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Abstract  

Cytoprotective effects of short-term treatment with grape seed extract (GSE) upon 

human gingival fibroblasts (hGFs) were evaluated in relation to its antioxidant properties 

and compared with those of a water-soluble analog of vitamin E: trolox (Tx). GSE and 

Tx showed comparable antioxidant potential in vitro against di(phenyl)-(2,4,6-

trinitrophenyl)iminoazanium (a stable radical), hydroxyl radical, singlet oxygen (1O2), 

and hydrogen peroxide (H2O2). Pretreatment or concomitant treatment with GSE for 1 

min protected hGFs from oxidative stressors, including H2O2, acid-electrolyzed water 

(AEW), and 1O2, and attenuated the intracellular formation of reactive oxygen species 

induced by H2O2 and AEW. Tx also reduced the H2O2- and AEW-induced intracellular 

formation of reactive oxygen species, but showed no cytoprotective effects on hGFs 

exposed to H2O2, AEW, or 1O2. These results suggest that the cytoprotective effects of 

GSE are likely exerted independently of its antioxidant potential.   
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Introduction 

Grape seed is one of the richest sources of proanthocyanidin [1,2], a polymer of 

flavan-3-ols with an average degree of polymerization between 2 and 17 [3,4]. Grape seed 

extract (GSE) is noteworthy for its anti-oxidative activity including scavenging free 

radicals [5,6]. Besides the anti-oxidative property, it is suggested that GSE has anti-

inflammatory, anti-diabetic, anti-obesity, anti-carcinogenic and anti-ageing effects [7-14]. 

Periodontal diseases (gingivitis and periodontitis) are chronic inflammatory 

diseases, which are generally caused by gram-negative bacteria, and feature gingival 

inflammation. Lipopolysaccharide is a cell wall component of gram-negative bacteria, 

which inhabit in almost all the subgingival tissues, and acts as pathogenic and 

exacerbating factors for periodontal diseases through inflammatory response [15-17]. 

One of the main targets of LPS is human gingival fibroblasts (hGFs) that play a pivotal 

role in inducing periodontal tissues injury through cytokine production such as IL-6 and 

IL-8 [18-20]. 

The previous study in our laboratory revealed that pretreatment of hGFs with GSE 

containing proanthocyanidin for 1 min elicited cytoprotective effects upon hGFs exposed 

to harsh environmental conditions; short-term exposure of hGFs in the mitotic phase to 

pure water or physiologic saline resulted in the low recovery of viable cells [21]. GSE 

pretreatment improved the recovery of cells exposed to pure water or physiologic saline. 
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In addition, hGFs exposed to GSE for 1 min were proliferous, even after culture in a 

serum-free medium. In that study, it was also shown that intracellular formation of 

reactive oxygen species (ROS) induced by culture in serum-free medium was inhibited 

in cells pretreated with GSE for 1 min. Those results suggested that, because of its 

cytoprotective effects, GSE could be a novel prophylactic and/or therapeutic agent for 

oral injury. 

Aside from our previous study, several studies have shown that polyphenols 

(including proanthocyanidin) can protect mammalian cells. For instance, the reduced cell 

viability and oxidative stress in HepG2 cells induced by tert-butyl hydroperoxide can be 

mitigated by treatment with proanthocyanidin for 6 h [22]. Also, ellagic acid has been 

shown to ameliorate the cytotoxic effect of paraquat (1,1-dimethyl-4,4-bipyridinium 

dichloride) on human alveolar A549 cells via its antioxidant action [23]. In addition, 

epigallocatechin-3-gallate shows a cytoprotective effect on mycotoxin-induced 

cytotoxicity in the human colon adenocarcinoma cell line HT29 through anti-oxidative 

and anti-inflammatory mechanisms [24]. Also, lemon grass (Cymbopogon citratus Stapf) 

polyphenols can protect human umbilical vein endothelial cells from oxidative damage 

induced by high glucose, hydrogen peroxide (H2O2), and oxidized low-density lipoprotein 

[25]. Such studies suggest that cytoprotective effects are exerted via the antioxidant action 
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of those polyphenols. 

