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Role of COUP-TFII in Odontoblast Differentiation 

 

HUR, Sung-Woong 

 

Department of Dental Science 

Graduate School, Chonnam National University 

(Supervised by Professor Koh, Jeong-Tae) 

 

(Abstract) 

 Chicken ovalbumin upstream promoter transcription factor 2 (COUP-TFII; NR2F2, 

nuclear receptor subfamily 2, group f, member2), an orphan nuclear receptor belonging to 

the steroidthyroid hormone receptor superfamily, plays an important role in cell fate 

determination of various tissues. However, the specific role of COUP-TFII in tooth 

development has not yet been elucidated. The aim of present study is to explore the role of 

COUP-TFII in odontoblast differentiation. Endogenous expression of COUP-TFII in 

maxillary second molar germs of rats showed an increasing tendency as development of the 

tooth progressed. Also, COUP-TFII protein was detected in greater quantity in the 

odontoblastic layer of second molar germs (root formation stage) than in that of third molar 

germs (cap stage) of rats at post-natal day 9 (PN9). In mouse maxillary first molar tooth 

germ at its secretory stage (PN1), COUP-TFII protein expression was observed along with 

the odontoblastic layer. In primary human dental pulp cells (HDPCs) and murine dental 

papilla-derived cells (MDPC-23) cultured in a mineralizing medium, the expression of 

COUP-TFII was induced along with the increased odontoblast-specific dentin matrix 

protein-1 (DMP-1) and dentin sialophosphoprotein (DSPP) expression. Overexpression of 
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COUP-TFII using an adenoviral system up-regulated the expression of odontoblast-specific 

genes with increased alkaline phosphatase activity and matrix mineralization in odontoblast-

lineage cells. In contrast, down-regulation of COUP-TFII using small interfering RNA 

decreased the expression of odontoblast-specific genes, which reduced matrix mineralization 

as well. Mechanistic studies revealed that COUP-TFII increased DSPP transcription by 

direct binding on the DSPP promoter. In addition, COUP-TFII physically interacted with the 

homeodomain transcription factor Msx2 and antagonistically regulated the Msx2 effect on 

DSPP promoter activity.  

 Taken together, these results suggest that COUP-TFII has a stimulatory role in 

DSPP expression and matrix mineralization in odontoblast-lineage cells. 
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INTRODUCTION 

 

 Odontoblasts differentiate from embryonic mesenchymal stem cells (MSCs) of 

neural crest origin in tooth-specific temporo-spatial patterns. Terminally differentiated 

mature odontoblasts secrete matrix proteins and induce mineral deposition to build the 

predentin-dentin structure (1). The process of tooth development including odontoblast 

maturation is tightly regulated by interactions between epithelial and mesenchymal tissues. 

Diverse signals in the families of bone morphogenetic protein (BMPs), fibroblast growth 

factor (FGFs) and Wnt, or the transcription factors Runx2, Msx-1, Msx-2 and Dlxs are 

involved in the process (2). 

Adult dental pulp tissue has been also identified one of the possible sources of 

mesenchymal stem cells to form reparative dentin as a consequence against noxious stimuli. 

Isolated postnatal human dental pulp cells (HDPCs) possess stem-cell-like characteristics, 

including self-renewal capability and multi-lineage differentiation. Dental pulp cells have the 

ability to form a dentin/pulp-like complex in vivo, and also have the potential to differentiate 

into odontoblast-like cells in vitro, expressing odontoblast-specific markers including dentin 

sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) (3-5). The critical roles of 

DSPP and DMP-1 in hard tissue development and mineralization have been examined 

utilizing knockout and transgenic mouse models (6,7). 

Among the two proteins, DSPP is expressed predominantly in odontoblasts and at 

low levels in osteoblasts (8). Previous reports have shown that various mutations of the 

human DSPP gene cause dentinogenesis imperfecta type II (9-14), III (15) and dentin 

dysplasia type II (16). The distinct changes of phenotypes in relation with DSPP gene 

mutations are indicating that DSPP plays a critical role in odontoblast differentiation and 

dentinogenesis. 

 The orphan nuclear receptor COUP-TFII is widely distributed in the mesenchymal 
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compartment of developing organs. COUP-TFII is crucial in embryogenesis, angiogenesis, 

reproduction and metabolic homeostasis (17-20). Recent studies have demonstrated the 

importance of COUP-TFII in cell-fate determination, showing that COUP-TFII controls 

mesenchymal cell commitment and differentiation (21,22). However, the specific role of 

COUP-TFII in determining the fate of dental pulp cells remains unclear. 

 This study was undertaken to determine the functional roles of COUP-TFII in 

odontoblast differentiation and matrix mineralization. Here, it is suggested that COUP-TFII 

has the potential of stimulating DSPP expression and matrix mineralization in odontoblast 

lineage cells and its molecular mechanism underlying the regulation of DSPP transcription is 

discussed.  
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MATERIALS AND METHODS 

 

Reagents and Plasmid Constructs 

 

 Commercial antibodies against COUP-TFII (Abcam, Cambridge, UK), Msx2 

(Santa Cruz Biotechnology, Santa Cruz, CA, USA), and β-actin (Cell Signaling Technology, 

Beverly, MA, USA) were used for Western blot analysis. Adenoviral (Ad) vector expressing 

COUP-TFII and HA-tagged COUP-TFII expression vector were kindly provided by Dr. 

Kee-Sook Lee (Chonnam National University, Gwangju, Korea). Human COUP-TFII small 

interfering RNA (si-COUP-TFII) was purchased from Ambion (Life Technologies, Paisley, 

UK). Three repeated homeodomain response element (3x HRE)-Luc reporter was kindly 

provided by Dr. Kwang-Ryul Lee (Chonnam National University, Gwangju, Korea). 

 

Isolation of Rat Tooth Germ 

 

 Sprague-Dawley rat pups (Damool Science, Daejeon, Korea) at post-natal days 3, 6 

and 9 were sacrificed, and maxillae including developing tooth germs were removed. The 

second molar tooth germs were surgically isolated using a stereomicroscope (Leica, Wetzlar, 

Germany), and 10 tooth germs per group were pooled for analysis of gene expression (23). 

All protocols were reviewed and approved by the Animal Use and Care Committee of 

Chonnam National University. 

