after Arai (1992). Data from high-Mg 

andesite from the Setouchi belt, SW Japan (Tatsumi et al., 2006). 
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the spinels are distinctly lower in Fe
3+

 than the Hawaiian spinels (Fig. 4.7a). Spinels in the high-Mg 

andesite (Cr# 0.61-0.78) are higher in Cr# and Fe
3+

, and lower in Ti than spinels in the basaltic-picritic 

greenstones, and are closer to those in the Setouchi sanukitic high-Mg andesite (Fig.4.6). It implies 

that the high-Mg andesites were generated from the highly depleted magma source compared with the 

basaltic-picritic greenstones, but lesser depleted source than boninites. As shown on the spinel TiO2-

Cr# plot (Fig. 4.6), the basaltic-picritic greenstones and high-Mg andesites correspond to the intra-

plate tholeiite and island-arc basalt fields, respectively.  

 

 

 

 

 

Figure 4.7 (a) Al-Cr-Fe
3+

 trivalent cation plot. (b) Relationship between Cr# (=Cr/(Cr+Al)atomic ratio) 

and Mg# (=Mg/(Mg+Fe
2+

)atomic ratio) after Barnes and Roeder, (2001).Spinel data fields: High-Mg 

andesite from Setouchi belt, SW Japan (Tatsumi et al., 2006); MORB-mid ocean ridge basalt 

(Sigurdsson and Schilling, 1976; Dick and Bullen, 1984); Island arc basalt (Barnes and Roeder, 

2001); Hawaii tholeiitic picrite and basalt (Nichols and Stout, 1988; Wilkinson and Hensel, 1988); 

Boninite from Sobolev et al. (1994) for comparison.  

(a) (b) 
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CHAPTER 5 DISCUSSIONS 

Here I now discuss the petrogenesis and geotectonic significance of the Hangay greenstones, with 

focus on the newly discovered tholeiitic picrites (ferropicrites) and calc-alkalic high-Mg andesites and 

the field relationship between the basaltic greenstones and the deep-water pelagic chert.  

5.1 Petrogenesis of the basaltic greenstones 

Generally, well-studied oceanic islands display a characteristic geochemical evolution over their 

volcanic histories as was defined for the Hawaiian Islands (e.g. MacDonald and Katsura, 1964). For 

instance, most of the mass of oceanic islands is formed during the shield-building stage, when 

typically up to 98% of the volcanic edifice is produced in a relatively short time span (<5 m.y.). During 

this stage, almost entirely tholeiitic or mildly alkalic basalts form from relatively large mantle melt 

fractions. Subsequently, alkali basalts that form by smaller degrees of partial melting may cover the 

shield volcano as cap rock (Condie, 2001; Staudigel and Clague, 2010). This evolution is also 

applicable to many other oceanic intraplate volcanoes, including oceanic plateaus (Tejada et al., 1996; 

Kerr et al., 2000; Kerr and Mahoney, 2007; Bryan et al., 2008). Accordingly, in the primitive-mantle-

normalized incompatible element plots (Fig. 4.3), the Hangay basaltic greenstones are similar to 

basalts drilled from the upper part of many oceanic islands and plateaus such as Hawaii (Garcia et al., 

2010), Ontong Java (Fitton and Godard, 2004), Shatsky Rise (Sano et al., 2012), and Kerguelen (Frey 

et al., 2000; Neal et al., 2002). In particular, the enriched plume-type basalts of the Hangay 

greenstones show slightly depleted LREE patterns, similar to those of high-Nb type basalts of Shatsky 

Rise (Fig.4.3a), whereas the non-enriched type with relatively flat patterns is similar to basalts of the 

low-Ti type at Shatsky Rise and of the Singgalo type at Ontong Java (Fig. 6b). Moreover, the relatively 

depleted HFSEs of the enriched plume-type basalts in this plot would be interpreted to indicate 

residual garnet in the mantle source, whereas the nonenriched-plume type has only weak depletion of 

HREEs. 

Comparisons of major and trace elements among the Hangay tholeiitic basalts and other 

terrestrial tholeiitic lavas reveal similarities with Hawaiian oceanic island lavas and Ontong Java, 

Shatsky Rise and Kerguelen oceanic plateau lavas (Fig. 4.2). However, the Hangay picrites are 

distinguished from other picritic rocks (e.g. Hawaiian, Caribbean) by their relatively high abundance of 

Fe2O3* (>12.85 wt%). Their Ti and Zr contents are intermediate between those of Hawaiian and 
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Caribbean picrites at given MgO. These unusual geochemical characteristics partly resembling the 

high-Fe and -Mg rocks of the Pechenga area (Kola Peninsula, Russia, Hanski and Smolkin, 1989; 

Hanski, 1992), Parana-Etendeka area (Gibson et al., 2001), Siberia LIP (Arndt et al., 1995) indicate 

that the Hangay picrites have ferropicritic rather than komatiitic affinity (Figs. 1.2 and 4.2). The Hangay 

picritic rocks occur at the base of a massive lava pile and form only thin olivine-rich zones (thickness 

of ~30 cm) compared to the rest of the basaltic flows. Gibson (2002) suggested that high-Fe and -Mg 

magmas (komatiites and ferropicrites) typically occur at basal cumulate zones of thick tholeiitic 

volcanic sequences as the earliest melting stage of mantle plume starting-heads (e.g., Parana-

Etendeka, Gorgona of the Caribbean, Siberia etc.). This is a diagnostic feature of LIPs including 

continental flood basalts and oceanic plateaus. However, high-Fe and -Mg magmas also form later 

stage dikes and sills after the main basaltic activities (e.g. Mino-Tamba, SW Japan and Siberian LIPs, 

Russia: Hanski and Smolkin, 1989, 1995; Ichiyama et al., 2006; Goldstein and Francis, 2008). The 

concept of melting of a heterogeneous mantle source of peridotite with enriched domains such as 

solidified partial melt pockets or recycled Fe-rich material (eclogites of basaltc or gabbroic origin), has 

been proposed by several workers as a mechanism for generating unusually high Fe melts while 

maintaining high Mg content (Hanski and Smolkin, 1989; Hanski, 1992; Gibson et al., 2000; Gibson, 

2002; Tuff et al., 2005; Ichiyama et al., 2006; Goldstein and Francis, 2008). For example, Tuff et al. 

(2005) proposed garnet-pyroxenite as the magma source of the Parana-Etendeka ferropicrite. 

Goldstein and Francis (2008) demonstrated that Archean ferrobasalts from the Western Superior 

Province, Ontario, Canada were generated by melting of an olivine-dominated mantle source with a 

Mg# of ~0.85 at ~5GPa. Gibson (2002) suggested that high-Fe and -Mg melts were produced by a 

moderate amount of partial melting of “re-feritilized” peridotite at potential temperatures of  >1450°C 

and pressures >4.5 GPa. His study also suggested that hybrid Fe-rich peridotite is thought to result 

from a series of progressive mixing and reaction processes between subducted oceanic crust 

(eclogite) and convecting peridotitic mantle. It is interpreted that contribution of recycled oceanic crust 

(eclogite after basalt or gabbro) to the Hangay basaltic greenstones accounts for their slight LREEs 

enrichment similar to that of tholeiitic OIB (Fig. 4.3).  

In terms of incompatible and REE distributions in these various oceanic tectonic settings, the 

overall element distributions in the Hangay basaltic greenstones are similar to those of oceanic island 

and oceanic plateau basalts. However, the presence of ferropicrite among the studied Hangay 
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greenstones strongly suggests that the Hangay greenstones were originated in an oceanic plateau 

setting rather than having an oceanic island origin because ferropicrites have been found in only 

Archean to Cenozoic LIPs including oceanic plateaus, but not yet from oceanic islands (Gibson et al., 

2000, Gibson, 2002). Moreover, the voluminous tholeiite with slight LREEs enrichment, similar to 

tholeiitic OIB in the primitive-mantle-normalized plot, an abundance of ferrobasalt, an absence of alkali 

basalt and the fact that the tholeiite is directly covered by deep-water pelagic chert in the study area 

also supports this idea.  

5.2 Nature of the source of the Hangay basaltic greenstones 

The differences between plume- and arc-derived greenstones are seen clearly on the Nb/Y against 

Zr/Y trace element ratio plot of Fitton et al. (1997) (Fig. 5.1a). As expected, the arc-type high-Mg 

andesites plot well away from the basaltic greenstones and confirm their subduction zone origin, 

whereas the plume-type greenstones plot on the Iceland array. This plot as well as the other plots as 

discussed above (Figs. 4.2-4.6) show that all of the basaltic greenstones of the Hangay region appear 

adjacent to one another and form a distinct trend, implying a common magmatic origin. However, 

there are slight differences in the ratios of Nb/Y and Zr/Y among the Hangay basaltic greenstones, 

suggesting different degrees of melting (Fitton et al., 1997), which could be controlled by two different 

processes: (1) increasing melt fraction and decreasing depth of melting with plume ascent (Lassiter 

and DePaolo, 1997), or (2) varying degrees of melting related to regions with different compositions in 

a mantle plume head (Condie, 2001; Ichiyama et al., 2008).  

