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Abstract 
 

Pricing assets in the fixed-income market is an important field in financial econometrics. The 

most basic asset in the fixed-income market is a zero-coupon bond. The complete set of 

zero-coupon bonds of all maturities results in the term structure of interest rates that forms the 

basis of the fixed-income market. The term structure of interest rates is also an important element 

in macroeconomics and finance. At a certain point of time, the yield curve can have different 

shapes. These shapes, representing a time-varying relationship of the interest rate and maturity, 

are of great significance for various economic and financial decisions. In this dissertation, we 

conduct a formal econometric analysis of dynamic term structure models for the Japanese 

government bond yields. We present some fundamental concepts of government bonds yield to 

provide a basis for yield curve modeling and forecasting in the first chapter. 

Chapter two compares the in-sample fit and out-of-sample forecast accuracy of the 

Cox-Ingersoll-Ross (CIR) and Nelson-Siegel models. For the in-sample fit, there is a significant 

lack of information on the short-term CIR model. The CIR model should also be considered too 

poor to describe the term structure in the simulation based context. It generates a downward slope 

average yield curve. Contrary to CIR model, Nelson-Siegel model is not only compatible to fit 

attractively the yield curve but also accurately forecast the future yield for various maturities. 

Furthermore, the non-linear version of the Nelson-Siegel model outperforms the linearized one. 

In the simulation based context, the Nelson-Siegel model is capable to replicate most of the 

stylized facts of the Japanese market yield curve.  

Chapter three empirically examines the role of macroeconomic and stock market variables in 

the dynamic Nelson-Siegel framework with the purpose of fitting and forecasting the term 

structure of interest rate. The Nelson-Siegel type models in state-space framework considerably 

outperform the benchmark simple time series forecast models such as an AR(1) and random walk. 

The yields-macro model incorporating macroeconomic factors leads to a better in-sample fit of 

the term structure than the yields-only model. The out-of-sample predictability of the former for 

the short horizon forecasts is superior to the latter for all maturities, and for the longer horizons 

the former is still compatible to the latter. Inclusion of macroeconomic factors dramatically 

reduces the autocorrelation of forecasts errors which has been a common phenomenon of 

statistical analysis in the previous term structure models. 

The monetary policy targets the short rates, however, during the zero interest rate policy 

(ZIRP) the short end of yield curve will not be any more a policy instrument. Relying on the joint 

yields-macro latent factors model, chapter four examines the effect of monetary policy stances on 

term structure and the possible feed-back effect on the real sector using the Japanese experience 

of ZIRP. The analysis indicates that it is the entire term structure that transmits the policy shocks 

to the real economy rather than the yields spread only. The monetary policy signals passes 

through the yield curve level and slope factors to stimulate the economic activity. The curvature 
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factor, besides reflecting the cyclical fluctuations of the economy, acts as a leading indicator for 

future inflation. In addition, policy influence tends to be low, as the short end becomes segmented 

toward medium/long-term of the yield curve. Furthermore, volatility in bond markets is found to 

be asymmetrically affected by positive and negative shocks and the long end tends to be less 

sensitive to stochastic shocks than the short maturities. The analysis indicates that the traditional 

expectation hypothesis (with time invariant term premia) does not hold during the ZIRP period.  

The results in this dissertation have several implications for policy. The analysis of the 

dynamic Nelson and Siegel (1987) yield curve model is relevant for how central banks and 

financial institutions analyze the term structure. If financial institutions and central banks are 

looking for a model to study the evolution of the yield curve in Japanese market, the 

Nelson-Siegel family of models could be a good candidate. Furthermore, the models presented in 

chapter three and four provides a framework to understand important aspects of the recent 

intertwined financial crisis, economic recessions and monetary policy regimes. It highlights the 

importance of yield curve factors for policy analysis that can serve as leading pro-cyclical or 

counter-cyclical indicators.  
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Chapter 1 

Introduction 
The bond market is the largest financial market around the world. The total outstanding volume is 

more than $69,938 billion, compared to $63,102 billion outstanding equity market volume. The 

Japan accounts for $15,139 billion (21.646%) of the global bond market value, with $12,967 

billion (85.653%) coming from government issued bonds.1An interesting aspect of looking at 

Japanese government treasuries and bonds (JGBs), besides with the largest size of the market 

(comparing in terms of the government bonds outstanding volume), is that they serve as a 

yardstick for many other traded securities in the Japanese market.
2
 As they are issued by the 

government, the risk of default is negligible. Therefore, return on government bonds is commonly 

referred to as the risk free rate.
3
 The yield earned on these securities serves as a benchmark for 

all other securities that are subjected to default risk, such as those issued by corporations and 

financial institutions. 

Treasuries issued by the Japanese government are traded with various maturities, typically 

classified in four groups. Treasuries expiring within a year are commonly referred to as 

short-term bills, treasuries between one and five years maturity are medium-term notes, treasuries 

ranging from five to ten years are long-term bonds while treasuries with maturities beyond ten 

years are called super long-term bonds.
4
 

The short-term JGBs are all discount bonds, meaning that they are issued at the price lower 

than the face value. No interest payments are made, but at maturity the principal amounts are 

redeemed at face value. These short-term bills are also known as zero-coupon bonds. On the 

other hand, all medium, long and super long-term bonds are treasuries with coupon rate.
5
 

The yield (interest rate) for the zero-coupon bonds can directly be observed as they are 

                                                   
1
 The bond market volume is taken from the Bank for International Settlements (BIS) Quarterly Review of March 

2012. The data used is the most recent complete available data (September 2011) from the statistical appendix. The 

equity market volume comes from the World Federation of Exchanges, and is also for August 2011. 
2
 The US accounts for $26,176 billion (37.427%) of the world market, the largest one, of which $12,550 billion 

(47.945%) comes from government treasuries. 
3
 This does not mean that government bonds are completely free of any risk. Due to inflation, the real amount of the 

coupons and face value change over time, and there is risk due to changes in interest rates if the bond is held for a 

time shorter than the remaining maturity. Strictly speaking, only government bonds expiring in very short-term can 

be considered risk free. 
4
 However, throughout this dissertation, we often use the label ―bonds‖ to refer to treasuries in general. 

5
 The Japanese government issues two types of coupon-bearing bond, JGBs with fixed coupon rate and JGBs with 

floating rates. The JGBs with floating rate are issued for 10 and 15 years maturities. The data used in this study 

does not include the floating rate bonds. 
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traded at discounted face value. However, for bonds with maturities of a horizon longer than one 

year, the zero-coupon yields are not directly observable. The reason behind this is that yield to 

maturity on coupon-bearing bonds suffer from the coupon effect which implies that two bonds 

which are identical in every respect except for bearing different coupon rates can have a different 

yield to maturity. Therefore, longer maturities zero-coupon yields need to be derived from 

coupon-bearing treasury notes and bonds.  

In the market, there are many zero-coupon rates referring to various maturities. The 

relationship between these different rates and maturities is known as the term structure of interest 

rate. This relationship is also referred to as yield curve. At certain point of time, the yield curve 

can have different shapes. These shapes, representing a time-varying relationship of the interest 

rate and maturity, are of great significance for various economic and financial decisions. 

Furthermore, cross section of yields is closely tied to various policy issues and macro economy. 

Therefore, researchers try to summarize the information in the yield curve with a few common 

factors driving all these rates. To figure out the exact driving force of bond market, various 

models have been developed in the course of time, yet several aspects of bond yields are still 

absent from the main stream literature.  

Understanding what moves bond yields and why researchers should look at the yield curve 

is important for various reasons. First, due to the relation between yields on bonds with long and 

short maturities, the yield curve contains information about the future path of the economy. 

Yields on long maturity bonds are expected values of average future short yields after an 

adjustment for risk. This means that the current yield curve contains information about the future 

path of the economy. Yield spreads have indeed been useful for forecasting not only future short 

yields (Campbell and Shiller, 1991; Cochrane and Piazzesi, 2005; Fama and Bliss, 1987) but also 

real activity (Ang et al. 2006; Estrella and Hardouvelis, 1991; Hamilton and Kim, 2002; Harvey, 

1988) and inflation (Fama, 1990; Mishkin, 1990), even though these forecasting relationships 

may be unstable (Stock and Watson, 2003). These forecasts provide a basis for investment 

decisions of firms, savings decisions of consumers, and policy decisions. 

Secondly, the shape of the yield curve matters for monetary policy. The central bank seems 

to be able to move the short end but it is the long end of curve that affects the aggregate demand 

and real investment in the economy. Therefore, for a given state of the economy, a model of the 

yield curve helps to understand how movements at the short end translate into longer term yields. 

This involves understanding both how the central bank conducts policy and how the signals 

transmit from short to long end and then to the real sector (transmission mechanism of monetary 

policy). 

Debt policy constitutes a third reason. When issuing new debt, governments need to decide 

about the maturity of the new bonds. It is necessary to find out how the entire yield curve 

responds to an increase in supply of bonds of certain maturity for optimal debt policy 

management. The outcome of certain policies such as selling short maturity debt and buying long 

maturity notes may flatten or invert the yield curve that will push the economy in recession. 



3 

 

Fourth, the yield curve matters for derivative pricing and hedging. The price of many 

derivatives depends on the entire yield curve (for example futures and interest rate options). 

Furthermore, banks also need to hedge their interest rate risk exposure due to short-term interest 

payments and long-term interest collections. 

This chapter reports some fundamental concepts of government bond yields to provide a 

basis for yield curve modeling and forecasting. First, we discuss the research objectives and the 

problems associated with interest rate modeling and forecasting. Section 1.2 discusses the three 

rates, i.e., discount, forward and zero-coupon rates, while section 1.3 deals with the Fama-Bliss 

forward and spot rates calculation methodology. In section 1.4, we present the dataset and its 

descriptive features, used in this dissertation, followed by some relevant literature about modeling 

the yield curve in section 1.5. Section 1.6 links the yield curve factors to the fundamentals of an 

economy. Lastly, some basic definitions and notations are introduced that are recurrently used in 

this dissertation in 1.7. 

1.1. Research Aims and Objectives 

An important area of financial econometrics is the modeling and forecasting of interest rates. 

Interest rate models share important commonalities with models of other financial markets but 

the bond market displays some distinct features that present unique challenges to interest rate 

modeling and forecasting. The bond market contains a wide variety of different but closely 

related assets, in particular bonds with different maturities. This gives rise to the notion of term 

structure of interest rate. The literature on term structure has evolved mostly in continuous time, 

where stochastic calculus reigns and partial differential equations (PDEs) spit fire. Those who are 

dealing with this strand of literature are faced with considerable obstacles either from theoretical 

or empirical perspectives. The first problem faced in term structure modeling is how to 

summarize the price information at any point in time for the large number of bonds that are 

traded in the market. The models so far developed are trying to define the basis which spans the 

set of investment opportunities and derive the entire term structure from this basis. These bases 

are also referred to as factors. More precisely, the models try to summarize the multi-dimensional 

information pertaining to a large number of contingent claims in few factors to construct the 

entire term structure. Since, all the methods are based on approximations and estimations, the 

amount of inaccuracy accumulates, which make it often difficult to comprehend which class of 

the models comes with encouraging results. 

Secondly, these models are developed keeping in view various different objectives/goals. 

The earlier term structure models are derived from economic theory, usually under the 

assumption of absence of arbitrage. However, the appealing characteristics of no-arbitrage and a 

sound economic foundation often come at the cost of poor fit and this class of models is, 

therefore, empirically found to be unable to beat a naive random walk forecast of interest rates. 

The other class, on the other hand, is based merely on statistical grounds and is known for its 

relatively good empirical fit. This strand, constituting the statistical class of models, typically 
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focuses on the consistency of asset prices across markets with little regard for the underlying 

economic fundamentals. Being at the two brinks, it is necessary to come up with a model that, 

besides having sound theoretical foundation and describing the market trends (optimally fit and 

precisely forecast), can also serve for policy analysis in order to understand important aspects of 

the recent intertwined financial crisis, economic recessions and policy regimes.  

Taking into consideration these issues, in chapter 2, we introduce the Cox-Ingersoll-Ross 

(1985) and dynamic Nelson-Siegel (1987) models and compare the in-sample fit as well as 

out-of-sample forecast performance of the two classes of models. Based on the representative 

agent general equilibrium macroeconomic approach, Cox-Ingersoll-Ross (CIR) model presents an 

explicit analytical expression for the equilibrium interest rate dynamics and bond prices in order 

to fit the observed yield curve. On the other hand, the Nelson-Siegel model is based on the 

stylized facts that can be inferred from empirical analysis and belongs to the statistical class of 

models. The motivation for choosing the CIR short rate model is due to its two key features: 

mean reversion and non-constant (time-varying) volatility. In particular, it allows for the short 

rate to revert to a long run mean so that if the current rate is above (below) the long run mean, it 

is expected to decrease (increase) towards the long-term mean in the future. The volatility of 

interest rates is often made to be dependent on the level of interest rates so that when rates are 

higher, they are more volatile. Whereas, the motivation for the Nelson-Siegel model comes from 

its relative simplicity, ease of estimation and to the fact that there is some underlying economic 

interpretation in the three factors it is based on, which represent level, slope and curvature of the 

yield curve. 

However, the downside of the statistical class of models is that they often lack theoretical 

support and do not assume absence of arbitrage. In chapter 3 and 4, we try to overcome this 

disadvantage and close the gap at least partially by investigating the interaction of the models 

with the macroeconomy. In chapter 3, we focus on an area of macro-finance research that 

examines the relationship between the term structure of interest rates and the economy in an 

interdisciplinary fashion. We evaluate the out-sample forecast performance of the dynamic 

Nelson-Siegel model with and without macroeconomic variables in the state-space representation 

and provide in-depth treatment of aspects of the interplay between the yield curve and the 

macroeconomy. Regarding the policy issues, we formulate a framework that integrates monetary 

policy as well as real economy factors in the term structure model in chapter 4. The objective is 

to figure out the missing string between monetary policy and real activity. More specifically the 

chapter tries to find out the transmission mechanism of monetary policy and the dynamic 

interaction between yield curve factors and macroeconomy. 

1.2. Discount, Spot and Forward Rates and Rates Conversion 

Although many theoretical models in financial economics hinge on an abstract interest rate, in 

reality there are many different interest rates. For example, the rate of a three month treasury bill 

is different from that of a six month treasury bill. The relationship between these different rates 



5 

 

and maturities is known as the term structure of interest rates. The term structure of interest rates 

can be described in terms of spot rates, discount rates or forward rates. 

The discount function gives the present value of unit face value bond which is repaid in 𝑚 

periods. The corresponding continuously compounded yield to maturity 𝑅𝑡(𝑚)  of the 

investment is given as: 
 

 𝑃𝑡(𝑚) = exp[−𝑅𝑡(𝑚)𝑚] (1.1) 
 

where 𝑃𝑡(𝑚) is the current price of zero-coupon bond, 𝑡 denotes a moment in time, 𝑚 is the 

time to maturity and 𝑅𝑡(𝑚) is the corresponding continuously compounded yield to maturity, 

i.e., zero-coupon rate. Obviously, the discount function as in (1.1) is an exponentially decaying 

function of the maturity. The continuously compounded yields are also referred to as spot rates. 

Rewriting (1.1) in other way to describe the yield to maturity as a function of the value of bond: 
 

 
𝑅𝑡(𝑚) = −

1

𝑚
log[𝑃𝑡(𝑚)] (1.2) 

 

An analysis based on spot rates, for different maturities, gives information about the term 

structure of interest rates. When we plot the spot rates 𝑅𝑡(𝑚) against maturities 𝑚, we get the 

spot rates curve. 

From the discount function (1.1), we obtain the instantaneous forward rate, which is the 

interest rate contracted now and to be paid for a future investment. The forward rate as a function 

of maturity is referred to as implied forward rate curve. Assuming continuous compounding, we 

observe the following relationship between the value of bond and forward rates. 
 

 
𝑓𝑡(𝑚) = −

𝑃𝑡
′(𝑚)

𝑃𝑡(𝑚)
 (1.3) 

 

where  𝑃𝑡
′(𝑚) = 𝜕𝑃𝑡(𝑚)/𝜕𝑚 . Taking the periods infinitesimally closer, we obtain the 

instantaneous implied forward rate 𝑓𝑡(𝑚). It is essential to differentiate the implied forward rate 

from the market forward rate. The implied forward rates are derived theoretically from spot rates. 

Market forward rates, on the other hand, are the actual rates that are realized in a forward or future 

contracts in the future market.  

An important result is that the spot rate is the weighted average of the implied forward rates. 

Assuming continuous compounding, the relationship between the yield to maturity and the implied 

forward rates is: 
 

 
𝑅𝑡(𝑚) =

1

𝑚
∫ 𝑓𝑡(𝑢)𝑑𝑢
𝑚

0

 (1.4) 

 

which implies that the zero-coupon yield is an equally-weighted average of the forward rates. 

Given the yield curve or the forward curve, we can price any coupon bond as the sum of the present 

values of future coupon and principal payments. This important relationship between the 
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zero-coupon and the instantaneous forward rates is a critical component of the Nelson-Siegel 

model of the term structure. The expression in (1.3) and (1.4) are derived and explained in 

appendix A. The previous three relations (1.1, 1.3 and 1.4) show that knowledge of any one of 

these functions is sufficient to solve for the other two. 

1.3. Fama and Bliss Forward and Spot Rates Method  

The zero-coupon rate is the return (yield), on a bond corresponding to a single cash payment at a 

particular time in the future. This would represent the return on an investment in a zero-coupon 

bond with a particular time to maturity. The prices of zero-coupon bonds can be directly used to 

construct the term structure, however, the lack of market liquidity and the limited available 

maturity spectrum necessitates the estimation based on observed coupon-bearing bond prices. 

Therefore, in practice, yield curves are not observed. Instead, they must be estimated from 

observed bond prices on zero-coupon and coupon-bearing bonds.  

There are several approaches to construct zero-coupon rates; one can proceed by fitting a 

smooth discount curve and then convert to yields at the relevant maturities using (1.2). The first 

discount curve approach to yield curve construction is due to McCulloch (1971, 1975), who 

suggested to model the discount curve using polynomial splines. As the discount rate is a 

monotonically decreasing function of maturity and, therefore, price of bonds can be expressed as a 

linear combination of discount rates. However, the fitted discount curve of the functional form, 

used by McCulloch, diverges at long maturities due to the polynomial structure.
6
 Furthermore, the 

McCulloch (1971, 1975) methods operate on linear combinations of discount functions; the 

implied forward rate curve usually has some undesirable features. In addition, the choice of knot 

points for polynomial splines is also rather ad hoc. To avoid these problems with polynomial spline 

methods, Fisher et al. (1995) proposed to use smoothing splines for interpolating the term structure 

of interest rates. Another improved discount curve approach to yield curve construction is due to 

Vasicek and Fong (1982), who model the discount curve using exponential splines. They use 

negative transformation of maturity rather than maturity itself, ensures that forward rates and 

zero-coupon yields converge to a fixed limit as maturity increases. Their approach is more 

attractive for fitting yield curves at long ends. 

Notwithstanding, the progress of polynomial, smoothing, and exponential spline based 

discount curve approaches remain potentially problematic. Besides, having some undesirable 

features at the long end of the term structure, these approaches usually do not generate good 

out-of-sample forecasts. 

Another popular approach is the Bootstrapping for constructing a (zero-coupon) 

fixed-income yield curve from the prices of a set of coupon-bearing bonds. In first stage, the 

zero-coupon bonds are used to derive spot rates for the available maturities, and in the second 

stage the entire term structure is recovered from the bond yields by recursively forward 

                                                   
6
 The corresponding yield curve flattens out with maturity, as emphasized in Shea (1984). 

http://www.wisegeek.com/what-is-a-coupon-rate.htm
http://www.wisegeek.com/what-is-a-bond.htm
http://www.wisegeek.com/what-is-a-coupon-bond.htm
http://www.wisegeek.com/what-is-a-coupon-bond.htm
http://www.wisegeek.com/what-is-a-coupon-rate.htm
http://en.wikipedia.org/wiki/Zero-coupon_bond
http://en.wikipedia.org/wiki/Yield_curve
http://en.wikipedia.org/wiki/Bond_(finance)
http://en.wikipedia.org/wiki/Forward_substitution
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substitution. This iterative process is called the Bootstrap method. Given that, in general, we lack 

data points in a yield curve (there are only a fixed number of bonds in the market) and more 

importantly these have varying coupon frequencies, it makes sense to construct a curve of 

zero-coupon instruments from which we can price any yield, whether forward or spot, without the 

need of more external information. 

