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Abstract

The atomic motions at different locations in a crystal are usually at random phase. How-

ever, when the atoms receive ultrashort force they can start oscillating at the same time

and become in-phase in the crystal lattices. These lattice vibrations are called coherent

phonons. Single wall carbon nanotubes (SWNTs) and graphene nanoribbons (GNRs)

have been particularly an important material providing a one-dimensional model sys-

tem to study the dynamics and interactions of electrons and phonons. These properties

are known to be very sensitive to their geometrical structure. With rapid advances in

ultrafast pump-probe spectroscopy, it has recently been possible to observe lattice vi-

brations of SWNTs in terms of the oscillations of either the differential transmittance

or reflectance corresponding to the coherent phonon oscillations, although the related

phenomena in GNRs are not observed yet.

In this thesis, we develop a microscopic theory for the generation and detection of

coherent phonons for SWNTs and GNRs within an tight binding model and effective mass

theory. We particularly examine the so-called radial breathing mode (RBM) and radial

breathing like mode (RBLM), in SWNTs and GNRs, respectively, in which the tube

diameter and the ribbon width can initially expand or contract depending on the SWNT

and GNR geometrical structure, and depending on the laser excitation energy. We find

that the expansion and contraction of these materials originate from the electron-phonon

interaction of each SWNT and GNR as a function of the one-dimensional wavevectros

of these materials. Based on our calculations, we predict the expansion and contraction

phenomena for different SWNT and GNR structures.

Furthermore, it is known that excitons, or electron-hole pairs bound by Coulomb

interaction, have a large binding energy (up to 1 eV) so that the excitons can survive

even at room temperature. All optical processes in SWNTs thus should be expressed in

iii



terms of excitons. The excitons in SWNTs are localized spatially with a typical size of

about 1 nm. Therefore, when we consider the exciton-phonon interactions the coherent

vibrations should occur locally at each site where an exciton is exists. In order to

connect the observed macroscopic oscillations in terms of the differential transmittance

(or reflectance) with the microscopic localized vibrations, we propose theoretically that

the pump-probe spectroscopy can only measure a spatial average of localized coherent

phonon amplitudes in the SWNTs. By taking an average of the calculated amplitudes per

nanotube length, we obtain time-dependent coherent phonon amplitudes that resemble

homogeneous oscillations observed in the pump-probe experiments. We also calculate

the time-dependent absorption spectra as a result of macroscopic atomic displacements

induced by the coherent phonon oscillations and thus reproduce the oscillation feature

of the transmission or reflectance in the pump-probe measurements.
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Chapter 1

Introduction

1.1 Purpose of the study

Low-dimensional nanocarbon materials, such as single wall carbon nanotubes (SWNTs),

graphene, and graphene nanoribbons (GNRs), have been an exciting material to be ex-

plored because of their unique physical properties, which are very promising for future

optoelectronic applications [1, 2, 3]. In particular, SWNTs (graphene sheets rolled up

into a seamless cylinder) and GNRs (strips of graphene sheet with ultra-thin width) pro-

vide a one-dimensional (1D) model system for studying the dynamics and interactions

of electrons, photons, and phonons, that strongly depend on their geometrical struc-

ture [4]. With rapid advances in ultrafast pump-probe spectroscopy, it is possible to

probe electronic and vibrational dynamics of solids in real time by measuring the change

in transmittance (∆T/T ) or reflectance (∆R/R) within a pump-probe technique. Oscil-

lations observed in the transmittance or reflectance as a function of probe delay time are

utilizing the so-called coherent phonons, which are collective and in-phase atomic vibra-

tions in solids. Coherent phonons can be generated when the pump pulse width is much

smaller than a typical phonon period. For example, the radial breathing modes (RBMs)

in SWNTs, which correspond to the lattice vibration along the nanotube diameter di-

rection, have a phonon period of about 100−150 fs, thus sub-10-fs pulses are commonly

used to generate the RBM phonons coherently [5]. Recent experiments have given us

some hints that the coherent phonon amplitudes for a particular SWNT strongly de-

pends on the excitation energy [6, 7, 8]. Moreover, it was also noticed that some SWNTs

1



2 CHAPTER 1. INTRODUCTION

might start their coherent RBM vibrations by initially expanding their diameters [8],

while others might start their RBM vibrations by initially shrinking their diameters [9].

However, the systematic behavior related to the SWNT structure is not well-understood

yet. On the other hand, there were no observations on the coherent phonons in GNRs

system, yet we think that coherent phonon behavior in the GNRs is similar to that in

the SWNTs because they share similar uniqueness on their electronic structure.

The purpose of the present study is to understand and to predict theoretically coher-

ent phonon properties in both SWNTs and GNRs. In this thesis, a microscopic theory

for the generation and detection of coherent phonons in SWNTs and GNRs is devel-

oped within the extended tight-binding approximation and effective mass theory. For

SWNTs, we also particularly consider the excitonic effects on the coherent phonon gen-

eration. Since the physical properties of SWNTs and GNRs are characterized by their

geometrical structures, we present the dynamics of coherent phonons in SWNTs and

GNRs with different structures. Based on some special characteristics of each material,

the purpose of this thesis is categorized into two subthemes.

1.1.1 Coherent phonon amplitudes in SWNTs and GNRs

In SWNTs and GNRs, there are several phonon modes that can be coherently excited.

We will particularly focus on the so-called the radial breathing mode (RBM) phonons in

SWNTs and radial breathing like mode (RBLM) phonons in GNRs. The RBM phonons

correspond to the radial oscillations along the nanotube diameter, while the RBLM

phonons correspond to the oscillations along the nanoribbon width. These two modes

are interesting because they are directly related to the change in the SWNT and GNR

electronic properties, i.e. the bandgaps can be modulated by the coherent RBM and

RBLM oscillations. In this thesis, we calculate the RBM and RBLM coherent phonon

amplitudes as a function of laser excitation energy. We also consider different geometri-

cal structures of SWNTs and GNRs, characterized by the nanotube chirality (n,m) and

the number of carbon atom pairs in the ribbon width Nab, respectively. We would like

to understand how the SWNT diameter and the GNR width could change in response

to femtosecond laser excitation. We will discuss that the coherent phonon amplitudes

change the sign depending on the pump excitation energy, and that the phase of oscil-
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lations for each SWNT or GNR is strongly structure-dependent. From this simulation,

we propose a simple rule that determines whether the SWNT diameter and GNR width

initially increase or decrease.

1.1.2 Excitonic effects on coherent phonon dynamics in SWNTs

In 1D materials such like SWNTs, a photoexcited electron and a hole can form excitons,

strongly bound by Coulomb interaction. The excitons in SWNTs exist even at room

temperature. Therefore, we should discuss the electron-phonon and electron-photon

interactions in terms of the exciton-phonon and exciton-photon interactions, respectively.

The problem which then arises is that how the excitons will affect the coherent phonon

oscillations. As observed in the experiments, ∆T/T or ∆R/R data show oscillating

feature as a function of time, which indicate that the phonon oscillations have the same

phase along the nanotube axis. We can observe such macroscopic oscillations of ∆T/T

or ∆R/R because the coherent phonon oscillations modulate the electronic and optical

properties of the SWNTs. However, the excitons in SWNTs are localized spatially with

a typical size of about 1 nm in the direction along the nanotube axis and thus when we

consider the exciton-phonon interactions the coherent oscillations should occur locally

at the exciton sites. We then need to bridge such a gap between the macroscopic picture

of coherent phonon spectroscopy and the microscopic picture of excitons, which will be

discussed by assuming that coherent phonon spectroscopy can only measure a spatial

average of localized coherent amplitudes in the SWNTs.

1.2 Organization of the thesis

This thesis is organized into six chapters. Chapters 1-3 form basic foundations of this

thesis. In Chapter 1, all necessary backgrounds for the thesis are introduced. In Chap-

ter 2, the fundamentals of carbon nanotubes and graphene are reviewed, especially re-

garding the geometrical structure, electronic properties, and vibrational properties. The

electronic structure is considered within the simple tight-binding (STB) and extended

tight-binding (ETB) models. The vibrational properties are calculated by the force

constant model. In Chapter 3, the calculation methods and formulations used in this
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thesis are discussed. The microscopic coherent phonon theory based on some previous

works is reviewed [10, 11], and is extended in the present study for SWNT and GNR

systems [12, 13]. The main (original) results of this thesis are presented in Chapters 4

and 5. In Chapter 4, we show the calculation results for coherent phonon amplitudes of

SWNTs and GNRs within the ETB model and effective mass theory [12, 13]. In Chapter

5, we show the recent results of excitonic effects on coherent phonons in SWNTs [14].

Finally, in Chapter 6, a summary of this thesis is given.

1.3 General backgrounds

In this section, we review some important backgrounds that motivate the present work.

We will start with some general concepts on coherent phonon spectroscopy and then

review some recent experimental results related to this thesis.

1.3.1 Coherent phonon spectroscopy

The development of ultrafast, femtosecond laser sources has enabled researchers to study

dynamical properties coupled with lattice vibrations of a wide variety of semiconductor

nanostructures. These lasers are ideal for studying electron and hole dynamics since

scattering times of photoexcited carriers typically span from 10−100 fs in most semicon-

ductors. The most common femtosecond experiment is a pump-probe experiment where

the pump laser pulse creates a nonequilibrium distribution of photoexcited electrons and

holes, while the probe laser pulse is used to trace the change in the dielectric function

due to the carriers and lattice vibrations in the materials.

One can study the relaxation dynamics of nonequilibrium photoexcited carriers back

to equilibrium by measuring the transmission or reflection of the probe pulse as a function

of probe delay time with respect to the pump pulse. The decay of the transmission or

reflection of the probe pulse as a function of delay time from the pump pulse provides

valuable information concerning details of the nonequilibrium carrier dynamics. The

differential transmission ∆T/T is defined as

∆Tt
T

=
Tt − T
T

, (1.1)

where T is the transmission in the absence of the pump pulse, while Tt is the transmission
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Figure 1.1 Time-resolved change in transmission (∆T/T ) of the laser probe pulse as a function

of time delay of probe with respect to the pump pulse for a SWNT system. The oscillations

superimposed on the background electron and hole relaxation dynamics signal are known as

coherent phonons. Inset shows the pump-probe signal after background substraction. To study

the coherent phonons, it is necessary to subtract off the signal of background carrier dynamics

from the raw pump-probe signal and then performs a Fourier transform to calculate the power

spectrum.

with the presence of the pump pulse, measured after a certain time delay ∆t. It should

be noted that depending on the experimental setup of the samples, the measurement

of differential reflectance ∆R/R might be preferable instead of ∆T/T . Information

obtained from such experiments includes the electronic structure, scattering rates of

photoexcited carriers, relaxation dynamics and mechanisms, and many-body effects in a

given material [5].

In addition to the carrier dynamic effects, ultrafast pump-probe experiments produce

oscillating signals superimposed on the background carrier dynamics signal. For example,

in Fig. 1.1, we show ∆T/T as a function of time delay of the probe pulse with respect to

Fig. 1.1: fig/fch1-deltaT.eps
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the time of the pump pulse for a SWNT system. In the raw pump-probe signal shown

in Fig. 1.1, we can see oscillating signals in ∆T/T superimposed on the background

carrier dynamics (decay) signal. The beating amplitudes come from superposition of

several oscillation frequencies which are close to each other. These oscillations match

one of the phonon modes of the material and are assigned as coherent phonons [6, 15].

A typical phonon mode can be excited coherently because the ultrashort laser pulse

have a duration shorter than the period of the lattice vibration. If we subtract off

the background signal, the oscillation can be seen more clearly as shown in the inset

of Fig. 1.1. One can perform a Fourier transforms to calculate the power spectrum

(or intensity), which is proportional to the square of the Fourier coefficient amplitudes.

The power spectrum gives information of the phonon modes that are coherently excited

in the system, whereas the original ∆T/T data provides the real time information of

the coherent oscillations. The study of these oscillations is then known as coherent

phonon spectroscopy. Coherent phonon spectroscopy thus allows the direct measurement

of excited state phonon dynamics in the time domain and includes information on the

phase of the vibration, the electron-phonon coupling, and the dephasing times [5].

1.3.2 Coherent phonons and incoherent phonons

In early years of the coherent phonon research, the oscillations observed in the differential

transmission and reflectivity data are interpreted in terms of a phenomenological driven

harmonic oscillator [15]. The evolution of a coherent phonon amplitude Q in the presence

of a driving force exerted by ultrafast laser pulse can be expressed by

∂2Q(t)

∂t2
+ 2γD

∂Q(t)

∂t
+ ω2

0Q(t) =
F (t)

m
, (1.2)

where ω0 is the frequency of the phonon mode, γD is the damping parameter, m is the

mass of the oscillator, and F is the driving force. This force can be fitted as function of

carrier density, temperature, or other parameters of the system. The damping parameter

γD is the inverse of the dephasing time of the coherent phonon mode [16]. However,

at that time it was unclear how the coherent phonons can be generated and how the

oscillations in ∆T/T should be described quantum mechanically.

Fig. 1.2: fig/fch1-cohincoh.eps
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Figure 1.2 (a) Femtosecond laser excitation generates electronhole pairs across the gap which

relax and lose energy through phonon emission. These phonons are incoherent phonons and

do not lead to oscillations in the differential transmission or reflection. (b) Coherent phonon

wavepackets as a function of the harmonic oscillator displacement. These are formed from the

superposition of two or more of the eigenstates of the harmonic potential. They oscillate back

and forth in the harmonic potential without broadening.

It was then realized that when an ultrafast optical laser pulse rapidly creates pho-

toexcited electron-hole pairs across the bandgap in a semiconductor, the optical and

and acoustic phonons emitted during the electron-hole relaxation are actually incoherent

phonons and are not related to the oscillations observed in the differential transmission or

reflectivity spectra [10]. In Fig. 1.2(a) we show an illustration for the incoherent phonons

emitted during the photoexcited carrier relaxation. The incoherent phonons are emitted

at random times and have no distinct phase relationship and thus not responsible for

the oscillations in the pump-probe signal. Instead, the incoherent phonons are respon-

sible for the decay of the background signal. Coherent phonons, on the other hand, are

formed from a coherent superposition of phonon harmonic oscillator eigenstates, i.e. the

states with definite phonon number. If a large number of phonon harmonic oscillator

eigenstates can be excited, then the canonical coherent states can be defined for each

complex number z in terms of eigenstate of harmonic oscillator,

Ψcoh = |z〉 =
∑
n

zn√
n!

e−z
2|n〉, (1.3)

where |n〉 are the eigenstates of the harmonic oscillator.

The coherent phonon states in Eq. (1.3) are essentially the same as those used in
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quantum optics to describe the quasi-classical photon states of the electromagnetic field.

These states are eigenfunctions of the phonon annihilation operator bq for phonons with

wavevector q, i.e. bq|z〉 = z|z〉, and represent minimum-uncertainty Gaussian wavepack-

ets that oscillate back and forth in the parabolic potential without broadening, as illus-

trated in Fig. 1.2(b). When the amplitude z is large, the coherent phonons will behave

like a macroscopic harmonic oscillator. The idea of quantum mechanical coherent phonon

states can thus explain the oscillations of ∆T/T . In general, both coherent and inco-

herent phonons can be generated at the same time. That is why a typical ∆T/T data

consist of an oscillating feature and also a decay feature, corresponding to the generation

of coherent phonons and incoherent phonons, respectively.

1.3.3 Generation mechanism of coherent phonons

Based on the idea of the coherent phonons described above, we might then ask how one

can generate coherent phonons. A simple explanation for the generation of the coherent

phonons is shown in Fig. 1.3 for two prototypical systems [17]: (a) a bulk semiconducting

system (GaAs), and (b) a molecular system. The electron-phonon coupling in GaAs is

weaker than that in the molecular system. Therefore, the electron-phonon coupling is

treated as a perturbation to the electronic states (i.e. band structure) in GaAs, while in

the molecular system we consider the combined electronic-vibrational levels.

GaAs is a polar semiconductor, thus the electrons in GaAs prefer to couple with the

phonons by the polar coupling because the polar coupling is stronger than the defor-

mational electron-phonon coupling. It is then possible to have a depletion region near

the surface of the GaAs sample. The depletion region could come either from surface

states or an externally applied electric field. The energy band diagram for bottom of the

conduction band and top of the valence band are shown in Fig. 1.3(a). Bending of the

bands near the surface lead to a depletion of charge carriers for a certain width from the

surface. This leads to large external electric fields near the surface. Before photoexcita-

tion, in response to the surface depletion field, the Ga and As ions are slightly displaced

by an amount x1 and x2 from their equilibrium positions deep within the semiconduc-

tor. After photoexcitation by the pump laser pulse, electrons and holes are photoexcited

which create carriers near the semiconductor surface that can (partially) screen out the
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Figure 1.3 Generation mechanisms for coherent phonons. (a) A conventional polar semicon-

ductor like GaAs. Before photoexcitation by the pump pulse, the surface depletion field cause

the Ga and As ions to be displaced by an amount x1 and x2 from their equilibrium (no depletion

field) position. After photoexcitation, the electrons and holes generated near the surface will

screen the depletion field, causing the Ga and As ions to return to their equilibrium position,

and trigger the coherent phonon. (b) A typical molecule. The combined electronic and vibra-

tional energy levels for the grounds state energy surface and an excited state energy surface

are shown. The ground state and excited state energy surfaces have different minima, and thus

photoexcitation by the pump pulse from the grounds state to the excited state triggers the

coherent phonon and the system wants to move to a new minima.

depletion field. If the photoexcited carriers are created on a fast time scale, the displaced

Ga and As ions want to return to their equilibrium (no depletion electric field) position

and then trigger the coherent oscillation.

A similar situation is shown in Fig. 1.3(b) for a typical molecule. Shown in the

figure are the combined electronic and vibrational states for the ground state and the

first excited state. The pump pulse creates a rapid photoexcitation of an electron from

the ground state energy surface to the excited state energy surface. Since the minimum

in the excited state energy surface is at different point from that in the ground state

energy surface, the rapid photoexcitation to the higher state energy surface triggers the

coherent oscillation.

From these two simple examples, we see that the coherent phonon generation mech-

Fig. 1.3: fig/fch1-coh.eps.eps
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anism varies depending on the material properties. However, the coherent phonon oscil-

lations in various materials can be explained within the same equations of motion such

like Eq. (1.2). The difference in the generation mechanism between one material and an-

other will particularly contribute to the different form of driving force term in Eq. (1.2).

Consideration of such an explicit form of the driving force is actually the main issue of

this thesis, especially for the SWNT and GNR systems.

1.3.4 Coherent phonons in SWNTs and GNRs

SWNTs and GNRs are interesting to be studied as a model system for coherent phonon

generation because they lie between the simple molecular systems and the bulk semi-

conducting systems. In addition, the electron-phonon coupling in these carbon based

nanostructures is not polar like in GaAs. In calculating and modeling the coherent

phonon spectra in carbon nanotubes and graphene, several important effects must be

addressed. These include: (1) electronic structure (needed to determine the electron and

hole states), (2) optical matrix elements (needed to determine what states are excited

by the pump laser pulse), (3) phonon modes, (4) electron phonon matrix elements (to

determine which coherent phonon modes are triggered by the photoexcited electrons)

and (5) the generation and detection mechanisms. Each of these effects will be discussed

further in the later chapters.

In the following, we briefly reviewed some experimental observations of coherent

phonons in SWNTs and also previous theoretical studies which attempt to explain the

coherent phonon properties in SWNTs. The experimental observations for coherent

phonons in GNRs, however, are not available yet till now, and thus it will be shown in

this thesis how the coherent phonon properties in GNRs are predicted similarly to those

in SWNTs.

1.3.4.1 Observation of coherent phonons in SWNTs

Coherent phonon spectroscopy applied to SWNTs has several advantages over other

spectroscopic techniques such as resonant Raman spectroscopy and photoluminescence

spectroscopy [7, 18]. In coherent spectroscopy there is no photoluminescence signal or

Rayleigh scattering background. Coherent phonons in an ensemble of micelle suspended
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Figure 1.4 Generation and detection of coherent RBM phonons in SWNTs. (a) Time-domain

transmission modulations due to coherent RBM vibrations in ensemble SWNT solution that

were generated by standard pump-probe spectroscopy without pulse shaping. (b) Fourier trans-

formation of time-domain oscillations with chirality assigned peaks. Reproduced from Ref. [8].

SWNTs have been generated by ultrafast laser pulses and detected using femtosecond

pump-probe spectroscopy. These coherent phonon spectroscopy experiments measure

periodic changes in nanotube optical properties induced by coherent lattice vibrations

and, unlike Raman or photoluminescence spectroscopy, allows one to directly measure

phonon dynamics, including phase information, in the time domain.

Using pulse shaping techniques to create a train of pump pulses resonant with the co-

herent phonon period, it is possible to generate and detect coherent phonons in nanotubes

of a specific chirality in an ensemble sample [8, 18]. These resonant coherent phonon spec-

troscopy experiments provide information on the chirality-dependence of light absorp-

tion, coherent phonon generation, and coherent phonon-induced band structure changes.

The lowest frequency coherent phonons that can be photoexcited in SWNTs using ul-

trafast laser pulses are coherent radial breathing mode (RBM) phonons with phonon

wavevector q = 0 corresponding to a mode in which the diameter of the nanotube peri-

odically expands and contracts.

Actually real-time observation of coherent RBM oscillations is already possible with-

out pulse shaping by applying standard femtosecond pump-probe spectroscopy [6]. How-

ever, we will observe several chiralities in the coherent phonon spectra instead of obtain-

ing detailed information on a specific nanotube chirality. Figure 1.4(a) shows trans-

mission modulations of the probe beam induced by coherent lattice modulations, which

Fig. 1.4: fig/fch1-pulse1.eps
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Figure 1.5 (Left) Time-domain coherent RBM oscillations selectively excited by multiple pulse

trains via pulse shaping with corresponding repetition rates from 6.15 to 7.07 THz. (Right)

Fourier transformations of corresponding oscillations, with their dominant nanotube chirality

(n,m). Reproduced from Ref. [8].

were generated by pump pulses with a pulse width of 50 fs and a central wavelength of

800 nm (1.55 eV). The time-domain beating profiles reflect the simultaneous generation

of several RBM frequencies from nanotubes in the ensemble with different chiralities,

which are clearly seen in Fig. 1.4(b) with the Fourier transformation of the time-domain

data. Although resonance conditions and mode frequencies lead to the assignment of

chiralities to their corresponding peaks, obtaining detailed information on dynamical

quantities such as the phase information of phonon oscillations becomes rather challeng-

ing. Additionally, if adjacent phonon modes overlap in the spectral domain, this can

lead to peak distortions.

By introducing pulse shaping, multiple pulses with different repetition rates are used

Fig. 1.5: fig/fch1-pulse2.eps
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to excite RBM oscillations. As shown in Figs. 1.5(a)-(d), chirality selectivity was success-

fully obtained. With the appropriate repetition rate of the pulse trains, a single specific

chirality dominantly contributes to the signal, while other nanotubes are suppressed.

For example, by choosing a pump repetition rate of 7.07 THz, we can selectively excite

only the (11, 3) as seen in Fig. 1.4(a). Similarly, with a pump repetition rate of 6.69

THz, the (10, 5) nanotubes are selectively excited, as seen in Fig. 1.5(b). The accuracy

of selectivity depends on the number of pulses in the tailored pulse train as well as the

distribution of chiralities in the nanotubes ensemble. Furthermore, selective excitation

of a specific chirality also requires the pump energy to be resonant with the correspond-

ing band-to-band transition (in this case the E22 transition) for each chirality-specific

nanotubes.

The ability to excite single-chirality nanotubes also allows us to perform detailed

studies of excited states of single-walled carbon nanotubes. For example, by placing a

series of 10 nm bandpass filters in the probe path before the detector, we can measure

the wavelength dependence of RBM-induced transmission changes in order to under-

stand exactly how the tube diameter changes during coherent phonon RBM oscillations

and how the diameter change modifies the nanotube band structure. In Fig. 1.6, the

differential transmission is shown for three cases, from top to bottom, corresponding

to probe photon energies above, on, and below resonance, respectively, for selectively

excited (11, 3) carbon nanotubes.

Although the transmission is strongly modulated at the RBM frequency 7.07 THz

for all three cases in Fig. 1.6, the amplitude and phase of oscillations vary noticeably for

varying probe wavelengths. Specifically, the amplitude of oscillations becomes minimal

at resonance and, in addition, there is clearly a π-phase shift between the above- and

below-resonance traces. Since the bandgap energy and diameter are inversely related to

each other, and since it is the RBM frequency at which the diameter is oscillating, we

can conclude from this data that the energy of the E22 resonance is oscillating at the

RBM frequency. Namely, when the band gap is decreasing, absorption above (below)

resonance is decreasing (increasing), resulting in positive (negative) differential trans-

mission. Furthermore, it is also possible to determine the initial response of the SWNT

lattice based on this experiment, i.e. the given nanotube may start vibration by ex-

panding or shrinking its diameter depending on the excitation energy, although more
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Figure 1.6 Differential transmission as a function of time delay at probe wavelengths of 780,

795, and 810 nm for the selective RBM excitation of the (11, 3) nanotube. There is a π-phase

shift between the 780 and 810 nm data. These three wavelengths (from the top to the bottom of

the figure) correspond to photon energies above, at, and below the energy of the second exciton

resonance, respectively, of the (11, 3) nanotube. Reproduced from Ref. [8].

observations are needed to clarify such phenomena.