Major differences between the studies described above and our previous study were 

that the: (i) duration of GSE treatment was as short as 1 min; (ii) involvement of an 

antioxidant action in the cytoprotective effects of GSE was not apparent. Hence, we 

examined further the cytoprotective effects of short-term GSE treatments on hGFs 

exposed to various oxidative stressors in relation to the antioxidant properties of GSE in 

vitro. We also compared the effects of GSE with those of a water-soluble analog of 

vitamin E: trolox (Tx).  
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Materials and Methods 

Test materials and reagents  

GSE (Leucoselect®) was obtained from Indena S.p.A. (Milan, Italy).  According 

to the manufacture, Leucoselect® is a grape seed extract with a well-defined chemical 

composition, which was completely elucidated by instrumental analyses such as high 

performance liquid chromatography (HPLC)-mass spectrometry (MS).  Di(phenyl)-

(2,4,6-trinitrophenyl)iminoazanium (DPPH) was purchased from Tokyo Chemical 

Industry (Tokyo, Japan). 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and xanthine 

oxidase (XOD) were from Labotec (Tokyo, Japan). 2,2,5,5-tetramethyl-3-pyrroline-3-

carboxamide (TPC), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), 

hypoxanthine (HPX), superoxide dismutase (SOD; from bovine erythrocytes), and 

allopurinol were obtained from Sigma-Aldrich (Saint Louis, MO, USA). 6-Hydroxy-

2,5,7,8-tetramethylchroman-2-carboxylic acid (Tx), rose bengal, and sodium azide 

(NaN3) were purchased from Wako Pure Chemical Industries (Osaka, Japan). All other 

reagents used were of analytical grade.  

 

Assay for polyphenols in GSE and liquid chromatography/mass spectrometry (LC/MS) 

analyses of GSE  

Total polyphenol content was determined by the Folin–Denis method [26]. In brief, 
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3.2 mL of pure water, 200 μL of 1 mg/mL of GSE, 200 μL of Folin & Ciocalteu’s Phenol 

Reagent and 400 μL of saturated sodium carbonate solution were mixed. Absorbance was 

determined at 760 nm using a Microplate Reader (FilterMax F5; Molecular Devices, 

Sunnyvale, CA, USA) after standing for 30 min. Freshly prepared gallic acid was used as 

a standard.  

For LC/MS analyses, GSE was dissolved in pure water to make a concentration of 

1 mg/mL followed by passage through a filter (polyvinylidene difluoride; pore size, 0.2 

μm). The resultant sample was injected into the electrospray ion source of a QSTAR Elite 

electrospray ionization (ESI) quadruple time-of-flight mass spectrometer (AB Sciex; 

Framingham, MA, USA) coupled to Agilent 1200 series (Agilent Technologies, Santa 

Clara, CA, USA). Chromatographic separation was undertaken on an Inertsil ODS-4 (3.0 

× 250 mm, GL Sciences, Tokyo, Japan) at 40°C. With regard to gradient elution, solvent 

A was water with 2 mM ammonium acetate, and B was methanol with 2 mM ammonium 

acetate. Gradient elution was 0–30 min and 5–100% B. Flow rate was 0.5 mL/min, the 

injection volume was 5 μL, and UV detection was carried out by a photodiode array 

detector. Electrospray ionization-mass spectrometry was recorded for 30 min in the m/z 

region from 100 to 2000 Da with the following instrument parameters: ion spray voltage 

= 5500 V, source gas = 50 L/min, curtain gas = 30 L/min, declustering potential = 50V, 
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focusing potential = 250 V, temperature = 450°C, and detector voltage = 2300 V. LC/MS 

analyses were undertaken by high-resolution electrospray ionization-mass spectrometry 

(R ≥ 10,000; tolerance for mass accuracy = 5 ppm). As standards, (+)-catechin (Tokyo 

Chemical Industry, Tokyo, Japan) and (–)-epicatechin (Sigma-Aldrich) were used. 

 

Scavenging effects on the stable radical DPPH  

GSE and Tx were dissolved in pure water to be designated concentrations followed 

by filtration (pore size, 0.22 μm). An aliquot (80 μL) of each aqueous solution was mixed 

with 16 μL of 100 mM Tris-HCl buffer (pH 7.5), 64 μL of 100% ethanol, and 40 μL of 1 

mM DPPH dissolved in 100% ethanol in a well of 96-well microplate. The plate was then 

left in a light-shielding place for 20 min. Absorbance at 520 nm was read by the 

microplate reader (FilterMax F5). Rate of DPPH scavenging was calculated according to 

the following equation:  

((A520 in the solvent control – A520 in specimen)/A520 in the solvent control) × 100, 

where A520 is absorbance at 520 nm.  

 

Scavenging effect on the superoxide anion radical (O2
–•)  

GSE and Tx were dissolved in pure water to be designated concentrations followed 
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by filtration (pore size, 0.22 μm). Scavenging activity for O2
–• was determined by the 

ESR-spin trapping method, as described in our previous studies [27,28]. An aliquot (50 

μL) of 2 mM HPX, 30 μL of 14 M DMSO, 50 μL of a sample, 20 μL of 4.5 M DMPO, 

and 50 μL of 0.4 U/mL XOD were placed in a test tube and mixed. The mixture was 

transferred to an ESR spectrometry cell. DMPO-OOH (a spin adduct of DMPO and O2
–

•) was quantified 100 s after XOD addition. TEMPOL (2 µM) was used as a standard 

sample to calculate the concentration of DMPO-OOH, and the ESR spectrum of the 

manganese ion, which was equipped in the ESR cavity, was used as an internal standard. 