 

Immunofluorescence Staining 

 

 Immunofluorescence staining was performed with a TSATM Kit (Invitrogen, 

Carlsbad, CA, USA). The maxillae containing the tooth germs were fixed in 4% 
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paraformaldehyde and decalcified in 10% EDTA solution (pH 7.4) for 6 to 8 weeks. The 

tissues were treated with ethanol dehydration, embedded in paraffin, cut into 4-μm sections, 

and reacted with anti-COUP-TFII (Abcam) and anti-Msx2 (Santa Cruz Biotechnology) for 

24 h and horseradish peroxidase-conjugated secondary antibody (1:200; Santa Cruz 

Biotechnology) for 1 h after the endogenous peroxidase was blocked with 1% hydrogen 

peroxide. The sections were counter-stained with 4’,6-diamidino-2-phenylindole (DAPI) for 

nuclear morphology and photographed using LSM confocal microscopy (Carl Zeiss, 

Oberkochen, Germany). Immunological specificity was tested by substituting the primary 

antibody with normal serum (24). 

 

Immunostaining 

 

 Embryo and postnatal heads of ICR (Institute for Cancer Research) mice were 

dissected and embedded in optimum cutting temperature compound (OCT; Sakura Fine 

Technical, Tokyo, Japan) for frozen sectioning. OCT blocks were cut into 8-μm sections 

with a 2800 Frigocut cryostat (Leica, Bensheim, Germany), held for 30 min at room 

temperature and then fixed in 4% paraformaldehyde for 10 min. After washing three times 

with phosphate buffered saline (PBS) for 5 min each, the tissue sections were incubated with 

3% hydrogen peroxide in methanol for 15 min. After washing two times, the sections were 

further incubated with blocking solution A (Histofine DAB substrate kit, Nichirei, Tokyo, 

Japan) for 1 h, primary antibody for 1 h and blocking solution B (Histofine DAB substrate 

kit) for 10 min. After washing, mouse MAX-PO (Nichirei, Tokyo, Japan) was placed on the 

tissue for 10 min. The sections were washed with PBS and incubated with 3,3’-

diaminobenzidine (DAB; Nichirei, Tokyo, Japan) for 10 min at room temperature (25). Then, 

hematoxylin and eosin stain was applied for counter-staining. For immunostaining, another 

commercial antibody against COUP-TFII (Perseus Proteomics, Tokyo, Japan) was used. 

Immunostaining images were obtained using a Biozero-8000 microscope (Keyence, Osaka, Japan). 
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Cell Culture and Viral Infection 

 

 Primary human dental pulp cells (HDPCs) were isolated as described previously 

(26). HDPCs were cultured in alpha-minimal essential medium (α-MEM; Gibco, 

Gaithersburg, MD, USA), containing 10% fetal bovine serum (FBS; Invitrogen), 100 U/ml 

penicillin and 100 μg/ml streptomycin in humidified air containing 5% CO2 at 37 °C. 

Odontoblastic differentiation was induced by adding mineralizing medium containing 10% 

FBS, 50 μg/ml ascorbic acid (12) and 5 mM β-glycerophosphate (β-GP), and the culture 

medium was replaced every other day. Murine dental papilla-derived MDPC-23 cells and 

mouse ameloblast lineage cells (mALCs) were similarly cultured in Dulbecco’s modified 

Eagle’s medium (DMEM; Gibco). For viral infection, cells were treated with Ad-COUP-

TFII or Ad-green fluorescence protein (GFP) as a control virus at the designated multiplicity 

of infection (MOI) under serum-free conditions. After 4 h, an equivalent volume of medium 

containing 20% FBS was added, and the cells were incubated for an additional 24 h before 

the mineralizing medium was changed. 

 

Real-Time Polymerase chain reaction 

 

 Total RNA was prepared by TRI reagent (MRC, Cincinnati, OH, USA) according 

to the manufacturer’s instructions. Real-time PCR was performed with the ABI Step One 

Plus (Applied Biosystems, Foster City, CA, USA) using the Quanti Mix SYBR Kit (Qiagen, 

Valencia, CA, USA) according to the manufacturer’s protocol. The expression levels of all 

mRNAs were normalized to that of endogenous β-actin. Relative target gene expression was 

quantified using the comparative CT method (27). The primer sequences were provided in 

Table 1. 
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Table 1. The nucleotide sequences used for real-time PCR 

Gene Name Nucleotide sequence Size (bp) 

Rat β-actin 
Forward 5’-GCTGACAGGATGCAGAAGGA-3’ 

Reverse 5’-TGGACAGTGAGGCCAGGATA-3’ 
124 

Rat COUP-TFII 
Forward 5’-CAAGGCCATAGTCCTGTTCACC-3’ 

Reverse 5’-CGTACTCTTCCAAAGCACACTGG-3’ 
100 

Rat ALP 
Forward 5’-ATCTTTGGTCTGGCTCCCATG-3’ 

Reverse 5’-TTTCCCGTTCACCGTCCAC-3’ 
106 

Rat DMP-1 
Forward 5’-GGAGCAAGGTGACAGCGAGT-3’ 

Reverse 5’-GAGACTGGAGGCCTTCCTGG-3’ 
104 

Rat DSPP 
Forward 5’-TGACAGCAAGGACAGCAC-3’ 

Reverse 5’-GGGGTTCTCTGCTCTAATC-3’ 
145 

Rat Msx2 
Forward 5’-ACACAAGACCAATCGGAAGC-3’ 

Reverse 5’-GCAGCCATTTTCAGCTTTTC-3’ 
222 

Human β-actin 
Forward 5’-ACCCACACTGTGCCCATCTAC-3’ 

Reverse 5’-GCCATCTCCTGCTCGAAGTC-3’ 
206 

Human COUP-TFII 
Forward 5’-TGCCTGTGGTCTCTCTGATG-3’ 

Reverse 5’-ATATCCCGGATGAGGGTTTC-3’ 
225 

Human DMP-1 
Forward 5’-GATCAGCATCCTGCTCATGTT-3’ 

Reverse 5’-AGCCAAATGACCCTTCCATTC-3’ 
125 

Human DSPP 
Forward 5’-AGAAGGACCTGGCCAAAAAT-3’ 

Reverse 5’-TCTCCTCGGCTACTGCTGTT-3’ 
280 
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Western Blot Analysis 

 

 Total extracts of cells and tooth germs were harvested in a lysis buffer (Cell 

Signaling Technology) and centrifuged at 12,000 × g for 15 min at 4 °C. Quantification of 

total protein was performed using the BCA protein assay reagent (Bio-Rad Laboratories, 

Hercules, CA, USA). Proteins were resolved by 10% SDS-PAGE and transferred to a 

polyvinylidenedifluoride (PVDF) membrane. After blocking in 5% milk in Tris-buffered 

saline with 0.1% Tween-20 (TBS-T), the membrane was incubated with the indicated 

antibodies diluted in 5% milk at 4 °C for overnight. After washing five times with TBS-T for 

5 min each time, and finally the signals were visualized using an enhanced 

chemiluminescence reagent (ECL; Santa Cruz Biotechnology) in a LAS-4000 luminoimage 

analyzer system (Fujifilm, Tokyo, Japan). 

