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Abbreviations 

5-HT  Serotonin 

8-OH-DPAT     8-hydroxy-2-(di-n-propylamino)-tetralin 

ANOVA         Analysis of variance 

BBB            Blood-brain barrier 

BCRP   Breast cancer resistant protein 

BPND   Binding potential 

CER  Cerebellum 

CNS    Central nervous system 

DRN   Dorsal raphe nucleus 

Emax  Maximum effect  

HIP  Hippocampus 

IP  Intraperitoneal administration 

IV  Intravenous administration 

Kd   Dissociation constant 

Ki   Inhibition constant  

Kp,brain   Brain-to-plasma concentration ratio 

MPFC   Medial prefrontal cortex 
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MPPF 2'-methoxyphenyl-(N-2'-pyridinyl)-p-fluoro-
benzamidoethylpiperazine 

OAB         Overactive bladder  

PD          Pharmacodynamics  

PET  Positron emission tomography 

P-gp   P-glycoprotein  

PK  Pharmacokinetics  

RO  Receptor occupancy  

ROI   Region of interest 

SCL   Superior colliculus lesion  

SD   Sprague-Dawley or Standard deviation 

SRTM   Simplified reference tissue model 

WAY-100635  N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2- 
   pyridinyl)cyclohexanecarboxamide 
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Summary 

Drug discovery and development is time consuming and a costly procedure. 

Considering the current high failure rate of drugs that enter clinical trials, there is a clear 

need for more efficient and sensitive strategies in the search for useful medicine. The 

challenges for the pharmaceutical industry range from the evaluation of potential new 

drug candidates, the determination of drug pharmacokinetics/pharmacodynamics, the 

measurement of biomarker response as a determinant of drug efficacy, and the 

pharmacological characterization of mechanisms of action. Positron emission 

tomography (PET) is a powerful quantitative imaging technique for looking at 

biochemical pathways, molecular interactions, drug pharmacokinetics and 

pharmacodynamics. In this thesis, I conducted the pharmacological characterization of a 

novel 5-HT1A antagonist, 1-{1-[2-(7-Methoxy-2,2-dimethyl-4-oxochroman-8-

yl)ethyl]piperidin-4-yl}-N-methyl-1H-indole-6-carboxamide fumarate (E2110) by using 

small-animal PET and assessed the potency of E2110 as an agent for treatment of OAB. 

First, PK-RO relationship of E2110 in rat was evaluated with specific tracer [11C]WAY-

100635. Subsequent PK/PD modeling and simulation was performed based on the 

obtained data to investigate RO data could be a useful pharmacological indices for 

understanding pharmacological efficacy in animal model. Moreover, the drug-target 
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interaction was investigated more directly using radiolabeled E2110 ([11C]E2110) by in 

vivo Scatchard analysis.  

Central 5-HT1A receptor occupancy was evaluated at different oral doses of 

E2110 and time points after treatment in rats. Time-radioactivity curves after 

administration of [11C]WAY-100635 were analyzed by simplified reference tissue model 

(SRTM) and binding potential based on specific binding compared to nondisplaceable 

uptake (BPND) were estimated. Obtained occupancy data were analyzed by “static” 

(simple Emax model) or “dynamic” (effect compartment model with plasma 

pharmacokinetic profile of E2110) approach. The plasma concentrations inducing 50% 

RO (EC50) estimated were in good agreement in both models. Also, the EC50 values did 

not markedly differ between MPFC and DRN. These findings indicate that E2110 has 

equal antagonist activities against pre- and post-synaptic 5-HT1A receptors. Meanwhile, 

these in vivo EC50 values were supposed to be comparable to the in vitro Ki value (0.045 

nM) take into account the free fraction in plasma and P-gp susceptibility of E2110. The 

estimated parameters were used to simulate RO profile in pharmacological model. 

Dose-dependent therapeutic effects of E2110 on dysregulated micturition in different rat 

models of pollakiuria were also consistently explained by achievement of 5-HT1A RO 

by E2110 in a certain range (≥ 60%). These findings support the possibility of PET RO 
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as a surrogate biomarker to evaluate the drug acting on 5-HT1A receptors and associate 

it with counteracting effect of E2110 on OAB. 

In addition, direct ligand-target interaction was investigated by using 

radiolabeled E2110. In vivo Scatchard analysis was performed under the transient 

equilibrium condition of specific binding of E2110. Under the condition that P-gp 

activity on BBB was intentionally inhibited by pretreatment of potent P-gp inhibitor, 

elacridar, the affinity of E2110 to the central 5-HT1A receptor was investigated. The 

regional differences of expression level of P-gp might affect to the estimation of binding 

affinity of E2110, the supposed free-based Kd value was close to that obtained by in 

vitro receptor binding assay.  

In summary, the use of PET in early drug discovery could provide the 

pharmacological information about the relationship between in vitro and in vivo for 

novel CNS drugs. Further PK/PD modeling and simulation approach using PET could 

be a powerful translational tool to bridge the gap between drug discovery in animals and 

drug development in human patient.  
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Background 

Increasing costs of drug development and reduced pipeline productivity have 

been growing concerns for new drug development in recent years. It has been estimated 

that the total discovery costs of a new medicine to the completion of phase 3 clinical 

trials can now take up to 15 years and cost up to $1.5BN [1]. In spite of that, historically, 

only 14% of the tested products entering Phase 1 trials eventually cleared the hurdle of 

gaining approval and entered the market. More than 50% of this attrition resulted from 

failure to demonstrate efficacy in phase 2 studies [2]. In particular, the success rate of 

drugs targeting disorders of the central nervous system (CNS) is half of the overall 

clinical approval success rate and the mean clinical-plus-approval phase time for U.S.- 

approved CNS drugs was 32 months or 35% longer than that for non-CNS drugs [3]. As 

a consequence, despite there is a significant unmet medical need for therapeutics, 

several pharmaceutical industries have decreased their investments for CNS drug 

discovery and development [4]. 

Many of these failures occur due to the lack of bridging activities in preclinical 

stage. To reduce the risk of failure caused by insufficient information about drug action 

and target molecule, the activities which bridge the gap between drug discovery in 

animals and drug development in human patients are required as translational research. 
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Translational research activities in pharmaceutical industry aim to predict the biomarker 

profiles or pharmacological effects in clinical situations based on in vitro or preclinical 

information. To conduct the translational drug research, understanding and learning the 

physiology and the mechanisms involved in drug distribution and drug-target interaction 

processes at a preclinical level are helpful to scale those processes to human [5].  

One of the most established approach in translational research is molecular 

imaging using Positron Emission Tomography (PET) [6]. PET is a non-invasive 

molecular imaging technique which provides functional information of physiological, 

biochemical and pharmacological processes in laboratory animals and humans [7−10]. 

Quantitative information from PET analysis enables us to monitor the change of target 

function by drug treatment.  Over the last fifteen years, the importance of imaging as a 

critical tool for drug development has been recognized. This has been enhanced by 

technological advances in the realm of small animal imaging that have demonstrated 

their potential as translational tools [11, 12]. Currently, molecular imaging is an essential 

tool for translational research and new drug development. 

Additionally, in recent years, pharmacokinetic/pharmacodynamic (PK/PD) 

modeling approaches in translational drug research are increasingly used to understand 

the relationship between drug concentration profiles and drug effects/target marker 
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profiles [13]. This methodology is applied in drug discovery and development areas such 

as the selection of drug candidates with the most favorable PK/PD properties and the 

prediction of exposure response in patients with the aim of optimizing the design of 

early clinical trials. The modeling of PK/PD relationships can be of great value in 

understanding drug action and finding a drug dosing regimen that results in optimal 

therapeutic outcome [14−18]. The use of PK/PD modeling relies on the prediction of the 

time course of drug action in patients using nonclinical information, because nonclinical 

studies are useful alternatives for investigating PK/PD relationships to get insight into 

the in vivo mechanism of drug action. The integration of PK/PD modeling and 

simulation has provided valuable opportunities for accelerating the evaluation of new 

chemical entities in the clinic and can in principle contribute to shortening the overall 

period of drug development process. Due to the extraordinary time and cost of drug 

development, it is highly desirable for pharmaceutical industries to have effective tools 

to confirm the action of selected compound for targets and target engagement for 

therapeutic indications. 

1-{1-[2-(7-Methoxy-2,2-dimethyl-4-oxochroman-8-yl)ethyl]piperidin-4-yl}-N-

methyl-1H-indole-6-carboxamide fumarate (E2110) is a novel compound with high 

selectivity and affinity to 5-HT1A receptors. In control of lower urinary tract function, 
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many pharmacological studies in animals have revealed that 5-HT receptor agonists or 

antagonists modulate reflex bladder and urethral sphincter activity [19−23]. Among them, 

it has been reported that 5-HT1A receptor antagonist is expected to improve symptoms 

associated with overactive bladder (OAB) [24, 25].  