(Process 1) Although oceanic plateaus differ geochemically from continental flood basalts, 

studies indicate that some lithospheric thinning may occur during the formation of an oceanic plateau 

(Lassiter and Depaolo, 1997). If this were the case for the Hangay basaltic greenstones, the enriched-

type basalts and picrites that were generated by smaller degrees of melting would have melted earlier 

at greater lithospheric thickness than the later non-enriched type basalts. The thickness of lithosphere 

beneath which Hangay basaltic greenstone magma melting occurred, can be predicted by comparing 

well-studied oceanic island and plateau basalts. According to the Nb/Y and Zr/Y ratio plot (Fig. 5.1a), 

the ratios in the Hangay basaltic greenstones are distinctly higher than those of Ontong Java oceanic 

plateau basalts, but lower than those of Mino-Tamba oceanic plateau picrites. 
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Figure 5.1 (a) Nb/Y-Zr/Y variation diagram for the Hangay greenstones. Diagonal line (Fitton et al., 

1997). Data are from low-Ti type basalts of Shatsky Rise (Sano et al., (2012), Singgalo type basalts of 

Ontong Java (Fitton and Godard, 2004), alkali basalt of Hentey (Tsukada et al., 2013), tholeiitic basalt 

of Hawaii (Garcia et al., 2010), and ferrobasalt of Kerguelen (Neal et al., 2002) and picritic basalts of 

Mino-Tamba (Ichiyama et al., 2008). (b) Lu/Hf-La/Sm variation diagram of Hangay basaltic 

greenstones (after Regelous et al. 2003). Primitive-mantle (PM), enriched mid-ocean ridge (E-MORB), 

normal mid-ocean ridge (N-MORB), and oceanic island basalt (OIB) values from Sun and McDonough 

(1989). Upper continental crust (UCC) value from Condie, (1993). 
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Fitton and Godard (2004) suggested that the Ontong Java Plateau magmas were produced by a large 

degree of melting (30% melting of a peridotitic primitive magma source) of very hot (>1500°C) mantle 

beneath very thin lithosphere. In contrast, the Mino-Tamba picritic greenstones were produced by 

partial melting of a deep mantle (4-5GPa) source with recycled eclogite beneath thick oceanic 

lithosphere (Ichiyama et al., 2008). It is suggested that the Hangay greenstones may have been 

generated at an intermediate lithospheric depth comparable to those of Hawaiian tholeiites, Kerguelen 

ferrobasalts, and high-Nb type basalts of Shatsky Rise. In contrast to the enriched type, the non-

enriched type has slightly lower Nb/Y and Zr/Y ratios, similar to those of the low-Ti type basalt of 

Shatsky Rise (>15% degree of melting) and the Singgalo type basalt of Ontong Java, suggesting a 

higher degree of melting for the non-enriched type. As a plume rises to the lithosphere, adiabatic 

decompression results in lower solidus temperatures and causes progressively greater degrees of 

melting (Condie, 2001). This indicates that the source of the non-enriched-type basalts underwent a 

greater degree of melting than the source of the enriched type that caused its flat HREE pattern on the 

primitive-mantle-normalized plot, with no garnet left behind in the residue (Kerr et al., 2000). This is 

confirmed by their higher Lu/Hf and lower La/Sm ratios in Figure 5.1b. This plot suggests that the 

dominant enriched plume-type basalts represent garnet peridotite melts formed at medium degrees of 

melting (5-15 %), whereas the non-enriched type basalts represent melts produced by higher degrees 

of melting (>20%) within the same garnet peridotite field.  

 (Process 2) The differences in the degrees of melting between the Hangay enriched and non-

enriched types of basalts could also indicate the regions with different compositions in the mantle 

plume head. According to the plume models of Griffiths and Campbell (1990), the hottest part of a new 

upwelling mantle plume is the central conduit or tail. The Hangay picrite and ferropicrite may represent 

the melting products of the hottest part of the upwelling plume (>1500°C), and the voluminous 

enriched plume-type basalts may be the result of melting of cooler parts of the plume. The ferrobasalts 

with parallel and elevated patterns in the primitive-mantle-normalized plot (Fig. 4.3) may be the 

shallow fractionation product of this magma. From the discussion in above section, it is apparent that 

the non-enriched plume-type basalts were generated by higher degrees of melting at shallower depths 

in the rising plume (Fig. 5.1). Furthermore, smaller volumes of melting that occurred at the deep plume 

tail may have produced smaller amounts of enriched alkali basalts, such as those reported by 

Tsukada et al. (2013) in other parts of the Hangay-Hentey belt. In addition, the enriched ferrobasalt 
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and non-enriched basalts are in direct contact with chert (Figs. 3.1 and 3.2), implying that they may 

have erupted after the most dominant enriched-plume type magma (enriched basalt and picrite). The 

absence of alkali basalt, which is most characteristic for oceanic islands or seamounts as well as 

oceanic plateaus, as stated above, may suggest that the Hangay plume-derived magma activity in the 

study area occurred within a short period of time on the axis of the plume, and that the site of the 

plume magmatism then shifted to other areas.  

In addition, the Hangay tholeiitic greenstones show a notably low ratio of Nb/Y (0.3-0.8) 

compared with the alkali basaltic greenstones studied from coeval accretionary terrane in the Hentey 

region with HIMU and OIB affinities (Tsukada et al., 2006, 2013; Safonova et al., 2009). This may 

suggest intra-oceanic magmatic heterogeneity within the Hangay-Hentey paleo-ocean basin in Middle 

Paleozoic time.  

5.3 Petrogenesis of the high-Mg andesites 

The Hangay high-Mg andesites are clearly distinguished from the Hangay basaltic greenstones by 

their glassy texture (<10 vol.% of phenocrysts) (Fig. 3.10), calc-alkalic chemical trend (Fig. 4.1), high 

MgO content (up to 7 wt%), significant enrichment of LREEs and depletion of Nb and Ta (Figs. 4.3, 

4.5) and the appearance of reversely zoned clinopyroxene phenocrysts (Fig. 4.4). These features 

confirm their arc-derived origin. High-Mg andesite occurrences have been reported from the Bonin 

Islands, the western Pacific (boninites), the California Peninsula (bajaite) and the Setouchi belts in SW 

Japan (sanukite). The Hangay high-Mg andesites differ from boninite (FeO*MgO=0.5-0.9 and 

TiO2<0.5 wt%) and bajaite by their higher FeO*/MgO (1.0-1.4), TiO2 (0.7-0.9 wt%), and Y and Yb 

contents (Fig. 1.3). Furthermore, the rock is also enriched in LREEs in contrast to boninites, which 

show no LREE enrichment (Fig. 4.3d). The Hangay high-Mg andesites also do not contain 

phenocrysts of clinoenstatite, magnesian pigeonite, or bronzite, but boninites often do. Consequently, 

it is compositionally similar to the “sanukitic” high-Mg andesite reported from the Setouchi volcanic belt 

of SW Japan (Figs. 1.2, 4.1, 4.3d, and 4.6). The high abundances of Ni (45-74 ppm), Co (16-24 ppm), 

and Cr (200-300 ppm) supported by high Mg# and Cr# of spinel suggest that the Hangay high-Mg 

andesites were derived from melting of mantle wedge peridotite (Tatsumi and Ishizaka, 1981, 1982; 

Shimoda et al., 1998, Tatsumi et al., 2006). It is widely accepted that most arc magmas are derived 

from hydrous melting of peridotites in the mantle wedge induced by fluids released from subducted 
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oceanic crust or overlying sediments. However, the high-Mg andesite may not be generated by steady 

subduction, but only rarely by subduction of a young and hot oceanic slab or at the initiation of 

subduction (Tatsumi and Ishizaka, 1982; Tatsumi et al., 2001, 2006; Kamei et al., 2004; Li et al., 2013).  

5.4 Geotectonic implications 

Because geochemical and petrological evidences combined with field observations clearly reveal that 

the basaltic and andesitic greenstones of Hangay were generated from different magma sources, it is 

possible to propose the following tectonic reconstruction model for the Hangay region (Fig. 5.2). An 

oceanic plateau was generated in the pelagic region (probably below the carbonate compensation 

depth) of the Hangay-Hentey paleo-ocean during the Devonian and it also implies that the ocean was 

wide. The subduction direction was probably the same as that for the Bayanhongor ophiolite zone, 

where SW-dipping and NE-vergent thrusting occurred (Buchan, 2001; Tomurtogoo, 2006; Osozawa et 

al., 2008). During subduction of the oceanic crust beneath the active continental margin of the Central 

Mongolian (or Tuva-Mongolian) Massif probably in the Early Carboniferous, the oceanic plateau 

approached the subduction zone and jammed in the trench. A part of the oceanic plateau was sliced 

off during subduction and incorporated into trench sediments. Only the uppermost section of the 

plateau was sliced off, as evidenced by the direct contact with chert and an absence of plutonic rocks. 

