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ABSTRACT 
 "A study on local neuro mass dynamics in the neocortex of rats" 

submitted by 

Takeshi Ogawa 

Advisors: Prof. Jorge Riera and Prof. Ryuta Kawashima 

 It has been pointed out recently that sound codification in the primary auditory cortex 

(A1) of rats is accomplished through neuronal networks with functional distributions by layer. 

Sparsely organized pyramidal cells (PCs) reside in the supragranular layer (SG layer) while 

dense-distributed PCs reside in the infragranular layer (IG layer). PCs from both populations, 

together with putative interneurons (INs), do not always show trivial tuning characteristics for 

fundamental sound attributes, as it was thought in the past. However, the spatial localization of 

such specialized neuronal networks has not been investigated. Furthermore, most of these 

neurons have been classified from the signatures they leave on multiunit activity (MUA), but 

the relationships that neuronal spiking has with underlying sub/supra-threshold postsynaptic 

activities (i.e. local field potential: LFP) have not yet been clarified. 

 In this thesis, therefore, we aim to clarify the sound codification system in A1 on the 

mesoscopic scale. To this end, we examined the following topics: a) the spatial aggregation to 

codify sounds attributes in A1; b) the spike-LFP relationships for the codifying neuronal 
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population in layers II/III, IV, and V; c) the laminar profiles for the different neuron types of 

those populations that employ dissimilar schemes for attribute codification in the A1 of Wistar 

rats.  

 We used extracellular potentials recorded simultaneously from 64 sites inside the A1 

of adult Wistar rats, based on the MRI guide’s method. These extracellular potentials were 

used to evaluate neuronal codifiers for fundamental attributes, which were selected for their 

peculiar MUA dose-response curves. Second, we estimated the current source density (CSD) 

and the time-variant power spectrogram from LFPs in each layer. After that, we evaluated the 

temporal correlation between MUA and CSD. 

 We demonstrated that the neuronal populations lying behind MUA and CSD were 

sparsely and heterogeneously distributed along the A1, even though the compilation of them 

showed tonotopic organization. The majority of codifying neurons were PCs showing laminar 

profiles. MUA was correlated to β postsynaptic oscillations in the IG layer, while the SG layer 

revealed a better correlation between MUA and γH postsynaptic oscillations. 

 We concluded that, for rats, sounds are codified in the A1 by a sparsely segregated 

network involving specialized PCs. Additionally, their postsynaptic activity may create the 

proper conditions for the emergence of sparse and dense spiking patterns. 
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Chapter 1. Introduction 
 

1.1 Topological sounds representation in the neocortex 

1.1.1 Tonotopic representation 

 The codification of the fundamental attributes of a sound, i.e. the timbre, the pitch, 

and the loudness, has for many years now been thought to occur by means of topologically 

distributed assemblies of neurons exhibiting attribute-dependent tuning effects, which exist at 

several auditory relay regions along the afferent pathway. The tonotopic representation 

constitutes the most universal of such topological distributions for sound segregation in 

mammals, i.e. a correlation between spatial locations and preferable pure tone frequencies 

which is preserved from the cochlea to the neocortex1) - 4). Frequency selective neurons 

usually show V-shape tuning curves with spectral bandwidth Q10 (Q40) for the near (away) 

response threshold. In the primary auditory cortex (A1), such organization was discovered in 

cats by Woosley and Walzl5). The tonotopic representation has not only been described initially 

by electrophysiological recordings based on multi-unit activity (MUA)6), but lately, also by 

more contemporaneous recording techniques such as the optical imaging of intrinsic signals7), 

8). 
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1.1.2 Iso-frequency axis 

 A consensus has not yet been reached on whether or not a spatial code for the 

periodicity of sounds in the A1 of mammalians exists. Although some studies have reported 

that a pitch-selective area in monkeys likely exists along the borderline delimiting the rostral 

field and A19), 10), others have proposed that neurons sensitive to pitch variations spanned the 

entire A1 for both rats11) and ferrets12), 13). These pitch-selective neurons have a peculiar 

spatial organization along the dorso-ventral axis of A1, as revealed using optical intrinsic 

signals in cats14). The role of the neurons, which is to select a sound’s particular pitch, has 

been explored recently15), 16). Our understanding of the spatial organization of neurons 

sensitive to the amplitude of sounds is rather incomplete. An early work by Schreiner et al. 

(1992), who based the analysis of topological codifiers on five parameters (i.e. threshold, 

transition-point, SRL, dynamic-range and monotonicity), was a major contribution17). These 

parameters originated from the dose–response curves for the spiking rate of particular neurons 

in the A1 of cats. Robust changes in the amplitude thresholds for characteristic frequencies 

have been found along the iso-frequency curves18). Nonmonotonic level coding schemes in 

the A1, known as intensity tuning, have been proposed to account for the level-invariant 

representations of the spectrum coding19), 20) and the specialized coders of low sound levels21). 
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1.2 Laminar structure in the primary auditory cortex 

1.2.1 Anatomical structure of the primary auditory cortex 

 In order to delineate and integrate auditory information, the sequence of processing 

and the flow of information are governed by stereotypical and precise connections between 

cortical layers. The auditory information from the thalamus enters the cortex by way of 

thalamocortical synapses. From the thalamocortical synapses, the information enters the 

neurons in cortical layer IV and these layer IV neurons then transmit information to neurons 

in layer II/III. Finally, information is transmitted to layer V22), 23). The morphometory of 

neurons in layer II and layer III pyramidal cells are different: layer III neurons had a classic 

pyramidal shape, whereas layer II cells lacked an elongated apical shaft and instead had 

dendrites that arborized parallel to the slice. At the level of local connectivity, the pattern of 

intracortical synaptic input was also distinct between these layers, especially along the 

tonotopic axis: layer II received columnar input, whereas layer III received out-of-column 

input. Some of the neurons in layer III projected to the contralateral cortex, as observed in the 

auditory cortex of the cat and rat24). 

 In the somatosensory and visual cortices, layer IV can be identified by the presence 

of a dense band of granule cells containing a high proportion of spiny interneurons25). 

Consequently, it is relatively easy to define the borders of layer IV. However, the auditory 

cortex has comparatively few spiny interneurons in layer IV and the faint “granular” 
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appearance it retains is due to the high proportion of small pyramidal neurons that are also 

present in layer III and V26). The lack of the dense aggregation of granule cells that define 

layer IV in layer III and V makes it difficult to identify either border of layer IV. Layer III and 

IV of the A1 merge into each other in both layers. The excitatory interneurons seem to be 

evenly distributed across all cortical layers of the A1 and may be associated with a different 

form of intrinsic processing than the other primary sensory areas18). 

 

1.2.2 Functional laminar profile in the primary auditory cortex 

 In recent studies, the layers create a difference in how auditory information is 

processed. We would like to highlight two studies very relevant to the results reported in the 

present study: i) the existence of layer-dependent processing modes15) and ii) the sparse 

organization of the neuronal codifiers in layers II/III27). Sakata and Harris (2009) found that the 

propagation patterns of neuronal activity in the layer II/III is sparse, but the neurons in layer V 

are densely activated15). Rothschild et al. (2010) observed neuronal processing at the cellular 

level by using an in vivo Ca2+ imaging technique in layers II/III A1 of mice. They found that 

neurons with the same preferential stimulus condition were not clearly organized, but they were 

connected to each other internally 27).  
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1.3 Neuronal processing on the mesoscopic scale 

1.3.1 Electrophysiological recording on the mesoscopic scale 

In the last two decades, biomedical engineers developed miniaturized silicon-based 

electrophysiological probes (multi-electrode array: MEA) which are composed of different 

spatial arrangements of shanks and a variety of microelectrode local configurations (Figure 

1.1)28). Using MEAs we can observe the extracellular potentials in all layers with high spatial 

resolution. From the recorded potentials, we can obtain low- and high-frequency signals 

called local field potentials (LFPs) and multi-unit activity (MUA), respectively. The 

postsynaptic activity creates gradients of potentials within the cortex which could be 

equivalent to the primary current source density (PCD). The method used to estimate PCD 

from LFPs is the current source density (CSD) analysis. PCD is equivalent to the CSD. 

Synchronized neuronal activities can be observed as MUA. Thus, extracellular recording on 

the mesoscopic scale is important for exploring the relationship between LFPs and MUA, and 

between LFPs and the electroencephalogram (EEG). Additionally, in order to interpret the 

physiological mechanism from those datasets, a proper analysis based on a physiological 

assumption is required. Mesoscopic scale recording involves three essential topics (a) spike 

sorting methods (b) identification of neuron-types, and (c) characterization of synaptic 

inputs28) - 30).  
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1.3.2 Local field potentials 

 Local field potential (LFP), the low-frequency part of the extracellularly recorded 

potential, is generated by the transmembrane currents of neurons. The potential is made of 

external reflections which come through a conductive extracellular medium of the ionic 

currents flowing across excitable membranes. The study of LFP is useful for understanding the 

genesis and propagation of long-lasting, time integrative, and the postsynaptic potentials 

ranging from several hundred micrometers to a few millimeters on the mesoscopic scale28), 31). 

The oscillations of the extracellular potentials are observable anywhere in the extracellular 

medium. 

 LFP contains neuronal oscillations which are rhythmic alternations such as δ (1−4 

Hz), θ (4−8 Hz), α (8−12 Hz), β (12−30 Hz), γ-low (30−90 Hz), and γ-high (90−170 Hz) 

waves. We summarized the role of each frequency band of LFP in Table 1.1. These 

oscillations play a role in various types of information processing in the brain, e.g. sleep, 

neuronal interactions between brain areas32), 33), memory formation34), and cognitive control of 

sensory input35). The time series of the above types of neuronal activities can be generally 

assessed by means of statistics computed in the time-frequency domain. The most common 

approaches are the use of a short-term Fourier transform (sFFT), Hilbert transform35), 

Gabor36) or wavelet transform32), 33),37), all of which are equivalent representations of the time 

series in terms of complex coefficients at each time and frequency (Figure 1.2). The power 
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and phase of a particular frequency band is obtained from the norm and angle of the complex 

coefficients, respectively. 

 The coupling of the neuronal frequency band could estimate neuronal activity (e.g. 

the MUA) in the sensory stimulus condition. The amplitude and phase of the low frequency 

band (δ or θ) and high frequency band (γ) are correlated, which is called phase-amplitude 

coupling (PAC) or frequency band coupling (FBC). These couplings could be credible 

estimators of the MUA under a visual attention task or multi-sensory evoked condition in 

monkeys. α and β oscillations are observable in the cortex for the neuronal activity of 

non-stimulus conditions such as sleep38) or an anesthetization 39). These oscillations are called 

spindle and their signal is a strongly non-stationary process. Spindle, observed in the primary 

sensory cortex, is generated by interneuronal oscillations in the thalamus. It propagates to the 

cortex along the thalamo-cortical pathway.  

In sum, LFP is largely observable and allows the information process to be accessed 

from the mesoscopic scale to the macroscopic scale. 

