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                  Abstract 

  The coastal zone is formed by ether side of the coastline, i.e., the coastal land and the 

coastal sea. The majority of world's population is located in the coastal land region. As 

well as world population growth, the coastal population and their activities in the coastal 

zone increase, which accelerates wide spreading environmental stress to the world coastal 

seas. In order to ensure efficient and safe human activities and to preserve healthy marine 

environments in the coastal sea, sophisticated observing systems for the ocean 

environment monitoring are desired. 

  Surface winds are the most important parameter as a driving force of meteorological 

and oceanographic phenomena in the coastal zones. There exist some factors inherent in 

the coastal zone, which produce local variations of the coastal winds. These factors do not 

exist in the open oceans. The thermal contrast between the land and the sea creates the 

land-sea breeze. A lateral, orographic boundary can accelerate or block the wind flow. 

The surface wind crossing the coastline is modified by different surface roughness of land 

and sea. 

 In turn, the variable surface winds have direct impacts on oceanographic phenomena in 

the coastal sea. Generation and development of wind waves are controlled by the surface 

winds. They drive currents in the sea surface layer. Latent and sensible heat, and water 

vapor fluxes at the sea surface are forced by the surface winds. The surface wind 

observations are indispensable to study meteorology and oceanography in the coastal sea. 

In order to capture the coastal winds and to understand oceanic responses to them, 

high-resolution surface wind observations are necessary. 

  Synthetic Aperture Radar (SAR) will be an excellent candidate for filling the 

meteorological and oceanic observational gaps between the present systems and the 

above-mentioned needs in the coastal sea. SAR is an active microwave instrument which 

has an imaging capability of normalized radar cross section (NRCS) of earth surfaces 

with high-spatial resolution (< 30m). The SAR images can be converted into the 

high-resolution wind-speed maps by applying a geophysical model function  (GMF), 

which relates the NRSC of sea surface and the surface vector wind. Because only SAR 

can provide high-resolution surface wind fields, it is considered that SAR-derived winds 

will give new understandings on the surface wind and oceanic phenomena in the coastal 

sea. The purposes of present study are to improve the SAR wind retrieval methods and, 

using them, to understand features of the coastal surface winds and to study effects of the
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coastal winds on wind-wave development. 

  In Chapter 1, backgrounds, purposes of this study and structure of this thesis are 

described. We discuss roles of the SAR observation in understanding coastal winds and 

phenomena associated with the air-sea-land interaction. 

  In Chapter 2, datasets used in this study are summarized. Japanese Earth Resources 

 Satellite-1  (JERS-1) SAR and European Remote sensing  Satellite-1/2  (ERS-1/2) SAR are 

mainly used. Surface vector winds over land and sea observed by scatterometers and in 

situ wind measurements are used. Significant wave heights and wind speeds are obtained 

by satellite altimeters. 

  In Chapter 3, we examine relationships between L-band microwave backscattering at 

the sea surface and the surface wind speed and direction using  JERS-1 SAR data, which 

results in the first L-band GMF. It enables us to retrieve high-resolution surface winds 

from the  JERS-1 SAR images. We quantitatively evaluate two problems peculiar to 

 JERS-1 SAR, which are the system noise in range direction and excessive ambiguities 

due to JERS-1 SAR operation troubles. It has been known that the ambiguity, which is 

inherent to radar systems, is especially large in the  JERS-1 SAR images. 

 In the first half of this chapter, we develop the L-band GMF. It is found that the system 

noise has a feature common in all the SAR images and that the azimuth-averaged profile 

of noise can be expressed as a parabolic function of range. By subtracting the estimated 

noise from the SAR images, we obtain the relatively calibrated ocean signals. Next, using 

the noise-removed SAR data and surface vector wind data from NSCAT and buoys 

operated by Japan Meteorological Agency, we generate 7577 match-up data, which 

consists of the SAR  NRCS, the SAR incidence angle, the surface wind speed and wind 

direction. A total of 2288 scenes  of  JERS-1 SAR in the open oceans are used because they 

are free from the ambiguity noise associated with coastal land signals. Then, we 

investigate the NRCS dependence on the incidence angle, the wind speed, and the wind 

direction. We cannot examine the incidence angle dependence because of narrow swath 

 ofJERS-1 SAR and the system noise in the range direction. For wind speeds below 8 m/s, 

the wind direction dependence is not significant. However, for higher wind speeds, the 

upwind-downwind asymmetry becomes very large, which are not seen in the Ku- and 

C-band GMFs. Finally, taking into account of these characteristics, we produce a new 

L-band GMF for the SAR wind retrieval using a third-order harmonics formula. Resultant 

estimates of the SAR-derived wind speed have a root mean square error of 2.09  m/s with
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a negligible bias against the truth wind speed. 

 In the latter half of this chapter, the surface wind retrieved from  JERS-1 SAR using the 

L-band GMF in the coastal region is evaluated. We also used  ERS-1 SAR images, which 

has no signifcant ambiguity noise. High-resolution wind-speed maps are derived from 

ERS-1 SAR images using the C-band GMF. First, focusing on the cases where wind 

blows from shore in Sagami Bay, we investigate relationships between wind speed and 

offshore distance along wind direction from the Hiratsuka Experiment Station (HES) 

using 41 scenes of ERS-1 SAR-derived wind fields. Consequently, the wind speed 

growth with offshore distance is well formulated as a function of the offshore distance 

and the wind speed at HES. This indicates development of the internal atmospheric 

boundary layer from over the land to over the sea. In contrast,  JERS-1 SAR-derived wind 

speeds in the near-shore region are overestimated due to the excessive ambiguities. For 

observation time of each  JERS-1 SAR scene capturing the case that wind blows from 

shore in Sagami Bay, the wind-speed profile along the wind direction is derived from the 

wind-speed growth formula and HES wind observation. Then, we convert the wind-speed 

profile into the NRCS profile by the L-band GMF. Finally, the profiles of  JERS-1 

SAR-observed and the estimated NRCSs are compared, and the excessive ambiguity is 

evaluated as the difference between them. As a result, the intensity of ambiguity within 

20-km offshore distance is especially large. Moreover, higher order azimuth ambiguities 

and range ambiguity within 55-km offshore distance also may have a significant impact 

on the near-shore wind retrieval. 

 In Chapter 4, we present statistical features of the coastal winds using high-resolution 

SAR-derived wind speed maps. 

 We investigate the coastal wind-speed distribution in a Weibull parameter feature space. 

It has been known that the Weibull distributions give good fit to the distribution of 

wind-speed time series observed for a long time at land and open ocean stations. 

However, because we cannot obtain  sufficient wind measurements at coastal stations, 

characteristics of the coastal sea surface winds are not known well. We used AMeDAS 

data for land surface winds, and in situ wind observations from three JMA buoys, a buoy 

in Mutsu Bay, and HES and QuikSCAT wind mearsurements for sea surface winds. For 

these data, we made year-around wind-speed distributions at the in situ stations and 

open-ocean grids, and obtained the Weibull parameters from the distributions. 

 A total of 6, 567 scenes of  ERS-1/2 SAR around Japan are used. We average NRCS of
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SAR images in every 1 x 1 km grid. Next, wind speed maps are derived from the 1-km 

grid NRCS by using the C-band GMF. In order to investigate statistical features of wind 

speed with the distance from the shore, the derived wind-speeds are resampled according 

to the offshore distance up to 100 km and assign them to the every 5-km bins 

perpendicular to the coast. The distribution of wind speed assigned to each bin is obtained 

for  derivation of the Weibull parameters. 

  In the Weibull parameter feature space, the distributions in the coastal sea form a 

cluster different from clusters of land and open ocean. The distributions in the coastal sea 

have high frequencies in the lower wind-speed range and frequencies extending higher 

wind speeds. They can be reproduced by mixing the typical wind-speed distributions of 

land and open ocean at given rates. 

  Then, we investigate relationship between the standard deviation and skewness of 

SAR-derived wind speeds and the offshore distance. Subregions of 10-km square in the 

1-km grid wind-speed map are used for calculation of the statistical parameters. Their 

wider distribution ranges are found in the near-coast seas and the ranges decrease with the 

offshore distance from the coast to 100 km offshore, which suggest that the offshore 

distance of 100 km can be a measure of a separation scale between the coastal sea and the 

open sea from the surface wind point of view. 

  In Chater 5, using high-resolution satellite observations, we present case studies to 

investigate surface winds and wind waves under the East Asian winter monsoon in the 

Pacific Ocean  off  Hokkaido and the Tohoku district. Under such conditions, steady strong 

winds blow from the Japanese archipelago to the Pacific Ocean and usually persist for 

periods longer than one day. Therefore, observation time differences among satellite 

sensors are unimportant to grasp representative views. Wind waves become dominant, 

and the fetch-limited, steady, and one-dimensional wind wave developments are satisfied. 

 The QuikSCAT surface wind vectors present wind jets and neighboring lower wind 

regions extending more than 600 km downwind from the Tsugaru Straits. The 

SAR-derived wind fields, which observe nearshore regions, reveal smaller-scale coasal 

jets and lower wind regions. The coastal wind jets extending from terrestrial gaps, i.e., 

Uchiura Bay and Mutsu Bay and the Tsugaru Straits are noticeable. The combind use of 

QuikSCAT and SAR allow us to capture the surface wind transition from the coastal 

region to the offshore ocean. Variations of significant wave height observed by T/P and 

ERS-2 altimeters are compared with wind speeds derived from QuikSCAT and SAR. As
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a result, the positions of local maximum and minimum coincide with each other. This 

means that the wind waves are influenced by the orographically  modified winds. 

 Chapter 6 summarizes the conclusions of this study. 

 The newly developed L-band GMF can be considered to contribute to development of 

the other L-band microwave sensors such as spaceborne and airborne SARs and 

oncoming sensors for sea surface salinity retrieval. It is found that the coastal 

high-resolution surface wind fields have smaller-scale two-dimensional structures, which 

is quite different from the surface winds over open ocean. This means that high-resolution 

observations are essential to capture the features of coastal surface winds. It is also shown 

that the coastal surface winds influence the offshore wind fields and the wind waves in the 

downstream open ocean. The accomplishments of present study may contribute to 

improvements of numerical model approaches for the surface winds, the wind waves and 

surface circulation in the coastal sea.
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 1  Introduction 

1.1 Global environmental problems and coastal monitoring 

 The majority of the polulation is located either directly along the coastlines or within 

the associated waterways, embayments, and estuaries. The more population is 

concentrated on such reigions. Today, there are over 5 billion people on earth, and about 

38% of them live in the coastal zones within 100 km of the coastline at elevations less 

than 100 m [Small and Nicholls, 2003]. This is shown in Figure 1.1 from the viewpoint of 

global distributions of population density and city lights. They are cited from Small and 

Nicholls [2003]. Gridded population densities (Figure 1.1(a)) provide estimates of the 

spatial distribution of population while city lights (Figure 1.1(b)) provide higher 

resolution estimates of the spatial distribution of population centers and socioeconomic 

activity. Note that lighted settlements are heavily concentrated within 5 km of coastlines 

worldwide (Figure 1.1(a)). 

 An increasing number of people and their activities present the potential for 

widespread environmental stress to coastal zones. Coastal systems must  fullfil more 

demands for supporting commerce, living resources, recreation, and living space and for 

receiving, processing, and diluting the effluents of human society. Expected sea-level rise 

due to the climate change is a critical problem for the coastal zone. The land-based 

pollutions are serious problems in the global coastal seas, e.g, increasing red-tide events, 

contaminants in sea foods, degradation of sea water quality. Natural hazards damage 

coastal environment. In order to cope with these problems, coastal environmental 

monitoring takes on a growing importance. Above all, the high-resolution ovserving 

systems of marine parameters are desired to improve the nowcast and forecast capability 

of oceanic phemomena in the coastal sea. 

1.2 Air-Sea-Land Interaction and surface winds 

 Understanding the meteorology and physical oceanography in the coastal zones 

combines knowledge of the interaction of marine and land atmospheric boundary layers, 

air-sea interaction, large-scale atmospheric dynamics, and the circulation of the coastal 

ocean. The coastal zones are  defined as extending areas to either side of the coastaline. 

Most coastal environments are modified by the adjacent ocean, the coastal topography 

and the land-sea thermal contrast. Complex feedbacks occur between the atmosphere, 

ocean and land. The thermal contrast between the land and sea creates the land-sea breeze 

and coastal atmospheric fronts. The convergence of marine air over the coastline can
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result in strong convection with heavy precipitation and runoff. A lateral, orographic 

boundary can accelerate or block the wind flow. Variations in the speed and direction of 

the wind depend on the exact nature of the orographic boundary. This results in highly 

variable temporal and spatial air-sea exchange processes that are dominated by scales of 

tens to hundreds of kilometers. A disciplinary of dealing with those described above falls 

into coastal meteorology [e.g., Hsu, 1988]. 

 From a viewpoint of sea states and upper-layer ocean circulation in coastal seas, 

surface wind field is the most important factors. As mentioned above, the coastal surface 

winds are affected by the result of the land/sea contrasts in heating, orographic forcing, 

and surface friction. The resulting surface wind fields are categolozed into several types 

according to their thermo-dynamical formation mechanisms. The typical winds are 

summarized in Table 1.1. In turn, the winds have an impact on coastal seas. The wind 

stress at the surface generates and develops wind waves and turbulence in the surface 

layer. Associated heat fluxes drive the ocean circulation. For example, sea surface cooling 

causes thermal convection in the surface mixing layer of ocean. Accumulating wind 

forcing results in the wind-driven currents, which is affected by the Coriori force to be the 

Ekman flow. The coastline and bottom topography play important roles to generate 

coastal trapped  phemomena and to decay them through the friction effects. A schematic 

picture of the coastal winds and the resulting phenomena aimed at in the present study is 

illustrated in Figure 1.2. 

1.3 Synthetic Aperture Radar for air-sea-land interaction in coastal 

seas 

1.3.1 Satellite remote sensing for ocean observations 

 Over the last decades, satellite remote sensing has proved to be a valuable tool for 

monitoring physical and biological ocean processes. It plays an increasingly important 

and indispensable role in the study even in the coastal zone because of rapid technological 

changes. In general, spatial resolutions of the space-based remote sensing sensors become 

 finer. Temporal coverage is complement with wider sensor swaths and multi-sensors on 

satellites in the geostationary and polar orbits. Sensors with better precision and new 

functions are being developed and planned. Some missions are transitive to continual 

operations. The cost of satellite observation becomes cheaper. They enable us to 

monitoring coastal environment. 

 As well as the high-resolution capabilities of satellite sensors, usefulness of the
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synergetic utilization of multi-sensor has been emphasized through a number of 

experiments [e.g., Ufermann et al., 2001]. The satellite imagery has led researchers to 

new knowledge in oceanography and marine meteorology when used in combination 

with in situ data and numerical atmosphere/ocean models. Nowadays, we have reached 

the stage of studying and monitoring the coastal environment using longstanding satellite 

datasets with sufficient resolution. 

 As for observations of sea surface winds, microwave scatterometers have greatly 

contributed to weather and ocean-atmosphere interaction. Scatterometers are the only 

proven instruments that give us measurements of cean surface wind vectors. Progress in 

the scientific application of scatterometer is reviewed in Liu [2002]. Admitting that 

high-resolution (12.5 km) products are developed, it is still too coarse to resolve coastal 

wind variations. In the coastal seas, it is essential to resolve surface winds with high 

spatial resolution, as mentioned in Section 1.2. Therefore, comprehensive pictures of 

wind transitions and variations in the coastal zones have remained to be solved. 