The jam forced the subduction zone to move oceanward (to the NE), where younger oceanic plate 

existed (so called “back-stepping”). Such subduction back-stepping occurred in the Caribbean plateau, 

when the oceanic plateau collided with the northwestern active continental margin of South America 

(Kerr and Mahoney, 2007 and references therein). After this occurred, a subsequent Hangay arc 

system formed along the new subduction zone, and the high-Mg andesites were intruded into the 

accreted oceanic and trench deposits. One possible explanation of the origin of the high-Mg andesite 

is that the newly subducting oceanic crust probably contained a hot and young oceanic ridge that 

caused the excess heat that produced the high-Mg andesitic rocks (Fig. 5.2). A good example of this 

is the Miocene Setouchi volcanic belt, which formed by subduction of very young oceanic lithosphere 

of the Philippine Sea plate beneath the Eurasian plate that produced sanukitic high-Mg andesites 

(Tatsumi and Ishizaka, 1982; Tatsumi et al., 2001, 2006). After the arc had already evolved to mature 

stage, the Permian-Triassic granitoids were intruded widely throughout the Hangay region (Kovalenko 

et al., 1996; Orolmaa et al., 2008, 2010) and the front of the active continental margin migrated to the 
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NE, or oceanward. The arc-derived magmatism that occurred through the subduction-accretionary 

process in this area, probably led to the formation of the gold deposits in the Uyanga area (Ult gold 

placer), which is being mined today. I infer that there is no underlying cratonal basement beneath the 

Hangay-Hentey belt, at least not in the southern Hangay region. In addition, the distribution of Permian 

shallow marine molasses unconformably overlying extensive Devonian-Carboniferous deposits may 

suggest that closure of the Hangay-Hentey paleo-ocean occurred in the Late Permian in the Hangay 

region.   

 

 

 

 

 

Figure 5.2 Tectonic reconstruction of westernmost part of the Hangay-Hentey belt from Early 

Devonian to Carboniferous. (a) A Devonian oceanic plateau forms within the Hangay-Hentey paleo-

ocean. (b) The oceanic plateau approaches the subduction zone and obduction/jamming occurs. (c) 

An arc form. Detailed interpretations are given in the text. 
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CHAPTER 6 CONCLUSIONS AND SUMMARY 

The present investigation of greenstones from the Hangay region established the following new 

understandings of the Paleozoic orogeny that formed an integral part of Central Asian Orogenic Belt. 

1. The lower portion of the Early to Middle Devonian Erdenetsogt Formation in the Hangay 

region consists of a chert-, siltstone-, and basaltic greenstone-dominated sequence of a 

typical oceanic plate stratigraphy. 

2. The first detailed geochemical and petrological study combined with field observations of the 

greenstones from the Hangay region revealed that the Hangay greenstones were generated in 

two distinct geotectonic settings and from two differeny magma sources. (1) deep-seated, 

mantle-plume derived, high Fe- and Mg- tholeiitic greenstones that formed an oceanic plateau, 

and (2) arc-derived calc-alkalic high-Mg andesites related to subduction of young oceanic 

plate. 

3. The oceanic plateau greenstones at Hangay are characterized as voluminous tholeiitic 

greenstones that include picrite, ferropicrite, and fractionated ferrobasalt with no Nb and Ta 

negative anomalies and slight LREE enrichment, similar to tholeiitic OIB.  

4. The arc-derived high-Mg andesites are characterized by a pronounced depletion in Nb and Ta, 

LREE enrichment and the characteristic feature of glassy texture and mineral chemistry 

resembling that of  sanukitic high-Mg andesites.   

5. The Hangay plume-derived greenstones developed as an oceanic plateau within the deep-

water pelagic region of the Hangay-Hentey paleo-ocean during the Devonian, whereas the 

Hangay high-Mg andesites were produced by subduction-zone magmatism that occurred after 

accretion of the oceanic plateau.  

6. The occurrence of ferropicrite, abundance of ferrobasalt, and dominance of tholeiite that is 

directly covered by chert provide visible evidence for the oceanic plateau origin of the Hangay 

greenstones. On the other hand, the high-Mg andesite sills provide evidence for the initiation 

of subduction-zone magmatism in this accretionary complex. 
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Table 1. Sample locations and analyze lists. 

Sample 
No 

Rock type Latitude Longitude 

T
h

in
 s

e
c
ti
o

n
 

EDS 

X
R

F
 

L
A

-I
C

P
-M

S
 

C
p
x
 

S
p
l 

A
m

p
 

01 Highly porphyric basalt dyke 46°30'50.4"° 102°19'19.7"     


02 Microdolerite 46°31'22.7 102°18'59.0"  


  

03 Dolerite 46°31'25.7" 102°19'00.4" 
    

04 Dolerite 46°32'17" 102°18'45.4" 
    

05 Volcanic tuff 46°30'28.8" 102°19'42.4" 
    

06 Basalt 46°30'47.6" 102°19'18.9" 
    

07 Basalt 46°30'34.1" 102°19'47.6"  
   

08 Basalt 46°30'47.6" 102°19'18.9" 
    

09 Dolerite 46°30'34.2" 102°19'52.3" 
    

11 Dolerite dyke 46°30'35.2" 102°19'49.3"  
 

 

12 Picrite 46°30'46.6" 102°19'10.1"   


 

13 Basalt 46°30'44.4" 102°19'02.2" 
    

14 Microdolerite 46°22'06.7"° 102°28'54.8"  
 

 

15 Dolerite 46°24'34.1" 102°20'40.2"  
   

16 Vesicular basalt 46°24'33.5" 102°20'59.5" 
    

28 Hyaloclastite 46°35'45.3" 102°13'19.0"  
   

29 Basalt 46°35'43.5" 102°13'28.5" 



  

30A Picrite 46°35'44.2" 102°13'28.5" 
  

 

30B Volcanic tuff 46°35'44.2" 102°13'28.5" 
    

31 Ferropicrite 46°35'43.1 102°13'27.1" 





 

32 Ferropicrite 46°35'43.1 102°13'27.1" 





 

34 Basalt 46°36'30.0" 102°13'16.5 



  

35A Aphyric basalt 46°32'50.6 102°15'15.0" 
  

 

35B Aphyric basalt 46°31'12.2" 102°19'52.0" 
  

 

36 Vesicular basalt 46°13'15.2" 102°19'47.0"  
 

 

37 Hyaloslastite 46°30'47.5" 102°19'15.7" 



  

38 Highly porphyric basalt dyke 46°30'47.5" 102°19'15.7" 
  

 

40 Basalt dyke 46°30'47.5" 102°19'15.7" 
    

41 Andesite sill 46°31'13.3" 102°21'07.0"      

42 Andesite 46°29'17.0" 102°23'37.8"   


 

43A Aphyric ferrobasalt 46°29'44.2" 102°24'48.6" 
  

 

43B Aphyric ferrobasalt 46°29'44.2" 102°24'48.6" 
  

 

2602A Basalt 46°35'43.0 102°13'27.1" 
  

 

2602B Picrite 46°35'43.1 102°13'27.1" 





 

2701-1 Metabasalt 46°30'35.2" 102°19'49.3"   
  

2701-2 Metabasalt 46°30'35.2" 102°19'49.3"   
  

2703 Aphyric ferrobasalt 46°29'44.2" 102°24'48.6" 
  

 
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Table 2. XRF analyses for the whole rock major (wt%) and some trace elements and LA-ICP-MS 

analyses of trace elements data (ppm) for greenstones from the Hangay region. 

Locality abbreviations: ULT-Uvur Ult valley, BU-Buuruljuut valley, TSE-Tsetsengiin valley. SUV-Suvraga mountain pass, 

HZT-Harzat mountain pass. *-XRF analysis result. T-total Fe as Fe2O3. n.d.-not detected. 

Rock Ferropicrite Picrite   Dolerite   Basalt 

Occurrence Lava Lava Cobble Lava Lava Lava Lava Dyke Lava 

Location BU BU ULT BU BU ULT HZT ULT BU 

Sample #32 #31 #12 #30 #2602B #02 #14 #11 #2602A 

SiO2 43.38 47.13 46.60 46.48 45.56 48.74 49.73 51.45 47.47 

TiO2 1.18 1.30 1.57 2.19 1.64 2.21 1.78 1.89 1.85 

AI2O3 8.62 9.74 12.75 11.52 10.36 15.29 14.51 20.17 13.33 

Fe2O3T 15.14 15.62 12.85 13.72 14.05 11.18 12.07 9.80 13.39 

MnO 0.17 0.15 0.19 0.17 0.21 0.19 0.18 0.50 0.21 

MgO 21.52 16.74 11.81 10.94 16.04 6.87 6.87 7.26 8.54 

CaO 7.14 4.43 9.27 7.52 7.70 9.26 7.58 7.76 6.85 

Na2O n.d. n.d. 1.56 1.13 1.32 4.02 4.01 3.91 2.77 

K2O n.d. n.d. 0.22 n.d. 0.15 0.28 0.73 1.15 0.06 

P2O5 0.12 0.16 0.16 0.28 0.17 0.19 0.12 0.32 0.22 

Total 97.27 95.27 96.98 93.95 97.20 98.23 97.59 104.22 94.67 

Rb         0.13         0.19 2.94 0.29 1.36 3.79      12.0      30.0 2.13 

       *1.30       *0.80       *4.10      *1.50       *1.50 *4.45    *14.1    *35.7       *2.60 