 

1.3.3 Current source density analysis 

 A CSD analysis is required for obtaining a good estimation of the underlying brain 

sources from LFPs. CSD analyses serve to illustrate instantaneous spatial profiles of local 

transmembrane currents, especially excitatory synaptic activations. LFPs are also thought to 
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be one genesis of EEG signals based on the dendritic processing of synaptic input. However, 

a direct interpretation from the physiological point of view is difficult. In certain cases, the 

CSD analysis is useful because it is a general method for the estimation of the CSDs from the 

measured LFPs. LFPs allow situations such as i) spatially confined cortical activity and ii) 

spatially varying extracellular conductivity to be handled. In recording with the MEA, the 

data set of LFPs consists of temporal and spatial information. Temporal information contains 

multiple frequency-band oscillations, which are time-variant non-stationary signals. In this 

case, the time-frequency analysis is carried out by means of some form of time-localized 

Fourier decomposition of single trials. In contrast, spatial information, such as the position of 

the electrode and the potentials, provides the position of excitatory synaptic activity. The CSD 

analysis provides us with the location of the current source and the spatial morphometry of 

the PCs in the cortex40) - 43). 

 

1.3.4 Multi-unit activity 

 Neuronal communication, which includes transformation, transmission and storage 

of information in the brain, is based mainly on the action potentials of the neuronal population. 

Action potentials produce large transmembrane potentials in proximity to their somata. These 

output signals propagate through a conductive medium into the extracellular space and can be 

measured by voltage with an insulated wire or electrode. A distance of 20 µm from the tip of 
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the electrode to the cell body can identify a given neuron’s extracellularly recorded spikes. 

However, in a single unit recording it is difficult to find which neuron is activated by the 

behavior or sensory stimulus. In contrast, the MEA can observe a hundred to a thousand 

neurons simultaneously in the extracellular space28). A method to analyze the multiple 

recorded neurons is required to identify and classify neuronal populations. Therefore, the 

methods used to identify neurons are important for understanding what the extracellular 

action potential is and what its features are. 

 

1.3.5 Spike sorting 

 Spike sorting is a method to detect spikes and identify neuronal populations. The 

procedures of spike sorting are basically as follows: a) detecting spikes from extracellular 

recorded data, b) extracting the character of multiple spike shapes, and c) classifying the spike 

patterns of neurons based on the extracted features. There are several basic methods for 

detecting the multiple spike shapes: the principle component analysis (PCA)30), 44) - 46), the 

independent component analysis (ICA)47), and the wavelets method48).  

 For spike sorting, the recorded data in the extracellular space is filtered with a 

high-frequency band (500–5000 Hz). Then several action potentials are detected with a 

threshold of 3−5 SD of the signals, in general. A simple way to classify the neuronal 

population is to measure features of the spike shape, such as spike height and width or 
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peak-to-peak amplitude. Plotting all of the spikes are as points and identifying the 

characteristics of the neurons to which a cluster belongs is one of the earliest approaches to 

spike sorting. 

 The clustering method is a technique to reveal clusters that are relevant to the 

classification of spike shapes. However, it is difficult to detect cluster boundaries without the 

aid of a computer. The analysis finds clusters in multi-dimensional data sets and classifies the 

data based on those clusters. A basic assumption underlying the clustering methods is that the 

data is the result of several independent classes, each of which can be described by a 

relatively simple model. This assumption fits the case of spike sorting rather well, as each 

action potential arises from different neurons49). The first task of clustering is to describe both 

the cluster location and the variability of the data around that location. The second task is, 

given a description of the clusters, to classify new data. A simple approach to classifying the 

data is the nearest-neighbor, or k-means, clustering which defines cluster locations as the 

mean of the data within that cluster50). A spike is classified to whichever cluster has the 

closest mean to it using the Euclidean distance. This method of classification defines a set of 

implicit decision boundaries that separate the clusters. Other approaches are the Bayesian 

classification49) and superparamagnetic clustering48), from which it is possible to obtain some 

idea of how well separated a class is from others. 
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Chapter 2. The purpose of thesis 
 

 Previous electrophysiological studies of A1 have mainly investigated the neuronal 

response to certain auditory stimulations or a particular neuronal response feature for several 

auditory stimulation paradigms in a particular layer. These observations in A1 could be 

focused on local neuronal activity, rather than neuronal population activity on the mesoscopic 

scale; except in a few studies15), 33). In order to interpret the underlying mechanism of the 

neuronal population’s activities on the mesoscopic scale in A1, however, we need to explore 

how neuronal population activity is recorded and which analysis should be applied. To this 

end, it is important to understand the relationship between LFPs and MUA. Furthermore, due 

to the expansion of the observable space, the feature extraction method is required to 

understand the large and complex recorded dataset. 

 In this thesis, our aim is to clarify the sound codification system in A1 on the 

mesoscopic scale. Thus, we will examine these main questions: a) the spatial aggregation to 

codify sounds attributes in A1; b) the spike-LFP relationships for codifying neuronal 

population in layers II/III, IV, and V; c) the laminar profiles for different neuron types of those 

populations that employ dissimilar schemes for attribute codification in the A1 of Wistar rats.  



 

13 

 

Chapter 3. Material and Methods 
 

 All experiments in the measurements were performed in agreement with the policies 

established by the “Animal Care Committee” at Tohoku University, Sendai, Japan. In this 

thesis, we performed three new techniques: a) we co-registered a rat brain atlas to localize A1 

for the a probe insertion; b) we performed a 3D extracellular recording in the A1 of rats under 

the complex audio stimulation in order to elucidate the relationship between LFPs and MUA 

in the sound processing; c) we calculated instantaneous CSD for each layer and obtained 

correlations between them and the instantaneous MUA. 

 

3.1 A hand-made combination three-dimensional probe 

 Our hand-made combination three-dimensional probe (3D probe) consists of two 

planar acute silicon-based probes (a4×8-5mm100-400-177, Neuronexus Technologies, Ann 

Arbor, MI) tightly attached with superglue. Each planar probe comprises 32-channels (8 active 

sites on 4 parallel probes with a vertical spacing of 100 μm). These two probes were assembled 

by hand with the help of the S6D microscope (LEICA, Wetzlar, Germany) in such a way that 

the shanks of both probes are parallel and their tips are aligned51). The distance between the 

planar probes for all experiments was 450 ± 50 μm. We evaluated the accuracy of the 3D probe 
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insertion in A1 from information in the vessel distribution. For each experiment, the relative 

position of the 3D probe and the vessels was obtained from both high-resolution photographs 

of the craniotomy area and the DiI-based vessel staining (Figure 3.1 B). The 3D probe was 

successfully inserted into A1 in three rats and partially inserted in the other four. In the 

analysis performed henceforward, we employed only those shanks that were allocated inside 

A1. 

 

3.2 MRI anatomical imaging and co-registration to the rat 

atlas 

 Animal experiments were performed in male Wistar rats (287−386g, N = 12). MRI 

data were acquired using a 7 Tesla Bruker PharmaScan system (Bruker Biospin, Ettlingen, 

Germany) with a 38-mm-diameter birdcage coil. Each rat was initially anesthetized with 5% 

isoflurane and then secured on a custom-built holder using adhesive tape and a bite bar. A 

breathing sensor (SA Instruments Inc., NY) was placed under the ventral face of the rat body. 

Anesthesia was further maintained with isoflurane (at 1 l/min oxygenation), administered via a 

face mask. Constant breathing rate was maintained around 50 breaths/min during MRI 

acquisition by manually maintaining the concentration of isoflurane at 1.5−2.5 %. Core body 

temperature was maintained at 37.0 ± 1 °C by means of a hot water-circulating pad. High 
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resolution T2-weighted images were obtained using a respiratory-gated 2-D TurboRARE 

sequence with fat suppression under the following parameters: TR = 4628 ms, TEeff = 30 ms, 

RARE factor = 4, effective spectral bandwidth = 100 kHz, flip angle = 90 degree, field of view 

= 32 × 32 mm2, matrix size = 256 × 256, in-plane resolution = 125 × 125 µm2, number of slices 

= 54, slice thickness = 0.5 mm, slice gap = 0 mm, and number of averages = 10. The total 

scanning time for T2-weighted imaging was about 50 min, depending on the respiration rate for 

each rat. T2-weighted images were utilized for normalization to the template of the rat brain 

atlas (Valdés-Hernández et al., under revision), which was, by construction, co-registered to a 

digitalized-atlas52). The normalized T2-weighted images were converted back to the native 

space (Figure 3.1 A, left: axial slice, center: coronal slice). The actual positions of two crucial 

landmarks for stereotaxic-guided craniotomy in rats, i.e. the bregma and the lambda, were 

also determined from the individual T2-weighted images. In the same way, we calculated 

approximately the point (PA1) where the A1’s center projects perpendicularly to the 

antero-posterior axis defined by these landmarks, a step that allowed us to determine the 

lateral distance from the sagittal suture to the center of the surface of A1. Based on the MRI 

data, we planned the site for the craniotomy as illustrated in Figure 3.1 A (right). 
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3.3 Surgical procedures 

 In the electrophysiological experiments, anesthesia was induced with urethane (1.2 

g/kg). The animal was placed on a stereotaxic stage, and the temporal muscles on the right side 

were retracted. A craniotomy was performed over the A1 based on the MRI-guidance and the 

accuracy of the method was latterly confirmed by the vessel distribution (Figure 3.1 B, top 

right). The dura was removed under the digital microscope KH-1300 (HIROX, Tokyo, Japan), 

and the cortex was covered with HEPES-buffered and Ca2+-free aCSF (150 mM NaCl, 2.5 mM 

KCl, 1 mM MgCl2·6H2O, 10 mM HEPES, 10 mM glucose, the pH was adjusted to 7.4 with 

tris-base). Two screws, used as a reference and ground for the extracellular recordings, were 

attached to the skull close to the lambda on the cerebellum53). 

 

3.4 Electrophysiological recording 

 The insertion length and angle of the 3D probe were accurately 

monitored/corroborated through a micromanipulator’s control system (SM5, Luigs & 

Neumann, Ratingen, Germany). The 3D probe was perpendicularly inserted 1050 μm into the 

cerebral cortex, the observable depth was 300−1000 μm from the surface. The microelectrode 

impedance in the probe ranged from 0.7−0.9 MΩ. 

 Extracellular potentials were recorded using amplifiers at 25 kHz (PZ2, TDT, Alachua, 
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FL) connected by an optical fiber to a signal processing unit comprising eight parallel CPUs 

(RZ2, TDT) and by a coaxial cable to a preamplifier located inside two acute 32-channel 18-bit 

hybrid headstages, respectively. By means of the 3D probe, we were able to simultaneously 

record extracellular potentials from eight different sites along the A1’s surface, a total of 64 

channels (Figure 3.1 B, bottom). All recordings were performed using an online 

logic/symbolic programming language supported by signal processing unit (OpenEx software, 

TDT). 