1.3.4.2 Previous theoretical studies

There were a number of theoretical studies previously done regarding coherent phonons

in SWNTs [19, 20, 21, 22]. However, most of them mainly dealt with molecular-dynamics

simulation to study how the defects in SWNTs interact with laser pulses. A particularly

useful theoretical study related to this thesis was done by Sanders et al. who developed

a microscopic theory for the coherent RBM phonon generation [11]. By using a simple

tight-binding approximation for the electronic states and force constant model for the

phonon dispersion, they calculated coherent phonon intensities for the RBM phonons

of two nanotube families, namely, the type-I [mod(2n + m, 3) = 1] and the type-II

[mod(2n + m, 3) = 2] semiconducting SWNTs, and found that the coherent phonon

intensity in type-I nanotubes was generally larger than that in type-II nanotubes.

Fig. 1.6: fig/fch1-pulse3.eps
Fig. 1.7: fig/fch1-theo.eps
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(a) Excitation dependence (b) Chirality dependence

Figure 1.7 (a) Coherent phonon generation in a (11, 0) nanotube by photoexcitation at the

E11 and E22 transition energies. (b) Coherent phonon generation in (11, 0) type-I and (13, 0)

type-II semiconducting nanotubes by photoexcitation at the E22 transition energy. In both (a)

and (b), the upper panel shows the density of photoexcited electron-hole pairs per unit length,

the middle panel shows the coherent phonon driving function, and the bottom panel shows the

RBM coherent phonon amplitude. Reproduced from Ref. [11].

By calculating the driving force for the coherent phonon generation and solving the

equation of motion like that in Eq. (1.2) (but without damping term), Sanders et al.

also noticed that some SWNTs start their coherent RBM vibrations by initially expand-

ing their diameters, while others start their RBM vibrations by initially shrinking their

diameters. As shown in Fig. 1.7, these phenomena might depend on the laser excitation

energy, or these may depend on the nanotube chirality. In Fig. 1.7(a), the photoex-

cited carrier density n(t), the coherent phonon driving function S(t), and the coherent

phonon amplitude Q(t) are plotted for RBM coherent phonons in a (11, 0) tube for 50 fs

z-polarized laser pulses with photoexcitation energies of 1.07 and 2.05 eV. These en-

ergies correspond to the E11 and E22 transitions in the (11, 0) tube, respectively. The

photoexcited carrier density n(t) determine the strength of the driving force. However,

the coherent phonon driving functions S(t) and amplitudes Q(t) have different signs

in the two cases. This means that for photoexcitation at the E11 transition in type-I
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nanotubes the tube diameter decreases and oscillates about a smaller equilibrium diam-

eter. On the other hand, the opposite situation is true for photoexcitation at the E22

transition energy.

Furthermore, a comparison of the coherent phonon motion between different chirality,

i.e. (11, 0) type-I and (13, 0) type-II nanotubes, is shown in Fig. 1.7(b), but now the

laser energy used to excite the nanotubes is the one that only match the E22 transition

in each chirality. For the (11, 0) tube the pump energy is set to be 2.05 eV and for

the (13, 0) tube the pump energy is 1.84 eV. It can be seen that for the (11, 0) tube

the coherent phonon driving function and corresponding coherent phonon amplitude are

positive (indicating initial expansion of the tube diameter), while for the (13, 0) tube the

driving function and corresponding coherent phonon amplitude are found to be negative

(indicating initial contraction of the tube diameter. A detailed physical reason for the

excitation energy-dependent and chirality-dependent coherent phonon amplitude is not

yet understood in that work. Such properties will be one of main issues to be discussed

in this thesis, especially to understand the origin of the coherent phonon phenomena,

and to also apply the theory for the graphene nanoribbon systems.

1.3.5 Excitons in carbon nanotubes

In this part we briefly review some historical aspects of the finding of excitons in SWNTs

and how the excitons can affect optical properties of SWNTs. We will also give a general

idea for the excitonic effects on coherent phonon dynamics in SWNTs.

Basically, an exciton consists of a photo-excited electron and a hole bound to each

other by the Coulomb interaction in a semiconducting material. In most semiconductors,

we can calculate the binding energy of an exciton in bulk materials by a hydrogenic

model with a reduced effective mass and a dielectric constant. The resulting binding

energy is typically on the order of 10 meV, thus optical absorption to exciton levels

is usually observed only at low temperatures. However, in SWNTs, because of its 1D

properties, the electron-hole attraction energy becomes larger and can be as large as

1 eV, so exciton effects can be observed at room temperature. Excitons are therefore

essential for explaining optical processes in SWNTs.

Fig. 1.8: fig/fch1-kata.eps
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Figure 1.8 (a) Optical transition energy as a function of nanotube diameter, known as the

Kataura plot, considered within the STB approximation. The vertical energy axis is simply the

nanotube bandgap [23]. (b) Single particle band gap Eg is not simply the transition energy.

Self energy Σ and binding energy Ebd corrections give the true transition energy Eii.

Pioneering researches on excitons in SWNTs originally came from a curiousity that

there always be systematic discrepancies between the calculated single particle bandgaps

and the optical transition energies Eii observed in some experiments [24, 25, 26]. To

explain the observed Eii, much insight has actually been gained from the simple (nearest-

neighbor) tight-binding (STB) model of the single particle band structure of SWNTs [23].

This method predicts the transition energies varying approximately as the inverse of

diameter and having a weak dependence on the chiral angle, as shown in the STB

Kataura plot (energy as a function of diameter) in Fig. 1.8(a). However, experimental

results point out the fact that the single particle approximation is insufficient for an

accurate description of the optical transitions in SWNTs. For example, as has been

reported by Weisman et al., the Eii values calculated by the STB model are lower than

those measured in their photoluminescence experiment [26]. They also observed the so-

called family spread, in which nanotubes with the same (2n+m) show a unique pattern

for the smaller diameter.

The electron-electron and electron-hole interactions change the Eii dependence on

diameter significantly. Both the electron-electron and electron-hole interactions are due

to the screened Coulomb interactions. The former describes the repulsive energy, called
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self-energy Σ, that is needed to add an additional electron to the system, hence, increases

the band gap. In contrast, the electron-hole interaction gives the attractive Coulomb

interaction, called exciton binding energy Ebd, which lowers the excitation energy. The

overall effect is a blue-shift so that the positive self energy dominates over the negative

exciton binding energy. This is illustrated in Fig. 1.8(b).

The importance of many-body effects in the form of excitonic electron-hole attraction

and Coulombic electron-electron repulsion in SWNTs was discussed extensively in the

context of the so-called ratio problem [24, 25], where the ratio between the second and

first transition energies in semiconducting SWNTs are not equal to two as predicted by

the STB model [23]. Some experiments such as two-photon absorption measurements [27,

28], then provided strong evidence for the excitonic nature of the lower energy transition.

In particular, a two-photon experiment by Wang et al., which is the first breakthrough

in the nanotube Ebd measurements, is described in Fig. 1.9, after Ref. [27].

From the theoretical point of view, the importance of excitons in SWNTs was in-

troduced much earlier by T. Ando who studied excitations of nanotubes within a static

screened Hartree-Fock approximation [29]. He especially calculated the dynamical con-

ductivity in SWNTs taking the exciton effects into account. After some experimental

results started to show the rise of excitons, detailed first-principles calculations of the

effects of many-body interactions on the optical properties of SWNTs were then per-

formed [30, 31]. Some descriptions of excitons in nanotubes based on simpler or different

models were also developed [32, 33].

In this thesis, we will use the extended tight-binding (ETB) model to calculate the

exciton energies and corresponding wavefunctions based on the previous work by Jiang

et al [34, 35]. The Bethe-Salpeter equation is solved for obtaining the excitation energies

Eii that already include the self energy corrections and the exciton binding energy. The

ETB model includes the curvature effects through the σ-π hybridization that cannot be

neglected for nanotubes of small diameter. Furthermore, exciton-photon and exciton-

phonon matrix elements can be obtained to replace the electron-photon and electron-

phonon interactions as the driving force for the coherent phonon oscillations. It is found

that the excitons in SWNTs are localized spatially with a typical size of about 1 nm.

Therefore, when we consider the exciton-phonon interactions the coherent vibrations
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Figure 1.9 Two-photon experiment by Wang et al. [27]. (a) In the exciton picture, the 1s

exciton state is forbidden under two-photon excitation. The 2p exciton and continuum states

are excited. They relax to the 1s exciton state and fluoresce through a one-photon process.

(b) In the simple band picture, two-photon excitation energy is the same as emission energy,

but this case is not observed. (c) Contour plot of two-photon excitation spectra of SWNTs. By

comparison with the solid line describing equal excitation and emission energies, it is clear that

the two-photon excitation peaks are shifted above the energy of the corresponding emission

feature. The large shift arises from the excitonic nature of the nanotube optical transitions.

Ebd is found to be as large as up to 1 eV, thus excitons play an important role in the nanotube

optics.

should occur locally at each site where an exciton is generated.

1.3.6 Lineshapes of coherent phonon excitation profile

Another issue related to the presence of excitons in SWNTs is regarding the lineshapes of

the coherent phonon excitation profile, i.e. the coherent phonon signal intensity plotted

as a function of several different excitation energies in a given SWNT. It was firstly

noticed by Lim et al. that the coherent phonon excitation profile for a particular mode

shows symmetric double-peak features [7]. They argued that such features are directly

related to the excitonic nature of the SWNT. Furthermore, Sanders et al. also calculated

the coherent phonon intensity within the single particle picture and compared it with

the experimental data. They found a clear difference in the lineshape of the intensity, as

Fig. 1.9: fig/fch1-tp.eps
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Figure 1.10 Coherent phonon intensity at the RBM frequency as a function of pump-probe

energy for several type-I semiconducting nanotubes at the E22 transition. The experimental

coherent phonon spectra are in the right panel and the simulated coherent phonon spectra

are in the left panel. The upper four curves in each panel are for nanotubes within family

mod(2n+m, 3) = 22 and the lower four curves are for tubes within mod(2n+m, 3) = 25. Each

curve is labeled with the chirality (n,m) and the RBM phonon energy in meV is given on the

plots.

shown in Fig. 1.10. Both theoretical calculation and experimental results show two peaks;

however, the calculation within the single particle picture give asymmetric lineshapes in

the double peak-features, unlike the experimental observations which give symmetric

lineshapes.

The reason why the symmetric double-peak features appear in the coherent phonon

excitation profile can be explained as follows. The generation of coherent RBM phonons

modifies the electronic structure of SWNTs and thus it can be detected as temporal

oscillations in the transmittance of the probe beam. Since the RBM is an isotropic

vibration of the nanotube lattice in the radial direction, i.e. the diameter periodically

oscillates at frequency of ωRBM, this causes the band gap Eg to also oscillate at ωRBM

because Eg directly depends on the nanotube diameter (roughly Eg ∝ 1/dt). As a result,

interband transition energies oscillate in time, leading to ultrafast modulations of optical

Fig. 1.10: fig/fch1-line1.eps
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Figure 1.11 Schematic dimensionality dependence of coherent phonon intensity as function

of photon energy. Top row: absorption coefficient versus photon energy for 0, 1, 2, and 3-

dimensional carbon structures. Middle row: negative of the derivative of the absorption coeffi-

cient proportional to transient differential transmission. Bottom row: square of the derivative

of the absorption coefficient proportional to the coherent phonon intensity. The absorption

curves have been convoluted to take into account lifetime broadening of the states.

constants at ωRBM, which naturally explains the oscillations in probe transmittance.

Furthermore, these modulations imply that the absorption coefficient α(E) at a fixed

probe photon energy E is modulated at ωRBM. Correspondingly, the photon energy

dependence of the coherent phonon signal shows a derivative-like behavior. The excitonic

absorption coefficient has a symmetric lineshape with a single peak, the derivative will

give the symmetric double-peak feature, in contrast to the asymmetric shape expected

from the 1D van Hove singularity.

More explicitly, the effect on the absorption α for small changes in the gap can be

modeled by

α(E − Eg) ≈ α(E − E0
g )−

∂α(E − E0
g )

∂E
.δEg + . . . , (1.4)

which gives

∆α ≈ −
∂α(E − E0

g )

∂E
.δEg (1.5)

Since the coherent phonon intensity is obtained by taking the Fourier transform of the

Fig. 1.11: fig/fch1-line2.eps
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differential transmission, the coherent phonon intensity is thus proportional to the square

of the derivative of the absorption coefficient. In fact, depending on the dimensionality

of the materials, the absorption lineshapes would be different one another.

In Fig. 1.11, the dimensionality dependence of coherent phonon intensity is shown

schematically. The top row shows the absorption coefficient as a function of photon

energy. The curves are convoluted with a Lorentzian to take into account the linewidths

of the transitions. The middle row shows the negative of the derivative of the absorp-

tion coefficient, which is proportional to the transient differential transmission due to

coherent phonon induced band gap oscillations. The bottom row shows the square of

the derivative of the absorption coefficient, which is roughly proportional to the coher-

ent phonon intensity measured in the experiments. We note that the double-peaked

structure is obtained for the 0D and 1D systems, which are symmetric and asymmetric,

respectively. Based on this argument, in Chapter 5, we will discuss the lineshapes of the

coherent phonon excitation profile calculated by considering the excitonic effects.



Chapter 2

Basics of carbon nanotubes and

graphene

Basic physical properties of single wall carbon nanotubes (SWNTs), graphene, and also

graphene nanoribbons (GNRs), are reviewed in this chapter. The discussion includes a

description of the geometrical structure, electronic properties and vibrational properties

properties of SWNTs and GNRs. An SWNT can be imagined as a single layer graphene

sheet rolled up into a cylinder, while a GNR can be imagined as a strip of single layer

graphene sheet with finite width, therefore their electronic and vibrational structures

are inferred based on those of graphene. The electronic and vibrational structures are

derived within the tight-binding framework and force constant model, respectively. In

addition, excitonic properties of SWNTs are also discussed in this chapter.

2.1 Geometrical structure

2.1.1 Graphene unit cell

Graphene is a single atomic layer of carbon atoms in a two-dimensional (2D) honeycomb

lattice. Graphene is a basic building block for all graphitic materials of other dimen-

sionalities. Several layers of graphene sheet stacked together will form three-dimensional

graphite, where the carbon atoms in each 2D layer make strong sp2 bonds and the van

der Waals forces describe a weak interlayer coupling. In 0D, graphene can be wrapped

up into fullerenes (carbon cluster made up by a closed surface like a ball), and in 1D, as

23
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Figure 2.1 (a) The unit cell and (b) Brillouin zone of graphene are shown, respectively, as

the dotted rhombus and the shaded hexagon. ai and bi, where i = 1, 2, are unit vectors and

reciprocal lattice vectors, respectively. The unit cell in real space contains two carbon atoms

A and B. The dots labeled Γ, K, K′, and M in the Brillouin zone indicate the high-symmetry

points.

a main discussion in this chapter, it can be rolled up to form the nanotubes or it can be

cut in one direction to make a finite width graphene called graphene nanoribbons.

Figure 2.1 gives the unit cell and Brillouin zone of graphene. The graphene sheet

is generated from the dotted rhombus unit cell shown by the lattice vectors a1 and a2,

which are defined in (x, y) coordinate as

a1 = a

(√
3

2
,
1

2

)
, a2 = a

(√
3

2
,−1

2

)
, (2.1)

where a =
√

3aCC is the lattice constant for the graphene sheet and aCC ≈ 0.142 nm is

the nearest-neighbor interatomic distance. The unit cell consists of two distinct carbon

atoms from the A and B sublattices shown, respectively, by open and solid dots in

Fig. 2.1(a).

The reciprocal lattice vectors b1 and b2 are related to the real lattice vectors a1 and

a2 according to the definition

ai · bj = 2πδij, (2.2)

where δij is the Kronecker delta, so that b1 and b2 are given by

b2 =
2π

a

(
1√
3
, 1

)
, b2 =

2π

a

(
1√
3
,−1

)
. (2.3)

The first Brillouin zone is shown as a shaded hexagon in Fig. 2.1(b), where Γ (center),

K , K′ (hexagonal corners), and M (center of edges) denote the high symmetry points.

Fig. 2.1: fig/fch2-grunit.eps
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2.1.2 Nanotube unit cell

Carbon nanotube forms a periodical structure or lattice, which are non-Bravais lattice.

Referring to the unrolled graphene sheet shown in Fig. 2.2, the unit cell of a SWNT is

limited by two vectors: the chiral vector Ch, and the translational vector T. The chiral

vector is defined as the way the graphene sheet is rolled up. It gives the circumference

of a SWNT. One-dimensional periodicity in the direction of the nanotube axis is then

determined by a vector perpendicular to the chiral vector, which is the translational

vector T.

The chiral vector Ch can be written in terms of the unit vectors of graphene a1 and

a2,

Ch = na1 +ma2 ≡ (n,m), (2.4)

where (n,m) is a pair of integer indices with n ≥ m, n > 0, and m ≥ 0. Since Ch

specifies the circumference of the SWNT, it is straightforward to obtain the relations for

the circumferential length L and diameter dt:

L = |Ch| = a
√
n2 + nm+m2, (2.5)

dt =
L

π
=
a
√
n2 + nm+m2

π
. (2.6)

The chiral angle θ is the angle between Ch and a1, with values of θ in the range of

0 ≤ |θ| ≤ 30◦. Taking the inner product of Ch and a1, an expresion for cos θ can be

obtained, thus relating θ to the chiral index (n,m),

cos θ =
Ch · a1

|Ch||a1|
=

2n+m

2
√
n2 + nm+m2

. (2.7)

As can be seen in Fig. 2.2, the translation vector T is perpendicular to Ch and thus

become the tube axis, it can be expressed as

T = t1a1 + t2a2 ≡ (t1, t2), (2.8)

where t1 and t2 are obtained from the condition Ch ·T = 0,

t1
2m+ n

dR
; t2 = −2n+m

dR
. (2.9)

(2.10)
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Figure 2.2 Geometry of a (4, 2) SWNT viewed as an unrolled graphene sheet with the graphene

unit vectors a1 and a2. The rectangle OPQ’Q is the 1D SWNT unit cell. Total hexagons

covered within this rectangle unit cell is N = 28. OP and OQ define the chiral vector Ch and

translation vector T, respectively, whereas the chiral angle θ is the angle between a1 and Ch.

From the figure, it is obvious Ch = (4, 2) and T = (4,−5). If the site O is connected to P, and

the site Q is connected to Q’, the cylindrical SWNT can be constructed.

Here dR is the greatest common divisor (gcd) of (2m+n) and (2n+m) so that gcd(t1, t2) =

1. The length of the translation vector, T , is then given by

T = |T| =
√

3L/dR. (2.11)

The unit cell of a SWNT is defined as the area covered by Ch and T. The area is

given by the magnitude of the vector product of Ch and T. The number of hexagons

per unit cell of the SWNT, Nhex, is obtained by dividing the area of the SWNT unit cell

with the area of the hexagonal unit cell in the graphene sheet:

Nhex =
|Ch ×T|
a1 × a2

=
2(n2 + nm+m2)

dR
. (2.12)

All the basic structural parameters of the SWNT are shown in Fig. 2.2. The SWNT

can then be classified according to its (n,m) or θ value (see Fig. 2.3). This classification

Fig. 2.2: fig/fch2-construct.eps
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(b)

(a)

(c)

=0°; n ,0 ; m=0

Zigzag:

0°
≤≤30° ; n ,m; n≠m

Chiral:

=30°; n ,n ; n=m

Armchair:

Figure 2.3 Classification of carbon nanotubes: (a) zigzag, (b) chiral, (c) armchair SWNTs.

From left to right, the chiral index of each SWNT above is (5, 0), (4, 2), (3, 3), respectively.

In (a) and (c), orange and red solid lines are intended to emphasize “zigzag” and “armchair”

structures, respectively.

is based on the symmetry of the SWNT. There are three types of carbon nanotubes:

(a) zigzag, (b) chiral, and (c) armchair nanotubes, as shown in Fig. 2.3. Chiral SWNTs

exhibit a spiral symmetry whose mirror image cannot be superposed onto the original

one. Zigzag and armchair SWNTs have mirror images that are identically the same as the

original ones when we put a nanotube axis in the mirror. The names of of armchair and

zigzag arise from the shape of the cross-sectional ring in the circumferential direction

of the SWNTs. We then have various SWNT geometries that can change diameter,

chirality, and also cap structures, giving rich physical properties of carbon nanotubes.

While the 1D unit cell of a SWNT in real space is expressed by Ch and T, the

corresponding vectors in reciprocal space are the vectors K1 along the tube circumference

and K2 along the tube axis. Since nanotubes are 1D materials, only K2 is a reciprocal

lattice vector. K1 gives discrete k values in the direction of Ch. Expressions for K1 and

Fig. 2.3: fig/fch2-swnt.eps
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K
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µ = 27

Figure 2.4 The reciprocal lattice vectors K1 and K2, and the Brillouin zone of a (4, 2) SWNT

represented by the set of N = 28 parallel cutting lines. The vectors K1 and K2 in reciprocal

space correspond to Ch and T in real space, respectively. The cutting lines are labeled by the

integer angular momentum index µ.

K2 are obtained from their relations with Ch and T:

Ch ·K1 = 2π, T ·K1 = 0, (2.13)

Ch ·K2 = 0, T ·K2 = 2π. (2.14)

It follows,

K1 =
1

Nhex

(−t2b1 + t1b2),K2 =
1

Nhex

(mb1 − nb2), (2.15)

where b1 and b2 are the reciprocal lattice vectors of graphene. In Fig. 2.4, K1 and K2

are shown for the (4, 2) SWNT. The Nhex line segments with length of K2 construct the

1D Brillouin zone of the SWNT, which we call as “cutting lines”.

The allowed wave vector k of a SWNT is

k = µK1 + k
K2

|K2|
(2.16)

where µ = 0, 1, . . . , Nhex− 1 is the “cutting line” index, and k is in the range of −π/T <

k < π/T . The length of K1 and K2 are given by:

|K1| =
2π

L
=

2

dt
, |K2| =

2π

T
. (2.17)

The unit cell of the SWNT contains Nhex hexagons, then the first Brillouin zone of the

SWNT consists of Nhex cutting lines. Therefore, Nhex parallel cutting lines are related to

the discrete value of the angular momentum µ, and the cutting line length K2 determines

the periodicity of the 1D momentum k.

Fig. 2.4: fig/fch2-bz.eps
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Figure 2.5 Lattice structures and translational unit cells for armchair (aGNR) and zigzag

(zGNR) graphene nanoribbons. The width of the nanoribbons is W .

2.1.3 Nanoribbon unit cell

A single layer graphene nanoribbon (GNR) can be imagined as a strip of single layer

graphene sheet with finite ultrathin width. Since we confine the graphene sheet in one

direction, GNRs can also be considered as 1D materials. Depending on the position

where we cut the graphene sheet, we may have two specific GNR structures: armchair

GNRs and zigzag GNRs, as shown in Fig. 2.5.

Armchair ribbons and zigzag ribbons are denoted by Nab aGNR and Nab zGNR,

respectively, where Nab is the number of AB carbon dimers in the translational unit cell.

In zigzag ribbons, the length L of the translational unit cell is a and the width W of the

ribbon is (Nab − 1)
√

3
2
a where a = 2.49 is the hexagonal lattice constant in graphene.

In armchair ribbons, the translational unit cell length is
√

3a and the ribbon width is

(Nab − 1) 1
2
a. Note that in zigzag and armchair ribbons with the same number of atoms

per unit cell, the area of the unit cells are equal. The k-space properties of GNRs can

be then be derived similarly as those of SWNTs [36, 37], in which we will also have 1D

Brillouin zone in terms of the cutting lines µ depending on the GNR structure.

Fig. 2.5: fig/fch2-ribbonstruct.eps
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2.2 Electronic properties

The electronic dispersion relations of SWNTs are derived from those of a graphene sheet.

The tight-binding model is reviewed here, starting from a simple tight-binding (STB)

model. In a later section, the extended tight-binding (ETB) model that gives a good

agreement with some optical spectroscopy measurements are described.