This thesis highlights the significance of in vivo proof-of-

target/mechanism/efficacy studies to evaluate the potential of antagonist of 5-HT1A 

receptors to treat OAB. This PK/PD framework using small-animal PET would help to 

scale information from in vitro binding studies and preclinical receptor occupancy 

studies to predict human 5-HT1A RO and pharmacological efficacy. 
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Aims of This Study 

The purpose of this thesis study was to evaluate the utility of quantitative 

molecular imaging (e.g., receptor occupancy, in vivo receptor binding assay) using 

small-animal positron emission tomography for CNS drug discovery and development 

as a biomarker and to develop a translational pharmacokinetic and pharmacodynamic 

(PK/PD) modeling framework by integrating in vitro, and in vivo preclinical data with 

PK/PD models to predict the effects of drugs in humans. For this aim, occupancy of 5-

HT1A receptor by E2110 was quantified in living rat brains by a high-resolution PET 

system with a radioligand suitable for imaging of the target molecule. The obtained 

pharmacodynamic data were fitted by the pharmacokinetic data of E2110 with 

mathematical model. The constructed PK/PD (RO) model for E2110 was used as the 

tools to predict the target receptor occupancy of E2110 for the preclinical model for 

OAB. The in vitro-in vivo correlation of pharmacological activity of E2110 were 

discussed by both PK-RO relationship and in vivo Scatchard analysis using radiolabeled 

E2110. In accordance with the results of modeling and simulation of 5-HT1A receptor 

occupancy and pharmacological efficacy in animals, the required target occupancy level 

for the pharmacological effect was discussed.  

In the Chapter 1, the RO-plasma concentration profile and RO-time profile after 
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oral administration of E2110 to rats were investigated with [11C]WAY-100635, a 

specific radioligand for 5-HT1A receptor. Based on the results of PK-RO analysis, RO 

profiles in animal pharmacological model were projected. Pharmacological effect of 

E2110 on micturition in different rat models of pollakiuria was explained by the range 

of 5-HT1A RO achieved by E2110. 

In the Chapter 2, distribution and binding affinity in different brain regions were 

examined by means of PET with [11C]E2110. For the improvement of brain entry of 

[11C]E2110, elacridar was pretreated as P-gp inhibitor at BBB. Under this condition, 

various specific radioactivities of [11C]E2110 were injected. In vivo Scatchard analysis 

was performed based on the specific binding data at the point when transient 

equilibrium was established. Estimated binding affinity data (Kd) were compared with 

Ki value obtained by in vitro receptor binding assay and EC50 value in receptor 

occupancy study with [11C]WAY-100635 in Chapter 1. 
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Chapter. 1  

A Pharmacokinetic/Pharmacodynamic PET Study of Central 

Serotonin 1A Receptor Occupancy by A Potential Therapeutic 

Agent for Overactive Bladder 

 

§ 1 Introduction 

Overactive bladder (OAB) is a pathological condition symptomatically 

diagnosed based upon “a symptom developing urinary urgency with or without urge 

incontinence and usually developing frequent urination with no proven infection or 

other obvious pathological factors [26].”, and is one of the most common diseases in the 

elderly. Most OAB cases are idiopathic, and anticholinergic agents are frequently used 

for its treatment. However, it is difficult to maintain sufficient dosage of an 

anticholinergic agent for expected efficacy without causing significant adverse events, 

such as dry mouth, gastrointestinal disorder, and urinary retention, thereby limiting its 

use [27−29].  

Several central nervous system (CNS) transmitter systems, including adrenaline, 

noradrenaline, gamma-aminobutyric acid, opioids, dopamine, and glutamate 

transmissions are known to be involved in micturition control. Serotonin (5-HT) and its 
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receptors may also play an important role in the regulation of micturition reflex (Figure 

1). Pharmacological studies suggested that serotonin 1A (5-HT1A) receptor stimulation 

by administration of its agonist, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), 

decreased the volume threshold for bladder contractions and facilitated voiding. On the 

other hand, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-

pyridinyl)cyclohexanecarboxamide (WAY-100635), a silent 5-HT1A receptor antagonist, 

increased residual bladder volume and thus markedly reduced voiding efficiency [30]. 

Compounds with higher selectivity for 5-HT1A receptors may therefore provide a 

significant option for the treatment of OAB.  

1-{1-[2-(7-Methoxy-2,2-dimethyl-4-oxochroman-8-yl)ethyl]piperidin-4-yl}-N-

methyl-1H-indole-6-carboxamide fumarate (E2110; Figure 2) is a novel compound with 

high selectivity and affinity for 5-HT1A receptors in the rodent brain in vitro. 

[35S]guanosine-5’-O-(3-thio)-triphosphate (GTPγS) binding studies have demonstrated 

that E2110 is a full antagonist of 5-HT1A receptors.  

As the occupancy of target receptors by a therapeutic agent is intimately 

correlated with the intensity of its pharmacological effects, measurements of receptor 

occupancy (RO) may offer an objective index for assessing pharmacokinetics (PK) and 

pharmacodynamics (PD) of such a drug or drug candidate. Positron emission 
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tomography (PET) has been recognized as an important tool in drug development, since 

it is capable of providing valuable information on PK, BBB penetration, and PD of a 

receptor ligand, as exemplified by RO, in living brains of diverse species including 

rodents and humans. Translation of target RO data from preclinical species to humans 

may be a viable strategy for predicting clinical efficacy and optimal dosage of a novel 

therapeutic agent, given that the relationship between RO and clinical effects has been 

established. 

This approach relies upon an understanding of the relationship between drug 

concentrations in plasma and CNS that results in a specific level of target occupancy. A 

PK/PD modeling approach has also been used to describe the relationship between drug 

concentrations and RO. A maximum effect (Emax) model to describe this relationship 

was typically applied to the PD assay, but such “static” approach could be of 

insufficient accuracy, particularly in case of distribution of the drug from plasma to 

brain or binding kinetics of the drug at the receptor being relatively slow. An optimal 

assessment requires determination of RO and plasma concentration at multiple time 

points postdose. Indirect or effect compartment models may be more appropriate than 

direct models to describe the relationship between occupancy and plasma concentration 

in treatment with a drug with delayed BBB penetration and/or target PD [31].  
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In the present study, I examined the utility of 5-HT1A receptor PET imaging for 

obtaining a surrogate marker for assessing therapeutic effects of E2110 on urinary 

bladder dysfunctions. Occupancy of central 5-HT1A receptors by E2110 was determined 

in rats using PET with a radiotracer, [11C]WAY-100635. A compartmental PK/PD 

modeling approach was then utilized to describe the relationship between plasma 

concentration of E2110 and 5-HT1A RO by E2110 in several regions of rat brains at 

different time points after its oral administration. The results have supported the 

preclinical use of PET in combination with analytical models to predict PK/PD of a 

drug in humans. 

 

§ 2 Materials and Methods 

Animals 

The research protocols of the present work were approved by the Animal 

Ethics Committee of the National Institute of Radiological Sciences and the Animal 

Ethics Committee of Eisai Co., Ltd. and were performed in accordance with the 

Principles of Laboratory Animal Care (NIH publication No. 85-23, revised 1985). 

Male and female Sprague-Dawley (SD) rats were purchased from Japan SLC 

(Hamamatsu, Japan) and Charles River Japan Inc. (Kanagawa, Japan). All rats were 
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kept in animal rooms maintained at 20−26°C and illuminated from 7 am to 7 pm daily, 

with ad libitum access to food and water. 

 

Reagents 

E2110 was synthesized at Eisai Co., Ltd. (Japan). WAY-100635 maleate, 5-HT 

and 8-OH-DPAT were from Sigma-Aldrich (St. Louis, MO, USA). [3H]2'-

methoxyphenyl-(N-2'-pyridinyl)-p-fluoro-benzamidoethyipiperazine ([3H]MPPF) was 

from PerkinElmer Life & Analytical Sciences (Boston, MA, USA). Tamsulosin 

hydrochloride was purchased from WAKO Pure Chemical Industries (Osaka, Japan). All 

other reagents and chemicals were of analytical grade, and were commercially available.  