 Especially, for coastal environmental monitoring, Synthetic Aperture Radar (SAR) will 

be an excellent candidate for filling the meteorological and oceanic observing needs over 

coastal seas. SAR is an active microwave instrument which has an imaging capability of 

the normalized radar cross section (NRCS) with quite a high spatial resolution. It is a side 

looking system measuring the slant range to the target. The main process of SAR imaging 

is a two-dimensional (i.e., range and azimuth directon)  correlation of the SAR raw data 

with a refernce function [Henderson and Lewis, 1998]. SAR coordinate systems are 

shown in Figure 1.3. 

 Spaceborne SARs have been continuously operated for a long time since 1990 and 

their imagery has been distributed to researchers for basic studies and application 

developments. System parameters for main  spaceborne civilian Earth observing SAR 

missions are summarized in Table 1.2. Especially, ERS-1/2 SAR and JERS-1 SAR had 

operated long time and acquired a great deal of images of the Earth surface. While most 

 spaceborne SARs are single parameter sustems, recent SARs which have several 

operation modes such as high resolution, polarimetry, and scan mode have been operated 

and planned. Now SAR is one of the satellite sensors which play key roles in earth 

observations. 

 The high-resolution capability of SAR can resolve many meteorological and oceanic 

phenomena in the vicinity of sea surface, which can not be extracted from other remote
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sensing data. Oceanic phenomena that can be delineated on SAR images of the sea 

surface include ocean surface waves [e.g., Hasselmann and Hasselmann,  1991], internal 

waves [e.g., Alpers, 1985], eddies [e.g., DiGiacomo and Holt, 2001], oceanic fronts [e.g., 

Johannessen et al, 1996], underwater bottom topography [e.g., Alpers and  Hennings, 

1984], ship wakes [e.g., Lyden et al., 1988], oceanic and atmospheric wakes behind 

islands [e.g., Barton et al., 2000], oil slicks [e.g.,Lu, 2003], river plumes [e.g., Hessner 

and Rubino,  2001] and upwelling areas [e.g.,  Clemente-ColOn and Yan, 1999]; 

atmospheric phenomena include katabatic wind fields[e.g., Alpers et  a1.,1998], land-sea 

breeze, gap  winds[e.g., Sandvik and Furevik, 2002], boundary layer rolls [e.g., Alpers 

and  Briimmer, 1994], convective cells [e.g., Sikora et  al., 1997], atmospheric gravity (or 

internal) waves[e.g., Vachon et al.,1994], vortex streets [e.g., Li et al., 2000], tropical 

storms [e.g., Li et al., 2002] and rain cells [e.g., Melsheimer et al., 1998]. 

1.3.2 SAR high-resolution wind retrieval 

 Recent improvements on the radar backscattering at the sea surface enable us to 

retrieve high-resolution wind-speed maps from the SAR images. They meet the demand 

of wind observations with high-spatial resolution. 

 NRCS at the sea surface is considered to relate with the radar frequency and 

polarization, incidence angle, surface wind speed and direction, and other geophysical 

parameters such as stability, SST, and sea states. Main modulator of sea surface roughness 

is the local wind. Changes in wind velocity cause changes in ocean surface roughness 

through the high-frequency components of wind wave. In turn, NRCS of the ocean is 

modified. 

 NRCS at the sea surface is usually prameterized as this: 

cro 6o(f,p,85u,0) (1.1) 

where f and p are the frequency and polarization of the microwave, respectively.  B is the 

incidence angle, U is the wind speed, and  0 is the relative wind direction  defined as the 

angle between the radar looking direction (projected onto the horizontal plane) and the 

wind direction. To determine the dependecy of the radar returns on the relative wind 

direction, the harmonic formula for the cosine function is applied [Moore et al., 1978]. 

 0-°(f,  p,O,U,Ø)=IA„(f,  p,  0,  U)cos(n (1.2) 
 n=0 

This relationship is represented as a geophysical model function (GMF), which 

empirically and/or theoretically relates the scatterometer or SAR-derived NRCS with the 
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radar frequency and polarization, incidence angle, wind speed and direction, and other 

parameters of the sea surface, is utilized in the wind retrieval. The inversion algorithm to 

convert the NRCS to wind speed is called SAR wind retieval. 

 In order to retrieve surface wind fields from SAR imagery, three conditions have to be 

satisfied. First, each pixel value of the SAR imagery, which is equivalent to NRCS, must 

be calibrated absolutely or relatively for wind-retrieval. Second, a GMF has to be 

established for the SAR microwave band. Third, we need to specify the wind direction 

through the other data sources because SAR has only one-look direction. In other words, 

the SAR provides only the wind speed with very high spatial resolution  (10-100 m). 

Previous studies on the SAR wind retrieval have used the wind directions from satellite 

scatterometers, in situ ship/buoy measurements, and operational/non-operational 

meteorological model outputs. 

 1.3.3 C-band SAR wind  retieval 

 At the present, C-band SARs of  ERS-l/2 and RADARSAT have been most commonly 

used for SAR wind retrieval. Several C-band model functions have been established for 

ERS scatterometer [e.g., Stoffelen and Anderson, 1994; Quilfen et  al., 1998]. They relate 

 VV-pol NRCS with incidence angle, wind speed and wind direction. Some model 

functions are well validated and in operational use for scatterometer products. Many 

studies have revealed the efficiency of SAR-derived wind fields for interpreting various 

atmospheric and oceanic phenomena. Nowadays, ENVISAT SAR also becomes available 

to wind relating applicaitions. On the other hand, RADARSAT observes HH-pol NRCS. 

To use well-validated  VV-pol model function, a porlarizarion ratio is developed by 

Thompson and Beal [2000]. The poralaization ration is a function of incidence angle and 

the paramter alpha. 

 For a discussion of the accuracy of wind retrieval from SAR images using the C-band 

scatterometer model funcitons, we can refer to the following papers. Validations of SAR 

wind retieval using CMOD4 and CMOD5 in [Vachon and Dobson, 1996] represente a 

wind speed extraction error of 1.5  m/s for the 3 to 12  m/s wind speed conditions. The 

improved calibration scheme is considered in Scoon et al. [1996]. A validation of SAR 

wind retieval is performed by comparing wind scatterometer of ERS during ERS tandem 

phase by Furevik and Korsbaken [2000]. In Monaldo et al.  [2001], using a wide-swath 

RADARSAT SAR imagery, SAR-derived wind speeds are compared with model 

predictions and buoy measurement. It shows very good agreement, and the standard
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deviation is 1.76  m/s. 

 Some studies make an attempt to retrieve optimal wind direction as well as wind speed 

from SAR. Wackerman et  al. [1996] developed an automated algorithm intended for 

estimateing wind speed and direction using  ERS-1 SAR imagery. Portabella et  al. [2002] 

investigated optimal inversion method for SAR wind retrieval. Fichaux and Ranchin 

 [2002] developed a combined wind parameters extraction algorithm at a high spatial 

resolution from a single SAR image. 

 1.3.4 Coastal winds investigated by SAR-derived wind fields 

 SAR-derived wind fields have been verifed to contribute to understanding the wind 

speed modulation associated with various phenomena: atmodpheric lee waves [Vachon et 

al., 1994], atmospheric boundary layer rolls [Alpers and  Briimmer, 1994;  Willer and 

 Briimmer, 1999], atmospheric gravity waves [Vachon et al., 1994], atmospheric nonlinear 

wave disturbance [Alpers and Stilke, 1996], Coastal lee waves [Zheng et al., 1998], 

Katabatic wind [Alpers et al. 1998], mesoscale wind fields [Lehner et  al. 1998; 

Korsbakken et al., 1998], and a mesoscale coastal jet [Sandvik and Furevik, 2002] (See 

also Table 1.1). 

 A series of studies of SAR wind retieval has revealed a variety of coatal wind 

distributions. They show that coastal winds can vary with surprisingly smaller scale and 

have unexpectedly significant gradient. It is difficult to infer such wind variations in 

coastal zones from ship and scatterometer wind measurements. It is natural that coastal 

wind variations should be reflected by surface wave, SST, currents. In order to understand 

coastal environment, it is essential to investigate smaller-scale and drastic wind 

variations. 

 1  .4 Scope of the present study 

 On the basis of considerations summarized above, our approach is designed with focus 

attention on the followings. First, we develop L-band GMF and establish L-band SAR 

wind retrieval. While C-band SAR wind retieval have now become a proven technorogy 

for research of the coastal wind fields and their involving phenomena, no L-band GMF 

exists for the surface wind retrieval. Next, we approach understanding of coastal winds 

from statistical point of view. As reviewed in Section 1.3.4, many studies has been carried 

out and verified that the SAR high-resolution wind maps have high research potential. 

Howerver, almost all of them are case studies. In that case, it can be hardly said that SAR 

is  effectively utilized for monitoring the coastal wind field. Then, we promote synergetic
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use of the SAR observations and the other satellite datasets. In paticular, we clarify the 

actual variation of coastal wind using high-resolution SAR wind fields in combintion 

with the scatterometer surface vector winds and the altimeter wind speed and wave 

height. 

 This thesis is organized as follows. The datasets used in the present study are 

summarized in the following chapter. In Chapter 3, we study on L-band SAR wind 

retrieval using  JERS-1 SAR. We first describe the  developmet of an L-band GMF. Then, 

we validated the JERS-1 SAR-derived wind speeds and evaluated excessive ambiguities 

 ofJERS-1 SAR using the L-band GMF. In Chapter 4, we present statistics of surface wind 

speed distributions on land and sea, and characterize coastal winds by comparing them 

with winds over land and open ocean. In Chapter 5, we investigate evolution of the 

surface wind field  from the coast to the offshore by a combined use of scatterometer and 

SAR. Then, we examine relationships between surface winds and wind waves under the 

fetch-limited condions using altimeter wave height observations. Chapter 6 summarizes 

the present study.
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(a) Population Density

4* - -

'''‘ 44111er.,.

(b)
 City Lights

 

. •

Figure 1.1 Global distributions of (a) population density and (b) city lights. 
Figures are cited from Small and Nicholls  [2000]. 1990 population density, 
derived from the GPW2 census compilation, ranges from  I  person/sq.km (dark) 
to 1000  people/sq.km (white) on a logarithmic scale. Temporally stable lights 

(white) are derived from DMSP/OLS night time satellite imagery collected in 
 1994-1995.
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Land/Sea breeze

Atmospheric internal 

boundary layer
Gap winds

Figure 1.2 A schematic picture of modified coastal winds and the 

resulting phenomena in coastal seas. Blue arrows indicate scheme 

of wind streamlines.
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Figure 1.3 SAR coordinate systems. The figure is cited from 

 http://www.cs.uaf.edu/publickgps/reports/rsg_RGPSview_doc/l.html.
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2 Data 

  In this chapter, descriptions of datasets utilized in the present study are given. They 

contain satellite datasets, in situ measurements, and reanalysis data. They are individually 

summarized in Table 2.1. 

2.1 Satellite datasets 

2.1.1  Systhetic  Aperture Radar 

 JERS-1 was launched into a solar-synchronous sub-recurrent orbit at an altitude of 568 

km with a recurrent period of 44 days on February 11, 1992 from NASDA (National 

Space Development Agency of Japan). An L-band and  HH polarization SAR on board 

JERS-1 featured a high resolution of 18 m, a  fixed off nadir angle of 35° and an imaging 

width of 75 km. Main characteristics are summarized in Table 2.2. 

 ERS-1/2, carrying AMI (Active Microwave Instruments), had been in operation since 

July 17, 1991 and April 21, 1995, respectively. The AMI has a function as C-band (5.3 

GHz) SAR with  VV-polarization, so called "image mode". The SARs aboard the two 

satellites have identical design. They operate over a fixed range of incidence angles of 

 20  — 27°, which results in the imaging width of 100 km. The nominal spatial resolution of 

the imagery is 30 m. The satellite has three modes of operation in a recurrent period of 35 

days as standard, 3 days, and 176 days flying at an altitude of 780 km in a 

 solar-synchronous orbit with an inclination of 98.5° . Main characteristics are 

summarized in Table 2.3. 

2.1.2 Microwave scatterometers 

 Table 2.4 summarizes main comparable characteristics of scatterometers used in the 

present study. The Advanced Earth observing Satellite (ADEOS) was launched on 

August 17, 1996 and carried eight sensors including NSCAT until June 30, 1997. NSCAT 

is a dual-swath, Ku-band (13.995 GHz) scatterometer, which can measure vector winds 

over a swath of 600 km with a spatial resolution of  50/25 km. The  NSCAT Ocean Data 

product used in this study is 25 km Selected Wind Vector (SWV). It contains the surface 

wind vectors selected along the satellite track with a spatial resolution of 25 km and flags. 

 The SeaWinds instrument on the QuikSCAT satellite, which is launched by NASA on 

June 19,1999, is a specialized radar that measures near-surface wind speed and direction 

at a 25-km resolution. SeaWinds uses a rotating dish antenna with two spot beams that 

sweep in a circular pattern. The antenna radiates microwave pulses at a frequency of 13.4 

GHz across broad regions on Earth's surface. The instrument will collect data over ocean,

13



land, and ice in a continuous, 1,800-kilometer-wide band, making approximately 400,000 

measurements and covering 90% of Earth's surface in one day. SeaWinds data is obtained 

from NASA Physical Oceanography Deistributed Active Archive Center (PODAAC) at 

the Jet Propulsion Laboratory (JPL). In the present study, L2B puroduct is used. 

2.1.3 Microwave altimeters 

  Table 2.5 summarizes main comparable characteristics  o  f  altimeters used in the present 

study.  Topex/Poseidon is a joint NASA-CNES satellite altimeter, which has been 

operating since September 1992. It is the most accurate altimeter system yet flown with 

an absolute accuracy of about 4 cm. Significant wave height is retrieved from the leading 

edge slope of the altimeter waveform. The altimeter significant wave height has precision 

as buoys  (-0.3 m). Its repeat period is 9.916 days, i.e.; the satellite passes over the same 

location, to within  1  km, every ten days. We use the TOPEX/POSEIDON MGDR 

(Merged Geophysical Data Record), which contains global coverage altimeter data. 

  Radar altimeters on board  ERS-1/2 are a Ku-band (13.8 GHz) nadir pointing active 

microwave sensor providing, along the satellite track, measurements of the echoes from 

ocean surface, from which wind speed, wave height and sea surface elevation can be 

retrieved using precision orbits derived from the onboard laser retro-reflector. We used 

ERS OPR, which provides swath data sets from the ERS radar altimeter. 

2.2 In situ observation data 

2.2.1 AMeDAS 

 JMA (Japan Meteorological Agency) routinely accumulated data from approximately 

1,300 automatic observation facilities, called AMeDAS (Automated Meteorological Data 

Acquisition System). They are located at intervals of about 17 km around the nation to 

monitor precipitation. About eight hundred and forty stations at intervals of about 21 km 

observe all of the four key parameters: air temperature, wind direction and speed, 

precipitation and sunshine duration. Furthermore, automatic snow gauges are located in 

areas with heavy snowfall to monitor snow depth. 

2.2.2 JMA buoys 

 JMA operated three Ocean Data Buoy Stations (WMO buoy nos., 21002, 21004, 

22001) in the seas around Japan. Figure 2.1 shows their locations. They measure 11 

meteorological and oceanic variables including wind direction and speed. In order to 

make the buoy winds compatible with the nutral equivalent  10-m height wind derived 

from scatterometers, the buoy wind speeds measured at 7.5 m above sea surface are

14



converted to the  10-m equivalent neutral wind speed by a method proposed by Liu et  al. 

[1979]. 

2.2.3 Hiratsuka Experiment Station 

  Since 1965, sea-surface wind vectors and surface waves have been continuously 

measured at the Hiratsuka Experiment station (hereafter, the Hiratsuka tower) operated 

by the NRIESDP of the Science and  Technology Agency, Japan. The Hiratsuka tower is 

located 1 km offshore (See Figure 2.2(b)) at a water depth of 20 m. An anemometer is 

installed on the tower at 19.5 m height above the mean sea surface. Winds and waves are 

recorded with a sampling interval of 0.3 s. Wind data are recorded hourly as a mean over 

a period of 10 minutes. The systems and climatological analyses are summarized by 

Watabe et al. [1996 and 1997]. 