The electronic dispersion relations of a graphene sheet are obtained by solving the

single particle Schrödinger equation:

HΨb(k, r) = EΨb(k, r) , (2.18)

where H = T +V (r) is the single-particle Hamiltonian, T is the kinetic energy operator,

V (r) is the periodic potential, Ψb(k, r) is the one-electron wavefunction, b is the band

index, k is the electron wavevector, r is the spatial coordinate, and E is the energy

eigenvalue. The electron wavefunction Ψb(k, r, t) is approximated by a linear combination

of atomic orbitals (LCAO) in terms of Bloch functions:

Ψb(k, r, t) = exp
(
−iEb(k)t/~

)∑
so

Cb
so(k)Φso(k, r) ,

Φso(k, r) =
1√
Nu

Nu∑
u

exp (ikRus)φo(r−Rus) ,

(2.19)

where Eb(k) is the one-electron energy, Cb
so(k) is the Bloch amplitude, Φso(k, r) is the

Bloch wavefunction, φo(r) is the atomic orbital, Rus is the atomic coordinate, the index

u = 1, . . . , Nu is for all the Nu unit cells in a graphene sheet (Nu = Nhex for a SWNT and

Nu = Nab for a GNR), the index s = A,B labels the two inequivalent atoms in the unit

cell, and the index o = 1s, 2s, 2px, 2py, 2pz gives the atomic orbitals of a carbon atom.

The Schrödinger equation for the Bloch amplitudes Cb
so(k) can be written in the

matrix form: ∑
so

Hs′o′so(k)Cb
so(k) =

∑
so

Eb(k)Ss′o′so(k)Cb
so(k) , (2.20)

where the Hamiltonian Hs′o′so(k) and overlap Ss′o′so(k) matrices are given by:

Hs′o′so(k) =
U∑
u

exp (ik (Rus −Ru′s′))

∫
φ∗o′(r−Ru′s′)Hφo(r−Rus)dr ,

Ss′o′so(k) =
U∑
u

exp (ik (Rus −Ru′s′))

∫
φ∗o′(r−Ru′s′)φo(r−Rus)dr ,

(2.21)
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and the index u′ labels the unit cell under consideration. The orthonormality condition

for the electron wavefunction of Eq. (2.19) becomes:∫
Ψb′ ∗(k, r, t)Ψb(k, r, t)dr =

∑
s′o′

∑
so

Cb′ ∗
s′o′ (k)Ss′o′so(k)Cb

so(k) = δb′b . (2.22)

To evaluate the integrals in Eq. (2.21), the periodic potential V (r) in the single particle

HamiltonianH of Eq. (2.18) is expressed by a sum of the spherically-symmetric potentials

U(r−Ru′′s′′) centered at the atomic sites Ru′′s′′ :

V (r) =
∑
u′′s′′

U(r−Ru′′s′′) . (2.23)

The Hamiltonian matrix Hs′o′so(k) then contains the three-center integrals that involve

two orbitals φ∗o′(r−Ru′s′) and φo(r−Rus) at two different atomic sites Ru′s′ and Rus,

while the potential U(r−Ru′′s′′) originates from a third atomic site Ru′′s′′ . On the other

hand, the overlap matrix Ss′o′so(k) contains two-center integrals only. Neglecting the

three-center integrals in Hs′o′so(k), the remaining two-center integrals in both Hs′o′so(k)

and Ss′o′so(k) can be parameterized as functions of the interatomic vector R = Rus−Ru′s′

and of the symmetry and relative orientation of the atomic orbitals φ∗o′(r) and φo(r):

εo =

∫
φ∗o(r)Hφo(r)dr ,

to′o(R) =

∫
φ∗o′(r) (T + U (r) + U (r−R))φo(r−R)dr ,

so′o(R) =

∫
φ∗o′(r)φo(r−R)dr ,

(2.24)

where εo is the atomic orbital energy, to′o(R) is the transfer integral, and so′o(R) is the

overlap integral. A numerical calculation of parameters εo, to′o(R), and so′o(R) defines

the non-orthogonal tight-binding model. Within the orthogonal tight-binding model,

so′o(R) is set to zero (unity) for R 6= 0 (R = 0).

2.2.1 Graphene electronic structure

In the STB model, we neglect the σ bonding of C-C atoms and the long-range atomic

interactions in the π bonding for R > aCC. The STB model thus has three parameters:

the atomic orbital energy ε2p, the transfer integral tππ(aCC), and the overlap integral

sππ(aCC). The transfer and overlap integrals will simply be referred to as t, and s,

respectively.
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To construct the Hamiltonian Hs′o′so(k) and overlap Ss′o′so(k) matrices of Eq. (2.20),

consider the nearest-neighbor interactions (R = aCC) in the unit cell of a graphene sheet.

The unit cell contains two atoms, A and B, each of which has three nearest neighbors of

the opposite atom type (A and B). The absence of nearest-neighbor interactions within

the same A or B sublattice gives the diagonal Hamiltonian and overlap matrix elements,

HAπAπ = HBπBπ = ε2p and SAπAπ = SBπBπ = 1, independent of the transfer t and

overlap s integrals. For the HAπBπ and SAπBπ matrix elements, the interatomic vectors

R from atom A to its three nearest-neighbors in Eq. (2.20) are given by (a1 + a2) /3,

(a1 − 2a2) /3, and (a2 − 2a1) /3. Substituting these vectors into Eq. (2.20), one can

obtain HAπBπ = tf(k) and SAπBπ = sf(k), where f(k) is the sum of the phase factors

over the nearest neighbors given by

f(k) = exp

(
i
kxa√

3

)
+ exp

(
−i kxa

2
√

3
+ i

kya

2

)
+ exp

(
−i kxa

2
√

3
− ikya

2

)
. (2.25)

The HBπAπ and SBπAπ matrix elements are derived in a similar way. The interatomic

vectors R have the opposite signs, giving HBπAπ = tf ∗(k) and SBπAπ = sf ∗(k). The

Schrödinger equation in the matrix form, Eq. (2.20), can be written as ε2p tf(k)

tf ∗(k) ε2p

 Cb
Aπ(k)

Cb
Bπ(k)

 = Eb(k)

 1 sf(k)

sf ∗(k) 1

 Cb
Aπ(k)

Cb
Bπ(k)

 . (2.26)

Solving this secular equation yields the energy eigenvalues:

Ev(k) =
ε2p + tw(k)

1 + sw(k)
, Ec(k) =

ε2p − tw(k)

1− sw(k)
, (2.27)

where the band index b = v, c indicates the valence and conduction bands, t < 0, and

w(k) is the absolute value of the phase factor f(k), i.e., w(k) =
√
f ∗(k)f(k):

w(k) =

√
1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
. (2.28)

According to Eq. (2.27), the atomic orbital energy ε2p is an arbitrary reference point

in the orthogonal STB model (s = 0), while ε2p is a relevant parameter in the non-

orthogonal ETB model (s 6= 0).

Fitting the dispersion relations of the graphene sheet given by Eq. (2.27) to the

energy values obtained from an ab initio calculation gives the values of the transfer

integral t = −3.033 eV and overlap integral s = 0.129, and set the atomic orbital energy
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Figure 2.6 The π bands of graphene within the simple tight-binding method. In (a), the

energy dispersion is shown throughout the whole region of the Brillouin zone. (b) Near the

K point, the energy dispersion relation is approximately linear, showing two symmetric cone

shapes, the so-called Dirac cones. (c) Contour plot of the energy dispersion near the K point.

The tight-binding parameters used here are ε2p = 0 eV, t = −3.033 eV, and s = 0.129.

equal to zero (origin of the energy scale), ε2p = 0 eV [1]. Fig. 2.6 (a) shows the dispersion

relations of the graphene sheet given by Eq. (2.27) with the above parameters throughout

the entire area of the first Brillouin zone. The lower (valence) band is completely filled

with electrons in the ground state, while the upper (conduction) band is completely

empty of electrons in the ground state.

Unlike most semiconductors, the band structure of a graphene sheet shows linear

dispersion relations around the K and K′ points near the Fermi level, as can be seen in

Fig. 2.6(b). The electron wavevector around the K point in the first Brillouin zone can

be written in the form kx = ∆kx and ky = −4π/(3a) + ∆ky, where ∆kx and ∆ky are

small compared to 1/a. Substituting this wavevector into Eq. (2.28) and making the

expansion in a power series in ∆kxa and ∆kya up to the second order, one can obtain

w =
√

3
2

∆ka, where ∆k =
√

∆k2
x + ∆k2

y is the distance from the electron wavevector to

the K point. Substituting w into Eq. (2.27) gives the electronic dispersion relations in

the valence and conduction bands:

Ev (∆k) = ε2p −
√

3

2
(ε2ps− t) a∆k , Ec (∆k) = ε2p +

√
3

2
(ε2ps− t) a∆k , (2.29)

which are linear in ∆k. The linear dispersion relations near the Fermi level suggest

that the non-relativistic Schrödinger equation used for conventional semiconductors with

parabolic energy bands is not sufficient to explain the electrons in a graphene sheet. In-

Fig. 2.6: fig/fch2-piband.eps
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Figure 2.7 Examples of 1D energy dispersion relations of SWNTs: (a) armchair (6, 6), and

(b) zigzag (10, 0) SWNTs. No bandgaps can be seen in (a), thus the SWNT is metallic, whereas

the SWNT in (b) is semiconducting because there is an open gap.

stead, the π electrons in a graphene sheet mimic massless particles whose behavior is

described by the relativistic Dirac equation. Furthermore, the linear dispersion relations

increase the mobility of the π electrons in a graphene sheet compared to that of conven-

tional semiconductors. In contrast to the π electrons, the σ electrons fully occupy the

energy band, and therefore do not contribute to the transport properties. Indeed, the σ

energy bands lie several eV away from the Fermi level, as obtained by solving Eq. (2.20)

for the σ molecular orbitals. In Fig. 2.6(c), the contour plot of the energy dispersion near

the K point is shown. The energy surface changes from circle to triangle with increasing

distance from the K point, giving rise to the so-called trigonal warping effect [23], which

strongly affects the optical transitions in SWNTs.

2.2.2 Nanotube electronic structure

Now the electronic structure of a SWNT can be derived from the energy dispersion

calculation of graphene in Eq. (2.27). As we discussed in Sec. 2.1.2, the allowed wave

vectors k (the cutting lines) around the SWNT circumference become quantized. The

energy dispersion relations of the SWNT are then given by the corresponding energy

dispersion relations of graphene along the cutting lines. When the 1D cutting lines

Fig. 2.7: fig/fch2-dis.eps
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Figure 2.8 (a) Condition for metallic energy bands is related to the ratio of the length of

vector YK to that of K1. If the ratio is an integer, metallic energy bands are obtained [1].

(b) Three possible configurations of the cutting lines in the vicinity of the K point depending

on the value of mod(2n + m, 3). From left to right, the nanotube type is M- (metallic), S1-

(type-I semiconducting), and S2- (type-II semiconducting) SWNT, respectively. The solid lines

represent the cutting lines and the dashed lines indicate the KM directions, which are the

boundaries of the first Brillouin zone of the SWNT.

µK1 +kK2/|K2| of a SWNT in Eq. (2.16) are superimposed on the 2D electronic energy

dispersion surface of the graphene sheet in Eq. (2.27), N pairs of energy dispersion

relations of the SWNT, Eb
SWNT(µ, k), are obtained:

Eb
SWNT(µ, k) = Eb

2D

(
µK1 + k

K2

|K2|

)
,
(
µ = 0, 1, . . . , N − 1;−π

T
< k <

π

T

)
. (2.30)

For a particular (n,m) SWNT, if a cutting line passes through K or K′ point of

the Brillouin zone of graphene, where the valence and conduction bands touch to each

other, the 1D energy bands of the SWNT have a zero energy gap, therefore, they be-

come metallic. However, if a cutting line does not pass through K or K′, the (n,m) is

semiconducting with a finite energy gap. Figure 2.7 gives two examples of the SWNT

dispersion relations.

As shown in Fig. 2.8(a), if we project the ΓK vector pointing toward the K point

onto the K1 direction perpendicular to the cutting lines, that can be denoted by ΓY =

ΓK ·K1/
√

K1 ·K1, we can find:

ΓK√
K1 ·K1

=
1
3
(2b1 + b2) · 1

N
(t1b2 − t2b1)√

1
N

(t1b2 − t2b1) · 1
N

(t1b2 − t2b1)
(2.31)

=
2n+m

3
, (2.32)

Fig. 2.8: fig/fch2-class.eps
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Figure 2.9 Nanotubes family classification on the unrolled graphene sheet for the nanotubes

of diameter less than 1 nm. The (n,m) indices written in the hexagons represent the chiral

vectors pointing to the centers of the hexagons. Here the chiral vector of a (4, 2) SWNT is

shown by an arrow. The dashed lines represent the families of constant 2n + m, n −m, and

2m+n for each family. The magenta, light yellow, and cyan hexagons correspond to the chiral

vectors of M-, S1-, and S2-SWNTs, respectively.

If (2n + m)/3 is an integer, ΓK has an integer number of K1 components, so that

one of the cutting lines passes through the K point, hence giving a metallic SWNT.

If (2n + m)/3 is not an integer, i.e, the residual is 1 or 2, the K point lies at 1/3 or

2/3 of the spacing between two adjacent cutting lines near the K point, hence giving

a semiconducting SWNT, as shown in Fig. 2.8(b). These three types of SWNTs are

referred to as M-, S1-, and S2-SWNTs, respectively:

M : mod(2n+m, 3) = 0, (2.33)

S1 : mod(2n+m, 3) = 1, (2.34)

S2 : mod(2n+m, 3) = 2. (2.35)

The S1- and S2-SWNTs are often written as type-I and type-II semiconducting SWNTs.

There are also other metallicity notations frequently used in the nanotube research com-

Fig. 2.9: fig/fch2-famnum.eps
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Figure 2.10 Chiral angle (θ) versus diameter (dt) of all SWNTs in the range of 0.5 < dt < 3 nm.

Nanotubes of the same family number (2n+m) are connected by lines. Up to dt ≈ 1.2 nm, the

constant 2n+m nanotubes have similar diameters.

munity depending on the value of mod(n−m, 3) as follows:

mod 0 : mod(n−m, 3) = 0, (2.36)

mod 1 : mod(n−m, 3) = 1, (2.37)

mod 2 : mod(n−m, 3) = 2. (2.38)

With a simple algebra, it can be shown that mod 0, mod 1, and mod 2 SWNTs are the

same as M-, S2-, S1-SWNTs, respectively.

In Fig. 2.9, the chiral vectors for M-, S1-, and S2-SWNTs are shown. Within the

triangular graphene sheet, the diagonal lines of each hexagon are connected to the diag-

onal lines of the adjacent hexagons, shown by the dashed lines in Fig. 2.9. These lines

with constant values of (2n + m), (2m + n), and (n − m) are called the family lines.

Especially for the (2n + m) families, the SWNTs which belong to the same (2n + m)

have the closest diameters, compared to the (2m + n) or (n−m) families, as obviously

can be seen in Fig. 2.10.

2.2.3 Density of states and transition energies

The electronic density of states (DOS) or the number of available electronic states for

a given energy interval per carbon atom is especially very important for understanding

Fig. 2.10: fig/fch2-2nmfam.eps
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Figure 2.11 (a) The dispersion relations and (b) density of electronic states DOS of the (15, 0)

SWNT. The arrows show the allowed optical transitions between the first and second valence

and conduction subbands. (c) The joint density of states (JDOS) of the (15, 0) SWNT. The

labels E11 (E22) correspond to the transition between Ev1 and Ec1 (Ev2 and Ec2) shown in panel

(b). This figure is adapted from Ref. [38].

optical properties of materials. The DOS is known to depend on the dimension of the

materials. For parabolic energy bands found in most semiconductors, the DOS rises

as the square root of the energy above the energy bottom E0 in the 3D cases such as

diamond and graphite, g(E) ∝ (E−E0)1/2. For a 1D system such as SWNT, E0 is equal

to the subband edge energy Eb
i , where the DOS magnitude becomes singular, known as

the van-Hove singularity (VHS).

The presence of VHSs in the DOS of SWNTs has a great impact on their optical

properties, a significant enhancement in the SWNT response is observed when the ex-

citation energy for the probe matches one of the VHSs in the DOS in the valence and

conduction bands of the SWNT. For example, optical absorption is strongly enhanced

when the photon energy is in resonance with the allowed transition between two VHSs in

the valence and conduction bands. This enhancement is generally interpreted in terms

of the joint density of electronic states (JDOS) which takes into account the dipole se-

Fig. 2.11: fig/fch2-dos.eps
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Figure 2.12 The optical transition energies Eii for i = 1, 2, 3, . . . and for all possible (n,m)

SWNTs in the range of 0.5 < dt < 2.0 nm calculated within the STB model as a function of (a)

SWNT diameter dt, and (b) inverse diameter 1/dt, known as the Kataura plot. Black, red, and

blue dots correspond to M-, S1-, and S2 SWNTs, respectively. The constant 2n + m families

are connected by lines. This figure is adapted from Ref. [38].

lection rules. The optical transitions should conserve both angular and linear momenta

in SWNTs, thus the transitions are vertical in k-space, as shown in Fig. 2.11(a).

The optical response of SWNTs is dominated by the VHSs in the JDOS labeled by

Eii. The optical transition energies Eii for i = 1, 2, 3, . . . and for all the possible (n,m)

SWNTs are summarized in the so-called Kataura plot [39] as a function of the SWNT

diameter dt. In Fig. 2.12(a), the Kataura plot calculated within the STB model is shown,

in which the transition energies are interpreted as the energy gaps between i-th VHSs in

the conduction and valence bands. The same STB Kataura plot is shown in Fig. 2.12 (b)

as a function of the inverse SWNT diameter 1/dt, which is more convenient for direct

Fig. 2.12: fig/fch2-stbkat.eps
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comparison with experiments, since 1/dt is proportional to ωRBM. Furthermore, the 1/dt

scale allows us to explore the small dt region (dt < 1.2 nm), which has a lower density

of (n,m) indices. As one can see from Fig. 2.12, the Eii energies for M-, S1-, and S2-

SWNTs show distinct behavior. Within the M-, S1-, and S2-types, the Eii energies that

belong to the families of constant 2n+m group together in the Kataura plot.

2.2.4 Extended tight-binding model

Recent Eii measurements by photoluminiscence (PL) and resonance Raman spectroscopy

(RRS) indicate that the STB calculation is not sufficient to interpret the experimental

results. Figures 2.13 and 2.14 give the same Eii energies for the same SWNT sample, that

is HiPco SWNTs suspended by SDS surfactant in aqueous solution. The experimental

Kataura plots in Figs. 2.13(b) and 2.14(b) differ from the theoretical STB Kataura plot

in Fig. 2.12 two aspects: in the large diameter limit and in the small diameter limit. In

the large dt limit the ratio of ES
22 to ES

11 reaches 1.8 in the experimental Kataura plots,

while the same ratio goes to 2 in the theoretical STB Kataura plot [40], which is called

as the ratio problem. This problem can be understood by means of the many-body

interactions related to the excitons, that will be discussed in Sec. 2.4.

In the small dt limit, the families of constant 2n+m deviate from the mean Eii en-

ergy bands in the experimental Kataura plots, while the family spread in the theoretical

Kataura plot remains relatively moderate [26]. In search for the origin of the family

spread, we reconsider the limitations of the STB model discussed previously. Within

the STB model, the long-range atomic interactions and the effect of the curvature of the

cylindrical surface of a SWNT are both neglected. The long-range atomic interactions

are known to change the electronic band structure of the graphene sheet and SWNTs.

On the other hand, in the presence of the curvature, the π orbitals are mixed with the σ

orbitals. Furthermore, the σ-π rehybridization suggests that the geometrical structure

of a small diameter SWNT deviates from the rolled up graphene sheet. A geometrical

structure optimization must thus be performed to allow for atomic relaxation to equilib-

rium positions. This in turn affects the Eii energies of the small diameter SWNTs. In the

case of GNRs and large diameter SWNTs, however, the σ molecular orbitals are irrele-

Fig. 2.13: fig/fch2-pl.eps
Fig. 2.14: fig/fch2-rrs.eps
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Figure 2.13 (a) 2D photoluminiscence (PL) map measured on wrapped HiPco SWNTs sus-

pended by SDS surfactant in aqueous solution [40]. (b) The Kataura plot extracted from the

PL map [26]. The numbers show the constant 2n + m families. This figure is adapted from

Ref. [38].
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Figure 2.14 (a) The resonance Raman spectral density map in the frequency range of the RBM

measured on wrapped HiPco SWNTs suspended by SDS surfactant in aqueous solution[41]. (b)

The Kataura plot extracted from the map in (a). The numbers show the constant 2n + m

families. This figure is adapted from Ref. [38].

vant because the surface is flat and thus the σ and π molecular orbitals are orthogonal

to each other.

Based on the above consideration, the STB model is extended by including the long-
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Figure 2.15 The ETB Kataura plot similar to the STB Kataura plot in Fig. 2.12 as a function

of (a) SWNT diameter dt, and (b) inverse diameter 1/dt. The ETB model takes into account

the long-range atomic interactions, the curvature effects of small diameter SWNTs, and the

optimized geometrical structures of the SWNTs. Black, red, and blue dots correspond to M-,

S1-, and S2 SWNTs, respectively. The constant 2n + m families are connected by lines. This

figure is adapted from Ref. [38].

range atomic interactions and the σ molecular orbitals, and by optimizing the geometrical

structure. The resulting model is referred to as the extended tight-binding model (ETB).

Within the framework of the ETB model, we use the tight-binding parametrization deter-

mined from density-functional theory (DFT) employing the local-density approximation

(LDA) and using a local orbital basis set [42]. The ETB model is calculated in detail by

Samsonidze et. al [43]. We closely follow his approach for the ETB electronic structure

calculation.

Figure 2.15 show the calculated ETB Kataura plot as a function of tube diameter

and inverse diameter. The plot exhibits a similar family spread to the PL and RRS

Fig. 2.15: fig/fch2-etbkat.eps
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Figure 2.16 Electronic energy bands for 6-, 7- and 8-aGNR nanoribbons calculated in the

ETB model.

experimental Kataura plots in Figs. 2.13(b) and 2.14(b). The family spread is concluded

to be related to the curvature effect of SWNTs. However, although the family spread

of the ETB model is in good agreement with the PL and RRS Kataura plots, it still

deviates 200 − 300 meV from the PL and RRS experiments. This deviations originates

from the excitonic many-body effects which will be discussed in Sec. 2.4

2.2.5 Nanoribbon electronic structure

The GNR electronic structure depends on the edge shape. In the case of armchair

GNRs (aGNRs), they can belong to one of three families depending on the mod number

mod(Nab, 3). Similar to the SWNTs with the use of an ETB calculation considering the

long-range interactions but neglecting the curvature effects, we can classify mod 0 and

mod 1 aGNRs as semiconductors and mod 2 aGNRs as metals [37, 44].

Bandstructures for π electrons in three representative aGNRs calculated within the

ETB model are shown in Fig. 2.16. The 6-aGNR and 7-aGNR ribbons are semiconduct-

ing with finite band gaps, while the 8-aGNR ribbon is metallic. Armchair semiconducting

nanoribbons have direct gaps that arise from quantum confinement and edge effects and

all the electronic wavefunctions near the band edge are distributed throughout the width

Fig. 2.16: fig/fch2-agnrelstruct.eps
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Figure 2.17 Electronic energy bands a 7-zGNR nanoribbon calculated in the ETB model.

The lowest seven bands labeled v1 . . . v7 are the valence bands, while the highest seven bands

labeled c1 . . . c7 are the conduction bands.

of the ribbon.

In the case of zigzag GNRs, all of them are metallic and there is no classification into

qualitatively distinct types like there is in armchair nanoribbons. It should be noted,

however, that the localized electronic energy band, which are the so-called edge states,

exists for zGNR in which the c1 and v1 energy bands as shown in Fig. 2.17 are merged

into degenerate energy bands at the zone boundary region. Since the contribution of

the edge states to coherent phonon amplitudes is not clear yet, we will not discuss

the coherent phonon properties in zGNRs and we will mainly consider the aGNRs in

Chapter 4

Fig. 2.17: fig/fch2-zgnrelstruct.eps
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2.3 Vibrational properties

Phonons in graphene, SWNTs and GNRs have been studied by a number of techniques

including elastic continuum models [45, 46], force constant models [1, 47, 48, 49, 50] bond

charge models[51], and ab initio methods [52, 53, 54, 55]. Here, we treat phonon disper-

sion relations in planar graphene using a force constant model [47], which we also refer

to as the valence force field model (VFF). We include radial (r) bond-stretching interac-

tions as well as transverse in-plane (ti) and out-of-plane (to) bond bending interactions.

The force constants for these interactions are denoted φ
(n)
r , φ(n)

ti , and φ
(n)
to respectively

where the integers n = 1 . . . 4 label the nearest neighbor atomic shells surrounding each

carbon atom.

We must include at least fourth neighbor interactions to describe the bond twisting

interaction involving a carbon-carbon sp2 bond and the four attached carbon-carbon

bonds with a total of six carbon atoms. The most widely separated of these six carbon

atoms are separated by the fourth neighbor distance. We use 12 force constant values

obtained from fits to experimental data [47] keeping up to fourth neighbor interactions.