 

Binding assay in rat hippocampal membrane fraction  

Rat hippocampal samples were weighed, homogenized in 10-fold volume of 50 

mM Tris-HCl (pH 7.4) on an ice bath, and centrifuged (50,000×g, 4°C, 20 min). The 

precipitate was further homogenized in a 10-fold volume of 50 mM Tris-HCl (pH 7.4) 

on an ice bath and centrifuged (50,000×g, 4°C, 20 min). The obtained precipitate was 

homogenized in 50 mM Tris-HCl (pH 7.4) to render a concentration of 100 mg tissue 

eq./mL. The obtained microsomal fraction was stored as a receptor stock solution at 
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−80°C until use. In saturation binding experiments, the suspension of hippocampal 

membranes (5 mg tissue eq./tube) in the tube was incubated with different 

concentrations (0.03−7.77 nM) of [3H]MPPF in a total 1 mL reaction volume at 25°C 

for 60 min. The reaction was terminated, and bound radioactivity was separated from 

free radioligands by filtering and washing three times with 3 mL of 50 mM Tris-HCl 

(pH 7.4). The radioactivity content of the filters in 5 mL of liquid scintillator 

(Atomlight; PerkinElmer) was counted by TR2500 scintillation counter (PerkinElmer 

Life & Analytical Sciences). The specific binding was determined as the difference 

between total and nonspecific binding, measured in the absence and presence of 100 μM 

5-HT. Data were analyzed by Scatchard plot to estimate equilibrium constant (Kd) 

values. For the competition experiments, binding assays were carried out using 0.3 nM 

[3H]MPPF in the presence of various concentrations of E2110 (0.01 to 10 nM) or WAY-

100635 (0.03 to 30 nM). The IC50 values for E2110 and WAY-100635 were corrected to 

the Ki values using the Kd values of [3H]MPPF according to the following equation: 

d

50
i

K
]dradioligan[

1

IC
K

+
=      (1) 

where [radioligand] means the concentration of the radioligand used. 
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Protein binding of E2110 in rat plasma 

The in vitro unbound fraction of E2110 in male SD rat plasma was quantified 

by equilibrium dialysis. One mL of the E2110 spiked sample (100, 1000 and 10000 

ng/mL) and phosphate buffered saline (PBS) were applied to one and the other 

chambers of a dialysis cell, respectively. The cartridge was incubated in a water bath for 

24 hr at 37°C. After incubation, aliquots were sampled from both chambers and 

submitted to determination of the concentration of E2110 in each matrix by liquid 

chromatography-tandem mass spectrometry. Unbound fractions for each compound 

were calculated as the ratio of E2110 concentration from the PBS side to that from the 

plasma side of the dialysis apparatus. 

 

Radioligand synthesis 

[11C]WAY-100635 was prepared by 11C-acylation of WAY-100634 with 

[11C]cyclohexanecarbonyl chloride as previously described in detail [32]. Semi-

preparative reverse-phase HPLC was used for the purification of [11C]WAY-100635. 

Radiochemical purity of the radioligand was more than 95%. Average specific 

radioactivity of [11C]WAY-100635 was 196.4 ± 83.4 GBq/mmol at the end of synthesis 

(EOS). All injections of [11C]WAY-100635 were given within 30 min after EOS. 
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PET data acquisition 

All PET scans for rats were performed with a small animal-dedicated 

microPET FOCUS 220 system (Siemens Medical Solutions USA, Knoxville, TN, USA), 

which yields a 25.8 cm (transaxial) × 7.6 cm (axial) field of view (FOV) and a spatial 

resolution of 1.3 mm full width at half maximum at the center of FOV [33]. The rats were 

anesthetized with 1.5−2% isoflurane in air (flow rate: 2 L/min). Their body temperature 

was controlled using homeothermic controller and plate with a rectal probe, and their 

heart rates and arterial oxygen saturations were continuously measured by a pulse 

oximeter (CANL-425SVA; Med Associates, St. Albans, VT, USA). Respiration rates of 

these animals were also monitored with a custom-made monitoring system (Nagano 

Electronics, Hitachinaka, Japan). A 20 min transmission scan for attenuation correction 

was performed using a spiraling 68Ge−68Ga point source. Subsequently, list-mode scans 

were carried out for 90 min. All list-mode data were sorted and Fourier rebinned into 

two-dimensional sinograms (frames: 4 × 1, 8 × 2, and 14 × 5 min). Images were 

thereafter reconstructed using two-dimensional filtered back-projection with a 0.5 mm 

Hanning filter. [11C]WAY-100635 was injected via the tail vein as a single bolus at the 

start of emission scanning. The injected dose of the radiotracer was 85.3 ± 28.6 MBq/rat 

(mean ± SD).  
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PET data analysis 

Anatomical regions of interest (ROIs) were placed on the medial prefrontal 

cortex (MPFC) and dorsal raphe nucleus (DRN) using PMOD® image software (PMOD 

Group, Zurich, Switzerland) with reference to the MRI template. Radioligand binding 

was examined by calculating the binding potential (BPND; ratio at equilibrium of 

specifically-bound radioligand to that of nondisplaceable radioligand in tissue) based on 

a simplified reference tissue model (SRTM) [34] using the cerebellar time-radioactivity 

curve as reference. Occupancy of 5-HT1A receptors by E2110 was calculated using the 

following equation: 

baseline,ND

drug,NDbaseline,ND

BP
BPBP

RO
−

=
 
    (2) 

where BPND, baseline and BPND, drug are estimated BPND at baseline and following drug 

administration, respectively. 

 

Rat RO study 

To examine the dose-RO relationship at a single time point, four male SD rats, 

which had undergone a baseline PET imaging in advance, were scanned with PET at 4 

hours after being pretreated with 4 oral doses (0.3, 1, 3, 10 mg/kg) of E2110. In this 

assay, approximately 250 μL of blood samples were collected from the tail vein upon 
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initiation of the scan for quantification of plasma concentration of E2110. Furthermore, 

RO at different time points after the drug administration was examined by conducting 

PET scans of four male SD rats at 2, 4, 6 or 8 hours after pretreatment with a single oral 

dose of 1 mg/kg E2110. In addition to this series of PET assays for male rats, pilot PET 

scans for female rats (n = 3) were carried out at baseline and 4 hours after oral 

administration of 0.1 mg/kg E2110 to examine whether relationships between plasma 

concentration of E2110 and RO by this drug in the brain are consistent between two 

genders. In all experiments, scans for the same individual receiving E2110 were 

conducted more than 1 week apart. 

 

PK study in rats 

E2110 was administered orally to male and female SD rats, (4 animals/sex) at a 

dose of 1 mg/kg. Blood samples were collected from the jugular veins by heparinized 

syringes at 0.25, 0.5, 1, 2, 4, 6, and 8 hours after dosing. 

 

Quantitative bioanalysis. 

Concentrations of E2110 were determined in plasma or PBS by liquid 

chromatography-tandem mass spectrometry. Samples (5 μL) were injected into an L-
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column ODS (35 × 2.1 mm; 5 μm, Chemical Evaluation and Research Institute, Tokyo, 

Japan) with a flow rate of 0.6 mL/min. 0.1% formic acid in water and acetonitrile were 

used as mobile phase A and B, respectively. The gradient elution started with a gradient 

from 0% to 100% mobile phase B for 2 min, then 1 min of 100% B, followed by a 

gradient of 100% to 0% for 0.01 min at the end, at a flow rate of 0.6 mL/min. The mass 

spectrometer (Quattro Ultima-Pt; Micromass, Waters Ltd., Manchester, UK) was 

operated in a positive ion multiple reaction monitoring mode. E2110 was monitored 

using mass transitions of 490.4/459.2. Tamsulosin was used as an internal standard, and 

was monitored using a mass transition of 409.3/200.0. The lower limit of quantification 

of E2110 in plasma was 0.5 ng/mL. 

 

PK/PD modeling 

1) Analysis of dose-RO relationships 

As described in previous studies on 5-HT1A receptor antagonists [35−37] the 

relationship between RO and plasma drug concentration at equilibrium can be described 

according to the law of mass action by the curvilinear function, based on the assumption 

that the free brain concentration is equal to free plasma concentration and the free 

fraction in plasma is not concentration-dependent: 
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p
p

app
d

max C
CK

RO(%)RO
+

=
 
   (3) 

where ROmax is the maximum occupancy that can be induced by E2110, Kd
app the 

apparent equilibrium constant, and Cp the plasma concentration of E2110. This model is 

analogous to the Emax model: 

p
p50

max C
CEC

EE
+

=
 
     (4) 

where Emax (ROmax) is the maximum effect (maximum RO) and EC50 (= Kd) is the 

E2110 plasma concentration required to produce 50% of Emax. EC50 can be converted to 

“free” based EC50 by multiplying the unbound fraction ratio in plasma. In this study, the 

relationship between E2110 plasma concentration and RO was characterized by fitting 

the Emax model to the experimental data. 

 

2) Time-course study 

The effect compartment model is illustrated in Figure 3. The mean plasma 

concentration profile of E2110 in each of four rats was fitted by two-compartment 

model with first order absorption and elimination. A sigmoid Emax model (Equation 4) 

based on the concentration in the effect compartment was fitted to the PD (RO) data. PK 

and PD models were linked using an effect compartment model [38] described by the 

following equation: 
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)CC(k
dt

dC
ep0e

e
−=      (5) 

where Cp and Ce are concentrations of E2110 in the plasma and effect compartments, 

respectively, and ke0 represents the equilibration rate constant for the effect 

compartment. PK and PD parameters were estimated by using SCIENTIST (Version 

2.01, MicroMath Research, UT, USA). 

 

Pharmacological tests 

Female SD rats were used for pharmacological assays to assess effects of 

E2110 on micturition functions, since insertion of a urinary catheter into the bladder 

could be readily performed in female rats. 