 

3.5 Auditory stimulation protocol 

 The auditory stimulation system was described in Figure 3.2 A. Acoustic stimuli were 

generated digitally by a custom-written code in MATLAB (R2009b, The Math Works, Natick, 

MA) and delivered with a D/A converter (National instruments, Austin, TX) and a speaker 

driver ED1 (TDT) to a calibrated condenser speaker ES1 (TDT). The stimuli were presented to 

the anesthetized animals, which were placed in a single-walled soundproof box, though a 

speaker with a customized ear tube inserted into the left ear canal (VIC international, Tokyo, 

Japan). Speaker calibration was conducted with a condenser microphone (UC-29, RION, 

Tokyo Japan) close to the tip of the ear tube. Before performing the amplitude modulation 

sound stimulation, we performed a pure tone stimulation paradigm (N = 5; 100 ms long; 
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carrier frequency: 8 kHz steps, 8−40 kHz; peak of amplitude: 10 dBSPL steps, 30−70 dBSPL, 

inter-stimulus-interval: 900 ms, repetition: 20 trials). The amplitude modulation sound (N = 6; 

200 ms long; carrier frequency: 16 kHz steps, 8−40 kHz; modulator frequency: 50, 200 and 800 

Hz; peak of amplitude: 20 dBSPL steps, 30−70 dBSPL, inter-stimulus-interval: 1.6 s, 

repetition: 10 trials, Figure 3.2 B) was the acoustic stimuli 14). Twenty-seven conditions were 

randomly prepared from the three sound attributes, i.e. frequency (fc), amplitude (Amp), and 

modulation (fm). One block contained all conditions and stimulation was repeated 10 times 

(Figure 3.2 B, bottom). 100-trial evoked potentials in total were recorded in each condition. 

 

3.6 Immunostaining 

 In order to co-localized the shanks of the 3D probe, DiO (Invitrogen) was gently 

applied to the surface of the back-side of the shank before insertion. After the 

electrophysiological experiments, each rat was transcardially perfused with 10 ml PBS, 10 ml 

PBS with 200 μl DiI (Invitrogen) for vessel staining and then fixed with 10 ml 4% 

paraformaldehyde54). Finally, the brain was removed and post-fixed in the same fixative all 

night at 4°C. A fluorescent image (Figure 3.1 B, top-left) containing information 2 about the 

shank positions (yellow-green) and the vessel distribution (bright red) was captured with an 

upright fluorescent microscope (SZX16). A sketch with the distribution of principal vessels 
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was produced for each rat (Figure 3.1 B, top right). Coronal sections (100- μm thickness) from 

the entire A1 were obtained from the post-fixed brains with Vibratome 1000-plus (LEICA). 

Fluorescent Nissl staining of each brain section was additionally performed51). Nissl staining 

images, co-localized with the shank traces, were obtained with the SZX16 microscope (Figure 

3.1 C).  

 

3.7 Data processing 

3.7.1 Pre-processing of the electrophysiological data 

 In Figure 3.3, we illustrated the flow chart of data processing. The extracellular 

potentials were processed by a custom-written code in MATLAB. LFPs and MUA were 

separated by the low-frequency bandpass filter (1−170 Hz, Figure 3.3, left part) and the 

high-frequency bandpass filter (500−5000 Hz, Figure 3.3, right part) respectively. The design 

of the bandpass filters was the Butterworth IIR-type. Single trial auditory-evoked potentials 

(AEPs) were estimated from the LFPs using the stimulus triggers, which were also recorded 

by an extra analog channel. 

 

3.7.2 MUA analysis: Codifiers of sound attributes 

 Spike sorting was performed offline. We used a free-downloaded toolbox, "wave clus", 

for semi-automatic detection of spike time 48). An amplitude threshold of 3.5 SD of the mean 
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amplitude was used for spike detection in each channel. A spike occurring within 1.5ms of the 

previous spike was not recognized35). The window size to count spiking rate was 10 ms and it 

moved in 1 ms- steps. In order to identify possible cortical sites for attribute codifiers, first the 

MUA in the eight channels of the same shank were normalized and integrated (Figure 3.4 A, 

example: 8 kHz, 50 Hz, 70 dBSPL). A respective interpolated-topographic map was created 

from the instantaneous (normalized/integrated) MUA in all shanks (Figure 3.4 B, 15 ms after 

onset). A peri-stimulus time histogram (PSTH) was calculated from the integrated MUA and 

compared with different conditions to define a particular codifier (Figure 3.4 C, shank 8 may 

contain information about a neuronal population codifying the amplitude of the tone with a 

carrier frequency of 8 kHz modulated at 50 Hz). 

 

3.7.3 Time frequency analysis for LFP in three layers 

 In order to evaluate the relationship between LFP and the three layers in the 

frequency domain, the spectrograms of pre- and post stimulus (from - 50 ms to 250 ms) were 

computed by sFFT for each trial. Normally, the power spectrum contains a low frequency 

component; hence, it is hard to identify the high frequency time-variant power (1/f problem). 

One of the ways to solve the 1/f problem is the Z score transformation. After calculating the 

mean spectrogram of all trials, the mean and the standard deviation of all frequency power in 

the pre-stimulus states were estimated following as: PZ_All = (PAll - mean(Ppre) ) / std(Ppre), 
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where, PZ_All is Z score matrix (time by frequency), PAll is the power spectrum, Ppre is the 

power of pre-stimulus. 

 

3.7.4 CSD analysis and amplitude-phase analysis 

 We used the iCSD method43) for a single shank with 8 channels (Appendix I). 

Therefore, the parameters used in this analysis were: a) 0.5 mm for the disk diameter d of the 

sources, b) 50 μm for the standard deviation of the Gaussian filter, and c) 3 mS/cm for the 

electric conductivity (homogenous media)51). The thickness l of the cortical columns for the 

A1 cortex was 2 mm. Assuming the barrel columns are perfect cylinders, their volumes V = π 

( d/2 )2 l would be 0.39 mm3. The CSD maps, resulting from the single trial AEP, were divided 

into three time-series, which summarized the CSD amplitude in the supra-granular (SG: 

250−450 μm), granular (G: 450−650 μm), and infra-granular (IG: 650−950 μm) layers (Figure 

3.5 A). Each time series was filtered (bi-directional bandpass filter) using six frequency bands 

(δ, θ, α, β, γL, γH). The Hilbert transfor was applied to each final filtered time series to extract 

instantaneous amplitude and phase for each single trial (Figure 3.5 B)35). 

 

3.7.5 Laminar profile of MUA and classification of neuron types 

 In order to classify the neuronal population associated with each codifier, the 

extracted spike-waveforms of single channels were clustered by the super paramagnetic 
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clustering method (SPC)48). The mean waveforms of all clusters were obtained from all 

channels, and used to calculate the peak amplitude asymmetry, half width, and trough peak60). 

Peak amplitude asymmetry is (b - a) / (b + a), where, a is the pre-positive peak of the 

mean-spike waveform, b is the post-positive peak of the mean-spike waveform. These three 

parameters were projected in the 3D space and used to classify wide-spiking cells (putative 

pyramidal cells: PCs) and narrow-spiking cells (putative interneurons: INs) (Figure 3.6 AB). 

From this classification of PCs and INs, we calculated the laminar profile of a raster plot and a 

peri-stimulus time histogram (PSTH, Figure 3.6 C). 

 

3.7.6 Classification of codifier 

 An unmanageable number of neurons with differentiated functionality in the A1 may 

additionally be distributed in space. Neurons that might play an important role in codifying 

auditory signals have been identified from their particular responses (i.e. the spike rate) to 

variations in sound parameters. The most established auditory codifier is associated with 

neurons that show tuning characteristics8), 11), 15), in particular either frequency bands or sound 

levels. We discriminated such kinds of neurons by building up their intensity-frequency 

response maps. 

Sounds are represented by a small fraction of neurons instead of being encoded by 

large numbers of neurons (i.e. a dense representation). Therefore, we decided to lose 
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specificity in the classification of neurons, to some extent, in order to achieve an appropriated 

identification of the spatial characteristics of those neurons showing reactivity to variations in 

sound attributes. In what follows, we describe our strategy to classify neurons that, in our 

opinion, are engaged in sound codification. 

 As described in the materials and methods, the spiking rates of all electrodes (eight) 

on a single shank were normalized and integrated 15 ms after the stimulus onset. From these 

summarized values of the laminar MUA in every experiment, we constructed square boxes for 

each shank by varying pairs of sound attributes (Table 3.1). We explored all shanks that were 

sensitive to changes in a particular sound attribute. Figure 3.7 A shows an example of the 

codifying profile for the sound amplitude (Amp) from the fm-Amp box, as observed by 

shank-8 at three values of the carrier frequency. Rows in this box summarize the normalized 

MUA at different sound amplitudes (i.e. 30 dB, 50 dB, 70 dB) for particular modulation 

frequencies fm. We chose this particular example because it contains the four types of codifiers 

(red curves) we were looking for: positive slope, negative slope, U-shape, and inverted 

U-shape. We applied the same criterion from the Amp-fc and fc- fm boxes to classify codifiers. 

A codifier revealing a normalized MUA that decreased or increased with the attribute 

value was called a "negative slope" or "positive slope" codifier, respectively. In contrast, a 

codifier having a maximum or a minimum middle value of the normalized MUA of the 
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attribute was called an "inverted U-shape" or "U-shape", respectively. We determined the 

manifestation of a codifier by the maximum-minimum difference. In the four types of 

codifiers mentioned above, if the maximum-minimum difference of the normalized MUA was 

larger than 0.1, the codifier was a manifestation. The codifiers of negative and positive slopes 

were fitted linearly and the y-intercept was subtracted from the normalized MUA to remove 

the baseline, as is shown in Figure 3.7 B (left column) for a particular rat. The other two 

codifier types were fitted by a second order polynomial and the minimum value of the 

normalized MUA was subtracted (Figure 3.7 B, right column, same rat). We stored all of the 

information about these four types of codifiers (i.e. position on the cortical sheet, type of 

codifier, raw LFP, and MUA data) for all experiments. 

 In order to confirm the difference of the spiking rate pattern between the low 

resolution condition and the high resolution condition, we performed two experiments to 

record the neuronal activities for five sound parameters (N = 2; 200 ms long; carrier 

frequency: 8 kHz steps, 8−40 kHz; modulator frequency: 50, 100, 200, 400 and 800 Hz; peak of 

amplitude: 10 dBSPL steps, 30−70 dBSPL, inter-stimulus-interval: 1.6 s, repetition: 50 trials). 

We classified the codifiers based on the three conditions. Eventually, we estimated the linear 

function for the positive and negative slope. The other two codifiers were fitted by a second 

order polynomial and the minimum value of the normalized MUA was subtracted. 
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3.7.7 Correlation analysis between spiking rate and CSD 

 To understand the properties of codifiers based on the PC dendritic profile of 

postsynaptic potentials in addition to the spiking rate, we evaluated the instantaneous 

correlations between the CSD amplitude/phase content at each frequency band (i.e. δ, θ, α, β, γL 

and γH) and the respective MUA. For evaluation of the correlations, we took into account 

laminar features for single trials 200 ms from the stimulus onset. To that end, we performed an 

ANOVA statistical analysis with multiple comparisons pooling information about the single 

trial correlations from all codifiers at each particular layer. 

 In order to illustrate the functional relationship between spiking rate and CSD, we 

applied a general linear model (GLM). This method was used by Whittingstall and Logothetis 

(2009) to investigate the PAC effect relating cortical electroencephalographic (EEG) signal and 

intracranial MUA. In this GLM model, the best predictors of the MUA (Y ) were a linear 

combination of the γH-oscillatory amplitudes ( 1X ) and the δ-oscillatory phases ( 2X ), i.e. 

1 1 2 2Y X Xβ β ε= + +        (3-1) 

where 1,2β  are the coefficients of the amplitude and phase, respectively, and ε is the error term. 