The measurement conditions for ESR (X-band ESR Spectrometer; JES-FA-100; JEOL, 

Tokyo, Japan) were: field sweep, 331.92–341.92 mT; field modulation frequency, 100 

kHz; field modulation width, 0.1 mT; amplitude, 200; sweep time, 2 min; time constant, 

0.03 s; microwave frequency, 9.420 GHz; microwave power, 4 mW. In an experiment for 

kinetic analyses by double-reciprocal plots, different concentrations of DMPO were 

added to the reaction system, as described in our previous studies [27,29,30]. Instead of 

different concentrations of GSE and Tx, different concentrations of SOD (a scavenger of 

O2
–•) or of allopurinol (an XOD inhibitor) were added to the system. 

 

Scavenging effect on the hydroxyl radical (•OH)  
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A non-thermal atmospheric pressure plasma -jet device was used as a •OH generator. 

The device was connected to a sinusoidal voltage power source with a voltage of 3 kV. 

Helium gas at a flow rate of 3 L/min was used as a feeding gas at atmospheric pressure. 

Using a plasma jet, we irradiated an aliquot (500 μL) of a reaction mixture comprising 

designated concentrations of test substances (GSE, Tx) and 300 mM DMPO dissolved in 

pure water for GSE and in phosphate buffer (PB; pH 7.4) for Tx. Tx was dissolved in PB 

because it could not be dissolved in pure water at 1.0 mg/mL. Each mixture was 

transferred to an ESR spectrometry cell and the DMPO–OH spin adduct quantified 30 s 

after irradiation. DMPO-OH concentration was calculated in a similar way to that for O2
–

• determination except that 5 µM TEMPOL was used as a standard. Measurement 

conditions for ESR (X-band ESR Spectrometer; JES-FA-100) were identical to those 

described for O2
–• determination.  

 

Scavenging effect on singlet oxygen (1O2)  

1O2 was generated by irradiation using laser light, as described in our previous studies 

[31,32]. Output power of the laser was set at 40 mW. When a semi-micro cuvette 

containing 200 µL of sample was set in the experimental device, the area of the sample 

irradiated by the laser was approximately 5 × 5 mm, resulting in an energy dose of 160 
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mW/cm2. The light path of the cuvette was 10 mm. In the experiment, NaN3 (a specific 

quencher of 1O2) was used as a positive control.  

A reaction mixture was prepared to contain 50 mM TPC, designated concentrations 

of test substances (GSE, Tx, NaN3), and 10 μM rose bengal in PB. Immediately after 

mixing, the cuvette was set in the experimental laser device. The sample in the cuvette 

was irradiated by laser light for 60 s. After laser irradiation, the sample was transferred to 

a quartz cell and the ESR spectrum recorded on an X-band ESR Spectrometer (JES-FA-

100). Measurement conditions for the ESR were: field sweep, 330.50–340.50 mT; field 

modulation frequency, 100 kHz; field modulation width, 0.05 mT; amplitude, 200; sweep 

time, 2 min; time constant, 0.03 s; microwave frequency, 9.420 GHz; microwave power, 

4 mW. To calculate the spin concentration of the nitroxide radical generated through TPC 

oxidation by 1O2, 20 µM TEMPOL was used as a standard and the ESR spectrum of the 

manganese ion, which was equipped in the ESR cavity was used as an internal standard.  

To ascertain if test substances reacted with the nitroxide radical, a reaction mixture 

containing 50 mM TPC and 10 μM rose bengal was irradiated with laser light for 60 s 

followed by addition of GSE or Tx (final concentration, 1 mg/mL). The ESR spectrum 

was recorded on an X-band ESR Spectrometer (JES-FA-100), as described above.   
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Scavenging effect on H2O2  

GSE and Tx were dissolved in 10 μM H2O2 to be designated concentrations. H2O2 

concentration was determined by the colorimetric method based on the peroxide-

mediated oxidation of Fe2+ followed by the reaction of Fe3+ with xylenol orange [33]. 