In graphene, there are two atoms per hexagonal unit cell giving rise to six phonon

branches. The phonon energies ~ω(q) and corresponding mode displacement vectors are

obtained by diagonalizing a 6× 6 dynamical matrix [47].

The graphene phonon dispersion relations are shown in Fig. 2.18(a) where phonon

energy is plotted along high symmetry lines in the hexagonal Brillouin zone. There are

six phonon modes. The corresponding density of states for the phonon modes in units

of modes per hexagonal unit cell per eV is shown in Fig. 2.18(b). Near the Γ point

(q = 0), there are three acoustic and three optical branches. The lowest acoustic branch

is an out-of-plane transverse mode (ZA) whose energy varies as q2. There are two in-

plane acoustic modes with energies varying linearly as |q|. The lower lying of these two

modes is a transverse acoustic mode (TA) and the higher lying mode is a longitudinal

acoustic mode (LA). The lowest lying optical branch is an out-of-plane transverse mode

(ZO) with a negative q2 energy dependence at the Γ point. The remaining two optical

branches are in-plane transverse optical (TO) and longitudinal optical (LO) modes which

are degenerate at the Γ point and whose energy dependence is approximately constant

for small values of q. For the Γ point LO mode the A and B atoms vibrate parallel to
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Figure 2.18 (a) Graphene phonon energies, ~ω(q), along high symmetry lines in the hexagonal

Brillouin zone. (b) Phonon density of states in units of phonon modes per hexagonal unit cell

per eV. The high symmetry lines are shown schematically in the inset where the Brillouin zone

has been rotated clockwise by 30◦. In (c) the mode displacement vectors for the q = 0 in-plane

LO and TO phonons are shown schematically.

the graphene x̂ axis (parallel to the bond connecting the A and B atoms) 180 degrees

out of phase with each other. For the Γ point TO mode the atoms vibrate out of phase

with each other parallel to the graphene ŷ axis. The mode displacement vectors for the

LO and TO modes are shown schematically in Fig. 2.18(c).

The above valence force field model works well for graphene and planar carbon struc-

tures such as GNRs. However, in SWNTs where the curvature effects are important,

special care must be taken to ensure that the force constant sum rule is obeyed [56].

This simply means that the valence force field potential energy terms must be invariant

under rigid translations and rigid rotations of the nanotube about the nanotube axis.

In Ref. [49], Mahan and Jeon pointed out that many calculations in the literature use

force field models that violate the force constant sum rule and fail to reproduce long

wavelength flexure modes predicted by elasticity theory. To remedy this problem in

our calculations, we treat lattice dynamics in carbon nanotubes using a modified va-

lence force field model (MVFF) in which the force constant sum rule is obeyed so that

the force field potentials are invariant under rigid translations and rotations. In our

MVFF model, we include bond stretching, in-plane bond bending, out-of-plane bond

Fig. 2.18: fig/fch2-grphdisp.eps
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Figure 2.19 Graphene phonon energies, ~ω(q), along high symmetry lines in the hexagonal

Brillouin zone. Black dots are obtained using the 12 parameter valence force field model (VFF)

described in the text and the solid red curves are the best fit phonon energies for the 7 parameter

modified valence force field model (MVFF). The MVFF fits are optimized for low phonon

energies.

bending, and bond twisting potentials. Our MVFF model for SWNTs has seven force

constants [11], four due to bond stretching interactions out to fourth nearest neighbor

shells and one each from the remaining three interactions. We obtained force constants

for the MVFF model by fitting our MVFF results for graphene to the ordinary VFF

results shown in Fig. 2.18.

Figure 2.19 shows the best fit MVFF results as red solid lines and the VFF model

results as black dots. In the fitting procedure, we gave added emphasis to the low

frequency phonons. In what follows, we will use the VFF model in graphene and GNRs

and the MVFF model for SWNTs. The force constants in our phonon models are,

however, independent of the density of photoexcited carriers and cannot describe phonon

softening observed at high values of the laser fluence, which are not considered in this

work, because we will not discuss the high-frequency optical phonon modes.

Fig. 2.19: fig/fch2-grphdisp2.eps
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Figure 2.20 Phonon dispersion relations for (a) the (11,0) zigzag SWNT and (b) the (8,6)

chiral SWNT calculated using the modified valence force field model. The acoustic modes are

thick blue lines and the radial breathing mode (RBM) is shown as a thick red line.

Figure 2.20 shows the computed phonon dispersion relations for the zigzag (11,0)

and chiral (8,6) semiconducting SWNTs. Because of the SWNT screw symmetries, the

phonon dynamical matrix can be block diagonalized into 6 × 6 submatrices each of

which corresponds to a different value of the cutting line index µ = 0, . . . , Nhex− 1. The

coherent phonon active phonon modes are q = 0 modes with nonzero frequency and

cutting line index µ = 0. The coherent phonon active mode with the lowest frequency is

the radial breathing mode (RBM) which corresponds to the lattice vibration along the

tube diameter direction. In Fig. 2.20 the µ = 0 acoustic phonon branches are shown as

blue lines while the µ = 0 branches containing the q = 0 RBM are shown as thick red

lines.

As for the GNR system, we show the phonon dispersion for a representative armchair

GNR in Fig. 2.21. A typical mod 1 semiconducting nanoribbon is the 7-aGNR. In GNRs,

the coherent phonon active mode with the lowest phonon energy is the radial-breathing-

like mode (RBLM) mode at q = 0. Figure 2.21 shows the 7-aGNR unit cell with 14

carbon atoms, and superimposed on these atoms are vectors proportional to the atomic

Fig. 2.20: fig/fch2-tbphdisp.eps
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Figure 2.21 Phonon mode pattern for the RBLM mode (phonon energy 51 meV) in a 7-aGNR

mod 1 semiconducting nanoribbon. The coherent phonon amplitude is proportional to the

ribbon width and increasing amplitude corresponds to ribbon width expansion. The phonon

dispersion relation is shown on the right with the phonon branch containing the RBLM mode

at q = 0 shown as a thick black line. The red lines correspond to out-of-plane modes and the

black lines are in-plane modes.

displacements in the RBLM mode as determined in the valence force field model. As can

be seen in the figure, the RBLM mode represents a periodic expansion and contraction

of the ribbon width. The inset shows the phonon dispersion relations for out-of-plane

modes (red curves) and in-plane phonon modes (black curves). The phonon branch

containing the RBLM mode is shown as a thick black line and the RBLM mode at q = 0

is indicated by a yellow dot. Additionally, the RBLM phonon energy is found to be

51 meV.

2.4 Excitonic properties of SWNTs

Exciton effects in SWNTs are very important due to confinement of electrons and holes

in the 1D system. Though in the previous sections we have seen that the single particle

(electron) model within the tight-binding approximation can partially describe the opti-

cal transition energies, the presence of excitons in the real case cannot be neglected, as

Fig. 2.21: fig/fch2-agnrphdisp.eps
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is indicated by the large exciton binding energy measured in the experiments [27, 28].

Moreover, the many-body corrections can only be understood by taking into account

the exciton effects. In this section, the methods for calculating the transition energies

in the exciton picture are reviewed and some relevant results will be discussed. The

electron-hole corrections are included via the Bethe-Salpeter equation and the calcu-

lation is again performed within the ETB approximation as the ETB model has been

proven to accurately predict the electronic properties of SWNTs. This framework has

been summarized into an exciton energy calculation package following the work by Jiang

et al. [34] and Sato et al. [57]. The computer program is now maintained in our research

group.

2.4.1 Bethe-Salpeter equation

Exciton is an electron-hole pair bound by a Coulomb interaction and thus localized

either in real space or k space. But in solids, all wave functions are delocalized as the

Bloch wave functions, which are specified by the electron wavevector (kc) or the hole

wavevector (kv). To create an exciton wave function from the electron and hole wave

functions, the electron and hole Bloch functions at many (kc) and (kv) wave vectors

have to be mixed. The mixing of different wavevectors by the Coulomb interaction is

obtained by the so-called Bethe-Salpeter equation [58, 59, 34]:

∑
kc,kv

[(E(kc)− E(kv))δ(k
′
c,kc)δ(k

′
v,kv) +K(k′ck

′
v,kckv)]Ψ

n(kc,kv) = ΩnΨn(k′c,k
′
v),

(2.39)

where E(kc) and E(kv) are the quasi-electron and quasi-hole energies, respectively. The

“quasiparticle” means that a Coulomb interaction is added to the single particle energy

and the particle has a finite life time in an excited state. Ωn and Ψn are the n-th excited

state exciton energy and corresponding exciton wavefunction.

The mixing term or kernel K(k′ck
′
v,kckv) is given by

K(k′ck
′
v,kckv) = 2δSK

d(k′ck
′
v,kckv)−Kx(k′ck

′
v,kckv), (2.40)

with δS = 0 for spin triplet states and δS = 1 for spin singlet states. The direct interaction
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kernel Kd for the screened Coulomb potential w is given by the integral

Kd(k′ck
′
v,kckv) = W (k′ckc,k

′
vkv)

=

∫
dr′drψ∗k′c(r

′)ψkc(r
′)w(r′, r)ψk′v(r)ψ∗kv(r), (2.41)

and the exchange interaction kernel Kx for the bare Coulomb potential v is

Kx(k′ck
′
v,kckv) =

∫
dr′drψ∗k′c(r

′)ψk′v(r
′)v(r′, r)ψkc(r)ψ∗kv(r), (2.42)

where ψ is the single particle wave function.

The quasi-particle energies are calculated from the single particle energy εsp(k) by

including the self-energy corrections Σ(k):

E(kc) = εsp(kc) + Σ(kc), (2.43)

E(kv) = εsp(kv) + Σ(kv), (2.44)

where Σ(k) is expressed as

Σ(kc) = −
∑
q

W [kc(k + q)v, (k + q)vkc], (2.45)

Σ(kv) = −
∑
q

W [kv(k + q)v, (k + q)vkv]. (2.46)

In order to obtain the kernel and self energy, the single particle Bloch wave function

ψk(r) here is approximated by an ETB wave function. The dielectric screening effect is

considered within a random phase approximation (RPA), in which the static screened

Coulomb interaction is given by

W =
V

κε(q)
, (2.47)

with the dielectric function ε(q) = 1+v(q)Π(q) that describes effects of the polarization

of the π bands. The effect of electrons in core states, σ bonds, and the surrounding mate-

rials are all represented by a static dielectric constant κ. By calculating the polarization

function Π(q) and the Fourier transformation of the unscreened Coulomb potential v(q),

the exciton energy calculation can be performed. For 1D materials, the Ohno potential

is commonly used for the unscreened Coulomb potential v(q) for π orbitals [29]. Af-

ter obtaining the excitation energy Ωn, the exciton binding binding energy Ebd can be

calculated by substracting the quasi particle energy EQP = Ec(kc)− Ev(kv) with Ω1,

Ebd = EQP + Ω1. (2.48)
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E A1,2

Figure 2.22 Symmetry of an exciton. If both the electron and hole are from the K (or K′)

region (right side of the above figure), the corresponding exciton is an A1,2 symmetry exciton.

If an electron is from the K region and a hole is from the K′ region (left side of the above figure),

the corresponding exciton is an E symmetry. One more case is not shown here, the E∗ exciton,

which is just an opposite situation of the E exciton.

Here Ω1, which is the first (lowest) exciton state, is interpreted as the transition energy

Eii, where an electron and a hole lie on the same i-th cutting line with respect to the K

point of the 2D Brillouin zone of graphene. The difference between Eii and the single

particle band gap gives the many-body corrections Emb which is also the difference

between the self energy and binding energy,

Emb = Σ− Ebd. (2.49)

2.4.2 Exciton symmetry

To discuss the exciton symmetry, wave vectors K̄ for center-of-mass motion and k for

relative motion are introduced,

K̄ = (kc − kv)/2, k = kc + kv. (2.50)

The exciton state can then be denoted as |k, K̄〉 and the Bethe-Salpeter equation is

rewritten in terms of K̄ and k. Because the Coulomb interaction is related to the

relative coordinate of an electron and a hole, the excitons in SWNTs can be classified

according to the 2K̄ value in the regions shown in Fig. 2.22.

Fig. 2.22: fig/fch3-wfzone.eps
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There are three inequivalent regions in the 2D Brillouin zone of graphene, i.e. two

triangle regions around K, K’, and a hexagonal region around the Γ point. For SWNTs,

the optical transitions are related to the electron and hole on the cutting lines in the K or

K’ regions. If both the electron and hole are from the K (or K’) region, the corresponding

exciton is an A1,2 symmetry exciton. The center-of-mass momentum 2K̄ lies in the Γ

region and k will be around K (or K’) region. If an electron is from the K region and a

hole is from the K’ region, the corresponding exciton is an E symmetry. The momentum

2K̄ lies in the K region. If an electron is from the K’ region and a hole is from the

K region, their 2K̄ lies in the K′ region, and this exciton is an E∗ symmetry exciton.

The E and E∗ excitons, which have a large angular momentum for the center-of-mass

momentum, are dark excitons because the photon wave vector is nearly zero. For A

excitons, the electron-hole pair |kc,kv〉 = |k, K̄〉 with the electron and hole from the K′

region and |−kc,−kv〉 = −|k, K̄〉 with the electron and hole from the K′ region have the

same value for K̄. Here |k, K̄〉 is antisymmetric, whereas −|k, K̄〉 is symmetric, under

the C2 rotation. The corresponding excitons are labeled A2 and A1 excitons, respectively.

The optical dipole moment is defined as

M∝ P̂ · 〈Ψ|∇|Ψ0〉, (2.51)

with 〈Ψ| and |Ψ0〉 denoting the excited and ground states, respectively, and P̂ is the

light polarization vector. The ground state |Ψ0〉 has an s symmetry and operator ∇ is

antisymmetric under the C2 rotation. In order to get a nonzero M, |Ψ〉 thus should

be antisymmetric, too. Therefore, A1 excitons are dark excitons, and only A2 excitons

are bright excitons. Hereafter, only the case of bright excitons is considered because

the optical transitions in coherent phonon generation are related to the optical dipole

transitions of the bright exciton.

2.4.3 Bright excitons

For the bright excitons, the cutting lines kii near the K point is important to determine

exciton energies Eii. A triangular region which connects three M points, i.e., Ml, Mr,

and Mm around the K is defined as the 3M triangle as shown in Fig. 2.23. Only in

this region the energy dispersion of the conduction (valence) band for a SWNT has a

minimum (maximum). The remaining region of the Brillouin zone is a hexagonal region
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Figure 2.23 Wave vectors of a (6, 1) SWNT nanotube around the K point. The cutting lines

must cross the MlMr line in order to have an Eii within the 3M region. The index µ is counted

from the Γ point.

which connects six M points around the Γ point. In the hexagonal region, the conduction

(valence) bands have a maximum (minimum). This gives a singular joint of density of

states but a minimum electron-photon matrix element at the singular point [60]. Thus

a cutting line will not contribute to the optical absorption at Eii if the cutting line lies

outside of the 3M triangle. As for example, a (6, 1) SWNT shown in Fig. 2.23 does

not have E33 optical absorption because the corresponding cutting line cannot lie within

the 3M triangle. Therefore, E33 is skipped, only E11, E22, and E44 are observed in

experiments, though all Eii values can be calculated by theory.

Figure 2.24 shows the calculated results for the lowest bright exciton states but

different cutting lines kii, which then give the exciton energies Eii. The results for higher

exciton states on a given cutting line is beyond the scope of the present discussion. The

Kataura plot in figure 2.24 is given as a function of inverse tube diameter in the range of

0.3 < dt < 3.0 nm. The Eii calculation is performed by taking a single constant κ = 2.22

which is fitted from the experimental Eii data of the RRS or PL measurements for SWNT

bundle samples. Like the single particle ETB model, the exciton ETB Kataura plot also

shows the 2n + m family patterns, but unlike the single particle picture this excitonic

plot can be adjusted by changing κ.

The eight diamond symbols are experimental results for suspended SWNTs given

Fig. 2.23: fig/fch3-mmm.eps
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Figure 2.24 The bright exciton energy Kataura plot as a function of inverse diameter 1/dt

for κ = 2.22. The exciton energies Eii shown here are up to ES
66 and EM

33. Black, red, and

blue dots correspond to M-, S1-, and S2 SWNTs, respectively. The eight diamond symbols are

experimental data by Michel et al. (Ref. [61]). The 2n + m family patterns are clearly seen

for smaller diameter SWNTs. The arrows with A (Z) symbols correspond to the near armchair

(zigzag) SWNTs.

by Michel et al. [61] in which they succeeded with an assignment of (n,m) for SWNTs

with diameters of up to 3 nm. Although their results are for isolated suspended SWNTs,

and the calculation is for bundles, the calculated results for their assigned (n,m) values

reproduce well all eight points within the environmental effect shifts up to 80 meV [62].

2.4.4 Exciton size

The localized exciton wavefunction is constructed by mixing many k states in which the

mixing coefficients are determined by the Bethe-Salpeter equation. In Fig. 2.25(a), the

wave function for a (20, 0) SWNT is shown. The exciton wave function half-width lk

indicates the exciton size in reciprocal space. Since the Fourier transformation of this

wave function will also give a similar localized function, the width in real space gives

the exact exciton size or radius, that is the effective distance between an electron and

a hole in the bound electron-hole pair. The exciton size in real space is thus inversely

proportional to lk. To study the wave function size dependence on chirality, the width lk

Fig. 2.24: fig/fch3-exkata.eps
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Figure 2.25 (a) Exciton wave functions in 1D k space for a (20, 0) semiconducting SWNT.

The states shown here are for E22 and E33. The wave function half-width lk increases with Eii.

(b) lk for many SWNTs as a function of 1/dt. The cutting line spacing 2/dt is shown by the

solid line for comparison. The dashed lines indicate the corresponding Eii states. The spacing

between E33 and E44 is not distinguished clearly.

for the E11 up to E44 states are calculated for all SWNTs with diameters dt in the same

range as in the exciton energy calculation, 0.3 < dt < 3.0 nm, shown in Fig. 2.25. For

comparison, the cutting line spacing 2/dt is also shown in the figure by the solid line. It

is clear that lk is always smaller than the cutting line spacing 2/dt. Because lk measures

the extended length of a wave function in k space, this result indicates that one cutting

line is sufficient to describe Eii states. Fig. 2.25 also implies that the inverse of lk, which

is the exciton size in real space, spans around 0.5− 2.0 nm. Later in Chapter 5 we will

particularly consider a (11, 0) tube which has exciton size in real space of about 0.9 nm.

Fig. 2.25: fig/fch3-lk.eps



Chapter 3

Theory of coherent phonon generation

process

In this chapter, we provide the theory of coherent phonon generation process in general

semiconductor nanostructures [10]. We then derive the equation of motion for coherent

phonons in single-wall carbon nanotubes (SWNTs) [11, 12, 14] and graphene nanoribbons

(GNRs) [13]. It is found that the coherent optical phonon amplitudes satisfy a driven

harmonic oscillator equation and that the carriers photoexcited by an ultrafast pump

acted as a driving source for coherent optical phonon oscillations via the deformation

potential coupling between electrons (or holes) and phonons. The calculation methods

for electron-photon and electron-phonon interactions, which govern the driving force

of coherent phonons, are also presented in this chapter. We particularly utilize the

tight-binding approximation and effective-mass theory for describing the electronic states

appearing in the interaction processes.

3.1 Phenomenological model of coherent phonons

To explain oscillations observed in the differential transmission and reflectivity data of the

pump-probe experiments, early researchers attributed these phenomena to the coherent

phonon oscillations which phenomenologically follow a driven harmonic oscillator [15].

The evolution of a coherent phonon amplitude Q in the presence of a driving force

exerted by ultrafast laser pulse is governed by the differential equation which follow a

57
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phenomenological driven oscillator model,

∂2Q(t)

∂t2
+ 2γD

∂Q(t)

∂t
+ ω2

0Q(t) =
F (t)

Ms

, (3.1)

where ω0 is the frequency of the phonon mode, γD is the damping parameter, Ms is

the mass of the system, and F is the driving force. This force may depend on carrier

density, temperature, and other parameters of the system. The damping parameter γD

is the inverse of the dephasing time of the coherent phonon mode [16]. The dephasing

time comes from a combination of phase-destroying processes and population decreasing

processes, such as anharmonicity and electron-phonon interaction lifetime.

Phenomenological model in Eq. (3.1) can be solved analytically by using Fourier

transform or Green’s function method with the initial condition that both Q(t) and

∂Q/∂t are zero before the force F (t) is applied. The solution is given by [5]

Q(t) =

∞∫
−∞

F (t− τ)

Ms

e−γDτ sin(
√
ω2

0 − γ2
Dτ)√

ω2
0 − γ2

D

dτ (3.2)

In this solution, the form of the driving force plays an important role in determining the

oscillator properties. Let us consider two limiting cases of the forcing functions. The

first kind is impulsive force, which has the following form:

F (t) = Iδ(t), (3.3)

where δ(t) is a Dirac delta function in time and thus I =
∫
F (t)dt is the total impulse

delivered to the oscillator. The second kind is displacive force,

F (t) = Dθ(t), (3.4)

where θ(t) is the Heaviside step function and D is the force magnitude.

The generation of the coherent phonons depends on the rapid photoexcitation of

electrons and holes by a pump laser pulse. If the pump pulse is not resonant with the

electronic levels, quantum mechanics still allows for the creation of electron and holes for

a short period of time consistent with the time-energy uncertainty principle. These so

called “virtual” carriers adiabatically follow the pump pulse envelope and disappear after

the pump pulse is gone. For a short pulse, this is approximately a Dirac delta function

and corresponds to impulsive excitation. If the pump laser energy is resonant with the
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Figure 3.1 Schematic solution to the harmonic oscillator model for (a) impulsive force and (b)

displacive force. Here γD = 0.1ω0 is used.

energy levels of the system, then “real” carriers (electrons and holes) are generated during

the pump pulse. In this case, the carrier density is proportional to the integral of the

pump pulse envelope which is approximately given by a Heaviside step function for a

rapid pump pulse. We can then integrate Eq. (3.2) to find the solution for each case

(impulsive or displacive model).

By inserting Eq. (3.3) to Eq. (3.2), we obtain the solution for an impulsive force at

t ≥ 0,

Q(t) =
I

Ms

√
ω2

0 − γ2
D

e−γDt sin(t
√
ω2

0 − γ2
D). (3.5)

An typical oscillation due to an impulsive force is shown in Fig. 3.1(a). This is similar

to ringing a bell, where the driving force is applied for only a short time. The solution

shows that an impulsive force starts oscillations about the current equilibrium position,

which will damp out exponentially. An impulsive force results if the femtosecond pump

pulse is not resonant with the conduction and valence band states as is the case in below

bandgap excitation. Because of the uncertainty principle, virtual carriers are created

and the density of these carriers will adiabatically follow the pulse envelope.

On the other hand, by inserting Eq. (3.4) to Eq. (3.2), we obtain the solution for a

displacive force,

Q(t) =
D

mω2
0

[
1− e−γDt

(
cos(t

√
ω2

0 − γ2
D) +

γD√
ω2

0 − γ2
D

sin(t
√
ω2

0 − γ2
D).

)]
(3.6)

In Fig. 3.1(b), we show an illustrative oscillation due to a displacive force. The situation

is analogous to putting weights on a spring suspended from the ceiling. The weights

Fig. 3.1: fig/fch3-impdisp.eps
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cause the spring to stretch to a new equilibrium position and if the weights were applied

fast enough, the spring will oscillate around the new equilibrium position. Displacive

forces typically arise when the femtosecond pump pulse has resonant transitions creating

real carriers in the semiconductor as is the case for excitation above the bandgap. How-

ever, due to the broad spectral width for ultrafast pump excitation, there are Fourier

component for excitation both above and below the bandgap and both real and virtual

carriers will in general be created leading to impulsive and displacive contributions to

the coherent phonon generation process.

3.2 Microscopic theory of coherent phonons

The phenomenological oscillator model basically gives the essential physics of coherent

phonons in semiconductors. However it left open the question of exact definition of the

coherent phonon amplitudes. It was found that the key to understanding the micro-

scopic origin of the driven oscillator model for coherent phonon generation is actually to

realize that the coherent phonon amplitude is proportional to the following expectation

value [10],

Qq(t) ≡ 〈bq + b†−q〉, (3.7)

where 〈bq〉 and 〈b†−q〉 are the expectation values of the phonon creation and annihilation

operators for phonon wavevector q and −q, respectively. It is also known that the

lattice displacement operator u(r) can be expressed in terms of the phonon creation and

annihilation operators,

u(r) =
∑
q

√
~

2Msωq

(
bq + b†−q

)
(3.8)

where Ms is the mass of the system. Therefore the coherent phonon amplitude is pro-

portional to the Fourier components of the displacement.