2.2.4 A buoy in Mutsu bay 

 A mooring buoy located in the centeral area of Mutsu Bay (Figure 2.2(c)) is operated 

by Aomori Prefetural Aquaculture Research Center and continuously observes the wind 

direction and speed at 4 m height every hour. Mearsuring resolutions of the buoy wind 

direction and speed are 1 degree and 0.1  m/s, respectively. 

2.3 Reanalysis data 

 Surface reanalyses from  NCEP/NCAR reanalysis project are used. It is using a 

state-of-the-art analysis/forecast system to perform data assimilation using past data from 

1948 to the present. The 10  m-height wind data are used from surface flux dataset. The 

dataset covers the area of 88.542°N - 88.542°S, 0°E - 358.125°E with T62 Gaussian grid. 

It has 192 and 94 points in zonal and meridional directions. Outputs are given every 6 

hours.
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Table 2.1 (a) Satellite active sensors, (b) in situ measurements, and (c) 

reanalysis datasets used in the following chapters of the present study.

(a)

SAR

 Microwave 

 Scatterometer

 Microwave 
 Altimeter

Satellite

JERS-1

 ERS-1/2

ADEOS

 QuikSCAT

ERS-2

 Topey/Poseidon

Sensor

SAR

 AM1

NSCAT

 SeaWinds

RA

Altimeter

 Niicrowave 
 Freuuencv

 L-band  [1.27GHz1

 C-band[5.3G1-111
  Ku-band 

 [119950H/1
 Ku-band 

 [13.4G1-1/1

Ku-band 
[13.8GH/1

 C- and Ku-band 
[5.3 and 13.6  GI-1/1

Retrieved 
 Parameters

Surface  wind 
 speed

Surface wind 
 speed

Surface wind 
   vector

Surface wind 
 vector

 Significant  wave 

height and  Nvind 
 speed

 Significant  wave 

height and wind 
 speed

Chapter in the 

present  study

3

 4,5

3

 4,5

5

 5

(b)

In  situ 
 measurements

Systems

JMA buoys

 AMeDAS

 Hi  ratuska 
Experiment 
 Station

 Mutsu  Bum,

Parameters

Surface wind vector

Surface  wind vector

Surface wind vector

 Surface  wind vector

Chapter  in the 

 Present  study.

3,4

4,5

 3,4

4,5

(c)

 Reanalysis data

 Dataset

NCEP/NCAR

Parameters

 Surface wind  vector

Chapter in the 

 DreSCIII  study

 4,5
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Table 2.2 Main characteristics of JERS-1 SAR.

 Cowan

 .\  MKS.

 Spacecraft

 Launch site

Launch date

 Ldelimc

 I:nd date

 Orbit

Recorder on  board'?

 Processing

 S%A.  at  11  vtidtli

 Ram-2e resolution

 

.17.intuth  resolusion

I .00ks

 Off nadir  angle

incidence  an2lc

 Obseryation

 Polari/ation

\ntenna

 Size(rn  )Iegth*hei  Olt

Noise equivalent  NRCS(di)

 Japan

 NIITI  ASI/A

 JI  RS-  1

 Tane2ashima  Space  Center,Kat!oshimaJapan

 Februan  11  1992

 2 scars

 Octuhcr 12,1998

 TN  DC

 Altitude

 Inclination

Period

Recurrent  x‘riod

Local time at  Deseendim node

 Operation time r orbit  (min)

 Dow. n-link data  rate(N113 sec)

 Sun  synchronous sub-recurrent orbit

 568km

 97.7dee.

 96min.

 s

 .\.\1.10:30  11

 

.00

20

 30('2)

 Digital

 75km

18m

 18m

 3.4

 35./deo.

 39de2.

 1275\111z(1_,  band)

HH

 flat

 11.9*2.4

-14 .5
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Table 2.3 Main characteristics of ERS- 1/2 SAR.

 Countn

 A  zenc)

 Snacecralt

 1.aurich date

End date

Orbit

Swath width

 Range  resolution

 A  7IM  uth  resolLISIOn

 Incidence  angle

Observation  frc.  Ilene

 Polarization

Noise equivalent NRCS(dB)

Euro

ESA

 ERS-1/2

 16  July 1991 and  2(1  April 1995

31  August 1996 and the resent

 TN oe

Altitude

Inclination

Recurrent  riod

Local time at Descending nod

 Sun synchronous sub-recurrent orbit

780 km

 98  5deg

3,35,176 days

 A.M  10:30-11:00

1(K) km

26 m

28  in

23  deg.

5.7  GI-17(  C-band)

 \iv

 -24
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Table 2.4 Main characteristics of ADEOS/NSCAT and QuikSCAT/SeaWinds.

Launch date

 Organaization

Satellite

Mission term

Orbit

 Freauenc

Swath  width(km)

 Resolution(km)

Scan Characteristic

Product

 NSCAT

August 17, 1996-June 
    30, 1997

NASA

ADEOS

August 17, 1996-June 
 30, 1997

near-polar  Sun-

synchronous orbit

 Ku-band( 13.995  GHz)

600*2

50, 25

two sided, double 
    swath

NSCAT 25km SWV

SeaWinds

June  19,  1999-

NASA

Quikscat

June 19,  1999-

near-polar Sun-synchronous 

        orbit

 Ku-band(13.4 GHz)

1800

25

a rotating dish antenna with 

two spot beams that sweep in 
     a circular  pattern.

QuikSCAT Science Data 
 Procucts  ( Level  2B  )
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 Table  2.5 Main characteristics of  Topex/Poseidon and ERS-2 Radar Altimeter.

Launch date

 Organaization

Satellite

Sensors

 Freouencv

Height  (km)

 Inclination  (deg.)

Re eat  cycle( day)

Tonex/Poseidon

 10  August 1992

NASA/CNES

 Tonex/Poseidon

 NRA, SSALT. TMR, 
LRA, Doris, GPSDR

Ku- and C-band (13.6 
and 5.3  GHz)!Topexl, 

  Ku-  band( 13.65 
 GHz)I Poseidon I

1,336

66.039

9.9156

ERS-2 Radar Altimeter

 20  April  1995

ESA

ERS-2

Laser, PRARE

 Ku-band( 13.4  GHz)

780

98.5

3,35
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21002, 21004, and  22001), indicated with closed circles.
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3 Wind retrieval using L-band SAR of JERS-1 and its 

  validation in the coastal seas 

3.1 Introduction 

 Retrieval of sea surface wind speed from the SAR images has been a focus of study in 

the SAR research commumity for the past ten years. Contrary to many applications of 

C-band SAR wind retrieval from  ERS-1/2 and RADARSAT, however,  JERS-1 SAR data 

has not been used for the wind retrieval due to a lack of L-band model function. 

 Characteristics of L-band backscattering at the sea surface are not well understood for 

wide ranges of the parameters, and the relationship between L-band backscattering and 

wind vector is not represented as an L-band GMF. Several studies suggested that NRCS 

of L-band depends on both the wind speed and the wind direction [Guinard et al., 1971; 

Weissman  et al., 1979; Keller et al., 1990]. Researches using the SEASAT SAR pointed 

out that an L-band SAR image could be transferred into a high-resolution wind map using 

the relationship between NRCS and the wind vector [Thompson et al., 1981; Gerling, 

1986]. These studies are summarized in Table 3.1. 

 Moreover, JERS-1 SAR operation troubles prevent the applications of its ocean images. 

 JERS-1 SAR has been operated with reduced transmitted power (325 W nominal] instead 

of the normal transmitted power (1300 W nominal) since September 18, 1992 in order to 

cope with the degradation of the azimuth antenna pattern. Hence, the sensitivity is 6 dB 

smaller than the original design, which has degraded the noise equivalent sigma-0 to 
-14.5 dB. Due to the lower  S/N ratio, it is possible that the range of fluctuation of speckle 

noise exceeds the lower signal level. In terms of the sensor calibration, it is difficult to 

subtract the system noise from SAR data to prevent the received power from seeming 

negative. Because the noise influence on the SAR image of ocean is not negligible, we 

cannot consider the digital pixel values of the whole image as calibrated backscatter. 

 This also brings about ambiguity problem in the coastal zones  ofJERS-1 SAR images. 

It is known that there exist excessive ambiguities in JERS-1 SAR images. However, little 

attention has been given to the point and the qualitative evaluations of excessive 

ambiguities on JERS-1 SAR images are not understood exactly. So, the effects of 

excessive ambiguities on wind retrieval in coastal zones are also unknown. 

 In this chapter, we propose an L-band model function for wind retrieval from the 

JERS-1 SAR images, and validated the retrived surface winds. In Section 3.2, we develop 

the L-band geophysical model function using the  JERS-1 SAR images in the open oceans.
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In Section 3.3, we show evaluation of the JERS-1 SAR images and the retrieved wind 

speeds in the coastal zones. Discussion is devoted in Section 3.4. Summary is given in 

Section 3.5. 

3.2 An L-band geophysical model function for SAR wind 

retrieval using JERS-1 SAR 

3.2.1 Remarkable approaches 

  In order to investigate L-band backscattering characteristics,  JERS-1 SAR, NSCAT on 

board ADEOS-1 and in situ observations from the moored buoys  of  JMA (see Figure 2.1) 

are used. Surface wind vectors of the NSCAT and the JMA buoys are used as sea truth 

data. A unique point of the study is usage of the NSCAT vector winds for characterization 

of the  JERS-1 SAR signals. Both ADEOS and JERS-1 had sun-synchronous orbits, 

whose orbital factors are close to each other. Moreover the local times at descending node 

of the two satellites are around 10:30 a.m. Therefore, if the observation swath of NSCAT 

completely or partially contain that of  JERS-1 SAR and the observation times are close, 

many series of coincident and collocated observations along the swath path are obtained. 

In such a case, temporal difference between observations by two sensors is less than 30 

min. 

 We collected 2288 scenes of its observations, which cover the seas around Japan, i.e. 

the Japan Sea, the East China Sea and the northwestern North Pacific Ocean. They are 

made up of 2101 scenes with corresponding the NSCAT observations and 187 with 

corresponding JMA buoy observations. Figure 3.1 shows coverage of  JERS-1 SAR 

observations utilized in this study. Most of the JERS-1 images used in the study captured 

the area of the open ocean, and all the match-ups are generated in offshore regions 

because the corresponding NSCAT wind vectors can not be retrieved in the near-shore 

seas. Therefore, influence of the coastal seas on the radar backscattering, such as effects 

of depth fluctuations, currents, slicks and fetch on the surface waves, may not be serious. 

Raw SAR data is processed by the Sigma SAR Processor [Shimada, 1999] to generate 

slant-range images for the analysis of the present study. 

3.2.2 System noise of JERS-1 SAR 

 Because it is quite difficult to derive absolutely calibrated NRCS of the ocean from the 

original JERS-1 SAR data due to the system noise, we carried out a relative calibration of 

the  JERS-1 SAR signals for wind retrieval. 

 The slant-range image  ofJERS-1 SAR originally has 5888 pixels in the range direction

24



and 5120 pixels in the azimuth direction. We cut off the left and bottom edges of no-signal 

portions of the image and used 5388 x 4200 pixel sized image. It is known that  JERS-1 

SAR system noise exists in the range direction and is higher in the either side of center 

and lower in the center of the scene [SED, 1995]. It suggests that the range-dependent 

noise remains after SAR calibration. Figure 3.2 (a) shows the azimuth-averaged profiles 

made from twenty SAR images. They are different from each other because the pixel 

value of image is the sum of the signal from the ocean and the system noise. In order to 

examine the noise properties, we sampled 200 scenes of  JERS-1 SAR and regress the 

azimuth-averaged profiles with parabolic function based on the assumption that the 

system noise is linearly added to the ocean signals. Figure 3.2 (b) shows one example of 

the profile and the regression curve. They used the regression equation as 

 DN  =  a(x  —  b)2  +c   (3.1) 
 where DN is a digital value of 16 bit image, and x is range with x = 0 corresponding 

to the far range. The regression coefficients are  a, b and  c  . Fig. 3.3 (a) shows all profiles, 

whose vertexes are shifted to the same point of (2500,0). Figure 3.3 (b) shows the profile 

produced by averaging all the profiles in Figure 3.3 (a). Bars on the averaged profile 

indicate the standard deviations. 

 As can be seen in Figure 3.3 (a), most of the profiles are similar in shape. Actually, the 

standard deviation of coefficient a is very small (0.08 x  10-4, i.e. 6% of the mean value 

of 1.32 x  10  4  ). It can be concluded that the parabolic shape of profiles showing the 

 JERS-1 SAR system noise is common to all the  JERS-1 SAR images and that the system 

noise is a function of range. It is true that some profiles deviate from the regression curve, 

but this results from the natural phenomena captured by each scene. In Figure 3.3 (b), the 

variance is large on either side of center range because a small difference in coefficient a 

enhances the difference at both sides of the profiles. 

 The axis position of the parabolic function specified by the coefficient b distributes 

around 3270th line. The coefficient b has a standard deviation of about 290. They 

conclude that the location of axis is different scene by scene. Therefore, in order to 

express the system noise as a function of range, they need to compute the axis position for 

each scene through the regression. The reasons of the axis variations may be uncertainty 

of the JERS-1 orbital parameters and wind gradients in a scene. 

 We consider that the value of coefficient c depends on the wind speed, the wind 

direction and the other ocean parameters.
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  On the basis of above results, we express the system noise as a function of range. The 

value of coefficient a is set as the mean value 1.32 x  , which is  defined as  c/o. The 

axis position (b) of the parabolic function is estimated for each scene. We set a 

provisional value of  co at this moment. The  co value will be determined in the following 

subsection. Using these coefficients, the system noise (DNnoise) is expressed as 

 DNnoise =  as  (x  —  y  +co,  (3.2) 

 where  bi is the axis location of each scene. By subtracting the estimated system noise 

from all range lines of the SAR images, we reproduce the relatively calibrated images. 

Hereafter these modified digital values instead of the absolutely calibrated NRCS is used 

and it is refered to the square of the digital value as sigma-0  (o-.„). The speckle  noise is 

reduced enough for digital pixel values to always be positive after removing the system 

noise. 

3.2.3 Match-up data 

 In this subsection, we describe the procedure to make a match-up data set, which is 

composed of coincident and collocated observation variables. They are the JERS-1 SAR 

sigam-0 and incidence angle, and the wind speed  ( U) and the wind direction  ( 0) from 

 NSCAT and the JMA buoys. The wind direction is defined as the azimuth angle between 

the radar-looking direction and the surface wind direcion. In this study, in order to reduce 

the speckle noise we define the SAR  sigma-0 as a mean value of a 10-km ground square 

whose center is located at a geodetic position of wind vector cell of NSCAT or a buoy. In 

fact,  sigma-0 averaged over an area larger than 10-km square varies little from a 10-km 

average.  The  10-km distance corresponds to 500-700 pixels in both the range and azimuth 

directions in the slant range image. 

 Figure 3.4 shows a scheme of match-up data generation. First, we consider the case of 

NSCAT. As described above, many mutch-ups are obtained when swaths of NSCAT and 

JERS-1 SAR overlap. An example of the overlapping swaths is shown in Figure 3.5. One 

vector case among the wind vectors displayed in Figure 3.4 corresponds the use of JMA 

buoy data. As a result, we have made 7577 match-ups, which are the sum of 7532 

match-ups with NSCAT winds and 45 with JMA buoy winds. Figure 3.6 shows the 

histograms of match-ups for the wind speed (a) and direction (b). 