Ba         5.80 8.91     130      94       53    197    122     892       96 

       *2.50 *12.4   *118  *108     *54  *215  *127   *944   *102 

V     225          232     296    300     274    329    404     279     321 

   *160   *176   *255  *256   *227  *282  *366   *247   *280 

Cr   2173   2550     813    615   1240    305    276     112     590 

 *1801 *1754 *1125  *499 *1140 *238  *214     *83   *455 

Ni   1306   1514     418    304     724     79    113       39       97 

 *1491 *1620   *493  *332   *821   *85  *129     *37     *99 

Y       12       12       18      26       21     24      27       22       17 

     *13     *12     *16    *23     *20   *25    *27     *23     *17 

Zr       67       76       95    156     112   134    104     117     122 

     *70     *76     *99  *144   *101 *142  *104   *127   *117 

Nb 7.3 8.5       10      17       11     14 6.4       12       14 

 *6.8 *7.4 *8.2    *11 *8.8   *11 *5.9 *9.2     *11 

Sr       12     132     281    550     107    722    441   1160     574 

     *13   *126   *262  *473     *97  *670  *412 *1057   *504 

Co     102     108       68      51       87      36      44       30       37 

Th 0.51 0.54 0.66 1.26 0.76 1.01 0.50 0.83 0.94 

Ta 0.48 0.54 0.74 1.10 0.67 0.99 0.46 0.79 0.91 

La 5.60 6.17 8.34 12.57 8.22 11.6 5.73 9.15       11.0 

Ce       13.0       14.0      20.0      28.0       19.0      27.0      15.0       21.0       23.0 

Pr 1.88 2.01 2.77 4.12 2.85 3.87 2.40 3.18 3.21 

Nd 9.16 9.37      14.0      20.0       14.0      19.0      13.0       15.0      16.0 

Hf 1.76 1.86 2.45 3.93 2.91 3.35 2.91 3.05 3.05 

Sm 2.39 2.53 3.57 5.49 3.87 4.98 3.91 4.21 3.74 

Eu 0.82 0.80 1.45 1.83 1.33 1.80 1.33 1.58 1.35 

Gd 2.59 2.80 3.74 5.74 4.43 5.33 4.89 4.68 4.01 

Tb 0.38 0.43 0.58 0.83 0.66 0.78 0.80 0.72 0.61 

Dy 2.41 2.64 3.73 5.36 4.33 5.02 5.46 4.58 3.66 

Ho 0.47 0.50 0.74 1.03 0.78 0.94 1.10 0.87 0.72 

Er 1.21 1.27 1.90 2.64 2.20 2.48 3.08 2.42 1.92 

Tm 0.17 0.17 0.26 0.35 0.30 0.35 0.46 0.35 0.29 

Yb 1.06 1.00 1.82 2.25 1.95 2.20 3.02 2.13 1.79 

Lu 0.14 0.14 0.24 0.32 0.27 0.31 0.45 0.30 0.26 
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Table 2. (Continued) 

Rock Basalt     Ferrobasalt High-Mg andesite 

Occurrence Lava Lava Lava Dyke Dyke Lava Lava Lava Sill Lava 

Location ULT TSE TSE ULT ULT TSE TSE TSE TSE TSE 

Sample #36 #35A #35B #38 #01 #43A #43B #2703 #41 #42 

SiO2 45.75 45.01 49.01 46.28 46.23 44.76 47.13 42.58 58.26 53.35 

TiO2 2.18 3.41 3.53 1.80 1.97 4.65 3.94 5.36 0.70 0.96 

AI2O3 14.58 14.78 15.35 19.91 16.45 13.10 14.64 15.15 15.42 14.72 

Fe2O3T 11.83 15.19 11.52 10.12 11.44 16.31 18.82 15.90 6.76 8.12 

MnO 0.39 1.40 0.33 0.33 0.19 0.60 0.33 0.79 0.09 0.12 

MgO 5.46 7.13 4.38 6.04 8.61 8.96 6.45 8.42 4.40 6.75 

CaO 9.92 5.47 5.89 5.94 8.96 4.98 4.77 5.24 3.83 7.30 

Na2O 4.42 3.08 3.75 3.29 2.49 1.82 2.85 2.30 4.18 3.43 

K2O 0.59 0.67 2.58 2.35 0.43 1.35 0.51 1.23 4.13 1.74 

P2O5 0.32 0.60 0.52 0.20 0.16 0.65 1.94 0.71 0.17 0.21 

Total 95.46 96.74 96.86 96.26 96.93 97.16 101.37 97.68 97.93 96.70 

Rb 5.23     11.9     56.2     37.5  7.67     10. 2     23.2   101     32.0 

    *7.10   *13.9   *60.8   *43.8    *8.10     *9.10   *13.1   *26.0 *117   *37.1 

Ba   661   341   856   479    328   612   349   964   327 

 *624 *355 *847 *484 *256 *644 *377 *403 *950 *309 

V   356   502   502   317    216   374   406   232   278 

 *298 *490 *496 *247 *247 *381 *209 *437 *145 *200 

Cr   146     25     28   158      77       3.14   106   200   299 

 *109   *14   *14 *118 *338   *12 *2.30      n.d. *198 *269 

Ni     54     33     42     53      14     58     72     45     74 

   *50   *25   *38   *53   *97   *50 *4.80   *69   *46   *79 

Y     28     68     56     23      31     67     39     20     20 

   *28   *63   *54   *24   *23   *30   *66   *39   *20   *19 

Zr   154   286   288   121    259   494   290   175   148 

 *156 *253 *268 *123 *129 *245 *459 *275 *176 *139 

Nb     17     24     25     13      36     67     42       6.5       5.8 

   *12   *17   *17   *10   *11   *24   *41   *27     *5.9     *5.7 

Sr   457   195   198   311    475   236   280   641   455 

 *416 *176 *183 *301 *336 *224 *447 *266 *622 *413 

Co     34     45     58     47      26     39     49     16     24 

Th 1.20      1.65 1.73 0.81  4.42 2.24 2.45 9.04 5.82 

Ta 1.16      1.61 1.55 0.82  4.22 2.42 2.80 0.48 0.40 

La     15     18     19     11      59     25     29     27     27 

Ce     33     44     45     24    124     55     63     52     52 

Pr 4.63   6.59 6.75 3.41      17.0 7.37 8.58 6.18 6.74 

Nd     22     34     34     17      81     35     39.0     25.0     28 

Hf 3.96 7.18 7.22 3.14      12.0 6.36 6.86 4.68 3.88 

Sm 5.70 9.67 9.53 4.14      19.0 8.28     10.0 5.05 5.65 

Eu 2.07 3.32 3.16 1.74  6.36 2.77 3.13 1.19 1.51 

Gd 6.29     12.0     11.0 4.74      19.0 8.32 9.42 4.57 4.80 

Tb 0.90 1.91 1.70 0.67  2.63 1.11 1.38 0.60 0.64 

Dy 5.76     13.0     11.0 4.19      16.0 6.84 8.30 3.96 3.88 

Ho 1.10 2.59 2.26 0.78  2.75 1.26 1.50 0.75 0.74 

Er 2.89 7.31 6.06 2.04  6.90 3.10 3.89 2.11 2.04 

Tm 0.40 0.99 0.86 0.26  0.91 0.41 0.51 0.32 0.28 

Yb 2.58 6.89 5.74 1.55  5.74 2.66 3.33 2.09 2.02 

Lu 0.35 0.96 0.79 0.21  0.74 0.37 0.46 0.31 0.29 
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Table 3. Representative microprobe analyses (wt%) of clinopyroxene, hornblende, and spinel in greenstones from the Hangay region. The ferric iron 

content of spinel was estimated assuming spinel stoichiometry. 