We should note that the expectation values 3.7 will vanish in a phonon oscillator

eigenstate and there are also fluctuations defined by 〈u2〉 = 〈bb† + b†b〉. These phonons

are incoherent phonons in the mode. However, the expectation values do not vanish

for the coherent states given by a coherent superposition of more than one phonon

eigenstate. The canonical coherent states are defined for each complex number z in
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terms of eigenstate of harmonic oscillator,

Ψcoh = |z〉 = e(zb†−z∗b)|0〉 =
∑
n

zn√
n!

e−z
2|n〉, (3.9)

hence we coined the term “coherent phonons”. These states are essentially the same as

those used in quantum optics to describe the quasi-classical photon states of the electro-

magnetic field. The coherent phonon states are eigenfunctions of the phonon annihilation

operator bq for phonons with wavevector q, i.e. bq|z〉 = z|z〉, and represent minimum-

uncertainty Gaussian wavepackets that oscillate back and forth in the parabolic potential

without broadening and thus when the amplitude z is large they behave like a macro-

scopic harmonic oscillator.

To obtain the equations of motion for 〈b†q〉 and 〈bq〉, we can use the Heisenberg

equations for the expectation values of operators,

dO
dt

=
i

h
[H,O], (3.10)

where O is any quantum operator. In a simplified system consisting of two electronic

bands (conduction and valence bands) interacting with certain phonon modes, the Hamil-

tonian can be expressed by

H =
∑
n,k

εnkc
†
nkcnk +

∑
q

~ωqb
†
qbq +

∑
n,k,q

Mn
k,q

(
bq + b†−q

)
c†nk+qcnk, (3.11)

where the first term is the electron Hamiltonian, the second term is the phonon Hamil-

tonian, and the third term is the electron-phonon interaction Hamiltonian withMn
k,q as

the electron phonon matrix element at the electronic subband n for electron wavevec-

tor k and phonon wavevector q. Inserting this Hamiltonian to the Heisenberg equation

and using the definition of coherent phonon amplitude in Eq. (3.7), we can obtain the

dynamical equation of motion for the coherent phonon amplitude,

∂2Qq(t)

∂t2
+ ω2

qQq(t) = Sq(t), (3.12)

where

Sq = −2ωq

~
∑
n,k

Mn
k,−qn

n
k,k−q (3.13)

is the driving force of the coherent oscillation (see Appendix A for a detailed derivation

of Eqs. (3.12) and (3.13)). Here nnk,k−q = 〈c†nkcnk−q〉 is the Fourier transform of the
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electronic density matrix. The electronic density matrix is nonzero only after excitation

with an ultrafast laser pulse. The rapid creation of electrons/holes by the femtosecond

pump pulse changes the forcing function and triggers the coherent phonon oscillations.

Equation (3.12) is very similar to the phenomenological model in Eq. (3.1) except

that it is written in momentum space. In fact, because of the Fourier transform relation

between the coherent phonon amplitude and the lattice displacement, we have actually

obtained Eq. (3.1) from the microscopic model in Eq. (3.12). However there is no damp-

ing term because the anharmonic terms are neglected in the lattice potential. Since the

wavelength of the pump laser is large compared with the spacing between atoms in the

nanostructure, usually the electrons and holes are created in a macroscopicaly uniform

state, which excites only the q = 0 phonon modes. Coherent phonon studies in car-

bon nanotubes and graphene nanostructures have also focused primarily on the q = 0

phonon modes, which include the radial breathing modes (RBMs) in carbon nanotubes

and the radial-breathing-like modes in (RBLMs) in graphene nanoribbons. In addition,

by considering excitonic effects in carbon nanotubes, we may also expect to excite q 6= 0

modes which will be discussed in later chapter of this thesis.

3.3 Equations of motion for coherent phonons in nan-

otubes and nanoribbons

For a single wall carbon nanotube (SWNT) or graphene nanoribbon (GNR), since we

have several subbands for electronic states and phonon energy dispersion, the notation

of coherent phonon amplitude is slightly more cumbersome. Both electronic structure

and phonon dispersion now have several branches because of zone folding, each of which

is denoted by a cutting line label µ and ν, respectively (see the discussion on the cutting

line concept in Chapter 2). The equations of motion for coherent phonon modes are

obtained using a microscopic description of the electron-phonon interaction as described

in the previous section. For each phonon mode in the nanotube and nanoribbon, the

coherent phonon amplitude is given as

Qmνq(t) ≡ 〈bmνq + b†mν,−q〉, (3.14)



3.3. COHERENT PHONON EQUATIONS OF MOTION 63

where the subscript m labels the six phonon modes in the graphene phonon dispersion

and q is the 1D phonon wave vector of the SWNT or GNR. The full expression for the

equation of motion is

∂2Qmνq(t)

∂t2
+ ω2

mν(q)Qmνq(t) = −2ωmν(q)

~
∑
nn′µk

Mnn′,µ
m,ν (k,−q)〈c†n′,µ+ν,k−q(t)cnµk(t)〉.

(3.15)

To simplify Eq. (3.15), we assume that the optical pulse and the distribution of

photoexcited carriers are spatially uniform over the nanotube. The electronic density

matrix is thus diagonal and can be written as [11]

〈c†n′,µ+ν,k−q(t)cnµk(t)〉 = δn′,nδν,0δq,0fnµ(k, t), (3.16)

where fnµ(k, t) is the photoexcited carrier distribution in the subband nµ with wavevector

k at time t. We also consider that the only coherent phonon modes that are excited are

the ν = 0 and q = 0 modes, whose amplitudes satisfy a driven oscillator equation,

∂2Qm(t)

∂t2
+ ω2

mQm(t) = Sm(t), (3.17)

where Qm(t) ≡ Qm00(t) and ωm ≡ ωm0(q). The driven oscillator equation is solved

subject to the initial conditions Qm(0) = 0 and Q̇m(0) = 0. Therefore, taking the initial

conditions into account, the driving function Sm(t) is given by

Sm(t) = −2ωm
~
∑
nµk

Mnµ
m (k) [fnµ(k, t)− fnµ(k, 0)] , (3.18)

where fnµ(k, t) is the time-dependent carrier distribution function, fnµ(k, t) is the initial

equilibrium electron distribution function, andMnµ
m (k) ≡Mnµ

m,ν=0(k, q = 0).

The coherent phonon driving function Sm(t) depends on the electron-phonon matrix

elements and photoexcited electron distribution functions. In principle, we could solve

for the time-dependent distribution functions fully by solving the Boltzmann equation

formalism taking photogeneration and relaxation effects into account [11],

∂fnµ(k, t)

∂t
=

[
∂fnµ(k, t)

∂t

]
gen

+

[
∂fnµ(k, t)

∂t

]
sc

+

[
∂fnµ(k, t)

∂t

]
cc

(3.19)

where fnµ(k, t) is the time-dependent distribution function for electrons (or holes) in

subband (n, µ) with wave vector k. The first term on the right-hand side represents

the time rate of change of the distribution functions due to transient photogeneration
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of electron-hole pairs by the pump, while the second term represents the time rate of

distribution change due to scattering or relaxation process by optical phonons. The final

term describes the time rate of change of the distribution functions due to carrier-carrier

scattering.

To simplify the calculations, we introduce a useful approximation as follows. After

photoexcitation, the electron-hole pairs slowly scatter and recombine. Jiang et al. found

that the relaxation times in graphite-related system are on the order of a few picoseconds,

(∼ 5− 10 ps) [63], which is much slower than either the ultrafast laser pulse or a typical

coherent phonon oscillation period in SWNTs and GNRs considered in this study. The

driving function Sm(t) in the present case thus rises sharply in a steplike fashion and then

slowly vanishes as the distribution functions fnµ(k, t) return to fnµ(k, 0). We may then

safely neglect slow carrier relaxation effects and retain only the photogeneration term in

the Boltzmann equation. Even if the relaxation effects are considered, these can be taken

into account by simply including a phenomenological decay constant corresponding to

the finite lifetime of photoexcited carriers.

By considering only the photogeneration term in the Boltzmann equation, the net

photogenerated conduction-band electron distribution function fcµ(k, t) − fcµ(k, 0) for

any optical transition from the valence band to the conduction band (v→ c) is equal to

the net photogenerated hole distribution function fvµ(k, t) − fvµ(k, 0) for each value of

wavevector k. In this case we obtain a simplified expression for the driving function in

terms of the conduction band distribution functions,

Sm(t) = −2ωm
~
∑
µk

Mµ
m(k) [fcµ(k, t)− fcµ(k, 0)] , (3.20)

where

Mµ
m(k) ≡Mcµ

m (k)−Mvµ
m (k) (3.21)

is the net electron-phonon matrix element corresponding to the creation of photoexcited

electrons and holes at the same time.

3.4 Optical transitions and absorption

In order to obtain the time-dependent carrier distribution, we can compute the photo-

generation rate within the dipole approximation using Fermi’s golden rule [64], and thus
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involving the optical (electron-photon) matrix element Dµnn′(k) for a transition between

n and n′ within a cutting line µ. We only focus our attention to light polarized par-

allel to the tube or ribbon axis (let us say z axis) because the optical absorption due

to the parallel polarization is about 5 times greater than that due to the perpendicular

polarization [65].

In the case of parallel polarization, optical transitions can only occur between states

with the same angular-momentum quantum number µ. For the photogeneration rate we

find

∂fnµ(k)

∂t
= Af u(t)

∑
n′

|Dµnn′(k)|2 [fnµ(k, t)− fn′µ(k, t)] δ (∆Eµ
nn′(k)− ~ω) , (3.22)

where ∆Eµ
nn′(k) = |Enµ(k)− En′µ(k)| is the k-dependent transition energies and u(t) is

the time-dependent energy density of the pump pulse. The prefactor Af is defined by

Af =
8π2e2

~n2
gE

2
L

(
~2

m0

)
, (3.23)

where e is the electron charge, m0 is the free electron mass, ng is the index of refraction

in the surrounding medium, and EL is the pump laser energy. The pump energy density

u(t) in Eq. (3.22) is related to the pump fluence,

F =

∫
u(t)(c/ng)dt. (3.24)

It can be assumed that the pump beam consists of a train of Npulse identical Gaussian

pulses each with an intensity full width at half maximum (FWHM) of τp, which we define

as the pump duration. The Gaussian pulses are equally spaced in time with the time

interval between pulses being Tpulse. The peak intensity of the first pulse is taken to

occur at t = 0. To account for spectral broadening, we also replace the delta function in

Eq. (3.22) by a Lorentzian lineshape with a FWHM of Γp.

The optical matrix element for vertical transitions between an initial state |nk〉 and

a final state |n′k〉 within a cutting line µ is defined as

Dµnn′ =
~√
2m0

P̂ · 〈n′k|∇|nk〉, (3.25)

where P̂ is the unit electric polarization vector of light. The state |nk〉 corresponds to

the wavefunction Ψnk that can be obtained within the extended tight-binding (ETB)

framework as discussed in Chapter 2. In coherent phonon spectroscopy, a probe pulse
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is used to measure the time-varying absorption coefficient of the carbon nanotube. The

time-dependent absorption coefficient is given by [66]

α(EL, t) = Aα
∑
nn′µ

∫
dk

π
|Mnn′µ

op (k)|2 [fnµ(k, t)− fn′µ(k, t)] δ (∆Eµ
nn′(k)− ~ω) (3.26)

where the prefactor Aα is defined by

Aα =
AfELng
cAs

. (3.27)

In Eq. (3.27), Af is the same prefactor as that for the photogeneration rate in Eq. (3.22),

As is the cross-section area of the material (e.g. π(dt/2)2 for a SWNT), and c is the speed

of light in vacuum.

It is important to note that the distribution function fnµ(k) and the band structure

Enµ(k) are time dependent. The time dependence of fnµ(k) comes from the photogener-

ation of carriers described by the equation of motion for the photogeneration rate, while

the time dependence of Enµ(k) comes from variations in the carbon-carbon bond lengths

due to the macroscopic coherent phonon induced atomic displacements in Eq. (3.8).

This time-dependent deformation of the nanotube or nanoribbon bond lengths alters

the tight-binding Hamiltonian and overlap matrix elements in the ETB model. To first

order in the lattice displacements, the energies Enµ(k) vary with time, however, the

tight-binding wave functions and optical matrix elementsMnn′µ
op (k) do not. In coherent

phonon spectroscopy, excitation of coherent phonons by the pump modulates the optical

properties of the materials giving rise to a transient differential transmission signal. In

our model, we take the theoretical coherent phonon signal to be proportional to the

power spectrum of the transient differential transmission after background subtraction.

We can compute the power spectrum or Fourier transform intensity using some available

numerical packages [67].

3.5 Electron-phonon interaction

As can be seen in Eq. (3.20), the electron-phonon interaction determines driving force for

the coherent phonon oscillation. The deformation potential electron-phonon interaction

between carriers photoexcited by ultrafast laser pulses and the phonon modes is thus

responsible for the generation of coherent phonons. The electron-phonon interaction is
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expressed by a modification to the tight binding parameters by the lattice vibrations in

SWNTs and GNRs. In modeling the electron-phonon interaction, we use two different

models within the ETB approximation [68] and effective mass theory [69]. The former

one is useful to obtain the microscopic driving force term in Eq. (3.20) numerically,

while the latter (which is simpler and will be discussed intensively in this work for the

SWNT and GNR systems) is used to analytically analyze the dependencies of coherent

phonon amplitudes on the excitation energy and on the geometrical structure of SWNTs

and GNRs. The results and discussion on coherent phonon amplitudes in SWNTs and

GNRs, especially regarding the radial breathing mode (RBM) and radial-breathing-like

mode (RBLM) that become the main topics of this thesis, will be covered in Chapter 4.

3.5.1 ETB electron-phonon interaction

To obtain the electron-phonon matrix elements within the ETB approximation, we

rewrite the ETB electronic wavefunction as follows [68]:

Ψn,k(r) =
1√
Nu

∑
s,o

Cs,o(n,k)
∑
Rt

eik·Rtφt,o(r−Rt), (3.28)

where n denotes the band index, Nu is the number of hexagons in the unit cell, s = A and

B is an index denoting each of the distinct carbon atoms of graphene, and Rt denotes

the equilibrium atom positions relative to the origin. Here φt,o denotes the atomic wave

functions for the orbitals o = 2s, 2px, 2py, and 2pz at Rt, respectively.

A lattice vibration with the amplitude of a phonon mode U(Rt) will induce a potential

variation δV given by

δV =
∑
Rt

v[r−Rt −U(Rt)]− v(r−Rt)

≈ −
∑
Rt

∇v(r−Rt) ·U(Rt),
(3.29)

where v is the Kohn-Sham potential of a neutral pseudo-atom [42]. The electron-phonon

matrix element for a certain phonon mode is defined by [68]

Mn′,k′

n,k = 〈Ψn′,k′(r)|δV |Ψn,k(r)〉

= − 1

Nu

∑
s′,o′

∑
s,o

C∗s′,o′(n
′,k′)Cs,o(n,k)

×
∑
u′,u

ei(−k
′·Ru′,s′+k·Ru,s)δm(t′, o′, t, o),

(3.30)



68 CHAPTER 3. THEORY OF COHERENT PHONON GENERATION

where δm(t′, o′, t, o) is the atomic deformation potential. To calculate the electron-

phonon matrix element of Eq. 3.30 for each phonon mode, the amplitude of the atomic

vibration U(Rt) for the phonon mode (m, ν,q) is defined by

U(Rt) = Amν(q)
√
n̄mν(q)êmν(Rt)e

±iωmν(q)t, (3.31)

where± sign is for phonon creation (+) and annihilation (−), respectively, and Amν , n̄mν ,

êmν , and ω are the phonon amplitude, number, eigenvector, and frequency, respectively.

At equilibrium, the phonon number n̄ in Eq. (3.31) is determined by the Bose-Einstein

distribution function nmν(q) for phonons with a frequency ωmν(q),

nmν(q) =
1

e~ωmνq/kBT − 1
, (3.32)

where T = 300 K is the lattice temperature at room temperature and kB is the Boltz-

mann constant. For phonon creation, the phonon number n̄ = n + 1 while for phonon

annihilation, n̄ = n. The amplitude of the zero-point phonon vibration is

Amν(q) =

√
~

2MSωmν(q)
, (3.33)

and the phonon eigenvector êmν(Rt) is obtained from solving the dynamical matrix in

the phonon dispersion calculation.

The atomic deformation potential δm can be separated into off-site and on-site de-

formation potentials,

δm = δmα + δmλ, (3.34)

with the off-site and on-site deformation potentials δmα and δmλ given by

δmα =

∫
φs′,o′(r−Rt′) {∇v(r−Rt′) ·U(Rt′)

+∇v(r−Rt) ·U(Rt)}φs,o(r−Rt)dr,

δmλ = δRt,Rt′

∫
φs′,o′(r−Rt′)

×

 ∑
Rt′′ 6=Rt′

∇v(r−Rt′′) ·U(Rt′′)

φs′,o(r−Rt′)dr.

(3.35)

The off-site and on-site atomic deformation potentials are, respectively, the corrections

to off-diagonal and diagonal Hamiltonian matrix elements and both terms are on the

same order of magnitude [70].
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Figure 3.2 (Left) αp and (Right) λp as a function of inter-atomic distance. The vertical line

corresponds to 1.42Å which is the C-C distance in graphite [68].

When using the Slater-Koster scheme to construct tight-binding Hamiltonian matrix

elements between two carbon atoms [42], the carbon 2p orbitals are chosen to be along or

perpendicular to the bond connecting the two atoms. The four fundamental hopping and

overlap integrals are (ss), (sσ), (σσ), and (ππ). We follow the same procedure as was

used to construct the deformation potential matrix elements 〈φ|∇v|φ〉. We introduce

the matrix elements,

αp(τ) =

∫
φµ(r)∇v(r)φν(r− τ)dr = αp(τ)Î(αp),

λp(τ) =

∫
φµ(r)∇v(r− τ)φν(r)dr = λp(τ)Î(λp),

(3.36)

where Î(αp) and Î(λp) are unit vectors describing the direction of the off-site and on-site

deformation potential vectors αp and λp, respectively, and p = µν. The 2p orbital φµ

(φν) is along or perpendicular to the bond connecting the two carbon atoms and τ is the

distance between the two atoms. From αp, we can also obtain another matrix element,

βp(τ) =

∫
φµ(r)∇v(r− τ)φν(r− τ)dr

=

∫
φν(r)∇v(r)φµ(r + τ)dr = βp(τ)Î(βp).

(3.37)

However, the integral in Eq. (3.37) can be expressed by α terms. In Fig. 3.2, the calcu-

lated values of αp and λp are plotted as a function of inter-atomic distance between two

carbon atoms [68]. At r = 1.42, the bond length between a carbon atom and one of its

nearest neighbors, we have αππ ≈ 3.2eV/ and |λππ| ≈ 7.8eV/, and |απσ| ≈ 24.9eV/.

Fig. 3.2: fig/fch3-matel.eps
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3.5.2 Effective mass theory

We can also calculate the electron-phonon matrix elements by using effective mass the-

ory. Indeed, considering the effective mass theory allows us to analyze the trend of

coherent phonon amplitudes of SWNTs and GNRs more clearly. Here we derive a spe-

cific Hamiltonian needed to calculate the electron-phonon matrix elements in SWNTs

and GNRs [69, 13]. The results will be shown later in Chapter 4

The electron-phonon Hamiltonian in effective mass theory for graphene-related sys-

tems basically can be decomposed into the on-site and off-site Hamiltonians,

Hep = Hon +Hoff . (3.38)

The details of the on-site and off-site interactions are given in Appendix B, following

Sasaki’s work on the deformation-induced gauge field in graphene [71]. We will directly

use the results in formulating the on-site and off-site Hamiltonians. The on-site and

off-site interactions are induced by a lattice deformation which gives rise to a change

in the transfer integral and a change in the potential between A and B atoms in the

graphene unit cell. In order to derive Hep within effective mass theory for SWNTs and

GNRs, we adopt a coordinate system shown in Fig. 3.3

The on-site Hamiltonian can be expressed in terms of the divergence of uA and uB,

which represent the displacement vector of A-atom and B-atom in the graphene unit

cell, respectively. This Hamiltonian is written as [71]

Hon = gon

 ∇ · uB(r) 0

0 ∇ · uA(r)

 . (3.39)

For the discussion of the RBM and RBLM electron-phonon interactions in SWNTs

and GNRs, we rewrite (3.39) as follows:

Hon = gon

[
σ0∇ ·

(
uA(r) + uB(r)

2

)
+ σz∇ ·

(
uA(r)− uB(r)

2

)]
, (3.40)

where gon denotes the gradient of the atomic potential at r (here we use the constant

gon = 17.0 eV as obtained from a first-principle calculation [42]), σ0 is the identity matrix,

and σz is the z-component of the vector of Pauli matrices. Although RBM and RBLM

are optic phonon modes, but on the planar graphene they are actually formed from the

out-of-plane acoustic and in-plane acoustic phonon modes of graphene, respectively. In
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Figure 3.3 Upper panel shows displacements of B-atoms at ri + Ra (a = 1, 2, 3), that is

uB(ri + Ra), which give rise to a deformation potential at A-atom of ri. Lower panel shows

local modulations of the hopping integral defined by δγa0 (r) (a = 1, 2, 3). In this coordinate

system we have the nearest-neighbor vectors R1 = (0, aCC), R2 = (−
√

3/2,−1/2)aCC, R3 =

(
√

3/2,−1/2)aCC, where aCC = a/
√

3. Here ` = 3aCC/2 is used in Eq. (3.47).

these cases, we have uA(r) = uB(r) = u(r). Therefore, Eq (3.40) can be simplified to be

Hon = gonσ0∇ · u(r). (3.41)

Let ∇ · u(r) = uph, we can write Eq. (3.41) as

Hon = uph

 gon 0

0 gon

 . (3.42)

In Eq. (3.42), uph is a dimensionless parameter determined by the type of vibrations.

For example, in the case of RBM oscillation in a zigzag nanotube, uph is found to be

2sr/dt, where sr =
√

~/2MsωRBM is the phonon amplitude for the RBM [12, 69] and Ms

is total mass of carbon atoms in the unit cell.

Fig. 3.3: fig/fch3-graphenedef.eps
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Next, to derive the off-site interaction Hamiltonian, we start with the fact that the

lattice deformation modifies the nearest-neighbor hopping integral locally as −γ0 →

−γ0 + δγa0 (ri) (a = 1, 2, 3). The corresponding perturbation of the lattice deformation is

given by

Hoff ≡
∑
i∈A

∑
a=1,2,3

δγa0 (ri)
[
(cB
i+a)

†cA
i + (cA

i )†cB
i+a

]
, (3.43)

where cA
i is the annihilation operator for a π electron on an A-atom at position ri, and

(cB
i+a)

† is the creation operator for a π electron on a B-atom at position ri+a (= ri+Ra).

This perturbation gives rise to scattering within a region near the K point of graphene

whose interaction is given by a deformation-induced gauge field A(r) = (Ax(r), Ay(r))

as

Hoff = vFσ ·A(r), (3.44)

where vF = 3γ0aCC/2~ (∼ 106 m/s) is the Fermi velocity and σ is the Pauli matrix. The

deformation-induced gauge field A(r) for the off-site interaction is defined from δγa0 (r)

(a = 1, 2, 3) as (see also Appendix B)

vFAx(r) = δγ1
0(r)− 1

2

[
δγ2

0(r) + δγ3
0(r)

]
, (3.45)

vFAy(r) =

√
3

2

[
δγ2

0(r)− δγ3
0(r)

]
. (3.46)

The perturbation to the nearest-neighbor hopping integral for the RBM and RBLM

electron-phonon interactions is given by

δγa0 (r) =
goff

`aCC

Ra · {u(r + Ra)− u(r)}, (3.47)

where goff is the off-site coupling constant (goff = 6.4 eV) and ` = 3aCC/2 (see the

lower panel of Fig. 3.3). Here the displacement vector of a carbon atom at r in gen-

eral is expressed by u(r) = [ux(r), uy(r)]. Using a Taylor expansion, we approximate

equation (3.47) as

δγa0 (r) =
goff

`aCC

Ra · {(Ra · ∇)u(r)} . (3.48)

Using R1, R2, and R3 in Fig. 3.3, we obtain the deformation-induced gauge field

of equations (3.45) and (3.46) as follows:

vFAx(r) = −goff

2

[
∂ux(r)

∂x
+
∂uy(r)

∂y

]
, (3.49)

vFAy(r) =
goff

2

[
∂ux(r)

∂y
+
∂uy(r)

∂x

]
. (3.50)
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It can be derived that vFAy = 0 for both RBM and RBLM cases [13, 69]. Therefore, the

off-site Hamiltonian can be written as

Hoff = σxvFAx = uph

 0 −goff

2

−goff

2
0

 . (3.51)

Finally, we can get the electron-phonon Hamiltonian of Eq. (3.38),

Hep = Hon +Hoff = uph

 gon −goff

2

−goff

2
gon

 . (3.52)

To obtain the electron-phonon matrix elements based on effective mass theory, we use

the following two wavefunctions,

Ψc =
eik·r√

2S

e−iΘ(k)/2

e+iΘ(k)/2

 ,Ψv =
eik·r√

2S

 e−iΘ(k)/2

−e+iΘ(k)/2

 , (3.53)

for conduction and valence states, respectively, where S is the surface area of graphene

and Θ(k) is an angle of k = (kx,ky) measured from the kx-axis. Depending on the

geometry of the materials, we may also redefine Θ(k) with respect to another reference,

which we will do for the case of SWNT and GNR systems. We will further clarify the

behavior of electron phonon matrix elements for SWNT and GNRs within effective mass

theory in Chapter 4 when discussing the excitation- and structural-dependencies of the

coherent phonon amplitudes.
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Chapter 4

Coherent phonon amplitudes in

SWNTs and GNRs

Using the concepts we have developed in Chapter 3, we are now able to investigate

coherent phonon properties in a variety of graphene systems. In this chapter, we show

and discuss simulation results based on extended-tight binding (ETB) method for the

ultrafast dynamics of laser-induced coherent phonons in single wall carbon nanotubes

(SWNTs) and graphene nanoribbons (GNRs). In particular, we examine the coherent

radial breathing mode (RBM) amplitudes of SWNTs and the coherent radial breathing

like mode (RBLM) amplitudes of GNRs as a function of excitation energy and chirality.