This GLM is not useful to appropriately describe the main working hypothesis formulated by 

Whittingstall and Logothetis (2009) because GLM applies only to additive relationships 

between datasets35). The actual working hypothesis for the PAC is multiplicative rather than 



 

26 

 

additive, i.e. to enhance the MUA, any increase in the amplitude of the γH band is required to 

coexist with the phase-epoch of the δ band. The alternating conditional expectation (ACE) 

algorithm55) provides us a proper way to test relationships between independent and dependent 

variables, without any a priori assumption (e.g. the GLM). An ACE regression model has the 

general form: 

( ) ( )
1

p

i i
i

Y Xθ α φ ε
=

= + +∑        (3-2) 

where θ is a function of the dependent variable (response) Y , iφ  are functions of the 

independent variables (predictors) iX  ( 1, ,i p=  ) and ε is the error term. Therefore, the ACE 

regression model is robust, and could be useful to represent, not only additive models, but also 

multiplicative ones using logarithm functions. The particular model we are interested in testing 

is ( )1 2Y X X ϑ= − , which explicitly points out that MUA (Y ) is maximal when the γH band 

amplitude ( 1X ) is also maximal and the δ oscillation ( 2X ) is 180o away from the particular 

phase ϑ . This model can be written as an ACE regression model with the particular form: 

( ) ( ) ( )1 2Log Y Log X Log X ϑ ε= + − +      (3-3) 
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Chapter 4. Results 
 

4.1 Codification of sounds attributes 

4.1.1 Spiking rate fitting corresponding to the codifiers 

 In Figure 4.1, we illustrated the good/bad fitting of the spiking rate based on the 

definition of the codifiers with high resolution stimulation conditions. First, we divided the 

neuronal population into four types of codifiers with a low resolution condition (e.g. fc = 8, 24, 

and 40 kHz; Amp = 50, 200 and 800 Hz). Eventually, we obtained the goodness of fit between 

the estimated fitting function from three conditions and the spiking rate from five conditions 

(e.g. fc = 8, 16, 24, 32 and 40 kHz; Amp = 50, 100, 200, 400 and 800 Hz). Most of codifiers 

were following the definition of codifiers with a good fitting, however, some of codifiers were 

not fitted well. (e.g. double peak shape, double valley shape). There are several possibilities: 

a) we could not record the best condition for a particular codifier with the low resolution 

stimulation condition; b) the sub-threshold spiking rates in the high resolution stimulation 

conditions were different from the low resolution stimulation conditions. 

 

4.1.2 Codifying the sounds attributes based on the spiking rate 

 Some of these types of codifiers have been reported in past studies on finer analyses 
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of the dependency of the spike rate on the sound attributes. For example, our inverted 

U-shape codifier for the case of the Amp-fc box represents roughly a kind of V-shape tuning 

either for frequency86) or for sound level (Figure 1, Schreiner et al., 1992)87). In particular for 

the sound periodicity, we decided to look at neuronal populations that codify this attribute 

earlier based on non-temporal tuning features. In our opinion, this constitutes the first attempt 

to find information of sound periodicity at the very initial phase of a sound. Since we 

examined MUA 15 ms after the stimulus onset, there is not enough information to classify any 

periodic signal with a frequency of less than 66 Hz. Therefore, in our data, a modulation 

frequency of 50 Hz cannot be captured by any neuronal population at the time instant of 15 

ms, but at this time there will be sufficient information to properly codify the 200 Hz and 800 

Hz modulation frequencies.  

 In order to confirm whether one can satisfactorily reproduce, in terms of population, 

the corresponding attribute values from the spiking rate, we performed an ANOVA statistical 

analysis with multiple comparisons to the normalized MUA for each attribute and codifier type 

(Figure 4.2 A - fc, B - fm, C - Amp). The normalized MUA in the selected codifiers was 

significantly different for different attribute values. In other words, if we had already identified 

the codifiers in a chronic implanted rat, we could accurately determine the sound attribute value 

from the single trial spiking rate 15 ms after onset. 
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4.2 Sparse aggregation of attribute codifiers 

 Based on the fact that we have co-localized shanks in each experiment with respect to 

the main canonical vessels in the A1, we were able to differentiate the position of each codifier 

type (Figure 4.3). We were looking for: a) the presence of sparse distributions, rather than 

topologically-arranged dense networks, with high-heterogeneity for the selective neurons and 

b) any tendency in the organization of sound codifiers either along the tonotopic or 

iso-frequency axis. First, we found that positive slope codifiers for the carrier frequency fc were 

mostly grouped in the most ventral part of the A1, probably in the area limiting the A1 to other 

sections of the primary auditory core (e.g. a fragment of the anterior auditory field, AAF) or its 

belt. There were three other types of codifiers distributed heterogeneously in the A1. The most 

abundant was the U-shape codifier, which corresponds to neurons with a tuning pattern similar 

to that of the L5tPC in Sakata and Harris (2009, Figure 1, sound level range: 50dB – 60 dB)15). 

Note that the size of each circle represents the density of that particular type of codifier. 

 In order to reproduce classic tonotopic organization, we integrated the frequency 

modulation fm and amplitude Amp to calculate the mean of the spiking rate for each carrier 

frequency fc. Consistent with previous studies79),88), we reproduced a statistically significant 

tonotopic organization in the A1 along the posterior-anterior axis (Figure 4.3 A, bar-plots). 
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However, in the section for high pure tone frequencies, it was hard to separate tones at 40 kHz 

from those at 24 kHz. In our opinion, this is due to the increase of Q10 toward the anterior 

section of the A156), which makes any tuning effect for fc almost indistinguishable in that 

section of the A1. We estimated the spiking rate difference Δ between the characteristic 

frequency for the respective section of the A1 and the mean of the other two frequencies. The 

spiking rate difference is similar to the reciprocal of Q10. By plotting the fraction 1/Δ against the 

carrier frequency, we reproduced the previously reported effect that fc has wide sensitivity in 

the direction of the section with the highest frequency (Figure 9 in Sally and Kelly, 1988)56). 

 We found that codifiers for frequency modulation (Figure 4.3 B) and amplitude 

(Figure 4.3 C) were sparsely and heterogeneously distributed along the entire A1 core. Similar 

sparse representations have been reported in previous studies for the timbre and the sound-level 

(Figure 3 in Bizley et al., 2009)12). There was a slight tendency in the U-shape type codifier for 

the modulation frequency to be located at the ventral part of the A1 core. We realized that a 

single neuronal population could lie behind more than one codifier, which is consistent with 

previous studies reporting complex Amp-fc mapping with tuning effects for both carrier 

frequency and sound level 15), 17). 
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4.3 The spike-LFP relationships  

4.3.1 LFP laminar profile in the frequency domain 

 Figure 4.4 shows the frequency characteristics of LFP in three layers. In the 

pre-stimulus period, LFPs were dominated by a low frequency, in particular, the power of the 

delta band was quite large for all layers. In the middle column, we illustrate an example of the 

mean Z-score spectrogram. Based on the spectrogram, we created the box plot in the right 

column which shows the mean Z-score for the six frequency bands in each layer. In the SG 

layer, we did not find a significant difference between the frequency bands. On the other hand, 

the Z-scores were significantly different between γH and the low-frequency bands (e.g. δ, θ 

and α) in the G and IG layers. The reason for this being that the high-frequency oscillations 

occurred a short period after the onset (less than 100ms). In contrast, low frequency 

oscillations appeared about 50 ms after the onset. Because the LFPs were stimulated by the 

high frequency amplitude modulated sounds, LFPs did not change frequently. The 

high-frequency component of the LFPs is related to the stimulus input. 

 

4.3.2 Laminar-dependent relationships between CSD and MUA 

 In order to clarify the relationship between CSD and MUA, we applied a correlation 

analysis (Figure 4.5). The CSD-amplitude and MUA correlations in all layers were 

significantly different from the correlations in the non-stimulus condition (ANOVA, p < 0.005) 
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for the six frequency bands. From this result we found that, in the audio information process, 

high-frequency synchronizations of CSD and MUA occurred in three layers. In particular, 

single trial CSD (amplitude) time series for the β, γL, and γH bands were highly correlated with 

MUA in all layers. The correlation between CSD-amplitude content in the γH band and MUA 

was significantly larger (p < 0.01) in the SG layer (Figure 4.5, bottom row). In contrast, the 

correlation for the γL band was statistically larger (p < 0.01) in the IG layer than in the SG layer. 

For the β band, correlations were also significantly higher (p < 0.01) in the IG layer than in the 

other two layers. From these results, we concluded that the temporal profile of MUA underlying 

attribute codification is different in each layer, with relatively low (β) dynamics in the IG layer 

and unquestionably high dynamics (γH) in the SG layer. This may be related to the different 

laminar strategies in the A1, which have a sparse structure in the SG layers and a dense 

structure in the IG layers, and which underlie sound codification15), 27). The correlations 

between the CSD-phase and MUA were less than 0.1, i.e. statistically insignificant. Indeed, we 

could not find any laminar structure in the relationships between the phase and MUA (data not 

shown). 

 The CSD-amplitude at the γH band was highly correlated to the MUA without 

requiring the LFP to be at the crest-phase of the low frequency bands; in particular, the δ band. 

Based on this result, we tested whether a phase-amplitude coupling (PAC) exists for sound 
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codification in anesthetized rats35), 57), 58). From the ACE regression analysis applied to all single 

trials, using the data corresponding to all attribute codifiers, we found neither linear functions 

iφ  of the predictors nor logarithmic ones (Figure 4.6). Therefore, we concluded that sound 

codification in the A1 of anesthetized rats happens to occur on the basis of an interrelationship 

between the MUA and the CSD amplitudes for the β, γL, and γH bands and maintains no 

relationship to the CSD-phases of lower frequency bands. 

  

4.4 The laminar profiles for neuron types 

 We determined the contributions of each type of neuron (i.e. PCs and IN) to the 

codification of sounds attributes as well as their respective laminar profiles. Figure 4.7 A shows 

the laminar distributions of the PCs and INs that were associated with all attribute codifiers 

evaluated at the values with the highest total spiking rates (determined from Figure 4.2 for each 

attribute). For all conditions, the contribution from the PCs was not only more significant than 

that from the INs in the SG and IG layers (as was expected), but surprisingly, it was also more 

significant than INs in the G layer. Sakata and Harris (2009) have provided evidence for the 

contribution of L4PCs in the codification of sounds15). In particular, the normalized PCs-MUA 

of Amp codifiers in the SG and the IG layers were significantly larger than those for the other 

codifiers of PCs-MUA (fc, fm). The activity of putative INs was just about the same in the SG 
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and G layers, but in the IG layer it was a little bit higher. Furthermore, while codifying sound 

amplitude, the activity of INs in the IG layer decayed with respect to the other conditions. There 

is an interesting discussion in Sakata and Harris (2009) about the differentiated role played by 

these two types of neurons while processing sounds in A115).The contribution of each neuron 

type to sound attribute codification was evaluated through an ANOVA (p < 0.01). For all 

attribute codifiers (B – fc, C – fm, D – Amp), PCs show similar tendencies to those tendencies in 

Figure 4.7, which were calculated based on the MUA for all neuron types. Codification based 

on INs was always less significant than that obtained while using the PCs. Our results are 

consistent with Sakata and Harris (2009), who suggested that the sensory evoked spiking 

activity in the A1 is mainly based on the activity of layer 2/3 and 5 PCs15).
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Chapter 5. Discussion 
 

 In this thesis, we found that four types of sounds codifiers are distributed sparsely 

and heterogeneously in the A1, and PCs mainly contribute to audio information processing. In 

addition, the highest correlations with MUA are between the γH-band amplitude of CSD in the 

supragranular layer and the β-band amplitude of CSD in the infragranular layer. In this thesis, 

we proposed to establish 3D extracellular potential recording in the A1 simultaneously using 

MEAs for the first time. We employed a home-made silicon-based 3D probe to illustrate a 

topological representation of different codifiers for sound attributes based on the spiking rate of 

the neuronal population in the A1. Taking into account previous literature, we defined four 

types of codifiers, i.e. positive slope, negative slope, inverted U-shape, and U-shape; therefore 

our definitions may sound atypical. From our view point, such definitions captured the activity 

of the main codifying networks in close proximity to the electrodes. The distributions of these 

codifiers in the A1 were sparse and heterogeneous. To understand the input/output dynamics of 

these codifiers, we explored the relationships between LFP (CSD) and MUA, as well as their 

laminar profiles. While codifying sound attributes, the MUA in the SG and IG layers were 

correlated to the CSD-amplitudes of the γH band and the β band, respectively. The relationship 
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between the MUA and broad-band CSD, however, could not be described by a simple GLM. 