 

Cell culture  

hGFs were purchased from Primary Cell (Sapporo, Japan). Dulbecco’s modified 

Eagle’s medium (DMEM; Thermo Fisher Scientific, Waltham, MA, USA) containing 

10% fetal bovine serum (FBS; Thermo Fisher Scientific), 100 U/mL penicillin (Wako 

Pure Chemicals Industries), and 0.1 mg/mL streptomycin (Wako Pure Chemicals 

Industries) were used as a medium for cell culture. An aliquot (100 μL) of the cell 

suspension (2  104 cells/mL) was placed in each well of a 96-well culture plate. In 

experiments in which an intracellular ROS assay was conducted, a black 96-well culture 

plate was used. Plates were incubated at 37C in a humidified atmosphere of 5% CO2 for 

4–6 days for 100% confluence. Since it was confirmed that both GSE and Tx at a range 

of concentrations used in the study did not affect cell viability and intracellular ROS level 

of intact confluent hGFs (data not shown), the effect of GSE and Tx on hGFs without 

exposing to oxidative stressor was not examined in each assay as described below. 
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Exposure of cells to H2O2, and determination of intracellular ROS and cell viability  

The intracellular formation of ROS induced by H2O2 was determined using 5-(and-

6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester (CM-

H2DCFDA; Life Technologies, Eugene, OR, USA) for an intracellular ROS assay.[34] 

After washing cells twice with phosphate-buffered saline (PBS; pH 7.4), 100 μL of 10 

μM CM-H2DCFDA dissolved in serum-free DMEM was added to each well followed by 

incubation at 37°C in a humidified atmosphere of 5% CO2 for 1 h. After washing twice 

with PBS, cells were exposed to 0.063 mg/mL and 0.25 mg/mL of GSE or of Tx dissolved 

in sterile physiologic (0.9%) saline for 1 min. After washing twice with PBS, 100 μL of 

10 mM H2O2 prepared in serum-free DMEM was added to each well and incubated for 

20 min. Fluorescence was read at excitation and emission wavelengths of 485 and 535 

nm, respectively, using the microplate reader (FilterMax F5). 

Cell viability was determined by the methyl thiazolyl tetrazolium (MTT) assay, 

[35,36] in which insoluble formazan converted from MTT was quantified at 595 nm by 

colorimetric means using a microplate reader (FilterMax F5). The MTT assay was carried 

out using a TACS® MTT Cell Proliferation Assay kit (Trevigen, Gaithersburg, MD, 

USA). Similar to the ROS assay, cells were treated with GSE and Tx for 1 min followed 
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by 10 mM H2O2-load for 20 min. After washing twice with DMEM supplemented with 

10% FBS, cells were incubated for a further 24 h and the MTT assay was conducted to 

measure cell viability.  

 

Exposure of cells to acid-electrolyzed water (AEW), and determination of intracellular 

ROS and cell viability  

NaCl solution (0.08% w/v) was electrolyzed for 15 min using a batch-type 

Electrolyzed Water Generator (Altron Mini AL-700A; Altec, Nagano, Japan) at a regular 

AC voltage of 100 V and a rated current of 0.6 A. Characteristic values of the resultant 

AEW were determined using a pH/ORP Meter (SG2; Mettler-Toledo, Columbus, OH, 

USA) for pH and oxidation-redox potential (ORP), and a Residual Chloride Meter 

(HI196771C; Hanna Instruments Japan, Tokyo, Japan) for residual chloride 

concentrations. pH, ORP, and residual chloride concentration of undiluted AEW were 2.4, 

1176 mV, and 58 ppm, respectively.  

After washing cells twice with PBS, cells were treated with 0.063 and 0.25 mg/mL 

of GSE or Tx dissolved in sterile physiologic saline for 1 min. Cells were then exposed 

to AEW for 30 s before washing with PBS and incubation for a further 1 h in serum-free 

DMEM containing 10 μM CM-H2DCFDA. After incubation, fluorescence was read at 
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excitation and emission wavelengths of 485 and 535 nm, respectively, using a microplate 

reader (FilterMax F5). Since the treatment time of AEW was as short as 30 s because of 

its extremely cytotoxic effect [37], it was thought that 30 s was too short for DCFH (2’, 

7’-dichlorodihydrofluorescin), a product deacetylated by cellular esterase, to react with 

ROS derived from AEW. In addition, our previous study revealed that intracellular ROS 

was formed even after AEW exposure [37]. Hence, in this assay, CM-H2DCFDA was 

post-loaded. Similar to the ROS assay, cells were treated with GSE and Tx for 1 min, 

followed by exposure to AEW for 30 s. After washing twice with DMEM supplemented 

with 10% FBS, cells were incubated for a further 24 h. An MTT assay was conducted to 

measure cell viability. 

 

Exposure of cells to 1O2, and determination of cell viability 

1O2 was generated by laser-light irradiation using rose bengal at 532 nm, as 

described above. We used an experimental laser device equipped with the second 

harmonic of the Nd-YAG laser (PAX, Sendai, Japan). Output power of the laser was set 

at 40 mW. The diameter of the irradiation field was set to be equal to that of the well (6.4 

mm) so that almost all of the light could pass through the test solution. Thus, the energy 

density was calculated to be 124 mW/cm2. A reaction mixture was prepared to contain 
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designated concentrations of test substances (GSE, Tx), and 10 μM rose bengal in PB. 