                   
Rock Basalt           Dolerite           Porphyric basalt         

Sample #01           #02           #07           

Mineral core rim core rim core rim core rim core rim core rim core rim core rim core rim 

SiO2 52.07 50.97 51.95 51.21 51.51 49.35 52.64 49.65 52.49 51.96 52.52 52.41 52.77 51.00 53.32 50.68 52.55 49.95 

TiO2 0.59 0.52 0.60 0.76 0.59 1.19 0.70 1.75 0.66 0.67 0.64 0.81 0.78 0.99 0.67 1.35 0.81 1.53 

Al2O3 2.81 2.61 2.65 3.06 2.45 2.47 2.98 3.03 2.37 2.96 2.19 2.69 2.42 2.02 2.01 2.75 2.64 3.06 

Cr2O3 0.99 0.92 0.84 1.01 0.51 0.06 0.92 0.06 0.50 0.83 0.47 0.20 0.52 0.03 0.30 0.07 0.40 0.04 

FeO 5.46 5.05 5.30 5.98 5.72 14.40 5.18 12.83 5.74 5.26 5.68 6.68 6.82 16.02 7.26 12.52 6.67 12.12 

MnO 0.06 
 

0.04 
 

0.24 0.30 0.00 0.34 0.13 0.14 0.06 0.19 0.14 0.51 0.15 0.28 0.20 0.22 

MgO 17.07 16.43 16.83 16.29 16.77 12.39 16.99 13.80 16.99 16.74 17.17 16.52 16.54 12.28 16.88 13.09 16.56 13.26 

CaO 20.55 20.33 20.56 20.56 19.91 17.36 20.92 17.85 20.88 20.69 20.78 20.51 20.56 17.31 20.12 19.10 20.57 19.58 

Na2O 
 

0.01 
 

0.03 
  

0.09 0.20 0.10 0.14 0.13 0.10 0.10 0.38 0.14 0.36 0.29 0.34 

Total 99.60 96.85 98.77 98.90 97.71 97.51 100.41 99.52 99.85 99.39 99.63 100.10 100.64 100.53 100.84 100.21 100.71 100.09 

O= 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

Si 1.914 1.924 1.923 1.902 1.930 1.919 1.916 1.882 1.927 1.914 1.931 1.924 1.928 1.935 1.944 1.908 1.920 1.884 

Ti 0.016 0.015 0.017 0.021 0.017 0.035 0.019 0.050 0.018 0.018 0.018 0.022 0.021 0.028 0.018 0.038 0.022 0.043 

Al 0.122 0.116 0.116 0.134 0.108 0.113 0.128 0.135 0.103 0.129 0.095 0.116 0.104 0.090 0.086 0.122 0.114 0.136 

Cr 0.029 0.027 0.025 0.030 0.015 0.002 0.026 0.002 0.014 0.024 0.014 0.006 0.015 0.001 0.009 0.002 0.012 0.001 

Fe
2+

 0.168 0.160 0.164 0.186 0.179 0.469 0.158 0.407 0.176 0.162 0.174 0.205 0.208 0.508 0.221 0.394 0.204 0.382 

Mn 0.002 0.000 0.001 0.000 0.008 0.010 0.000 0.011 0.004 0.004 0.002 0.006 0.004 0.016 0.005 0.009 0.006 0.007 

Mg 0.935 0.925 0.929 0.902 0.936 0.718 0.922 0.780 0.930 0.919 0.941 0.904 0.901 0.694 0.917 0.734 0.902 0.745 

Ca 0.809 0.822 0.815 0.818 0.799 0.723 0.816 0.725 0.821 0.816 0.818 0.807 0.805 0.704 0.786 0.770 0.805 0.791 

Na 
 

0.001 
 

0.002 
  

0.006 0.015 0.007 0.010 0.009 0.007 0.007 0.028 0.010 0.027 0.021 0.025 

Total 3.995 3.990 3.990 3.996 3.992 3.989 3.991 4.007 4.000 3.996 4.002 3.997 3.994 4.005 3.995 4.005 4.005 4.016 

Mg# 0.848 0.853 0.850 0.829 0.839 0.605 0.854 0.657 0.841 0.850 0.844 0.815 0.812 0.577 0.806 0.651 0.816 0.661 

                   FeO* is total iron as FeO. 
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Table 3. (Continued). 

                   
Rock Porphyric basalt         Picrite           Microdolerite (groundmass Cpx)       

Sample #11           #12           #14           

Mineral core rim core rim core rim core rim core rim core rim core-gm rim-gm core-gm rim-gm core-gm rim-gm 

SiO2 50.99 48.61 50.57 49.43 48.93 47.39 52.47 51.05 52.12 49.97 51.66 50.98 51.70 50.62 50.25 50.25 50.99 50.43 

TiO2 0.69 1.23 0.65 0.78 0.74 1.24 0.57 0.93 0.52 1.32 0.60 1.04 0.59 0.68 0.74 0.91 0.51 0.63 

Al2O3 2.39 2.95 1.88 1.47 2.23 2.61 2.43 1.85 2.59 2.34 2.68 1.44 1.59 1.45 3.31 3.71 2.65 2.93 

Cr2O3 0.35 0.18 0.11 0.11 0.20 0.04 0.54 0.00 0.89 0.09 0.87 0.03 0.08 0.00 0.46 0.17 0.72 1.03 

FeO 6.52 9.21 7.05 9.27 6.90 9.60 5.93 15.62 5.32 12.82 5.47 12.86 9.22 11.35 6.17 7.47 5.34 5.33 

MnO 0.12 0.19 0.13 0.17 0.19 0.21 0.10 0.40 0.03 0.27 0.14 0.38 0.23 0.32 0.21 0.18 0.14 0.10 

MgO 16.04 14.02 15.94 14.75 14.93 13.49 16.93 13.31 16.89 13.16 16.57 14.27 16.67 15.30 15.46 15.74 15.88 15.70 

CaO 20.21 19.27 19.04 18.22 19.71 18.33 20.64 16.12 20.69 17.94 20.17 16.96 17.18 16.32 20.46 19.03 21.22 21.11 

Na2O 0.19 0.29 0.19 0.17 0.27 0.22 
  

0.15 0.32 0.09 0.22 
  

0.07 0.19 0.05 0.08 

Total 97.50 95.94 95.55 94.36 94.10 93.12 99.62 99.29 99.18 98.23 98.25 98.18 97.26 96.03 97.13 97.66 97.52 97.34 

O= 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

Si 1.925 1.892 1.946 1.947 1.922 1.902 1.930 1.947 1.923 1.919 1.924 1.950 1.959 1.961 1.904 1.895 1.920 1.905 

Ti 0.020 0.036 0.019 0.023 0.022 0.037 0.016 0.027 0.014 0.038 0.017 0.030 0.017 0.020 0.021 0.026 0.015 0.018 

Al 0.106 0.135 0.085 0.068 0.103 0.123 0.105 0.083 0.112 0.106 0.117 0.065 0.071 0.066 0.148 0.165 0.118 0.131 

Cr 0.011 0.006 0.003 0.003 0.006 0.001 0.016 0.013 0.026 0.003 0.026 0.001 0.002 0.000 0.014 0.005 0.021 0.031 

Fe
2+

 0.206 0.300 0.227 0.305 0.227 0.322 0.182 0.000 0.164 0.412 0.170 0.411 0.292 0.368 0.195 0.236 0.168 0.168 

Mn 0.004 0.006 0.004 0.006 0.006 0.007 0.003 0.498 0.001 0.009 0.004 0.012 0.007 0.010 0.007 0.006 0.005 0.003 

Mg 0.902 0.813 0.915 0.866 0.875 0.807 0.928 0.757 0.929 0.753 0.920 0.814 0.942 0.884 0.873 0.885 0.891 0.884 

Ca 0.817 0.803 0.785 0.769 0.830 0.788 0.813 0.659 0.818 0.738 0.805 0.695 0.698 0.677 0.830 0.769 0.856 0.854 

Na 0.014 0.022 0.014 0.013 0.020 0.017 
  

0.010 0.024 0.007 0.017 
  

0.005 0.014 0.004 0.006 

Total 4.004 4.013 3.998 4.000 4.011 4.007 3.994 3.984 3.998 4.001 3.990 3.995 3.988 3.986 3.997 4.001 3.998 4.000 

Mg# 0.814 0.730 0.801 0.740 0.794 0.715 0.836 1.000 0.850 0.646 0.844 0.664 0.763 0.706 0.817 0.789 0.841 0.840 

                   FeO* is total iron as FeO. 
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Table 3. (Continued). 

                   
Rock Dolerite           Basalt           Basalt           

Sample #15           #28           #36           

Mineral core rim core rim core rim core rim core rim core rim core rim core rim core rim 

SiO2 52.37 50.77 53.93 52.61 52.73 52.79 51.26 51.10 50.79 50.87 50.88 52.35 51.91 52.01 51.11 50.59 50.58 50.87 

TiO2 0.76 0.84 0.53 0.68 0.57 0.83 0.67 0.81 0.81 0.78 0.61 0.65 0.76 0.81 0.63 0.84 0.59 0.78 

Al2O3 2.75 5.02 1.78 1.60 2.44 1.42 2.15 2.47 2.14 2.43 2.14 1.27 2.27 1.42 2.12 2.98 2.22 2.22 

Cr2O3 0.24 
 

0.15 0.14 0.14 0.13 0.40 0.35 0.28 0.33 0.44 0.14 0.35 0.07 0.16 0.74 0.46 0.35 

FeO 7.84 10.33 6.90 11.01 8.06 12.36 6.12 6.37 6.62 6.53 5.94 7.31 6.69 10.44 6.20 6.35 5.46 5.83 

MnO 
 

0.26 0.12 0.13 0.13 0.51 
       

0.31 0.19 0.21 
 

0.16 

MgO 15.72 13.34 17.25 15.18 16.35 14.86 16.18 15.97 15.88 15.95 16.07 15.96 16.88 16.60 16.39 16.03 16.33 16.49 

CaO 20.88 17.04 20.54 18.87 20.43 18.19 20.21 20.29 19.95 19.98 20.13 19.79 19.76 16.73 20.07 19.70 19.89 19.96 