The codifications of sound attributes were mainly associated with the activity of PCs in all 

cortical layers. INs were also involved but to a minor degree. There was a clear distinction in 

the role of these two neurons for the codification of the sound levels. 

 

5.1 Audio information processing 

 While listening to a symphony, our brains are not only able to discriminate whether a 

horn is located inside the brass section of the orchestra, but by the horn’s specific timbre, they 

can also identify the particular moment it is played. To accomplish such tasks, the afferent 

segments in the auditory system of humans extracts the “what” and “where” components of the 

sound, which might be differentiated latterly in the respective cortical processing streams, from 

the audio signals. To access the spatial information in the signal, a specialized subcortical 

neuronal circuit processes both monaural spectra and binaural disparity alongside top-down 

information conveyed through the corticofugal auditory projections. This circuit involves the 

dorsal cochlear nucleus, the inferior colliculus and the superior olivary complex. In contrast, the 

codification of the major attributes of a sound, i.e. the timbre, the pitch, and the volume, have 

for many years now been thought to occur by means of topologically distributed assemblies of 

neurons exhibiting attribute-dependent tuning effects and existing at several auditory relay 
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regions along the whole afferent pathway. 

 

5.2 Defining the codifiers 

 As we employed simple artificial pure tones whose amplitudes were modulated in time, 

we believe a fine exploration of attribute values is not necessary. We defined codifiers for the 

fundamental attributes of a sound, such as the carrier frequency (fc), the modulation frequency 

(fm), and the amplitude (Amp). For discrete changes in the values (three) of the attributes, we 

explored strategies for sound codification in the A1 and the effectiveness with which different 

neuronal populations achieve it. Therefore, we defined sound codifiers with the classical 

patterns of codifying neurons but adapted the definition to the particular case of discrete 

sampling. For positive and negative slope cases, the spiking rate increases or decreases with the 

value of the attributes. The inverted U-shape codifier is similar to that defined for the classical 

tuning effect while the U-shape codifier corresponds to the tuning profile of L5tPC reported by 

Sakata and Harris (2009, Figure 1)15). There are few previous studies that define such 

codifiers89),105). 

 In contrast, the high resolution stimulations conditions were prepared with five 

different parameters for each attribute of a sound. In order to observe approximately all 

neuronal activity in A1, we decided the stimulation conditions should have low resolution 
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sounds parameters instead of precise ones. Even though the low resolution stimulation 

condition could create complex patterns of the neuronal response map, the response of the 

spiking rate might include complex functions if the resolution of the stimulation condition 

were increased. In order to simplify neuronal population activity, one option is to not extract 

the response features from the extracellular recording on the mesoscopic scale; or from the 

point of view of engineering, to develop a brain machine interface (BMI). 

 In this thesis, we focused on only ON-response and found codifiers for the sound 

attributes. However, the neuronal responses are not only ON-set, but also OFF-set. Our 

stimulus condition of periodicity is more than 50 Hz; a speed at which a single neuron cannot 

follow the high frequency amplitude changing. On the other hand, non-synchronized neurons 

located in the A1 are activated during stimulation. The neurons we observed were probably of 

this type. If were to prepare a condition which contains low frequency amplitude modulation, 

we could find different types of neuronal response. 

 

5.3 Topological sparseness 

 The concept of "sparseness", as defined by previous studies, originates from the fact 

that just a small fraction of neurons is required for sound codification, as observed in the time76) 

and spatial60) domains. In this sense, a few preferable neurons seem to be enough to properly 
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codify any sound attribute. Smith and Lewicki (2006) reconstructed natural complex sounds 

from the spikes generated by a few neurons59). In our study, the codifiers of sound attributes 

were spatially distributed and sparse in the A1 on the mesoscopic scale (Figure 4.3). Our main 

results regarding spatial distributions, neuronal types, and laminar profiles were consistent with 

those reported in previous studies, e.g. classical tonotopic organization56), 60), 61), the random 

character of the sound level representation along the A1 core17), the existence of a patchy 

organization for the neuronal activation8), and the particular laminar profile of several neuronal 

types15). We did not find any evidence that the periodicity of a sound was represented either 

along the dorsal-ventral axis, as for cats14), or in a pitch-selective region close to the A1 

borderline10), as for monkeys. However, the topological distribution of this codifier was similar 

to that proposed by Kilgard and Merzenich (1999)11) who found that pitch sensitive neurons 

spanned the entire A1 in rats. We partly studied the neuronal populations selective to 

periodicity without any distinction for pitch and modulation based stimuli. From the results of 

Bendor and Wang (2010), who found that modulation selective neurons were located 

heterogeneously in the A1 of monkeys, it seems that errors can be made if we do not properly 

distinguish these two properties10). We did not focus our attention on neurons codifying the 

frequency modulation based on a temporal strategy, but on those achieving it without delay 

through early variations in the levels of MUA. We were able to detect the periodicity of a sound 
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from its first repetitive cycles, so we believe that neurons which detect periodicity of repetitive 

sounds with high frequencies (e.g. 800 Hz) must be crucial for rat survival and behavior. 

 

5.4 MUA and postsynaptic activity: Dynamic relationship 

 In order to find the input/output relationships for the codifying neuronal population in 

the A1, we applied a correlation analysis between the summarized CSD and the MUA based on 

single trials. Several previous studies pointed out the existence of both: i) a frequency band 

coupling (FBC)32), 33) and ii) the PAC effect35). Lakatos et al. (2007) examined multi-sensory 

interactions between the A1 and the somatosensory cortex in macaques, and later extended the 

analysis to investigate the interactions of auditory stimuli with the visual system, both using 

selective attention paradigms. They focused on the SG layer and performed a CSD analysis 

followed by a wavelet transform to extract the instantaneous amplitude/phase. Whittingstall 

and Logothesis (2009) tried to uncover the time period when high-correlations between MUA 

and cortical EEG signals occur in the visual cortex of monkeys35). These authors employed the 

Hilbert transform for extracting the instantaneous amplitude/phase from EEG data. However, 

there was no study that explored the laminar profile of the input/output relationships underlying 

the codification of sound attributes. We evaluated the correlation between the CSD 

amplitude/phase content at each frequency-band and the respective MUA in the A1. Such a 



 

41 

 

relationship is important for understanding the role played by sub-threshold activity in the 

codification of sound attributes, as well as for determining the dynamic relationship of such 

activity with the neuronal spiking. 

 From our results, i.e. the correlation between CSD-amplitude (the γH and β bands) and 

MUA, we propose two hypotheses: a) the sound attributes have been codified along the 

subcortical streams and the input to the A1 already contains spatial and temporal signatures 

captured by our codifiers, or b) an incompletely processed information package reaches the A1 

from the thalamus as postsynaptic activation and henceforward is used to create final sound 

codifiers for single attributes. Data from Sakata and Harris (2009) and Rothschild et al. (2010) 

support the second hypothesis15), 27). These authors pointed out that sensory evoked activity 

propagates quickly from layer IV to layer II/III and V. They reported that small fractions in 

layer II/III, which are sparsely distributed, are activated in a preferable stimulus condition. 

From our data, we hypothesize that low (β) and high (γH) dynamics in the postsynaptic 

potentials at the respective IG (sparse) and SG (dense) layers might be associated with efficient 

inputs to the respective codifying neurons. 

 Surprisingly, we could not find either a linear or a logarithmic relationship between the 

CSD-content and the respective MUA, similar to what was reported by Whittingstall and 

Logothetis (2009) for behavior in monkeys35). They, whose experiment is quite different from 
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ours (i.e. rats were anesthetized in an auditory evoked response paradigm35)), recorded MUA 

and cortical EEG signals from the visual cortex of nonanesthetized monkeys undergoing a 

visual attention task. The PAC effect probably emerges only in experimental paradigms with 

high attentional demands in wakeful animals and is totally attenuated during the anesthesia 

stages. An alternative explanation is the use of different sensory-stimulus conditions. In the 

study by Whittingstall and Logothetis (2009), monkeys were shown to possibly process visual 

stimuli by combining afferent and top-down information, which may require the involvement 

of global neuronal networks driven by slow oscillations on the macroscale for attentional 

selectivity.We explored this hypothesis using quite a robust method of nonlinear/nonparametric 

regression, i.e. the ACE algorithm55). In our opinion, the mechanism for processing and 

codifying auditory evoked stimuli in the A1 of rats is different from that existing in the primary 

visual cortex of monkeys. Therefore, the relationship between LFP and the MUA could not be 

described by the GLM for auditory transient evoked responses. 

 

5.5 Future perspectives 

5.5.1 Physiological interpretation of EEG/MEG data 

 Impressive achievements on the characterization of ionic channels in principal neurons 

as well as on the description of their realistic morphometry has been made with the recent 

advances in the field of neuronal computation. The day is not far when theoretical 
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neuroscientists provide quantitative descriptors of the long-range visibility, as well as the 

particular descriptive biophysical models, of each neuronal population in the neocortex. It is 

fair to say that some very preliminary studies have already been performed62) - 64). However, 

models for neurons must not be formulated based on a clamped extracellular space, as was 

originally proposed65). Such a strong assumption constitutes a clear impediment to representing 

the spatial distributions of LFPs, and therefore would accentuate the gap which already exists 

between electrophysiologists who employ LFP and those who employ EEG data modality. 

 In study of EEG/LFP simultaneous recording, we have found that current monopoles 

constitute the most significant source component of the skull EEG in the barrel cortex of Wistar 

rats. Therefore, such kinds of forward/generative models must be generalized in the future to 

include electromotive forces that comprise quadripolar configurations for any mesoscopic 

region in addition to possible net outflows of monopolar origin. Furthermore, if we expand the 

CSD analysis from 1D to 3D, we need to consider the electrical properties of each layer, 

especially the conductivity profile51). In this thesis, we applied the linear CSD analysis 

(iCSD); therefore, the conductivity in each laminar was not affected by our CSD estimation. 