After washing cells twice with PBS, 100 μL of the reaction mixture was added to 

each well followed by laser-light irradiation for 1 min. Immediately after irradiation, cells 

were washed twice with DMEM supplemented with 10% FBS, and incubated for a further 

24 h to determine cell viability by the MTT assay. 

 

Exposure of cells to pure water, and determination of intracellular ROS and cell 

viability  

After washing cells twice with PBS, 100 μL of 10 μM CM-H2DCFDA was loaded 

for 1 h, as described above. After washing twice with PBS, cells were exposed to 0.063 

and 0.25 mg/mL of GSE or Tx dissolved in sterile physiologic saline for 1 min. After 

washing twice with PBS, 100 μL of pure water was added to each well, and incubated for 

5 min followed by washing with serum-free DMEM. The measurement of intracellular 

ROS was determined as described above. Similar to the ROS assay, cells were treated 

with GSE and Tx for 1 min followed by exposure to pure water for 5 min. Immediately 

after washing twice with DMEM supplemented with 10% FBS, we conducted an MTT 

assay to ascertain cell viability.  
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Statistical analyses 

Statistical analyses were undertaken using the Tukey–Kramer multiple comparison 

test for pairwise comparisons. P<0.05 was considered significant.
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Results  

Polyphenol assay and LC/MS analyses of GSE 

Total polyphenol content in GSE expressed as gallic-acid equivalence was 84% 

(wt/wt). According to the manufacturer of GSE (Indena) used in the present study, GSE 

comprised (+)-catechin, (–)-epicatechin, and catechin oligomers. LC/MS analyses were 

performed based on this information. Results of LC/MS analyses are summarized in Table 

1. A representative LC chromatogram and mass spectra of the peaks obtained at retention 

times of 16.42, 17.46, 18.10, 18.99, and 19.58 min are shown in Fig. 1 and Fig. 2, 

respectively.  

The ESI mass spectrum clearly showed that (+)-catechin (calcd. for C15H15O6, 

291.0863), (–)-epicatechin (calcd. for C15H15O6, 291.0863), catechin dimer (calcd. for 

C30H27O12, 579.1494), and catechin trimer (calcd. for C45H39O18, 867.213) were contained 

in GSE. The calculated concentrations of (+)-catechin and (–)-epicatechin were 12.1% 

(wt/wt) and 6.6% (wt/wt), respectively. 
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Figure 1 

Representative LC chromatogram of GSE solution.  
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Figure 2 

Mass spectra of the peaks obtained at the designated retention times.  
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Antioxidant properties of GSE in vitro 

The scavenging effect of GSE on DPPH is shown in Fig. 3. GSE and Tx scavenged 

DPPH in a concentration-dependent manner. The effect of GSE was slightly more potent 

than that of Tx because the effects of 0.0063 and 0.013 mg/mL of GSE were comparable 

with those of 0.013 and 0.025 mg/mL of Tx, respectively.  

 

Figure 3 

Scavenging activity of GSE upon DPPH.  

Each value is the mean ± standard deviation (n = 3). Significant differences (p < 0.01) 

within each group are denoted by different letters (i.e., bars with the same letter are not 

significantly different).  
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The scavenging effect of GSE on O2
–• generated by the HPX-XOD reaction was 

examined by ESR-spin trapping. When a spin trapping agent, DMPO, was added to a 

solution of the HPX-XOD reaction system, an ESR signal with hyperfine coupling 

constants of aN = 1.37 mT, aHβ = 1.10 mT, and aHγ = 0.12 mT was observed. This signal 

was assigned to DMPO-OOH (spin adduct of DMPO and O2
−•) by the hyperfine coupling 

constants [38]. Figure 4 shows the representative ESR spectra of solvent control as well 

as different concentrations of GSE and Tx. The signal intensity of DMPO-OOH was 

clearly reduced by GSE and Tx in a concentration-dependent manner, and the magnitude 

of the reduction by GSE was much greater than that by Tx when compared with the 

concentrations needed to reduce the yield of DMPO-OOH. The reduction of the signal 

intensity of DMPO-OOH is reflected by the ability to scavenge O2
−• and/or to interfere 

with the HPX-XOD reaction [27, 29]. Thus, to ascertain if test substances interfere with 

the enzyme reaction of HPX-XOD, the ESR spin-trapping method was used to evaluate 

the competitive reaction between DMPO and samples or reference agents. Figure 5 shows 

double-reciprocal plots (corresponding to Lineweaver–Burk plots as in the kinetics of 

enzyme actions) for GSE and Tx. In the case of SOD, a linear pattern with an intersection 

on the y axis that denotes competitive scavenging for O2
−• with DMPO was obtained 

(data not shown). In the case of the XOD inhibitor allopurinol [39], a parallel linear 
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pattern that denotes interference with the HPX-XOD reaction was obtained (data not 

shown). In the case of Tx, the linear and intersecting patterns of the double-reciprocal 

plot were similar to those of SOD, suggesting that inhibition of DMPO-OOH formation 

by Tx was attributable to a scavenging effect on O2
−•. In the case of GSE, a linear pattern 

with an intersection shifted to the negative side of the x axis was observed, suggesting 

that DMPO-OOH formation was inhibited not only by scavenging of O2
−• but also by 

interference with the HPX-XOD reaction (“mixed reaction”). 