An alternative and popular approach to yield curve construction is due to Fama and Bliss 

(1987), who construct spot rates not from an estimated discount curve, but rather from estimated 

forward rates at the observed maturities. Their method sequentially constructs the forward rates 

necessary to price successively longer maturity bonds. Those forward rates are often called 

―unsmoothed Fama-Bliss‖ forward rates, and they are transformed to unsmoothed Fama-Bliss 

yields by appropriate averaging, using (1.4). The unsmoothed Fama-Bliss yields exactly price the 

included bonds. Unsmoothed Fama-Bliss yields are often the ―raw‖ yields to which researchers fit 

empirical yield curves, such as members of the Nelson-Siegel family, about which we will have 

much to say throughout this dissertation. Such fitting effectively smoothes the unsmoothed 

Fama-Bliss yields.
7
 

To apply the Fama-Bliss method, we assume that we have a sequence of bonds with 

possibly irregularly spaced maturity dates. Furthermore, we also assume that the implied forward 

rate between two successive maturity dates is constant. 

Consider the following simple example to clarify the concept of Fama-Bliss unsmooth 

implied forward and spot rates. Suppose that we have: (i) the 𝑖𝑡ℎ bond matures at time 𝑡𝑖 with 

market price 𝑃𝑖  per unit face value, which equals the redemption value, for 𝑖 = 1,2,3,4 

and   𝑡1  𝑡2  𝑡3  𝑡4, (ii) bonds 1 and 2 have no coupons, while bond 3 has two coupons, at 

time 𝑡31
∗  with 𝑡1  𝑡31

∗  𝑡2 and at maturity 𝑡3 and bond 4 has three coupons, with coupon dates 

𝑡41
∗ , 𝑡42

∗  and  𝑡4 , where 𝑡2  𝑡41
∗  𝑡3  and  𝑡3  𝑡42

∗  𝑡4 , and (iii) the force of forward 

rate 𝑓𝑡(𝑚) follows a step function, taking constant values between successive maturities, i.e., 

𝑓𝑡(𝑚) = 𝑓𝑖,𝑡(𝑚) for 𝑡𝑖−1  𝑡 ≤ 𝑡𝑖 , 𝑖 = 1,2,3,4 with 𝑡0 =   (details are given in table 1.1). 

 

Table 1.1: The Bond Price and Coupon Rate Data 

Bond Coupon rate Coupon date Maturity Bond price 

1 

2 

3 

 

4 

 

 

0 

0 

𝐶3 

𝐶3 

𝐶4 

𝐶4 

𝐶4 

– 

– 

𝑡31
∗ , 𝑡1  𝑡31

∗  𝑡2 

𝑡3 

𝑡41
∗ , 𝑡2  𝑡41

∗  𝑡3 

𝑡42
∗ , 𝑡3  𝑡42

∗  𝑡4 

𝑡4 

𝑡1 

𝑡2 

𝑡3 

 

𝑡4 

𝑃1 

𝑃2 

𝑃3 

 

𝑃4 

The table presents the data on both zero-coupon and coupon bearing bonds, their maturity time; coupon 

rate and coupon payments dates in typical standard notations to derive the analytical expressions for the 

Fama-Bliss unsmoothed implied forward rates and spot rates in standard financial notations. 
     

                                                   
7
 In the empirical part of this dissertation, the analysis is carried out using the unsmoothed Fama-Bliss spot rates. 

http://en.wikipedia.org/wiki/Forward_substitution
http://en.wikipedia.org/wiki/Yield_curve
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As bond 1 is a zero-coupon, its value equation is: 
 

 
𝑃1 = exp[−𝑡1𝑅𝑡1] = exp 0−∫ 𝑓(𝑢)𝑑𝑢

𝑡1

0

1 = exp[−𝑓1𝑡1]  

 
𝑓1 = −

1

𝑡1
log𝑃1 (1.5) 

 

which is forward rate for the interval ( , 𝑡1]. 

For bond 2 (which is also a zero-coupon bond), the valuation equation take the form of: 
 

 
𝑃2 = exp[−𝑡2𝑅𝑡2] = exp 0−∫ 𝑓(𝑢)𝑑𝑢

𝑡2

0

1  

      = exp[−𝑓1𝑡1 − 𝑓2(𝑡2 − 𝑡1)] (1.6) 
 

Substituting (1.5) in (1.6) and solving for 𝑓2, we obtain: 
 

 
𝑓2 = −

1

𝑡2 − 𝑡1
[log𝑃2  𝑓1𝑡1]  

 
𝑓2 = −

1

𝑡2 − 𝑡1
log [

𝑃2
𝑃1
] (1.7) 

 

which is the forward rate for an interval (𝑡1, 𝑡2]. 

For bond 3, there is a coupon payment of amount 𝐶3 at time 𝑡31
∗ , with 𝑡1  𝑡31

∗  𝑡2. Since, 

the equation of value for bond 3 can be: 
 

 
𝑃3 = (1  𝐶3)exp 0−∫ 𝑓(𝑢)𝑑𝑢

𝑡3

0

1  𝐶3exp 0−∫ 𝑓(𝑢)𝑑𝑢
𝑡31
∗

0

1  

 𝑃3 = (1  𝐶3)exp[−𝑓1𝑡1 − 𝑓2(𝑡2 − 𝑡1) − 𝑓3(𝑡3 − 𝑡2)]  𝐶3exp[−𝑓1𝑡1 − 𝑓2(𝑡31
∗ − 𝑡1)] (1.8) 

 

Solving (1.8) for 𝑓3 implies: 
 

 
𝑓3 = −

1

𝑡3 − 𝑡2
log 0

𝑃3 − 𝐶3exp[−𝑓1𝑡1 − 𝑓2(𝑡31
∗ − 𝑡1)]

(1  𝐶3)𝑃2
1  (1.9) 

 

By substituting (1.5) and (1.7) in (1.9), we obtain: 

 

 
𝑓3 = −

1

𝑡3 − 𝑡2
log 0

𝑃3 − 𝑃1𝐶3exp[−𝑓2(𝑡31
∗ − 𝑡1)]

(1  𝐶3)𝑃2
1 (1.10) 

 

which is the forward rate for an interval (𝑡2, 𝑡3].  

As for the bond 4, using the similar argument, the equation of value for bond 4 can be 

written as: 
 

 𝑃4 = (1  𝐶4)𝑃3
∗exp[−𝑓4(𝑡4 − 𝑡3)]  𝑃2𝐶4exp[−𝑓3(𝑡41

∗ − 𝑡2)] 

          𝑃3
∗𝐶4exp[−𝑓4(𝑡42

∗ − 𝑡3)] 
(1.11) 
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where 𝑃3
∗ = exp[−𝑓1𝑡1 − 𝑓2(𝑡2 − 𝑡1) − 𝑓3(𝑡3 − 𝑡2)]; from (1.11), we obtain: 

 

 𝑃4 − 𝑃2𝐶4exp[−𝑓3(𝑡41
∗ − 𝑡2)]

𝑃3
∗ = (1  𝐶4)exp[−𝑓4(𝑡4 − 𝑡3)]  𝐶4exp[−𝑓4(𝑡42

∗ − 𝑡3)] (1.12) 

 

The left-hand side of (1.12) can be computed using the data on 𝑃4 and (1.5, 1.7 and 1.10), while 

the right-hand side contains the unknown quantity 𝑓4. The equation can be solved numerically 

for the implied forward rate 𝑓4 in the period (𝑡3, 𝑡4]. For the continuously compounded spot 

rates (zero-coupon rates) using (1.4), we obtain: 
 

 𝑅1 = 𝑓1 for   𝑡 ≤ 𝑡1 

 
𝑅2 =

𝑓1𝑡1  𝑓2(𝑡 − 𝑡1)

𝑡
 for 𝑡1  𝑡 ≤ 𝑡2 

 
𝑅3 =

𝑓1𝑡1  𝑓2(𝑡2 − 𝑡1)  𝑓3(𝑡 − 𝑡2)

𝑡
 for 𝑡2  𝑡 ≤ 𝑡3 

 
𝑅4 =

𝑓1𝑡1  𝑓2(𝑡2 − 𝑡1)  𝑓3(𝑡3 − 𝑡2)  𝑓4(𝑡 − 𝑡3)

𝑡
 for 𝑡3  𝑡 ≤ 𝑡4 

 

1.4. Yield Curve Data in the Japanese Market 

Various different yields may be observed at a certain point of time, corresponding to different 

bond maturities. But, yield curves evolve dynamically; hence, they have not only a 

cross-sectional, but also a temporal dimension. Here, we address the obvious descriptive 

question: how do yields tend to behave across different maturities and over time?  

The data we use are monthly spot rates for zero-coupon and coupon-bearing bonds, 

generated using the pricing data of Japanese bonds and treasury bills. We use the end-of-month 

price quotes (bid-ask average) for Japanese government bonds, from January 2000 to December 

2011, taken from the Japan Securities Dealers Association (JSDA) bonds files.
8
 In total, there are 

144 months in the dataset. Following Fama and Bliss (1987) method, in the first stage, each 

month a term structure of continuously compounded forward rates is calculated from the 

available maturities. Bills are used for maturities to a year. To extend beyond a year, the pricing 

assumption is that the forward rate for the interval between successive maturities is the relevant 

discount rate in the interval. Suppose forward rates for the month 𝑡 are calculated for maturities 

to 𝑇 and the next bond matures at 𝑡  𝑘. 

Coupons on the bond to be received prior to 𝑇 are priced with the forward rates from to each 

payment date. Coupons and the principal to be received after 𝑇 are priced with the daily forward 

rates from 𝑡 to 𝑇 and with the (solved for) forward rate to 𝑇 and to 𝑇  𝑘 that equates the 

price of the bond at 𝑡 to the value of all payments. These calculations generate a step function 

term structure in which forward rates are the same between successive maturities. 

                                                   
8
 Some data for Japanese government bonds (JGB) in 2000 and 2001 is taken from bonds data files published by 

Tokyo Stock Exchange. 
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In second stage, forward rates are averaged to generate end of month term structure of yields 

for all the available maturities. Furthermore, we pool the data into fixed maturities. Because not 

every month has the same maturities available, we linearly interpolate nearby maturities to pool 

into fixed quarterly maturities of 3, 6, 9, 12, 15, 18, 21, 24, …, 300 months (100 maturities). 

In table 1.2, we show descriptive statistics for yields at various maturities. Several 

well-known and important yield curve facts emerge. First, averaged yields (the average yield 

curve) increase with maturity; that is, term premia appears to exist, perhaps due to risk aversion, 

liquidity preferences, or preferred habitats. Second, the unconditional volatility of yield decreases 

with maturity, presumably because long rates involve averages of expected future short rates. It 

shows that long end of curve is less sharp and less volatile. Third, it also seems that the skewness 

has the downward trend with the maturity. Moreover, kurtosis of the short rates is lower than 

those of the long rates. Lastly, yields are highly persistent, as evidenced not only by the very 

large one-month autocorrelations but also by the sizable twelve-month autocorrelations. However, 

it seems that long rates are less persistent than the short rates. 
 

Table 1.2: Descriptive Statistics of Yield Curve Data 

Maturity    Mean S. Dev.    Max.     Min. Skewness  Kurtosis �̂� (1)   �̂� (12)  �̂� (24) 

3 

6 

9 

12 

15 

18 

21 

24 

30 

36 

48 

60 

72 

84 

96 

108 

120 

180 

240 

300 

Level 

Slope 

Curvature 

0.167 

0.164 

0.176 

0.224 

0.250 

0.276 

0.303 

0.327 

0.387 

0.446 

0.594 

0.730 

0.864 

1.011 

1.165 

1.302 

1.424 

1.801 

2.061 

2.267 

2.267 

2.099 

-1.781 

0.348 

0.345 

0.339 

0.327 

0.327 

0.304 

0.303 

0.292 

0.284 

0.281 

0.280 

0.273 

0.265 

0.262 

0.260 

0.246 

0.231 

0.217 

0.209 

0.207 

0.207 

0.311 

0.382 

0.692 

0.733 

0.770 

0.812 

0.855 

0.990 

0.990 

1.027 

1.117 

1.186 

1.368 

1.517 

1.627 

1.759 

1.878 

1.951 

1.998 

2.24 

2.525 

2.860 

2.860 

2.842 

-0.993 

0.002 

0.004 

0.003 

0.004 

0.003 

0.013 

0.027 

0.019 

0.027 

0.078 

0.121 

0.161 

0.216 

0.285 

0.382 

0.474 

0.549 

0.758 

0.934 

1.070 

1.070 

1.031 

-2.489 

1.346 

1.367 

1.348 

1.003 

0.956 

0.974 

0.932 

0.896 

0.871 

0.815 

0.653 

0.509 

0.365 

0.214 

-0.009 

-0.224 

-0.535 

-1.388 

-1.934 

-1.774 

-1.774 

-0.571 

0.293 

3.259 

3.469 

3.412 

2.600 

2.487 

2.589 

2.475 

2.382 

2.368 

2.315 

2.133 

2.079 

2.137 

2.234 

2.418 

2.784 

3.457 

6.203 

8.291 

7.983 

7.983 

4.081 

1.972 

0.892 

0.877 

0.874 

0.878 

0.870 

0.873 

0.877 

0.875 

0.865 

0.862 

0.855 

0.856 

0.849 

0.842 

0.830 

0.832 

0.830 

0.841 

0.850 

0.874 

0.874 

0.874 

0.867 

0.530 

0.548 

0.555 

0.450 

0.459 

0.455 

0.451 

0.434 

0.403 

0.383 

0.326 

0.269 

0.210 

0.129 

0.066 

0.056 

0.042 

-0.009 

-0.018 

-0.114 

-0.114 

-0.043 

-0.017 

0.077 

0.081 

0.092 

-0.001 

0.021 

0.018 

0.022 

0.025 

0.026 

0.035 

0.027 

0.027 

0.025 

0.035 

0.051 

0.091 

0.102 

0.183 

0.152 

-0.045 

-0.045 

-0.292 

-0.037 

Note: The table shows descriptive statistics for monthly yields at different maturities and for the yield curve level, 

slope and curvature, where we define the level as the 25-year yield, the slope as the difference between the 25-year 

and 3-month yields, and the curvature as the twice the 2-year yield minus the sum of the 3-month and 25-year 

yields. The last three columns contain sample autocorrelations at displacements of 1, 12 and 24 months. The sample 

period is 2000:01–2011:12. The number of observations is 144. 
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Figure 1.1: Yield Curves, 2000:01–2011:12. 

The sample consists of monthly yield data 2000:01–2011:12 (144 months). The figure in the left pane shows the 

yield curves at fixed quarterly maturities of 3, 6, 9, 12, 15, 18, 21, 24 …300 months (100 maturities), while in the 

right pane depicts the term structure for some selected maturities such as 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 

72, 84, 96, 108, 120, 180, 240 and 300 months (20 maturities). 
 

In figure 1.1, we show the three-dimensional surface for the Japanese government bonds 

market, with yields shown as a function of maturity, over time. The figure reveals that the yield 

curves move a lot, shifting among different shapes. The first noticeable fact is that yields vary 

significantly over time from which various common dynamics across all yields can be deduced. 

Especially, in the years 2000 to 2006, the short rates are nearly zero and on ward from 2006 there 

is an increasing trend in the yield for all the maturities. Moreover, in our data set, on average, we 

observe the upward sloping yield curve. 

Furthermore, in chapter 3 and 4, we focus an area of macro-finance research that examines 

the relationship between the term structure of interest rates and the economy. We use monthly  
 

Table 1.3: Descriptive Statistics of Macroeconomic and Stock Market Variables Data  

        𝐼𝑃𝑡        𝐸𝑋𝑡       𝐼𝑁𝐹𝑡       𝑀 𝑡        𝐼𝑡  

Mean 

Std. Dev. 

Maximum 

Minimum 

Skewness 

Kurtosis 

�̂� (1) 

�̂� (6) 

�̂� (12) 

ADF-Statistic 

 

0.705 

7.359 

16.506 

-18.476 

-0.706 

3.583 

-0.276 

0.243 

0.795 

-2.647 

(0.086) 

-2.316 

9.503 

21.233 

-21.189 

0.406 

3.077 

-0.022 

-0.102 

-0.101 

-12.045 

(0.000) 

-0.225 

0.801 

2.098 

-2.532 

0.246 

3.979 

0.113 

-0.229 

0.448 

-10.558 

(0.000) 

2.139 

0.730 

3.645 

0.439 

-0.168 

2.485 

0.945 

0.651 

0.212 

-2.496 

( 0.124) 

-0.451 

4.964 

12.011 

-20.258 

-0.375 

4.065 

0.258 

-0.131 

0.063 

-9.084 

(0.000) 

Note: The table presents summary statistics for macroeconomic variables and capital market indicator 

data 2000:01–2011:12. All the four variables are measured as the last 12 months percentage growth 

rate. The 𝐼𝑃𝑡  is the annual growth rate in industrial production, 𝐸𝑋𝑡 is the (¥/$) annual growth of 

the real exchange rate, 𝐼𝑁𝐹𝑡 is the 12-month percent change in the consumer price index, 𝑀 𝑡 is 

the growth of  2 money supply, and  𝐼𝑡  is 12 months growth rate of Tokyo Stock Exchange Index 

(TOPIX). �̂� (𝑖) denotes the sample autocorrelations at displacements of 1, 6 and 12 months. The last 

row contains augmented Dickey–Fuller (ADF) unit root test-statistic and its P-value (in parenthesis) .  
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data from January 2000 to December 2011, for industrial production, real exchange rate, 

consumer price index, money supply and Tokyo Stock Exchange share prices index (TOPIX) for 

the Japanese economy. The data for the former four variables is obtained from the International 

Financial Statistics (IFS) published by International Monetary Fund (IMF) while, for TOPIX is 

taken from annual reports of Tokyo Stock Exchange for various years. All the five variables are 

measured as the last 12 months percentage growth rate for two main reasons. First, for the 

stationarity consideration, as the time series of the variables in their level form are following I(1) 

process. Secondly, for the consistency purpose with the interest rate data, as our yields for all 

maturities are measured in annual percent format. The 𝐼𝑃𝑡  is the growth rate in industrial 

production, 𝐸𝑋𝑡 is the growth in real exchange rate (¥/$), 𝐼𝑁𝐹𝑡 is the inflation rate measured as 

12-months percent change in the consumer price index, 𝑀 𝑡 is the annualized growth rate of 

𝑀2 money supply, and  𝐼𝑡  is the last 12-months growth rate of TOPIX. The descriptive 

statistics of the macroeconomic variables and the capital market indicator are depicted in table 

1.3. 

1.5. Yield Curve Modeling 

The term structure models can be divided into three broad categories. The first stream relies on the 

optimizing behaviour of economic agents, using the dynamic stochastic general equilibrium 

(DSGE) framework. These models are all economic in nature. A model that forms the basis for 

this class of term structure models is the Vasicek (1977) model. The innovative feature of the 

Vasicek (1977) is that it models the interest rate as a mean reversion process. Other early 

contributions to the literature of equilibrium pricing include Cox et al. (1985), Dunn and Singleton 

(1986), Campbell (1986, 1993, 1996 and 1999) and more recently, Piazzesi and Schneider (2006). 

Other influential contributions in this class are Duffie and Kan (1996) and Dai and Singleton 

(2002). Duffie and Kan (1996) generalize this literature and Dai and Singleton (2002) 

characterize the set of admissible and identifiable models. However, based on the sound economic 

foundation, this approach still delivers unsatisfactory results in terms of poor in-sample fit as well 

as out-of-sample forecasts (Duffee, 2002). Furthermore, estimation of these models is repeatedly 

found to be challenging, requiring additional restrictions that are often not well motivated 

statistically or theoretically (Duffee, 2011). 

A second stream of the literature adopts only the very basic structure of the DSGE approach to 

study the term structure of interest rates, usually imposing no-arbitrage condition, when estimating 

a Vector Autoregressive (VAR) model of yields. Significant development came in this stream of 

literature in 1990s. These models focus on fitting the term structure at a given point in time to 

ensure that no-arbitrage opportunities exist, see Hull and White (1990) and Heath et al. (1990). 