The coherent phonon amplitudes give direct information on initial oscillation phase so

that we can directly know whether the diameter (width) of a given SWNT (GNR) in

the RBM (RBLM) will initially increase or decrease at a certain excitation energy. We

find that the coherent phonon amplitudes are very sensitive to the changes in excitation

energy and are strongly structure dependent. An effective-mass theory for the electron-

phonon interaction gives a physical explanation for these phenomena.

4.1 Coherent RBM phonons in SWNTs

As discussed earlier in Chapter 3, the coherent RBM phonon amplitude Q with frequency

ω satisfies a driven oscillator equation (3.17), which we now rewrite using simpler nota-

75
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tions (see Ref. [12]),
∂2Q(t)

∂t2
+ ω2Q(t) = S(t), (4.1)

subject to the initial conditions Q(0) = 0 and Q̇(0) = 0. Here S(t) is the driving function

which depends on the photoexcited carrier distribution function and is given by

S(t) = −2ω

~
∑
µk

Mep
µ (k)δfµ(k, t), (4.2)

where Mep
µ (k) is the k-dependent RBM electron-phonon matrix element for the µ-th

cutting line (1D Brillouin zone of a SWNT) and δfµ is the net photogenerated electron

distribution function with a pump pulse pumping at the Eii transition energy as obtained

by solving a Boltzmann equation for the photogeneration process. The photogeneration

rate in the Boltzmann equation depends on the excitation laser energy [11]; it also

contains the electron-photon matrix element Dop for the case of light polarized along the

tube axis, so that we have the proportionality

δfµ ∝ |Dop
µ |. (4.3)

For the calculation of electron-phonon and electron-photon interactions, we incorporate

SWNT electronic energies and wave functions obtained from the ETB method [43], and

the phonon dispersions from the force constant model [47].

In a typical simulation, the necessary inputs are the excitation energy, Elaser, and the

chiral index, (n,m). We will mainly use the (11, 0) and (13, 0) semiconducting zigzag

nanotubes as examples for discussing the excitation and chirality dependence of the

RBM coherent phonon amplitudes. Though the main examples studied in this work are

semiconducting SWNTs, the theory is also valid for metallic SWNTs. It will be shown

later that the chirality dependence of the coherent phonon amplitude between different

nanotube types has the same origin. For a given excitation energy, we solve Eq. (5.3)

for a specific SWNT to obtain the coherent RBM phonon amplitude oscillating at the

RBM frequency. We use the same common input parameters for the pump-probe setup

as those used in Ref. [11], i.e. we excite the RBM phonons with a single 50 fs laser pulse,

where the pump fluence is taken to be 10−5 J/cm2, and the FWHM spectral linewidth

is assumed to be 0.15 eV. Note that here the pump and probe energies are considered to

be the same. Therefore, this setup should not be confused with an experimental setup
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Figure 4.1 The coherent RBM phonon amplitude Qm for an (11, 0) zigzag tube as a function

of laser excitation energy Elaser. For clarity, Qm is plotted in units of 0.0259 . A positive

(negative) sign of the vibration amplitude denotes a vibration whose initial phase corresponds

to an expanding (shrinking) diameter. The absorption coefficient versus Elaser is shown for

comparison with the Qm behavior.

discussed in Chapter 1 (Fig. 1.6), in which the probe energy is varied for a constant

pump energy and leads to another type of coherent phonon phase shift related to the

phase change near the resonance.

In this part we also do not consider excitonic effects because we will not discuss

the peak positions or line shapes of the coherent phonon spectra. For such discussions,

the excitonic effects cannot be neglected since the Eii energies are shifted from those

calculated within a single particle picture [72, 62], and these will be the main subject in

Chapter 5. In the present chapter, we only explain macroscopic SWNT lattice response

which is homogeneous along the tube axis. Therefore, considering only the electron-

phonon interaction is sufficient.

4.1.1 Excitation energy dependence

Let us firstly discuss excitation energy dependence of the coherent RBM phonon am-

plitudes. In Fig. 4.1, we plot the coherent RBM phonon amplitude Qm in an (11, 0)

nanotube at an early time, along with the absorption coefficient as a function of Elaser.

Fig. 4.1: fig/fch4-cpamp1100.eps
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Here Qm can be imagined by roughly defining Q(t) = Qm cosωt, where the origin of

time is now indicated by the first maximum (minimum) of Q(t) found after t = 0 for a

positive (negative) coherent phonon vibration. Therefore, in this definition, Qm > 0 and

Qm < 0 correspond to the tube diameter expansion and contraction, respectively.

From Fig. 4.1, we see that the pump light is strongly absorbed at the Eii energies. The

resulting increase in the number of photoexcited carriers increases the coherent phonon

driving function S(t) in Eq. (4.2) and thus enhances the coherent phonon oscillation

amplitude near the Eii transitions. Note that at E11 the amplitude has a negative

sign, indicating that the tube diameter initially shrinks and oscillates about a smaller

diameter, while at E22 and higher energies (e.g., E33 or E44) the tube diameter initially

expands and oscillates about a larger diameter. According to a common concept based

on the Franck-Condon principle, solid lattices usually tend to expand in the presence

of ultrafast carrier photoexcitation since the electronic excited states are anti-bonding

states. When an electron is excited, it will try to find a new equilibrium position at the

minimum of the excited anti-bonding state energy. This minimum energy is located at a

larger coordinate than that of the ground state, and thus the lattice expands. However,

this is not always the case for RBM coherent phonons in the SWNT system, where the

tube diameter can either expand or contract depending on the excitation energy.

In order to understand this phenomenon, we consider the magnitude and phase of

the oscillation amplitude Q(t) driven by S(t) in Eq. (4.2). First, since δf ∝ |Dop| as

in Eq. (4.3), the magnitude of oscillations should be proportional to the product of the

electron-phonon and electron-photon matrix elements:

|Q| ∝ |Mep||Dop|. (4.4)

Second, according to Eq. (4.2) and noting that δfµ(k) is positive for most cases of interest

(i.e. no gain in the system), the initial phase of Q(t) is only determined by the sign of

Mep
µ (k) summed over all cutting lines µ and all k points. The unique values of |Mep|

and |Dop| for a fixed selection of energy and (n,m) then determines the excitation energy

and chirality dependence of the coherent phonon amplitudes.
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Figure 4.2 RBM electron-phonon matrix elements of (a) (11, 0) and (b) (13, 0) zigzag nan-

otubes within the ETB approximation.

4.1.2 Chirality dependence

Let us now discuss the type dependence or chirality dependence of coherent RBM phonon

amplitudes by comparing two semiconducting zigzag nanotubes of different families and

types. In Fig. 4.2, we plot the electron-phonon matrix elements for RBM coherent

phonons in the (11, 0) (type-I) and (13, 0) (type-II) nanotubes as a function of 1D

wavevector k. The k dependence of Mep
µ (k) for the RBM phonon is shown for the

first two cutting lines, for E11 and E22. As can be seen in the figure, both positive and

negative values of Mep
µ (k) are possible. Also, according to Eq. (4.2), if we pump near

the Eii band edge, the electron distributions would be localized near k = 0 in the 1D

Brillouin zone of the zigzag nanotubes, for which the kii points for the Eii energies lie

at k = 0. Therefore, the positive (negative) values of S(t) at the E22 (E11) transition

energy are determined by the negative (positive) value ofMep
µ (k) near k = 0.

For the two nanotubes, the signs of the electron-phonon matrix elements differ at E11

and E22. The reason is that for type-I and type-II nanotubes the E11 and E22 cutting

line positions with respect to the K-point in the 2D graphene Brillouin zone are opposite

to each other [73]. Depending on the cutting line positions relative to the K-point, the

correspondingMep
µ (k) for a given cutting line is negative in the region to the right of the

K-point and positive in the region to the left [74]. This will be proved in the next section

using an effective-mass theory. From this argument, we predict that the type-I (type-

II) zigzag nanotubes would start their coherent RBM phonon oscillations by initially

Fig. 4.2: fig/fch4-elphETB.eps
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Figure 4.3 Electron and hole components of the ETBMep shown by solid and dashed lines,

respectively, for (a) (11, 0) and (b) (13, 0) zigzag nanotubes, as a function of k. The matrix

elements for E11 and E22 are shown in black and red, respectively.

decreasing (increasing) the tube diameter at E11, while at E22 the behavior is just the

opposite, as shown in Fig. 4.2.

4.1.3 Analysis by the effective mass theory

Since the electron-phonon matrix element determines the initial lattice response of the

SWNTs, we further decompose Mep into its electron and hole components for each

SWNT in order to understand which component gives a significant contribution to the

ETB matrix element Mep. This electron-phonon matrix element for the photo-excited

electron is basically a sum of conduction band (c) and valence band (v) electron-phonon

matrix elements, which represent the electron and hole contributions, respectively [74],

Mep(k) =Mep(kc)−Mep(kv)

= 〈c|Hep|c〉 − 〈v|Hep|v〉, (4.5)

where Hep is the SWNT electron-phonon interaction Hamiltonian.

In Fig. 4.3, we plot the electron and hole components ofMep in the ETB model as a

function of the 1D wavevector k. If we compare the contributions from each component,

we see that in the (11, 0) tube the electron (hole) component gives a larger contribution to

Mep at E11 (E22). On the other hand, in the (13, 0) tube, the hole (electron) component

gives a larger contribution toMep at E11 (E22). We can analyze these results within an

Fig. 4.3: fig/fch4-elphsep.eps
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(a) (11,0) (b) (13,0)

Figure 4.4 Cutting lines for (a) (11,0) and (b) (13,0) zigzag nanotubes near the graphene

K-point. Black and red solid lines denote the E11 and E22 cutting lines, respectively, while the

dotted lines correspond to higher cutting lines. The angle Θ(k) is measured counterclockwise

from a line perpendicular to the cutting lines, where the positive direction of the line is to the

right of the K-point. Here Θ(k) is shown for a k point on the E22 cutting line for both SWNTs.

The difference between the type-I and type-II families can be understood from the position of

the E11 or E22 cutting lines relative to the K-point [73].

effective-mass theory. Using the effective-mass theory, we can obtain a simple analytical

expression explaining the sign of the SWNT electron-phonon matrix elements, which can

then be compared with the ETB results.

In a nearest-neighbor effective-mass approximation, the RBM Hep for an (n,m)

SWNT with a chiral angle θ and diameter dt can be written as [69],

Hep =
2sr
dt

 gon −goff

2
ei3θ

−goff

2
e−i3θ gon

 , (4.6)

where gon (goff) is the on-site (off-site) coupling constant. Here sr =
√
~/2MωRBM is the

phonon amplitude for the RBM, where ωRBM is the phonon frequency andM is the total

mass of the carbon atoms within the unit cell. To obtain Mep in Eq. (4.5), we adopt

the following two wavefunctions,

Ψc =
eik·r√

2S

e−iΘ(k)/2

e+iΘ(k)/2

 ,Ψv =
eik·r√

2S

 e−iΘ(k)/2

−e+iΘ(k)/2

 , (4.7)

for conduction and valence states, respectively, which are suitable near the graphene

K-point [69]. In Eq. (4.7), S is the surface area of graphene and Θ(k) is an angle at the

K-point measured from a line perpendicular to the cutting lines (see Fig. 4.4).

Fig. 4.4: fig/fch4-cntcutline.eps
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Figure 4.5 RBM electron-phonon matrix elements of (a) (11, 0) and (b) (13, 0) nanotubes

calculated within the effective-mass theory using goff = 6.4 eV. In panels (a) and (b), the

matrix elements near k = 0 are comparable with the results in Fig. 4.2. Panel (c) shows the

matrix elements of an (11, 0) nanotube calculated within the ETB model for interactions up to

the fourth nearest-neighbors. The results including fourth nearest neighbors exactly reproduce

the results in Fig. 4.2(a).

By inserting the wavefunctions in Eq. (4.7) into Eq. (4.5), we obtain

+〈c|Hep|c〉 =
sr
dt

(−goff cos(Θ(k) + 3θ) + 2gon) , (4.8a)

−〈v|Hep|v〉 =
sr
dt

(−goff cos(Θ(k) + 3θ)− 2gon) , (4.8b)

and thus

Mep =
sr
dt

(−2goff cos(Θ(k) + 3θ)) . (4.9)

From Eqs. (4.8a) and (4.8b), it is clear that the electron and hole contributions toMep

are simply distinguished by the off-site and on-site interactions. These equations are thus

qualitatively consistent with the results in Fig. 4.3. According to the density-functional

calculation by Porezag et al. [42], we adopt the off-site coupling constant goff = 6.4 eV

and the on-site coupling constant gon = 17.0 eV, which are calculated for the first nearest-

neighbor carbon-carbon distance [69]. However, gon has no effect on the electron-phonon

matrix element since it vanishes in Eq. (4.9). The more accurate treatment for the

effective-mass theory should consider the asymmetry between the valence bands and the

conduction bands [75]. Within the present model, we do not consider such an asymmetry

since the chirality dependence of the electron-phonon matrix element can readily be

described by the cos(Θ(k)) term, which will give a positive or negative sign in front of

goff .

Fig. 4.5: fig/fch4-elpheff.eps
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In Fig. 4.5, we then plot the matrix elements of Eq. (4.9) for the (11, 0) and (13, 0)

nanotubes, where the on-site term (gon) disappears and only the off-site term (goff)

contributes toMep. It can be seen that the effective-mass theory (see Figs. 4.5(a) and

(b)) nicely reproduces the ETB calculation results near kii = 0 (see Figs. 4.2(a) and

(b)). However, the first nearest-neighbor effective-mass model cannot reproduce the

ETB matrix element results at k far from kii = 0. We can see this since at E11 and E22

Mep are almost symmetric aroundMep = 0 in Figs. 4.5(a) and (b) but theMep are not

symmetric in Figs. 4.2(a) and (b). In Fig. 4.5(c), we showMep for the (11, 0) tube within

the ETB model considering interactions up to the fourth nearest-neighbors. Based on

this figure, we consider that the exact Mep analytical expression at k far from the kii

should take into account the longer-range electron-phonon interactions. Nevertheless, the

first nearest-neighbor effective-mass theory has already given physical insight into the

k-dependentMep, and considering the approximation up to the fourth nearest-neigbors

is sufficient to converge theMep values.

For the zigzag nanotubes, Eq. (4.9) also explains the dependence of Mep on the

cutting line (or k) position. Let us take the examples in Fig. 4.4, in which we show the

cutting lines for the (11, 0) and (13, 0) nanotubes. The E22 cutting line for the (11, 0)

((13, 0)) tube is to the right (left) of the K-point, giving a positive (negative) cos(Θ(k))

and thus a negative (positive) Mep for the E22 transition. According to Eq. (4.2),

the negative (positive) Mep corresponds to the initial increase (decrease) of the tube

diameter. In such a way, the chirality dependence of the coherent phonon amplitude is

simply determined by the electron-phonon interaction.

However, we should note that the simple rule does not work well for E33 and E44,

as can be seen in Fig. 4.1. For instance, the coherent phonon amplitude at E33 has the

same sign as that at E22 although their cutting line positions are opposite to each other

with respect to the K-point. The reason for the breakdown of this simple rule is that

the cutting lines for E33 and E44 are far from the K-point so that the wavefunctions of

Eq. (4.7) are no longer good approximations. In this case, the ETB wavefunctions are

necessary for obtaining the coherent phonon amplitudes.
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Figure 4.6 The lattice response of SWNTs with diameters in the range 0.7−1.1 nm is mapped

onto the unrolled graphene lattice specifiying the tube chiralities (n,m). In this map Qm is

expressed in terms of
√
~/2MωRBM. Red and blue colored hexagons denote the SWNTs whose

vibrations start by increasing or decreasing their diameter, respectively. The laser excitation

energies are selected within the range 1.5 − 3.0 eV. For each (n,m) tube, the corresponding

Eii (in eV) found within this energy region is listed on each hexagon with the label Eii. The

calculated results for the (7, 4) and (6, 6) nanotubes are not shown in this figure because their

EL
11 > 3.0 eV and the (6, 6) tube gives a negligibly small Qm.

4.1.4 Map of the coherent phonon amplitudes

To consider the more general family behavior of the RBM coherent phonon amplitudes,

we recalculate Qm using the ETB method for 33 different SWNT chiralities with di-

ameters of 0.7 − 1.1 nm and for photoexcitations at Eii in the range 1.5 − 3.0 eV. The

results are shown in Fig. 4.6. Note that in addition to the semiconducting SWNTs, we

also give some results for metallic SWNTs. It is known that the density of states for Eii

in metallic SWNTs are split into the lower EL
ii and higher EH

ii branches, except for the

armchair SWNTs [23]. Here we consider Qm in metallic SWNTs only at EL
11. The cutting

line for EL
11 is located to the right of the K-point. We can see in Fig. 4.6 that all the

metallic SWNTs start vibrations by increasing their diameter at EL
11. The reason is the

Fig. 4.6: fig/fch4-cpmaps.eps
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same as in type-II nanotubes, where the cutting lines for the E11 transitions are located

to the right of the K-point, giving a negative Mep (hence a positive Qm) as explained

within the effective-mass theory. On the other hand, at EH
11, the nanotubes should start

their coherent vibrations by decreasing their diameters. In the case of armchair nan-

otubes, for which EL
11 = EH

11, we expect that no vibration should occur because the two

contributions from EL
11 and EH

11 should cancel each other.

For semiconducting nanotubes, we see that most of the type-I (type-II) nanotubes

start vibrating at E11 by decreasing (increasing) their diameters and at higher energies

by increasing (decreasing) their diameters. In a few cases, e.g., (7, 6), (9, 5), and (10, 5)

nanotubes, the deviation from this rule might come from the 3θ term in Eq. (4.9),

especially for the near-armchair nanotubes where θ approaches π/6. We consider that

in the case of armchair nanotubes, such like the (6, 6) nanotube, which is metallic, the

coherent phonon amplitude becomes small because of the trigonal warping effect [23].

4.2 Coherent RBLM phonons in GNRs

In this section, we extend the microscopic theory for generating and detecting coherent

phonons in SWNTs to the case of coherent phonons in GNRs, although there are no

measurements of coherent phonons to date in GNRs. Therefore, our discussion here gives

some predictions of CP behavior in GNRs. As discussed in Chapter 2, we basically can

consider armchair and zigzag ribbons denoted Nab aGNR and Nab zGNR, respectively,

where Nab is the number of AB carbon dimers in the unit cell. However, the presence of

localized edge state in the zGNR is quite complicated to be taken into account. Therefore

we restrict our discussion here only for coherent phonon amplitudes in aGNRs.

In GNRs there are Nab coherent phonon active modes that vibrate in the plane of

the nanoribbon. In all cases, the coherent phonon active mode with the lowest frequency

is RBLM mode in which the nanoribbon width periodically expands and contracts. For

coherent RBLM phonons the ribbon width W (t) is directly proportional to the coherent

phonon amplitude Q(t) [13]. The RBLM phonon energies are sensitive to the ribbon

width W and scale roughly as the inverse of the ribbon width in accordance with a

simple zone folding expression E = 0.4/W eV with W in units of .

Armchair nanoribbons belong to one of three families depending on the mod number
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mod(Nab, 3). Based on a simple band structure calculation, we classify mod 0 and mod 1

aGNRs as semiconductors and mod 2 aGNRs as metals [37, 44]. Since coherent phonon

spectroscopy gives direct phase information on the coherent phonon amplitude, it is

useful to examine the driving function kernel S(k) as a function of excitation energy and

nanoribbon species. For this purpose, let us write the RBLM electron-phonon interaction

for an aGNR as

Hep = uarm

 gon −goff

2

−goff

2
gon

 , (4.10)

where gon (goff) is the on-site (off-site) coupling constant in eV, while uarm is a ribbon

width- or Nab-dependent phonon amplitude. To obtain the electron-phonon matrix ele-

ment Mep, we use the same wavefunctions as in (4.7). The wavefunctions are suitable

near the graphene Dirac K point and thus they can explain well the aGNR lattice re-

sponse especially at relatively low energy E11 and E22 optical transitions. We then obtain

a formula for aGNRMep similar to that for the nanotube case,

Mep = −uarm (2goff cos Θ(k)) . (4.11)

Here Θ(k) is now defined by the angle that k points in the two dimensional Brillouin

zone measured from the line in k space perpendicular to the discrete one dimensional

Brillouin zone (cutting lines) which goes over the K point (hexagonal corner, see Fig. 4.7).

Therefore, the driving function kernel can be written as [13]

S(k) =
2ωRBLM

~
uarm

[
2goff cos(Θ(k))

]
, (4.12)

where ωRBLM is the RBLM frequency at q = 0. From this equation, we can analyze the

Nab and Eii dependence of the aGNR initial lattice response. First of all, we should note

that goff and uarm are always positive, while cos Θ(k) can either be positive or nepgative

depending on the value of k at which the Eii transition occurs.

Using this argument, we can classify the aGNR lattice response based on the aGNR

types. For example, let us consider semiconducting mod 0 aGNR and mod 1 aGNRs.

The cutting line position for their E11 and E22 optical transitions are just opposite to

each other. For a mod 0 aGNR, we see that cos Θ(k) becomes positive (negative) at

E11 (E22), and thus the aGNR starts the coherent phonon oscillations by expanding

Fig. 4.7: fig/fch4-gnrcl.eps
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Figure 4.7 Cutting lines for (a) mod 0 aGNR and (b) mod 1 aGNRs near the Dirac K point.

To make clear the definition of Θ(k), in this figure Θ(k) is shown for an arbitrary k at E11.

In fact, in the case of mod 0 and mod 1 aGNRs the E11 transitions occur at Θ(k) = 0 and

Θ(k) = π, respectively. The difference between the mod 0 and mod 1 aGNRs can be understood

from the position of the E11 or E22 cutting lines relative to the K point.

(shrinking) its width. This can be seen in the illustration of Θ(k) in Fig. 4.7. The

opposite behavior is true for mod 1 aGNRs.

We should note that the prediction of expansion or contraction of the ribbon width

is quite ambiguous for mod 2 metallic aGNRs since in metallic aGNRs two cutting

lines are equidistant from the K point and are the lower and higher branches of an Eii

transition. Both branches contribute to Eii and we sum up the matrix elements from

each contribution to obtain Mep. For example, if the 1D k-points for the lower and

higher branches of Eii are the same, the matrix elements cancel because cos Θ(k) +

cos(π − Θ(k)) = 0. In this case, the coherent phonon amplitude will be small for the

mod 2 metallic aGNRs as compared to the mod 0 or mod 1 semiconducting aGNRs.

In reality, we have slightly different k-points for the two Eii branches due to trigonal

warping effects [23]. When trigonal warping effects are included, the resulting nonzero

value ofMep allows us to determine if the ribbon width initially expands or contracts.

We finally summarize the lattice behavior at E11 and E22 transitions for all families of

aGNRs in Table 4.1.
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Table 4.1: Initial lattice behavior due to coherent phonon oscillations at E11 and E22 in

aGNRs.

family E11 E22

mod 0 expand contract

mod 1 contract expand

mod 2 expand or contract expand or contract



Chapter 5

Excitonic effects on coherent phonon

dynamics

In this chapter, we discuss how excitons can affect the generation of coherent radial

breathing modes (RBMs) in the ultrafast spectroscopy single wall carbon nanotubes

(SWNTs). Photoexcited excitons can localize spatially and give rise to an almost periodic

driving force in real space which involves many phonon wavevectors of the exciton-phonon

interaction. The equation of motion for the coherent phonons is modeled phenomenolog-

ically by the Klein-Gordon equation, which we solve for the oscillation amplitudes as a

function of space and time. By averaging the calculated amplitudes per nanotube length,

we obtain time-dependent coherent phonon amplitudes that resemble homogeneous oscil-

lations observed in some pump-probe experiments. We interpret this result to mean that

the experiments are only able to see a spatial average of coherent phonon oscillations over

the wavelength of light in carbon nanotubes and the microscopic details are averaged

out. This interpretation is also clarified by calculating the time-dependent absorption

spectra resulting from the macroscopic atomic displacements induced by the coherent

phonon oscillations. The calculated coherent phonon spectra including excitonic effects

show the experimentally observed symmetric peaks at the nanotube transition energies

in contrast to the asymmetric peaks obtained when excitonic effects were not included.