Based on our results, we would like to suggest the following strategy to solve the EEG inverse 

problem in the near future: 

a) Obtain characteristic dynamic equations of the multipolar current sources in the cortical 
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columns from biophysical models of the principal neurons. These models must be descriptive 

rather than exhaustive, but must take into account ionic diffusion mechanisms, as discussed 

above, and the relevant geometrical characteristics of neurons. However, statistical magnitudes 

(e.g. occurrence probability of postsynaptic currents, neuronal firing rate) impacting the states 

of these neuronal populations must be clearly represented. 

b) Estimate the mesoscopic monopolar, dipolar and quadripolar current sources from the 

mesoscopic scale EEG data by solving a generalized inverse problem that makes use of both the 

characteristic dynamic equations and specific forward/generative models for all types of 

current sources. Due to the differences in EEG and MEG observation modalities, in terms of 

their visibility to multipolar current sources, it is recommended that this step be performed 

from concurrent EEG and MEG recordings. 

c) Estimate the microscopic volume sources from the mesoscopic multipolar moments using 

equations (Appendix II, III). Finally, reconstruct the dynamics of the abovementioned 

statistical magnitudes from the source using the characteristic dynamic equations. 

 

5.5.2 Application for the brain machine interface 

 MEAs, particularly those based on polymer aggregates and nanotechnology, are built 

with microelectrodes for both voltage recording and current stimulation66), which provide 

excellent compatibility with brain tissues. Therefore, our strategy for codifier selection and 
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characterization will be helpful, not only to reconstruct the neuronal representations of sounds 

in the A1, but also to recreate complex sound sensations through adequate stimulation of the 

neural tissue in close proximity to each codifier. In other words, our method will contribute to 

the future development of “brain machine interfaces”, which uses a sparse electric stimulation 

strategy to interact with the human auditory cortex.
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Chapter 6. Conclusion 
 

 In this thesis, we aimed to clarify the sound codification system of the A1 on the 

mesoscopic scale. To do so, we examined these main questions: a) the spatial aggregation to 

codify sound attributes in the A1; b) the spike-LFP relationships for codifying neuronal 

populations in layer II/III, IV, and V; c) the laminar profiles for the different neuron types of 

those populations that employ dissimilar schemes for attribute codification in the A1 of Wistar 

rats.  

 We established a 3D extracellular potential recording setting and developed 

methodology to analyze non-stationary LFPs and MUA. In order to understand the 

relationship between CSD and LFPS, we applied an iCSD analysis and explored the Hilbert 

transform to calculate the instantaneous amplitude/phase of broad frequency bands.  

 We found that codifiers identifying the attributes of sounds in the primary auditory 

cortex are distributed sparsely. In addition, the correlation between MUAs and the γH-band 

amplitude of CSD is higher in the supragranular layer. The β- and γL-band amplitude of CSD 

is highly correlated with MUA in the infragranular layer.  

 We concluded that, for rats, sounds are codified in A1 by a sparsely segregated 
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network involving specialized PCs and their postsynaptic activity may create the proper 

conditions for the emergence of sparse and dense spiking patterns. Furthermore, from the 

extracellular recording, we were able to describe, not only laminar or columnar interactions 

independently, but also both interactions simultaneously. To do this, we needed to consider the 

morphometry of the neocortex, electrical properties, and the temporal profile of neuronal 

activities. Our findings will be helpful to understand the genesis of the EEG signal from the 

multi-scale point of view. Our proposed methodologies, especially 3D extracellular recording, 

and findings will contribute to the analysis the huge data set recorded on the mesoscopic scale 

in the neocortex.  
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Chapter 9. List of Figures 
 

 

Figure 1.1 Examples of available MEAs. The laminar probe consists of 16 electrodes linearly 

arranged (left). The probe can be designed with variations in the distance between electrodes 

and the size of the electrodes. The planar probe consists of four parallel shanks, each shank 

having eight electrodes (right). The typical thickness of the probe is 15 µm, the typical width 

of the probe is 150 µm. The recording site is made of iridium, gold, and platinum metal. 

These probes are reusable 10–15+ times*

                                                 

* We received permission to publish this information from the copyright owner, NeuroNexus. 

The catalog of NeuroNexus can be downloaded at: 

http://www.neuronexustech.com/Products/ResearchProducts /MicroelectrodeArray / 

tabid/125/Default.aspx 

.  
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Figure 1.2 An example of the standard time-frequency analysis. (A) An example of the LFP 

recorded in the A1 (top) and the spectrogram of the short-time fast Fourier transform (sFFT; 

middle) and the wavelet transform (bottom). The duration of sample data is 4 s. The sampling 

frequency is 508 Hz. The colorbar shows power with the unit dB. (B) Instantaneous amplitude 

(left column) and phase (right column) estimated by the Hilbert transform. Before applying 

the Hilbert transform, LFP data was filtered through a broad frequency band (δ, θ, α, β band). 

The Hilbert transform calculates a particular frequency band's amplitude/phase. The LFP 

consists of a strong non-stationary process.  
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Figure 3.1 Localization of the A1 and the position of shanks and electrodes. (A) Rat brain 

T2-weighted images of the axial slice (left) and coronal slice (center). Based on these, we 

developed a strategy for stereotaxic/MRI-guidance, i.e. the bregma, the lambda and PA1, and the 

A1 were localized accurately (right) in both the MRI (pre-surgery) and the exposed skull 

(surgery). (B) Co-localization of the shanks based on the vessel distribution as revealed by 

fluorescent staining. A fluorescent image (top left) shows the shank positions (yellow-green) 

and the vessel distribution (bright red) in the A1. (C) The  laminar structure of the A1 and 

co-localization of the shanks. Depending on the Nissl stained neurons, layers were divided into 

three parts, supergranular (SG), granular (G), and infragranular (IG) layers.
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Figure 3.2 Auditory stimulation system and the stimulus battery of the amplitude modulation 

sounds. (A) The sinusoidal waveform was created by the MATLAB code. The digital signal 

was converted to the analog signal and conducted to the condenser speaker. (B) The amplitude 

modulation (AM) sounds stimulation battery. The rats were randomly stimulated by 27 

prepared sounds conditions. A single condition included 10 trials (200ms; ISI: 1.6s). 
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Figure 3.3 Flow chart of data analysis for extracellular recorded data. The recorded data, 

which was sampled at 24 kHz, was divided into two different analyses: i) a low frequency 

signal (LFP, left stream, beige-colored) and ii) a high frequency signal (MUA, right stream, 

gray-colored). In order to estimate CSD, the volume conductor model was created from the 

histology image (middle, blue-colored). After estimating CSD, the instantaneous 

amplitude/phase was decomposed to the six frequency bands. In contrast, the high frequency 

signal was applied to the spiking rate to classify the type of neuronal population. Accordingly, 

we calculated the time-series correlation between the instantaneous amplitude/phase and the 

spike rate. 
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Figure 3.4 An example of the MUA analysis and identification of the single codifier (Amp). 

(A) The left figure shows the raster plot (black dot) and PSTH (blue line) of a 100-trial evoked 

response. Spikes were counted in each electrode (eight sites) on the shank. Each row 

corresponds to data from each shank with spikes from all electrodes overlapping. Stimulus 

duration was 200 ms (bold black line). The stimulus conditions in this example were: fc = 8 kHz, 

fm = 50 Hz, Amp = 70 dBSPL. The red line identifies the time instant of interest for attribute 

codification in our study, i.e. 15 ms after onset. (B) The topological mapping of the peak 

spiking rate at that time instant is illustrated. Black rhombi represent the positions of the shanks. 

A colorbar is used to represent the level of normalized MUA. (C) The peri-stimulus time 

histogram (PSTH) of different conditions of sound amplitudes (30dB: blue; 50dB: green; 70dB: 

red; the window for counting spikes: 10 ms; the moving step: 1 ms). The Y-axis represents the 

normalized spiking rate. These spikes were classified from data at shank-8 (yellow circle in B). 

Codifiers of sound attributes were identified from the normalized MUA 15 ms after the 

stimulus onset (black line). 
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Figure 3.5 CSD analysis and decomposition of instantaneous amplitude/phase with the 

Hilbert transform. (A) Single trial iCSD analysis for the auditory evoked potentials (AEPs). 

From the single trial AEP on the same shank (left), the instantaneous CSD was estimated by the 

iCSD method (middle). We summarized the CSD (right) in the three layers (supragranular: SG, 

granular: G, and infragranular: IG). (B) An example of the instantaneous amplitude/phase in 

each layer obtained with the Hilbert transform. Before the transformation, bandpass filters were 

applied to the summarized CSDs in order to obtain the amplitude/phase content in six 

frequency bands (i.e. δ, θ, α, β, γL, and γH). 
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Figure 3.6 Identification of neuronal population and cell-type classification. (A) 

Classification of neuron types (PCs: red dot, INs: blue dot) by the SPC method36) and K-mean 

clustering. In order to estimate the peak amplitude asymmetry, half width and trough peak (top), 

the mean waveforms of the identified neuronal populations were pooled. These three 

parameters were clusterized by the K-means method. The waveforms of neurons are shown in 

the bottom-left (PCs) and bottom-right (INs), respectively. (B) Based on the cell-classification, 

we were able to create separated roster plots for the PCs and INs, respectively. This figure 

illustrates the methodology used to create the MUA laminar profile for a particular example (i.e. 

fc: 8 kHz, fm: 50 Hz, Amp: 70dB).
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Figure 3.7 Tuning profile of population and classification of codifiers for the sound amplitude. 

(A) An example of the tuning profile (experiment 1, shank-8). The intensity (Amp) – frequency 

(fc) response maps (gray scale) show the normalized MUA. Based on the changing tendencies 

of the MUA levels (in the row-direction), we classified the presence of four types of neuronal 

codifiers (negative slope: linearly decreasing; positive slope: linearly increasing; inverted 

U-shape: the maximum peak of the normalized MUA is in the middle; U-shape: the minimum 

peak of the normalized MUA is in middle. (B) All amplitude (Amp) codifiers were obtained 

from shanks in experiment 1. We defined these codifiers as the difference between the 

maximum and minimum of the normalized MUA, i.e. larger than 0.1. In the case of negative 

and positive slopes, we applied a linear fitting and subtracted the y-intercept to remove the 

baseline. For the inverted U-shape and the U-shape, we subtracted the mean of the normalized 

MUA of each codifier.
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Figure 4.1 An example of the goodness of fit (GF) for each type of codifier based on the five 

conditions. For each codifier, the comparison of a good fitting (left, GF > 0.9) and a bad 

fitting (right, GF < 0.2) are shown. For the negative slope and the positive slope of the 

amplitude codifiers, we plotted the relative change in spiking rate. In contrast, for the inverted 

U-shape and the U-shape of the carrier frequency codifiers, we plotted the relative change in 

spiking rate. Based on the classification of three condition (30, 50, 70 dBSPL for amplitude; 8, 

24, 40 kHz for the carrier frequency), most of codifiers were fitted very well to each codifier, 

however a part of the codifiers were not fitted. 
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Figure 4.2 Codification of sound attributes based on the spiking rate. (A) Based on the 

selection of the carrier frequency (fm), we pooled all codifiers from all experiments. The 

number of codifiers of each type is summarized in Table 4.6. In order to compare the different 

values of codifiers for a particular attribute (e.g. different carrier frequency), we employed an 