 Using the match-up data set, we determine the consistent level  of  JERS-1 SAR system 

noise, i.e.  co in (3.2). In order to produce a reasonable L-band GMF, its continuity at 0
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 m/s has to be guaranteed. First, we make a match-up data set using the provisional value 

 co = 0. Second, the match-ups are classified into bins  of  1  m/s wind speed and  10° wind 

direction, and the outliers, which are  defined as points that are more than twice of the 

standard deviation from the mean value of each bin, are discarded. Thus, the minimum 

value among wind speed bins of 0-1  m/s is 2250000 in sigma-0, which corresponds to 

1500 of 16 bit digital values. We redefine  co as that value, i.e.  co  =1500. By using this 

value, sigma-0 is also redefined in order that sigma-0 is 0 when wind speed is 0  m/s. Use 

of this value produces positive sigma-0 from the oceans and does not cause any problems 

in the following analyses and results. 

 In order to estimate the coefficients of the L-band GMF, a simple regression (no 

regression weights) is used in the analysis described in the next section. This is based on 

the assumption that  NSCAT and buoy data are error-free sea truth. 

3.2.4 Characteristics of L-band backscattering at the sea 

surface and L-band GMF 

A. Incidence angle dependence 

 The dependence of sigma-0 on incidence angle is examined for all the bins of wind 

speed and wind direction. The range of incidence angle varies from 37.0° to 42.0° 

within the SAR swath. Figure 3.7 (a), (c) and (e) show the examples of the incidence 

angle dependence for all the bin of wind direction and the bins of wind speed, 3-4  m/s, 7-8 

 m/s, and 12-13  m/s,  respectively. Regression lines are also superimposed in the figures. 

The bins containing less than 10 match-ups are excluded. The level of each 

wind-direction bin is offset for display of all the calculated regression lines in the figures. 

They have no significant inclination for the range of incidence angle. Furthermore, all the 

regression lines shown in the Figure 3.7 (a), (c), and (e) are normalized by the sigma-0 at 

39.5°, and then they are averaged over the incidence angle for each wind-speed bin. The 

resultant profiles with bars indicating standard deviation are shown in Figure 3.7 (b), (d) 

and  (f), respectively. There is a slight inclination of the mean profile for the wind-speed 

bin of 12-13  m/s (Figure 3.7  (0), but it should be noted that only six bins are available 

because of the small number of data for high wind speeds. They lie around one, which 

also indicates no incidence angle dependence for the range of incidence angle 

 (  37.0°—  42.0°  ). This is confirmed for the other bins, which are not shown here. Thus the 

dependence of incidence angle in the GMF is not considered in the follwing analyses.
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B. Wind speed dependence 

 The dependence of sigma-0 on wind speed is investigaed using the match-ups in the 

wind direction bins. Figure 3.8 shows plots of  sigma-0 versus the wind speed for wind 

directions of  0°,50°,90°,140° and  180°, which are center angles of the relative wind 

directions. Since the wind-speed dependences for the  180° to 360° bins are symmetric to 

those of 0° to  180°  , we show the plots only for half of the wind-direction bins. 

Regression curves are also indicated in the figures. They are defined as a power law 

formula, which relates  sigma-0 with the surface wind speed  [e.g. see Wentz,  1984]: 

  a, Ufi .  (3.3) 

 The coefficient  10 is called "wind speed exponent", which indicates the sensitivity of 

 sigma-0 to the wind-speed increase. The coefficients a and ,Q are determined through 

regression of the equation (3.3) against the match-up points. 

 In each wind direction bin,  sigma-0 increases with the wind speed. The coefficient  # is 

a variable of the wind direction. For the wind direction of  0° (upwind),  sigma-0 has the 

largest increasing rate against the wind speed. The increasing rate  der-eases with increase 

and the minimum increasing rate is seen at 0 = 90°(crosswind), where  sigma-0 has a 

tendency of saturation at the high wind speeds.  Sigma-0 increases rather linearly with the 

wind speed for the wind direction of 180° (downwind). The wind speed exponents are 

2.25, 0.50, and 1.18 at upwind, crosswind, and downwind, respectively. 

C. Wind direction dependence 

 The dependence of sigma-0 on the wind speed is investigaed for all the wind direction 

bins. Figure 3.9 shows plots of  sigma-0 versus the wind direction for the wind speeds 

from 0-1  m/s to 19-20  m/s every other bin. In order to express the dependence of wind 

direction, second-order cosine harmonics formulas of the wind direction have been used 

by several researchers [e.g. Wentz, 1984]. In the present case, difference between the 

wind-speed dependences for upwind and downwind is large when the wind speed 

exceeds 10 m/s as seen in the previous section. Therefore, conventional second-order 

harmonics formulas cannot express this deformed wind-direction dependence. In other 

words, it can not express the positions of the minimums at 90° and 270° and the large 

upwind/downwind asymmetry at the same time. For regression analyses, we adopt a 

 third-order harmonic formula: 

 oT,„(u,  0)  =  a  (U)+  a,(U)cos  +  a  ,  (U)cos2  +  a1(U)cos3 (3 .4)
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   =  0,1,2,3) is the regression coefficients. 

 The signal level for the whole wind direction increases with wind speed. For wind 

speed below 7  m/s (Figure 3.9 (a)-(c)), it can be concluded that the significant 

dependence on the wind direction does not exist, though the crosswind peak is 

systematically higher than the upwind and downwind peak. However, for the wind speed 

of 7 - 8  m/s, the upwind peak starts to dominate. For the wind speed of 9 -10  m/s, the 

downwind peak also dominates following the upwind peak. When the wind speed 

becomes 11-14  m/s, the differences among the upwind peak and the downwind peak and 

the crosswind troughs become clearer, which continue toward higher wind speed. 

 For the wind-speed range of 15 - 20  m/s, because of a small number of the match-ups 

and their non-uniform distribution in the wind direction of each wind-speed bin, the 

regression analyses are less reliable. Therefore, in order to estimate better regression 

formula, we decide to extrapolate, toward the higher wind-speed range, the relation of 

wind speed dependence at  0  =  0°,50°,90°, 140° and 180° shown in Figure 3.8. Then, 

using the extrapolated values at these wind directions, the coefficients of harmonic 

formula are computed (the solid lines in Figure 3.9 (h)-(j)). The determined curves for the 

high wind speeds do not conflict with the match-up plots in the  figures. 

D. L-band GMF 

 We develop an L-band GMF on the basis of the regression coefficients determined in 

the previous subsections, (Figure 3.8 and Figure 3.9). Considering no dependence on 

incidence angle in its range of present study (  37.0°  —  42.0°  ), the model derivation is then 

reduced to determining the wind speed dependence of the regression coefficients in (3.3). 

Figure 3.10 shows the coefficients of the harmonic formulas (3.4) versus the wind speed. 

In Figure 3.10 (a), it is shown that the relationship between the  coefficient  ac, and the 

wind speed changes drastically at around U = 8  m/s. Figure 3.10 (b) shows the 

relationship in a logarithmic diagram. We represent the relationship by these lines as 

 logioac, =  a+  bloglo  U , which are connected at U  =  8.5  m/s. On the basis  of  the above, the 

 coefficient  as is expressed by 

 10bi  U62(U<  8.5) 
ao h h (3.5) 

     10U4  +  b,(U  8.5) 

where the coefficient b5 works to connect these at U  =  8.5  m/s. 

 Figure 3.10 (c), (d) and (e) indicate behaviors of the coefficients  al ,  a, and  a3, 

respectively. We consider that the continuity of GMF at U  = 0  m/s is fulfilled and that 
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the wind-direction dependence for low wind speeds is not significant, and represent their 

behaviors by the following formulas; 

 al  =  bo(b7u  —1) 
                                                    (3.6) 

 a, = b8U2 + b9U and (3.7) 

a3 = b10 (eb"ti — 1) 
            .(3.8) 

  An L-band GMF is formulated by using the model parameters determined above. Its 

3-dimensional view is shown in Figure 3.11. From the figure, we can see the sigma-0 

dependence on the wind speed and the wind direction. Model formulation and its 

coefficients are summarized in the Appendix 2. 

E. SAR wind retrieval using JERS-1 SAR 

 Figure 3.12 shows a comparison of the wind speed derived from  JERS-1 SAR using the 

L-band GMF with NSCAT and JMA buoy wind direction and NSCAT and JMA buoy 

wind speeds. The root mean square error (RMSE) is 2.09 m/s, and the bias is negligible 

(-0.0006  m/s). The SAR-derived wind speeds generally agree well with the NSCAT and 

JMA buoy wind speeds. Though the points scatter in a wide range for the wind speeds of 

5-10  m/s, their distribution ranges become smaller for the wind speeds higher and lower 

than these. For wind speed below 2  m/s, this GMF slightly underestimates them 

compared with those of NSCAT and the JMA buoys. It should be noted that NSCAT 

winds are noisy below 3  m/s. Some plots exhibit large scatter around the 20  m/s of 

SAR-derived wind speed. It is found that most of large errors are the data around 

crosswind directions. 

 Now we apply the L-band GMF to the  JERS-1 SAR image to generate a high-spatial 

resolution wind-speed map. Figure 3.13 (a) shows one image obtained on May 18, 1997 

in the Pacific. First, we subtract the estimated SAR system noise form the SAR data. 

Second, to reduce the speckle noise and image volume, the SAR image is averaged by 

8 x 8 pixels, resulting in 736 x 640 sized pixels. Finally, they apply the L-band GMF to 

sigma-0 of the SAR image to convert it into the wind speed (Figure 3.13 (b)). The wind 

directions in the image are given by the corresponding NSCAT wind vectors, which are 

superimposed by arrows and wind-speed values. The SAR-derived wind speed is 

displayed by gray tones with the scales of wind speed. They agree well with the  NSCAT 

wind speed at the coincident points within the RMSE range. Small-scale patterns in the
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wind-speed field are visible in the SAR image of 75-km square, which are not captured by 

NSCAT and probably related to mesoscale wind features. The range dependent pattern 

associated with the SAR system noise is not seen, which suggests that the ocean wind 

signals are successfully extracted through the present methodology. 

3.3 Evaluation of JERS-1 SAR images from wind retrieval 

point of view 

3.3.1 Excessive ambiguity of JERS-1 SAR 

  Here one must notice the wording of "excessive ambiguity". When the data sequence 

from a radar is sampled, the presence of ambiguities must be considered. Ambiguities are 

unwanted contributions to the image. They are always present due to pulse repetition 

from the radar and the resulting aliasing, which are inherent to radar systems. In most 

SARs under the present circumstances, the azimuth and range ambiguities should not be a 

source of contamination of the signal of interest, by design. However,  JERS-1 SAR is an 

exception. For the ambiguities which originate from bright targets such as land, the 

contributions of them to the signals from coastal seas are so significant that they can 

contaminate the signal of interest. In such cases, ambiguities can not be neglected. 

Therefore, we use the term "excessive ambiguities" to refer to the significant ambiguities 

of JERS-1 SAR in order to differentiate them from ambiguities in an ordinary sense. It is 

verified in the sessions above that the ambiguities are not significant in open oceans 

because the results of wind retrieval are good. Because the intensity of backscattering 

from sea surface is originally weak compared with that from land, the resulting 

ambiguities are not significant. Note that Sigma-SAR processor uses 70 % of the 

bandwidth, which is centered at the doppler frequency, mainly for improving the focusing 

and partially for reducing the azimuth ambiguity. 

 Figure 3.14 shows the schemes of both range and azimuth ambiguities in the Sagami 

Bay. Ambiguities come from outside of the intended imaging target and are folded into 

the backscattering intensity of the target. Range ambiguities [Henderson and Lewis, 

1998] appear to arise from scatterers at either side of about 90 km [Shimada, 1994] from 

the JERS-1 SAR imaging point (Figure 2 (a)). On the other hand, azimuth ambiguities 

[Henderson and Lewis, 1998] are due to reflections that are captured by the edges or 

sidelobes of the antennas along-track illumination pattern, and appear to repeat image 

elements in the scene at multiples of 17 km in the along-track direction of the swath. The 

first-order (nearest) ambiguities generally are the strongest (Figure 14 (b)). Their
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intensities decrease with the distance from the true imaging target [Shimada, 1994]. 

  Figure 3.15 is an example of JERS-1 SAR image of Sagami Bay. We can see the 

intense azimuth ambiguity in the center part of the scene. The excessive azimuth 

ambiguitiy originated from bright targets such as cities are often recognized in the coastal 

scenes  of  JERS-1 SAR. 

  As a preliminary analysis, we compared ERS-1 SAR-derived wind-speeds at the 

Hiratsuka tower and the in situ wind speed measurements at the Hiratsuka tower (Figure 

2.2). Wind speeds are retrieved using the CMOD  IFR2 scatterometer wind model [Quifen 

et al., 1998] and in situ wind direction. Figure 3.16 shows the results, which are indicated 

by different symbols for onshore/offshore wind cases. In the onshore cases, winds are 

blowing from southwest and southeast, and in the offshore cases the other directions. The 

resulting RMSE is 2.13 m/s and bias is —0.48  m/s. In conclusion, though retrieved wind 

are somewhat underestimated, little dependence on the onshore/offshore wind direction is 

seen, and the wind-speed is generally well retrieved even at the near coast in the Sagami 

Bay. 

3.3.2 Method 

 In order to investigate the JERS-1 SAR characteristics during the analyzed period, we 

sampled sigma-0 values from the 110 scenes of JERS-1  SAR at the Hiratsuka tower. 

Figure 3.17 shows a time series of the differences between  sigma-0 observed at the 

Hiratsuka tower and estimated by the L-band model function with in situ wind speed and 

direction. During the term of  JERS-1 initial mission check  (Feb.-Aug.1992), the 

differences of  sigma-0 are fluctuating. Since the start of JERS-1 operational mode at the 

end of Sep. 1992, the differences of sigma-0 are steady and deviate around a constant 

level (2.2 x  107). The standard deviation is 1.8 x  106 and the relative root mean square 

error is 0.08. In the present study,  JERS-1 SAR images obtained during the operational 

mode period are used. 

 In order to estimate excessive ambiguities and investigate  JERS-1 SAR-derived 

wind-speed, we focus on simple cases in which the wind blows from north in the Sagami 

Bay. The range of wind direction observed at the Hiratsuka tower is within  340°  — 20° 

(See Figure 3.18). It is assumed that the wind direction is uniform over the profile line. 

The method we employed is as follows. First, we derive the profiles of  sigma-0 along the 

assumed wind direction from  JERS-1 SAR images. As the same way, NRCS profiles are 

derived from  ERS-1 SAR images. Note that NRCS refers to the absolutely calibrated one.
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Next, wind speed profiles are derived from the  sigma-0 and NRCS profiles using the L-

and C-band model functions. The wind speeds derived from  JERS-1 SAR should be 

overestimated due to excessive ambiguities. Then, a wind speed profile derived from 

 ERS-1 SAR is normalized by its mean wind speed. We derive common feature between 

them and modeled it by a simple formula. Finally, using this formula and a wind speed of 

Hiratsuka tower, the expected variation of wind speed with offshore distance at the 

 JERS-1 SAR observation is derived. We convert the wind speed profile into that of 

sigma-0. The difference between the observed and the estimated  sigma-0 profiles are 

derived as the excessive ambiguity. 

  The method is concretely described below. Figure 3.19 (a) shows the variation of wind 

speed with offshore distance derived from ERS-1 SAR. Each profile is normalized by its 

mean wind speed. The start point is the location of Hiratsuka tower. It is clearly shown 

that wind speed generally increases with the distance from shore and that all the profiles 

agree well with each other. Figure 3.19 (b) shows the mean of all the profiles, its standard 

deviation and the regression line. The formulation of the regression is defind as; 

 Ul  U  =  a  In  (b(x  +  c)) 
                                                    (3.9) 

where a, b, c are coefficients, x is the offshore distance in km and U is mean wind speed. 