These type of models also include some recent studies such as Ang and Piazzesi (2003), Piazzesi 

(2005), Bikbov and Chernov (2010). The main (empirical) lesson from this stream of literature is 

that one needs a combination of observed and state variables to explain the dynamics of the term 

structure of interest rates. 
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The third relevant literature include statistical models without a structural interpretation; that 

is, models which synthesize data patterns without necessarily representing the theoretical models 

that fit under equilibrium and free-arbitrage conditions. This approach constitutes the statistical 

class of term structure models. This strand includes the methodology of principal components 

(Litterman & Scheinkman, 1991), curve interpolation models such as splines (McCulloch, 1971), 

smoothing splines (Shea, 1984), kernel regression (Linton et al. 2001), and the factors models for 

curve fitting such as Nelson and Siegel (1987) and Svensson (1994).  

Diebold and Rudebusch, (2012) have emphasized three reasons that why the dynamic factor 

approach is appealing in modeling the term structure of interest rate. First, the functional form of 

factor imposed on the spot rate curve provides a highly accurate empirical description of yield 

curve data and have clear economic interpretations. It provides a framework that all bond price 

information can be summarized with just a few constructed variables or factors. Second, factors 

models prove tremendously appealing for statistical reasons. They provide a valuable 

compression of information, effectively collapsing an intractable high-dimensional modeling 

situation into a tractable low-dimensional situation.
9
 Third, financial economic theory suggests, 

and routinely invokes, factor structure. There are thousands of financial assets in the markets, but 

for a variety of reasons, the risk premiums that separate their expected returns as driven by a 

much smaller number of components, or risk factors. In the equity sphere, for example, the 

celebrated capital asset pricing model (CAPM) is a single-factor model. Various extensions (e.g., 

Fama and French, 1993; 1992) invoke a few additional factors but remain intentionally very 

low-dimensional, almost always with less than five factors. Yield curve factors models are a 

natural bond market parallel. 

One of the most popular subclasses within the statistical class of models is based on the 

Nelson and Siegel (1987) model. Originally intended to describe cross sectional aspects of yield 

curves, the Nelson-Siegel model imposes a parsimonious three-factor structure on the link between 

yields and different maturities, where the factors can be interpreted as level, slope and curvature. 

Diebold and Li (2006) find that a dynamic reformulation of this model provides forecasts that 

outperform the random walk and various alternative forecasting approaches. The Nelson-Siegel 

model thanks its popularity for a large part to its relative simplicity; ease of estimation and to the 

fact that there is some underlying economic interpretation in the three factors it is based on 

(Diebold and Li, 2006; De Pooter, 2007 and Almeida et al. 2007). Furthermore, the functional 

form in Nelson and Siegel (1987) imposes more smoothness on the shapes of the curves, as 

desirable by macroeconomists (Gürkaynak et al. 2007).  

1.6. Yield Curve and Macroeconomic Factors 

In the last decade, the use of the term structure of interest rates has been one of the most 

important topics of research in macroeconomics and finance. In the early literature of empirically 

oriented term structure models, the focus was on the optimal fit of the yield curve without taking 

                                                   
9
 As the data actually have factor structure, we need low-dimensional factor structure for statistical tractability. 
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into consideration the economic fundamentals. Since, finance models typically have no 

macroeconomic content, but instead focus on the consistency of asset prices across markets.
10

 

Similarly, in macro models, the entire financial sector is often represented by a single interest rate 

(short rate) with no yields spread and curvature for credit or liquidity risk and no role for 

financial intermediation or financial frictions. In order to understand the important aspects of the 

recent financial crisis and the economic recession, a joint macro-finance perspective is likely 

necessary. Therefore, in this section, we focus on an area of macro-finance research that has 

examined the relationship between the term structure of interest rates and the economy. 

From a finance perspective, the short rate is a fundamental building block for rates of other 

maturities because long yields are risk-adjusted averages of expected future short rates. From a 

macro perspective, the short rate is a key monetary policy instrument, which is adjusted by the 

central bank in accordance to achieve economic stabilization goals. Taken together, a joint 

macro-finance perspective would suggest that understanding the way central banks move the 

policy rate in response to fundamental macroeconomic shocks should explain movements in the 

short end of the yield curve; furthermore, with the consistency between long and short rates 

enforced by the no-arbitrage assumption, expected future macroeconomic variation should 

account for movements farther out in the yield curve as well. 

The expected real rate may be associated with expectations of future monetary policy and of 

future real growth. Moreover, because inflation tends to be positively related to activity, the 

expected inflation component may also be informative about future growth. 

Although the yield curve has clear advantages as a predictor of future economic events, 

several other variables have also been widely used to forecast the path of the economy. Among 

financial variables, stock prices have received much attention. Finance theory suggests that stock 

prices are determined by expectations about future dividend streams, which in turn are related to 

the future state of the economy. Among macroeconomic variables, in a monetary policy context, 

forward rates are potentially useful as indicators of market expectations of future interest rates, 

inflation rates and exchange rates as discussed by Svensson (1994) and Sodelind and Svensson 

(1997), and the yield curve carries information about future GDP growth as shown by Estrella 

and Mishkin (1996, 1998). This macroeconomic explanation of term structure of interest rate has 

also been supported by empirical results, such as the model of Hördahl et al. (2006), in which 

forecast ability outperforms the random walk hypothesis. Similarly, Diebold et al. (2006) 

characterize the relationship among Level, Slope and Curvature factors of yield curve and the 

macro economy. They found strong evidence of macroeconomic effects on future yield curve and 

somewhat weaker evidence that yield curve affects future macroeconomic variables. 

In addition to these studies, Redebusch and Wu (2003) and Ang et al. (2006) construct joint 

models and they both found that there is bidirectional link between yield curve and 

macroeconomic variables. Movements in macroeconomic fundamentals will have an impact on 

the shape of the curve and the level of interest rates. Although, economic theory would suggest 

                                                   
10

 The word ―finance models‖ is used interchangeable for statistical class of models. 
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that the impact of the macro economy on yields is stronger than vice versa. 

1.7. Definitions and Notations 

In this section, we discuss the definitions and the notions that occur resiliently in studying term 

structure models. For the sake of readability, we use the same notations for parameters and 

variables in the different models throughout the entire study unless stated otherwise. 

1.7.1. Short Rates and Long Rates 

The short rate is the annualized interest rate (yield) for an infinitesimally short period of time. In 

practice, however, the three-month rate is considered a better approximation of the short rate 

because, for example, overnight loans are affected by factors that term structure models do not aim 

to cover (Schumacher, 2009). In this study, the short rate 𝑟𝑡 is defined as: 
 

 
𝑟𝑡 = 𝑅𝑡( ) = li 

𝑚→0
𝑅𝑡(𝑚) (1.15) 

 

The long rate is the annualized spot rate (yield) for long horizon maturity, theoretically as 

maturity approaches to infinity. In practice, however, the infinite maturity bonds do not exist and 

the yield on bonds with maturity of ten years or more is considered a better approximation of the 

long rate. The long rate 𝑙𝑡is defined as: 
 

 
𝑙𝑡 = 𝑅𝑡(∞) = li 

𝑚→∞
𝑅𝑡(𝑚) (1.16) 

1.7.2. Wiener Process 

The Wiener process (also referred to as Brownian motion) is a continuous time stochastic process 

with small, independent increments. In finance, the Wiener process is used to describe changes in 

prices of options or in interest rates. 

A continuous time process (𝑊𝑡) is said to be a Wiener process if it satisfies the following 

three properties (Schumacher, 2009): 

1. 𝑊0 =  . 

2. Any two increments are independents, such as if 𝑡1  𝑡2  𝑡3  𝑡4, then the increments ∆2 

and ∆4 are independent, where ∆2= (𝑊𝑡2 −𝑊𝑡1) and ∆4= (𝑊𝑡4 −𝑊𝑡3). 

3. For any given 𝑡1 and 𝑡2 with 𝑡2 > 𝑡1, the distribution of the increment ∆2= (𝑊𝑡2 −𝑊𝑡1) is 

Gaussian with mean 0 and variance ∆𝑡 = (𝑡2 − 𝑡1), i.e., ∆2~𝑁( , √∆𝑡). 

1.7.3. Mean Reversion 

A process is said to be mean reverting if the process tends to fall (rise) after hitting a maximum 

(minimum) towards its central location. Interest rates are known to be subject to mean reversion 

over a longer horizon. Therefore, some models of term structure use an Ornstein-Uhlenbeck 
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process for the dynamic evolution of interest rates.
 
 

The Ornstein-Uhlenbeck process is given by the following stochastic differential equation 

(SDE): 
 

 𝑑𝑦𝑡 = 𝜅(𝜇 − 𝑦𝑡)𝑑𝑡  𝜍𝑑𝑊𝑡  (1.17) 
 

In (1.17), 𝜇 denotes the mean to which the process will revert; 𝜅 indicates the speed at which the 

process 𝑦𝑡 reverts to 𝜇 and 𝑊𝑡 is a Wiener process. As with the mean reverting process, the 

parameters 𝜅, 𝜇 and 𝜍 are strictly positive. Furthermore, the amount of randomness is indicated by 

parameter 𝜍. Also note that whenever 𝑦𝑡 is high (i.e., larger than 𝜇), the process is likely (rather 

than surely because of the randomness involved) to move downwards. The opposite also holds 

true. 

1.8. Onward 

In the chapters that follow, we address the issues and questions raised in this chapter, and many 

others. We discuss and compare the Cox-Ingersoll-Ross (CIR) model and Nelson and Siegel 

(1987) exponential components framework to distill the entire term structure of zero-coupon yield 

curve in chapter 2. The CIR model is calibrated using maximum likelihood estimation method 

and the dynamic Nelson and Siegel (1987) model using cross-sectional data by the non-linear least 

squares procedure. For comparison, we also estimate the linearized version of Nelson-Siegel 

model with ordinary least squares (OLS). The objective is to compare two classes of models in 

terms of in-sample fit and out-of-sample forecasts of the term structure of interest rate. 

In chapter 3, we evaluate the out-of-sample forecast performance of the dynamic 

Nelson-Siegel model with and without macroeconomic variables in the state-space representation. 

We explicitly incorporate the three macroeconomic variables, i.e., the level of economic activity, 

exchange rate and inflation rate and one stock market activity indictor (TOPIX) in the state-space 

representation of yield curve model to analyze its impact in the in-sample fit and subsequently the 

efficiency gain in forecasting the yields for various maturities.  

Chapter 4 deals with the term structure of interest rates and monetary policy. We use a 

three-factor term structure model, based on the classic contribution of Nelson and Siegel (1987). 

We incorporate three macroeconomic variables, i.e., the level of economic activity, money supply 

and inflation rate in the state-space representation along with stochastic volatility component in 

the yield curve model to examine the effect of monetary policy stances on term structure and the 

possible feed-back effect on the real sector using the Japanese experience of zero interest rate 

policy (ZIRP). 

Lastly, in chapter 5, we provide the main conclusion from this study; highlight aspects of the 

current frontier and attempting to point out the way toward additional progress.  
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Chapter 2 

Term Structure Modeling and Forecasting 

of Government Bond Yields  

Does a Good In-Sample Fit Imply Reasonable Out-of-Sample Forecasts? 

2.1. Introduction 

Nothing in economy is watched much closer on a minute by minute basis than the yield curve. The 

central banks around the world try to manage it and everyone tries to forecast it. Its shape is a key 

to the profitability of many businesses and investment strategies. Equally important is the ability 

of the model to forecast the future term structure as it can be interpreted as a predictor of the 

future state of economy.
11

 Therefore, accurate modeling, estimation and precise forecasting of 

the term structure of interest rate are of crucial importance in many areas of finance and 

macroeconomics.  

Although the prices of zero-coupon bonds can be directly used to construct the term structure, 

however, due to the limited available maturity spectrum and lack of market liquidity of the 

zero-coupon bonds, it is essential to estimate the yields based on the observed coupon-bearing 

bond prices. Therefore, several term structure models have been developed in the course of time to 

plot the yield curve. A model that forms the basis of many other term structure models is the 

Vasicek (1977) model. The innovative feature of the Vasicek (1977) is that it models the interest 

rate as a mean reversion process. A famous extension to the Vasicek model is the 

Cox-Ingersoll-Ross (1985) model, which aims to cope with some of the drawbacks of the Vasicek 

model. The Cox et al. (1985) model describes the evolution of the short rates and distills the entire 

term structure by only one stochastic variable. Other famous extensions are the Vasicek and Fong 

(1982), Hull and White (1990) and Black et al. (1990) models. 

However, more positive results have emerged recently based on the framework of Nelson and 

Siegel (1987). Originally intended to describe the cross sectional aspects of the yield curves, the 

Nelson-Siegel model imposes a parsimonious three-factor structure on the link between yields of 

different maturities, where the factors can be interpreted as level, slope and curvature. Though 

statistical in nature, the standard Nelson-Siegel model is still widely used due to its good fit of the 

                                                   
11

 These forecasts are used by companies in their investment decisions and discounting future cash flows, consumers 

in their saving decisions, and economists in the policy decisions. 
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observed term structure.
12

  

This chapter discusses the Cox-Ingersoll-Ross (CIR) model and the Nelson-Siegel 

exponential components framework to distill the entire term structure of zero-coupon yields. 

Being derived from dynamic stochastic general equilibrium (DSGE) specification, the CIR model 

was characterized for theoretical purposes, whereas, the motivation for the Nelson-Siegel model 

comes from the stylized facts that can be inferred from empirical analysis. The CIR model is 

compared with the Nelson-Siegel model to find out which of the two classes is appropriate for 

forecasting purposes. The comparison between the Nelson-Siegel and the CIR models will help to 

find out which of the two can appropriately represent the true characteristics of the market. We 

also compare the in-sample fit of Nelson-Siegel model for the linear and non-linear estimation 

methods. 

Furthermore, we simulate the CIR and the Nelson-Siegel models to find out whether 

simulation results match the larger trends and statistics (i.e., stylized facts) of the actual interest rate 

data. In this context, we aim to understand that: 

 Which of the two classes of models well explain the entire term structure of interest rates? 

 Does non-linear estimation of Nelson-Siegel model lead to a better in-sample fit than the 

linear estimation process? 

 Does better fit imply reasonable simulation results? 

The motivation to simulate interest rates may be to examine the out-of-sample performance of the 

two classes of term structure models. An interesting reading on this topic for the Nelson-Siegel 

model is in Diebold and Li (2006), which indicates that the model produces term structure 

forecasts at both short and long horizons with encouraging results.  

The chapter contributes to the existing literature in two ways. In calibrating the multi-factor 

Nelson-Siegel model, we estimate the dynamic version of the model by employing the non-linear 

least squares estimation procedure and allow all the four parameters to vary over time.
13

 We 

show that how the non-linearized version of the model (assuming the time-varying 𝜏) leads to a 

better in-sample fit as compared to the linearized one. Secondly, we model the four time-varying 

factors of Nelson-Siegel model to simulate the yield curve, contrary to the previous studies in 

which parameter 𝜏𝑡 is fixed to a pre-specified value and they model three factors to forecast the 

term structure. Lastly, in estimating the CIR and Nelson-Siegel models, some new empirical facts 

                                                   
12

 For instance, De Pooter (2007) states that nine out of thirteen central banks that report their curve estimation 

methods to the Bank of International Settlements (BIS) use either the Nelson-Siegel model or its variation. 

Furthermore, Diebold and Li (2006) find that the dynamic reformulation of this model provides forecasts that 

outperform the random walk and various alternative forecasting approaches. 
13

 In the earlier studies, the parameter 𝜏 is pre-specified to a fixed value without estimation. For example, Diebold 

and Li (2006) argue that 𝜏 is to be taken as a constant with little degradation of fit, but it greatly simplifies the 

estimation procedure. They fix 𝜏 to 30 months that maximizes the loading of the curvature factor. Similarly, 

Fabozzi et al. (2005) set the shape parameter 𝜏 to 3 leaving the hump located at 5.38 years, arguing for the 

computational efficiency (no iterations through 𝜏  need to be performed). However, in some studies 𝜏  is 

considered as time invariant unknown parameter (does not pre-specify). Such as Diebold, et al. (2006) estimate 𝜏 
to be 23.3 months (𝜆 =  . 77). In Ullah et al. (2013), the estimated 𝜏 is 71.420 implying that the loading on the 

curvature factor is maximized at a maturity of about 6 years. 
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will emerge from the Japanese market data. Of particular importance, short-term yields such as the 

three and six-month yields were essentially stuck at zero during most of the period from 2000 to 

2006. It will also be interesting to figure out that how the short rate CIR model fits the very low 

short-term interest rate to compute the entire term structure. 

The chapter is organized as follows. In section 2.2, the Cox-Ingersoll-Ross (1985) model and 

the dynamic multi-factor Nelson-Siegel (1987) model are discussed. Section 2.3 describes the 

Japanese interest rate data and estimates the parameters of the models. We evaluate the 

forecasting performance of the two competing term structure models in section 2.4, while section 

2.5 concludes the chapter. 

2.2. Term Structure Models 

The term structure of interest rates describes the relationship between interest rates and time to 

maturity. At a certain point of time for various maturities, the term structure can have different 

shapes. The curves that encounter in reality can be upward, downward sloping, flat or humped 

shape. These typical shapes can be generated by a class of functions associated with the solutions 

of differential or difference equations. Cox et al. (1985) developed a general equilibrium model 

with explicit analytical expression for the equilibrium interest rate dynamics and bond prices 

using the first order stochastic differential equation (SDE). Being a general equilibrium model, it 

contains all the elements of the traditional expectation hypothesis. On the other hand, Nelson and 

Siegel (1987) introduced a model for term structure which explains 96% of the variation of the 

yield curve across maturities with the help of second order differential equation.  

Based on the definitions and notations in section 1.2 and 1.7, in the next two subsections we 

present the models. 

2.2.1. Cox-Ingersoll-Ross (CIR) Model 

Vasicek (1977) developed a one-factor model of the term structure which depends on only one 

uncertainty factor, i.e., the short rate. Vasicek defines the short rate process as:  
 

 𝑑𝑟𝑡 = 𝜅(𝜇 − 𝑟𝑡)𝑑𝑡  𝜍𝑑𝑊𝑡 (2.1) 
 

As with the mean reverting process, the three parameters 𝜅, 𝜇 and 𝜍 are strictly positive and 

𝑊𝑡 is a Wiener process. A major drawback of the Vasicek model is that the model can produce 

negative interest rates.
14

 Cox et al. (1985) adopt a general equilibrium approach to endogenously 

determine the risk-free rate. They reformulated the Vasicek model, in order to prevent the short 

rate from becoming negative, as:
 
 

 

 𝑑𝑟𝑡 = 𝜅(𝜇 − 𝑟𝑡)𝑑𝑡  𝜍√𝑟𝑡𝑑𝑊𝑡 (2.2) 
 

The 𝜅(𝜇 − 𝑟𝑡)𝑑𝑡 is a drift term which represents the mean reversion and is similar to the drift 
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 If real interest rates are to be modeled, this does not necessarily have to be a big problem as real interest rates can 

be negative in reality. Nominal rates, on the contrary, will never be negative in practice. 
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term in the Vasicek model. The difference between the two models is the square root in the 

second (volatility) term, which prevents the short rate from becoming negative.
15

  

Furthermore, the short rate 𝑟𝑡 as in (2.2) follows a non-central chi-square distribution with 

(2  2) degrees of freedom, and the parameter of non-centrality 2𝑢 is proportional to the 

current spot rate. The probability density of the interest rate 𝑟𝑡  at time 𝑡𝑖 conditional on 𝑟𝑡  1 

at 𝑡𝑖−1 is given as: 
 

 
𝑓CIR(𝑟𝑡 |𝑟𝑡  1; 𝜉, Δ𝑡) = 𝑐[exp (−𝑢 − 𝑣)] (

𝑣

𝑢
)

𝑞
2
𝐼𝑞(2√𝑢𝑣) (2.3) 

 

where 𝜉 = (𝜅, 𝜇, 𝜍)′ is the parameters vector, 
 

 
𝑐 =

2𝜅

𝜍2[1 − exp(−𝜅Δ𝑡)]
  

 𝑢 = 𝑐𝑟𝑡  1 exp(−𝜅Δ𝑡)  

 𝑣 = 𝑐𝑟𝑡   

 
 =

2𝜅𝜇

𝜍2
− 1  

 

and 𝐼𝑞(2√𝑢𝑣) is a modified Bessel function of the first kind of order  .  