 

1) 5-HT1A receptor agonist-induced model of OAB 

Catheter implantations and cystometric investigations were performed based on 

the reported method [39]. Briefly, on the day before the cystometric experiment, female 

SD rats were initially anesthetized with pentobarbital (50 mg/kg, IP). Catheters were 

inserted into the femoral vein, the dome of the stomach and the dome of the bladder. In 

the cystometric study, the bladder catheter was connected to an infusion pump and a 

pressure transducer (DX-312; Nihon Kohden Co., Tokyo, Japan) by three-way stopcock. 
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Saline was infused into the bladder and femoral vein. After bladder pressure was 

stabilized, 8-OH-DPAT (0.06 mg/kg/hr) was infused into the femoral vein instead of 

saline. Bladder pressure was monitored with a pressure transducer and a pressure 

amplifier (AP-601G; Nihon Kohden), and recorded on a pen recorder (WT-645G; Nihon 

Kohden). The following three micturition intervals (i.e., intervals between consecutive 

peaks of bladder pressure induced at the time of bladder content evacuation) were 

obtained: (1) basal micturition interval (intervals before 8-OH-DPAT administration), 

(2) pre-administration micturition interval, (intervals immediately before administration 

of E2110 or vehicle), and (3) post-administration micturition interval (intervals 

observed between 1and 2 hr after administration of E2110 or vehicle). The change in the 

micturition interval after E2110 administration was used as an index of the efficacy of 

the treatment. E2110 (0.03, 0.1 or 0.3 mg/kg) or vehicle was administered to four 

groups of eight conscious rats orally. 

 

2) Superior colliculus lesion (SCL) model  

For lesioning of the brain to stimulate the micturition reflex, anesthesia was 

induced in female SD rats with 4% halothane and an N2O/O2 (2:1) gas mixture, it was 

maintained with 2% halothane, and each animal was mounted onto a stereotaxic 
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apparatus. The skull was then exposed, and holes were drilled for the superior collicular 

placement (anterior = + 2.0 mm; lateral = ±1.7 mm; horizontal = 0.0 mm) of a lesion 

electrode (TM-type tip; 0.7 mm × 1.5 mm). The bilateral superior colliculi were 

lesioned by electrical heating at 65°C for 4 min with a lesion generator (RFG-4; 

Muromachi Kikai Co., Ltd., Tokyo, Japan). Catheter implantations and cystometric 

investigations were performed with the same methodologies as in the 5-HT1A receptor 

agonist-induced model. E2110 (0.1, 0.3 or 1 mg/kg) or vehicle was administered to four 

groups of eight conscious rats orally. The three micturition intervals were obtained and 

drug-induced changes in the micturition intervals were evaluated. In this assay, the post-

administration micturition interval was defined as the average of the micturition 

intervals over an observation period between 0.5 and 1 hr after administration. 

 

Data presentation and statistical analysis 

Data are expressed as mean ± standard error of mean (S.E.M). In the 

pharmacological study, the statistical significance of differences between the vehicle- 

and E2110-treated groups was tested using one-way analysis of variance (ANOVA) 

followed by Dunnett’s multiple comparison test. A probability (p) value of < 0.05 (two-

sided) was considered statistically significant. All statistical analyses were performed 
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using the SAS software package version 8.1 or 8.2 (SAS Institute Japan Ltd., Tokyo, 

Japan). 

 

§ 3 Results 

Binding assay in rat hippocampal microsomal fraction 

The affinity of E2110 for rat 5-HT1A receptors was examined in brain tissues. 

[3H]MPPF bound to membrane preparations from the rat hippocampus with a Kd value 

of 0.92 nM. E2110 and WAY-100635 inhibited this [3H]MPPF binding in a 

concentration-dependent manner (Figure 4). Ki values of E2110 and WAY-100635 for 

rat 5-HT1A receptor were 0.045 nM (Table 1) and 0.121 nM, respectively. 

 

5-HT1A RO studies 

As MPFC and DRN represent brain areas enriched with post- and pre-synaptic 

5-HT1A receptors, respectively, ROIs were defined in these areas for subsequent 

analyses. As visually demonstrated by inhibition of [11C]WAY-100635 binding in 

representative PET images (Figure 5), E2110 dose-dependently induced 5-HT1A RO at 

single oral doses of 0.3, 1, 3, and 10 mg/kg in each region. The relationship between the 

plasma concentration of E2110 and its occupancy of 5-HT1A receptors could be 
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described by hyperbolic function (Equation 4, Figure 6). Since high doses of E2110 (3 

and 10 mg/kg) induced full occupancy of 5-HT1A receptors in both ROIs, Emax (ROmax) 

was fixed at 100%. By applying this Emax model, the E2110 plasma concentration 

required for 50% RO (EC50) was estimated to be 3.68 ng/mL (7.51 nM) and 2.64 ng/mL 

(5.40 nM) in MPFC and DRN, respectively (Table 1). 

 

Protein binding and PK in rat plasma 

The binding of E2110 to plasma proteins was not dependent on its 

concentration. The average percentage of protein-unbound E2110 in plasma was 6%. 

Male and female SD rats were given a single oral dose of E2110 (1 mg/kg). The time 

course of mean plasma concentrations was reasonably well described by a two-

compartment model with first-order absorption, as displayed in Figure 7. E2110 was 

rapidly absorbed following oral administration, with peak concentrations in plasma 

(Cmax) occurring within 1 hour after dosing in all groups of rats. Elimination of the drug 

from plasma occurred more slowly in females than in males. 

The PK parameters for E2110 derived from these data, consisting of half-life in 

plasma (t1/2), maximum concentration (Cmax), time at maximum concentration (Tmax), 

and area under the curve in the time course of plasma drug concentration from 0 to 8 
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hours after oral administration (AUC0-8hr), are summarized in Table 2. 

 

PK/PD modeling and simulation  

In addition to the plasma concentration of E2110, its occupancy of 5-HT1A 

receptors (Figure 8A) was monitored in four male SD rats over the time course of 8 

hours after a single oral dosing (1 mg/kg). The two-compartment model with first-order 

absorption fitted to the temporal profile of the mean plasma concentration of E2110 was 

then linked to an effect compartment sigmoidal Emax model (Figure 3). The peaking (1.5 

hr) and subsequent decline of 5-HT1A RO by E2110 were somewhat retarded relative to 

the plasma kinetics (Figure 8A), and this slight delay was also indicated by the 

hysteresis curve (Figure 8B). Estimated PD parameters derived from this analysis are 

listed in Table 1. The EC50 value for occupancy of 5-HT1A receptors by E2110 in MPFC 

and DRN were estimated to be 2.87 ng/mL (5.85 nM) and 3.61 ng/mL (7.38 nM), 

respectively. Despite the time lag between the plasma PK and brain RO, these values 

were rather close to those estimated by the direct model, indicating that there were no 

marked hysteresis effects. These PD parameters were utilized to simulate the 5-HT1A 

receptor occupancy versus time profiles in female SD rats (Figure 9). In order to assess 

the validity of this simulation data for predicting RO by E2110, an additional PET study 
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in female rats was performed to determine 5-HT1A RO at 4 hours after oral 

administration of 0.1 mg/kg of E2110, and found that RO values measured by PET were 

in good agreement with calculated data (Figure 9), justifying the use of simulation 

curves to estimate RO in female rats. 

 

Effects of E2110 on micturition reflex in rats 

The effects of E2110 on urinary function were evaluated in rats. The 

micturition intervals in female SD rats were markedly decreased from the basal level by 

intravenous infusion of 8-OH-DPAT (n = 8; Figure 10A) or SCL (n = 8; Figure 10B). 

Oral administration of E2110 at doses of 0.1−0.3 mg/kg in 8-OH-DPAT treatment and 

0.3−1 mg/kg in the SCL model experiment significantly (p < 0.05) prolonged the 

micturition intervals. According to the simulation data (Figure 9), 0.1 mg/kg of E2110 

induced 60−70% RO at 1−2 hours after dosing in 8-OH-DPAT treatment, and 0.3 mg/kg 

of E2110 resulted in 60−80% RO at 0.5−1 hour after dosing in SCL model. From this, it 

can be inferred that at least 60% RO is required for significant effects of E2110 on 

micturition. 
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§ 4 Discussion 

In recent years, PK/PD modeling has been increasingly applied in drug 

discovery and early drug development. Preclinical PK/PD studies may prompt a series 

of important mechanistic studies to investigate the relationship between plasma 

concentrations and resulting effects on a biomarker in later stages of clinical drug 

development. The PK/PD modeling and simulation approaches to preclinical 

pharmacology studies may help to understand the mechanism of action of novel 

compounds and target engagement in preclinical models. The present data have 

demonstrated the utility and robustness of in vivo PET imaging techniques to monitor 

RO in living brains of small animals. Both direct and indirect models yielded a good fit 

to the experimental data and similar EC50 values for the drug under development, E2110, 

validating the use of these methodologies in rats and, potentially, humans. The dose-

dependent effects of E2110 on bladder micturition function were consistently explained 

by the time course of RO induced by the drug, allowing prediction of pharmacologically 

efficacious doses of the drug by clinical PET estimation of RO. 