The values of coefficients are 0.2954, 0.7933 and 5.3476, respectively. The standard 

deviation is relatively small. It can be concluded that there exists a common feature of 

wind speed growth with offshore distance in the bay and that the empirically derived 

profile of wind speed, which is formulated by eq. (2), represents it well. 

3.3.3 Comparison between ERS-1 and JERS-1 SAR-derived 

wind speeds and tower wind speeds 

 Figure 3.20 shows the comparison of SAR-derived wind speeds at the distances  of  (a) 

20 km, (b) 32 km, (c) 44 km and (d) 55 km against the coincident tower wind speeds for 

both  ERS-1 SAR and  JERS-1 SAR. The broken line is the regression line for all the plots. 

Because the data were not acquired at the same time for  ERS-1 and  JERS-1 SAR, we can 

not directly compare  ERS-1 and  JERS-1 SAR-derived wind speeds. So, note the relations 

between SAR-derived wind speeds and tower observed wind speeds for  ERS-1 and 

JERS-1. At the distance of 20 km, almost all the wind speeds derived from  JERS-1 SAR 

are larger than 18  m/s, which is due to the excessive ambiguity in the SAR image. At the 

distance of 32 and 44 km, the  JERS-1 SAR-derived wind speeds are much larger than in 

situ wind speeds. In the case of 55 km distance from shore, both JERS-1 and ERS
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SAR-deived the wind speeds scatter around the regression line. It is shown that, at the 

distance of 55 km, the wind speeds derived from  ERS-1 SAR and  JERS-1 SAR have the 

same relationship against the tower wind speeds. The relationship is considered as the 

growth of wind speed with offshore distance. Wind speeds at the distance of 55 km are 

about twice larger than those at the tower (located 1 km off shore), which is consistent 

with the normalized profile of wind speed shown in Figure 3.19. 

  Using eq. (3.9), wind speeds at the distance of 1 km are estimated from the JERS-1 

SAR-derived wind speeds at the distance of 55 km. Figure 3.21 shows the comparison 

between them and the Hiratsuka tower wind speeds. Profiles which do not pass over the 

 Ooshima are used. The estimated wind speeds agree well with the in situ observations, 

and RMSE is 2.12 m/s and bias is 0.51  m/s. This result suggests that the normalized 

profile of wind speed represents the growth of wind speed with offshore distance even in 

the cases  of  JERS-1 SAR. 

3.3.4 Estimate of excessive ambiguity 

 On the basis of above results, the excessive ambiguity is estimated. Solid line in Figure 

3.22 (a) is an example of a profile of the  JERS-1 SAR  sigma-0. Solid line in Figure 3.22 

(b) is the correoponding profile of wind speed by the L-band model function. Using eq. 

(3.9) and the  JERS-1 SAR-deirived wind speed at the distance of 55 km, the expected 

profile of wind speed is derived. The corresponding profile of sigma-0, which is derived 

by the L-band model function, is shown by the broken line in Figure 3.22 (a). Thus, the 

difference between SAR-observed and estimated profiles of  sigma-0 is obtained as the 

excessive ambiguity. These calculations are made for the selected  JERS-1 SAR images. 

In Figure 3.22 (c), mean profile and the standard deviations of the resulting profiles are 

shown. It is shown that, within 20 km of offshore distance, the estimated excessive 

ambiguity is especially high. In the farther distances, excessive ambiguity is little but 

systematically positive value within 50 km from the coast. 

3.4 Discussion 

3.4.1 Relative calibration 

 The calibration factor to convert the  JERS-1 SAR 16-bit digital output from the Sigma 

SAR Processor to the calibrated NRCS has been proposed. The calibration factor was 

calculated as a comparative study NASDA and the ASF (Alaska SAR Facility), and done 

by Dr. B. Chapman of NASA/JPL. While absolutely calibrated NRCS can be derived for 

bright targets, NRCS derived from dark targets like ocean goes with the errors due to the
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system noise. We consider that the relative calibration  of  JERS-1 SAR  sigma-0 conducted 

in the present study is a practical way for the SAR wind retrieval using  JERS-1 SAR . 

While the incidence angle dependence of  sigma-0 is possibly affected by the method of 

the noise removal, the derived  sigma-0 has a distinct dependence of wind speed and 

direction, which can be considered as the representative relationship among  sigma-0 , 

wind speed and wind direction only for an incidence angle of about  40°. There are few 

studies comparable with the whole results of the present study. Unal et  al. (1991) contains 

the L-band backscattering characteristics at the sea surface. However, since the number of 

used data was small, they showed only a few features of relationships among the L-band 

backscatter, incidence angle, and ocean surface vector. The revealed features by Unal et al. 

(1991) are consistent with the results of the present study in the following  points; the 

wind exponent for the upwind, the upwind/downwind ratio and the upwind/crosswind 

ratio for wind speed of 10  m/s. Phased Array type L-band Synthetic Aperture Radar 

(PALSAR) onboard ALOS is planed to be launched in 2004. Since it has incidence angles 

ranging  8°  —  60° , new researches are necessary to clarify the incidence-angle 

characteristics and derive its GMF for wind-speed retrievals on the basis of present  study. 

It could also add value to other L-band microwave sensors such as the Soil Moisture and 

Ocean Salinity Mission (SMOS) and NASA Aquarius mission, which are to be flown 

around 2006 for sea surface salinity retrievals. 

3.4.2 Global validation 

  It is known that the satellite scattrometers using the C-band (ERS-1/2 AMI) and 

Ku-band  (ADEOS-1/NSCAT,  QuikSCAT/SeaWinds) have functioned well and provided 

global surface winds. The GMFs for the C-/Ku- bands are well validated globally. In 

contrast, the new L-band GMF presented here is validated only in the seas around Japan. 

The large number of JERS-1 SAR ocean scenes is only available within the coverage of 

its home receiving station. However, since the NSCAT surface winds used as the sea-truth 

data have been validated for the global oceans [e.g., see Ebuchi, 1997] and we collected 

many match-ups in wide parameter ranges of the surface wind, the new L-band GMF may 

be reasonably applicable for the global oceans. 

3.4.3 Comparison with C- and Ku-band model functions 

 The wind retrieval error is considered to be mainly relating to two problems. One is the 

wind direction problem. Though, in order to retrieve wind speed with high-spatial 

resolution, we also need high spatial-resolution wind direction [Portabella et al., 2002], it
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is very difficult to obtain reliable high-resolution in situ surface wind data. However , for 

the L-band wind retrieval at low wind speeds, lack of high-resolution wind direction have 

less influence on the wind retrieval because the dependence of wind direction is little . For 

cases of high wind speeds, it can be expected that the mean wind direction does not 

change rapidly at such a small scale that SAR can detect. The next problem is the 

small-scale features, which can be observed by SARs; e.g., influnces of depth 

fluctuations, currents, slicks and fetch influence on the surface waves and radar 

backscattering. These appearances are enhanced in the coastal sea. In the present study, 

however, the influences of these features on the GMF examination may not be significant 

since all the match-ups are generated using the observations in the open oceans. 

3.4.4 Excessive ambiguities 

  We estimated the JERS-1 SAR excessive ambiguities as the differences between the 

observed  sigma-0 and the estimated  sigma-0 by the growth of wind speeds with offshore 

distance. It is reasonable to consider the diferrence of  sigma-0 as the excessive 

ambiguities because the excessive ambiguities are prominent only in the coastal region. 

The errors due to wind retrieval and the generalized formula of wind speed growth cause 

the estimates of excessive ambiguity. 

 It is reasonable to conclude that excessive ambiguities contaminate the estimated wind 

speeds from the coastline up to at least 50 km, though the excessive ambiguities become 

weak with the offshore distance. Within 20 km of distance, excessive ambiguitiy is 

especially high. It is considered as the first azimuth ambiguity. It is reported in Shimada 

 [1994] that the distance at which the first azimuth ambiguity appears is 17 km away. 

 Wind speeds are overestimated within 50 km from the coast. In the  JERS-1 SAR image, 

it is suggested that not only the first azimuth ambiguity, but also higher-order ambiguities 

and range ambiguity, may have a significant impact on wind retrieval. The relative 

contributions of the range ambiguity and the higher-order azimuth ambiguites cannot be 

determined. 

 We consider the ratio of excessive ambiguity to wind signal. Signal to  Ambiguity (SA) 

ratio is  defined by Shimada et al.  [1994] as this; 

        (12 —/2 
SA = 10 loamb2iguityocean  

    (-Ino2cean  i (4.1)
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where  /a„,ingui,,,/,,,,,„ and indicate the 16 bit image intensity of ambiguity, ocean, and 

wind signal component, respectively. Here, we simply consider the ratio of the excessive 

ambiguity to the wind signal. 

  It is found that,  sigma-0 corresponding to wind signal component varies from 0 to 

4.0  x106 for wind speeds of 0-20  m/s from the L-band model function . On the other hand, 

the first ambiguity is as large as 2.3  x106 at the distance of 5 km (Figure 3.22(c)). It can 

be concluded that the dynamic range of wind signal is as large as that of the first azimuth 

ambiguity. In other word, the first azimuth ambiguity due to urban reflections has 

intensities as large as sigma-0 corresponding to high wind speed more than 10  m/s . For 

example, the ambiguity intensity is 1.0 x  105 at the distance of 40 km even in the third 

azimuth ambiguity area (Figire 3.22(c)). If the wind speed is 10  m/s, sigma-0 is roughly 

1.0 x 106 for the all the wind directions according to the L-band model function. In such a 

case, the error, which is a ratio of ambiguity component to wind signal, can be 10 % in 

estimating  sigma-0. 

 It should be evident that wind speed retrieval from  JERS-1 SAR is difficult within 50 

km from the coast. When retrieving coastal wind speeds from  JERS-1 SAR, we must take 

into account excessive azimuth and range ambiguities, and should not use the estimated 

wind speeds in those areas. However, it is important in the present study that the 

excessive ambiguities in the ocean of  JERS-1 SAR images are qualitatively estimated. 

These results will be the basis for other ocean applications  of  JERS-1 SAR. 

 It may be worth mentioning, in passing, that wind signal can be occasionally derived in 

coastal zones. If the coast is parallel to the azimuth direction, the azmuth ambiguity that 

arises from coastal areas does not appear in the ocean and does not become a source of 

noise in estimating sigma-0. Moreover, range ambiguity is not significant compared to 

azimuth ambiguity. We can give an example of the east and west side of Tohoku area in 

Japan. If wind speeds are derived in such a case, wind speeds will have a relatively low 

constant bias.  If on the other hand, coastal land is covered by low-backscatter and 

uniformly distribution targets, wind signal can be derived even in the presence of the first 

azimuth ambiguity. The following is a good example. Radar backscatter  of  JERS-1 SAR 

and in situ wind measurements in the Lake Sinji, Japan are compared by Ichikawa et  al. 

[2002]. The lake is surrounded by mountains and the ambiguities should be folded into 

the backscattering intensity from the lake. But, the relationship between radar backscatter 

and wind vectors is consistent with the L-band model function proposed in the present
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study. 

3.4.5 Growth of wind speed with offshore distance 

  In the present study, we generalized the growth of wind speed with offshore distance 

for the northerly wind in the bay (eq. (3.9)). It is shown that the wind-speed growth 

profiles normalized by mean wind speed agree well and that ERS SAR wind retrieval is 

useful for capturing the growth of wind speed with distance from shore. In the study, wind 

direction in the bay is assumed to be uniform as in situ observations. But wind direction 

may not cause signigicant error of wind speed in the northerly wind cases because the 

normalized profiles agree well each other. 

 The growth of wind speed with offshore distance in the bay results from two factors. 

One is due to the evolution of marine internal atmospheric bondary layers. The 

aerodynamical roughness over the sea is usually much smaller than that over the land.  In 

the coastal region, the large roughness over the land disappears, and the new internal 

atmospheric boundary layer starts growing over the sea along the offshore distance. Such 

relaxation of the internal boundary layer causes the increase of wind speed with distance. 

The other is due to the effect of upstream mountainous terrain on the wind. Though the 

effect of the upwind terrain decreases with offshore distance, a northerly wind can be 

influenced by it. 

 We compare the variation of wind speed with offshore distance derived in the study to 

those of the previsous studies. Several studies investigated growth of wind speed using 

the air-borne systems, the altimeters and the scatterometers [Taylor and Lee, 1984; Smith 

and MacPherson, 1987; Dobson et al., 1989; Ebuchi et al.,1992; Ebuchi, 1999]. 

Comparisons between the variations of wind speed in the boundary layers over land/sea 

in the case of offshore wind are summarized by Ebuchi et al. [1992] as shown in  Figure 

3.23. The original figure is adopted from Dobson et al.  [1989). The relationship derived 

from  ERS-1 SAR in the present study is also shown in Figure 24. The difference of the 

heights of wind measurement may not affect the results very much. When the logarithmic 

wind profile is assumed, the ration of wind speeds at the two heights is proportional to the 

root of the drag coefficient [Ebuchi et al. 1992]. The drag coefficient may change with 

evolution of wind wave and the atmospheric boundary layer. However, the change of the 

drag coefficient can be considered to be small and does not affect the results. 

 The result in the present study is a continuous profile because it is derived from SAR. It 

has smaller values than those of the other studies within 30 km distance. This suggests
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that the roughness of upwind city is larger than expected and that coastal wind is 

influenced by upwind terrain. 

  More studies are required for the growth of wind speed within 100-km scale. It relates 

the evolution of internal atmospheric boundary layer and the coupling effects of wave and 

wind under this transiton region. For such studies, SAR is a very useful tool. 

3.5 Summary 

 We have developed a new L-band geophysical model function using the  JERS-1 SAR 

images. Then, retrieved wind speeds from  JERS-1 SAR in the coastal region are 

examined and excessive ambiguities of JERS-1 SAR are quantitatively estimated. The 

following results are obtained. 

  1) We estimated the SAR system noise, which has been a serious problem peculiar to 

the  JERS-1 SAR. It is found that the system noise has a feature common in all the SAR 

images and the azimuth-averaged profile of noise can be expressed as a parabolic 

function of range. By subtracting the estimated system noise from the SAR images, we 

extracted the relatively calibrated ocean signals. 

 2) We investigated the  sigma-0 dependence on the radar incidence angle, the wind 

speed, and the wind direction. Results of the present study indicated that dependence of 

 sigma-0 on the incidence angle is negligible for its range of  37.0°—  42.0°. Dependence of 

 sigma-0 on the wind speed can be well expressed by the conventional power law formula. 

For higher wind speeds, the upwind-downwind asymmetry becomes very larger. But, for 

wind speeds below  8  m/s, these features are not significant. 

 3) We produced a new L-band-HH GMF for wind retrieval from JERS-1 SAR using 

third-order cosine harmonics. It enables us to convert a  JERS-1 SAR image into a 

wind-speed map. The SAR-derived wind speed has a RMSE of 2.09  m/s with a negligible 

bias against the NSCAT wind speed comparison field. 

 4) Focusing on the cases where wind blows from shore in Sagami Bay, we investigate 

phenomena of wind-speed increase with offshore distance using  ERS-1 SAR-derived 

wind speeds. The relation between wind speed and offshore distance are well formulated. 