 

Figure 4 

Representative ESR spectra obtained from the HPX-XOD reaction in the presence 

of GSE and Tx.  
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Figure 5 

Double-reciprocal plots of formation of DMPO-OH vs. DMPO concentrations.  

The plots were obtained at changing fixed concentration of GSE (A) and Tx (B). Each 

value is the mean of duplicate determinations.  
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The scavenging effects of GSE on •OH generated by the plasma-jet irradiation of 

water or PB were examined. When DMPO was added to a solution, an ESR signal with 

hyperfine coupling constants of aN = 1.49 and aH = 1.49 mT was observed. This signal 

was assigned to DMPO-OH (spin adduct of DMPO and •OH) by the hyperfine coupling 

constants [38]. Signal intensity of DMPO-OH probably reflects an ability to scavenge 

•OH because when dimethyl sulfoxide (DMSO; an authentic scavenger of •OH) was added 

to a mixture, a signal of DMPO-CR (adduct of a carbon-center radical derived from 

DMSO and •OH) appeared concomitantly with disappearance of the DMPO-OH signal 

(data not shown), suggesting that free •OH was generated by plasma-jet irradiation. Figure 

6 summarizes the suppressive effect of GSE on •OH yield expressed as DMPO-OH. GSE 

and Tx suppressed •OH yield significantly (p<0.01) in a concentration-dependent manner. 

Also, the effect of GSE was slightly more potent than that of Tx because the effects of 

0.25 and 0.5 mg/mL of GSE were comparable with those of 0.5 and 1.0 mg/mL of Tx, 

respectively. 
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Figure 6 

Scavenging activity of GSE upon •OH generated by plasma-jet irradiation of an 

aqueous solution. 

Each value is the mean ± standard deviation (n = 4). Significant differences (p < 0.05) 

within each group are denoted by different letters (i.e., bars with the same letter are not 

significantly different). PW and PB stand for pure water and phosphate buffer used as 

solvents for GSE and Tx, respectively. 
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The scavenging effect of GSE on photo-generated 1O2 was determined by ESR 

analyses. The calculated spin concentrations of the nitroxide radical derived from TPC 

oxidation by 1O2 are summarized in Fig. 7A, in which RB(–)L(–), RB(+)L(–), RB(–)L(+), 

and RB(+)L(+) indicate no treatment, treatment with 10 μM of rose bengal alone, 

treatment with laser-light irradiation alone, and laser-light irradiation of 10 μM rose 

bengal, respectively. Under conditions of RB(–)L(–), RB(+)L(–), and RB(–)L(+), yields 

of the nitroxide radical were very low whereas, under the condition of RB(+)L(+), the 

yield of the radical increased prominently. Similar to the scavenging effect on DPPH and 

•OH, the increased yield of the nitroxide radical by photo-irradiated rose bengal was 

clearly reduced by GSE and Tx in a concentration-dependent manner. Also, the 

magnitude of the reduction by GSE was relatively greater than that by Tx when compared 

with the concentrations needed to reduce the yield of the nitroxide radical. NaN3 (2.5 

mM) used as a positive control also prominently reduced the yield of the radical. To 

confirm that neither GSE nor Tx reacts with the nitroxide radical, the effect of post-

treatment with GSE and Tx on the yield of the nitroxide radical generated by photo-

irradiation of a reaction mixture containing 50 mM TPC and 10 μM rose bengal was 

examined. The calculated spin concentrations are summarized in Fig. 7B, and showed 

that levels of the nitroxide radical were not changed significantly by post-treatment with 
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GSE and Tx. 

 

Figure 7 

Scavenging activity of GSE upon photo-generated 1O2. 

Each value is the mean ± standard deviation (n = 3). Significant differences (p < 0.01) 

within each group are denoted by different letters (i.e., bars with the same letter are not 

significantly different).  
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The scavenging effect of GSE on H2O2 is summarized in Fig. 8. GSE and Tx 

scavenged H2O2 in a concentration-dependent manner.  

 

Figure 8 

Scavenging action of GSE upon H2O2. 