Valuing the zero-coupon bond, Cox et al. (1985) show that the pricing function in the CIR 

model can be expressed as: 
 

 𝑃𝑡(𝑚) = 𝐴𝑡(𝑚)exp[−𝐵𝑡(𝑚)] 𝑟𝑡  (2.4) 

 

where 
 

 

𝐴𝑡(𝑚) = [
2휃. exp ,

𝑚
2
(휃  𝜅)-

2휃  (𝜅  휃)[exp(𝑚휃) − 1]
]

2𝜅𝜇/𝜎2

 (2.5) 

 
𝐵𝑡(𝑚) =

2[exp(𝑚휃) − 1]

2휃  (𝜅  휃)[exp(𝑚휃) − 1]
 (2.6) 

 휃 = √𝜅2  2𝜍2 (2.7) 
 

The bond price in (2.4) is a decreasing concave function of maturity 𝑚 and decreasing convex 

function of the short-term interest rate 𝑟𝑡 and mean interest rate level 𝜇. Furthermore, 𝑃𝑡(𝑚) is 

an increasing concave (decreasing convex) function of 𝜅 (the speed of adjustment parameter), if 

the short-term interest rate 𝑟𝑡 is greater (less) than 휃. The bond price is also an increasing 
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 When 𝑟𝑡  approaches zero, the volatility term 𝜍√𝑟𝑡  approaches zero. In this case, the short rate will only be 

affected by the drift term, resulting the short rate to revert to the mean again. Cox et al. (1985) show that 

whenever 2𝜅𝜇 > 𝜍2, the interest rate is strictly larger than zero. Furthermore, there is empirical evidence that 

whenever interest rates are high, the volatility is likely to be high as well, which justifies the volatility term in the 

CIR model. 
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concave function of the interest rate variance 𝜍2.
16

  

Rewriting the expression for 𝑃𝑡(𝑚) in (2.4) and substituting it in (1.2), implies a function 

to compute the term structure of interest rate in the CIR model as: 
 

 
𝑅 (𝑚) =

1

𝑚
[(𝐵𝑡(𝑚)𝑟𝑡) − log(𝐴𝑡(𝑚)) ]   (2.8) 

 

with 𝐴𝑡(𝑚), 𝐵𝑡(𝑚)  and 휃 are as in (2.5), (2.6) and (2.7) respectively. 

On a time grid  = 𝑡0, 𝑡1, 𝑡2, …… with time step Δt = 𝑡𝑖 − 𝑡𝑖−1, the discretized version of 

the CIR model is defined as: 
 

 𝑟𝑡+Δ𝑡 = 𝑟𝑡  𝜅(𝜇 − 𝑟𝑡)Δ𝑡  𝜍√Δ𝑡√𝑟𝑡ε𝑡   (2.9) 
 

with 휀𝑡~𝑁( ,1). Various different shapes of the term structure can be computed by the CIR 

model by changing the parameters values in (2.8). 

2.2.2. Nelson-Siegel Model 

Motivation for Nelson-Siegel model comes from the expectation hypothesis. According to the 

expectation hypothesis, forward rates will behave in such a way that there is no arbitrage 

opportunity in the market. In other words, the theory suggests that implied forward rates are the 

rationally expected spot rates of the future periods. Nelson and Siegel (1987) propose that if spot 

rates are generated by a differential equation, then implied forward rates will be the solutions to 

this equation. Assuming a second-order differential equation, to describe the movements of the 

yield curve, with the assumption of real and equal roots, the solution will be the instantaneous 

implied forward rate function as: 
 

 
𝑓𝑡(𝑚) = 𝛽1𝑡  𝛽2𝑡exp (

−𝑚

𝜏𝑡
)  𝛽3𝑡 [(

𝑚

𝜏𝑡
) exp (

−𝑚

𝜏𝑡
)] (2.10) 

 

for 𝑡 = 1,2, … , 𝑇 and time-varying parameters vector 𝜓𝑡 = (𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡, 𝜏𝑡)
′. 

The model may be viewed as a constant plus a Laguerre function, that is, a polynomial times 

an exponential decay term, which belongs to a mathematical class of approximating functions. 

The solution for the yield as a function of maturity, using (1.4), is: 
 

 
𝑅𝑡(𝑚) = 𝛽1𝑡  𝛽2𝑡 0

1 − exp(−𝑚/𝜏𝑡)

𝑚/𝜏𝑡
1  𝛽3𝑡 0

1 − exp(−𝑚/𝜏𝑡)

𝑚/𝜏𝑡
− exp (

−𝑚

𝜏𝑡
)1 (2.11) 

 

The Nelson-Siegel specification of yield in (2.11) can generate several shapes of the yield curve 

including upward sloping, downward sloping and (inverse) humped shape with no more than one 

maxima or minima. The functional form imposed on the forward interest rates as in (2.10) leads 
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 It is due to that larger 𝜍2 value indicates more uncertainty about future real production opportunities, and thus 

more uncertainty about future consumption. In such a world, risk-averse investors would value the guaranteed 

claim in a bond more highly. 
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to a flexible, smooth parametric function of the term structure that is capable of capturing many 

of the typically observed shapes that the yield curve assumes over time and captures most of the 

properties of the term structure. 

The limiting path of 𝑅𝑡(𝑚), as 𝑚 increases, is its asymptote 𝛽1𝑡; and, when 𝑚 is small, 

the limit is (𝛽1𝑡  𝛽2𝑡). 𝛽1𝑡 is the asymptotic value of the spot rate function, which can be seen 

as the long-term interest rate and is assumed (required) to be positive (𝛽1𝑡 >  ). Furthermore, the 

loading of 𝛽1𝑡 equals one (constant and independent of 𝑚) and, therefore, the term structure at 

different maturities is affected by 𝛽1𝑡 equally, which justifies the interpretation of 𝛽1𝑡 as a level 

factor. The instantaneous short rate is given by  𝛽1𝑡  𝛽2𝑡, which is constrained to be greater than 

zero. Furthermore, 𝛽2𝑡 determines the rate of convergence with which the spot rate function 

approaches its long-term trend. The slope will be negative if 𝛽2𝑡 >   and vice versa. The 

loading of 𝛽2𝑡 approaches to one as 𝑚 →   and to zero as 𝑚 → ∞. Therefore, the yield curve is 

primarily affected by 𝛽2𝑡 in the shorter run, so a change in 𝛽2𝑡  implies a change in the slope of 

the term structure. Therefore, it is legitimate to interpret 𝛽2𝑡 as the slope factor. The loading that 

comes with 𝛽3𝑡 starts at 0, increases, and then decays to zero. Since, 𝛽3𝑡 has the greater impact 

on medium-term yields and can be termed as the curvature factor, because it affects the curvature 

of the term structure. Furthermore, the parameter 𝛽3𝑡 determines the size and the form of the 

hump, i.e., 𝛽3𝑡 >   results in a hump, whereas 𝛽3𝑡    produces a U-shape. 

Finally, the parameter 𝜏𝑡 determines the maturity time at which the loading of the  𝛽3𝑡 is 

optimal. It also specifies the location of the hump or the U-shape on the yield curve. Therefore, 

the range of shapes the curve can take is dependent on 𝜏𝑡, it can be interpreted as a shape factor. 

The small values of  𝜏𝑡, which have rapid decay in regressors, tend to fit low maturities interest 

rates quite well and larger values of  𝜏𝑡 lead to more appropriate fit of longer maturities spot 

rates. It has an interesting rule and economic interpretation as it shows a point of maturity 𝑚 that 

separates the short rate from the medium/long-term rates.  

2.3. Parameter Calibration and Estimation 

Taking into account three dimensions–yield, maturity and time–of the data, different estimation 

methods can be used. To estimate the CIR model, one could choose to do a cross-sectional or 

time series estimation. For the Nelson-Siegel as the factors are time-dependent, one can proceed 

with cross-sectional or multivariate time series estimation. The differences between the estimates 

should be small if the employed model of the term structure is true. In this study, we estimate the 

CIR model using the time series data and the Nelson-Siegel model via the cross-sectional data for 

each observed month in the dataset. 

2.3.1. Data 

We use the monthly spot rates of Japanese government bond with fixed quarterly maturities of 3, 

6, 9, 12, 15, 18, 21, 24,…,300 months (100 maturities). The spot rates are derived from the 

bid/ask average price quotes, from January 2000 through December 2011, using the Fama and 
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Bliss (1987) methodology. The data for price quotes for Japanese government bonds is taken 

from the Japan Securities Dealers Association (JSDA) bonds files. The descriptive statistics and 

three dimensional plot of the data is given in section 1.4 (table 1.2 and figure 1.1). 

2.3.2. Calibration of the Cox-Ingersoll-Ross Model 

The parameters vector of the Cox-Ingersoll-Ross model 𝜉 = (𝜅, 𝜇, 𝜍)′, as introduced in (2.2), is 

estimated using the time series data. To estimate the parameters vector 𝜉 by maximum likelihood 

method, we use the CIR density given in (2.3). For 𝑇 be the number of observations, e.g., the 

number of months the interest rate is observed, the likelihood function is given by:  
 

 

𝐿(𝜉) =∏𝑓𝐶𝐼𝑅(𝑟𝑡 |𝑟𝑡  1; 𝜉, Δ𝑡)

𝑇

𝑖=1

 (2.12) 

 

for 𝑖 = 1,2, …… , 𝑇. Moreover, maximizing the log-likelihood function is often easier than 

maximizing the likelihood function itself, we take natural logarithm on both sides in (2.12), 

resulting in: 
 

 

log[𝐿(𝜉)] = 𝑇log(𝑐)  ∑*−𝑢 − 𝑣  
 

2
log (

𝑣

𝑢
)  log (𝐼𝑞(2√𝑢𝑣))+

𝑇

𝑖=1

 (2.13) 

 

Maximizing (2.13) over its parameter space yields maximum likelihood estimates 𝜉.
17

 Matlab 

built-in function fminsearch is used to minimize the negative log-likelihood function to obtain 𝜉. 

However, direct implementation of the Bessel function 𝐼𝑞(2√𝑢𝑣) into Matlab causes the 

program to crash. A failure occurs because the Bessel function diverges to plus infinity on a high 

pace. To cope with this problem, scaled Bessel function [denoted by 𝐼𝑞
𝑠𝑐𝑎𝑙𝑒𝑑(2√𝑢𝑣)], defined 

as 𝐼𝑞(2√𝑢𝑣)[exp(−2√𝑢𝑣)], is used. To take the scaled Bessel function into account, the 

log-likelihood function in (2.13) is adjusted as:
18

 
 

 

log[𝐿(𝜉)] = 𝑇log(𝑐)  ∑*−𝑢 − 𝑣  
 

2
log (

𝑣

𝑢
)  log (𝐼𝑞

𝑠𝑐𝑎𝑙𝑒𝑑(2√𝑢𝑣))  2√𝑢𝑣+

𝑇

𝑖=0

 (2.14) 

 

We use the OLS estimators as the start values of the discrete version of the CIR model (2.9) 

for the optimization problem defined in (2.14). To estimate the parameter vector 𝜉, using (2.14), 

one can use the time series data of three months, six months, one year or two years maturity 

yields. Obviously, taking different yield data implies different parameter estimates. We choose to 

                                                   
17

 Note that, as the logarithmic function is a monotonically increasing function, maximization of the likelihood 

function also maximizes the log-likelihood function. That is, the location of the maximum does not change. 
18

 In (2.14) the term 2√𝑢𝑣 appears because [exp(−2√𝑢𝑣)] in the scaled Bessel function should be canceled out 

to keep the log-likelihood function the same. 
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calibrate the model on the two years maturity yields, for two reasons. On the one hand, the CIR 

model is a short rate model, so the time to maturity should not be too large. On the other hand, 

taking a short maturity time, say three or six months, might yield strange estimates because of the 

extremely low interest rates and high volatilities in the initial years of the data from 2000 to the 

end of 2006.
19

 Moreover, the data is on a monthly interval, the time step is set equal to 1/12.  

The results of initial estimates of OLS along with the global optimal estimates, using the 

maximum likelihood method, are depicted in the first panel of table 2.1. Given the initial 

estimates, the maximum likelihood estimates (MLE) in panel 1 of table 2.1 shows that the fitted 

yield curve is upward sloping.  

Figure 2.1 (upper pane) plots the average observed and the estimated yield curve. It is 

clearly visible that the CIR model plots an upward sloping yield curve like the observed one. In 

the perfect case, the two curves would match exactly. However, we observe that estimated yield 

is closer to the actual yield curve up to two years maturity and the discrepancy between the two is 

the increasing function of maturity beyond two years, as the residuals curve is upward sloping. It 

may be largely due to the low interest rates from 2000 to 2006. In order to get deeper insight of 

the behavior of the yield curve during the prolonged period of zero policy rate, we also estimated 

the CIR model for the two sub-periods, i.e., sub-period 1 (January 2000 to December 2006) and 

sub-period 2 (January 2007 to December 2011). In the second panel of table 2.1, we provide the 

initial and MLE estimates for the two subsets of data, i.e., the zero interest rate period (2000 to 

2006) and the non-zero interest rate period (2007 to 2011). Furthermore, the estimated yield  
 

Table 2.1: Results of the MLE Estimation of the CIR Model 

 
            �̂�          �̂�           �̂�    log L 

Panel 1. Full Period Sample Results (2000:01–2011:12) 

Initial (OLS) 

MLE 

0.9287 

1.6149 

0.0030 

0.0031 

0.0809 

0.0775 

 

6702.800 

Panel 2. Results for Two Sub-Periods Samples 

Sub-Period I (2000:01–2006:12) 

Initial (OLS) 

MLE 

0.6185 

1.4591 

0.0035 

0.0030 

0.0760 

0.0738 

 

3881.000  

Sub-Period II (2007:01–2011:12) 

Initial (OLS) 

MLE 

1.6540 

2.1960 

0.0033 

0.0035 

0.0879 

0.0838 

 

2935.000  

Note: The table presents the initial OLS and MLE estimated results of 𝜉 vector 

using the time series data of two years maturity. log L denotes the log likelihood 

value of the MLE estimation. Panel 1 consists the results of the full sample period, 

2000:01–2011:12 (144 observations), while panel 2 presents the results for two 

sub-periods, i.e., sub-period 1 (2000:01–2006:12) and sub-period 2 (2007:01–

2011:12). The number of observations for the first sub-period and second 

sub-period is 84 and 60 respectively. 

                                                   
19

 We also tried the 3 months, 6 months, one year and 18 months short rates and the results are almost same with the 

24 months short rates results. However, the 24 months yield data fits the estimated yield curve a slightly better 

than the 3, 6, 12, and 18 months at short maturity. Estimated results are reported in appendix B. 
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Figure 2.1: Fitted Yield Curve with the CIR Model 

Actual average (data-based) and fitted (model-based) yield curve along the residuals for the entire sample (2000:01–

2011:12) and two sub-periods, i.e., sub-period 1 (2000:01–2006:12) and sub-period 2 (2007:01–2011:12) are plotted. 

The fitted yield curves are obtained by evaluating the CIR function at the MLE estimated �̂�, �̂� and �̂� from the table 

2.1. 
 

curves for both sub-periods are depicted in the lower two panes of figure 2.1. 

The maximum likelihood estimates for the first sub-period show that the fitted yield curve is 

negatively sloped, however for the second sub-period the estimated yield curve has an upward 

slope. Furthermore, the plots of estimated yield curve for both the sub-periods in figure 2.1 also 

support this view. 

2.3.3. Estimation of the Nelson-Siegel Model 

The Nelson-Siegel model in (2.11) forms the basis for our estimation procedure. For estimating 

the parameters of the model, we consider the functional form as: 
 

 𝑅𝑡(𝑚) = Λ(𝜏𝑡)𝛽𝑡  휀𝑡   (2.15) 
 

where 𝑅𝑡(𝑚) denotes the (N×1) vector of yield rates at time 𝑡 for 𝑁 distinct maturities, Λ(𝜏𝑡) 

is (N×3) matrix of loadings and 휀 ~𝑁( , 𝜍
2𝐼𝑁) is the error term, which accounts for whatever is 

not captured in the function 𝑅𝑡(𝑚) about how bonds are priced. The 𝛽𝑡 = (𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡)
′ is the 

vector of unknown parameters. Furthermore, 𝜏𝑡 is also unknown parameter. 

Contrary to the prior studies, we do not fix 𝜏𝑡 to a pre-specified value, but allow it to vary 

over time and can be optimally determined in the estimation process in order to obtain a better 

in-sample fit. As the dynamic Nelson-Siegel function of spot rates results in a non-linear model, 

we employ the non-linear least squares method to estimate the model parameters  𝜓𝑡 =

(𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡, 𝜏𝑡)
′for each month 𝑡. To minimize the sum of squared zero-yield errors, the 
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objective function 𝐹(𝛽𝑡, 𝜏𝑡) is given by: 
 

 𝐹(𝛽𝑡, 𝜏𝑡) = [𝑅𝑡(𝑚) − Λ(𝜏𝑡)𝛽𝑡]
2 (2.16) 

 

We derive the analytical gradient  𝐹(𝛽𝑡, 𝜏𝑡) for the objective function in (2.16) and solve 

numerically for the optimal �̂�𝑡.
20

 The analytical gradient of 𝐹(𝛽𝑡, 𝜏𝑡)  is reported in appendix C. 

Moreover, following Nelson and Siegel (1987), we set 𝜏𝑡 to the median value estimated in the 

non-linearized version of Nelson-Siegel model (in previous stage) and estimate it by the ordinary 

least squares (OLS) in order to make a comparison between the linearized and the non-linearized 

versions of the model. 

Applying the non-linear least squares to the yield data for each month gives us a time series 

of estimated parameters vector �̂�𝑡 and the corresponding panel of fitted yields �̂�𝑡(𝑚) and 

residuals 휀�̂� (pricing errors). The first panel of table 2.2 shows the descriptive statistics of the 

estimates of the Nelson-Siegel model of the non-linear least squares method. 

The estimated vector of parameters   �̂�𝑡 is highly statistically significant.
21

From the 

autocorrelations in the table 2.2 (panel 1) of the four factors, we can see that the  �̂�3𝑡 and �̂�1𝑡 are 

the most persistent, and that the second factor is a bit less persistent than the first. It suggests that 

long rates are slightly more persistent than short rates. Although the lag autocorrelation is 

reasonably high, the Augmented Dickey–Fuller (1979) test for unit root suggests that all the 

estimated factors �̂�1𝑡,�̂�2𝑡,�̂�3𝑡 and �̂�𝑡 are I(0) process and stationary at level.
22

 However, �̂�1𝑡  

solely determines the long run limiting behavior of the Nelson-Siegel model. The results also 

indicate that the residuals autocorrelation is low, justifying the use of non-linear least squares 

method. The average 𝑅2 and residuals indicate that the average yield curve is fitted very well. 

Furthermore, the time series plot of the �̂�𝑡 in figure 2.2 shows that the optimal point 

of 𝛽3𝑡 loading ranges from 1.6 to 10 years. It indicates that there is a large degree of variability in 

the �̂�𝑡 over the period selected. Testing the sample with the median value of �̂�𝑡 leads to a small 

loss of accuracy of the fitted curve but there is a large variation in the �̂�1𝑡, �̂�2𝑡 and �̂�3𝑡.
23

 The 

descriptive statistic results of estimated �̂�1𝑡, �̂�2𝑡 and �̂�3𝑡 for the fixed value of 𝜏 (median value 

of  𝜏 = 38. 68), estimated by OLS, are presented in the second panel of table 2.2. 