Na2O 0.17 1.14 0.10 0.25 0.08 
 

0.14 0.09 0.18 0.11 0.06 0.56 0.11 0.00 
  

0.41 
 Total 100.74 98.74 101.29 100.46 100.95 101.07 97.14 97.46 96.65 96.99 96.27 98.03 98.73 98.38 96.88 97.44 96.06 96.66 

O= 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

Si 1.921 1.907 1.953 1.953 1.929 1.957 1.936 1.926 1.933 1.927 1.938 1.966 1.929 1.957 1.936 1.908 1.930 1.929 

Ti 0.021 0.024 0.014 0.019 0.016 0.023 0.019 0.023 0.023 0.022 0.017 0.018 0.021 0.023 0.018 0.024 0.017 0.022 

Al 0.119 0.222 0.076 0.070 0.105 0.062 0.096 0.110 0.096 0.108 0.096 0.056 0.100 0.063 0.094 0.133 0.100 0.099 

Cr 0.007 0.000 0.004 0.004 0.004 0.004 0.012 0.011 0.008 0.010 0.013 0.004 0.010 0.002 0.005 0.022 0.014 0.011 

Fe
2+

 0.240 0.324 0.209 0.342 0.247 0.383 0.193 0.201 0.211 0.207 0.189 0.230 0.208 0.328 0.197 0.200 0.174 0.185 

Mn 0.000 0.008 0.004 0.004 0.004 0.016 
       

0.010 0.006 0.007 
 

0.005 

Mg 0.860 0.747 0.931 0.840 0.892 0.821 0.911 0.897 0.901 0.901 0.912 0.893 0.935 0.931 0.925 0.901 0.929 0.932 

Ca 0.821 0.685 0.797 0.750 0.801 0.722 0.818 0.820 0.813 0.811 0.821 0.797 0.787 0.674 0.814 0.796 0.813 0.811 

Na 0.012 0.083 0.007 0.018 0.006 
 

0.010 0.007 0.013 0.008 0.005 0.041 0.008 
   

0.030 
 Total 4.001 4.000 3.996 4.000 4.003 3.987 3.996 3.994 3.999 3.995 3.992 4.006 3.998 3.988 3.996 3.991 4.011 3.994 

Mg# 0.782 0.697 0.817 0.711 0.783 0.682 0.825 0.817 0.810 0.813 0.828 0.795 0.818 0.739 0.824 0.818 0.842 0.834 

                   FeO* is total iron as FeO. 
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Table 3. (Continued). 

                         
Rock Basalt           Porphyric basalt         High-Mg andesite (Microphenocrysts)     High-Mg andesite (Microphenocrysts)     

Sample #2701-1           #2701-2           #41           #42           

Mineral core rim core rim core rim core rim core rim core rim core rim core rim core rim core rim core rim core rim 

SiO2 50.02 50.62 50.54 50.25 50.44 48.97 50.77 51.55 50.92 51.01 50.58 51.56 52.85 52.37 51.57 51.68 50.55 51.82 48.13 50.50 48.15 50.78 48.78 50.51 

TiO2 0.47 0.49 0.58 0.62 0.54 0.87 0.48 0.90 0.92 0.84 0.67 0.74 0.30 0.33 0.50 0.40 0.70 0.48 1.66 0.86 1.42 0.90 1.06 0.56 

Al2O3 2.58 2.51 2.07 2.60 2.16 2.66 3.33 1.73 2.23 2.83 2.35 1.77 0.88 1.09 2.04 1.79 2.72 1.91 6.09 4.13 4.55 3.38 4.57 2.86 

Cr2O3 0.75 0.73 0.78 0.65 0.53 0.08 1.20 0.09 0.13 0.31 0.29 0.20 0.29 0.34 0.56 0.91 0.16 0.53 0.11 0.11 0.16 0.24 0.32 0.39 

FeO 4.93 5.03 5.04 5.48 5.29 7.58 4.27 8.52 8.16 6.58 7.38 8.59 4.81 4.64 4.49 4.37 5.95 4.96 8.07 6.51 6.53 5.76 5.55 4.87 

MnO 
                        

MgO 16.37 16.54 16.52 16.21 16.23 15.35 16.60 16.30 15.55 16.24 15.75 17.54 17.93 16.67 16.41 16.40 15.63 16.44 14.12 14.83 13.92 15.34 14.56 15.57 

CaO 19.42 19.34 19.28 19.48 19.30 18.37 20.42 18.54 19.01 19.72 19.49 16.60 20.10 21.46 21.23 21.37 20.94 21.21 20.72 22.05 21.47 21.89 21.24 21.75 

Na2O 0.12 0.00 0.00 0.04 0.06 0.10 0.02 0.07 0.12 0.06 0.10 0.00 0.00 0.06 0.05 0.11 0.10 0.02 0.23 0.20 0.11 0.15 0.11 0.11 

Total 94.67 95.23 94.81 95.32 94.55 93.98 97.09 97.70 97.05 97.59 96.62 97.01 97.15 96.95 96.86 97.03 96.74 97.37 99.11 99.19 96.30 98.45 96.20 96.62 

O= 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

Si 1.928 1.937 1.944 1.927 1.946 1.920 1.907 1.946 1.936 1.918 1.929 1.949 1.978 1.972 1.944 1.946 1.920 1.946 1.807 1.881 1.852 1.899 1.866 1.917 

Ti 0.014 0.014 0.017 0.018 0.016 0.026 0.013 0.025 0.026 0.024 0.019 0.021 0.008 0.009 0.014 0.011 0.020 0.013 0.047 0.024 0.041 0.025 0.030 0.016 

Al 0.117 0.113 0.094 0.117 0.098 0.123 0.147 0.077 0.100 0.126 0.106 0.079 0.039 0.048 0.091 0.080 0.122 0.084 0.269 0.181 0.206 0.149 0.206 0.128 

Cr 0.023 0.022 0.024 0.020 0.016 0.003 0.036 0.003 0.004 0.009 0.009 0.006 0.009 0.010 0.017 0.027 0.005 0.016 0.003 0.003 0.005 0.007 0.010 0.012 

Fe
2+

 0.159 0.161 0.162 0.176 0.171 0.248 0.134 0.269 0.259 0.207 0.235 0.271 0.151 0.146 0.141 0.138 0.189 0.156 0.253 0.203 0.210 0.180 0.178 0.155 

Mn 
                        

Mg 0.941 0.943 0.947 0.927 0.934 0.897 0.929 0.917 0.881 0.911 0.895 0.989 1.000 0.936 0.922 0.921 0.885 0.921 0.790 0.823 0.798 0.855 0.831 0.881 

Ca 0.802 0.793 0.794 0.801 0.798 0.772 0.822 0.750 0.774 0.794 0.796 0.673 0.806 0.866 0.857 0.862 0.852 0.853 0.833 0.880 0.885 0.877 0.871 0.884 

Na 0.009 
  

0.003 0.004 0.008 0.001 0.005 0.009 0.004 0.007 
  

0.004 0.004 0.008 0.007 0.002 0.017 0.014 0.008 0.011 0.008 0.008 

Total 3.993 3.981 3.981 3.988 3.983 3.996 3.989 3.992 3.990 3.993 3.998 3.987 3.990 3.991 3.990 3.993 4.000 3.991 4.019 4.010 4.005 4.003 4.000 4.001 

Mg# 0.855 0.854 0.854 0.840 0.845 0.783 0.874 0.773 0.773 0.815 0.792 0.785 0.869 0.865 0.867 0.870 0.824 0.855 0.757 0.802 0.792 0.826 0.824 0.850 

                         
FeO* is total iron as FeO. 
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Table 4. LA-ICP-MS trace element and REEs (ppm) data for clinopyroxenes from the Hangay 

greenstones. 

Rock Picrite Basalt Basalt High-Mg andesite   

Sapmle #12 #12 #36 #41 #41 #42 

Mineral Cpx Rim Cpx Cpx Amp Cpx 

Ti 2629 3793 3718 2151 16013 2979 

V 277 368 276 232 712 195 

Cr 4751 5489 1921 2075 63 1119 

Co 49 48 50 38 62 30 

Ni 150 155 168 66 78 60 

Rb 0.02 0.02 0.01 0.19 5 11.90 

Sr 17.41 19.00 19.32 32.48 271 116.08 

Y 6.69 10.00 9.01 15.23 39 12.51 

Zr 6.61 14.00 9.50 23.77 76.29 34.43 

Nb 0.06 0.10 0.05 0.06 5.33 0.46 

Ba 0.15 0.49 0.12 1.04 168.56 65.37 

La 0.38 0.62 0.50 2.15 8.28 2.15 

Ce 1.86 3.00 2.53 10.05 35.03 8.83 

Pr 0.38 0.59 0.51 1.80 5.97 1.57 

Nd 2.38 3.78 3.43 10.01 32.34 8.89 

Sm 0.99 1.51 1.42 3.18 9.42 2.72 

Eu 0.38 0.55 0.53 0.74 2.16 0.81 

Gd 1.35 2.05 1.86 3.35 9.12 2.81 

Tb 0.22 0.33 0.31 0.52 1.32 0.42 

Dy 1.46 2.21 2.00 3.33 8.33 2.65 

Ho 0.27 0.42 0.37 0.64 1.56 0.50 

Er 0.71 1.10 0.97 1.68 4.09 1.33 

Tm 0.09 0.15 0.13 0.23 0.54 0.18 

Yb 0.59 0.94 0.80 1.48 3.44 1.16 

Lu 0.08 0.13 0.11 0.20 0.44 0.16 

Hf 0.33 0.70 0.45 1.21 3.24 1.35 

Th 0.00 0.00 0.00 0.14 0.23 0.33 

Ta 0.0023 0.0080 0.0034 0.01 0.29 0.03 
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Table 5. Representative microprobe analyses (wt%) of Chromian-spinel. The ferric iron content of spinel was estimated assuming spinel stoichiometry. 