Based on the results of dose-response PET study conducted at a fixed time 

point after E2110 treatment, 5-HT1A RO was well fitted by a simple Emax model, and the 

free concentration-based EC50 value did not markedly differ between MPFC (0.22 



35 
 

ng/mL, 0.45 nM) and DRN (0.16 ng/mL, 0.32 nM). These findings indicate that E2110 

has equal antagonist activities against pre- and post-synaptic 5-HT1A receptors. 

Meanwhile, these free concentration-based EC50 values were approximately 10-fold of 

the Ki value (0.045 nM) calculated from the in vitro binding assay for 5-HT1A receptor. 

The supplemental study indicated that E2110 is a substrate for the BBB drug transporter 

P-glycoprotein in rodents, as the brain-to-plasma concentration ratio (Kp,brain) of E2110 

concentration in mdr1a/1b-knockout mice was ten times higher than that in wild-type 

mice (data not shown). Therefore, the free E2110 concentration in CNS tissues is 

assumed to be one-tenth of its free plasma concentration. On the basis of this 

assumption, the in vivo EC50 values corrected for the difference in free drug 

concentrations between plasma and CNS were estimated to be 0.045 and 0.032 nM in 

MPFC and DRN, respectively, and these values are comparable with in vitro Ki. This 

finding also supports the reliability of PET assays for anesthetized rats to quantify 5-

HT1A RO. Indeed, the use of isoflurane-anesthetized rats for 5-HT1A RO determination 

was justified in a reported [11C]WAY-100635-PET study, which demonstrated that in 

vivo ED50 value for pindolol in the hippocampus (5.6 mg/kg) was rather close to 

hippocampal ED50 value (8.5 mg/kg) estimated by an ex vivo autoradiographic 

measurement for unanesthetized rats [40]. 
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The time course of 5-HT1A RO and plasma PK after a single oral dose of E2110 

(1 mg/kg) offered details of the PK-RO relationships for this drug, and enabled 

simulation of RO in pharmacological models. This effect compartment model well 

described the temporal profiles of 5-HT1A RO, and the EC50 values based on this PK/PD 

modeling were estimated to be 2.87 ng/mL (5.85 nM) and 3.61 ng/mL (7.38 nM) in 

MPFC and DRN, respectively. Hysteresis was observed in a plot of the relationship 

between plasma concentration and 5-HT1A RO, and this lag time is typically observed 

for centrally acting compounds, due to either rate-limiting BBB passage of the 

compounds or slow receptor on/off targets [41]. Although such delay was observed 

between RO and plasma PK of E2110, the EC50 values calculated with the direct and 

effect compartment models were nearly equivalent. Additionally, estimates of the 

equilibration rate constant (ke0) were relatively large, indicating a rapid equilibration 

with the CNS biophase (CNS equilibration t1/2 of 1.4 hours). 

Therefore, hysteresis effects on the target binding of E2110 were minor in the present 

study.  

The present work also demonstrated a profound difference in plasma PK 

profiles of E2110 between male and female SD rats (Table 2). Overt gender differences 

in expression levels of enzymes involved in drug metabolisms were reported in a 
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previous rat study [42], and Chovan et al. documented that substrates of human drug-

metabolizing enzyme cytochrome P450 3A4 (CYP3A4) were mainly metabolized by 

cytochrome P450 3A1/2 and 2C11 in rats [43], and expression levels of these enzymes in 

male rats are known to be higher than in female rats [42]. In addition, the unpublished 

results indicated that E2110 was primarily metabolized by CYP3A4 in human liver 

microsomes. Taking these findings together, it was supposed that the difference in 

plasma PK of E2110 between male and female rats is attributable to gender difference in 

the levels of hepatic cytochromes responsible for metabolism of this drug. Despite these 

effects of gender on PK, 5-HT1A RO in the female rat brain measured by PET was close 

to a value calculated by effect compartment model with ke0 determined in male rats 

(Figure 9), suggesting consistency of the PK-RO relationships between males and 

females. 

These findings in pharmacological tests have provided further support to the 

implication of 5-HT1A receptors in the control of micturition in rats [44, 45]. Numerous rat 

studies have indicated that 5-HT1A receptors have an excitatory physiological role in 

modulating micturition [46]. Both spinal and supraspinal 5-HT1A receptors constitute an 

efficient way to stimulate rat micturition. However, the modulation of the 5-HT1A 

autoreceptor has been proposed to interfere with the micturition reflex [44, 47]. 
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Administration of 8-OH-DPAT was reported to facilitate the voiding reflex, and this 

effect was inhibited by the pretreatment with 5-HT1A receptor antagonists such as WAY-

100635 and NAD-299 [39, 48]. The inhibitory effect of E2110 on the micturition reflex 

observed in the present work could accordingly be attributed to its action on supraspinal 

5-HT1A autoreceptors. In order to correlate the degree of 5-HT1A RO by E2110 yielding 

significant effects in pharmacological tests, I applied simulated temporal profiles of RO 

in DRN enriched with putative autoreceptors after oral doses of E2110 in female SD 

rats (0.03, 0.1, and 0.3 mg/kg). The minimum doses of E2110 exerting overt therapeutic 

effects on the micturition reflex in 8-OH-DPAT and SCL models were 0.1 and 0.3 

mg/kg, respectively. In reference to the simulated RO values, RO at these doses were 

estimated to be around 60% during the micturition monitoring period (at 1−2 hours 

postdose in the 8-OH-DPAT model and 0.5−1 hour postdose in the SCL model), 

demonstrating that RO around 60% or more was necessary for a significant effect on 

bladder function. Thus, for humans, the dosage of a 5-HT1A antagonist would need to be 

determined to achieve this range of RO as a requirement for therapeutic efficacies 

against OAB.  

In summary, these data support that occupancy of central 5-HT1A receptors 

quantified by in vivo PET is a useful biomarker surrogating anti-OAB effects of 5-HT1A 
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receptor antagonists. Although micturition is supposedly regulated by diverse 

neurotransmitter pathways at different levels in the central and peripheral nervous 

systems, the assessment PK-RO relationship using brain PET data would help to 

determine and/or predict effective doses of these candidate drugs in rat models. 

Meanwhile, several factors, including species differences in the protein-unbound 

fraction and the presence or absence of an active metabolite of such a provisional drug, 

should be taken into account in consideration of homology between EC50 values in 

laboratory animals and humans. Species differences in RO and PK-RO relationship 

would be assessable with the aid of comparative PET assays. 
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Chapter. 2 

PET-characterization of [11C]E2110 binding to 5-HT1A receptors 

in rat brain. 

 

§ 1 Introduction 

In the Chapter 1, it have been demonstrated that PET can evaluate the ligand-

target interaction of novel CNS drugs by examination of the competition for specific 

radioligand binding to the target (occupancy studies). Moreover, these tools can provide 

an understanding of the level of receptor occupancy required for pharmacological effect. 

The current results support that molecular imaging approaches with using target-specific 

PET tracers provide the useful information about the correlation between CNS target 

coverage and drug pharmacokinetics.  

If a suitable PET radioligand for the target exists, it would be a very powerful 

translational tool in preclinical research, allowing the measurement of binding 

characteristics of the target (Kd and Bmax) in tissues across species as well as enabling 

assessment of target occupancy during the lead optimization in drug discovery process 

with the unlabeled compound of interest. Furthermore, such a tool can be used to 

correlate target occupancy of a drug candidate with preclinical efficacy and target 
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engagement experiments to support the proof-of-concept (POC) in preclinical stage and 

to estimate the effective dose selection in clinical studies. However, drugs being 

developed at an early stage in the drug discovery often act at totally novel molecular 

sites and, as such, usually there are no existing radioligands acting at these targets. 

Therefore, in the absence of radioligands which directly and specifically label target 

molecules, the use of a radiolabeled version of candidate itself would provide useful 

information about the target-drug interaction.  

In this study, [11C]E2110 was synthesized as the tracer for the central 5-HT1A 

receptor and in vivo binding potential was evaluated. E2110 showed a high affinity for 

5-HT1A receptor in in vitro receptor binding study and it was also shown by in vivo PET 

study with [11C]WAY-100635. Estimated affinity of E2110 to the receptor was 

applicable for imaging of central 5-HT1A receptor as a PET tracer. However, it was 

concerned about the effect of the brain efflux transporter, P-gp, on the distribution of 

E2110 to the brain. Therefore, in this study, elacridar was used as the chemical inhibitor 

for P-gp to improve the brain distribution of [11C]E2110. Under the condition of 

inhibition of P-gp by elacridar, the pharmacological characterization of E2110 was 

conducted by radiolabeling E2110 itself. Binding potential of [11C]E2110 was calculated 

by the transient equilibrium method. Transient equilibrium method has been widely 
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used to investigate the density (Bmax) and affinity (Kd) of labeled compounds [49−51]. In 

experiments in vivo, the ratio of concentration bound to targets (CB) and 

nondisplaceable radioligand in brain (CN) is equal to BP when dCB/dt = 0. This moment 

is called transient equilibrium. To avoid cumbersome arterial blood sampling, CN(t) has 

been approximated with the time-activity curve (TAC) from a reference tissue devoid of 

specific binding sites CREF(t) [52, 53]. The TAC for CB(t) has then been calculated as brain 

tissue radioactivity (CT(t)) minus CREF(t). Although some limitations were noted the use 

of CREF(t) instead of CN(t) [53−56], this simple approach can be useful to determine for the 

evaluation of ligand-target interaction in early preclinical stage.  