The degree of loss of fit ranges from 1.4% to 5.7%. Comparing the results in panel 1 and 2 

of table 2.2, there is significant difference in the estimated factors of Nelson-Siegel model for the 

                                                   
20

 The optimization problem stated in (2.16) is non-convex and may have multiple local optima, which increases the 

dependence of the numeric solution on the starting values. Arbitrarily choosing the start parameters possibly may 

not reach to a global optimum. This phenomena is avoided by applying the one-dimensional grid search to the 

system to estimate 𝜏𝑡 (denoted as �̃�𝑡) and substituted in the (2.11) to linearize the dynamic model. Subsequently, 

OLS is employed to estimate the parameter vector 𝛽𝑡 (denoted as 𝛽𝑡). The grid search �̃�𝑡 and the OLS estimated 

𝛽1𝑡  , 𝛽2𝑡 and 𝛽3𝑡 are used as the initial values to find the numeric solution of optimization problem defined in 

(2.16). 
21

 The p-value of individual t-statistic (not reported) is less than 0.03 in almost every period for of all the four 

factors. 
22

 Based on the SIC criteria, optimal lag 3 has been selected for all the four variables in employing the augmented 

Dickey–Fuller unit-root test. The MacKinnon critical values for rejection of hypothesis of a unit root are -4.023at 

the one percent level, -3.441 at the five percent level and -3.145 at the ten percent level. 
23

 The median value of �̂�𝑡 is 38.068. 
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two estimation processes. The linearized version of model either under-estimate or over-estimate 

the actual yield curve, whereas the non-linear estimation application leads to a reasonable fit of 

the yield curve. It suggests that standardizing the parameter 𝜏𝑡 to a prespecified value, not only 

reduces the degree of fit but also leads to a significant biased in the estimated parameters �̂�1𝑡, 

�̂�2𝑡 and �̂�3𝑡. 
 

Table 2.2: Descriptive Statistics of the Nelson-Siegel Estimated Factors 

            �̂�1𝑡           �̂�2𝑡            �̂�3𝑡           �̂�𝑡            휀�̂�      R
2 

Panel 1. Non-Linearized Version of the Model (Time-varying 𝜏𝑡) 

Mean 

Std. Dev. 

Maximum 

Minimum 

Skewness 

Kurtosis 

�̂� (1) 

�̂� (12) 

�̂� (24) 

ADF Stat. 

2.940 

0.417 

3.805 

1.219 

-1.566 

6.690 

0.802 

0.055 

-0.118 

-4.255 

-2.759 

0.391 

-1.374 

-3.671 

0.891 

4.943 

0.784 

-0.027 

-0.355 

-4.147 

-2.426 

1.925 

5.201 

-4.676 

1.420 

5.156 

0.840 

0.112 

-0.208 

-3.163 

46.876 

6.156 

119.999 

19.348 

1.530 

4.996 

0.688 

0.127 

-0.128 

-5.129 

0.000 

0.000 

0.000 

0.000 

0.068 

2.796 

0.015 

-0.067 

-0.066 

-11.789 

0.996 

0.002 

0.999 

0.987 

-1.355 

6.116 

0.497 

-0.070 

-0.040 

- 

Panel 2. Linearized Version of the Model (𝝉 = 𝟑𝟖. 𝟎𝟔𝟖) 

Mean 

Std. Dev. 

Maximum 

Minimum 

Skewness 

Kurtosis 

�̂� (1) 

�̂� (12) 

�̂� (24) 

ADF Stat. 

2.055 

0.118 

3.094 

1.124 

0.614 

2.133 

0.866 

0.275 

-0.168 

-3.355 

-2.989 

0.177 

-1.266 

-3.275 

0.388 

1.789 

0.857 

0.399 

-0.091 

-3.324 

-2.831 

0.775 

3.036 

-3.395 

-0.722 

2.544 

0.860 

0.439 

0.053 

-3.297 

   - 

   - 

   - 

   - 

   - 

   - 

   - 

   - 

   - 

   - 

0.000 

0.015 

0.071 

-0.083 

0.205 

2.371 

0.215 

-0.178 

--0.125 

-7.756 

0.956 

0.012 

0.988 

0.931 

-0.893 

3.940 

0.436 

0.014 

-0.134 

- 

Note: The table presents descriptive statistics for Nelson-Siegel estimated factors, R
2
 and 휀̂ averaged 

over the different maturity times using monthly yield data 2000:01–2011:12. Panel 1 presents the features 

of the results obtained from non-linearized version of the Nelson-Siegel model by applying non-linear 

least squares method, while panel 2 shows the features of the results estimated by ordinary least squares 

(OLS) methods for pre-specified value (median value obtained from non-linear estimation) of the shape 

parameter (�̂� = 38. 68). �̂� (𝑖) denotes the sample autocorrelations at displacements of 1, 12, and 24 

months. The last row contains augmented Dickey–Fuller (ADF) unit root test statistics. The number of 

observations is 144. 
 

Furthermore, to empirically test whether the factors 𝛽1𝑡, 𝛽2𝑡 and 𝛽3𝑡 are legitimately called 

a level, slope and curvature factors respectively, as suggested in Diebold and Li (2006), we 

construct a level, slope and curvature from the observed zero-coupon yields data and compare 

them with �̂�1𝑡, �̂�2𝑡 and �̂�3𝑡 (estimated with time-varying 𝜏𝑡) respectively. The level of the yield 

curve (𝐿𝑡) is defined as the 25-year yield. We compute the slope ( 𝑡) as the difference 

between the 25-year and three-month yield and the curvature (𝐶𝑡) is worked out as two times 

the two-year yield minus the sum of the 25-year and three month zero-coupon yields. The 
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pairwise correlation of empirically defined factors and estimated (model based) factors is 

𝜌(𝐿𝑡, �̂�1𝑡) =  .694, 𝜌( 𝑡, �̂�2𝑡) = − .741  and  𝜌(𝐶𝑡, �̂�3𝑡) =  .66 . Pairwise correlations 

between the estimated factors and the empirically defined level, slope and curvature is almost 

smaller by 0.28 points than the results of earlier empirical studies, particularly for the US and 

Canadian markets.
24

 Furthermore, to be precise, the estimated correlation and the time series plot 

in figure 2.2 show that �̂�1𝑡, �̂�2𝑡 and �̂�3𝑡 may truly be called level, slope and curvature factors 

respectively, as the estimated factors and their empirical proxies seem to follow the same pattern. 
 

 
Figure 2.2: Time Series Plot of Nelson-Siegel Estimated Factors and Empirical Level, Slope and Curvature  

Model-based level, slope and curvature (i.e., estimated factors vector �̂�𝑡) for time-varying 𝜏𝑡  vs. data-based level, 

slope and curvature are plotted, where level is defined as the 25-year yield, slope as the difference between the 

25-year and 3-month yields and curvature as two times the 2-year yield minus the sum of the 25-years and 3- month 

zero-coupon yields. Rescaling of estimated factors is based on Diebold and Li (2006). 
 

Using the estimates of Nelson-Siegel model for both time-varying and fixed 𝜏, in figure 2.3, 

we plot the implied average fitted yield curves, the actual yield curve and the residuals. It seems 

that the curve fits pretty well and the two vary quite closely for time-varying 𝜏. It does, however, 

have difficulties at some dates, especially when yields are dispersed, with multiple interior 

minima and maxima. For the fixed 𝜏 the discrepancy between the actual and estimated average 

yield curve is clearly visible. It under-estimates the actual yield up to 30 months maturity and 

over-estimates beyond 30 months. Similarly, the average residuals plot in the right panel of figure 

2.3 also supports this argument. 

                                                   
24

 Diebold and Li (2006) perform a similar exercise based on zero-coupon yields generated using end-of-month price 

quotes for U.S. treasuries, from 1985:01 through 2000:12. Their estimated correlations are 𝜌(𝐿𝑡 , �̂�1𝑡) =  .97,

𝜌( 𝑡 , �̂�2𝑡) = − .99 and 𝜌(𝐶𝑡 , �̂�3𝑡) =  .99. Similarly, Elen van (2010) used the monthly Canadian zero-coupon 

yields from 1986:01 to 2009:012 and has reported the correlations as 𝜌(𝐿𝑡 , �̂�1𝑡) =  .943, 𝜌( 𝑡 , �̂�2𝑡) = − .929 

and 𝜌(𝐶𝑡 , �̂�3𝑡) =  .784. 
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Figure 2.3: Average Fitted Yield Curve and Residuals of the Nelson–Siegel Model 

Actual (data-based) and estimated (model-based) average yield curves and average residuals for both time-varying 

�̂�𝑡 and fixed �̂� = 38. 68 are plotted. The fitted yield curves are obtained by taking average of the estimated yield 

of the Nelson-Siegel model over 144 months. Similarly, the residuals are also averaged over 144 months for the 

various maturities.  

 

Table 2.3: Descriptive Statistic of the Nelson-Siegel Yield Curve Residuals for Time-varying 𝝉 

Maturity    Mean  S. Dev.    MAE  RMSE Skewness Kurtosis �̂� (1)       �̂� (12)   �̂� (24) 

3 

6 

9 

12 

15 

18 

21 

24 

30 

36 

48 

60 

72 

84 

96 

108 

120 

180 

240 

300 

-0.004 

-0.011 

-0.009 

0.002 

0.008 

0.010 

0.011 

0.008 

0.007 

0.001 

0.008 

-0.008 

-0.014 

-0.006 

0.004 

0.008 

0.016 

-0.003 

-0.005 

0.005 

0.023 

0.019 

0.017 

0.018 

0.018 

0.018 

0.018 

0.018 

0.019 

0.022 

0.020 

0.020 

0.018 

0.021 

0.024 

0.019 

0.016 

0.021 

0.017 

0.025 

0.022 

0.020 

0.017 

0.015 

0.017 

0.019 

0.019 

0.017 

0.018 

0.020 

0.018 

0.019 

0.020 

0.020 

0.023 

0.018 

0.021 

0.019 

0.016 

0.024 

0.023 

0.022 

0.020 

0.018 

0.019 

0.021 

0.021 

0.020 

0.020 

0.022 

0.020 

0.021 

0.022 

0.022 

0.024 

0.020 

0.023 

0.021 

0.018 

0.025 

0.278 

0.874 

0.769 

-0.174 

-0.569 

-0.753 

-0.799 

-0.551 

-0.395 

-0.034 

-0.096 

0.568 

1.088 

0.462 

-0.255 

-0.492 

-1.437 

0.272 

0.353 

-0.385 

1.370 

2.381 

2.508 

1.833 

1.983 

2.243 

2.298 

2.044 

1.786 

1.379 

1.463 

1.826 

2.841 

1.643 

1.283 

1.814 

3.975 

1.543 

1.844 

1.265 

0.740 

0.579 

0.671 

0.587 

0.610 

0.572 

0.650 

0.623 

0.694 

0.806 

0.775 

0.743 

0.756 

0.855 

0.891 

0.758 

0.425 

0.869 

0.795 

0.856 

0.229 

0.038 

-0.036 

0.300 

0.332 

0.211 

0.079 

0.119 

0.227 

0.373 

0.300 

0.308 

0.156 

0.152 

0.420 

0.519 

0.188 

0.435 

0.334 

0.403 

0.034 

0.061 

-0.119 

0.111 

0.155 

0.122 

0.200 

0.167 

-0.090 

-0.096 

0.017 

0.111 

-0.072 

0.077 

0.072 

0.161 

0.022 

0.174 

-0.004 

0.029 

Note: The table presents summary statistics of the residuals 휀̂ for different maturity times of the Nelson–Siegel model 

using monthly yield data 2000:01–2011:12 for time-varying 𝜏. MAE is mean absolute errors, RMSE is the root mean 

squared errors and �̂� (𝑖) denotes the sample autocorrelations at displacements of 1,12, and 24 months. The number of 

observations is 144. 
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Furthermore, table 2.3 and figure 2.4 present the descriptive statistics and the three 

dimensional plot of the residuals of Nelson-Siegel model estimation by non-linear least squares 

(for the time-varying 𝜏𝑡) respectively. It turns out that the fit is more appealing in most cases. 

Some months, however, especially those with multiple maxima and/or minima are not fitted very 

well. Multiple maxima and/or minima occur in the term structure of months in the mid-2005 and 

onward, which becomes apparent by the large residuals in these months. 

 

Figure 2.4: Nelson–Siegel Model based Yield Curves Residuals, 2000:01–2011:12 for Time-varying 𝝉. 

The sample consists of monthly residuals, obtained from the non-linear least squares estimation of the Nelson-Siegel 

model using the data 2000:01–2011:12 (144 months), at fixed quarterly maturities of 3, 6, 9, 12, 15, 18,…300 months. 
 

In summary, there is a significant lack of information on the short-term CIR model to fit the 

term structure of interest rate. It is not capable to fit the yield curve as the discrepancy between 

the two curves is significantly large. Contrarily, the Nelson-Siegel model provides an evolution 

of the term structure closer to reality. It distills the term structure of interest rate quite well and 

can describe the evolution and the trends of the market. Fixing the 𝜏 to the median value leads to 

fit the yield curve better than the CIR model but not than the time-varying 𝜏 estimation process 

(non-linear least squares) of the Nelson-Siegel model. 

2.4. Term Structure Forecasting  

A good approximation to yield-curve dynamics should not only fit well in-sample, but also 

produces satisfactorily out-of-sample forecasts. In this section, we simulate the interest rates to 

find out whether the simulated yields for various maturities based on the CIR and Nelson-Siegel 

models can replicate the stylized facts of the actual observed yields data. The stylized facts 

derived from the actual yields data for Japanese bonds are:  

1. The average yield curve is upward sloping and concave.  

2. Short rates are more volatile than long rates. 

3. Long rates are less persistent than short rates. 

4. Skewness has the downward trend with the maturity. 

5. Kurtosis of the short rates are lower than those of the long rates. 
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2.4.1. Forecasting with the Cox-Ingersoll-Ross Model 

Using the parameters in panel 1 of table 2.1, we simulate the short rates using the discrete version 

of CIR model as in (2.9) for 10,000 times. The starting point of the short rates simulation process 

is the two-year yield at December 2011, being 0.071. Using the simulated short rates, the entire 

term structure of yield is computed by using equation (2.8), that is, we compute 10,000 matrices 

of (144×100), containing yields for all maturity times and for all months. 

Table 2.4 displays descriptive statistics that are of interest (e.g., mean, variance and 

autocorrelations) of the simulated yields for various maturities. This table may be compared with 

the statistical properties of actual yields in table 1.2 (section 1.4). 

Summary statistics in table 2.4 indicate that the CIR model is not capable of replicating the 

interest rates' general trends. The CIR model generates the same skewness coefficients, the same 

kurtosis and the same autocorrelations for all maturity times. The short rates seem more volatile 

than the long rates, although the volatility is underestimated for all maturity times compared to 

the actual yields data. Moreover, the mean has a downward trend with increasing maturity. Figure 

2.5 shows a plot of the downward shaped average yield curve (averaged over simulation times), 

implying that the simulated yield curve is not in line with the first stylized fact. The figure also 

shows that the CIR model is capable to produce term structure's other shapes. 

 

Table 2.4: Descriptive Statistics of the Simulated Yields Using the CIR Model 

Maturity    Mean  S. Dev.    Max   Min Skewness Kurtosis       �̂� (1)       �̂� (12)       �̂� (24) 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

0.314 

0.314 

0.313 

0.312 

0.312 

0.311 

0.311 

0.310 

0.310 

0.310 

0.310 

0.204 

0.170 

0.123 

0.093 

0.074 

0.051 

0.031 

0.015 

0.010 

0.008 

0.006 

1.835 

1.582 

1.229 

1.007 

0.861 

0.689 

0.539 

0.425 

0.386 

0.367 

0.356 

0.016 

0.037 

0.059 

0.120 

0.160 

0.206 

0.247 

0.279 

0.289 

0.294 

0.297 

1.455 

1.455 

1.455 

1.455 

1.455 

1.455 

1.455 

1.455 

1.455 

1.455 

1.455 

6.221 

6.221 

6.221 

6.221 

6.221 

6.221 

6.221 

6.221 

6.221 

6.221 

6.221 

-0.008 

-0.008 

-0.008 

-0.008 

-0.008 

-0.008 

-0.008 

-0.008 

-0.008 

-0.008 

-0.008 

-0.005 

-0.005 

-0.005 

-0.005 

-0.005 

-0.005 

-0.005 

-0.005 

-0.005 

-0.005 

-0.005 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

0.017 

Note: The table shows descriptive statistics for simulated yields at different maturities for the CIR model. The entire 

term structure of yield is computed by the CIR yield curve model using the simulated short rates. The simulation 

exercise is done 10,000 times for 144 months. The last three columns contain the first, 12
th

 and 24
th

 order sample 

autocorrelation coefficients. The number of observations is 10,000. 

 

One may conclude that the CIR model performs unsatisfactorily and seems not useful in the 

simulation based context. As opposed to the CIR model, the Nelson-Siegel model does not fall 

within the standard class of affine term structure models. Therefore, yields forecasts and their 

stylized facts simulated with the Nelson-Siegel model will likely be significantly different from 

the yields produced by the CIR model. 
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Figure 2.5:Average and All Simulated Yield Curves with the CIR Model 

The entire term structure of yield is computed by the CIR yield curve model using the simulated short rates. The 

simulation exercise is done 10,000 times for 144 months. The 10000 simulated yield curves along with average 

simulated yield curve are plotted at fixed quarterly maturities of 3, 6, 9, 12, 15, 18, 21, 24 …300 months (100 

maturities). 

2.4.2. Forecasting with the Nelson-Siegel Model 

Since the four parameters of the Nelson-Siegel model give a full description of the term structure 

of interest rate, one can model them and can use various methodologies to make out-of-sample 

forecast of the yield curve.
25

 Here, the four time-varying estimated Nelson–Siegel factors are 

modeled as univariate AR(1) processes to simulate the term structure of interest rate.
26

 The yield 

forecasts based on underlying univariate AR(1) factor specifications are: 
 

 �̂�𝑡(𝑚) = Λ(�̂�𝑡)�̂�𝑡  (2.17) 

 �̂�𝑡 = 𝐴0  𝐴1�̂�𝑡−1  휀𝑡 (2.18) 
 

where 𝐴0 is (4×1) vector of constants, 𝐴1 is (4×4) diagonal matrix, �̂�𝑡 = (�̂�1𝑡, �̂�2𝑡, �̂�3𝑡, �̂�𝑡)
′ 

and 휀𝑡 ∽ 𝑁( ,  ) is (4×1) error vector. For comparison, we also include the VAR(1) forecasts of 

yield because the pairwise correlation between estimated factors is reasonably high. This might 

produce out-of-sample forecasts with greater accuracy. The multivariate VAR(1) model 

specification is the same as in (2.18), but we modify 𝐴1 to be (4×4) full matrix rather than a 

diagonal matrix. 

                                                   
25

 It is concluded in the previous section that the non-linear estimation (with time-varying 𝜏) leads to a better fit of 

the yield curve; therefore, non-linear least squares estimated parameters are modeled to carry out the simulation 

exercise. 
26

 Following Diebold and Li (2006), we also computed out-of-sample forecasts for one month, 6 months and 1 year. 

The summary results are given in appendix D for reference. 
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Estimation of AR(1) and VAR(1) models specified in (2.18) is straight forward. We estimate 

the parameters vector 𝐴0 and matrix 𝐴1 of both AR(1) and VAR(1) using the time series of  

�̂�𝑡 that we obtained from the non-linear least squares regression on (2.15) by employing the 

maximum likelihood method, assuming the normal density for 휀𝑡. We use a forecasting period of 

ten years with a time step of one month. That is, we simulate 120 months, starting with the 

January 2012 until December 2021. Using the AR(1) and VAR (1) estimated parameters, we 

simulate the time series of size 120 months for 10,000 times.  

Table 2.5 displays summary statistics of the four simulated factors for both AR(1) and VAR 

(1) specifications, averaged over number of simulations. This table may be compared with the 

actual estimated factors from table 2.2 (panel 1). 

Comparing the simulated Nelson-Siegel factors of AR(1) and VAR(1) models with the 

estimated factors in panel 1 of table 2.2, the results show that in terms of most descriptive 

statistical properties, particularly the mean, skewness and kurtosis, the VAR(1) simulated factors 

and estimated factors are close alternatives. However, relatively the estimated factors are less 

persistent than the simulated factors. In terms of lag autocorrelation, the estimated factors are 

almost similar to the AR(1) results but regarding the mean and other descriptive features the 

AR(1) overestimates �̂�2 and �̂�3 and accurately estimates the �̂�1 and �̂�.  
 