Each value is the mean ± standard deviation (n = 3). Significant differences (p < 0.01) 

within each group are denoted by different letters (i.e., bars with the same letter are not 

significantly different).  
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Cytoprotective effects of GSE on hGFs exposed to oxidative stressors 

The effect of GSE pretreatment for 1 min on H2O2-induced oxidative stress and 

cytotoxicity in hGFs is shown in Fig. 9. The increased intracellular formation of ROS 

upon exposure to H2O2 was suppressed significantly by pretreatment with 0.63 and 0.25 

mg/mL of GSE, and the suppressive effect of GSE was comparable with that of Tx. A 

decrease in survival of viable cells 24 h after exposure to H2O2 was also prevented 

significantly (p<0.01) by GSE pretreatment, but Tx pretreatment failed to protect hGFs 

from the toxic effects of H2O2.  
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Figure 9 

Effect of GSE on hGFs exposed to H2O2. 

Intracellular formation of ROS (A) in, and the viability (B) of hGFs were examined. 

Each value is the mean ± standard deviation (n = 4). Significant differences (p < 0.01) 

within each group are denoted by different letters (i.e., bars with the same letter are not 

significantly different).  
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     The effect of pretreatment with GSE on AEW-induced oxidative stress and 

cytotoxicity in hGFs is shown in Fig. 10. Similar to the result of the H2O2 experiment, an 

increase in intracellular ROS induced by AEW was suppressed significantly (p<0.01) by 

pretreatment with not only GSE but also Tx. Cytotoxicity induced by undiluted and 

fourfold-diluted AEW was reduced by pretreatment with GSE but not with Tx.   
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Figure 10 

Effect of GSE on hGFs exposed to acid electrolyzed water (AEW). 

Intracellular formation of ROS (A) in hGFs exposed to undiluted AEW, and the viability 

of hGFs exposed to undiluted AEW (B) and fourfold diluted AEW (C) were examined. 

Each value is the mean ± standard deviation (n = 4). Significant differences (p < 0.01) 

within each group are denoted by different letters (i.e., bars with the same letter are not 

significantly different).  
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The effect of concomitant treatment with GSE on 1O2-induced cytotoxicity in hGFs 

is shown in Fig. 11. As with H2O2- and AEW-induced cytotoxicity, a decrease in survival 

of viable cells 24 h after exposure to 1O2 was suppressed significantly (p<0.01) by 

concomitant treatment with 0.25 mg/mL of GSE during laser-light irradiation for 1 min, 

but concomitant treatment with Tx was not.  

 

Figure 11 

Effect of GSE on the viability of hGFs exposed to photo-generated 1O2.  

Each value is the mean ± standard deviation (n = 5). Significant differences (p < 0.01) 

within each group are denoted by different letters (i.e., bars with the same letter are not 

significantly different).  
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Cytoprotective effect of GSE on hGFs exposed to a low osmotic stressor (pure water) 

The effect of GSE pretreatment for 1 min on intracellular ROS in, and cell viability 

of, hGFs exposed to pure water is shown in Fig. 12. Unlike exposure to oxidative stressors, 

no increase in intracellular formation of ROS was found by exposure to pure water, and 

neither GSE nor Tx affected intracellular levels of ROS (Fig. 12A). A significant decrease 

(p<0.01) in cell viability was found immediately after exposure to pure water (Fig. 12B). 

Pretreatment with 0.25 mg/mL GSE significantly (p<0.01) protected hGFs from the toxic 

effect of exposure to pure water, whereas pretreatment with 0.063 or 0.25 mg/mL Tx did 

not.  
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Figure 12 

Effect of GSE on hGFs exposed to pure water. 

Intracellular formation of ROS (A) in, and the viability (B) of hGFs were examined. Each 

value is the mean ± standard deviation (n = 4). Significant differences (p < 0.01) within 

each group are denoted by different letters (i.e., bars with the same letter are not 

significantly different).  
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Discussion 

    LC/MS analyses confirmed that, as disclosed by the manufacturer (Indena), the GSE 

used in the present study comprised not only catechin monomers but oligomers such as 

proanthocyanidin. As reported in our previous study (in which short-term pretreatment 

with proanthocyanidin-rich GSE exerted cytoprotective effects on hGFs exposed to harsh 

environmental conditions), 1-min pretreatment with GSE reduced the magnitude of 

oxidative stress induced by H2O2 and AEW, and improved the viability of surviving cells. 