Based on the calculated binding potential by transient equilibrium method, 5-

HT1A receptor affinity and density of E2110 was estimated. By using a small-animal 

PET with [11C]E2110, ligand-target interaction was directly evaluate and the utility of 

this methodology in the early drug discovery stage was discussed 

 

§ 2 Materials and Methods 

Reagents 

E2110 was synthesized at Eisai Co., Ltd. (Japan). Elacridar (GF120918) [N-(4-

(2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl)phenyl)-9,10-dihydro-5-
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methoxy-9-oxo-4-acridine carboxamide] was purchased from Toronto Research 

Chemicals (Toronto, Ontario , Canada). 

 

Animals 

The research protocols of the present work were approved by the Animal 

Ethics Committee of the National Institute of Radiological Sciences and were 

performed in accordance with the Principles of Laboratory Animal Care (NIH 

publication No. 85-23, revised 1985). 

Male SD rats were purchased from Japan SLC (Hamamatsu, Japan). All rats were kept 

in animal rooms maintained at 20−26°C and illuminated from 7 am to 7 pm daily, with 

ad libitum access to food and water. 

 

Synthesis of radiotracers 

[11C]CH3I was introduced to a solution of pre-E2110-OH (1.2 mg, 2.5 μmol) 

and NaOH (0.5 mol/L solution, 6 μL, 3 μmol) in DMF (300 μL) at 0 °C. The reaction 

mixture was heated at 40 °C for 3 min and purified by HPLC (Capcell Pak C18, S-5 μm, 

10 mm ID ×250 mm, Shiseido Co., Ltd., Tokyo, Japan) using the mobile phase of 

Acetonitrile/H2O/Tetraethylammonium (TEA) (5/5/0.01, v/v/v) at a flow rate of 6.0 
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mL/min to give 1.05 GBq of [11C]E2110. The tR of [11C]E2110 was 7.3 min for 

purification and 6.4 min for analysis on HPLC (YMC Pack Pro C18, S-5 μm, 4.6 mm 

ID ×150 mm, YMC Co., Ltd., Kyoto, Japan) using the mobile phase of Acetonitrile 

/H2O/TEA (5/5/0.01, v/v/v) at a flow rate of 1.5 mL/min. The synthesis time from EOB, 

28.1 min; radiochemical yield decay-corrected), 9.2 % based on [11C]CO2; 

radiochemical purity, > 99%; specific activity at EOS, 213 GBq/μmol (n = 7). 

 

Elacridar treatment and PET scan 

All PET scans for rats were performed with a small animal-dedicated 

microPET FOCUS 220 system (Siemens Medical Solutions USA, Knoxville, TN, USA), 

which yields a 25.8 cm (transaxial) × 7.6 cm (axial) field of view (FOV) and a spatial 

resolution of 1.3 mm full width at half maximum at the center of FOV [33]. A 20 min 

transmission scan for attenuation correction was performed using a spiraling 68Ge−68Ga 

point source. Subsequently, list-mode scans were carried out for 150 min. All list-mode 

data were sorted and Fourier rebinned into two-dimensional sinograms (frames: 4 × 1, 8 

× 2, and 26 × 5 min). Images were thereafter reconstructed using two-dimensional 

filtered back-projection with a 0.5 mm Hanning filter.  

Elacridar, 3 mg/kg, was administered intravenously 30 minutes before tracer 



45 
 

injection. [11C]E2110 was injected via the tail vein as a single bolus at the start of 

emission scanning. The injected dose of the radiotracer was 126.5 ± 10.9 MBq/rat 

(mean ± SD). For the determination of densities and affinities, the tracer containing 

various amounts of cold mass (0, 10, 30, 60, and 600 nmol) for 5 different PET scans 

was used. In experiments, scans for the same individual receiving E2110 were 

conducted more than 1 week apart. 

 

PET data analysis 

Anatomical regions of interest (ROIs) were placed on the medial prefrontal 

cortex (MPFC), hippocampus (HIP) and cerebellum (CER) using PMOD® image 

software (PMOD Group, Zurich, Switzerland) with reference to the MRI template. 

Time-radioactivity curve of each region was expressed in %ID/mL, normalized to the 

injected radioactivity, and plotted against time. 

 

In vivo Scatchard analysis 

The data were obtained at systematically varied ligand concentrations and 

analyzed by means of Scatchard plots [53, 57, 58]. The binding parameters for [11C]E2110 

were obtained by performing 5 separate scans and various specific radioactivities on one 
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animal. For the low specific-radioactivity conditions, 10−600 nmol of cold E2110 was 

added to the tracer. The hyperbolic saturation curve of tracer binding was defined as: 

(6) 

In case of two-site binding, the hyperbolic equation (Equation 6) is modified to the 

following equation: 

(7) 

where B is the concentration of bound ligand (pmol/mL), F is the concentration of free 

ligand (pmol/mL), Bmax is the total receptor density (pmol/mL), and Kd is the 

dissociation constant (nM). The total radioligand concentration in the cerebellum 

(reference region) which was used as an estimate of F, since the density of 5-HT1A 

receptors is negligible in cerebellum. Specific binding (B) was defined as the difference 

in radioactivity between specific binding regions (ROIs) and reference region. Transient 

equilibrium is established when the radioactivity in each ROIs is maximal [53,57] and at 

this timepoint, the derivative for specific binding was 0 (dCb/dt =0). The equilibrium 

time was defined by fitting the curve for B to a 3-exponential equation [59]. The Bmax and 

Kd values were calculated by nonlinear hyperbolic analysis with the equation one-site 

model (Equation 6) or two-site model (Equation 7) using the fitting software Prism 

(GraphPad Software, San Diego, CA, USA). Also, the regressed hyperbolic curve (x is 
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F and y is B) was transformed to create the Scatchard plot graph (x is B and y is B/F). 

 

§ 3 Results 

Effect of Elacridar on [11C]E2110 brain distribution 

The representative PET images in brain with or without elacridar treatment are 

shown in Figure 11. Pre-treatment of elacridar (3 mg/kg, IV) dramatically improved the 

brain distribution of [11C]E2110. Also, high accumulation of [11C]E2110 was observed 

in a pattern consistent with the known central 5-HT1A receptor distribution [60]. 

Representative time-radioactivity curves of [11C]E2110 in each condition are also shown 

in Figure 11. 

 

In vivo Scatchard analysis by [11C]E2110 PET with multidose ligand treatment 

With increasing doses of unlabeled E2110, the radioactivity showed a stepwise 

attenuation in all regions. The dose-dependent reduction of [11C]E2110 binding to 5-

HT1A receptor in the multidose ligand assays was observed by alterations to the time 

curve of specific binding in MPFC and HIP. The transient equilibrium of specific 

binding was reached at 70−90 min in the MPFC, 55−75 min in the HIP. 
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Figure 12 shows the Scatchard plots for the MPFC and HIP. Equilibrium values 

for specific binding (B) and free [11C]E2110 concentration (F) were obtained at the 

point dCB/dt was 0. Based on the shapes of Scatchard plot of [11C]E2110, two-site 

binding model was used to fitting. The in vivo Bmax and Kd values of [11C]E2110 in two 

ROIs are summarized in Table 3. 

 

§ 4 Discussion 

The BBB prevents hydrophilic compounds from entering the CNS and is thus a 

major hurdle in designing drugs directed at the brain. It has been estimated that 98% of 

small-molecule compounds do not cross the BBB in sufficient amounts [61], and a lack 

of adequate brain exposure has contributed to a significant number of failures in the 

development of CNS drugs [62]. In CNS drug research, biodistribution study with 

radiolabeled compound can be useful in early preclinical stage to assess if the 

compound crosses the BBB and to evaluate in vivo affinity of the compound to the 

target. However, there are some difficulties in the case the compound might be a 

substrate of active transport systems in the BBB. The supplemental research indicated 

that E2110 could be a substrate of P-gp. P-gp is an adenosine triphosphate-driven efflux 

pump expressed at BBB. Many structurally unrelated drugs, including various 
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anticancer drugs, antidepressants, steroids, and HIV protease inhibitors, are substrate of 

P-gp and are extruded from the brain by this efflux pump [63, 64]. For the PET tracers, it is 

suggested that non-substrate for brain efflux transporters (e.g., P-gp and BCRP) are one 

of the criteria to be met ideally by radiotracers [65]. Based on the results of this study, in 

rats, the free E2110 concentration in brain tissues is assumed to be one-tenth of its free 

plasma concentration. In terms of the pharmacological property, E2110 showed the high 

binding affinity to the central 5-HT1A receptors both in vitro receptor binding assay and 

in vivo PET RO study with [11C]WAY-100635. For the estimation of in vivo affinity to 

the target molecules and investigation of the correlation to the in vitro assay results, 

receptor occupancy study with specific binding tracer is useful because this kind of 

study could be conduct at pharmacological active dose, and even if the test compounds 

might be a substrate of efflux pump in the CNS, the pharmacological efficacy would be 

evaluated by increasing a doses. On the other hand, in the case the evaluation of in vivo 

target affinity of compounds by radiolabeled version of compound, effect of the efflux 

pump at BBB would be significant on the brain distribution of compound.  