  
                    

Rock Basalt           Basalt           Basalt       Basalt       

Sample #01           #34           #29       #2701-1       

Mineral core rim core rim core rim core rim core rim core rim Core Core Core Core core rim core rim 

SiO2 0.00 0.32 0.00 0.36 0.00 0.37 0.23 0.28 0.18 0.29 0.22 0.27 0.29 0.24 0.28 0.27 0.28 0.25 0.27 0.27 

TiO2 1.26 1.30 1.12 1.16 1.15 1.32 1.15 1.11 1.09 1.08 1.16 1.06 0.96 1.29 1.09 1.12 1.14 1.49 1.03 1.12 

Al2O3 15.21 14.15 14.76 13.12 14.61 13.02 16.39 16.69 15.98 14.81 18.05 16.83 17.22 16.72 18.59 18.03 20.10 13.91 15.93 14.81 

Cr2O3 44.33 45.20 44.59 44.93 44.67 44.10 43.98 41.62 42.29 41.70 41.35 41.06 42.73 35.49 40.72 39.41 36.92 36.47 39.28 37.80 

FeO* 22.54 26.28 22.67 27.18 22.60 28.28 22.59 26.15 24.19 25.02 19.45 25.02 23.89 31.67 20.19 22.61 20.91 31.25 23.51 25.57 

MnO 0.06 0.27 0.13 0.11 0.17 0.11 0.20 0.14 0.09 0.43 0.07 0.06 0.18 0.74 0.08 0.25 0.18 0.32 0.32 0.10 

MgO 10.11 9.12 9.65 7.97 9.45 7.93 10.93 8.24 9.01 7.44 12.59 8.89 9.83 6.14 12.47 9.90 11.22 4.47 8.16 7.79 

CaO 0.04 
 

0.02 
 

0.05 
 

0.01 0.08 0.02 0.07 0.05 0.06 0.00 0.00 0.11 0.03 0.05 0.07 0.17 0.55 

Total 93.55 96.64 92.94 94.83 92.70 95.13 95.48 94.31 92.85 90.84 92.94 93.25 95.10 92.29 93.53 91.62 90.80 88.23 88.67 88.01 

O= 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

Si 0.000 0.011 0.000 0.012 0.000 0.013 0.008 0.010 0.006 0.010 0.007 0.009 0.010 0.008 0.009 0.009 0.009 0.009 0.010 0.010 

Ti 0.032 0.033 0.029 0.030 0.030 0.034 0.029 0.028 0.028 0.029 0.029 0.027 0.024 0.034 0.027 0.029 0.029 0.042 0.028 0.031 

Al 0.612 0.559 0.600 0.534 0.597 0.528 0.640 0.670 0.649 0.624 0.708 0.679 0.678 0.694 0.724 0.729 0.804 0.617 0.677 0.638 

Cr 1.196 1.198 1.216 1.226 1.224 1.200 1.152 1.121 1.152 1.178 1.087 1.111 1.128 0.987 1.063 1.069 0.990 1.085 1.120 1.092 

Fe
3+

 0.128 0.156 0.126 0.155 0.120 0.178 0.135 0.133 0.129 0.120 0.133 0.137 0.127 0.234 0.141 0.125 0.129 0.195 0.127 0.189 

Fe
2+

 0.515 0.580 0.528 0.629 0.535 0.637 0.491 0.613 0.568 0.628 0.408 0.579 0.540 0.698 0.417 0.523 0.464 0.788 0.583 0.592 

Mn 0.002 0.008 0.004 0.003 0.005 0.003 0.006 0.004 0.003 0.013 0.002 0.002 0.005 0.022 0.002 0.007 0.005 0.010 0.010 0.003 

Mg 0.514 0.456 0.496 0.410 0.488 0.407 0.540 0.418 0.463 0.396 0.624 0.453 0.489 0.322 0.614 0.506 0.567 0.251 0.439 0.424 

Ca 0.001 0.000 0.001 0.000 0.002 0.000 0.000 0.003 0.001 0.003 0.002 0.002 0.000 0.000 0.004 0.001 0.002 0.003 0.007 0.022 

Total 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 

Cr# 0.662 0.682 0.670 0.697 0.672 0.694 0.643 0.626 0.640 0.654 0.606 0.621 0.625 0.587 0.595 0.594 0.552 0.637 0.623 0.631 

YCr 0.618 0.626 0.626 0.640 0.631 0.630 0.598 0.583 0.597 0.613 0.564 0.577 0.583 0.516 0.551 0.556 0.515 0.572 0.582 0.569 

YFe3+ 0.066 0.082 0.065 0.081 0.062 0.093 0.070 0.069 0.067 0.062 0.069 0.071 0.066 0.122 0.073 0.065 0.067 0.103 0.066 0.099 

Mg# 0.500 0.440 0.484 0.394 0.477 0.390 0.524 0.406 0.449 0.387 0.604 0.439 0.475 0.316 0.596 0.492 0.550 0.241 0.430 0.417 

                     FeO* is total iron as FeO. 
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Table 5. (Continued). 

 
  

                  
  Rock Picrite           Picrite           Ferropicrite           

  Sample #12           #12082602B         #31           

rim Mineral core rim core rim core rim core rim core rim core rim core rim core rim core rim 

0.27 SiO2 0.20 0.28 0.20 0.21 0.28 0.27 0.32 0.23 0.26 0.33 0.27 0.30 0.28 0.00 0.00 0.30 0.45 0.39 

1.12 TiO2 1.01 1.12 0.94 1.34 0.98 0.94 1.12 1.15 1.06 0.95 1.18 1.10 1.36 1.50 1.49 1.40 1.59 1.30 

14.81 Al2O3 17.33 14.68 17.26 16.74 17.70 16.65 16.22 14.94 14.67 14.37 16.62 16.21 13.41 11.92 14.47 16.07 14.55 11.93 

37.80 Cr2O3 42.74 42.50 41.18 38.75 41.66 40.25 46.45 44.54 45.83 45.07 44.16 42.83 46.47 40.27 45.00 41.90 44.12 40.63 

25.57 FeO* 21.39 27.56 25.12 30.02 24.95 29.14 21.67 23.97 20.33 23.80 18.62 22.95 22.08 33.83 20.03 21.84 20.02 30.11 

0.10 MnO 0.25 0.29 0.14 0.03 0.18 0.32 0.14 0.42 0.16 0.04 0.30 0.09 0.09 1.33 0.08 0.17 0.08 0.92 

7.79 MgO 11.24 7.62 9.87 7.08 8.75 5.55 11.21 8.72 10.59 8.68 12.80 9.62 10.41 1.25 12.37 11.04 12.23 3.79 

0.55 CaO 
      

0.02 0.06 0.09 
 

0.04 0.05 0.00 0.06 0.11 0.00 0.11 0.03 

88.01 Total 94.16 94.05 94.71 94.17 94.50 93.12 97.15 94.03 92.99 93.24 93.99 93.15 94.10 90.16 93.55 92.72 93.15 89.10 

4 O= 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

0.010 Si 0.007 0.010 0.007 0.007 0.009 0.009 0.010 0.008 0.009 0.011 0.009 0.010 0.010 0.000 0.000 0.010 0.015 0.015 

0.031 Ti 0.025 0.029 0.024 0.035 0.025 0.025 0.027 0.030 0.027 0.025 0.029 0.028 0.035 0.043 0.038 0.036 0.040 0.037 

0.638 Al 0.681 0.599 0.681 0.678 0.704 0.690 0.624 0.605 0.592 0.588 0.649 0.653 0.539 0.538 0.574 0.644 0.579 0.533 

1.092 Cr 1.126 1.163 1.089 1.053 1.112 1.119 1.198 1.209 1.241 1.236 1.156 1.157 1.254 1.219 1.197 1.126 1.178 1.217 

0.189 Fe
3+

 0.129 0.161 0.169 0.185 0.115 0.123 0.103 0.111 0.095 0.104 0.119 0.112 0.118 0.157 0.153 0.139 0.132 0.147 

0.592 Fe
2+

 0.467 0.637 0.534 0.678 0.589 0.734 0.488 0.577 0.488 0.586 0.397 0.544 0.512 0.926 0.411 0.482 0.434 0.807 