 

Transient Transfection and Luciferase Reporter Assay 

 

 Transient transfections of reporter and mammal expression plasmids were carried 

out using Lipofectamine 2000 (Invitrogen) as described previously (28). Human embryonic 

kidney (HEK-293T) cells were used and a β-galactosidase reporter plasmid under the control 

of cytomegalovirus (CMV) promoter was co-transfected as an internal control. Luciferase 

activity was measured with the multiplate reader (Bio-Tek Instruments, Winooski, VT, USA) 

and normalized to β-galactosidase activity. All experiments were performed at least 3 times 

in duplicate, and the most representative results were shown. 

 

Alkaline Phosphatase Staining and Alizarin Red Staining  

 

 For alkaline phosphatase (ALP) enzyme staining, cells were fixed with 4% 

formaldehyde (Sigma-Aldrich, St. Louis, MO, USA), rinsed three times with deionized 



- 10 - 

water and treated with a BCIP®/NBT solution (Sigma-Aldrich) for 15 min. The stained 

culture plates were scanned by Epson Perfection V700 (Epson Korea, Seoul, Korea), and the 

degree of staining was quantitatively compared using Image J software. To evaluate 

mineralization, Alizarin Red stain was applied as previously described (22). Briefly, cells 

were fixed with 70% ethanol and then treated with a 40 mM Alizarin Red solution (pH 4.2) 

for 10 min. After extraction with 10% cetylpyridinium chloride (CPC) in 10 mM sodium 

phosphate (pH 7.0) for 15 min, staining was quantified by measuring the absorbance at 540 

nm using a multiplate reader (Bio-Tek Instruments).  

 

Immunoprecipitation (IP) and Chromatin Immunoprecipitation (ChIP) Assays 

 

 MDPC-23 cells were transfected with indicated constructs for 48 h, and harvested 

in a lysis buffer (Cell Signaling Technology) containing protease inhibitors (Roche, Basel, 

Switzerland). The samples were centrifuged at 4°C for 15 min, and supernatants were pre-

cleared with protein G-agarose beads (Invitrogen) prior to overnight incubation with anti-

Msx2 and anti-HA antibodies (Sigma-Aldrich). Protein G-agarose beads were added to the 

lysate, incubated for 4 h, washed five times with lysis buffer and resuspended in SDS sample 

buffer. After samples were resolved by 10% SDS-PAGE, Western blots were performed 

with the designated antibodies and ECL reagents. For ChIP assay, MDPC-23 cells were 

transfected with HA-COUP-TFII or empty vector for 48 h, and fixed with 1% formaldehyde 

for 10 min. After washing with ice-cold PBS, the cells were harvested and sonicated in a 

lysis buffer (Millipore Corporation, Billerica, MA). Soluble chromatin was subjected to 

immunoprecipitation using monoclonal anti-HA antibody-coupled agarose beads. Then the 

DNA fragments were recovered by phenol/chloroform extraction, and analyzed by RT-PCR. 

The primer sequences for COUP-TFII binding region of the DSPP promoter were listed in 

Table 2. 

 



- 11 - 

Table 2. The nucleotide sequences of the primers used in ChIP assay. 

Location Nucleotide sequence Size (bp) 

–333/–328 
(P1) Forward 5’-CCTCAGGAATGATAGGGGTCT-3’ 
(P2) Reverse 5’-AGAGCCACTTAGACTCTGTCACC-3’ 120 

–184/179 (P3) Forward 5’-GACACAAAACAGTCTTCCAGGAG-3’ 
(P4) Reverse 5’-GCTGTAATAACGCCCCACTC-3’ 120 

P : primer. 

Statistical Analyses 

 

 All experiments were repeated at least three times. Statistical analysis was 

performed using the Student's t-test or analysis of variance followed by the Tukey’s multiple 

comparison test. Differences were considered significant at p < 0.05. The results are 

expressed as the mean ± standard deviation of triplicate independent samples.  
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RESULTS 

 

1. Endogenous Expression of COUP-TFII 

Initially, to identify whether COUP-TFII is related to development of tooth germ, 

the level of COUP-TFII mRNA or protein was examined in the tooth germs of rat and mouse 

at different developmental stages. 

 

1-1. Endogenous COUP-TFII Expression in Rat Tooth Germ 

In this part, the expression level of COUP-TFII mRNA was assessed in rat tooth 

germ. Rat tooth germs undergo different developmental stages with postnatal (PN) days; bell 

stage (PN 3), crown formation stage (PN 6) and root formation stage (PN 9) of maxillary 

second molar germs (29). As tooth germ development progressed, the expression of COUP-

TFII mRNA also increased along with the expression of ALP, DMP-1, DSPP and 

homeoprotein Msx2 (Fig. 1A). Western blot analysis confirmed that the protein level of 

COUP-TFII consistently increased postnatally (Fig. 1B). Confocal microscopy analysis of 

PN day 9 maxilla of rat also revealed the increased positive immunoreactivity for anti-

COUP-TFII and anti-Msx2 depending on germ stages; the immunoreactivity was more 

pronounced in the odontoblast layer of the second molar germ (root formation stage) than 

that of the third molar germ (cap stage) (Fig. 1C). These results suggest that the increasing 

expression pattern of COUP-TFII is related with the maturation of odontoblast and tooth 

germ development. 
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Figure 1. Endogenous expression of COUP-TFII in rat tooth germ. (A) Expression of 

COUP-TFII mRNA in rat tooth germ. Total RNA was isolated from tooth germ of the 

maxillary second molars at post-natal day 3 (bell stage), 6 (crown formation stage) and 9 

(root formation stage). Real-time PCR was performed with specific primers. (B) COUP-TFII 

protein expression in rat tooth germ. Tooth germ samples were harvested at the designated 

time point for total protein isolation, and Western blot analysis was performed. (C) 

Immunofluorescent staining was performed with COUP-TFII or Msx2 specific antibody in 

serial sections of rat maxilla at post-natal day 9, and imaged by LSM confocal microscopy. 