In animals, it has been reported that some inhibitors for these transporters are 

available to increase brain distribution [64, 66−68]. Elacridar (GF 120918) is widely used as 

P-gp and BCRP inhibitor [69, 70]. In in vitro, elacridar inhibited P-gp mediated transport 
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of the P-gp substrate [3H]paclitaxel in a P-gp-overexpressing cell line with inhibition 

constants (Ki) of 109 nM [71]. Preclinical studies have shown that elacridar potently 

inhibit P-gp function at the BBB as reflected by increased brain uptake of P-gp 

substrates, without displaying cytochrome P450-mediated pharmacokinetic interactions 

[68, 72, 73]. It has also been shown that elacridar is increasing brain distribution of 

verapamil and loperamide (ED50 = 1.2−2.4 mg/kg) with no effect on metabolism and 

plasma protein binding [67, 72]. Elacridar also significantly increased brain distribution of 

several tyrosine kinase inhibitors (TKIs) [74−79]. 

In the baseline experiments (i.e., before inhibition), the radioactivity level of 

[11C]E2110 in ROIs were rather low (Figure 11), which suggested that E2110 is 

efficiently kept out of brain by P-gp-mediated efflux. However, the brain distribution of 

[11C]E2110 was dramatically improved by 3 mg/kg of elacridar pretreatment. In this 

condition, the specific binding to the 5-HT1A receptor could be assessed by multidose 

ligand assays with the Scatchard analysis. In this study, B/F was estimated based on the 

equilibrium analysis in rat brain regions. 

[11C]E2110 was highly accumulated in ROIs and negligible in reference tissue. 

The obtained Scatchard plot indicated two-site binding model would be suitable for 
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fitting. Therefore, as shown in Table 3, two different types of [11C]E2110 binding 

parameters are estimated in each brain regions.  

As shown in Table 3, Kd and Bmax values in each region were calculated from a 

regression line with good correlation (R2 = 0.82−0.87). In MPFC, the estimated Kd 

value of high-affinity sites for 5-HT1A receptor was 0.5 nM. This value was about 10-

fold larger than the Ki value in in vitro receptor binding assay. Possible consideration for 

this gap between in vitro and in vivo is the difference of actual ligand concentration in in 

vivo this analysis. In in vivo RO study, Kd value was estimated by the concentration in 

cerebellum as free ligand concentration. However, this value includes the 

nonspecifically binding fraction of E2110 to the tissue. Therefore, the use of the total 

cerebellar activity as an estimate of the free ligand concentration leads to an 

overestimation of Kd value. In the Capter.1, the plasma protein binding of E2110 was 

calculated to be 94%. This result indicates E2110 would be nonspecifically bound to 

brain tissue and about one-tenth of E2110 concentration in reference tissue would be 

exist as free (unbound) form. On the basis of this assumption, the Kd value obtained 

from in vivo Scatchard analysis is almost equivalent that from in vitro receptor binding 

assay.  
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Elacridar pretreatment could modify the activity of P-gp at BBB, but a previous 

animal imaging study found some evidence for a non-uniform distribution of P-gp in rat 

brain. Laćan et al. quantified P-gp expression by Western blot analysis and found two 

times higher P-gp levels in cerebellum as compared to other brain regions (e.g. 

hippocampus, frontal cortex) of rats [80]. This report suggests that the in vivo binding 

study with P-gp substrate tracer have the potential to overestimate the affinity because 

of the regional heterogeneity of P-gp in brain. In this case, since cerebellum was used as 

reference tissue, it may be considered about two-fold difference would include in the 

estimation of Kd values. Also in HIP, Scatchard analysis suggested E2110 bound to the 

receptor with high affinity (Kd = 1.1 nM). However, the Kd value in HIP was about two-

fold higher than that in MPFC (0.5 nM). These regional differences of receptor binding 

affinity were also suggested in receptor occupancy study with [11C]WAY-100635. Based 

on the results of additional analysis of E2110 RO data, the EC50 value of E2110 in HIP 

was calculated to be 16.0 nM (Figure 13). These data indicated that E2110 may have 

different affinity to same receptor in different brain regions. Further study would be 

required to explain this unique behavior of E2110 to the receptors 

In present study, in vivo Scatchard analysis was performed for the 

determination of Bmax and Kd of E2110 using PET. The equilibrium analysis with 
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validated reference region [60,81,82] was useful to in vivo measurement for pharmacologic 

indices of this radioligand. Also, [11C]E2110 PET data combined with elacridar 

administration demonstrated that P-gp inhibitor can improve brain uptake and this 

approach would be a useful even if the radiolabeled compound is supposed to be a P-gp 

substrate. Non-uniform distribution of P-gp in brain was suggested that regional 

activities may need to be factored into PET kinetics of tracers that are substrate for P-gp 

to enable accurate quantification of receptor densities in in vivo. In many cases, lead 

compounds with desirable pharmacological activity may have undesirable properties 

related to pharmacokinetics in early preclinical stage. Present study demonstrated that 

PET imaging technique provides the opportunity to obtain proof of mechanism (POM) 

of the compound so that later studies can be performed with the confidence that the 

compound is acting as expected. In addition, the investigation of in vitro-in vivo 

relationship in pharmacological activity would help the optimal estimation of effective 

dose in human.  
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Conclusion 

In 2004, the Food and Drug Administration (FDA) released an article titled: 

“Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New 

Medical Products.”[83] In this article, the FDA defines biomarkers as “quantitative 

measures of biological effects that provide informative links between mechanism of 

action and clinical effectiveness” and surrogate endpoint as “quantitative measures that 

can predict effectiveness.” The purpose of this thesis is to evaluate the utility of 

quantitative molecular imaging using small-animal PET for CNS drug discovery and 

development as a biomarker. The interaction between central 5-HT1A receptor and 

E2110 which is a novel antagonist of this receptor was investigated by several 

methodologies including receptor occupancy, PK/PD modeling, and in vivo Scatchard 

analysis. Obtained biomarker response was used to predict the pharmacological efficacy 

in animal models and endpoint in preclinical stage was discussed. The primary 

observations in the present study are summarized as follows: 

1) The plasma concentration-dependent occupancy of central 5-HT1A receptors by 

E2110 was demonstrated by in vivo PET with specific tracer [11C]WAY-100635. The 

PET study indicated that the occupancy data would be a useful biomarker 

surrogating anti-OAB effects of novel 5-HT1A receptor antagonists. Also, the 
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assessment PK-RO relationship using brain PET data would help to determine 

and/or predict effective doses of E2110 in animal models.  

2) Binding parameters (Kd, Bmax) of E2110 for rat central 5-HT1A receptors were 

determined by using multidose ligand approach with radiolabeled E2110 

([11C]E2110). 3 mg/kg of elacridar treatment improved the brain uptake of E2110 

and successfully conducted the in vivo Scatchard analysis. The binding 

characteristics will aid the understanding the in vitro-in vivo correlation of 

pharmacological activity of compound and exposure-efficacy relationship in animal 

models.  