 5) The excessive ambiguity is estimated as the difference between  JERS-1 

SAR-observed  sigma-0 and the estimated  sigma-0 by applying the formulation of wind 

speed growth with offshore distance. As a result, the dynamic range of first azimuth 

ambiguity is as large as that of the wind-relating signal from the ocean surface. Moreover, 

higher order azimuth ambiguities and range ambiguity also may have a significant impact
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on near-shore wind retrieval.
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Figure  3.1 Map of coverage of  JERS-] SAR observations  utilited in this study 

and the  location  of JMA  buoys (WMO buoy  nos., 21002, 21004, and  220011.
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 Figure 3.2 (a)  Comparison  of range  profiles of  JERS-1 SAR  image, 
which  are averaged over azimuth direction. (b) A  profile averaged  over 
azimuth direction  of the slant range image (dotted line) and regression 

curve  of parabolic function (solid line).
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profile normalized  by mean wind speed (thick solid line) and its standard 
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 Figure  3.23 Comparison of the variation of wind speed derived from the 

previous studies and  the present  study. (black circle:  [Ebuchi et  al.,1992], 
square:  Smith/Macpherson Field Data [Smith and MacPherson , 1987], thin 
dotted line:  Smith/Macpherson Empirical Fit [Smith and MacPherson, 1987] , 
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and broken lines are the mean and the standard deviations obtained in the 

present  study) Original  figure is sited from [Dobson et  al.,1989] and [Ebuchi 
 et  al.,1992].
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4 Statistics of high-resolution coastal winds derived from 

  SAR 

4.1 Introduction 

  Results derived from the open ocean are not generally applicable to the coastal seas 

[Hsu,  1988]. One of the major factors is high variability of surface coastal winds. It is 

quite a contrast to winds over open ocean. Coastal winds are affected by thermal contrast 
between land and sea, orographic forcing, and changes in surface roughness (Chapter 1). 
Thus, wind changes its nature drastically in coasal zones. This offers an essential key to 

an understanding of atmospheric and oceanic phenomena in coastal zones. However, we 
have not fully grasped coastal winds because of a lack of wind observation systems with 

high-resolution sufficient to resolve coatal winds. 

  In this regard, SAR is an excellent candidate instrument for capturing coastal wind 

fields. SAR wind retrieval by geophysical model functions enables us to convert SAR 

images into the high-resolution surface wind speed maps [e.g., Scoon et al. 1996]. SAR 
has been verified to be especially feasible because of its high resolution. In fact, only 
SAR can resolve local variations of coastal wind fields with high spatial resolution. 
However, we have just individually illustrated coastal winds from case studies [e.g., 
Sandvik and Furevik, 2002]. 

  Therefore, it is worth understanding coastal winds resolved by SAR from statistical 

point of view. A considerable number of studies have been made on it to compose 
climatological charts of wind over both land and ocean [e.g. Pavia and O'Brien, 1986]. 
Recently,  scatterometer wind observations are more available and contribute to the 

global/regional wind climate studies in open seas. However, little attention has been 

given to the point of the coastal wind climatology or statistics and wind intergradation 
between land and open ocean. 

 In this study, we present statistics of high-resolution coastal winds derived from SAR. 
It is possible to characterize the results of the present study as definition of "coastal" from 

wind distribution point of view. In order to give statistical description of wind speeds, we 
use, as a simple measure, the surface wind speed probability distributions as a simple 

measure. In the following section, datasets used in the present study are listed. The 

statistical features of surface wind speed probability distributions are investigated in 

Section 4.3. Section 4.4 further illustrates sea surface wind variability. Discussion and 

summary are given in Sections 4.5 and 4.6, respectively.
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4.2 Surface wind datasets 

  We select the study area around Japan  (20°  —50°N,120°  —160°E, Figure 2.2 (a)). It 

covers the northwest Pacific Ocean, the Japan Sea, the East China Sea, the Sea of 

Okhotsk, and the Japanese archipelago. The Eurasia continent is checked off in the 

present study. The Japanese archipelago has long coastlines and the associated waterways, 

embayments, and estuaries. In addition, land and seas in the study area are under the same 

weather and climate systems. 

 We used the following surface wind observations in the area. They are summarized in 

Table 4.1. The surface winds monitored by the AMeDAS over the Japanese archipelago 

are used (Section 2.2.1). We use sea surface wind measurements from three JMA buoys 

(Section 2.2.2), a buoy in Mutsu Bay (Section 2.2.4), Hiratsuka Experimental Station 

(Section 2.2.3), QuikSCAT (Section 2.1.2), and ERS-1/2 SAR-derived winds. Figure 4.1 

shows distributions of the  ERS-1/2 SAR observation sites and the numbers of images. A 

total of 6, 567 scenes are used. Most of them cover the nearshore resions around Japan. 

There are no differences between the climatological monthly numbers of the SAR images 

(not shown). Wind-speed maps with  1x 1 km grid size are derived from the averaged 

SAR images by applying SAR wind retrieval using CMOD IFR2 model function [Quilfen 

et al.,  1998] and wind direction data from  NCEP/NCA reanalyses. It is assumued that 

wind direction is uniform over the sea in a SAR image. Figure 4.2 shows an example of a 

part of an original SAR image and the SAR-derived wind speed map. An examaple of 

wind speed distribution of the SAR-derived wind speed map is also shown in Figure 4.2 

(c).

4.3 Probability distributions of surface wind speed over land 

and sea 

4.3.1 The Weibull distribution and its parameter derivation 

 We classify probability distributions of wind speed over land and sea, and examine the 

representative features of the categorized groups. It has been shown that Weibull 

distributions give good fit to observed wind speed probability distributions [e.g. Justus et 

al., 1976]. Therefore, we classify wind speed probability distributions in a feature space 

of two parameters of Weibull distribution. 

 The Weibull probability density function (pdf) of a random variable x is expressed as 

below:
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The parameter 0 is a scale parameter with the same dimension as x. It is a measure of the 
mean of a set of x. The paramter y is the dimensionless shape parmeter. It is inversely 
related to the variance of a set of x. The two Weibull parameters are estimated from a 

 histgram of x through a maximum likelihood method. 

  In advance, except for SAR, we construct year-round climatological wind speed 
distributions from time-series wind observations of in situ datasets. For QuikSCAT, we 
obtain a set of wind speed acquired in grid cells with 0.25° x 0.25° in the study area. The 
datasets roughly correspond to 12 hourly time-series wind measurements at the grid cell. 
Then, we estimate pairs of two Weibull parameters from the wind speed distributions. 
Figure 4.3 shows an example of wind speed distribution from Hiratsuka tower wind 
measurements and the estimated Weibull distribution. 

 In order to compensate the lack of time-series wind measurements over the nearshore 
seas and to obtain a statistically significant view of the winds nearshore, we use the 
SAR-derived wind-speed dataset. They surely provide only spatial distributions of wind 

speed at a certain instant. But, we construct wind speed probability distributions from 
SAR-derived wind speeds based on the following concept. 

 The wind speed probability distribution reflect the representative wind speeds 
associated with slowly-varying synoptic weather systems, rather than turbulent with 
locally-stationary statistical properties. The winds near the coast are strongly influenced 
by the local thermo-dynamical effects. While the synoptic weather systems are common 
in the study area, the local effects on winds are quite different from region to region. 
However, we here consider extracting the representative characteristics of nearshore 
winds relative to the coastline by excluding the  reginal differences of wind variability. 
Furthermore, we presume that wind valiabilities perpendicular to the coastline is more 

predominant and representative than  alongshore wind valiabilities and regional 
difference. That is to say, we assume that coastal zones are commonly described using a 
unique  1D coordinate system with an axis perpendcular to the virtual straight coastline. 

 Based on the assumption mentioned above, we define virtual zones every 5-km from 
shore to offshore distance up to 100 km (20 zones in all). We construct a wind speed 
distribiton using all the SAR-derived wind speeds assigned to each zone according to the 
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offshore distance. Two Weibull parameters are estimated from the wind speed 

distributions. 

4.3.2 Data plot distribution in a feature space of two Weibull 

 parameters 

  Figure 4.4 shows data plot distribution in a feature space of two Weibull parameters . 

Plots indicate pairs of two Weibull parameters estimated from different wind datasets . 

Black solid contours indicate mode wind speeds of the wind speed distributions 

calculated from a pair of parameters. They helps us guess rough sketch of the pdf. 

  For AMeDAS, we can find a distinct cluster. The center is at 2.0 of the scale parameter 

and 1.5 of the shape parameter. Most plots have the scale paramter between 1.0 and 3.0 

 m/s and the shape parameter between 1.1 and 1.9. These parameters produce wind speed 

distribution with mode wind speed around 1.0  m/s. A small number of plots has higher 

values of both parameters. The plots of QuikSCAT also form a distinct cluster in spite of 

the large areal coverage. The scale paramters range from 6.5 to 11.5  m/s and the shape 

parameters range from 1.6 to 3.0. The mode wind speed of the distribution ranges from 

4.5 to 9.0  m/s. The plots  of  JMA buoys and a buoy in Mutsu Bay are located in a left lower 

part of the QuikSCAT cluster. A plot form HES is close to plots of AMeDAS. The SAR 

plots are located in an area different from the cluster areas of AMeDAS and QuickSCAT. 

They headed from a plot with the smallest shape parameter to the QuikSCAT cluster with 

offshore distance. 

4.3.3 Mahalanobis distance classifier 

 In order to give an indication of class (cluster) decision boundaries, we employ 

Mahalanobis distance (MD) classifier. It is a Euclidean distance normalized by the 

variance and covariance of the class and defined as: 

Mahalanobis distance =  (X—  Mcl:  )17-1(X  —  Mc) (4.2) 
where: 

 c is a particular class, 

X is the measurement vector of a candidate data plot, 

 M. is the mean vector of the parameters of class c, 

V is the covariance matrix of the parameters of class c, and 

T is transposition function. 

 Here we tentatively classify the plots in the Weibull parameter feature space into three 

clusters: Land cluster (AMeDAS plots), Open Ocean cluster (QuikSCAT plots and JMA
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buoy plots) and Coastal Sea cluster (plots of SAR, Hiratsuka Experiment Station and 

Mutsu buoy). In Figure 4.4, the dashed contours with different colors indicate the MDs 

from each cluster centers. All two clusters boarder on with the same value MD  iso  lines 

from outside  of  them each other. This means that the tentative classification is reasonable . 

Moreover, considering two contacts of Land and Coastal Sea clusters and Land and Open 

Ocean clusters, we can delimit the area over land and sea surface with a gray line. 

4.3.4 Typical wind speed distributions assigned to Land, Open 

Ocean, and Coastal Sea clusters 

  In Figure 4.5, we show typical wind-speed distributions using the mean Weibull 

parameters assigned to three clusters. The parameters correspond to the values at the 

centers of MD cotours. The Land distribution (Green) has high frequencies in lower wind 

speeds and quite low frequencies in the range higher than about 6  m/s . The Open Ocean 

distribution  (Buie) has high frequencies in the wind-speed range around 8  m/s and extend 

up to 20  m/s. The Coastal Sea distribution (orange) has the peak frequency at around 3 

 m/s though the peak value is lower than that of the Land one . It has frequencies in a wide 

wind-speed range up to 20  m/s as well as the Open Ocean distribution has. 

  In order to examine the transition of wind in the coastal zones, we reproduce wind 

speed distributions by mixing the typical wind speed distributions assigned to Land and 

Open Ocean at a given rate. The two distributions are shown in Figure 4.5. First , we 

generate random numbers from the two Weibull distributions, and mix them at given rates. 

Then, we estimate two Weibull parameters from the mixed distribution. They are shown 

by a pinck curve in Figure 4.6 together with mixing ratios. It is shown that the SAR plots 

are located close to the pink line, and that the the plots near the central part of the Coastal 

Sea cluster are reproduced by mixing of the typical Land and Open Ocean wind speed 

distributions at a ratio of 3 to 7. 

4.4 Statistics of spatial wind variability 

 We investigate the spatial valiability of wind speed using SAR-derived wind speed 

maps. The method is as follows. First, we divide each SAR-derived wind speed map into 

subregions. They are 10-km squares, which are chosen through traials as the wind speed 

distribution becomes close to Gaussian distribution. Then, we derive the offshore 

distance from the nearest coast to the center of each subregion. Standard deviation and 

skewness of wind speed in the subregions are caluculated. They are defiend as;
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where N is the number of samples ,  xi is wind speed, and  7 is mean wind speed. We 

tested several scales from 5 to 20  km but general tendencies are almost the same . We 

consider that these statistical parameters are representative of wind variability according 

to offshore distance. 

  Figure 4.7 (a) and (b) show frequency distributions of standard deviations in bins  of  0.1 

 m/s and 1 km and skewness in bins of 0.1 and 1 km, respectively. Note that the plots with 

the offshore distance beyond 150 km are projected on the axis of 150 km, and that the 
number of data with offshore distance around 100 km is small because most images of 

 ERS-1/2 SAR with 100 km swath are acquired around nearshore region . In every wind 

speed range, the same characteristics as described below are seen. 

  As shown in Figrue 4.7(a), the distribution of standard deviation ranges widely up to 4 

 m/s within the distance of 20 km. However, upper bound of standard deviation decreases 

with offshore distance. Beyond the distance of 100 km, it becomes constant . Its value is 

less than 1.5  m/s and  smallr than the root mean square error of the SAR-derived wind 

speeds. 

 For the skewness (Figrue 4.7(b)), within the distance of 10 km, the distribution is 

widely spread and ranges from –3.0 to 4.0. The whole distribution deviates to the positive 

side, and it means that the wind speeds are rather concenterated in the lower wind speeds . 

Upper and lower bounds of the skewness distribution decrease with the offshore distance. 

Beyond the distance of 50  km, the positive deviation of distribution disappears. Beyond 

the distance of 100  km, the upper and lower envelopes have constant values. 

4.5 Discussion 

4.5.1 Characteristics of wind speed probability distributions 

 In Figure 4.4, some of the AMeDAS plots deviate away from the Land cluster center. 

They have the larger scale parameters. Through cearful investigation, we confirm that 

most of them are in near coast plains. In such regions, winds over land come under 

influence of that over the nearshore seas. Therefore, it might be true that we should  define 

coastal zone as extending areas to either side of the coastaline from the wind speed 

distribution point of view. It also is shown in [Watebe et al., 1996] that the surface winds
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observed at the HES is highly correlated with that in the neighboring land. 

  The QuikSCAT plots seem to form several different clusters , and it may reflect the 

regionality of seas. It must be interesting to consider the reagionality of sea surface wind . 

This is left for future studies. 

  Wind speed distributions assigned to Coastal Sea cluster have two features (Figure 4.5). 

One is that the frequencies of lower wind speeds are high. The followings contribute to 

this characteristic: evolutions of the internal boundary layer under offshore wind; wind 

shadows with different scale; and a deceleration of wind flow blowing toward high land 

 topography. Another important feature is that it has frequencies in a wide wind-speed 

range up to  20m/s. It can be considered mainly due to the sea surface roughness smaller 

than the land surface roughness. Furthermore, locally formed strong surface winds under 

the orograhic influences, such as downslop lee winds, gap winds and barrier jets (Table 

1.1) may play important rules to widen the histogram to the higher wind-speed range. 

4.5.2 The boundary between the coastal sea and open ocean 

  Note that upper bounds of standard deviation and skewness are function as offshore 

distance (Figure 4.7). These results show that large variations of wind speed can occur in 

the small regions of 10-km square in nearcoast seas. Of course, orografically modified 

winds are observed by scatterometer with a scale up to several hundred kilometers. When 

comparing with them, the gradient of wind will be one of the important factors. Based on 

the above results, we may conclude that, from wind speed variability point of view, the 

distance of 100 km forms the division between coastal seas and open ocean. In other word , 

locally strong and lower wind regions are subject to be produced in the area within the 

distance of 100 km from the coast. 

4.5.3 Wind speed probability distributions using SAR-derived 

wind speeds 

 SAR wind retrival using the CMOD wind retrieval algorithm has a reported operational 

range of 2-24  m/s [Carswell et al., 1999]. It is generally said that the lower threshold is 

abount 2  m/s. Though SAR wind retrieval under wind speed of 2 /ms is open to question, 

it is an indisputable fact that the wind speeds lie between 0 and 2  m/s. In the present study, 

we deal with histogram of wind speed with a  1-m/s interval class. Therefore, it does not 

affect the shape of the histogram very much. 