ANOVA with multiple comparisons. The levels of normalized MUA for the codifiers of 

positive and negative slopes were significantly different in each modulation frequency. (B) 

Same as (A), but for modulation frequency (fm). (C) Same as (A), but for sound amplitude 

(Amp). The normalized MUA was significantly different at p<0.01. 
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Figure 4.3 Sparse distribution of codifiers in the A1. (A) Distribution of the carrier codifiers in 

the A1. The integrated spiking rate shows a tonotopic distribution. The red dotted-line 

delimited the A1 core region and AAF; the blue line is used to represent large vessels. Colored 

circles show the types of codifiers (light blue: negative slope; orange: inverted U-shape; red: 

positive slope; green: U-shape) and the size of each circle indicates the number of codifiers at 

that particular site. Black dotted lines show the approximated limits for the carrier frequency 

based on the spiking rate in previous studies. (B), (C) Similar plots to (A), but for frequency 

modulation and amplitude codifiers, which were sparsely distributed in the A1. 
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Figure 4.4 Laminar profile for LFP in the frequency domain. The three rows correspond to 

the three layers (SG, G and IG). The left column shows the mean power spectrum in the 

pre-stimulus signals (individual spectrum: gray line; the mean spectrum: black line). In order 

to remove the 1/f effect, we computed the Z-score by using the mean and the standard 

deviation in the pre-stimulus signals (left pink square). The colormaps in the middle column 

show the time-variant spectrum. The stimulus duration is 200 ms (right pink square), and the 

Y-axis was divided into six frequency bands (white dotted line). The right column shows the 

mean power of each frequency band within the stimulation. We evaluated those powers with 

ANOVA and multiple comparisons. 
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Figure 4.5 Laminar-dependency of the relationship between MUA and CSD in the frequency 

domain. The top row shows the correlation of a single trial MUA and instantaneous amplitude 

of broad band CSD, which illustrates statistical differences among frequency bands. The bright 

gray colored bar shows the correlation with stimulation (0-200 ms after onset). The dark 

colored bad shows the correlation without stimulation (300-450 ms after onset). We applied 

ANOVA for each frequency band (p < 0.005). The correlation of the β, γL, and γH bands of 

CSDs in all layers was high. In order to compare the correlation dependency along cortical 

layers, we applied the ANOVA with multiple comparisons (p<0.01) for the frequency bands (β, 

γL and γH). γH in the SG layer, and β and γL in the IG layer were highly correlated with MUA. 

The SG and IG layers may play important roles in the processing of sensory inputs.  
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Figure 4.6 An example of the relationship between MUA, δ-phase, and γ-amplitude as 

modeled by the ACE method. (A)-(C): These plots show the relationships between the 

recorded MUA and the estimated MUA by ACE, which shows a clear nonlinear and 

non-logarithmic form as a function of the instantaneous δ-phase and γ-amplitude. 
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Figure 4.7 Contribution of the codifier based on neuron types. (A) Contribution of the 

codifier based on neuron types. We applied ANOVA to the multiple comparisons (p<0.01). 

Colored stars show a significant difference between the color bars. (B) This figure shows all e 

types of codifiers for the frequency carrier based on the neuron type (PCs and INs). In most 

cases, PCs captured the main signatures in the global MUA required to significantly codify a 

particular attribute of a sound. However, the contribution of INs, though smaller than that of the 

PCs, must not be ignored. (C) Same as (A), but for the frequency modulation. (D) Same as (A), 

but for the amplitude. 
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Figure 4.8 Summary of the role of auditory information processing. Sensory input move from 

the thalamus to the granular (G) layer, then propagates to the supragranular (SG) and the 

infragranular (IG) layers. In the SG layer, MUA is highly correlated to the gamma-high 

frequency range of CSD. In contrast, MUA is highly correlated to the beta frequency range of 

CSD in the IG layer. 
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Chapter 10. List of Tables 
 

Table 1.1 The role of the frequency bands in LFP 

Frequency band Related phenomena 
Delta (1-4 Hz) deep sleep, anesthesia 
Theta (4-8 Hz) working memory, emotional arousal and fear conditioning, 

Alpha (8-12 Hz) convert attention,  
working memory & short-term memory 

Beta (12-25 Hz) top-down process,  
working memory & long-term memory,  

motor control 
Gamma 

(30-170 Hz) 
MUA,  

 local neuronal synchronization 
 

Table 3.1 Attributes of auditory stimulus 

  V1 V2 V3 
A1 Frequency (fc) 8 kHz 24 kHz 40 kHz 
A2 Amplitude (Amp) 30 dB 50 dB 70 dB 
A3 Modulation (fm) 50 Hz 200 Hz 800 Hz 

A1-A3 are types of sounds attributes, V1-V3 are variables of attributes. 

 

Table 4.6 Number of codifiers obtained from whole populations 

Attribute 
Negative 

slope 
Inverted 
U-shape 

Positive 
slope 

U-shape 

fc 15 40 26 54 
fm 16 39 36 36 

Amp 23 33 20 44 

fc: carrier frequency (8 kHz, 24 kHz, and 40 kHz); fm: modulation frequency (50 Hz, 200 Hz, 

and 800 Hz); Amp: (30 dB, 50 dB and 70 dB).  
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Chapter 11. Appendix 
I. The volume conductor models 

The general theory 

 The derivation of the volume conductor models used in this paper starts with the 

Poisson equation described in the introduction. If we express the equation in the spherical 

coordinate ( ), ,r r θ ψ=
 , assuming angular symmetry and the conductivity tensor as the 

diagonal matrix, a detailed expression of the Poisson equation can be written as equation 

(I-1). 
22

2 ||
2 2

1 1 1sin
sin sin

Mr Ir
r r

φ φ φσ θ
σ θ θ θ θ ψ σ⊥ ⊥

∂ ∂ ∂ ∂ ∂   + + =   ∂ ∂ ∂ ∂ ∂   
    (I-1) 

Here ( )rφ φ=   are the electrical potentials, ( )M MI I r=
  is the CSD distribution (i.e. 

neuronal sources and/or sinks) defined as ( ) ( )M pI r J r= ∇⋅
  , and ||σ  and σ ⊥  are radial 

and tangential components of the diagonalized conductivity tensor ( )|| , ,diagσ σ σ σ⊥ ⊥=
  in 

the spherical coordinate, respectively. For the Newman boundary condition on limiting 

surface S , i.e. ( ) 0
S

r nφ∂ ∂ =
 , the integral form of equation (I-1) can be expressed as: 

( ) ( ) ( ) 3, M S
r r r I r drφ φ

ℜ

′ ′ ′= +∫
           (I-2) 

where ( ),r r′   is the Green function. 

 For the particular case of a monopolar current source with spherical coordinate 

( ), ,s s s
sr r θ ψ=
 , ( )MI r  can be expressed by equation (I-3). 

( ) 2 ( ) ( ) ( )
sin

s s s
M

II r r r
r

δ δ θ θ δ ψ ψ
θ

= − − −
      (I-3) 
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where I  represents the amplitude of the monopolar current source and δ  is the delta Dirac 

function. 

Infinite, homogeneous and isotropic volume conductor model 

 For this particular model, there is no limiting surface S . Therefore, equation I-2 can 

be easily integrated to yield the following result: 

( )
( ) ( )( )1 2224 2 coss s

Ir
r r rr

φ
πσ ϕ

=
+ −

 ,      (I-4) 

( )cos cos cos sin sin coss s sϕ θ θ θ θ ψ ψ= + −  

Spherical volume conductor model 

For the multi-layered spherical inhomogeneous and anisotropic volume conductor model, the 

solution to equation (I-1) is obtained by applying the separation of variables method (de Munck, 

1988): 

( ) ( ) ( )
0

2 1 , (cos )
4

s
n n

n

Ir n R r r Pφ ϕ
π

∞

=

= +∑
,      (I-5) 

where the radial Green function ( ), s
nR r r   satisfies: 

( ) ( ) ( )2 || , 1 , ( )s s s
n nr R r r n n R r r r r

r r
σ σ δ⊥∂ ∂  + + = − ∂ ∂ 

    (I-6) 

The symbol nP  denotes the Legendre polynomials of order n . 

By solving the above equation and taking into consideration the appropriate conditions of 

boundaries separating each layer, ( ), s
nR r r  can be obtained as the following series of matrix 

multiplications. 
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{ }
1 1 1

2
1 1 1 1

1 22 12 22

1

1 1 1
1 22

( , )

( , ) ( , ) ( , ) ( , ) ( , ) ,

( , ) ( , ) ( , ) ( , )

d d

s
n

Ks
d d d s d d d d d s

k k k K K Ks Ks k k k k k k
k K k N k N

d d d s d d d
k k k Ks Ks K K k k k

k Ks k

R r r

M r r M r r M r r M r r r M r r r r

M r r M r r M r r M r r

+

+ + + +
= − = =

+ + +
= − =

=

         <     
        

−
 
 
 

∏ ∏ ∏

∏ { }
1 12

1

12 22

( , ) ,
d d

K
s d d s

k k k
N k N

r M r r r r
+

+
=






       >          
∏ ∏

 

The suffixes attached to each brace indicate the matrix elements. The symbols sK  and K  

denote the number of boundaries below which a source and observation site are placed, 

respectively (i.e. 1
d s d

Ks Ksr r r+ < ≤ , 1
d d

K Kr r r+ ≤ <  for 1
s dr r r< < and 1

d s d
Ks Ksr r r+ ≤ < , 

1
d d

K Kr r r+ < ≤  for 1
d sr r r> > ). 

The parameters d
kr , with { }1, , dk N=  , represent the radii of the boundaries delimiting shells. 

Note that 6dN =  represents the number of spherical shells. 

Matrices ( , )a b
kM r r  are obtained by taking into account the Dirichlet and Neumann 

conditions at the surfaces of each layer. 

{ } { }
{ } ( ){ }

{ } { }
{ } ( ){ }

-11 1

1 2 1 2

|| || || ||

( , )
1 1

k k k k

k k k k

a a b b

a b
k

k a k a k b k b
k k k k

r r r r
M r r

r r r r

ν ν ν ν

ν ν ν ν
σ ν σ ν σ ν σ ν

− − − −

− − − − − −

  
  =     − + − +  

, 

( ) 









+++−= ⊥

k

k

k nn
||

1411
2
1

σ
σν  

It is known that equation (I-5) converges poorly for sr r≈  and requires a high computational 

cost to calculate. Therefore, some method to reduce the computation time is necessary. To 

satisfy this requirement, we apply a combination of the asymptotic approximation and the 

addition-subtraction method (de Munck and Peters, 1993; de Munck, 1994) to equation (I-5). 

First, we apply the asymptotic expansion to kν  and get the following first order approximation 

function of ( , )s
nR r r : 

( ) ( ) ( )( )12 1 , s n
nn R r r A F n−+ = − Λ +Ο ,      (I-7) 
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K
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−
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
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1
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1
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21 ,
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s
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r r
r

F
r r

r

β
β β β

β
β β β

=
+

− +

=
+

− +


< += 

 > +
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where, 

K
r

r
λ = , 

s

s Ks
r
r

λ = , 
1j

j j
r
r

λ
+

= , ||
j j jα σ σ ⊥= , and ⊥= jjj σσβ || . 