Throughout this research, the pharmacological activity of E2110 as a central 5-

HT1A receptor antagonist was well characterized in vitro and in vivo. As the results, the 

in vitro 5-HT1A receptor affinity (Ki) of E2110 in rat was close to the parameter that was 

estimated from PET receptor occupancy and Scatchard analysis in vivo. The relationship 

between pharmacological efficacy and 5-HT1A receptor occupancy was also assessed 

and was clarified as the target 5-HT1A receptor occupancy over 60% in the animal 

model of overactive bladder. With respect to the requirement of receptor occupancy for 

pharmacological efficacy of CNS targeted drugs, it has been reported that 60−80% of 

occupancy would be required for GPCR antagonists [84]. However, these occupancy 
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requirements still have to be discussed in terms of time point of occupancy assessment, 

and clinical relevancy of animal models and contribution of 5-HT1A receptor to the 

control of bladder function. In terms of the side effects that are related to 5-HT1A 

receptor blockade, Rabiner et al. evaluated the central 5-HT1A receptor occupancy by 

novel full antagonist, DU125530 [36]. Based on the report, DU125530 displayed a dose-

dependent occupancy of the 5-HT1A receptor in the human brain, reaching up to 72% 

with minimal side effects. These reports indicate E2110 would show the efficacy with 

no serious side effects by optimization of therapeutic dose based on the occupancy 

information. Therefore, PK/PD relationship established in this study would be useful in 

the translational approach to estimate the E2110 dose required for anti-OAB effect in 

further clinical trials. Also, these preclinical findings suggest that receptor occupancy is 

a meaningful PD biomarker for understanding the drug-receptor interaction that 

underlies a pharmacological effect and is useful for predicting the effective and safe 

dose ranges given drug candidate. E2110 have high affinity to 5-HT1A receptor and have 

shown pharmacological efficacy in animal model, but [11C]E2110 at a tracer level could 

not show the distribution to the brain. This result demonstrated that the contribution of 

P-gp efflux to brain penetration of E2110 was critical at a tracer dose, while a 

significant amount of E2110 could enter in brain at effective dose. In this study, the 
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brain penetration of [11C]E2110 was improved by pre-treatment of elacridar and in vivo 

binding parameters were successfully estimated by using small-animal PET. 

In recent years, imaging techniques are widely applied in drug discovery and 

development for evaluation of CNS drug disposition and for validation of disease 

biomarkers and tracers for novel targets [85−87]. Imaging at the molecular level provides a 

direct measure of mechanism of action, offering a more predictive measure of drug 

activity through the use of targeted image-based predictive biomarkers. As a result of 

these efforts, imaging is now being used to drive go/no-go decisions in early discovery, 

and there is a significant focus on developing and validating image-based biomarkers 

that are intended to be applicable for use in clinical trials. The results of this research 

also support the utility of using these techniques in the pharmacological characterization 

of novel drugs and propose the importance of information about pharmacokinetic 

properties. Translational PET research associated with PK/PD modeling and simulation 

in drug discovery and early clinical development would provide a sound basis for 

support of appropriate selection of candidate compound in preclinical stage and dose 

selection and optimization of dose regimens for early studies conducted in patients.  

CNS disorders have a complex etiology and very few animal models are 

available to predict clinical efficacy. In this thesis, the contribution of target occupancy 
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to the pharmacological efficacy was well characterized by PK/PD analysis using PET. 

This approach would also be used to the other CNS disorders if target molecule (e.g., 

receptor, transporter, enzyme) relevant to disease status. To avoid wasting time and 

resources, more reasonable and plausible approach would be required for future drug 

discovery. This imaging and modeling frameworks to develop a preclinical translation 

model could be applicable to other CNS drug discovery and development and contribute 

to improve productivity of pharmaceutical industries.  
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Figure 1 Serotonergic pathways controlling bladder functions in the rat. Descending 

projections from the brainstem raphe neurons to the spinal cord activate segmental 

interneurons that provide an inhibitory input to the parasympathetic preganglionic 

neurons (PGN) innervating the bladder. Blockade of inhibitory 5-HT1A autoreceptors in 

the raphe neurons enhances raphe neuron firing and, increases the release of 5-HT in the 

spinal cord. 5-HT activates excitatory 5-HT2C receptors on inhibitory interneurons, 

which then suppresses PGN firing [88].  
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Chemical name:  

1-{1-[2-(7-Methoxy-2,2-dimethyl-4-oxochroman-8-yl)ethyl]piperidin-4-yl}-N-methyl-

1H-indole-6-carboxamide fumarate 

Molecular formula: C29H35N3O4 · C4H4O4 (C33H39N3O8) 

Molecular weight: 605.68 (489.62 as free form) 

 

 

Figure 2 Chemical structure of E2110 
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Figure 3 Schematic illustration of a model for description of E2110 PK/PD. Cp, E2110 

concentration in the central compartment; Ce, E2110 concentration in the effect 

compartment; ka, absorption rate constant; ke0, equilibrium rate constant; V1, central 

volume of distribution; V2, peripheral volume of distribution 
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Figure 4 In vitro inhibition profiles of E2110 and WAY-100635 on 5-HT1A receptors. 

Inhibition of specific [3H]MPPF binding in rat hippocampal membrane homogenates 

was measured at various concentrations of E2110 (●) and WAY-100635 (○) 
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Figure 5 Representative PET images illustrating distribution of [11C]WAY-100635 in rat 

brains at baseline and after oral administration of E2110. PET images were generated by 

averaging dynamic data at 60−90 min after intravenous radiotracer injection, and were 

overlaid on the MRI template shown in the far left column. Coronal brain sections 

shown here were obtained at 1.0 mm (top row), -7.8 mm (middle row) and -12.5 mm 

(bottom row) from the bregma. ROIs (dotted lines) were defined on the MPFC (top 

row), DRN (middle row) and cerebellum (CER; bottom row). The radiotracer retention 

was presented as a percentage of the injected dose per unit tissue volume (%ID/mL) 
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Figure 6 Relationship between rat 5-HT1A RO (MPFC: ●, DRN: ◇) and E2110 plasma 

concentration. 5-HT1A RO was determined at 4 hours after oral administration of E2110 

at a dose ranging from 0.3 to 10 mg/kg. Symbols represent individual data from all dose 

levels (n = 4/dose level). 
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Figure 7 Plasma PK profile of E2110 after oral administration to rats. Symbols denote 

observed plasma concentrations (mean ± S.E.M, n = 4/time point) in male (●) and 

female SD rats (○). Lines represent fitting of a two-compartment PK model with first-

order absorption to the experimental data 
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Figure 8 Time course data of rat 5-HT1A RO in MPFC (●) and DRN (◇), and plasma 

E2110 concentration (thick dashed line) (A), and plot of RO against plasma E2110 

concentration at individual time points (B). 5-HT1A RO was determined at assigned time 

points after oral administration of E2110 at a dose of 1 mg/kg. Symbols represent mean 

± S.E.M at indicated time points (n = 4/time point). Lines indicate the predicted 

occupancy versus plasma concentration in MPFC (solid line) and DRN (dashed line) 
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Figure 9 Effect compartment model estimation of 5-HT1A RO in DRN after oral 

administration of E2110 at doses of 0.03, 0.1 and 0.3 mg/kg to female rats. Solid circle 

and error bars represent mean RO ± S.E.M measured by PET scans in female rats (n = 

3). 
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Figure 10 Effects of E2110 on micturition interval in 8-OH-DPAT-infused (A) and SCL 

(B) rats. Values are expressed as mean ± S.E.M. of eight rats in 8-OH-DPAT-infused and 

SCL models; * P < 0.05 versus vehicle (Dunnett’s multiple test) 
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Figure 11 Representative PET images illustrating distribution of [11C]E2110 and time-

activity curve in rat brains at baseline (A) and 3 mg/kg of elacridar treatment conditions 

(B). PET images were generated by averaging dynamic data at 0−90 min after 

intravenous radiotracer injection, and were overlaid on the MRI template. ROIs were 

defined on the MPFC, HIP and CER (as reference region). The radiotracer retention was 

presented as a percentage of the injected dose per unit tissue volume (%ID/mL) 
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Figure 12 Scatchard plot of [11C]E2110 specific binding in MPFC (●) and HIP (□). The 

continuous and broken lines show the regression lines for each region by two-site 

binding model. 
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Figure 13 Relationship between rat 5-HT1A RO (MPFC: ●, HIP: □) and E2110 plasma 

concentration. The continuous and broken lines show the regression lines for each 

region. Symbols represent individual data from all dose levels (see Chapter 1). 
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Table 1 In vitro pharmacological profile and in vivo PD parameter estimates for E2110. 

 In vitro    In vivo 
 5-HT1A 

receptor  
affinity 

  
ROI 

5-HT1A RO 

 
 

 Dose-response 
study  Time-course 

study 
Ki 

(nM) 0.045 EC50 
(nM) 

MPFC 7.51 (0.45*)  5.85 (0.35*) 
 DRN 5.40 (0.32*)  7.38 (0.44*) 

*: free concentration based value. 

 

 

 
Table 2 PK parameter estimates after oral administration of E2110 to male and female 

SD rats. 

Pharmacokinetic parameters  Male  Female  
t1/2 (hr)  1.5  2.6  

Cmax (μg/mL)  48.1  125.7  
Tmax (hr)  0.5  1  

AUC0-8hr (μg•hr/mL)  71.8  487.9  

 

 

Table 3 In vivo measurements of Kd, Bmax, and BP by Scatchard analysis in rat brain. 

Region 
 High Affinity  Low Affinity  

R2‡ 
 Kd1  Bmax1  BP1

†  Kd2  Bmax2 BP2
†  

MPFC  0.5  15.1  30.3  101.4  87.8 0.9  0.82 
HIP  1.1  13.1  11.9  51.5  42.1 0.8  0.87 

Unit: Kd (nM), Bmax (pmol/mL) 
†: BP = Bmax/Kd 
‡: Coefficient of determination. 
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