In the case of AEW, a very severe cytotoxic effect was induced. In our previous study, it 

was suggested that the cytotoxic effect of AEW is probably induced by ROS, especially 

•OH [37]. With regard to H2O2, O2⁻•, 1O2, and •OH, the latter is the most reactive [40,41], 

suggesting that intracellular •OH generated via AEW was responsible for the severe 

cytotoxic effect of AEW. Conversely, although Tx (a water-soluble analog of vitamin E) 

attenuated oxidative stress as much as GSE, survival of viable cells was not improved, 

unlike the case of GSE. Similar results were obtained in the 1O2 experiment. That is, 

concomitant treatment with GSE during exposure of cells to 1O2 protected them from the 

cytotoxic effect of 1O2 but Tx treatment did not. The in vitro antioxidant profiles examined 

in the present study showed that the radical or ROS (i.e., DPPH, •OH, 1O2, H2O2) 

scavenging activity of GSE was moderately more potent than, or similar to that of Tx. It 

was shown by the ESR-spin trapping method that GSE and Tx can scavenge O2
−•. 
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However, the kinetic study using analyses of double-reciprocal plots revealed that the 

activity between GSE and Tx could not be compared because GSE not only scavenged 

O2
−• directly but also interfered with the HPX-XOD reaction that was responsible for O2

−• 

generation. Despite the comparable in vitro antioxidant potential and suppressive effect 

of intracellular ROS in cells exposed to H2O2 and AEW between GSE and Tx, only GSE 

protected cells from the toxic effects of oxidative stressors, including 1O2 as well as H2O2 

and AEW, in terms of survival of viable cells after exposure to stressors. As for H2O2, 

there seems to be a discrepancy in the concentrations of H2O2 between the cell-free assay 

and the hGF assay. That is, while μM level of H2O2 was used in the former assay, mM 

level was used in the latter assay. H2O2 is thought to be an attractive model oxidant 

because its cellular actions and its fate have been well studied [42]. According to the 

previous study, H2O2 readily crosses the cellular membranes, and generates the highly 

reactive •OH, which has the ability to react with macromolecules, including DNA, 

proteins, and lipids, and to ultimately damage a cell. Thus, mM level of H2O2 would be 

required to produce •OH sufficient to give rise to cellular damage in the hGF assay; 

however an appropriate concentration of H2O2 was not determined in the present study. 

Futher study is needed to elucidate the mechanism by which reactive •OH molecules are 

removed by extracellulary applied antioxidants in the hGF assay. Regarding a positive 
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control, we also examined the effect of ascorbic acid on intracellular ROS in and survival 

of hGFs loaded with H2O2 and AEW. However, ascorbic acid neither suppressed 

oxidative stress nor improved cell survival, possibly due to the poor permeability of 

ascorbic acid into cells during such a short time as 1 min (data not shown). In other words, 

anti-oxidants that have an ability to exert anti-oxidative effect on cells within a short time 

as 1 min can only be used as a positive control. 

      These results suggest that the direct antioxidant potential of GSE was not a pivotal 

player for the cytoprotective effects expressed by the survival of viable cells because Tx 

did not show such cytoprotective effects. In our previous study, proanthocyanidin-rich 

GSE showed cytoprotective effects on hGFs in the mitotic phase exposed to low osmotic 

stress induced by exposure to pure water instead of medium [21], suggesting that the 

cytoprotective effects of GSE may be independent of its direct antioxidant action. Thus, 

this discrepancy in cytoprotective effects between GSE and Tx tempted us to examine 

further the effect on cells exposed to low osmotic stress (i.e., exposure to pure water) in 

relation to intracellular formation of ROS. As with exposure to H2O2 and AEW, GSE 

pretreatment resulted in less reduction in the viability of cells exposed to pure water, 

whereas Tx pretreatment showed almost no effect on cell viability. Intracellular formation 

of ROS was not increased in cells exposed to pure water, so the cytoprotective effects of 
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GSE were probably exerted independently of its direct antioxidant action. The 

fundamental mechanism by which short-term treatment with GSE exerts cytoprotective 

effects on hGFs exposed to oxidative stressors should be examined further. To be more 

precise, two mechanisms might be involvement in the cytoprotective effect of GSE as 

follows: one is the involvement of nuclear factor E2-related factor 2 (Nrf2), which plays 

a crucial role in the coordinated induction of the genes encoding many stress-responsive 

and cytoprotective enzymes and proteins, including heme oxygenase-1 (HO-1), glutamate 

cysteine ligase, glutathione S-transferase, glutathione peroxidase, and thioredoxin. It was 

reported that the transcription of these genes enhances cellular resistance to oxidative 

stress and confers protection against inflammation [43]. Indeed, it was reported that 

resveratrol, a widely available polyphenol found in red wine, activated the Nrf2 pathway 

leading to enhanced antioxidant gene expression in a rat model of periodontitis [44]. The 

other one is the involvement of molecular chaperons such as heat shock proteins (HSPs), 

which are ubiquitous molecular chaperones associated with post-translational folding, 

stability, activation and maturation of many proteins. HO-1 described above is also 

classified as a HSP [45]. In particular, HSP70 might be involved since it is induced under 

stressful conditions and acts as a cellular defense mechanism [46]. 

     In conclusion, short-term treatment with GSE can protect hGFs exposed to 
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oxidative stressors such as ROS released from inflammatory cells infiltrating gingival 

tissues. The antioxidant potential of GSE is unlikely to be responsible for its 

cytoprotective effect.  
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