4.6 Summary 

 We statistically investigate characteristics of winds over land and sea. High-resolution
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winds derived from SAR give a new picture of coastal winds. 

  1) We construct wind speed probability distribution from different wind datasets 

including SAR, and estimate the Weibull parametes. In a feature space of the Weibull 

parameters, we can identify three representative clusters assigned to Land, Open Ocean, 

and Coastal Sea. 

 2) The typical distribution of wind speed assigned to Land cluster has high frequencies 

in lower wind speeds and quite low frequencies in the range higher than about 6  m/s . The 

typical distribution of wind speed assigned to Open Ocean cluster has high frequencies in 

the wind speed range around 8  m/s and extend up to 20  m/s. The typical wind speed 

distribution of wind speed assigned to Coastal Sea cluster has the peak frequency at 

around 3  m/s though the peak value is lower than that of the Land one. It has frequencies 

in a wide wind-speed range up to 20  m/s. 

 3) Wind speed distributions assigned to Coastal Sea cluster are can be reproduced by 

mixing the typical wind speed distributions assigned to Land and Open Ocean clusters at 

a given rate. The mixing ratio to reproduce the typical wind speed distribution of Coastal 

Sea cluster is 3 to 7. 

 4) We investigated spatial wind valiability using standard deviation and skewness 

estimated from the SAR-derived high-resolution wind-speed maps. Their distribution 

ranges decrease with offshore distance from the coast to 100 km offshore. This suggests 

that the offshore distance of 100 km can be a measure of separation scale between the 

coastal sea and open sea.
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Table 4.1 Surface wind observations used in the present study.

 1)ata

I  lorizontal
resolution

 ̀ t
emporal

resolution Data period Site  Climatology

 AN1eDIS  1990-  2000  841) stations in Japan  10-year  climatology'

 JN1A  buoys a fixed  point  1 1994-1999

3  buoys around Japan
(Figure  2.2)  5-year  climatology-

Hiratsuka
 Experiment

Station a fixed  point 3  199U-2000 Sagami Bay (Figure  2.2) 10-year  climatology

 htutsu  buoy a  fixed  point  1  1990-2000  10-year  climatology'

 QuikSC,IT 0.25  deg.  1 2000-2002

 13,758 cells  (20-50  ° N,

 120-160°  E)  3-year  climatology

 FRS-1•2  SIR  1.0  kw  1991-2001

 (Refer to Figure 2.2 and
text) See text for details
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5 Coastal winds and wind waves observed by active 

  satellite sensors 

5.1 Introduction 

 SAR has revealed finer structures and higher variability of coastal winds in many 

studies [e.g., Sandvik and Furevik, 2002] and the peculiarily of coastal winds are 

statistically shown in Chapter 4. In turn, wind waves are directly affected by such ocean 

surface winds. However, the detailed air-sea-land interaction processes involved in 

coastal zones are not well understood largely because of a lack of accurate, high-

resolution, extensive wind and wave measurements. In concrete term, it is not well 

understood how  finer-scale wind variations are related with offshore wind, and how such 

wind affect the development of wind waves and wave spatial distributions. 

 In order to capture such complex wind and wind wave fields in coastal zones, 

high-resolution data of both wind and wave are required. Satellite scatterometers (Section 

2.1.2) provide us with surface vector winds over a wide coverage with spatial resolution 

of 25 km. They have visualized the orographically modified winds like gap winds. They 

allowed us to examine the extensity of the winds, the formation mechanisms, and oceanic 

responses [e.g., Kawamura and Wu, 1998; Luis and Kawamura, 2000; Chelton et al., 

2000a and  200011; Hu and Liu, 2003]. On the other hand, SAR can resolve high-resolution 

wind fields by applying SAR wind retrieval algorithms (Section 1.3.2) to SAR images 

(Section 2.1.1). They reveal complex wind distributions  in coastal zones and provide us a 
unique picture of coastal winds [e.g., Sandvik and Furevik, 2002; Pan and Smith, 1999]. 

SAR-derived wind fields are especially valuable in near-coastal areas where 

observational data often are too sparse to give a representative picture of the local winds. 

SAR allows us to examine the details of coastal winds, from shore to the offshore where 

scatterometer data are available. 

 Satellite radar altimeters can provide us with spatial profiles of  significant wave 

heights (hearafter  SWHs) along their ground tracks with spatial  reso  tuition of about 7 km. 

The altimeter-derived wave heights have been utilized in various sturdies of wind waves 

including wave climate [e.g., Bauer and Staabs, 1998], validation of wave models [e.g. 

Romeiser, 1993; Hwang et  al., 1998], and assimilation into the models [Bauer et al., 

1992]. Additionally, snapshot altimeter wave height observations are effectively used for 

investigating fetch growth of wind wave in combination with scatterometer wind 

measurements in Ebuchi et al.  [1992] and Ebuchi  [1999]. 
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  In this study, we present two case studies of air-sea-land interaction under winter 

monsoon in order to demonstrate a great impact of coastal winds on wave distributions. 

The synergetic use of high-resolution satellite observations allows us to examin winds 

and waves in coastal zones and to reveal actual wind and wave distribution. This study 

will also give a new perspective of studying air-sea-land interaction in coastal zones using 

high-resolution satellite observations. 

In Section 5.2, we present complete and close-up wind fields by a combined use of 

scatterometer and SAR. Then, we compare the wind fields with wave height observations 

from altimeters. Section 5.3 is devoted for discusiion, and conclusions are given in 

Section 5.4. 

5.2 Combined satellite observations of the coastal winds 

and waves — Two case studies 

5.2.1 Case selection and analysis methods 

 In this section, we illustrate the relation between wind and wave distribution  from two 

representative time periods of satellite observations. We focus on the Pacific side of 

Tohoku and  Hokkaido distincts under the outbreaks of the East Asian winter monsoon. 

During the winter monsoon, strong winds blow constantly over the Sea of Japan from 

Siveria towards the west coast  of  Japan. Then, they pass through the Japanese archipelago 

and blast out toward the northwestern Pacific. Figure 5.1 shows a map of topography in 

the region. There exist some orographic gaps, such as Tsugaru Straits, the Bays of 

Uchiura and Mutsu. The outbreaks usually persist for periods longer than one day. Under 

such conditions, it is verified that situations may be simplifid as a fetch-limited, 

one-dimensional, time-independent [Ebuchi et al., 1992; Ebuchi, 1999]. Therefore, wind 

distributions are directly reflected in wave distributions because the swell energy is a 

much smaller contribution to the total wave height. 

 Table 5.1 summarizes observational conditions of two case studies on 25 February 

2000 (Case 1) and 4 December 2000 (Case 2). In the following case studies, we start with 

a discussion of the synoptic situation. Figure 5.2 is the hourly wind speed and direction 

recorded from a buoy in Mutsu Bay (Figure 2.2). The time-series wind observations can 

be representative examples of synoptic wind variations. As will hereinafter be described 

in detail, we can identify steady-state wind periods on 25th February and 4th December 

2000. The arrows in the figures indicate passing times of QuikSCAT, ERS-2 SAR, T/P 

and ERS-2 altimeters. Observation time differences between satellite sensors are
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unimportant to grasp representative views under the steady winter monsoon outbreaks . 

  Then, ocean and land surface winds measured by QuikSCAT , ERS-2 SAR, and 

AMeDAS are jointly imvestigated. They are shown in Figure 5.3 and 5.5. Figure 5.4 and 

5.6 are enlarged views of Figure 5.3 and 5.5 with a centeral focus on SAR observation 

areas. SAR images are converted into wind speed maps by applying SAR wind retrieval 

methods (Section 1.3.2). Wind direction data are obtained from NCEP/NCAR reanalysis 

data. Under high wind situations, wind directions can reasonably be extracted from 

images themselves. The wind directions of NCEP/NCAR reanalysis data are consistent 

with the wind-direction information obtained from the SAR images. 

  Finally, using SWH data from T/P and ERS altimeters, we investigate the relation 

between wind and wave distributions. SWHs along altimeter tracks are plotted in Figure 

5.3-5.5. Wind-speed and  SWH variations are also compared along the altimeter ground 

tracks and arbitrarily  defined lines. For comparison with the high-resolution surface 

winds from SAR and altimeter, the low-resolution surface vector winds of QuikSCAT are 

linearly interporated onto the  defined lines. 

5.2.2 Case 1: February 25, 2000 

  According to the synoptic weather charts at 00:00 UT, February 25, 2000 (not shown), 

a low-pressure system had passed through the southern part of Japan, and areas around 

Japan were under wintery pressure pattern favorable to the monsoon outbreak. In Figure 

5.2 (a), wind speed rapidly increases at 18:00 UT February 24, 2000, and higher and 

steady wind around 10 m/s lasted the entire one day. During the period, the wind direction 

is almost constant at  280° (Figure 5.2 (b)). The observation time of ERS-2 SAR 

corresponds to the onset of winter monsoon outbreak and observations of the other 

sensors follow within twelve hours (Table 5.1). 

 At 09:06 UT, QuikSCAT observed wind around Japan (Figure 5.3(a)). In the 

 northweastern Pacific, two distinguished wind jets with speeds above 12 m/s are seen to 

extend from the proximity of Tsugaru Straits and the south of Kitakami highland (See 

also Figure 5.1). The strongest winds with speeds more than 16 m/s are observed in the 

jets. Local maximum wind speeds are located at  ( 40°N,  143°E),  (39°N,147°E), and 

 ( 37°N,  145°E). Between the two jets, we can see a lower wind region extending toward 

the offshore about 500 km from the coast, and reach at least  146°F. 

 Wind speeds are retrieved from SAR images acquired at 01:15 UT (Figure 5.3(a) and 

5.4(a)). In the northeastern part of SAR images, a part of northern wind jet with speeds of
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12 m/s is captured. The wind speeds are lower than 8  m/s in the coastal area within 50 km 

from the coastline. In the region, we can see alternative high/low wind regions, which can 

be considered as extensions of the terrestrial wind patterns affected by the upstream land 

topography. We identify two distinguished lower wind regions less than 6  m/s. They 

consistently connect to offshore low-wind regions observed by QuikSCAT. According to 

AMeDAS observations, wind speeds are much lower (2-5m/s) than those observed over 

the surrounding seas by  QuikSCAT, which is a quite contrast (Figure 5.4(a)). It is true to 

both upstream and downstream sides of Japan (Figure 5.3(a)). From the SAR-derived 

wind fields, it is shown that wind speed transition occurs at around 50 — 100 km distances 

from the coastline, which is consistent with the statistical features of coastal winds shown 

in Chapter 4. 

 SWH data are obtained from  T/P track 60 and ERS track 905 at 10:04 UT and 12:23 UT, 

respectively. They are plotted in Figure 5.3(a) and 5.4(a). The  T/P track intersects 

between the coasts of Hokkaido and the Tohoku distinct. The SWHs are higher at the 

center of the track (Figure 5.3(b)). This is due to longer fetches from the head of Uchiura 

Bay and larger wind speeds in the jet (Figure 5.3(b)). The ERS ascending track pass near 

the eastern coast of North Japan pass through the SAR observation area. When passing 

through the southern jet, local maximum wave height above 3.0 m is observed at around 

37.5°N (Figure 5.3(c)). In south of 37.5°N, SWHs are higher than 2.5 m, which may be 

mainly due to the larger fetch. The SWHs and the QuikSCAT wind speed along the ERS 

track have local minimums at around 39.5°N, where the low-wind region extends from 

the coast. At the latitude, SWHs are 1.0 m lower than those in neighboring jets. In the 

northern wind jets, ERS altimeter observes SWH higher than 2.0 m. These local 

maximums and minimums of SWH well correspond to those of QuikSCAT wind speeds 

along the ERS ground track (Figure 5.3(c)). 

 Figure 5.4(b) shows wind speed profiles along a defined black line indicated in Figure 

5.4(a). It is perpendicular to the streamlines derived from surface wind vectors. In the 

SAR area, the QuikSCAT wind speeds are generally higher than SAR-derived wind 

speeds. Smaller-scale variations corresponding the alternative high/low wind regions are 

observed only in the SAR profile. 

 Figure 5.4(c) shows wind speed profiles of QuikSCAT, SAR and ERS altimeter along 

the ERS ground track. Smaller-scale wind speed variations are seen in the SAR and 

altimeter wind-speed profiles, and they agree well each other. The QuikSCAT wind-speed
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profile overestimates wind speed in the region of wind minimum at around  39  — 39.5°N. 

The SWH profile observed by ERS altimeter is also shown in the figure. The local SWH 

maximums and minimums well correspond to those of the SAR and altimeter wind 

speeds. 

5.2.3 Case 2: December 4, 2000 

  According to the synoptic weather charts at the 00:00 UT, December 3, 2000 (not 

shown), the area around Japan was under  wintery pressure pattern as well as Case 1. 

Figure 5.2 (c) shows that the buoy-observed wind speed higher than 10 m/s lasted almost 

two days from 00:00 UT, December 3. Wind direction (Figure 5.2 (d)) is almost constant 

of  2800 during the period. From 18:00 UT on 4th, a low-pressure system had started to 

pass through Japan, and southerly and lower wind were observed until 03:00 UT on 5th. 

The observations of ERS-2 SAR and altimeter are on the same orbit, and the observation 

time corresponds to the midpoint of winter monsoon outbreak. QuikSCAT and TIP 

observations are obtained in a latter half of the outbreak period. 

  At 08:42 UT, QuikSCAT observed a strong wind jet off the southern Hokkaido (Figure 

5.5(a) and 5.6(a)). The wind jet extends more than 600 km from the vicinity of Tsugaru 

Straits. In the jet, with speeds are as great as 16 m/s and the local maximum wind speed is 

observed in the south of Cape Erimo. In the both sides of the jets, lower wind regions 

extend along the jet from southeastern side of Hokkaido and Kitakami Highland, 

respectively. Their minimum wind speed is less than 8  m/s. 

  The wind-speed map is retrieved from SAR images acquired at 1:20 UT on Dec. 4, 

2000 (Figure 5.5(a) and 5.6(a)). It is obviously shown that there exist three distinguished 

wind jets in the SAR observation areas. These wind jets over ocean correspond to 

topographical features of the upstream area. The northern and middle jets have local 

maximum wind speeds at the mouth of the Bay of Uchiura, and the exit of the Tsugaru 

Straits, respectively. The southern jet is seen from the centeral area of Mutsu Bay to the 

 Pacific across the Shimokita Peninsula. In its lee side near the coast, wind speeds are 

lower, but increase rapidly to form the southern jet. While these jets have wind speed as 

great as 14 m/s, the lower wind-speed regions between jets have them less than 8  m/s. The 

jets broaden toward the offshore region and merge into one large jet flow as seen in 

QuikSCAT surface vector wind field (Figure 5.5(a)). According to AMeDAS 

observations, wind speeds are much lower  (2-5m/s) than observed over the surrounding 

seas as seen in Case 1.
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  The SWHs are obtained from  T/P track 253 and ERS track 978 at 15:44 UT and 01:23, 
respectively. They are superimposed in Figure 5. 5(a). The  T/P and ERS tracks pass the 

Pacific Ocean off eastern coast of Japan. Local  SWH maximums about 4 m at around 

 41°N along both altimeter tracks are observed in the jet region (Figure 5. 5 (b) and (c)). 

The altimeter track segments with SWHs larger than 3.0 m correspond to the regions 

where  QuikSCAT-derived wind speeds are greater than 12.0 m/s (Figure 5. 4 (b) and (c)). 