Immunoreactivity to anti-COUP-TFII (red) was observed in dentin-forming odontoblasts of 

the second molar germ and also enamel-forming ameloblasts. Immunoreactivity to the anti-

Msx2 antibody (green) was observed in the odontoblasts of the second molar germ. The 

nucleus was stained with DAPI (blue). The negative control stained with IgG was 

immunofluorescence negative (green). Notably, immunoreactivity of COUP-TFII and Msx2 

in second molar germs (root formation stage) was stronger than that in third molar germs 

(cap stage). Data are expressed as the mean ± S.D. of triplicate samples (*, p < 0.05; **, p < 

0.01 versus control group). PN, post-natal days; 2nd, second molar; 3rd, third molar; bars, 

100 μm 
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1-2. Endogenous COUP-TFII Expression in Mouse Tooth Germ 

To compare the expressional pattern of COUP-TFII in mouse tooth germ, 

immunostaining experiment was carried out using anti-COUP-TFII antibody in mouse 

maxillary first molar germs at different developmental stages. Mouse maxillae including first 

molar germs were isolated at embryonic days of E13, E14, E16.5 and postnatal day of PN1; 

the first molar germs undergo bud, cap, bell and secretory stage, respectively. Each specimen 

was cryosectioned and reacted with anti-COUP-TFII antibody. As shown in Fig. 2, the signal 

of COUP-TFII protein was hardly detected around dental mesenchyme (DM) or dental pulp 

(DP) in the tooth germ of E13, E14 and E16.5. However, immunoreactivity against COUP-

TFII was observed in the tooth germ of PN1 along with the odontoblastic layer (Fig. 2). 

Mouse maxillary first molars at PN1 are in the secretory stage when matured odontoblasts 

start forming predentin structure. The expression of COUP-TFII in developing tooth germs 

of mouse started to be detected from PN1. These findings provide supportive evidence that 

COUP-TFII might be related on the process of odontoblast differentiation or dentin matrix 

mineralization. 
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Figure 2. Endogenous expression of COUP-TFII in mouse tooth germ. 

Immunohistochemistry. Mouse maxillae including first molar germs were isolated at E13, 

E14, E16.5 and PN1 (a-d); the first molar germs undergo bud, cap, bell and secretory stage, 

respectively. Each specimen was cryosectioned and reacted with anti-COUP-TFII antibody. 

The signal of COUP-TFII protein was hardly detected around dental mesenchyme (DM) or 

dental pulp (DP) in the tooth germ of E13, E14 and E16.5. However, immunoreactivity 

against COUP-TFII was observed in PN1 along the odontoblastic layer and ameloblastic 

layer as well. Red arrows indicate expression of COUP-TFII. E, embryonic; DE, dental 

epithelium; DM, dental mesenchyme; EO, enamel organ; IEE, inner enamel epithelium; DP, 

dental papilla; Od, odontoblast; Am, ameloblast; bars , 100 μm  
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2. Endogenous COUP-TFII Expression during Odontoblast Differentiation 

To determine if there is a change in endogenous COUP-TFII expression profile 

during induced odontoblast differentiation, the level of COUP-TFII mRNA expression was 

evaluated in cultured odontoblast lineage cells, primary human dental pulp cells (HDPCs) 

and murine dental papilla-derived cells (MDPC-23). Odontoblast differentiation of HDPCs 

and MDPC-23 cells were induced by incubation with mineralizing medium containing 10% 

fetal bovine serum (FBS), 50 μg/ml ascorbic acid and 5 mM β-glycerophosphate (β–GP), 

and the culture medium was replaced every other day. 

As shown in Fig. 3, the expression of odontoblast-specific DMP-1 and DSPP 

expression was continuously increased along with the culture period up to day 7 in HDPCs 

(Fig. 3A) and day 4 in MDPC-23 cells (Fig. 3B), respectively. These results imply the cells 

were undergoing odontoblast differentiation by mineralizing medium. Under these 

conditions, COUP-TFII mRNA expression was also gradually induced as the expression of 

odontobalst differentiation marker genes was increased. These results suggest COUP-TFII 

might play some roles during the differentiation of odontoblast lineage cells. 
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Figure 3. COUP-TFII expression profile during odontoblast differentiation. (A) HDPCs 

were cultured with mineralizing medium and harvested at designated time points of 0, 3 and 

7 days for total RNA isolation. Real-time PCR was performed with specific primers for 

COUP-TFII, DMP-1 and DSPP. β-actin was used as an internal control. (B) MDPC-23 cells 

were harvested at 0, 2 and 4 days and real-time PCR was performed with the specific primers 

for COUP-TFII, DMP-1 and DSPP. Data are expressed as the mean ± S.D. of triplicate 

samples (*, p < 0.05; **, p < 0.01 versus control group). 
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3. The Effects of COUP-TFII on Odontoblast Differentiation and Matrix Mineralization 

 In previous part, the results showed that COUP-TFII mRNA expression was 

increased during the differentiation of odontoblast lineage cells. Based on those results, the 

effects of COUP-TFII on odontoblasts were clarified through gain-or-loss of function 

experiments. 

 

3-1. The Effects of COUP-TFII Overexpression in Odontoblast 

To clarify the potential roles of COUP-TFII in odontoblast differentiation, 

adenovirus encoding COUP-TFII (Ad-COUP-TFII) or control adenovirus vector, Ad-green 

fluorescence protein (Ad-GFP) was transduced in HDPCs. The cells were treated with Ad-

COUP-TFII or Ad-GFP at the designated multiplicity of infection (MOI) under serum-free 

conditions. After 4 h, an equivalent volume of medium containing 20% FBS was added, and 

the cells were incubated for an additional 24 h before the medium was changed. Then, after 

cultured for 5 days in mineralizing medium, the expressions of COUP-TFII, DMP-1 and 

DSPP were examined by real-time PCR analysis. When COUP-TFII was overexpressed in 

HDPCs using Ad-COUP-TFII, the levels of DMP-1 and DSPP mRNA expression were 

increased in a dose dependent manner (Fig. 4A). Notably, the expression of DSPP mRNA in 

the highest dose of Ad-COUP-TFII infection was approximately 12 fold compared with the 

control group. 