By the addition-subtraction method with equation (I-7), the final form of equation (I-5) can be 

obtained:  

( ) ( ) ( ) ( )
0

2

2 1 , cos
4

1 1
1 2 cos

s n
n n

n

Ir n R r r AF P

AF

φ ϕ
π

ϕ

∞

=

  = + + Λ  
  − −  − Λ −Λ  

∑

    (I-8) 

Note that ( ),n sR r r  is the actual radial Green function and not the approximated one (I-7). 

A unified formalism 

 For computational reasons, we would like to represent the solution to equation I-2 for 

the three volume conductor models used in this study as a unified form. Note that in practice the 

electric potentials are observed in a discrete number of electrodes with spherical coordinates 

( ), ,e e e
er r θ ψ=
 . Equation I-2 can be written as a function of a generalized Green function: 

( ) ( ), ;e e sr G r r Iφ = Θ
           (I-9) 

With the following particular cases: 

A - For the infinite, homogeneous and isotropic (InfH) volume conductor model  
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( )
( ) ( )( )1 222

1, ;
4 2 cos

inf e s
s s

G r r
r r rrπσ ϕ

Θ =
+ −

  , (I-10a) 

{ }σΘ = , with σ  as the conductivity of the medium. 

B - For the spherical volume conductor models 

( ) ( ) ( ) ( )
0

2

1, ; 2 1 , cos
4

1 1
4 1 2 cos

e s n
sph e s n n e

n

e

G r r n R r r AF P

AF

ϕ
π

π ϕ

∞

=

 Θ = + + Λ 

 
 − −
 − Λ −Λ 

∑ 

 (I-10b) 

( )cos cos cos sin sin cose s e s e s
eϕ θ θ θ θ ψ ψ= + −  

- { },D σΘ = R  for the spherical homogeneous and isotropic (SphH) volume conductor 

model, where { }d
D r=R  comprises only the radius of the limiting sphere and σ  

represents the conductivity of the sphere. 

- { },DΘ = R σ  for the spherical inhomogeneous and anisotropic (SphIh) volume 

conductor model, where { }; 1, ,d
D k dr k N= =R   comprises the radii of all boundaries 

delimiting shells (Table 4.3) and the conductivity profile { }|| ,k kσ σ⊥=σ  comprises the 

radial and tangential conductivity values for all shells. 

 

II. The nonlinear optimization method  

 For the estimation of the conductivity profile, we employed the spherical 

inhomogeneous and anisotropic volume conductor model (SphIh). In a spherical conductive 

medium, a potential observed by an electrode positioned at position er
 , responding to a 
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monopolar current source ( )iI t  at position i
sr
 , can be represented by equation (I-9) 

( ) ( ) ( ), , ;i i
e sph e s ir t G r r I tφ = Θ
   , with the generalized Green function defined by equation (I-10b). 

 Therefore, the voltage difference between a recording electrode e
rr
  and a common 

reference REFr  is defined by: 

( ) ( ) ( )ˆ , ,i i i
e e REFV t r t r tφ φ= −

        (II-1) 

( ) ( ) ( )( ) ( )ˆ , ; , ;i i i
e sph e s sph REF s iV t G r r G r r I t= Θ − Θ

     

The parameter set { },DΘ = R σ  contains information about the conductivity profile. The radii 

of all boundaries delimiting shells (i.e. the cortical layers) are obtained from immunostaining 

methods. Therefore, by applying the Fourier transform, we can define the voltage differences as 

a function of the injected current for each frequency component through the linear function 

( ) ( ) ( ), , ; , ;i i
e i sph e s sph REF sf G r r G r r= Θ − Θ

   
σ , which therefore depends on 

( ) ( ) ( ),
ˆ i
e e i iV f Iω ω= σ        (II-2) 

The optimization problem can be represented as a large nonlinear regression model with respect 

to the unknown parameter σ  (II-3) by constructing the voltage differences and current 

injections vectors ( )1 1 1
1 2 1

ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,i i

e e

N N
N NV V V V V V ′=     and ( )1 2, , ,

iNI I I I ′=  , respectively. 

Note that ( )ˆ ˆi i
e e cV V ω=  and ( )i i cI I ω=  represent the values of these magnitudes at the 

particular frequency 500c Hzω =  of the sinusoidal injection current. 

( )V̂ F I= σ         (II-3) 

( )
( ) ( )

( ) ( )

1,1 1,

,1 ,

i

e e i

N

N N N

f f

F
f f

 
 

=  
  
 



  



σ σ

σ
σ σ
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This matrix is created for the position of the microelectrodes in the planar MEA ( eN  recording 

sites) and the laminar MEA ( iN  injecting sites). 

In the same way, we defined the large vector of actual data as 

( )1 1 1
1 2 1, , , , , ,i i

e e

N N
N NV V V V V V ′=    . The final nonlinear least square optimization problem can 

be defined by equation (II-4). 

( ) 2
arg min V F I= −

σ
σ σ       (II-4) 

We applied the trust region method (Coleman and Li, 1994, 1996; lsqcurvefit MATLAB 

function) to solve II-4. 

 

III. LORETA solution 

 We modeled the continuous neuronal density of source/sink ( )MI r  as a set of dN  

discrete electric current monopoles ( ) ( )
1

mN

M m m
m

I r I r rδ
=

= −∑    defined on a high-resolution 

volumetric grid which covers the whole region of interest with positions m Mr ∈R . The new 

inverse problem then consisted of estimating the monopole value mI  in all lattices of the grid 

from a column vector ( )1 2V , , ,
eNV V V ′=   comprising the LFP observed at each time instant 

from 128eN =  microelectrodes regularly distributed inside ℜ . 

 Under such a discretization approach for monopoles and microelectrodes, equation 

(I-1b) transforms into an algebraic equation system (II-1), which can be solved independently 

for each time instant. 

V M η= +G         (III-1) 
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We assumed the presence of uncorrelated normally distributed instrumental noise 

( )2~ 0,N Iη υ . The discrete generalized Green function matrix ( ){ }, ;e mG r r= ΘG  
 was 

calculated by evaluating the theoretical expression for a layered anisotropic spherical volume 

conductor (Eq. 10, de Munck et al., 1989) in the microelectrode er
  and monopole mr

  

positions, additionally using the statistics of the conductivity profile obtained in this work for 

the barrel cortex. 

 The column vector ( )1 2M , , ,
mNI I I ′=   comprises the monopole values. Typically, the 

number of electric current monopoles is larger than the number of microelectrodes m eN N>> . 

Also, in principle, the kernel ( ), ;e mG r r Θ
 

 has a non-trivial null space. Hence the matrix G  

is not a full rank and is in very bad conditioned. The use of a priori information about ( )MI r  

has become a standard way to deal with this problem, giving rise to the well known “distributed 

inverse solution” family. Low resolution electrical tomography (LORETA), which results from 

the application of a vector Laplacian penalty functional to the PCD, constitutes one of the most 

acknowledged distributed inverse solutions (Pascual-Marqui, 1994) so far. LORETA can be 

interpreted within the context of the general smoothing splines introduced by Wahba (1990) to 

solve noisy operator equations (Riera et al., 2006). LORETA inverse solution will, not only 

guarantee smoothness of the reconstructed ( )MI r , but it will also force the ( )MI r  to be 

minimal on the boundary of the brain. 

 Technically, the LORETA-type inverse solution for equation (III-1) results from 

minimizing the optimization function ( ) 2 22M V M Mο λ= − +G L  with respect to the 

monopole value vector M . The solution of such a weighted linear regression problem is: 

( ) 1
M̂ = Vλ

−
′ ′ ′2G G + L L G       (III-2) 
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The estimation of the hyperparameters λ is a problem of considerable importance since it tells 

us about the accuracy of the electrophysiological instrument as well as the degree of 

smoothness to be introduced for ( )MI r . In this paper, we used the generalized cross validation 

(GCV) method to estimate λ (Wahba, 1990). 

( )

2
2

2

PVˆ =
tr P

λ
  

 Projecting matrix: ( ) 1
P = I - λ

−
′ ′ ′2G G G + L L G   (III-3) 

 


	"A study on local neuro mass dynamics in the neocortex of rats"
	submitted by
	Takeshi Ogawa
	Advisors: Prof. Jorge Riera and Prof. Ryuta Kawashima
	Contents
	Chapter 1. Introduction 1
	Chapter 2. The purpose of the thesis 12
	Chapter 3. Materials and Methods 13
	Chapter 4. Results 27
	Chapter 5. Discussion 35
	Chapter 6. Conclusion 46
	Chapter 7. Acknowledgements 48
	Chapter 8. References 51
	Chapter 9. List of Figures 57
	Chapter 10. List of Tables 74
	Chapter 11. Appendix 75
	Chapter 1. Introduction
	1.1 Topological sounds representation in the neocortex
	1.1.1 Tonotopic representation
	1.1.2 Iso-frequency axis

	1.2 Laminar structure in the primary auditory cortex
	1.2.1 Anatomical structure of the primary auditory cortex
	1.2.2 Functional laminar profile in the primary auditory cortex

	1.3 Neuronal processing on the mesoscopic scale
	1.3.1 Electrophysiological recording on the mesoscopic scale
	1.3.2 Local field potentials
	1.3.3 Current source density analysis
	1.3.4 Multi-unit activity
	1.3.5 Spike sorting


	Chapter 2. The purpose of thesis
	Chapter 3. Material and Methods
	3.1 A hand-made combination three-dimensional probe
	3.2 MRI anatomical imaging and co-registration to the rat atlas
	3.3 Surgical procedures
	3.4 Electrophysiological recording
	3.5 Auditory stimulation protocol
	3.6 Immunostaining
	3.7 Data processing
	3.7.1 Pre-processing of the electrophysiological data
	3.7.2 MUA analysis: Codifiers of sound attributes
	3.7.3 Time frequency analysis for LFP in three layers
	3.7.4 CSD analysis and amplitude-phase analysis
	3.7.5 Laminar profile of MUA and classification of neuron types
	3.7.6 Classification of codifier
	3.7.7 Correlation analysis between spiking rate and CSD


	Chapter 4. Results
	4.1 Codification of sounds attributes
	4.1.1 Spiking rate fitting corresponding to the codifiers
	4.1.2 Codifying the sounds attributes based on the spiking rate

	4.2 Sparse aggregation of attribute codifiers
	4.3 The spike-LFP relationships
	4.3.1 LFP laminar profile in the frequency domain
	4.3.2 Laminar-dependent relationships between CSD and MUA

	4.4 The laminar profiles for neuron types

	Chapter 5. Discussion
	5.1 Audio information processing
	5.2 Defining the codifiers
	5.3 Topological sparseness
	5.4 MUA and postsynaptic activity: Dynamic relationship
	5.5 Future perspectives
	5.5.1 Physiological interpretation of EEG/MEG data
	5.5.2 Application for the brain machine interface


	Chapter 6. Conclusion
	Chapter 7. Acknowledgements
	Chapter 8. References
	Chapter 9. List of Figures
	Chapter 10. List of Tables
	Chapter 11. Appendix
	I. The volume conductor models
	II. The nonlinear optimization method
	III. LORETA solution