Table 2.5: Descriptive Statistics of the Simulated Nelson-Siegel Factors 

 

AR(1)  VAR(1) 

         �̂�1𝑡       �̂�2𝑡       �̂�3𝑡      �̂�𝑡        �̂�1𝑡      �̂�2𝑡      �̂�3𝑡     �̂�𝑡 

Mean 

Std. Dev. 

Maximum 

Minimum 

Skewness 

Kurtosis 

�̂� (1) 

�̂� (12) 

�̂� (24) 

2.959 

0.004 

2.966 

2.948 

-0.494 

3.227 

0.786 

0.881 

0.796 

-2.799 

0.004 

-2.787 

-2.807 

0.592 

3.024 

0.359 

0.453 

0.481 

-2.932 

0.016 

-2.892 

-2.967 

-0.101 

2.290 

0.115 

0.123 

0.140 

3.552 

0.018 

3.596 

3.504 

-0.159 

2.929 

-0.129 

-0.125 

-0.070 

 2.939 

0.005 

2.953 

2.928 

0.343 

2.941 

0.830 

0.866 

0.622 

-2.753 

0.005 

-2.742 

-2.764 

-0.178 

2.368 

0.395 

0.582 

0.333 

-2.621 

0.019 

-2.583 

-2.662 

-0.025 

2.254 

0.118 

0.212 

0.016 

3.792 

0.015 

3.824 

3.760 

-0.015 

2.432 

0.013 

-0.292 

-0.147 

Note: The table presents descriptive statistics of the simulated Nelson-Siegel factors averaged over number of 

simulations for both AR(1) and VAR(1) specifications. The four factors of the Nelson-Siegel specification are 

modeled as first order AR and VAR to forecast the yield curve for 120 months, 2012:01–2021:12, for 10,000 times. 

The last three rows contain their first, 12
th

 and 24
th

 order sample autocorrelation coefficients. The computation of 

descriptive statistics is based on 120 observations. 
 

Averaged over the number of simulations and the different months, both the simulated yield 

curves are upward sloping (figure 2.6). Comparing the simulated yield curves with the actual in 

figure 2.6, one notices the curves to be much alike. This may be attributed to the fact that the 

standard Nelson-Siegel is not only capable to generate a better in-sample fit but also performs 

satisfactorily in out-of-sample forecasts. At lower maturities, the VAR(1) simulated average yield 

curve is a bit nearer to the actual yield curve but at longer maturities both the VAR(1) and AR(1) 

are identical. Overall the results show that VAR(1) can replicate the properties of the estimated 
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yield features better than the AR(1) specification. 
 

 

Figure 2.6: Simulated Average Yield Curves with the Nelson-Siegel Model 

The four factors of the Nelson-Siegel specification are modeled as first order AR and VAR to forecast the yield 

curve for 120 months, 2012:01–2021:12, for 10,000 times. The average simulated yield curves for both AR(1) 

and VAR(1) specifications are obtained by averaging the simulated yields over different months as well as 

number of simulations. Actual (data-based) average yield curve is also plotted for comparison. All three yield 

curve are plotted at fixed quarterly maturities of 3, 6, 9, 12, 15, 18, 21, 24 …300 months (100 maturities). 
 

To check for the other stylized facts, we compute yields for all maturities, by substituting the 

simulated vector �̂�𝑡 (at each simulation) in (2.17), for all 120 different months. Accordingly, we 

compute 10,000 matrices – one for each scenario (simulation) – of dimensions (120×100), 

containing the yields on every month for all maturity times. Then, we compute the statistical 

properties that are of interest (e.g., variances and autocorrelations) of the simulated yields for all 

maturities. Table 2.6 shows the descriptive statistics of the simulated yields for maturities of 3, 6, 

12, 18, 24, 36, 60, 120, 180, 240, and 300 months for AR(1) and VAR(1) specifications, that can 

be compared to the actual yield statistical properties in table 1.2 (section 1.4).  

Here, it can be seen that the simulated short rates of both AR(1) and VAR(1) indeed are 

more volatile than the long rates. It also seems that in simulation the skewness catches the 

downward trend with maturity in both cases. Moreover, kurtosis of the simulated short rates are 

lower than those of the simulated long rates, as can also be found in the observed nominal yields.  

The numeric values of the average yield of actual yield data for various maturities resembles 

with the VAR (1) simulated yields. The volatilities of both AR(1) and VAR(1) are much smaller 

than the actual yield. The actual volatilities vary within the range of 0.207 and 0.348, whereas the 

simulated yields unconditional volatility of VAR(1) model vary between 0.002 and 0.004 and 

between 0.002 and 0.003 for AR(1) specification. Numeric values for the skewness coefficients 

and kurtosis, however, deviate from the observed yields. The Japanese data shows skewness 

coefficients between -1.934 and 1.360, the simulation shows values somewhere between -0.201 

and -0.045 for AR(1) and between -0.500 and -0.086 for the VAR(1) model. Furthermore, the 
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kurtosis ranging from approximately 2.079 and 8.291, while the simulation produces kurtosis 

ranging from roughly 1.970 up to 3.984 for both AR(1) and VAR (1) specifications. One may 

also deduce from table 2.6 that the simulated yield short rates are more persistent than the long 

rates as we observe in the nominal data.  

 

Table 2.6: Descriptive Statistics of Simulated Yields Using the Nelson-Siegel Model 

Maturity     Mean    S. Dev.     Max     Min Skewness Kurtosis      �̂� (1)    �̂� (12)    �̂� (24) 

Simulated Yields Descriptive Statistics for AR (1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

0.192 

0.202 

0.229 

0.265 

0.310 

0.414 

0.655 

1.235 

1.657 

1.939 

2.129 

0.003 

0.003 

0.003 

0.003 

0.003 

0.003 

0.003 

0.003 

0.002 

0.002 

0.002 

0.196 

0.205 

0.233 

0.269 

0.314 

0.418 

0.660 

1.241 

1.665 

1.949 

2.140 

0.189 

0.199 

0.225 

0.260 

0.304 

0.408 

0.649 

1.228 

1.648 

1.930 

2.119 

-0.045 

0.012 

-0.105 

-0.232 

-0.290 

-0.307 

-0.198 

-0.183 

-0.339 

-0.291 

-0.204 

1.979 

2.042 

2.338 

2.441 

2.427 

2.361 

2.353 

2.843 

3.059 

3.029 

3.986 

0.866 

0.851 

0.837 

0.837 

0.840 

0.833 

0.745 

0.448 

0.558 

0.652 

0.708 

-0.195 

-0.254 

-0.235 

-0.159 

-0.100 

-0.037 

-0.020 

-0.033 

0.048 

0.089 

0.107 

-0.175 

-0.130 

-0.116 

-0.147 

-0.178 

-0.211 

-0.187 

0.037 

0.017 

-0.006 

-0.013 

Simulated Yields Descriptive Statistics for VAR(1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

0.158 

0.160 

0.176 

0.206 

0.246 

0.349 

0.601 

1.221 

1.664 

1.955 

2.148 

0.004 

0.004 

0.003 

0.002 

0.002 

0.002 

0.002 

0.002 

0.002 

0.002 

0.002 

0.161 

0.164 

0.181 

0.211 

0.252 

0.354 

0.606 

1.227 

1.671 

1.962 

2.155 

0.154 

0.156 

0.171 

0.199 

0.239 

0.342 

0.595 

1.215 

1.658 

1.947 

2.140 

-0.086 

-0.407 

-0.557 

-0.502 

-0.425 

-0.292 

-0.115 

0.017 

0.025 

-0.095 

-0.252 

2.214 

2.475 

2.659 

2.567 

2.429 

2.182 

2.027 

2.349 

2.312 

2.430 

2.628 

0.865 

0.875 

0.891 

0.900 

0.905 

0.903 

0.849 

0.632 

0.629 

0.657 

0.684 

-0.041 

0.008 

0.075 

0.108 

0.125 

0.137 

0.121 

0.019 

0.001 

0.001 

0.010 

-0.175 

-0.199 

-0.188 

-0.160 

-0.134 

-0.091 

-0.017 

-0.038 

-0.131 

-0.180 

-0.202 

Note: The table shows descriptive statistics for monthly simulated yields at different maturities for both AR(1) and 

VAR(1) specifications of the four factors vector �̂�𝑡of the Nelson-Siegel Model. The four simulated factors are 

substituted in (2.17) to compute the simulated yields for various maturities for 120 months, 2012:01–2021:12, for 

10,000 times. The last three columns contain the first, 12
th

 and 24
th

 order sample autocorrelation coefficients. The 

computation of descriptive statistics is based on 120 observations. 
 

In summary, we conclude that the CIR model cannot replicate the interest rates' general 

trends and should be considered weak to describe the term structure in the simulation based 

context. On the other hand, the out-of-sample forecast results of the Nelson-Siegel seem 

reasonably well. In a simulation based context, the Nelson-Siegel model is capable to replicate 

most of the stylized facts of the Japanese market yield curve and the VAR(1) based specification 

of factors is able to replicate the properties of the estimated factors as well as actual yield data 

better than the AR (1) model of the factors.  
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2.5. Conclusion 

The term structure of interest rates is the most important factor in the capital markets and 

probably the economy. It is widely used for pricing contingent claims, determining the cost of 

capital and managing financial risk. In this study, we implement the CIR and the Nelson-Siegel 

models and compare the in-sample fit as well as the out-of-sample forecast performance using 

monthly Japanese government bonds zero-coupon data (yield to maturity) from January 2000 

until December 2011.  

For the in-sample fit, the results show that there is a significant lack of information on the 

short-term CIR model. The CIR model plots upward sloping yield curve, however, the 

discrepancy between the actual and the estimated is an increasing function of maturity beyond 

two years maturity. Contrary to CIR model, the Nelson-Siegel model provides an evolution of the 

term structure closer to reality. The Nelson-Siegel model is capable to distill the term structure of 

interest rate quite well and describe the evolution and the trends of the market. Furthermore, 

fixing the shape parameter 𝜏 to the median value leads to a better yield curve fit than the CIR 

model but not as striking as the time-varying 𝜏 estimation process (non-linear least squares) 

does. 

Regarding the term structure forecast, we conclude that the CIR model cannot accomplish to 

replicate the interest rates' general trends. The CIR model generates the same skewness, kurtosis 

and autocorrelations for all maturity times. The volatility is underestimated for all maturity times 

and more importantly, it produces a downward slope average yield curve, implying that CIR 

model should be considered too poor to describe the term structure evolution in the simulation 

based context. On the other hand, the out-of-sample forecast results of the Nelson-Siegel model 

seem reasonably well. The Nelson-Siegel model is capable to replicate most of the stylized facts 

of the Japanese market yield curve. Between the AR(1) and VAR(1) specification of factors, the 

descriptive features of the actual yield data and estimated factors are more closely in line with the 

VAR(1) simulated yields features.  

Summarizing, it turns out that the model proposed by Nelson and Siegel (1987) is 

compatible to fit attractively the yield curve (in-sample fit) and accurately forecast the future 

yields for various maturities. These successes account for the continued popularity of statistical 

class of models and its use by central banks around the world. Furthermore, the Nelson-Siegel 

model (non-linear version) could be a good candidate to study the evolution of the yield curve in 

Japanese market.  
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Chapter 3 

Term Structure Forecasting of Government 

Bond Yields with Latent and 

Macroeconomic Factors 

Do Macroeconomic Factors Imply Better Out-of-Sample Forecasts? 

3.1. Introduction 

The trade-off between the in-sample fit of yield curve, that is obtained by employing statistical 

models without a reference to economic theory, and the lack of fit by economic models that do 

provide a basis for the underlying economic theory is one of the key features of the term structure 

of interest rate literature. Therefore, estimation and forecasting time series of the cross-section of 

yields have proven to be a challenging task. 

The initial work on the fitting of yield curve has a strong theoretical foundation. It relies on 

the optimization behaviour of economic agent, using the dynamic stochastic general equilibrium 

(DSGE) framework. A model that forms the basis for this class of term structure models is the 

Vasicek (1977) model. The innovative feature of the Vasicek (1977) is that it models the interest 

rate as a mean reversion process. Other early contributions to the literature of equilibrium pricing 

include Cox et al. (1985), Dunn and Singleton (1986), Campbell (1996 and 1999) and more 

recently, Piazzesi and Schneider (2006). However, based on the underline economic theory, this 

approach delivers unsatisfactory results and suffers from the so called equity premium puzzle, 

lack of yield curve fitting and is incapable to accurately forecast the future interest rate term 

structure (Ullah, 2012). 

Motivation for statistical models comes from the stylized facts that can be inferred from 

empirical analysis. Watching a film that shows the random evolution of the yield curves and 

forward curves over the past several decades reveals that this class of curves can be generated 

either by solution to differential equation or difference equation. Within the class of statistical 

models, more positive results have emerged recently based on the framework of Nelson and Siegel 

(1987). Originally intended to describe the cross sectional aspects of yield curve, Nelson and 

Siegel (1987) impose a parsimonious three-factor structure on the link between yields and different 

maturities. Diebold and Li (2006) find that the dynamic reformulation of this model provides 
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forecasts that outperform the random walk and various alternative forecasting approaches. Whilst 

being statistical in nature it has the advantage that the components carry a clear economic 

interpretation. Various recent publications such as Diebold and Li (2006) and Diebold et al. 

(2006) have strengthened the importance of the Nelson-Siegel model and more importantly, 

Christensen et al. (2011) have derived the Nelson-Siegel framework in a standard affine term 

structure model. 

The yield curve models that have theoretical foundation are developed mainly by 

macroeconomists, which focus on the role of expectations of inflation and future real economic 

activity in the determination of yield. On the other hand, the statistical yield curve models mainly 

focus on the shape and better fit of the yield curve and eschew any explicit role for such 

determinants. Many recent papers have also modeled the yield curve, and they can be categorized 

by the extent and nature of the linkages permitted between yield and macroeconomic variables. In 

this regard, the more related studies include Ang and Piazzesi (2003), Hördahl et al. (2006), Wu 

(2002) and Diebold et al. (2006), who explicitly incorporate macroeconomic determinants into 

multi-factors yield curve models. In these studies two hypotheses of yield and macroeconomic 

factors interaction— yields-to-macro and macro-to-yields links — are testable one. These studies 

focus on the existence of either unidirectional or bidirectional causality of yield curve and 

macroeconomy. However, the literature lacks the role of macroeconomic and financial market 

factors in the yield curve forecasting. This study takes a step toward bridging this gap by 

formulating and forecasting the yield curve that integrates macroeconomic and financial market 

factors in the yield curve model. 

We examine the role of macroeconomic and stock market variables in the dynamic 

Nelson-Siegel framework for fitting and forecasting the term structure of interest rate on the 

Japanese government bond market. To assess the role of macroeconomic variables, we use a 

three-factor term structure model based on the classic contribution of Nelson and Siegel (1987), 

interpreted as a model of level, slope, and curvature. We explicitly incorporate three 

macroeconomic variables, i.e., the level of economic activity, exchange rate, and inflation rate 

and one stock market activity indicator (Stock Market Index) in the state-space representation of 

yield curve model to analyze their impacts in the in-sample fit and subsequently the efficiency 

gain in forecasting the yields for various maturities. It will be to get a clue about the role of 

macroeconomic variables in the yield curve dynamics and forecasting. The motivation to analyze 

the importance of macroeconomic and stock market indicators in forecasting the interest rates 

may be to examine the out-of-sample forecasts errors persistency.
27

 The empirical results on the 

Japanese market indicate that inclusion of the two new factors of exchange rate and stock market 

indicator into the Nelson-Siegel model improves the out-of-sample forecast of the yield curve and 

reduces (or eliminates) auto-correlations in the forecast errors.  

                                                   
27

 Although, the studies that focus on the forecast performance of statistical class of models come with encouraging 

results, particularly in terms of lower RMSE than various standard benchmark forecasts, but these errors are highly 

persistent for most maturities and at various horizons (Bliss,1997; de Jong, 2000; Diebold and Li, 2006 and Ullah, 

2012). 
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The remainder of the chapter is organized as follows. In the next section, we present the 

dynamic Nelson-Siegel model with and without macroeconomic factors (we call the former 

yields-macro model and the latter yields-only model) and explain the estimation method. The 

section 3.3 deals with the data structure and compare the in-sample fit results for the two 

competing models. In section 3.4, we present the out-of-sample forecast performance and the 

results of various tests to compare the forecast errors evolution over time and maturities. Finally, 

the section 3.5 presents the conclusion. 

3.2. Term Structure Models and Estimation Method 

At a certain point of time, the yield curve is the paired set of yields of zero-coupon treasury 

securities and maturity. In practice, the central banks issue a limited number of securities with 

different maturities and coupons; therefore, obtaining the yield curve at each moment requires 

estimation, i.e., inferring what the zero-coupon yields would be across the whole maturity 

spectrum. Yield curve estimation requires the assumption of some model for the shape of the 

yield curve, so that the gaps may be filled in by analogy with the yields seen in the observed 

maturities. Once a model is selected, estimates of its coefficients are chosen, so that the weighted 

sum of the squared deviations between the actual prices of treasury securities and their predicted 

prices is minimized. 

At calendar time 𝑡, for a zero-coupon bond with unit face value maturing in 𝑚 periods with 

the current price 𝑃𝑡(𝑚), the continuously compounded yield 𝑅𝑡(𝑚) is 𝑃𝑡(𝑚) = exp[−𝑅𝑡(𝑚)𝑚]. 

The instantaneous forward rate 𝑓𝑡(𝑚), which is the interest rate contracted now and to be paid for 

a future investment, is given by 𝑓𝑡(𝑚) = −[𝑃𝑡
′(𝑚)/𝑃𝑡(𝑚)] or correspondingly the zero-coupon 

yield is  𝑅𝑡(𝑚) = 𝑚
−1  ∫ 𝑓𝑡(𝑢)𝑑𝑢

𝑚

0
, which implies that the zero-coupon yield is an 

equally-weighted average of instantaneous forward rates. 

In the next two subsections, we present yields-only spot rate model and yields-macro model 

(extended model) that incorporates macroeconomic as well as stock market variables in the 

standard yield curve model in state-space framework. 

3.2.1. Yields-Only Factors Model (Yield Curve Model without Macroeconomic Factors) 

The class of curves first proposed by Nelson-Siegel (1987) does well in capturing the overall 

shape of the yield curve and is being popular among practitioners and central banks alike. They 

modeled the forward rates with the three-component exponential approximation to the 

cross-section of yields as a function of maturity 𝑚 at any moment in time 𝑡 as:
28

  
 

 
𝑓𝑡(𝑚𝑖) = 𝛽1𝑡  𝛽2𝑡exp(

−𝑚𝑖
𝜏
)  𝛽3𝑡 *(

𝑚𝑖
𝜏
) exp (

−𝑚𝑖
𝜏
)+ (3.1) 

with the time-varying parameter vector 𝛽𝑡 = (𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡)
′ and time invariant parameter τ. 

                                                   
28

 These types of exponential functions to fit and forecast the observed yield curve become popular as they 

reconcile the following characteristics: (i) sufficiently flexible to reflect the important and typical patterns of the 

observed market data (ii) relatively robust against disturbances from individual observations (iii) applicable with 

only a few observations and (iv) results in more stable yield curves. 



40 

 

The forward rate representation chosen by Nelson-Siegel belongs to a class of Laguerre 

functions. These functions are characterized by a polynomial times a decaying exponential term. 

The use of Laguerre functions is a well-known approximation procedure. The solution for the 

yield as a function of maturity 𝑚 can be found by integrating (3.1), resulting in: 
 

𝑅𝑡(𝑚𝑖) = 𝛽1𝑡  𝛽2𝑡 0
1 − exp(−𝑚𝑖/𝜏)

𝑚𝑖/𝜏
1  𝛽3𝑡 0

1 − exp(−𝑚𝑖/𝜏)

𝑚𝑖/𝜏
− exp (

−𝑚𝑖
𝜏
)1  휀𝑡 (3.2) 

 

for 𝑖 = 1,2, … ,𝑁 and 𝑡 = 1,2, … , 𝑇. 

The Nelson-Siegel specification in (3.2) can generate several shapes of the yield curve 

including upward sloping, downward sloping and (inverse) hump shaped with no more than one 

maxima or minima.  