89
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5.1 Introduction

Excitons should have at least four important effects on the generation and detection of

coherent phonons in SWNTs: (1) the optical transitions will shift to lower energy owing

to the Coloumb interaction between the photoexcited electron-hole pair, [29] (2) the

strength of the optical transitions will be enhanced since the excitonic wavefunctions have

larger optical matrix elements resulting from the localized exciton wavefunctions, [35]

(3) the phonon interaction matrix elements may also change because the electron-phonon

and hole-phonon matrix elements now become exciton-phonon matrix elements, [35] and

(4) in SWNTs, the excitons can become localized along the tube with a typical size of

about 1 nm. [76] This will change which phonon modes can couple to the photogenerated

excitons. Excitons are known to have localized wavefunctions in both real and reciprocal

space, [34] and this should modify the electron-phonon picture of the coherent phonon

generation. Due to the localized exciton wavefunctions, the driving force of a coherent

phonon is expected to be a Gaussian-like driving force in real space for each localized

exciton, whose width is about 1 nm, instead of a constant force considered in the previous

works. [11, 12] The localized force can be obtained only if we consider the coupling of

excitons and phonons.

The interaction between excitons and coherent phonons will involve many phonon

wavevectors for making localized vibrations and many electron (and hole) wavevectors for

describing these excitons. By applying strong pump light to the SWNTs, many excitons

are generated and the average distances between two nearest excitons are estimated to be

about 20 nm. [77, 78] This indicates that the driving force for coherent phonon generation

can be approximated by many Gaussian forcing functions, each of which originates from

an exciton and are separated by the distance between two excitons. Using such a driving

force model also implies that the coherent phonon amplitudes are inhomogeneous along

the nanotube axis. However, since the wavelength of light (∼ 500 nm) is much larger

than the spatial modification of the RBM amplitudes, the laser light can only probe the

average of the coherent vibrations.

To simulate the exciton effects using coherent phonon spectroscopy, we model the

coherent RBM phonon amplitude Q(z, t) as a function of space and time using the

Klein-Gordon equation that will be shown to explain the dispersive wave properties.
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The driving forces are localized almost periodically, therefore the calculated coherent

phonon amplitudes of the RBM are no longer constant along the tube axis. However, by

taking an average over the tube length for the calculated coherent phonon amplitudes,

we find that the average amplitude fits the oscillations as a function of time observed in

the experiments. In order to compare our theory directly with experiments, in which the

change of transmittance (∆T/T ) or reflectivity (∆R/R) is measured, we calculate the

time-dependent absorption spectra for macroscopic atomic displacements induced by the

coherent phonon oscillations Q(z, t). The symmetric line shape found in the calculated

spectra is also consistent with the experimental observations.

5.2 Coherent phonon model with exciton effects

In the conventional model for the coherent phonon generation mechanism in semicon-

ductor systems, phonon modes that are typically excited are the ones with phonon

wavevector q = 0. The coherent phonon amplitudes Qc(t) satisfy a driven oscillator

equation, [10, 79]
∂2Qc(t)

∂t2
+ ω2

0Qc(t) = Sc(t), (5.1)

where ω0 is the phonon frequency at q = 0 and Sc(t) is a driving force that depends on

the physical properties of a specific material. In the case of a SWNT, without considering

the excitonic effects, Sc(t) was given by [11, 12]

Sc(t) = −2 ω0

~
∑
µk

Mep
µ (k)δfµ(k, t), (5.2)

where Mep
µ (k) is the electron-phonon matrix element for the µ-th cutting line (one-

dimensional Brillouin zone of a SWNT) as a function of the one-dimensional electron

wavevector k and is calculated for each phonon mode at q = 0. The distribution function

δfµ of photo-excited carriers generated by a laser pulse pumping at the Eii transition

energy is obtained by solving a Boltzmann equation for the photogeneration process. [11]

We can see in Eqs. (5.1) and (5.2) that Qc(t) and Sc(t) have a time dependence

only and no spatial dependence when we consider electron-photon (or hole-photon) and

electron-phonon (or hole-phonon) interactions, i.e. we ignored the excitonic interaction

between the photoexcited electrons and holes. We now extend this model by considering

that the exciton effects (exciton-photon and exciton-phonon interactions) give a spatial
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dependence to the coherent phonon amplitude and to the driving force, which we denote

as Q(z, t) and S(z, t), respectively. Here z is the position along the nanotube axis. To

describe the coherent phonon amplitude Q(z, t), we propose using of the Klein-Gordon

equation,
∂2Q(z, t)

∂t2
− c2∂

2Q(z, t)

∂z2
= S(z, t)− κQ(z, t) (5.3)

where c and κ are the propagation speed and dispersion parameter depending on the

SWNT structure, respectively. The Klein-Gordon equation is solved subject to the two

initial conditions Q(z, 0) = 0 and Q̇(z, 0) = 0. The exciton-induced driving force S(z, t)

is now given by

S(z, t) = −2

~
∑
µ,k,q

ωqMµ
ex−ph(k, q)δfµ(k, t)eiqz, (5.4)

whereMµ
ex−ph(k, q) is the exciton-phonon matrix element on the µ-th cutting line as a

function of the exciton wavevector k and phonon wavevector q. By using the driving force

expression of Eq. (5.4), the amplitude Q(z, t) is dimensionless because the dimension of

S(z, t) is the inverse of time square (instead of length per inverse of time square). Here the

actual coherent phonon amplitudes with units of length can be obtained by multiplying

Q(z, t) with the zero-point phonon amplitude Q0 =
√
~/2Mcω0, where Mc is the total

mass of carbon atoms in the nanotube unit cell.

The reason why we adopt the Klein-Gordon equation to explain the exciton-induced

coherent phonon generation in SWNTs is based on a phenomenological consideration.

We generally expect that the coherent RBM phonons are propagating dispersively along

the nanotube axis. Integrating Q(z, t) and S(z, t) over z should give Qc(t) and Sc(t) in

Eq. (5.1) which describes the homogeneous vibration observed in experiments. Parame-

ters c and κ in the Klein-Gordon equation can then be obtained from the RBM phonon

dispersion, which gives positive c and κ values. To obtain this relationship, we consider

the Klein-Gordon equation (5.3) with S(z, t) = 0 and take a Fourier transform defined

by

Q̃(q, ω) =

∞∫
−∞

∞∫
−∞

Q(z, t)ei(qz−ωt)dzdt, (5.5)

to obtain

−ω2Q̃+ c2q2Q̃ = −κQ̃. (5.6)
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Figure 5.1 RBM phonon dispersion of a (11,0) nanotube. Theoretical data are represented

by cross symbols, which are calculated using a force constant model as in Refs. [11] and [47].

The solid line shows the fitted RBM dispersion using the Klein-Gordon dispersion relation in

Eq. (5.8). The phonon energy, ~ω is plotted as a function of q in the units of π/T . Here

T = 0.431 nm is the unit cell length of the (11, 0) tube.

From Eq. (5.6) we have a dispersion relation for the Klein-Gordon equation,

−ω2 + c2q2 = −κ. (5.7)

The physical solution of Eq (5.7) for ω > 0 is

ω(q) =
√
c2q2 + κ. (5.8)

We can then fit the wave dispersion to the RBM phonon dispersion which is already

available by force constant or first-principle models. [47, 80, 53] We are particularly

interested in the region of q � π/T (T is the unit cell length of a SWNT [81]) because this

is the typical size over which an exciton in reciprocal space interacts with a phonon. [34,

35] Fitting the RBM phonon dispersion to Eq. (5.8) thus gives the values of both c

and κ to be used in the Klein-Gordon equation. As for the phonon dispersion shown

in Fig. 5.1, which is calculated for a (11, 0) tube, we obtain c = 2.545 nm/ ps and

κ = 3147.22 ps−2. Hereafter, unless otherwise mentioned, we will consider the (11, 0)

tube as a representative example for the simulation.

Fig. 5.1: fig/fch5-RBMdisp.eps
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Figure 5.2 Schematic illustration of the Gaussian impulsive force S(z, t) created by excitons

which align along the nanotube axis with an average separation of d. The force S(z, t) is

symmetric in the circumferential direction.

We can further simplify Eq. (5.4) by considering that a periodic Gaussian force ap-

pears approximately every 15 − 30 nm along the tube axis according to the calcula-

tion of the photoexcited carrier density. For example, by solving for the photo-excited

distribution δf using the method described in Ref. [11], we estimate an exciton den-

sity for a (11, 0) tube at an excitonic transition energy E22 = 1.78 eV which is about

5.6 × 10−2 nm−1. This exciton density corresponds to the average separation between

two excitons of about 18 nm. A Gaussian force centered at the exciton position zi is then

approximated by

Si(z, t) = Age
−(z−zi)2/2σ2

zθ(t), (5.9)

where θ(t) is the Heaviside step function, Ag is the force magnitude obtained from

the product of the exciton-phonon interaction and related factors in Eq. (5.4) [excitonic

matrix elements are discussed in Appendix C], and σz is the width of the exciton-phonon

matrix element for a given (n,m) SWNT. A typical value of σz is related to the exciton

size in real space (∼ 1 nm). The exciton wavefunctions, exciton energies, exciton-photon

and exciton-phonon matrix elements are all calculated by solving the Bethe-Salpeter

equation within the extended tight-binding method as developed by Jiang et al. [34, 35]

The force magnitude thus obtained is on the order of 103 ps−2. For the lowest E22 exciton

state of the (11, 0) tube, we obtain σz = 0.9 nm and Ag = 4.82 × 103 ps−2. The total

driving force used in solving Eq. (5.3) is a summation of Gaussian forces in terms of

Fig. 5.2: fig/fch5-excitonforce.eps
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Eq. (5.9),

S(z, t) =
N∑
i=1

Si(z, t), (5.10)

where N is the number of excitons (and thus the number of Gaussian forces) in a SWNT.

In Fig. 5.2, we show a schematic diagram of a typical model for our simulation. The

driving force S(z, t) has an axial symmetry and is aligned along the nanotube axis with

a separation of d. To avoid any motions of the center of mass, the general force S(r, t)

should also satisfy a sum rule,

∞∫
−∞

S(r, t)dr = 0, (5.11)

which is automatically satisfied for S(z, t) in Eq. (5.10) because of the axial symmetry

of the model, as can also be understood from Fig. 5.2. In the present calculation, we

fix d = 18 nm, and there are N = 9 narrow Gaussian forces arranged periodically (thus

L = 144 nm). The RBM phonon energy near q = 0 is 37.1 meV, corresponding to a

frequency ω = 297 cm−1 and a vibration period τ = 0.112 ps.

5.3 Time evolution of coherent phonons

In Fig. 5.3, we plot the coherent RBM phonon amplitudes Q(z, t) for a (11, 0) nanotube

pumped at its E22 transition energy, in which a snapshot is taken for t = 0 to τ4,

where τj = jτ/4. Two different cases are shown in Figs. 5.3(a) and (b), in which the

separation between excitons might be perfectly uniform or slightly random, respectively.

The calculation is done numerically by solving for Q(z, t) from Eq. (5.3) with periodic

boundary conditions at±L/2. We can observe some periodic peaks corresponding to each

localized force and these peaks also do not move as a function of time. One might then ask

whether or not such exciton effects correctly describe the coherent phonon oscillations in

SWNTs. This can be answered by considering the average of the inhomogeneous Q(z, t)

per nanotube length.

To clarify that our model can describe homogeneous coherent RBM phonon oscilla-

tions observed in experiments, [7, 8] we define an average of Q(z, t) as follows

A(t) =
1

N

∫
L

Q(z, t)dz. (5.12)
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Figure 5.3 Time evolution of coherent phonon amplitudes in a (11, 0) nanotube for (a) per-

fectly uniform spacing between excitons with an average separation d = 18 nm and for (b) a

slightly random distribution where the center force is shifted by 9 nm. Solid lines show snap-

shots of Q(z, t) as a function of z (position along the tube axis) for several different t values with

a time sequence τj = jτ/4, where τ = 0.112 ps is the fundamental period. Q(z, t) is plotted in

terms of the zero-point phonon amplitude for the (11, 0) tube, Q0 = 2.59 × 10−3 nm. Dotted

lines show the force S(z, t) for comparison.

In Fig. 5.4(a), we plot A(t) for the (11, 0) tube considered above. We also include a decay

constant corresponding to the exciton-phonon interaction lifetime of 5 ps to resemble the

experimental results. Interestingly, now the coherent phonon amplitudes, which have

been averaged before, could fit the experimental shape of the homogeneous transmission

oscillation in Figs. 5.4(b). We then interpret that such an experiment cannot observe

the nanoscopic vibration of the exciton effects on the coherent phonon amplitudes, but it

can only observe the averaged amplitudes. Moreover, the definition (5.12) is important

mathematically to describe the homogeneous coherent phonon amplitudes in experiments

if we are able to recover Eq. (5.1) from the Klein-Gordon equation (5.3). Indeed, by

integrating both left and right sides of Eq. (5.3),∫
L

Qttdz −
∫
L

c2Qzzdz = −
∫
L

κQdz +

∫
L

Sdz,

Fig. 5.3: fig/fch5-Qzt.eps
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Figure 5.4 (a) Average of coherent phonon amplitudes per length, A(t), plotted as a function

of time for a (11, 0) nanotube (τ = 0.112 ps) and shown in units of Q0 = 2.59× 10−3 nm. The

dotted line represents the average amplitude for the force distribution shown in either Fig. 5.3(a)

or 5.3(b). The solid line represents the average amplitude if a decay constant γ = 0.2 ps−1

corresponding to an exciton-phonon interaction lifetime of 5 ps is taken into account. (b) An

example of the transmission oscillation data available for a (13, 3) tube measured in a pump-

probe experiment with τ = 0.162 ps (reproduced from Ref. [8]). The average coherent phonon

amplitude shown in (a) resembles the oscillating feature of the experimental transmission shown

in (b).

and using
∫
L
Qttdz = Att,

∫
L
κQdz = κA,

∫
L
Qzzdz = 0, we can obtain

Att + κA(t) = S(z), (5.13)

which is nothing but the driven oscillator model in Eq. (5.1).

5.4 Propagation of coherent phonons

It is important to note that we have assumed certain distributions of excitons as a

function of z. As shown in Figs. 5.3(a) and (b), we only present the two simplest cases

of the exciton distributions that we can imagine. However, excitons in nature might not

Fig. 5.4: fig/fch5-Aintegrated.eps
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Figure 5.5 (a) Driving forces with two different parameters σz(= 0.9 nm) > σzc and

σz(= 0.03 nm) < σzc, which give (b) only localized and (c) localized and propagating wave

components, respectively. For the (11, 0) tube in this simulation, we have σzc = 0.045 nm. The

propagating wave components in (c) travel with a speed of 1.68 nm/ ps, as indicated by the

slope of the dashed line.

be uniformly spaced and any exciton distributions with random spacing can be possible.

Nevertheless, we expect that our result for the average amplitude A(t) in Fig. 5.4 is

approximately constant regardless of the exciton spacing, as far as the average exciton

density remains the same. This can be rationalized by considering a trial solution of the

Klein-Gordon equation,

Q(z, t) = e−λzei(qz−ωt), (5.14)

which comprises a travelling wave and a decay term with parameter λ to be determined.

By substituting Eq. (5.14) into Eq. (5.3) and setting S(z, t) = 0, we obtain

λ = iq ±
√
κ

c2
− q2, (5.15)

where we have assumed ω = qc and the sign ± is determined for the ±z region. Depend-

ing on whether the value of
√
κ/c2 − q2 is real or pure imaginary, respectively, we can

get a spatially localized or propagating solution of Q(z, t). In the presence of a force,

we can solve Eq. (5.3) using the Green’s function method for a single Gaussian force

S(z, t) = Age
−z2/2σ2

zθ(t). The solution for Q(z, t) in the region −L/2 < z < L/2 with a

boundary condition, Q(−L/2, t) = Q(L/2, t), is given by

Q(z, t) =
2σzAg

√
2π

L

∞∑
n=0

[
e−q

2
nσ

2
z/2

c2q2
n + κ

(
cos(qnz)× (1− cos(t

√
c2q2

n + κ))

)]
, (5.16)

Fig. 5.5: fig/fch5-gaussdis.eps



5.4. PROPAGATION OF COHERENT PHONONS 99

where qn = nπ/L. This solution consists of a wavepacket of standing waves weighted

by a Gaussian distribution and a denominator which comes from the phonon dispersion

relation of Eq. (5.8). The Gaussian distribution originates from the Fourier transform

of the Gaussian force in real space. In this case, the selection of q is determined by the

Fourier transform of the driving force S(z, t). For a Gaussian force in our model, the q

value can be selected for the region 0 < q < 1/σz. If the maximum q = 1/σz is smaller

than qc =
√
κ/c, then Q(z, t) is localized. If 1/σz is larger than qc, then Q(z, t) is divided

into two contributions: 0 < q < qc and qc ≤ q < 1/σz, in which the former q value gives

the localized wave and the latter part gives the propagating wave. We can then define a

critical parameter σzc = 1/qc to explain the localization or propagation of the coherent

phonons obtained from the Klein-Gordon equation. It can be further seen that the qc

value is nothing but the critical point the flat dispersion to the linear dispersion in the

RBM phonon dispersion relation as shown in Fig. 5.1.

For the (11,0) tube, we have a critical parameter σzc = (2.545/
√

3147.22) nm =

0.045 nm. Since in our simulation we already used σz = 0.9 nm which is much larger

than σzc, it is then expected that the coherent phonon is sufficiently localized. To

emphasize this fact, we show two different cases of Klein-Gordon waves in Fig. 5.5 for

σz = 0.9 nm and σz = 0.03 nm. Figure 5.5(a) shows the two forces with different σz

values, while Figs. 5.5(b) and (c) shows the corresponding coherent phonon amplitudes

that are generated. It can be seen that we obtain localized (propagating) waves by

using σz > σzc (σz < σzc). Intuitively, we can understand from Fig. 5.5(c) that a

faster appearance of an amplitude propagating along the z direction can be obtained

when σz becomes much smaller than σzc although some parts of Q(z, t) remain localized

(contribution from 0 < q < qc). The propagating wave components in Fig. 5.5(c) travel

with a velocity
√
κ/q, where q in this case is related to σz directly by q = 1/σz, thus

giving a speed of
√

3147.22 ps−2 × 0.03 nm = 1.68 nm/ ps.

In contrast, in the case of σz much larger than σzc [e.g. Fig. 5.5(b)], we cannot

see any amplitudes along the z direction except in a limited region where the force

exists, i.e. the propagating wave components cannot be observed. Indeed, the actual

RBM dispersion is a bit flatter than the approximation from the Klein-Gordon wave

dispersion (see Fig. 5.1). This means that the modes are localized even more. Therefore,

in our case of σz = 0.9 nm, each excitonic force will not interfere with neighboring force
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sites separated by distance d, which indicates that the average amplitude A(t) in Fig. 5.4

is not affected by a random separation between every excitonic force. In general, we may

say that the localized vibration is a characteristic of the optical phonon propagation

driven by a localized force because the wavepacket is dominated by q ≈ 0 phonons but

the contribution of the group velocity comes from q ≥ qc. This optical phonon feature

differs from that of acoustic phonon whose solution is expressed in terms of traveling

waves. [82]

5.5 Coherent phonon spectra

We then calculate the optical absorption spectra as a function of time using the calculated

Q(z, t). It is expected that the inhomogeneous coherent phonon oscillations induce a

macroscopic atomic displacement which modifies the transfer integral and thus modulates

the energy gap. We calculate the absorption coefficient α(EL, t), where EL is the laser

excitation energy, by evaluating it in the dipole approximation using Fermi’s golden rule.

The absorption coefficient at a photon energy EL obtained by including exciton effects

is given by [66, 83]

α(EL, t) =
8e2

ELRm0c0

∑
µk

|Mµ
ex−op|2δfµ(k, t) δ (Eii(t)− EL) , (5.17)

where Mµ
ex−op is the exciton-photon matrix element within the dipole approximation

corresponding to the transition between the initial and final state on the µ-th cutting

line, R is the tube radius, m0 is the electron mass, and c0 is the speed of light. The

exciton energy Eii is now time-dependent because of the change in transfer integral due

to coherent RBM phonon vibrations A(t).

Since the bandgap is inversely proportional to the diameter oscillation (or to the

coherent RBM amplitudes), the time-dependent absorption α(EL, t) has the same os-

cillating feature as the average amplitude A(t). However, exciton effects acting on the

absorption spectrum will modify the shape of the absorption spectra compared to that

obtained without inclusion of the exciton effects. We should then calculate the time-

dependent absorption for a broad range of excitation energies, for example, within the

range of 0.5 to 2.5 eV. By performing a Fourier transformation numerically over this

energy range, we can obtain the RBM coherent phonon spectra as shown in Fig. 5.6,
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Figure 5.6 Fourier transform intensity of the time-dependent absorption coefficient for the

coherent RBM phonon of a (11,0) nanotube as a function of excitation energies. The solid line

represents the coherent phonon spectra which include excitonic effects, showing a symmetric

double-peaked line shape at each transition energy Eii. The dashed line represents the coher-

ent phonon spectra without excitonic effects, in which asymmetric line shapes were obtained

previously [11].

which include E11 and E22 for the (11, 0) tube that we consider. The coherent phonon

spectra calculated by including the excitonic effects given in Fig. 5.6 show double-peaked

structures as a function of the excitation energies, either with or without including the

excitonic effects, as indicated by the solid and dashed lines in Fig. 5.6, respectively.

The reason for the presence of the double-peak features (either symmetric or asym-

metric) in the excitation-dependent coherent phonon intensity can be explained as fol-

lows. The generation of coherent RBM phonons modifies the electronic structure of

SWNTs and thus it can be detected as temporal oscillations in the transmittance of

the probe beam. Since the RBM is an isotropic vibration of the nanotube lattice in

the radial direction, i.e. the diameter periodically oscillates at the RBM frequency, this

makes the band gap Eg also oscillate at the same frequency. As a result, interband

transition energies oscillate in time, leading to ultrafast modulations of the absorption

coefficients at the RBM frequency, which is also equivalent to the oscillations in the

probe transmittance, and thus correspondingly, the excitation energy dependence of the

coherent phonon intensity shows a derivative-like behavior. More explicitly, the effect

Fig. 5.6: fig/fch5-cpspectra.eps
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on the absorption α for small changes in the gap can be modeled by

α(EL − Eg) ≈ α(EL − E0
g )−

∂α(EL − E0
g )

∂EL

δEg + . . . , (5.18)

which gives

∆α ≈ −
∂α(EL − E0

g )

∂EL

δEg, (5.19)

where Eg is assumed to be time-dependent, and δEg here corresponds to a small change

in the bandgap. Since the coherent phonon intensity is obtained by taking the Fourier

transform (power spectrum) of the differential transmission, the coherent phonon inten-

sity is thus proportional to the square of the derivative of the absorption coefficient.

The excitonic absorption coefficient basically has a symmetric lineshape with a single

peak. [30] Therefore, the derivative of the excitonic absorption coefficient will give a

symmetric double-peak feature, in contrast to the asymmetric lineshape expected from

the 1D van Hove singularity (joint density of states). Here the use of the Klein-Gordon

equation which gives nonhomogeneous macroscopic atomic displacements is then also

justified by obtaining the symmetric line shape for the coherent phonon spectra. On the

other hand, in the free carrier model without the excitonic effects, we see an asymmetric

double-peaked structure at each transition with the stronger peak at lower energy and

the weaker peak at higher energy, which originate from the derivative of the asymmetric

lineshape of the absorption coefficient. Moreover it has also been noted in some earlier

works that the transition energy was shifted upward by several hundred meV. [5, 30]

As a final remark, we would like to mention that considering the localized excitons in

this work might be just one possibility that gives the symmetric peak of the absorption

spectrum because the origin of the symmetric absorption lineshape is basically from the

presence of discrete energy levels of excitons in carbon nanotubes. In this sense, if there

are other configurations of excitons in carbon nanotubes, which are not localized, such

cases might also give rise to the symmetric absorption lineshape. This can be an open

issue for future studies. However, we expect that as an initial condition of the system

after the excitation by the pump pulse, the excitons should be localized with a certain

average separation.



Chapter 6

Conclusions

In this thesis, we have discussed theoretical calculation for the coherent phonon prop-

erties in single wall carbon nanotubes (SWNTs) and graphene nanoribbons (GNRs).