 To determine whether COUP-TFII can affect matrix mineralization, alkaline 

phosphatase (ALP) and Alizarin Red staining (AR-S) were performed in the culture of 

HDPCs or MDPC-23 cells. ALP staining for detecting ALP enzyme activity was analyzed 

after 7 days in HDPCs, and AR-S for detecting calcium nodules formation was analyzed 

after 24 days in HDPCs and 6 days in MDPC-23 cells. The cells were cultured with or 

without GFP-tagged Ad-COUP-TFII in the presence or absence of AA and β-GP for the 

designated culture days. Prior to ALP staining, infectivity of Ad-COUP-TFII for COUP-TFII 

overexpression was confirmed by fluorescent microscopic analysis. As shown in Fig. 4B 
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(upper panel), adenovirus infection was successfully carried out by dose dependent manner. 

As a result of ALP staining, COUP-TFII overexpression significantly enhanced the ALP 

activity in HDPCs. Quantitative changes of ALP activity compared with the control group, 

were measured by using Image J software (Fig. 4B, lower panel).  

Next, AR-S for detecting calcium nodules formation was conducted in HDPCs and 

MDPC-23 cells. The results of AR-S showed similar pattern as ALP staining in both HDPCs 

and MDPC-23 cells, demonstrating that mineralized nodule formation was significantly 

increased depending on doses of Ad-COUP-TFII (Fig. 4C-D, upper panels). For quantitative 

analysis, the stain was extracted with 10% cetylpyridinium chloride (CPC) and then 

concentration of AR-S was measured by spectrophotometry in 562nm of optical density (Fig. 

4C-D, lower panels). 

 The gain-of-function study indicates that overexpression of COUP-TFII enhances 

the expression of odontoblast differentiation marker genes, DMP-1 and DSPP, also 

stimulates mineralization in odontoblast lineage cells. Taken together, the results provide 

some evidences that COUP-TFII has a stimulatory role in odontoblast differentiation and 

matrix mineralization. 
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Figure 4. Overexperssion of COUP-TFII stimulates DSPP expression and matrix 

mineralization in HDPCs and MDPC-23 cells. (A) Real-time PCR analysis. HDPCs were 

infected with Ad-COUP-TFII or Ad-GFP and cultured for 5 days in mineralizing medium. 

(B) Alkaline phosphatase staining. HDPCs were cultured with green fluorescence protein 

(GFP)-tagged Ad-COUP-TFII for 7 days. The infectivity of Ad-COUP-TFII for COUP-TFII 

overexpression was confirmed by fluorescence microphotography. Alkaline phosphatase 

staining was performed with a BCIP®/NBT solution, scanned, and quantitatively compared 

using Image J software (lower panel). (C, D) Alizarin Red staining (AR-S). HDPCs and 

MDPC-23 cells were cultured for 24 days or 6 days under the condition of overexpression of 

COUP-TFII, and stained with Alizarin Red solution. Magnified images represent 

mineralized nodule formation of the relevant wells. For quantitative analysis, the stain was 

extracted with 10% cetylpyridinium chloride and then concentration of AR-S was measured 

by spectrophotometry (lower panels). Data are expressed as the mean ± S.D. of triplicate 

samples (*, p < 0.05; **, p < 0.01 versus control group. #, p < 0.05; ##, p < 0.01 versus the 

indicated group). Ad-COUP-TFII (+, 50 MOI; ++, 100 MOI; +++, 200 MOI), Ad-GFP 

(Control, 50 MOI). MM, mineralizing medium 
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3-2. The Effects of COUP-TFII Down-regulation in Odontoblast 

To confirm further understanding of the roles of COUP-TFII in odontoblast 

differentiation and matrix mineralization, loss-of-function study was carried out by using si-

RNA mediated down-regulation of COUP-TFII. To silence the endogenous expression of 

COUP-TFII, HDPCs were transfected with human COUP-TFII small interfering RNA (si-

COUP-TFII) or control siRNA and cultured for 5 days with or without mineralizing medium. 

When HDPCs were transfected with si-COUP-TFII, the expression of COUP-TFII mRNA 

was significantly decreased depending on the transfected doses of si-COUP-TFII, 

accompanied by decrease of DMP-1 and DSPP expression, analyzed by real-time PCR. In 

particular, the reduction of DSPP expression was more remarkable compared with that of 

DMP-1 (Fig. 5A). 

AR staining was carried out in the similar way with the gain-of-function study. 

HDPCs were cultured for 24 days under the condition of silencing of COUP-TFII, and 

stained with Alizarin Red solution. As shown in Fig. 5B, si-COUP-TFII transfected groups 

demonstrated an inhibition of mineralized nodule formation, indicating that the down-

regulation of COUP-TFII have caused an inhibitory effect on the mineralization in HDPCs. 

Magnified images represent mineralized nodule formation of the relevant wells. Quantitative 

analysis was performed; the stain was extracted with 10% cetylpyridinium chloride and then 

concentration of AR-S was measured by spectrophotometry (Fig. 5B, lower panel). 

These results were consistent with the previous gain-of-function study, suggesting 

that COUP-TFII may play a positive role in odontoblast lineage cells and their function of 

inducing dentinal matrix mineralization. 
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Figure 5. Down-regulation of COUP-TFII inhibits DSPP expression and matrix 

mineralization in HDPCs. (A) Real-time PCR analysis. HDPCs were transfected with si-

COUP-TFII or control siRNA and cultured for 5 days with or without mineralizing medium. 

(B) Alizarin Red staining (AR-S). HDPCs were cultured for 24 days under the condition of 

silencing of COUP-TFII, and stained with Alizarin Red solution. Magnified images represent 

mineralized nodule formation of the relevant wells. For quantitative analysis, the stain was 

extracted with 10% cetylpyridinium chloride and then concentration of AR-S was measured 

by spectrophotometry (lower panels). Data are expressed as the mean ± S.D. of triplicate 

samples (*, p < 0.05; **, p < 0.01 versus control group. #, p < 0.05; ##, p < 0.01 versus the 

indicated group). si-COUP-TFII (+, 100 ng/well; ++, 200 ng/well; +++, 300 ng/well); MM, 

mineralizing medium 
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4. The Molecular Mechanism of COUP-TFII Action 

The previous results suggest that COUP-TFII has the positive effects on 

odontoblast differentiation and matrix mineralization. In this part, molecular mechanism of 

COUP-TFII action was explored focused on the transcriptional regulation of DSPP and 

interaction with Msx2, another major transcription factor of odontoblast differentiation. 

 

4-1. COUP-TFII Activation of Promoter Gene 

As shown in the previous part, expressions of DMP-1 and DSPP, the specific 

odontoblast differentiation marker genes, were regulated by expression of COUP-TFII (Fig. 