In Nelson-Siegel framework as in (3.2), 𝛽1𝑡 may be interpreted as the overall level of the 

yield curve, as its loading is constant for all maturities; 𝛽2𝑡 has a maximum loading (equal to 1) 

at the shortest maturity, which then monotonically decays through zero as maturity increases; 𝛽3𝑡 

has a loading that is null at the shortest maturity, increases until an intermediate maturity and then 

falls back to zero in the limit. Hence, 𝛽2𝑡 and 𝛽3𝑡 may be interpreted as the short end and 

medium-term latent components of the yield curve respectively, because shocks in 𝛽2𝑡 

predominantly affect only short end of yield curve and thus induce variations in yield spreads and 

shocks in 𝛽3𝑡 dominantly affect the yield curve's curvature. The parameter 𝜏 is ruling the rate 

of decay of the loading towards the short-term factor and specifies the maturity where the 

medium-term factor has maximum loading. It also identifies the location of the hump or the 

U-shape on the yield curve. Therefore, the range of shapes the curve can take is dependent on 𝜏, it 

can be interpreted as the shape parameter.  

Here, we assume that the three time-varying latent factors 𝛽1𝑡, 𝛽2𝑡  and 𝛽3𝑡  follow a 

vector autoregressive process of first order, which allows us to formulate the yield curve latent 

factors model in state-space form and to use the Kalman filter for obtaining maximum-likelihood 

estimates of the hyper-parameters and the implied estimates of the time-varying latent factors 

vector 𝛽𝑡. 

The state-space form comprises the measurement system, relating a set of observed 

zero-coupon yields of 𝑁 distinct maturities to the three latent factors as: 
 

 

[

𝑅𝑡(𝑚1)

𝑅𝑡(𝑚2)
⋮

𝑅𝑡(𝑚𝑁)

] =

[
 
 
 
 
 
 
 1

1 − 𝑒−𝑚1/𝜏

𝑚1/𝜏

1 − 𝑒−𝑚1/𝜏

𝑚1/𝜏
− 𝑒−𝑚1/𝜏

1
1 − 𝑒−𝑚2/𝜏

𝑚2/𝜏

1 − 𝑒−𝑚2/𝜏

𝑚2/𝜏
− 𝑒−𝑚2/𝜏

⋮
1

⋮
1 − 𝑒−𝑚𝑁/𝜏

𝑚𝑁/𝜏

⋮
1 − 𝑒−𝑚𝑁/𝜏

𝑚𝑁/𝜏
− 𝑒−𝑚𝑁/𝜏

]
 
 
 
 
 
 
 

[

𝛽1𝑡
𝛽2𝑡
𝛽3𝑡

]  [

휀1𝑡
휀2𝑡
⋮
휀𝑁𝑡

] (3.3) 

 

where 𝑡 = 1,2, … , 𝑇, and 휀𝑡  is (N×1) vector of measurement errors, i.e., deviations of the 



41 

 

observed yields in period 𝑡 for each maturity 𝑚 from the implied yields defined by the shape of 

the fitted yield curve.  

If one is interested in fitting the term structure then the measurement equations are sufficient. 

However, in order to construct term structure forecasts we also need a model for the factors 

dynamics. We follow the dynamic framework of Diebold et al. (2006) by specifying first-order 

vector autoregressive processes for the factors. The state-space form of the model comprises the 

state system as: 
 

 

[

𝛽1𝑡 − 𝜇1
𝛽2𝑡 − 𝜇2
𝛽3𝑡 − 𝜇3

] = [

𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

] [

𝛽1,𝑡−1 − 𝜇1
𝛽2,𝑡−1 − 𝜇2
𝛽3,𝑡−1 − 𝜇3

]  [

휂1𝑡
휂2𝑡
휂3𝑡
] (3.4) 

 

where 𝜇1, 𝜇2 and 𝜇3 are the mean values of the three latent factors, and 휂1𝑡, 휂2𝑡 and 휂3𝑡 are 

innovations to the autoregressive processes of the latent factors. In order to simplify the 

mathematical computation and notations, the state-space form of the model can be written as: 
 

 𝑅𝑡(𝑚) = Λ(𝜏)𝛽𝑡  휀𝑡    (3.5) 

 𝜉𝑡 = 𝐴𝜉𝑡−1  휂𝑡 (3.6) 
 

The measurement equation in (3.5) specify the vector of yields, which contains 𝑁 different 

maturities, 𝑅𝑡(𝑚) = [𝑅𝑡(𝑚1)……𝑅𝑡(𝑚𝑁)]
′, as the sum of a Nelson-Siegel spot rate curve Λ(𝜏) 

plus a vector of yield errors which are assumed to be independent across maturities but with 

different variance terms 𝜍2(𝑚𝑖). Furthermore, 𝜉𝑡 = (𝛽1𝑡 − 𝜇1, 𝛽2𝑡 − 𝜇2, 𝛽3𝑡 − 𝜇3)
′ being the 

(3×1) vector of factors, matrix 𝐴 is (3×3) and Λ(𝜏) is the (N×3) matrix of factors loadings 

which are potentially time-varying if the shape parameter 𝜏 is estimated alongside the factors.  

For the Kalman filter to be the optimal linear filter, it is assumed that the innovations of both 

observation and state vectors are orthogonal to initial state: 𝐸(𝜉0휂𝑡
′) =   and 𝐸(𝜉0휀𝑡

′) =  . 

Lastly, we assume that the innovations of the measurement and of the transition systems are 

white noise, mutually uncorrelated and have Gaussian distribution. 
 

 
*
휀𝑡
휂𝑡
+  𝑁 (*

 
 
+ , *
  
  

+) (3.7) 

 

where   is (3×3), the covariance matrix of innovations of the transition system and is assumed 

to be unrestricted, while the covariance matrix   of the innovations to the measurement system 

of (N×N) dimension is assumed to be diagonal. The latter assumption means that the deviations 

of the observed yields from those implied by the fitted yield curve are uncorrelated across 

maturities and time. Given the large number of observed yields used, the diagonality assumption 

of covariance matrix of the measurement errors is necessary for computational tractability. 

Moreover, it is also a quite standard assumption, as for example, iid errors are typically added to 

observed yields in estimating no-arbitrage term structure models. The assumption of an 

unrestricted   matrix, which is potentially non-diagonal, allows the shocks to the three term 
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structure factors to be correlated. 

3.2.2. Yields-Macro Factors Model (Yield Curve Model with Macroeconomic Factors)  

Given the ability of the estimated factors of the Nelson-Siegel model to provide a good 

representation of the yield curve for the Japanese market data (Ullah, 2012), it is of immense 

interest to relate the Nelson-Siegel factors to macroeconomic and equity market variables and 

analyze the dynamic interaction among them and the efficiency gain in forecasting the yields for 

various maturities.  

The link between the level of the yield curve and inflationary expectations, as suggested by 

the Fisher equation, is a common theme in the recent macro-finance literature, including Kozicki 

and Tinsley (2001), Dewachter and Lyrio (2002), Hördahl et al. (2006) and Rudebusch and Wu 

(2003). According to Fisher’s theory, the nominal rate has a one-to-one relationship with the 

expected inflation. Therefore, the term structure could be a predictor for future inflation. An 

increase in the long-term interest rate will be interpreted as a rise in inflation expectations and 

vice versa. The central banks around the world that have an implicit inflation target, can affect the 

short end of yield curve (rising short rates) in order to lower inflation expectations of the market 

and to indirectly influence the long end of the yield curve (Schich, 1999).  

Regarding the economic growth, the yield curve is also widely used for understanding 

investors’ collective sentiments about the future condition of the economy. The relation between 

the term spread (slope of yield curve) and economic activity may be that the term spread reflects 

the stance of monetary policy. If the policy makers raise short-term interest rates, long-term rates 

are usually not increasing one-to-one with them but slightly less. Hence, the spread tightens and 

even might become negative. Higher interest rates slow down overall spending and economic 

growth will stagnate. Therefore, a small or negative slope of the yield curve will be an indication 

for slower growing economy in the future. 

The uncovered interest rate parity relationship forms the basis of the interaction between 

exchange rate and yield curve and to describe the relation between short and long-term interest 

rates. The effect of monetary policy actions on the exchange rate mainly depends on how the 

long-term rate reacts to this change. If the central bank raises interest rate and the long end shifts 

upwards as well, the domestic currency appreciates. In case that the long-term rate moves 

sideways, the higher short-term rate will cause the domestic currency to depreciate (Inci and Lu, 

2004; Clostermann and Schnatz, 2000 and Byeon and Ogaki, 1999). 

Furthermore, if the yield curve can predict the economy, it should be of some use in gauging 

the overall risk/reward potential of the stock market as well. That is because both corporate 

profits and stock prices depend heavily on the strength of the economy. So, if the economy is 

likely to improve, so shall corporate profits and stock prices. However, there is no guarantee that 

stocks will do well during periods when the yield curve has a normal positive slope, but recent 

research does suggest that the risk/reward trade-off for stocks is much better during periods when 

the yield curve is positively sloped. 
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Thus, the term structure includes significant amount of information about the market’s 

expectations of future inflation, exchange rate, economic growth and state of equity market as 

suggested by the recent macro-finance literature mentioned above, it will be interesting to analyze 

its role in the in-sample fit and out-of-sample forecast performance of the yield curve. In line 

with the arguments of the studies that show the dynamic interaction of yield and macroeconomic 

factors, we expect that yield curve level factor has strong correlation with the exchange rate and 

inflation level, while the spread and curvature factors are related to the overall economic activity 

measures and risk premium of stocks. However, Diebold et al. (2006) report negligible responses 

of macroeconomic variables to shocks in the curvature factor, but conversely, Monch (2006) 

argues that flattening of the yield curve is associated with the changes in the curvature factor and 

can be linked to an economic slowdown. 

To assess the role of macroeconomic and financial variables in the yield curve dynamics and 

forecasting, it can be done readily in an expanded version of the state-space framework of 

yields-only model. Regarding the macroeconomic variable, we include three key variables: the 

annual growth rate of industrial production (𝐼𝑃𝑡), real exchange rate (𝐸𝑋𝑡) (¥/$) and annual 

price inflation (𝐼𝑁𝐹𝑡). These variables represent, respectively, the level of real economic activity, 

foreign market competitiveness and the inflation rate, which are widely considered to be the 

minimum set of fundamentals needed to capture basic macroeconomic dynamics. As far as the 

stock market is concerned, the annual growth rate of stock market aggregate index ( 𝐼𝑡) is 

considered in the model as an indicator of the capital market performance. Though, the stock 

market aggregate index is an equity market indicator, in this study we call all the four 

variables  (𝐼𝑃𝑡, 𝐸𝑋𝑡, 𝐼𝑁𝐹𝑡 ,  𝐼𝑡) as macroeconomic variable for the ease of interpretation and 

writing. 

A straightforward extension of the yields-only model adds the four macroeconomic factors 

to the set of state equations, which leads to the following system of equations. 
 

 
[
𝑅𝑡(𝑚)
𝑍𝑡

] = [
Λ(𝜏)  
 𝐼4

] [
𝛽𝑡
�̃�𝑡
]  *

휀𝑡
 
+ (3.8) 

 𝜉𝑡 = 𝐴𝜉𝑡−1  휂𝑡 (3.9) 

 
*
휀𝑡
휂𝑡
+  𝑁 (*

 
 
+ , *
  
  

+) (3.10) 

 

where 𝜉𝑡 = (𝛽1𝑡 − 𝜇1, 𝛽2𝑡 − 𝜇2, 𝛽3𝑡 − 𝜇3, 𝐼�̃�𝑡−𝜇4 , 𝐸�̃�𝑡 − 𝜇5 , 𝐼𝑁�̃�𝑡  − 𝜇6,  �̃�𝑡 − 𝜇7)
′
 is the (7×1) 

vector of yield curve and macroeconomic factors, 𝑍𝑡 = (𝐼𝑃𝑡 , 𝐸𝑋𝑡 , 𝐼𝑁𝐹𝑡  ,  𝐼𝑡)
′ is the (4×1) 

vector of macroeconomic factors, 𝐴 and   are (7×7) matrices, 𝜇 is (7×1) mean vector of 

factors and 𝐼4 is (4×4) identity matrix. The dimension of 𝑅𝑡(𝑚), Λ(𝜏) and   are same as in 

yields-only model. 

This system forms our yields-macro model, to which we will compare our earlier 

yields-only model. Our baseline yields-macro model continues to assume a non-diagonal   

matrix and a diagonal   matrix. It is worth noting that the signal equation of yield curve 



44 

 

[represented by the first equation in (3.8)] implies no change from the previous version of the 

model, recognizing the fact that the yield curve is fully described by the three latent factors (level, 

slope, and curvature) and to ensure that �̂�𝑡(𝑚) is positive semi-definite. The inclusion of 

macroeconomic variables in the signal equation does not guarantee that �̂�𝑡(𝑚) ≥   and may 

imply negative yield at short maturities. 

Furthermore, in (3.7) and in (3.10), we assume that the innovations of both, the 

measurement equation 휀𝑡 as well as the transition system 휂𝑡 , are normally distributed. While real 

data are never exactly multivariate normal, the normal density is often a useful approximation to 

the true population distribution. Additionally, the multivariate normal density is mathematically 

tractable and nice results can be obtained. Moreover, the distribution of many multivariate 

statistics is approximately normal, regardless of the form of the parent population because of the 

central limit theorem. 

3.2.3. Estimation Method 

There are several approaches to estimate the latent factors and parameters in the Nelson-Siegel 

model. These approaches depend on whether the measurement and state equations are estimated 

separately or simultaneously and on the assumptions regarding the shape parameter. 

The most straightforward approach is the two-step procedure as used by Fabozzi et al. 

(2005) and Diebold and Li (2006). In the first step, the measurement equations are treated as a 

cross-sectional model and Least Squares method is used to estimate the parameters for every 

period separately. In the second step, time series models are specified and fitted for the factors. 

The alternative to the two-step approach is to estimate all parameters simultaneously. This 

approach uses the Kalman filter to estimate the factors. 

We consider the dynamic Nelson-Siegel model in (3.5–3.6) and (3.8–3.9) as linear Gaussian 

state-space models. The state vector of unobserved factors 𝜉𝑡 can be estimated conditional on 

the past and current observations 𝑅1, 𝑅2, … , 𝑅𝑡  via the Kalman filter. Defining 𝜉𝑡|𝑠  as the 

minimum mean square linear estimator (MMSLE) of 𝜉𝑡 given 𝑅1, 𝑅2, … , 𝑅𝑠 with mean square 

error (MSE) matrix 𝑊𝑡| , for  = 𝑡 − 1. For given values of 𝜉𝑡|𝑡−1 and 𝑊𝑡|𝑡−1, the Kalman filter 

first computes 𝜉𝑡|𝑡 and 𝑊𝑡|𝑡, when observation 𝑅𝑡 becomes available, using the filtering step as: 
 

 𝜉𝑡|𝑡 = 𝜉𝑡|𝑡−1  𝑊𝑡|𝑡−1Λ(𝜏)
′𝐹𝑡|𝑡−1
−1 𝑣𝑡|𝑡−1  (3.11) 

 𝑊𝑡|𝑡 = 𝑊𝑡|𝑡−1 −𝑊𝑡|𝑡−1Λ(𝜏)
′𝐹𝑡|𝑡−1
−1 Λ(𝜏)𝑊𝑡|𝑡−1 (3.12) 

 

with 
 

 𝑣𝑡|𝑡−1 = 𝑅𝑡 − Λ(𝜏)�̂�𝑡|𝑡−1 (3.13) 

 𝐹𝑡|𝑡−1 = Λ(𝜏)𝑊𝑡|𝑡−1Λ(𝜏)
′    (3.14) 

 

where 𝑣𝑡|𝑡−1 is the prediction error vector and 𝐹𝑡|𝑡−1 is the prediction error covariance matrix. 

The MMSLE of the state vector for the next period 𝑡  1, conditional on 𝑅1, 𝑅2, … , 𝑅𝑡, is given 

by the prediction step as: 
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 𝜉𝑡+1|𝑡 = 𝐴𝜉𝑡|𝑡 (3.15) 

 𝑊𝑡+1|𝑡 = 𝐴𝑊𝑡|𝑡𝐴
′    (3.16) 

 

For a given time series of  𝑅1, 𝑅2, … , 𝑅𝑡 , the Kalman filter computations are carried out 

recursively for 𝑡 = 1,2, … , 𝑇 with initializations 𝜉1|0 = 𝜇 (the unconditional mean) and 𝑊1|0 =

 , where   is the covariance matrix of 𝜉𝑡 as we assume that 𝜉𝑡  𝑁(𝜇,  ). 

An attractive feature of models in state-space form is that they can allow obtaining smooth 

optimal extractions of the latent level, slope and curvature factors. The smoothing algorithm 

associated with the Kalman filter produces the smoothed estimates of the latent vector for all 

periods and is based on the all available observations in the dataset. The estimation procedure 

itself does not change depending on data availability. Moreover, the smoothed estimates of the 

factors do also generate smoothed estimates of the interest rates and corresponding residuals for 

all maturities. This property ranks it among the most popular term structure estimation methods. 

The smoothed estimates of state vector can be calculated as follows. First, we run the data 

through the Kalman filter, storing the sequences 𝑊𝑡|𝑡 and 𝑊𝑡+1|𝑡 as calculated in (3.12) and 

(3.16) and storing 𝜉𝑡|𝑡 and 𝜉𝑡+1|𝑡 as obtained in (3.11) and (3.15) respectively for 𝑡 = 1,2, … , 𝑇. 

The terminal value for 𝜉𝑡|𝑡 then gives the smoothed estimates for the last date in the sample 𝜉𝑇|𝑇 

and 𝑊𝑇|  is its covariance matrix. The sequence of smoothed estimates 𝜉𝑡|𝑇 is then calculated 

in reversed order by iterating on: 
 

 𝜉𝑡|𝑇 = 𝜉𝑡|𝑡  𝑊𝑡|𝑡Λ(𝜏)
′𝑊𝑡+1|𝑡

−1 (𝜉𝑡+1|𝑇 − 𝜉𝑡+1|𝑡) (3.17) 
 

for 𝑡 = 𝑇 − 1, 𝑇 − 2, … ,1. The corresponding covariance matrix is similarly found by iterating 

on: 
 

 
𝑊𝑡|𝑇 = 𝑊𝑡|𝑡 − (𝑊𝑡|𝑡Λ(𝜏)

′𝑊𝑡+1|𝑡
−1 )(𝑊𝑡+1|𝑇 −𝑊𝑡+1|𝑡)(𝑊𝑡|𝑡Λ(𝜏)

′𝑊𝑡+1|𝑡
−1 )

′
 (3.18) 

 

in reverse order for 𝑡 = 𝑇 − 1, 𝑇 − 2,… ,1. 

The parameters in the VAR(1), the constants vector 𝜇, coefficients matrix 𝐴 and both the 

covariance matrices (  and  ) along with the shape parameter 𝜏 are treated as unknown 

coefficients, which are collected in the parameter vector θ. Estimation of θ is based on the 

numerical maximization of the log-likelihood function that is constructed via the prediction error 

decomposition and given by: 
 

log 𝐿 (휃) = −
𝑁𝑇

2
log(2𝜋) −

1

2
∑log[|𝐹𝑡|𝑡−1(휃)|]

𝑡

−
1

2
∑*𝑣𝑡|𝑡−1

′ [𝐹𝑡|𝑡−1(휃)]
−1
𝑣𝑡|𝑡−1+

𝑡

 (3.19) 

 

The specification in (3.19) is a function of the parameter set 휃 = (𝜏, 𝜇, 𝐴,  ,  ). The likelihood is 

comprised of the (N×1) yield prediction error vector; 𝑣𝑡|𝑡−1 = 𝑅𝑡 − �̂�𝑡|𝑡−1, where �̂�𝑡|𝑡−1 is the 

vector of in-sample yield forecasts given information up to time 𝑡 − 1, and of the (N×N) 



46 

 

conditional covariance matrix of the prediction errors 𝐹𝑡|𝑡−1 .
29

 The shape parameter 𝜏  is 

assumed to be constant over time. The log likelihood log 𝐿 (휃) in (3.19) can be evaluated by the 

Kalman filter for a given value of θ. Marquardt non-linear optimization algorithm is employed 

for numerical maximization of the log-likelihood function in (3.19). 