Calculations have been performed particularly for the radial breathing modes (RBMs)

of SWNTs and radial breathing like modes (RBLMs) of GNRs. In order to understand

the coherent phonon properties, we need a detailed knowledge of the electronic structure,

optical matrix elements, phonon modes and electron-phonon matrix elements. In this

study, we have developed a microscopic theory for coherent phonon generation which

uses an extended tight-binding model and effective mass theory. Our finding can then

be divided into two parts as follows.

Excitation and structural dependence of coherent phonon ampli-

tudes in SWNTs and GNRs

We found that the coherent RBM (of SWNTs) and RBLM (of GNRs) phonon amplitudes

strongly depend on tube chirality and ribbon type. In addition, we find the phase of the

amplitude (i.e. whether the tube diameter or ribbon width initially expand or contract)

can vary depending on the tube chirality or ribbon type. Comparison of our ETB results

with a simplified effective mass theory provides an explanation of the initial contraction

or expansion of the materials.

Using effective mass theory for the electron-phonon interactions, we can analytically

analyze how the tube diameter and the ribbon width changes in response to femtosec-

ond laser excitation. We found that the initial phase of the coherent phonon oscillation

103
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depends on the relative position of the E11 and E22 cutting lines with respect to the K

point, which originate from the k-dependent electron-phonon interaction. The theoret-

ical prediction will need further confirmation from experimentalists in the near future.

We suggest the use of resonant ultrafast pump-probe spectroscopy with pulse-shaping

technique to clarify our finding in this work for SWNTs and GNRs.

Excitonic effects on coherent phonon amplitudes in SWNTs

SWNTs have a special feature in which excitons can exist even at room temperature. We

have shown that excitonic effects modify the coherent phonon amplitudes in SWNTs as

described by the Klein-Gordon equation. The localized exciton wavefunctions result in an

almost periodic and localized driving force in space, and thus also give localized coherent

phonon amplitudes. Although the exciton effects make the amplitudes inhomogeneous,

these amplitudes might be difficult to observe in experiments since the long wavelength

of the probe pulse averages over the sample. However, when we define a spatial average

of the localized coherent phonon amplitudes, the average amplitudes can be fitted to the

experimental results.

Moreover, we are able to simulate the experimental observation of a symmetric

double-peak feature of coherent phonon intensity as a function of excitation energy,

which is an obvious signature of the excitonic effects in SWNTs. Therefore, we may say

that the pump-probe experiments on coherent phonons in SWNTs can only observe the

average of the coherent phonon amplitudes induced by the exciton effects. As a side note,

we also predict that the coherent RBM phonons in SWNTs do not propagate within the

timescale of photoexcited carrier relaxation.

***

Finally, as the experimental ability to make better samples (i.e. graphene nanorib-

bons and carbon nanotubes of a fixed chirality) improves, we would expect more experi-

ments to confirm our recent theoretical prediction suggested in this thesis. Furthermore,

we also expect that one would be able to generate coherent phonons in that are not

RBM or RBLM, but instead correspond to q 6= 0 acoustic modes. The study of coherent

phonons in carbon based nanostructures is only in its infancy and the future promises

to be rewarding.



Appendix A

Derivation of coherent phonon

equations of motion

Here we give a detailed derivation for coherent phonon equations of motion (3.12)

and (3.13). We start with the Hamiltonian defined by

H = He +Hph +Hep, (A.1)

where

He =
∑
n,k

εnkc
†
nkcnk, (A.2a)

Hp =
∑
q

~ωqb
†
qbq, (A.2b)

Hep =
∑
n,k,q

Mn
k,q

(
bq + b†−q

)
c†nk+qcnk, (A.2c)

are the electron Hamiltonian, the phonon Hamiltonian, and the electron-phonon inter-

action Hamiltonian, respectively. Here the indices n, k, and q respectively denote the

electronic energy state, electron wavevector, and phonon wavector.

To obtain the equations of motion for coherent phonons, we use the Heisenberg

equation,
dO
dt

=
i

h
[H,O]. (A.3)

In this case, the operator O is to be substituted by the phonon annihilation operator bq

and creation operator b†q because we define the coherent phonon amplitude Q(t) as

Q(t) ≡ 〈bq + b†−q〉. (A.4)

105
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Since [He, bq] = [He, b
†
q] = 0, for the generation of coherent phonons we can simply insert

the phonon Hamiltonian Hp and Hep as the total Hamiltonian H = Hp + Hep into the

Heisenberg equation of motion.

Annihilation operator equation

The dynamical equation for the annihilation operator is

∂bq(t)

∂t
=
i

~
[Hp +Hep, bq(t)]. (A.5)

Let us work with each term one by one:

• Hp term

[Hp, bq] =
∑
q′

~ωq′ [b
†
q′bq′ , bq]

= ~ωq[b†q, bq]bq

∴ [Hp, bq] = −~ωqbq (A.6)

• Hep term

[Hep, bq] =
∑
n,k,q′

Mn
k,q′c

†
nk+q′cnk[b†−q′ , bq]

=
∑
n,k,q′

Mn
k,q′c

†
nk+q′cnkδq′,−q

∴ [Hep, bq] = −
∑
n,k,q

Mn
k,−qc

†
nk−qcnk (A.7)

Inserting Eqs. (A.6) and (A.7) to (A.5), we obtain

∂bq(t)

∂t
= −iωqbq(t)− i

~
∑
n,k

Mn
k,−qc

†
nk−q(t)cnk(t) (A.8)

Creation operator equation

Similar to the equation of motion for the annihilation operator, we can obtain the equa-

tion of motion for the creation operator,

∂b†q(t)

∂t
=
i

~
[Hp +Hep, b

†
q(t)]. (A.9)

Work out each term one by one:
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• Hp term

[Hp, b
†
q] =

∑
q′

~ωq′ [b
†
q′bq′ , b

†
q]

= ~ωq[bq, b
†
q]b†q

∴ [Hp, bq] = ~ωqb
†
q (A.10)

• Hep term

[Hep, b
†
q] =

∑
n,k,q′

Mn
k,q′c

†
nk+q′cnk[bq′ , b

†
q]

=
∑
n,k,q′

Mn
k,q′c

†
nk+q′cnkδq′,q

∴ [Hep, b
†
q] =

∑
n,k

Mn
k,qc

†
nk+qcnk (A.11)

Inserting Eqs. (A.10) and (A.11) to (A.9), we obtain

∂b†q(t)

∂t
= iωqb

†
q(t) +

i

~
∑
n,k

Mn
k,qc

†
nk+q(t)cnk(t). (A.12)

Coherent phonon amplitude

Now, the coherent phonon amplitude is defined by

Q(t) ≡ 〈bq + b†−q〉. (A.13)

We can take the first derivative of the coherent phonon amplitude,

∂Q(t)

∂t
=

〈
∂bq
∂t

+
∂b†−q
∂t

〉
, (A.14)

and use the results of the annihilation and creation operator equations in (A.8) and (A.12).

We obtain

∂Q(t)

∂t
=
〈
− iωqbq(t)−

��������������i

~
∑
n,k

Mn
k,−qc

†
nk−q(t)cnk(t)

+ iωqb
†
−q(t) +

��������������i

~
∑
n,k

Mn
k,−qc

†
nk−q(t)cnk(t)

〉
∴
∂Q(t)

∂t
= −iωq〈bq − b†−q〉 (A.15)
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Taking the second derivative of Eq. (A.15), we now have

∂2Q(t)

∂t2
= −iωq

〈
∂bq
∂t
−
∂b†−q
∂t

〉
, (A.16)

and again we use the results of the annihilation and creation operator dynamical equa-

tions,

∂2Q(t)

∂t2
= −iωq

〈
− iωqbq(t)− i

~
∑
n,k

Mn
k,−qc

†
nk−q(t)cnk(t)

− iωqb
†
−q(t)− i

~
∑
n,k

Mn
k,−qc

†
nk−q(t)cnk(t)

〉
= −iωq

(
−iωq〈bq(t) + b†−q(t)〉 − 2

i

~
∑
n,k

Mn
k,−q〈c

†
nk−q(t)cnk(t)〉

)

= −ω2
qQ(t)− 2ωq

~
∑
n,k

Mn
k,−q〈c

†
nk−q(t)cnk(t)〉.

By defining nnk,k−q = 〈c†nk−q(t)cnk(t)〉, we finally obtain

∂2Qq(t)

∂t2
+ ω2

qQq(t) = −2ωq

~
∑
n,k

Mn
k,−qn

n
k,k−q, (A.17)

which is nothing but Eq. (3.12).



Appendix B

Deformation-induced gauge field in

graphene

Here we review how to obtain the off-site Hamiltonian and on-site Hamiltonian given

in Eqs. (3.50) and (3.39), respectively, within the effective mass theory, as discussed by

Sasaki and Saito [71]. The dynamics of the conducting electrons in graphene materials

are different from those of ideal flat graphene, because in the former case, there are shape

fluctuations, such as effects of cylindrical shape and phonon vibration, that result in the

modification of the overlap matrix elements of nearest-neighbor π-orbitals and of the

on-site potential energy. We refer to the modification of the nearest-neighbor hopping

integral as the off-site interaction and a shift of the on-site potential energy as the on-site

interaction.

Off-site interaction

First we consider the perturbation from the off-site interaction in which only off-diagonal

matrix element has a non-zero value. A lattice deformation induces a local modification

of the nearest-neighbor hopping integral as −γ0 → −γ0 + δγa0 (ri) (a = 1, 2, 3). The

perturbation H1 is defined as

H1 ≡
∑
i∈A

∑
a=1,2,3

δγa0 (ri)
(
(cB
i+a)

†cA
i + (cA

i )†cB
i+a

)
. (B.1)
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We also define the Bloch wavefunction with wavevector k,

|Ψk
s 〉 =

1√
Nu

∑
i∈s

eik·ri(csi )
†|0〉 (s = A,B), (B.2)

where the sum on i is taken over the crystal, Nu is the number of the hexagonal unit

cells, and |0〉 denotes the state of carbon atoms without π-electrons. We use the same

geometrical configuration of graphene as shown in Fig. 3.3.

The off-site matrix element of H1 with respect to the Bloch wave functions in

Eq. (B.2) with k and k + δk is given by

〈Ψk+δk
A |H1|Ψk

B〉 =
1

Nu

∑
i∈A

∑
a=1,2,3

δγa0 (ri)fa(k)e−iδk·ri ,

〈Ψk+δk
B |H1|Ψk

A〉 =
1

Nu

∑
i∈A

∑
a=1,2,3

δγa0 (ri)fa(k)∗e−iδk·(ri+Ra).
(B.3)

Here we consider that when δk is small enough compared with the reciprocal lattice

vector, a wavevector k near the K (or K’) point is scattered to the k′ = k + δk within

the region near the K (or K’) point. If k is measured from kF, we obtain

〈ΨkF+k+δk
A |H1|ΨkF+k

B 〉 =
1

Nu

∑
i∈A

∑
a=1,2,3

δγa(ri)fa(kF)e−iδk·ri +O(δkδγa),

〈ΨkF+k+δk
B |H1|ΨkF+k

A 〉 =
1

Nu

∑
i∈A

∑
a=1,2,3

δγa(ri)fa(kF)∗e−iδk·ri +O(δkδγa),
(B.4)

The correction indicated by O(δkδγa) in Eq. (B.4) is negligible when |δk| � |kF|. Sub-

stituting f1(kF) = 1, f2(kF) = e−i
2π
3 and f3(kF) = e+i 2π

3 into Eq. (B.4), we can obtain

〈ΨkF+k+δk
A |H1|ΨkF+k

B 〉 =
vF

Nu

∑
i∈A

{
Aq
x(ri)− iAq

y(ri)
}
e−iδk·ri ,

〈ΨkF+k+δk
B |H1|ΨkF+k

A 〉 =
vF

Nu

∑
i∈A

{
Aq
x(ri) + iAq

y(ri)
}
e−iδk·ri ,

(B.5)

where Aq(r) = (Aq
x(r), Aq

y(r)) is defined by δγa0 (r) (a = 1, 2, 3) as

vFA
q
x(r) = δγ1

0(r)− 1

2

(
δγ2

0(r) + δγ3
0(r)

)
,

vFA
q
y(r) =

√
3

2

(
δγ2

0(r)− δγ3
0(r)

)
.

(B.6)

Since the diagonal term vanishes, i.e. 〈Ψk
s |H1|Ψk′

s 〉 = 0 (s = A,B), Eq. (B.5) shows that

H1 is expressed by vFσ ·Aq(r) in the effective-mass Hamiltonian. Therefore, the total

Hamiltonian of a deformed graphene near the K point is expressed by

HK
0 +HK

1 = vFσ · (p̂ + Aq(r)). (B.7)
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We can see from Eq. (B.7) that the off-site interaction can be included in the effective-

mass equations as a gauge field, Aq(r). We call Aq(r) as the deformation-induced

gauge field and distinguish it from the electromagnetic gauge field A(r) [71].

On-site interaction

Now we consider the on-site interaction by a defect of the crystal. A lattice deformation

gives rise not only to a change in the transfer integral between A and B atoms but also a

change in the potential at the A (B) atom φA (φB) which we call the off-site and on-site

deformation potential, respectively. We denote the on-site deformation potential by a

2× 2 matrix as

Hon =

φA(ri) 0

0 φB(ri + R1)

 . (B.8)

Using the coordinate system introduced in Fig. 3.3, we denote the displacement vector of

A-atom at ri is uA(ri) and that of B-atom at rj is uB(rj). The deformation potential of

A-atom at ri, φA(ri), is induced by the relative displacements of three nearest neighbor

B-atoms from the A-atom (uB(ri + Ra)− uA(ri)) as

φA(ri) =
gon

`acc

∑
a=1,2,3

Ra · (uB(ri + Ra)− uA(ri)) , (B.9)

where gon denotes gradient of the atomic potential at ri, and ` denotes 3acc/2. Here

we assume that |uB(ri + Ra) − uA(ri)| � acc and that φA(ri) depends linearly on the

relative displacement vector.

By expanding uB(ri+R2) as uB(ri+R2) = uB(ri+R1)+((R2−R1)·∇)uB(ri+R1)+

· · · and uB(ri + R3) as uB(ri + R3) = uB(ri + R1) + ((R3 −R1) · ∇)uB(ri + R1) + · · · ,

we see that Eq. (B.9) can be approximated by

φA(ri) = gon∇ · uB(ri + R1) + · · · , (B.10)

where we have used
∑

a=1,2,3 Ra = 0. It is noted that a general expression for the

deformation potential, Eq. (B.10), is valid in the case that uB(r) is a smooth function of

r. When this is not the case, we have to use Eq. (B.9). In the continuous limit, we may

use r to represent the positions of both A and B atoms in the unit cell, then we have
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φA(r) = gon∇ · uB(r) + · · · . Similarly, the deformation potential of B-site of ri + R1 is

given by

φB(ri + R1) =
gon

`acc

∑
a=1,2,3

−Ra · (uA(ri + R1 −Ra)− uB(ri + R1)) . (B.11)

By using uA(ri+R1−R2) = uA(ri)+((R1−R2) ·∇)uA(ri)+ · · · and uA(ri+R1−R3) =

uA(ri) + ((R1 −R3) · ∇)uA(ri) + · · · , we see that Eq. (B.11) can be approximated by

φB(ri + R1) = gon∇ · uA(ri) + · · · . (B.12)

Thus, for the intravalley scattering, we may rewrite Eq. (B.8) using Eqs. (B.10) and

(B.12) as

Hon = gon

∇ · uB(r) 0

0 ∇ · uA(r)

+ · · · . (B.13)

According to the result of density-functional theory by Porezag et al., [42] we use the

parameter for gon (=17eV). For the discussion of el-ph interaction of acoustic

s(r) ≡ uA(r) + uB(r)

2
, (B.14)

and optical

u(r) ≡ uB(r)− uA(r), (B.15)

phonon modes, we can rewrite Eq. (B.13) using the Pauli matrices as

Hon =
gon

2
σ0∇ · (uA(r) + uB(r)) +

gon

2
σz∇ · (uB(r)− uA(r)). (B.16)



Appendix C

Exciton-photon and exciton-phonon

matrix elements

Here we describe how to obtain the exciton-photon and exciton-phonon matrix elements,

which are used in Chapter 5. To calculate the exciton-photon and exciton-phonon matrix

elements, we need information of the exciton energies and exciton wavefunctions. The

exciton energy and exciton wave function coefficients are calculated by solving the Bethe-

Salpeter equation as described in Sec. 2.4. All these calculations are performed within

the extended tight-binding (ETB) approximation [84].

Exciton-photon matrix elements

The exciton-photon matrix elements between an excited state |Ψn
0 〉 and the ground state

|0〉 in the dipole approximation are expressed as [35]

Mex−op = 〈Ψn
0 |Hel−op|0〉, (C.1)

where Hel−op is the electron-photon Hamiltonian. Due to the selection rule for the wave

vector in the parallel polarization, we can write Hel−op as

Hel−op =
∑
k

Dkc
†
kcckv(a+ a†), (C.2)

where Dk is the electron-photon interaction within the dipole approximation for a ver-

tical transition between the initial and final states k, c†kc (ckv) is the electron creation

(annihilation) operator in the conduction (valence) band, and a† (a) is the photon cre-

ation (annihilation) operator. The exciton wave function |Ψn
q〉 with a center-of-mass
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momentum Q is expressed as

|Ψn
Q〉 =

∑
k

Zn
kc,(k−K)vc

†
kcc(k−K)v|0〉, (C.3)

where Zn
kc,(k−K)v is the eigen vector of the n-th (n = 1, 2, . . . ) state of the Bethe-Salpeter

equation. In Eq. (C.3), instead of summation over all cutting lines µ (one-dimensional

Brillouin zone of carbon nanotubes), we use a single cutting line for any optical transition

under consideration [34], and thus the index µ is removed in Eq. (C.3). The exciton-

photon matrix elements for the transition between the excited states |Ψn
0 〉 and the ground

states |0〉 are then given by

Mex−op =
∑
k

DkZ
n∗
kc,kv. (C.4)

Exciton-phonon matrix elements

The exciton-phonon matrix elementsMex−ph between the initial state |Ψn1
Q1
〉 and a final

state |Ψn2
Q2
〉 are expressed by

Mex−ph = 〈Ψn2
Q2
|Hel−ph|Ψn1

Q1
〉, (C.5)

where Hel−ph is the Hamiltonian for the electron-phonon coupling for the ν-th phonon

mode and a phonon wave vector q = Q1 − Q2 obtained from the momentum conser-

vation. Note that here we slightly modify the notation of the electron-phonon matrix

element compared to that used in Sec. 3.5.1. By taking into account the contribution

from the electron and hole scattering processes simultaneously in the electron-phonon

Hamiltonian, we have

Hel−ph =
∑
kqν

[
Mν

k,k+q(c)c†(k+q)cckc −M
ν
k,k+q(v)c†(k+q)vckv

]
(bqν + b†qν), (C.6)

whereM(c) [M(v)] is the electron-phonon matrix element for the conduction (valence)

band and the operator b†qν (bqν) corresponds to the phonon creation (annihilation) at

the ν-th phonon mode q. Using that Hamiltonian, we then obtain

Mex−ph =〈Ψn2
Q2
|Hel−ph|Ψn1

Q1
〉

=
∑
k

[
Mν

k,k+q(c)Zn2∗
(k+q)c,(k−Q1)vZ

n1

kc,(k−Q1)v

−Mν
k,k+q(v)Zn2∗

(k+Q2)c,kvZ
n1

(k+K2)c,(k+q)v

]
. (C.7)
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For a first-order resonance process, we have Q1 = Q2 = k. We also just consider ν = 0

for the coherent phonon generation. Therefore, the exciton-phonon matrix element in

Eq. (C.7) is simplified as

Mex−ph =
∑
k

[Mk(c)−Mk(v)]|Zk|2. (C.8)

If we compare the exciton-phonon matrix element in Eq. (C.8) with the Eq. (3.21),

which is used as the driving force term for the coherent phonon generation, we can see

the difference is only that the exciton-phonon matrix element has a weighting factor

in terms of the wavefunction coefficient Zk. The summation of electron-phonon matrix

elements with exciton wavefunctions makes the driving force localized with a Gaussian

shape following the shape of the exciton wavefunctions. This assumption is considered

in Chapter 5 when we simplify the driving force model considering the excitonic effects

as a Gaussian function multiplied with the step function with a certain force amplitude

that can be obtained numerically.
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Appendix D

Solution to the Klein-Gordon Equation

Here we give a solution to the Klein-Gordon equation in Eq. (5.3) by using the Green’s

function method. We start with the nonhomogeneous Klein-Gordon equation,

∂2Q(z, t)

∂t2
− c2∂

2Q(z, t)

∂z2
= S(z, t)− κQ(z, t), (D.1)

where we have the driving force in terms of a Gaussian,

S(z, t) = Age
−z2/2σ2

zθ(t). (D.2)

The solution for Q(z, t) in the region −L/2 < z < L/2 with a boundary condition,

Q(−L/2, t) = Q(L/2, t) = 0, can be expressed in terms of Green’s function G(z, z′, t),

Q(z, t) =

∫ t

0

∫ ∞
−∞

S(z′, t′)G(z, z′, t− t′)dz′dt′, (D.3)

G(z, z′, t) =
2

L

∞∑
n=0

cos(qnz) cos(qnz
′)

sin(t
√
c2q2

n + κ)√
c2q2

n + κ
, (D.4)

where qn = nπ/L. Inserting Eq. (D.2) to Q(z, t) above and defining ωn =
√
c2q2

n + κ,

we obtain

Q(z, t) =
2Ag
L

∫ t

0

∫ ∞
−∞

e−z
′2/2σ2

z

∞∑
n=0

cos(qnz) cos(qnz
′)

sin(ωn(t− t′))
ωn

dz′dt′

=
2Ag
L

∞∑
n=0

cos(qnz)

ωn

∫ t

0

∫ ∞
−∞

e−z
′2/2σ2

z
(eiqnz

′
+ e−iqnz

′
)

2
sin(ωn(t− t′)dz′dt′. (D.5)
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We can do the two integrations in Eq. (D.5) separately, and thus

Q(z, t) =
Ag
L

∞∑
n=0

cos(qnz)

ωn

∫ t

0

sin(ωn(t− t′)dt′
∫ ∞
−∞

(eiqnz
′
+ e−iqnz

′
)dz′

=
Ag
L

∞∑
n=0

cos(qnz)

ωn

(
1

ωn
[1− cos(ωnt]

)(
2σz
√

2π e−q
2
nσ

2
z/2
)

=
2σzAg

√
2π

L

∞∑
n=0

[
e−q

2
nσ

2
z/2

c2q2
n + κ

(
cos(qnz)× (1− cos(t

√
c2q2

n + κ))

)]
, (D.6)

as we have already seen in Eq. (5.16).
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Calculation programs

There are several programs used to perform the coherent phonon calculation. All the

necessary programs can be found under the following directory in FLEX workstation:

~nugraha/for/00phd/

Hereafter, this directory will simply be referred to as ROOT/ directory. More detailed

explanations about how to use the programs are given in the 00README file in each

subdirectory of ROOT.

Coherent phonon amplitude and spectra

Without excitonic effects

Directory: ROOT/coherent/

Main Program: coherent.f

Using coherent.f, we can calculate the coherent phonon amplitudes and spectra of

carbon nanotubes with typical calculation inputs such as (n,m) and pump-probe en-

ergy. The calculation is performed within the extended-tight binding method, without

including the excitonic effects (Chapter 4).

With excitonic effects

Directory: ROOT/cpexc/
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Main Program: cpexc.f

Same as before, this program calculates the coherent phonon amplitudes and spectra

with typical calculation inputs such as (n,m) and pump-probe energy. The calculation

is performed by including the excitonic effects (Chapter 5).

Armchair nanoribbon

Directory: ROOT/gnrcp/

Main Program: aGNR.f

We could obtain similar results of coherent phonon amplitudes and coherent phonon

spectra for armchair graphene nanoribbons. Typical calculation inputs now are the

number of A-B atom pairs along the ribbon width and the pump-probe energy. The

calculation is performed within the extended-tight binding method.

Effective mass theory

Directory: ROOT/elphanalytic/

Main Programs: coupling.f90, fit.f90

These programs give the electron-phonon matrix elements within the effective mass the-

ory and also some plotting utilities for the analytical formula given in Chapter 4.

Green’s function solver

Directory: ROOT/fgreen/

Main Program: green.f90

This program calculates coherent phonon amplitudes using Green’s function technique.

The output of amplitude calculation is also used in the cpexc.f program.
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Mathematica notebooks

Directory: ROOT/math/

Main Programs: coherentphonon.nb, gaussexciton.nb

We also use Mathematica software to simulate the coherent phonon amplitudes in carbon

nanotubes, especially when including the exciton effects. These programs give animations

of coherent phonon amplitudes as a function of time and space. The programs also give

the average spatial amplitudes defined in Chapter 5. The output is then used to calculate

the coherent phonon spectra in cpexc.f program.
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