4A and 5A). The expressional change was much greater in DSPP rather than DMP-1, 

although both of them are the matrix proteins secreted by matured odontoblast. Increased 

DSPP expression is an indicator of odontoblastic differentiation and is also necessary for 

tooth development and matrix mineralization (30). Therefore, to understand the mechanism 

by which COUP-TFII regulates odontoblastic gene expression and matrix mineralization, the 

effects of COUP-TFII on DSPP promoter activity were examined.  

Previous studies have reported that there exist specific binding elements (AGGTCA) 

for COUP-TFII binding (31). Hence, DSPP promoter region has been searched to see if there 

exist some putative COUP-TFII binding motifs (AGGTCA), and there two candidate 

elements were found at -333/-328 and -184/-179 bp from the transcription start site in the 

DSPP promoter gene.  

To assess if COUP-TFII could have actual effects on the regulation of DSPP 

transcription, serial deletion promoters of DSPP gene were constructed; 2.6-, 1.5-, 0.7-kb 

and 50-bp DSPP-Luc reporter with or without the putative COUP-TFII binding motifs (Fig. 

6A). Then, luciferase reporter assay was performed with those serial deletion promoters of 

DSPP gene. For the luciferase reporter assay, HEK-293T cells were used and a β-

galactosidase reporter plasmid under the control of cytomegalovirus promoter was co-

transfected as an internal control. Luciferase activity was measured with the multiplate 
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reader. When COUP-TFII expression vector was co-transfected with the 2.6-, 1.5- or 0.7-kb 

DSPP-Luc reporter, luciferase activity of each reporter was increased in proportion to the 

dose of COUP-TFII vector. On the other hand, no response was seen with 50-bp DSPP-Luc 

reporter, which did not contain putative COUP-TFII binding element (Fig. 6B). These results 

indicate that COUP-TFII positively regulates the transcriptional activity of DSPP. 
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Figure 6. COUP-TFII enhances the activity of DSPP promoter. (A) Schematic 

representation of serial deletion constructs of DSPP-Luc promoter. (B) Luciferase reporter 

assay. HEK-293T cells were co-transfected with 100 ng of the indicated luciferase reporter 

constructs (2.6-, 1.5-, 0.7-kb and 50-bp DSPP-Luc) and COUP-TFII expressional vector (+, 

100 ng/well; ++, 200 ng/well). Data are expressed as the mean ± S.D. of triplicate samples (*, 

p < 0.05; **, p < 0.01 versus control group). NS, not significant  
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4-2. COUP-TFII Protein Binding on DSPP Promoter Gene 

 To determine if COUP-TFII protein directly binds on DSPP promoter region, the 

COUP-TFII expression vector was co-transfected with the 0.7-kb DSPP promoter in MDPC-

23 cells and ChIP assay was performed. MDPC-23 cells were transfected with or without 

HA-COUP-TFII. After 48 h, the ChIP assay was carried out using the anti-HA antibody. 

Immunoprecipitated products were amplified by PCR with primers specific for the putative 

COUP-TFII binding sites on DSPP promoter (-333/-328bp or -184/-179bp). Two loci of the 

DSPP gene were interacted with the COUP-TFII protein, analyzed by the ChIP assay, 

although the -333/-328 element was more dominant than the -184/-179 element (Fig. 7A). 

This result suggests that the COUP-TFII protein directly binds to the DSPP promoter region.  

Moreover, it also implies that the -333/-328 element is more responsible for the 

transcriptional regulation of DSPP by COUP-TFII than the other. Based on the observation, 

a mutant form of DSPP-Luc reporter targeting the -333/-328 element was produced (Fig 7B, 

upper diagram).  

To confirm the COUP-TFII binding to DSPP gene, COUP-TFII expression vector 

was transfected with the wild type (WT) or the mutant (Mut, -333/-328) of 0.7-kb DSPP-Luc 

promoter. Compared to the activity of wild-type DSPP-Luc reporter activity, COUP-TFII 

failed to activate the luciferase activity of mutated form of DSPP-Luc reporter, in which six 

nucleotides of the COUP-TFII binding site (-333/-328) was substituted (Fig. 7B, lower 

panel). These findings suggest that COUP-TFII might directly control DSPP transcription 

through the specific COUP-TFII binding elements.  
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Figure 7. COUP-TFII directly binds to DSPP promoter. (A) MDPC-23 cells were 

transfected with or without HA-COUP-TFII. After 48 h, the ChIP assay was carried out 

using the anti-HA antibody. Immunoprecipitated products were amplified by PCR with 

primers specific for the putative COUP-TFII binding sites on DSPP promoter (-333/-328bp 

or -184/-179bp). (B) COUP-TFII was transfected on the wild type (WT) or the mutant (Mut, 

-333/-328) of 0.7-kb DSPP-Luc promoter, and then luciferase reporter assay was carried out. 

Note that only the activity of wild type DSPP promoter was increased. Data are expressed as 

the mean ± S.D. of triplicate samples (*, p < 0.05 versus control group. #, p < 0.05 versus the 

indicated group). 
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4-3. Antagonistic Effect of COUP-TFII and Msx2 on the Activity of DSPP Transcription 

Previously, COUP-TFII demonstrated a positive regulation on DSPP transcription. 

Another important transcription factors in tooth development, Msx2 and Dlx5, so called as 

homeoproteins, control DSPP transcription in opposite directions by competing with 

homeodomain response element (HRE, TAATT) (32,33). To confirm the action of Msx2 and 

Dlx5 on DSPP transcription, 3x HRE-Luc and 0.7-kb DSPP-Luc reporter were prepared and 

luciferase reporter assay was carried out. When Msx2 expression vector was co-transfected 

with 3x HRE-Luc or 0.7-kb DSPP-Luc reporter, the luciferase activity was dose-dependently 

decreased, as reported previously (33). In contrast, transfection of Dlx5 expression vector 

increased luciferase activity (Figs. 8A, B).  

To explore the interaction in between COUP-TFII protein and homeoproteins, 

HEK-293T cells were co-transfected with 0.7-kb DSPP-Luc reporter together with Msx2 and 

COUP-TFII expression vectors at the indicated doses. COUP-TFII dose-dependently 

increased the activity of 0.7-kb DSPP-Luc reporter even in the presence of Msx2, and on the 

contrary Msx2 dose-dependently inhibited COUP-TFII-induced luciferase activity (Fig. 8C). 