In the jet area, the longer fetches from the Uchiura Bay and Tsugaru Straits contribute to 

the generation of the higher SWHs. High SWHs are also observed at around 45°N along 

the ERS track and at around 44°N along the  T/P track, respectively. These are also 
corresponding a strong wind region blowing through the Souya Straits between Hokkaido 

and  Sakhalin. 

  Figure 5.6(b) shows wind speed profiles along the  defined black line indicated in 

Figure 5.6 (a). It crosses the three wind jets. The SAR-derived wind speeds represent 

three local maximums of wind speed associated with three wind jets . 

5.3 Discussion 

  Figure 5.7 (a) shows a comparison between  QuikSCAT- and SAR-derived wind speeds 

in the overlapping area from both case studies. Bars indicate a tenfold relative root mean 

square of SAR-derived wind speeds contained in a QuikSCAT observation cell. Totally, 

the root mean square error is 1.86 m/s and the bias is —1.23  m/s. While they generally 

agree well in higher wind speed than 12  m/s, QuikSCAT overestimates wind speeds in 

lower wind speed range than 12  m/s. Overestimated wind speeds are all observed in the 

wind wake of Case 1. They also have larger error bars. 

 On the other hand, Figure 5.7 (b) shows a comparison between ERS altimer- and 

SAR-derived wind speeds along the ERS ground track on February 25, 2000. The root 

mean square error is 1.05  m/s and the bias is 0.05  m/s. They agree well each other. This 

means that high-resolution wind observations are essential in coastal zones. 

 The QuickSCAT overestimate in Figure 5.7 (a) may be attributed to its wind retrieval 

algorithm. First, NRCS observed in the same wind vector cell (WVC) are assembled. The 

SeaWinds swath is divided into equidistant across-track WVCs. The nominal WVC size 

is 25km x  25km  , and all backscatter measurements centered in a WVC are used to derive 

the WVC wind solutions through a maximum likelihood estimate (MLE) method. Then, a 

GMF is applied to the set of backscatter measurements in each WVC. Using the NRCS 

values, NRCS measurement variance, the azimuth angle, the incidence angle, the
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polarization and the model function, the processor generates a MLE value for each 

element in a set of wind vector solutions . The measurement variance of backscatter is 

used in wind retrieval to weight the backscatter measurements in the MLE method . 

  The MLE indicates how well the backscatter measurements used in the retrieval of a 

particular wind vector fit the GMF, which is derived for fair weather wind conditions. In 

addition, GMFs are tuned against open ocean wind conditions . A large inconsistency with 

the GMF results in a large MLE, which indicates geophysical conditions other than those 

modeled by the GMF, such as rain, confused sea state , or ice. 

  In the present case, NRCS measurement variance in a WVC due to coastal wind 

variability results in a large MLE. This produce wind speed overestimates of QuikSCAT . 

As shown in Chapter 4, it is essential that coastal winds have large valiability . This is 

quite a contrast to offshore wind variabilities. 

5.4 Conclusions 

 Using high-resolution satellite observations, we presented case studies to focus on 

studying wind wave distribution under East Asian winter monsoon in the northeast of 

Japan. A combined use of QuikSCAT and ERS-2 SAR-derived winds allow us to examine 

the orographically modified winds detail from shore to offshore. Then , we investigated 

wave height variations under the wind fields using SWHs observed by  T/P and ERS-2 

altimeters. The following conclusions are given. 

 1) QuikSCAT observes wind jets and the nighboring lower wind regions extending 

    more than several hundred kilometers downwind. 

 2) SAR-derived wind fields reveal smaller-scale coasal wind jets and lower wind 

   regions. They can be considered as extensions from terrestrial wind jets such as 

   Uchiura Bay and Tsugaru Straits. 

 3) Smaller-scale wind variations revealed by SAR extend and broaden downwind, and 

   consisitently connect to the larger-scale wind jets and lower wind regions observed 

   by QuikSCAT. 

 4) QuikSCAT- and SAR-derived wind speeds generally agree well each other. But in 

   the coastal seas with high wind variability, QuikSCAT overestimates wind speeds. 

 5) SWHs along altimeter ground tracks intersecting strong and weak wind regions vary 

   with wind speeds revealed by QuikSCAT and SAR. The locations of SWH local 

   maximums and minimums agree well with those of wind speeds derived from 

   QuikSCAT and SAR. This means that terrestrial gaps produce the orographically
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   modified winds, which broaden and extend several hundred kilometers downwind, 

    and, in turn, such wind fields determine wind sea. 

 This study demonstrates the capabilities of scatterometer and SAR-derived winds for 

monitoring coastal winds, and the potential of multi-sensor approaches for studying 

air-sea-land interaction in coasal zones. High-resolution wind fields are essential to study 

the oceanic responses in open seas as  well as in coastal zones. We point out that 

high-resolution wind fields revealed by SARs will direct the numerical model approach 

of coastal winds. They will be also responsible for further understanding of wind-wave 

coupling. Moreover, this study promotes an improvement to examine the capability of 

high-resolution wave forecast models for capturing the essential characteristics of wind 

impact on wind wave.

89



Table 5.1 Observational conditions of two case studies. Wind speed 

and direction are obtained from a buoy observation in Mutsu Bay .

Case

1
2

Date

25.Feb. 00

4,Dec. 00

Wind Direction

North-West
North-West

Wind  Sueed

11  m/s

12  m/s

Time UTC

ERS-2 SAR
0115

0120

QuikSCAT
0906
0842

 T/P

0121
1544

 ERS RA

1252

0123

90
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Figure 5.1 Map of the topography and geographical locations referred to 

in this paper. The color scale indicates the elevation. A blue plot 

indicates the location of a buoy in Mutsu Bay.
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Figure 5.2 Hourly wind observations recorded at an buoy in the Mutsu Bay. 
Top and bottom figures are obtained from February 23 to 26 and December 2 
to 5, 2000. Left and right figures show wind speed and wind direction. The 
arrows indicate the time when ERS-2  SAR, QuikSCAT, Topex/Poseidon, 
ERS-2 altimeter pass through the study area.
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Figure 5.3 (a) Ocean and land surface winds measured by QuikSCAT, SAR, and 
AMeDAS. Winds are measured by  QuikSCAT, ERS-2  SAR, and AMeDAS at 
09:06 UT, 01:15 UT, 01:00 UT, February 25, 2000, respectively.  SWHs 
measured by  TIP and ERS altimeters are also plotted. They are obtained at  01:21 
UT and 12:52 UT, February 25, 2000, respectively. The color scales indicate the 
magnitude of wind speed, SWH, and the elevation. (b) (c) SWH along the tracks 
of (b)  TIP and (c) ERS altimeters and QuikSCAT wind speed.
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Figure 5.4 (a) Close-up view of Fig.5.3 (a) with a focus on SAR 
observations. The black line are profiles of wind speed. (b) Wind speeds 
derived from  SAR, QuikSCAT and model along the black line in (a). (c) 
Wind speeds derived from  SAR, QuikSCAT and ERS altimeter along the 
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Figure 5.5 (a) Ocean and land surface winds measured by QuikSCAT, SAR, and 
AMeDAS. Winds are measured by QuikSCAT, ERS-2 SAR, and AMeDAS at 
08:42 UT, 01:20 UT, 01:00 UT, December 4, 2000, respectively. SWHs 
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Figure 5.7 (a) Comparison of SAR-derived wind speeds with 
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6 Conclusions 

 In the present study, we have investigated coastal surface winds resoleved by the 

high-resolution SAR images. The wind-retrieval methodology of L-band SAR is 

established and applied to coastal researches. A large amount of SAR images enable us to 

reveal new statistical features of the coastal wind. Their synagetic use of other active 

satellite sensors and in situ observations provide new views of the surface wind fields 

from shore to offshore. 

 Main conclusions derived in Chapters 3, 4 and 5 are summarized as follows .

  In Chapter 3, we have developed a new L-band geophysical model function using the 

 JERS-1 SAR images. Then, retrieved wind speeds from JERS-1 SAR in the coastal 

region are examined and excessive ambiguities of JERS-1 SAR are quantitatively 

estimated. 

  1) We expressed the system noise peculiar to  JERS-1 SAR as a parabolic function of 

range the SAR system noise. By subtracting the estimated system noise from the SAR 

images, we extracted the relative calibrated ocean signals from  JERS-1 SAR images. 

 2) We investigated sigma-0 dependence on the radar incidence angle, the wind speed, 

and the wind direction. Results of the present study indicated that dependence of  sigma-0 

on the incidence angle is negligible for its range of  37.0°—  42.0°. Dependence of sigma-0 

on the wind speed can be well expressed by the conventional power law formula. For 

higher wind speeds, the upwind-downwind asymmetry becomes very larger. But, for 

wind speeds below 8  m/s, these features are not significant. 

 4) Using third-cosine harmonics, we represented the relationships a new L-band-HH 

GMF for SAR wind retrieval. It enables us to convert a  JERS-1 SAR image into a 

wind-speed map. The SAR-derived wind speed has a RMSE of 2.09  m/s with a negligible 

bias against the wind speeds used for deriving the model function. 

 5) We investigated wind speed growth with offshore distance in Sagami Bay using 

 ERS-1 SAR derived wind fields, and formulated the relationship. 

 6) Not only the first azimuth ambiguity but also higher order azimuth ambiguities and 

range ambiguity have a significant influence on near-shore wind retrieval.

 In Chapter 4, we investigated the statistics of high-resolution coastal winds derived 

from SAR.
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  1) We investigated wind-speed histgrams by applying the Weibull distribution and 

classifying them using the two parameters of Weibull distribution . Wind data are 

obtained on and around Japan and off a part of the Eurasian continent . In the Weibull 

parameter feature space, the wind-speed histgrams are classified into three clusters: Land 

cluster, Open Ocean cluster and Coastal Sea cluster. 

  2) The typical wind-speed histgram derived from each cluster center have the 

following features: the Land histogram has high frequencies in a range of lower wind 

speeds and quite low frequencies in the range higher than about 6  m/s . The Open Ocean 

histogram has high frequencies in the wind-speed range around 8  m/s and extends up to 

20  m/s. The Coastal Sea histogram has the peak frequency at around 3  m/s though the 

peak value is higher than that of the Land histogram. It has frequencies in a wide 

wind-speed range up to 20  m/s as the Open Ocean histogram has. 

  3) Using the Open Ocean and Land histgrams, the Coastal Sea histogram is 

reproduced by ramdom sampling of the open ocean and land wind-speeds. The 

reproduced histgrams indicate the same features as those obtained from the SAR-derived 

wind speed. The histograms at around the Coastal Sea cluster center are reproduced at the 

mixing ratio of about 30 % of the Land histgram and about 70% of the Open Ocean 

histgram. 

 4) Standard deviation and skewness estimated from the SAR-derived high-resolution 

wind-speed maps have wider distribution ranges in the near-coast seas and the ranges 

decrease with distance from the coast to 100 km offshore, which suggest that the offshore 

distance of 100 km can be a separation scale of the coastal sea and open sea.

 In Chapter 5, using high-resolution satellite observations, we presented case studies to 

focus on studying wind wave distribution under the orographically modified winds of 

East Asian winter monsoon off Tohoku and Hokkaido, Japan. 

 1) The QuikSCAT observervations present wind jets and the nighboring lower wind 

regions extending more than several hundred kilometers downwind from the coasts. 

 2) The SAR-derived wind fields reveal smaller-scale coasal wind jets and lower wind 

regions. The coastal jets can be considered as extensions from terrestrial gap winds 

formed in Uchiura and Mutsu Bay and the Tsugaru Straits. 

 3) Smaller-scale wind variations revealed by the SAR images extend and broaden with 

the distance from the coasts, and consisitently connect to the larger-scale wind jets and
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lower wind regions observed by QuikSCAT. 

 4) The  QuikSCAT- and SAR-derived wind speeds generally agree well each other . But 

in the seas near the coast with large wind variability, the QuikSCAT tends to overestimate 

wind speeds. 

 5) Singificant wave heights (SWHs) along altimeter ground tracks intersecting strong 

and weak wind regions vary with wind speeds revealed by QuikSCAT and SAR. The 

locations of SWH local maximums and minimums well agree with those of QuikSCAT 

wind speed. This means that terrestrial gaps produce the orographically modified winds , 

which broaden and extend several hundred kilometers downwind, and in turn, the wind 

fields determine the conditions of wind sea. 

 This study has given new views  of  the coastal surface wind by the high-resolution SAR 

images. The high-resolution capability of surface wind measurements is essential to 

study and monitor the coastal winds because of their natural features. Based on the 

accomplishments of the present study, it is desired that the understanding of coastal wind 

will be grown by more studies and that the results will be reflected in understanding of 

meteorological and oceanic phenomena in coastal zones and improvements of numerical 

model approaches.
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Appendix  1 Acronyms
ADEOS

ALOS

AMeDAS

AMI

CMOD-4

CMOD-5

CSA

DLR

ERS OPR

 ERS-1

ERS-2

ESA

GMF

GMT

HH

 JERS-1

JMA

JPL

JWA

 MITI

NASA

NASDA

NCEP/NCAR

NRCS

NRIESDP

NSCAT

 PAL  S  AR

 PO.DAAC

RADARSAT

 S/N

SAR

SASS2

SEASAT

SIR-A

SIR-B

SIR-C

SIR-C/X-SAR

SMOS

 T/P

 VV

Advanced Earth  Observina Satellite

Advanced Land Observing Satellite

Automated Meteorological Data Acquisition System

Active Microwave intrument

C-band scatterometer model functions

C-band scatterometer model functions

Canada Space Agency

German Aerospace Research Establishment

ERS Ocean PRoduct

European Remote Sensing Satellite  1

European Remote Sensing Satellite 2

European Space Agency

Geophysical Model Function

Greenwich Mean Time

horizontal polarized transmission, horizontally polarized reception

Japanese Earth  Remote-Sensing Satellite

Japan Meteorological Agency

Jet Propulsion Laboratory

Japan Weather Association

Ministry of International Trade and Industry

National Aeronautics and Space Administration

National Space Development Agency (Japan)
  National Centers for Environmental  Predition/ National Center for 

Atmospheric Research

Normalised Radar Cross Section

 National Research Institute for Earth Science and Disaster 

Prevention

NASA  scatterometer

Phased Array type L-band Synthetic Aperture Radar

Physical Oceanography Deistributed Active Archive Center

Radar Satellite

Signal to Noise Ratio

synthetic aperture radar

Seasat-A Scatterometer System model function

Sea Satellite

Shuttle Imaging Radar-A

Shuttle Imaging Radar-B

Spaceborne Imaging Radar-C

Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar

Soil Moisture and Ocean Salinity Mission

 Topex/Poseidon

vertical polarized transmission, vertically polarized reception
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 The threshold value is set as  Uo 

summarized below. 

 b1  = 5.2194296 

 b2  =  0.7343264 

 b3  =  5.0711371 

 b,=1.2282002 

 b5= 797859.7 

 b6 = 41869.28 

 b7  =  0.1988929 

 b„ = 6862.769 

 b,=.  -49958.58 

 b10  =  8107.274 

 b„= 0.1677051

Appendix 2 An L-band geophysical model function and its 

coefficients 
 The form of the L-band geophysical model function is: 

    0 

  aim=  a0  +  a,  cos0 +  a2cos20+  a3  cos3q5 

where  (15 is the relative wind direction. Coefficients  ao,  a,  ,  a, and a3 are function of 

wind speed. They are expressed as follows: 

 a() =  1061  UNU  <  8.5) 

 ao  =  101'  (U  —  U0  +  b5  (U  8.5) 

 a,  =  b6(exp(b7U)  —1) 

 a, =  4,LI2 +  b9U 
 a3 =  bio(exp(bilU) —1) 

 The threshold value is set as  U0=8.5  . The coefficients  bk=  1,2,3..10 are
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