0.003 Mn 0.007 0.009 0.004 0.001 0.005 0.010 0.004 0.012 0.005 0.001 0.008 0.003 0.003 0.043 0.002 0.005 0.002 0.030 

0.424 Mg 0.558 0.393 0.492 0.363 0.440 0.291 0.545 0.446 0.541 0.449 0.632 0.490 0.530 0.071 0.621 0.559 0.616 0.214 

0.022 Ca 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.000 0.001 0.002 0.000 0.002 0.004 0.000 0.004 0.001 

3.000 Total 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 

0.631 Cr# 0.623 0.660 0.615 0.608 0.612 0.619 0.658 0.667 0.677 0.678 0.641 0.639 0.699 0.694 0.676 0.636 0.670 0.695 

0.569 YCr 0.582 0.605 0.562 0.550 0.576 0.579 0.622 0.628 0.644 0.641 0.601 0.602 0.656 0.637 0.622 0.590 0.624 0.642 

0.099 YFe3+ 0.067 0.084 0.087 0.096 0.060 0.064 0.053 0.058 0.049 0.054 0.062 0.058 0.062 0.082 0.079 0.073 0.070 0.077 

0.417 Mg# 0.545 0.382 0.480 0.348 0.428 0.284 0.527 0.436 0.526 0.434 0.614 0.474 0.508 0.071 0.602 0.537 0.587 0.210 

                    

 
FeO* is total iron as FeO. 
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Table 5. (Continued). 

  
                      

Rock Ferropicrite           High-MG andesite (Spl in Cpx)       High-MG andesite (Spl in Ol)       High-Mg andesite     

Sample #32           #41                       #42       

Mineral core rim core rim core rim core rim core rim core rim core rim core rim core rim core core core core 

SiO2 0.28 0.28 0.38 0.24 0.21 0.23 0.28 0.40 0.38 0.42 0.66 0.82 1.10 1.10 0.27 0.30 0.27 0.35 0.30 0.30 0.22 0.27 

TiO2 1.41 1.33 1.46 1.41 1.38 1.47 0.73 1.01 1.20 1.32 0.48 0.93 1.34 0.79 0.48 0.60 0.45 0.55 1.04 1.04 0.69 1.53 

Al2O3 17.57 17.87 14.77 13.28 14.93 14.25 9.87 9.71 7.92 9.93 10.54 8.99 13.63 12.79 10.77 8.18 12.12 11.95 14.17 14.17 16.83 13.18 

Cr2O3 39.94 39.04 43.99 44.35 43.70 43.52 45.46 42.91 41.74 42.49 44.85 40.38 37.44 44.05 49.21 46.19 49.63 49.43 37.86 37.86 40.24 36.38 

FeO* 22.04 22.76 20.25 21.47 20.56 23.28 27.98 30.08 27.07 27.47 22.88 26.40 32.00 25.88 23.36 25.33 21.07 20.30 30.56 30.56 22.94 32.37 

MnO 0.03 0.28 0.14 0.17 0.13 0.15 0.14 0.31 0.18 0.26 0.44 0.18 0.40 0.21 0.43 0.35 0.17 0.28 0.28 0.28 0.28 0.29 

MgO 11.64 11.28 12.16 10.48 12.13 9.86 6.83 6.90 6.81 7.46 8.04 7.48 7.86 11.23 9.04 7.09 10.05 11.25 8.19 8.19 11.86 8.34 

CaO 0.04 0.08 0.06 0.07 0.03 0.13 0.29 0.38 0.40 0.45 0.24 0.47 0.09 0.13 0.04 0.07 0.07 0.12 0.13 0.13 0.16 0.09 

Total 92.95 92.92 93.21 91.47 93.07 92.89 91.58 91.70 85.70 89.80 88.13 85.65 93.86 96.18 93.60 88.11 93.83 94.23 92.53 92.53 93.22 92.45 

O= 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

Si 0.009 0.009 0.013 0.008 0.007 0.008 0.010 0.015 0.015 0.015 0.025 0.032 0.038 0.037 0.009 0.011 0.009 0.012 0.010 0.010 0.007 0.009 

Ti 0.036 0.034 0.037 0.037 0.035 0.038 0.020 0.028 0.035 0.037 0.013 0.027 0.035 0.020 0.013 0.017 0.012 0.014 0.027 0.027 0.017 0.040 

Al 0.694 0.707 0.587 0.547 0.594 0.579 0.424 0.416 0.364 0.431 0.462 0.408 0.556 0.501 0.445 0.366 0.493 0.480 0.584 0.584 0.664 0.545 

Cr 1.059 1.036 1.173 1.226 1.167 1.187 1.308 1.231 1.286 1.236 1.319 1.229 1.024 1.157 1.363 1.386 1.354 1.332 1.046 1.046 1.064 1.008 

Fe
3+

 0.157 0.171 0.139 0.136 0.154 0.142 0.208 0.269 0.250 0.229 0.143 0.246 0.274 0.230 0.148 0.191 0.111 0.136 0.295 0.295 0.222 0.347 

Fe
2+

 0.461 0.468 0.432 0.492 0.427 0.530 0.644 0.644 0.632 0.617 0.569 0.604 0.652 0.490 0.536 0.613 0.497 0.442 0.598 0.598 0.420 0.602 

Mn 0.001 0.008 0.004 0.005 0.004 0.004 0.004 0.010 0.006 0.008 0.014 0.006 0.012 0.006 0.013 0.011 0.005 0.008 0.008 0.008 0.008 0.009 

Mg 0.582 0.564 0.612 0.546 0.611 0.507 0.371 0.373 0.396 0.409 0.446 0.429 0.405 0.556 0.472 0.401 0.517 0.571 0.427 0.427 0.591 0.436 

Ca 0.001 0.003 0.002 0.003 0.001 0.005 0.011 0.015 0.017 0.018 0.010 0.019 0.003 0.005 0.002 0.003 0.003 0.004 0.005 0.005 0.006 0.003 

Total 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 

Cr# 0.604 0.594 0.666 0.691 0.663 0.672 0.755 0.748 0.779 0.742 0.741 0.751 0.648 0.698 0.754 0.791 0.733 0.735 0.642 0.642 0.616 0.649 

YCr 0.554 0.541 0.618 0.642 0.609 0.622 0.674 0.643 0.677 0.652 0.685 0.653 0.552 0.613 0.697 0.713 0.691 0.684 0.543 0.543 0.546 0.531 

YFe3+ 0.082 0.089 0.073 0.071 0.081 0.074 0.107 0.140 0.132 0.121 0.074 0.131 0.148 0.122 0.076 0.098 0.057 0.070 0.153 0.153 0.114 0.183 

Mg# 0.558 0.547 0.586 0.526 0.589 0.489 0.365 0.367 0.385 0.399 0.439 0.415 0.383 0.532 0.468 0.395 0.510 0.564 0.416 0.416 0.585 0.420 

                       
FeO* is total iron as FeO. 
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Table 6. Representative microprobe analyses (wt%) of hornblende. The ferric iron content of spinel 

was estimated assuming spinel stoichiometry. 

        
Rock High-Mg andesite (Microphenocrysts)       

Sample #41             

Mineral core rim core rim core rim core 

SiO2 40.82 41.05 42.50 42.60 41.43 42.68 43.18 

TiO2 3.35 2.78 2.82 2.83 3.25 2.98 2.47 

Al2O3 11.29 10.94 10.61 10.86 11.42 11.16 9.51 

Cr2O3 0.03 0.06 0.08 0.10 0.09 0.05 0.01 

FeOT 10.44 9.54 10.04 9.38 11.67 10.12 10.71 

MgO 13.90 13.85 14.64 14.85 13.38 14.85 14.32 

CaO 11.04 11.00 11.45 11.79 11.15 11.16 10.84 

Na2O 2.75 2.51 2.49 2.61 2.73 2.40 2.30 

K2O 0.61 0.70 0.76 0.72 0.72 0.72 0.56 

Total 94.24 92.42 95.39 95.74 95.85 96.13 93.90 

O= 23 23 23 23 23 23 23 

Si 6.22 6.34 6.37 6.35 6.24 6.33 6.56 

Ti 0.38 0.32 0.32 0.32 0.37 0.33 0.28 

Al 2.03 1.99 1.87 1.91 2.03 1.95 1.70 

Cr 0.00 0.01 0.01 0.01 0.01 0.01 0.00 

Fe
2+

 1.33 1.23 1.26 1.17 1.47 1.26 1.36 

Mg 3.16 3.19 3.27 3.30 3.00 3.29 3.24 

Ca 1.80 1.82 1.84 1.88 1.80 1.77 1.77 

Na 0.81 0.75 0.72 0.76 0.80 0.69 0.68 

K 0.12 0.14 0.15 0.14 0.14 0.14 0.11 

Total 15.85 15.78 15.81 15.82 15.85 15.77 15.70 

Mg# 0.70 0.72 0.72 0.74 0.67 0.72 0.70 

        T-total Fe as FeO. 
      

       