Western blot analysis confirmed the induction of COUP-TFII and Msx2 protein by the 

vectors (Fig. 8C, lower panel). The results suggest that Msx2 could be a potential counter-

partner for COUP-TFII to regulate the DSPP transcription. 
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Figure 8. COUP-TFII regulates the activity of DSPP promoter through associating with 

homeoprotein Msx2. (A-C) Luciferase reporter assay. (A-B) Effects of homeodomain 

transcription factor Msx2 and Dlx5 on the activation of 3x HRE-Luc reporter or 0.7-kb 

DSPP-Luc. HEK-293T cells were co-transfected with 200 ng of 3x HRE-Luc or 0.7-kb 

DSPP-Luc together with Msx2 or Dlx5 expression vectors at the indicated doses (ng/well). 

(C) Cells were co-transfected with 0.7-kb DSPP-Luc reporter together with Msx2 and 

COUP-TFII expression vectors at the indicated doses (ng/well), and then luciferase reporter 

assay was done. Western blot analysis confirmed the induction of COUP-TFII and Msx2 

protein by the vectors (lower panel). COUP-TFII and Msx2 showed opposite regulation on 

0.7-kb DSPP promoter. Data are expressed as the mean ± S.D. of triplicate samples (*, 

p < 0.05; **, p < 0.01 versus control group. #, p < 0.05; ##, p < 0.01 versus the 

indicated group); H, homeodomain response element (HRE) 
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4-4. Physical Interaction of COUP-TFII and Msx2 

To better understand the mechanism by which COUP-TFII overcame the negative 

effect of Msx2 on DSPP promoter activity, the protein interaction between COUP-TFII and 

Msx2 was examined using an immunoprecipitation (IP) assay.  

MDPC-23 cells were transfected with HA-tagged COUP-TFII and/or Flag-tagged 

Msx2 constructs. Immunoprecipitation was performed with anti-Msx2 or anti-HA antibodies, 

and Western blot analysis was performed with the indicated antibodies. Only HA-COUP-

TFII and Flag-Msx2 transfected group showed the positive reactivity, suggesting that 

COUP-TFII protein can physically interact with Msx2 protein (Fig. 9A).  

To examine whether the two proteins are co-localized in the cell level, subsequent 

immunofluorescence assay was done with anti-COUP-TFII and anti-Msx2 antibodies. 

MDPC-23 cells were fixed with ethanol, and then reacted with anti-COUP-TFII and anti-

Msx2 antibodies and horseradish peroxidase-conjugated secondary antibody. Then, the 

immunoreactivity for COUP-TFII (red) and Msx2 (green) was photographed with LSM 

confocal microscopy. DAPI staining was performed for nuclear morphology (Fig. 9B). The 

signals of COUP-TFII and Msx2 were co-localized in the nucleus (white arrows). The co-

localization of COUP-TFII and Msx2 also supports the physical interaction between them. 

Taken together, these results indicate that COUP-TFII stimulates DSPP 

transcription through physically interacting with Msx2. 
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Figure 9. COUP-TFII physically interacts with Msx2. (A) Immunoprecipitation assay. 

MDPC-23 cells were transfected with HA-tagged COUP-TFII and/or Flag-tagged Msx2 

constructs. Immunoprecipitation was performed with anti-Msx2 or anti-HA antibodies, and 

Western blot analysis was performed with the indicated antibodies. (B) Fluorescent 

microphotographs. MDPC-23 cells were fixed with ethanol, and then reacted with anti-

COUP-TFII and anti-Msx2 antibodies and horseradish peroxidase-conjugated secondary 

antibody. Immunoreactivity for COUP-TFII (red) and Msx2 (green) was photographed with 

LSM confocal microscopy. DAPI staining was performed for nuclear morphology. Note that 

the signals of COUP-TFII and Msx2 were co-localized in the nucleus (white arrows). 

  



- 38 - 

5. Endogenous COUP-TFII Expression during Amloblast Differentiation 

Until here, the novel effects of COUP-TF-II on the expression of odontoblastic 

specific genes (e.g. DMP-1 and DSPP), and the function of dental pulp cells to induce matrix 

mineralization were discussed. 

Previous results (Fig.2) showed that COUP-TFII also expressed in the enamel-

forming ameloblast layer. Additional experiment was undertaken to make it clear if COUP-

TFII expression is also related to ameloblast differentiation. Mouse ameloblast lineage cells 

(mALCs) were cultured for 12 days with mineralizing medium under the similar condition 

with HDPCs or MDPC-23 cells. The mRNA expressions of ALP, COUP-TFII, ameloblast-

specific genes ameloblastin, amelogenin and enamelin were analyzed by real-time PCR. 

Interestingly, the expressions of ALP and the ameloblast-specific genes ameloblastin, 

amelogenin and enamelin were increased over time, but COUP-TFII expression was not 

altered, indicating that the action of COUP-TFII could be excluded in ameloblast 

differentiation (Fig. 10). 
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Figure 10. COUP-TFII expression profile during ameloblast differentiation. Real-time 

PCR analysis. Mouse ameloblast lineage cells (mALCs) were cultured for 12 days in 

mineralization medium containing 10% FBS, 50 μg/ml ascorbic acid and 5 mM β-

glycerophosphate. The culture medium was replaced every other day. Data are expressed as 

the mean ± S.D. of triplicate samples (*, p < 0.05; **, p < 0.01 versus control group). Ambn, 

ameloblastin; Amel, amelogenin; Enam, enamelin; NS, not significant 
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DISCUSSION 

 

 In the present study, it was showed that the orphan nuclear receptor COUP-TFII 

might be another important regulator of DSPP expression and mineralization in odontoblast 

lineage cells. COUP-TFII expression was increased during the differentiation of isolated 

HDPCs and development of rat tooth germ. Overexpression of COUP-TFII increased the 

expression of DMP-1 and DSPP, and mineralized nodule formation. In contrast, knockdown 

of COUP-TFII expression decreased them. Besides, COUP-TFII stimulated DSPP 

transcription by directly binding to the DSPP promoter and physically interacting with Msx2 

protein.  

 COUP-TFII is a key regulator that decides the commitment and differentiation of 

mesenchymal stem cells (MSCs) into multiple cell lineages. For example, COUP-TFII 

stimulates the differentiation of precursors into adipocyte and chondrocyte lineages with the 

increase of peroxisome proliferator-activated receptor-gamma (PPARγ) and Sox-9 

expression, while it inhibits Wnt signaling and Runx2 activity to impede MSC access to 

osteogenic and myogenic lineages (21). Because odontoblasts are also differentiated from 

MSCs, I aimed to explore the role of COUP-TFII in odontoblastic differentiation of HDPCs. 

The gain-or-loss of function studies showed that COUP-TFII may be a stimulatory regulator 

for matrix mineralization or expression of odontoblast-specific gene in HDPCs. To clarify 

the stimulatory role of COUP-TFII in the body, more extensive animal studies including 

knockout or transgenic mice are needed. 

 DSPP and DMP-1 are highly phosphorylated proteins in the dentin matrix, and they 

are essential for the proper development of teeth and bones (34-37). According to the 

previous reports, homeodomain transcriptional factors including Hox group, Dlxs and Msxs 

are involved in the hard tissue development along with changes in DSPP and DMP-1 

expression (38-40). Among them, Msx2 and Dlx5 have an opposite effect on expression of 
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mineralization-related genes, such as Runx2 (41,42), Osteocalcin (43) and DSPP (33). 

 In this study, altered expression of COUP-TFII could induce or inhibit DSPP and 

DMP-1 expression in odontoblast lineage cells (Figs. 4A and 5A). The results prompted an 

exploration of a possible molecular mechanism by which COUP-TFII regulates DSPP 

expression with promoter study and immunoprecipitation assays. COUP-TFII could 

stimulate DSPP transcription by directly binding into specific regions of DSPP promoter 

gene. In addition, COUP-TFII activated DSPP transcription, overcoming the negative effect 

of Msx2 on DSPP promoter and the two proteins physically interacted. Based on these 

results, I assume that COUP-TFII can also stimulate dentin matrix mineralization with 

transcriptional activation of matrix protein genes. However, there was no evidence that 

COUP-TFII activates DMP-1 transcription, although it is also another important matrix 

protein of dentin and possesses the potential to enhance DSPP expression (35,36). Further 

studies will be needed to determine whether COUP-TFII directly regulates DMP-1 

transcription.  

 In the immunostaining experiment, COUP-TFII expression in pulp tissues increased 

as tooth germ development progressed (Fig. 1C and Fig. 2), supporting the hypothesis that 

COUP-TFII might stimulate dentinal matrix mineralization. However, the immunoreactivity 

of COUP-TFII at PN day 1 tooth germ of mouse was observed in the odontoblast layer as 

well as the ameloblast layer (Fig. 2). To figure out whether COUP-TFII expression is related 

to ameloblast differentiation, additional real-time PCR analysis was carried out in mouse 

ameloblast lineage cells cultured with mineralizing medium. Expression of the ameloblast-

specific genes ameloblastin, amelogenin and enamelin increased over time, but COUP-TFII 

expression was not altered (Fig. 10), indicating that COUP-TFII may not be involved in 

amelogenesis. More supportive experiments will be needed about this issue.  

 Runx2 is also a key transcription factor that regulates bone and tooth formation. 

Osteoblast differentiation occurs along with Runx2 activation. However, at the onset of 

odontoblast differentiation, Runx2 expression is markedly down-regulated (44,45). 
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Prolonged Runx2 expression inhibits the terminal differentiation into odontoblasts along 

with a decrease in DSPP expression. The severe reduction of the dentin structure results in 

trans-differentiation into osteoblasts (46,47). In addition, our previous study showed that 

COUP-TFII negatively regulates osteoblast differentiation by inhibiting Runx2 activity (22). 

It is still possible that COUP-TFII might regulate DSPP expression and matrix 

mineralization through another pathway modulating Runx2 activity in odontoblasts. 

 Overall, this study provides evidence that COUP-TFII has a stimulatory role in 

DSPP transcription and matrix mineralization in odontoblast lineage cells. The findings also 

provide new insights that COUP-TFII has potential as a novel therapeutic target for dentin 

regeneration. 
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상아질모세포 분화에서의 COUP-TFII 의 역할 

 

 

허 성 웅 

 

전남대학교 대학원 치의학과 

(지도교수 : 고정태) 

 

(국문초록) 

스테로이드-갑상선 호르몬 수용에 속하는 고아 핵 수용체인 Chicken 

ovalbumin upstream promoter transcription factor 2 (COUP-TFII; NR2F2, 

nuclear receptor subfamily 2, group f, member2)는 다양한 조직들에서 세포분

화의 운명을 결정하는 중요한 역할을 담당한다. 그러나 치아발생에 있어서 

COUP-TFII 의 구체적인 역할은 아직 밝혀지지 않고 있다. 이에 본 연구에서는 

COUP-TFII 가 상아질 모세포 분화에 미치는 영향에 대해 규명하고자 하였다.  

흰쥐 상악 제2대구치에서 내인성 COUP-TFII 의 발현은 치아발달이 진

행됨에 따라 증가하는 경향을 보였다. 또한, 생후 9일째 흰쥐의 제2대구치(치근

형성기)의 상아질모세포층에서는 제3대구치(모상기)에서의 그것보다 더 많은 양

의 COUP-TFII 단백질이 탐지되었다. 생후 1일에 기질단백 분비기에 있는 생쥐 

상악 제1대구치 치배에서도 COUP-TFII 단백질이 상아질모세포층을 따라 발현

하였다. 일차배양한 인간 치수세포와 생쥐 치수유래세포를 석회화 배지에서 배양
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하였을 때, COUP-TFII 의 발현이 상아질모세포 특이 단백질 DMP-1 과 DSPP 

의 증가와 동반하여 함께 증가되었다. 상아질모세포에서 아데노바이러스 시스템

을 이용한 COUP-TFII 의 과발현은 상아질모세포 특이 유전자들의 발현을 상향 

조절함과 동시에 알칼리성 인산가수분해효소(alkaline phosphatase)의 활성과 기

질 석회화 정도를 모두 증가시켰다. 반대로, siRNA을 이용한 COUP-TFII 의 하

향 조절은 상아질 모세포 특이 유전자들의 발현과 기질 석회화를 모두 감소시켰

다. 기전적인 연구에서는 COUP-TFII 가 DSPP 프로모터에 직접 결합함으로써 

DSPP 의 전사를 증가시킴을 보여주었다. 뿐만 아니라, COUP-TFII 는 호메오도

메인 (homeodomain) 전사인자인 Msx2 와 물리적인 상호작용을 하여 DSPP 프

로모터 활성에 대한 Msx2의 작용을 길항적으로 조절하였다.  

이상의 결과들은 COUP-TFII 가 상아질모세포에서 DSPP 의 발현을 증

가시킴과 더불어 기질의 석회화를 촉진시키는 역할을 한다는 것을 시사한다. 
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