3.3. Empirical Results 

Taking into account the three dimensions of data – yield, time to maturity and calendar time –in 

this study, we follow the one-step procedure to estimate and forecast the yield curve dynamics. In 

general, state-space representation provides a powerful framework for analysis and estimation of 

dynamic models. In addition, the one-step Kalman filter approach is preferable to the two-step 

approach because the simultaneous estimation of all parameters produces correct inference via 

standard theory. This innovative feature grades it among the widely held term structure 

estimation methods. The two-step procedure, in contrast, suffers from the fact that the parameters 

estimation and signal extraction uncertainty associated with the first step is not acknowledged in 

the second step. 

3.3.1. Data 

The data we use are monthly spot rates for zero-coupon and coupon bearing bonds, generated 

using pricing data of Japanese government bonds and treasury bills. We use end-of-month price 

quotes (bid-ask average) for Japanese government bonds, from January 2000 to December 2011, 

taken from the Japan Securities Dealers Association (JSDA) bonds files. In total, there are 144 

months in the dataset. Following Fama and Bliss (1987) method, we calculate the daily 

continuously compounded forward rates and subsequently convert them to spot rates using (1.4) 

for the fixed maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120, 180, 240 

and 300 months (20 maturities). 

Concerning the macroeconomic variables, we use monthly data from January 2000 to 

December 2011, for industrial production, real exchange rate, consumer price index and Tokyo 

Stock Exchange share prices index (TOPIX) for the Japanese economy. The 𝐼𝑃𝑡 is growth rate 

in industrial production, 𝐸𝑋𝑡 is the growth in real exchange rate (¥/$), 𝐼𝑁𝐹𝑡 is the inflation rate 

and is measured as 12-months percent change in the consumer price index, and  𝐼𝑡 is last 

12-months growth rate of TOPIX. Detailed description of both, yield data and macroeconomic 

variables along with the three dimensional plot of the monthly spot rates for various maturities is 

given in section 1.4. 

3.3.2. Estimation of the Models 

We apply the Kalman filter to the state-space representation for yields-only model (3.5–3.7) and 

yields-macro model (3.8–3.10) to compute optimal yields predictions and the corresponding 

                                                   
29

 see Kim and Nelson (1999) for further details. 
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prediction errors, after which we proceed to evaluate the Gaussian likelihood function using the 

prediction-error decomposition of the likelihood. The Kalman filter is initialized using the 

unconditional mean (zero) and unconditional covariance matrix of the state vector, which are 

derived from the Gaussian distribution and assuming that the innovations of both signal and state 

equations are normally distributed.
30

 The log-likelihood function as specified in (3.19) is 

maximized by iterating the Marquardt algorithm, using numerical derivatives. The non-negativity 

condition is imposed on all estimated variances (diagonal elements of all covariance matrices) by 

estimating log-variances and subsequently converted to variances by exponentiating and then 

asymptotic standard errors are computed using the delta method. As the Kalman filter algorithm 

is sensitive to the initializing values of parameters, we use the two-step method of Diebold and Li 

(2006). In the first step, we use the non-linear least squares method to estimate the measurement 

equation and obtain time series of 𝛽𝑡 and 𝜏𝑡  and subsequently use the estimated 𝛽𝑡 vector to 

compute startup parameter values (initial transition equation matrix). Furthermore, we initialize 

all variances at 1.0 and 𝜏 at 38.068 (the median value) given in Ullah (2012). 

    We present estimation results of vector 𝜇 and matrix 𝐴 for the yields-macro model in the 

first panel of table 3.1, while in second panel for the yields-only model. The results show that the 

estimated vector 𝜇  is highly statistically significant for both the models as the estimated 

standard errors are sufficiently small, compared to the estimated coefficients.
31

 The estimate of 

the matrix 𝐴 indicates highly persistent own dynamics of 𝛽1𝑡, 𝛽2𝑡  and 𝛽3𝑡 with estimated 

own-lag coefficients of 0.911, 0.928 and 0.904 for the yields-macro model, whereas 0.903, 0.901 

and 0.866 for yields-only model, respectively. Cross factor dynamics of yield factors appear 

unimportant, with the exception of a minor but statistically significant effect of 𝛽2𝑡−1 on 𝛽1𝑡 in 

both models. Furthermore, for the yields-macro model the estimates of the effect of macro-factors 

on yield curve factors are small in magnitude as compared to the effect of yield curve factors on 

macroeconomic variables, but statistically significant and consistent with the 

yield-macroeconomic dynamics literature. The results in first panel show that industrial 

production and exchange rate are positively while the inflation rate is negatively related to the 

overall yield level. The most important result is that of statistically significant relationship of 

overall economic activity (represented by growth rate of industrial production) and the extent of 

stock market activity with the yield curve slope factor. This suggests that yield curve spread has a 

consistent predictive power of the future state of overall economic activity and stock market 

performance. Furthermore, this negative relationship is consistent with the idea that during 

recessions, premia on long-term bonds tend to be high and yields on short bonds tend to be low. 

Hence, during recessions, upward sloping yield curves not only indicate bad times today, but 

better times tomorrow. Moreover, the exchange rate has a positive statistically significant effect 

on the yield curve curvature. 

 

                                                   
30

 For detail of initializing the Kalman filter, see Hamilton (1994). 
31

 The p-value for all intercept terms are smaller than 0.020. 
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Table 3.1: Latent Factors VAR(1) Model Parameters Estimates 

 
      𝜇  𝛽1,𝑡−1    𝛽2,𝑡−1    𝛽3,𝑡−1 𝐼𝑃𝑡−1 𝐸𝑋𝑡−1 𝐼𝑁𝐹𝑡−1  𝐼𝑡−1 

Panel 1: Yields-Macro Model 

𝛽1𝑡 
2.997 

(0.157) 
0.911 

(0.012) 
0.015 

(0.005) 

0.018 

(0.012) 
0.012 

(0.001) 
0.007 

(0.002) 
-0.011 

(0.005) 

-0.008 

(0.016) 

𝛽2𝑡 -2.855 

(0.234) 

0.139 

(0.189) 
0.928 

(0.155) 

-0.001 

(0.029) 
-0.015 

(0.004) 

-0.036 

(0.125) 

-0.009 

(0.024) 
-0.013 

(0.003) 

𝛽3𝑡 -2.866 

(0.437) 

-0.260 

(0.428) 

-0.196 

(0.257) 
0.904 

(0.063) 

-0.055 

(0.246) 
0.010 

(0.002) 

0.006 

(0.025) 

-0.010 

(0.056) 

𝐼𝑃𝑡  1.061 

(0.414) 

-0.412 

(0.844) 
-0.511 

(0.201) 

0.474 

(0.766) 
0.413 

(0.075) 

0.041 

(0.046) 
1.761 

(0.728) 
0.345 

(0.032) 

𝐸𝑋𝑡 3.766 

(1.301) 
-0.006 

(0.002) 

0.233 

(0.531) 

-0.487 

(0.717) 

-0.033 

(0.033) 
0.579 

(0.020) 

-0.633 

(0.558) 

0.017 

(0.014) 

𝐼𝑁𝐹𝑡 -0.006 

(0.003) 
-0.488 

(0.051) 

-0.123 

(0.819) 
-0.286 

(0.024) 

-0.001 

(0.211) 

0.201 

(0.182) 
0.687 

(0.085) 

0.041 

(0.105) 

 𝐼𝑡  3.674 

(1.025) 

0.014 

(0.756) 

-0.041 

(0.849) 

0.081 

(0.118) 
0.217 

(0.052) 

0.027 

(0.031) 
0.966 

(0.022) 
0.643 

(0.024) 

Panel 2: Yields-Only Model  

𝛽1𝑡 2.977 

(0.173) 
0.903 

(0.120) 
0.021 

(0.015) 

0.011 

(0.023)   
 

 

𝛽2𝑡 -2.819 

(0.305) 

0.041 

(0.210) 
0.901 

(0.155) 

-0.001 

(0.033)   
 

 

𝛽3𝑡 -2.723 

(0.538) 

-0.560 

(0.502) 

-0.371 

(0.312) 
0.866 

(0.085)   
 

 

Panel 3:Test for Joint-Significance of the Individually Insignificant Coefficients  

  Yields-Macro Model  Yields-Only Model 

Wald Test Statistic   Value df P-value   Value df P-value 

Chi-square 41.557 27 0.000  29.557 5 0.000 

Note: The table reports the estimates for the parameters of the transition equation for both, yields-macro and 

yields-only, models. The panel 1 and 2 present the estimates for the vector 𝜇 and matrix 𝐴 for the yields-macro 

and yields-only models respectively. The standard errors are in parenthesis. Bold entries denote parameter estimates 

significant at the 5 percent level. The panel 3 presents the results of the Wald-test for the joint significance of 

individually insignificant coefficients in matrix  𝐴 . The null hypothesis is that insignificant coefficients are 

simultaneously equal to zero. The test statistic is Chi-square with their respective degrees of freedom (df). P-value is 

the probability value of the test statistic. 
 

Regarding the impact of yield curve factors on macroeconomic variables, the results show 

that exchange rate and inflation rate are negatively related to the level of interest rate. It suggests 

that the long end of yield curve contains important information about the future inflation. The 

negative significant impact of long rates on exchange rate indicates that domestic currency 

appreciates because of capital inflow due to the attractiveness of domestic bonds. Furthermore, as 

the long end of yield curve goes down, inflationary expectations become stronger as a 

consequence of rise in aggregate demand. The spread term 𝛽2𝑡 is negatively related to the level 

of economic activity, while the impact on stock market performance is statistically insignificant. 

Thus, a decrease in the slope of yield curve (becoming flat or negatively sloped) can be 

considered as a signal of economic slowdown. The macroeconomic variables have negligible 

responses to shocks in the curvature factor except the inflation rate. The inflation rate is 
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negatively related to the curvature factor.
32

  

As many of the coefficients in matrix 𝐴 for both the models are statistically insignificant, 

Wald-test for their joint significance is conducted and the results are presented in the third panel 

of table 3.1. The test statistic rejects the null-hypothesis of joint insignificance of the 27 and 5 

individually insignificant coefficients in the yields-macro and yields-only model respectively. 

This suggests that inclusion of macroeconomic factors in the Nelson-Siegel specification of yield 

curve improves the model’s overall fit and prediction power. 
 

Table 3.2: Estimates of Covariance Matrix   

 
Yields-Macro Model  Yields-Only Model 

 
        휂̂1𝑡       휂̂2𝑡     휂̂3𝑡       휂̂4𝑡        휂̂5𝑡        휂̂6𝑡       휂̂7𝑡      휂̂1𝑡      휂̂2𝑡      휂̂3𝑡 

휂̂1𝑡 3.571 

(0.214) 
-0.035 

(0.007) 

-0.039 

(0.114) 
0.205 

(0.012) 

-0.115 

(0.418) 

0.016 

(0.422) 

-0.005 

(0.057) 
3.523 

(0.226) 
-0.032 

(0.010) 

-0.039 

(0.022) 

휂̂2𝑡 
 

2.987 

(0.185) 
0.061 

(0.021) 

0.074 

(0.067) 

0.189 

(0.499) 

-0.003 

(0.615) 
-0.042 

(0.008) 
 

2.991 

(0.263) 
0.054 

(0.026) 

휂̂3𝑡 
  

1.358 

(0.234) 

0.345 

(0.339) 

0.047 

(0.865) 
-0.084 

(0.024) 

0.095 

(0.752) 
  

1.248 

(0.183) 

휂̂4𝑡 
   

3.834 

(0.073) 

-0.029 

(0.120) 

-0.086 

(0.074) 
3.071 

(1.059) 
   

휂̂5𝑡 
   

 1.607 

(0.341) 
0.648 

(0.321) 

-0.959 

(0.628) 
   

휂̂6𝑡 
   

  2.133 

(0.269) 

-0.241 

(0.459) 
   

휂̂7𝑡 
   

   1.386 

(0.228) 
   

Test for Diagonality of Covariance Matrix   

Wald Test Statistic 
Yields-Macro Model  Yields-Only Model 

Value df P-value Value df P-value 

Chi-square 31.409 21 0.000  20.136 3 0.000 

Note: The upper panel of table reports the estimates of covariance matrix of innovations of the transition equation for 

both the models (yields-macro and yields-only models). The standard errors are in parenthesis. The lower panel presents 

the results of the Wald-test for the null hypothesis that covariance matrix   is diagonal. The test statistic is Chi-square 

with their respective degrees of freedom (df). P-value is the probability value of the test statistic. Bold entries denote 

parameter estimates significant at the 5 percent level. 
 

The estimates of covariance matrix of the state innovations as depicted by   in (3.7 and 3.10) 

and Wald-test of its diagonality in both models are shown in table 3.2. There is only one 

individually insignificant covariance term (between 휂̂1𝑡 and 휂̂3𝑡) for the yields-only model. 

However, for yield-macro model only 7 out of 21 covariance terms are statistically significant at 

                                                   
32

 We also estimated the state-space model, considering the macroeconomic variable as exogenous in the transitional 

equation (3.9) that can be expressed as: 

 𝜉𝑡 = A𝜉𝑡−1   𝑍𝑡−1  휂𝑡     , 휂𝑡~𝑁( ,  ) 
where 𝜉𝑡 = (𝛽𝑡 − 𝜇)

′ is  (3×1) vector of yield curve factors, 𝑍𝑡 = (𝐼𝑃𝑡  , 𝐸𝑋𝑡  , 𝐼𝑁𝐹𝑡  ,  𝐼𝑡)
′ is the (4×1) vector 

of macroeconomic variables, 𝜇, 𝐴 and    are (3×1) vector, (3×3) and (3×4) matrix of unknown parameters 

respectively.    is (3×3) covariance matrix of the error term (휂𝑡) of state equation. We estimate and forecast with 

observation equation (3.5) and above mentioned state equation and the results of estimated state vector 𝜉  and its 

forecast values are almost similar to our earlier representation of yields-macro model. 
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5% level of significance. We also perform the Wald-test for the joint significance of the 

off-diagonal elements of the matrix and the test statistic clearly rejects the null-hypothesis of the 

diagonality of the   matrix for yields-macro model as well as yields-only model. The result is 

consistent with our prior expectation that the innovations of transition system are cross correlated. 

Using cross-sectional as well as information concerning the evolution of yields over time, 

we employ the Kalman smoother algorithm to obtain optimal extractions of the latent level, slope 

and curvature factors and corresponding covariance matrix using (3.17) and (3.18) respectively. 

Table 3.3 shows the descriptive statistics of the three time-varying Kalman filter smooth 

estimates of factors along with averaged smoothed residuals for both models, i.e., the 

yields-macro and yields-only model. 

Comparing the mean, standard deviation and other descriptive features of the estimated 

factors across models show that both the models give rather similar estimates for the level, slope 

and curvature factors in magnitude. From the autocorrelations in the table 3.3 of the estimated 

factors, we can see that 𝛽1𝑡 is more persistent than the rest of two factors for both the models. 

The results suggest the high persistency and low volatility of long rates. The results also show 

that the lag autocorrelation of the residuals is low, justifying the reliability of standard errors of 

the estimated factors. The residuals descriptive features indicate that the average yield curve is 

fitted very well. Finally, the estimated 𝜏 for both models, i.e., yields-macro models is 71.293 

and yields-only model is 71.420, implies that the loading on the curvature factor is maximized at 

a maturity of about 6 years. 
 

Table 3.3: Descriptive Statistics of the Nelson-Siegel Factors Estimates 

 
Yields-Macro Model  Yields-Only Model 

Factors           �̂�1        �̂�2        �̂�3       휀̂           �̂�1        �̂�2        �̂�3          휀̂ 

Mean 

Std. Dev. 

Maximum 

Minimum 

Skewness 

Kurtosis 

�̂� (1) 

�̂� (6) 

�̂� (12) 

2.951 

0.381 

3.789 

1.453 

-1.165 

5.888 

0.904 

0.518 

0.289 

-2.780 

0.483 

-1.392 

-3.892 

0.383 

2.766 

0.882 

0.454 

-0.048 

-2.655 

1.202 

0.681 

-4.273 

0.627 

2.432 

0.889 

0.531 

0.136 

0.001 

0.014 

0.034 

-0.059 

-1.255 

6.000 

0.464 

0.301 

0.164 

2.994 

0.367 

3.803 

1.500 

-1.346 

6.617 

0.903 

0.610 

0.301 

-2.813 

0.462 

-1.432 

-3.900 

0.423 

2.960 

0.881 

0.440 

-0.071 

-2.722 

1.180 

0.478 

-4.341 

0.636 

2.457 

0.885 

0.513 

0.116 

-0.003 

0.014 

0.027 

-0.055 

-0.670 

4.254 

0.426 

0.353 

0.126 

 �̂� 
 

71.293 (0.025) 
  

71.420 (0.028) 
 

Note: The table shows descriptive statistics for smoothed estimates of  𝛽𝑡 vector and averaged smoothed residuals 

휀̂ (averaged over the different maturities) of the yields-macro as well as yields-only model using monthly data 

2000:01–2011:12. �̂� (𝑖) denotes the sample autocorrelations at displacements of 1, 6 and 12 months. �̂� is the 

optimal estimate of the shape parameter and its standard errors are in parenthesis. The number of observations is 

144. 
 

Furthermore, the time-series of the factors’ smoothed estimates as well as the series of their 

empirical proxies and potentially related macroeconomic variables are plotted in figures 3.1 and 

3.2. The level of the yield curve (𝐿𝑡) is defined as the 25-year yield. We compute the slope ( 𝑡) 
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as the difference between the 25-year and three-month yield and finally, the curvature (𝐶𝑡) is 

defined as two times the two-year yield minus the sum of the 25-year and three month 

zero-coupon yields. Comparing the factors’ estimates for both the models give rather close 

similar approximations for the level, slope and curvature factors. The pairwise correlation of 

empirically defined factors and estimated factors of the yields-macro model is 𝜌(𝐿𝑡, �̂�1𝑡) =

 .768, 𝜌( 𝑡, �̂�2𝑡) = − .9 2  and 𝜌(𝐶𝑡, �̂�3𝑡) =  .837 and for the yields-only model is 

𝜌(𝐿𝑡, �̂�1𝑡) =  .739, 𝜌( 𝑡, �̂�2𝑡) = − .897 and 𝜌(𝐶𝑡, �̂�3𝑡) =  .831. To be precise, the estimated 

factors and their empirical proxies seem to follow the same pattern and hence, may truly be called 

level, slope and curvature factors, respectively. 
 

 
Figure 3.1: Time Series Plot of Nelson-Siegel Estimated Factors and Empirical Level, Slope and Curvature 

Model-based level, slope and curvature (i.e., estimated factors) vs. data-based level, slope and curvature (i.e., 

empirical proxies), where level is defined as the 25-year yield, slope as the difference between the 25-year and 

3-month yields and curvature as two times the 2-year yield minus the sum of the 25-years and 3- month zero 

coupon yields. Rescaling of estimated factors is based on Diebold and Li (2006).  
 

The level factor is closely related to annual growth of money supply as depicted in figure 

3.2.
33

 The correlation between �̂�1𝑡 and annual growth of money supply is -0.352, consistent 

with inflationary expectations hypothesis. It confers that shocks to monetary policy are important 

                                                   
33

 Growth rate of money supply is defined as 𝑀 𝑡 = 1   [(𝑀𝑡 −𝑀𝑡−12)/𝑀𝑡−12], where M is level of seasonally 

adjusted money supply M2 and its data has been retrieved from International Financial Statistics, IMF.  
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sources of variation in long end of the yield curve and pricing the long-term maturity bonds. Thus, 

monetary policy surprises and acts as to drive up short rates and alter expectations about future 

interest rates by shifting the long end of yield curve up in a persistent way (consistent with the 

costly price adjustment hypothesis of monetary policy) and thereby stimulates the economy. It 

suggests that the shift of long end and hence, the shape of yield curve has important information 

of the state of economy. It indicates that monetary policy is an important source of variation even 

in the zero interest rate policy regime. Moreover, the variation in inflation is closely explained by 

the curvature factor of the yield curve. The correlation between �̂�3𝑡 and 𝐼𝑁𝐹𝑡 is 0.391. The CPI 

based inflation rate closely follows the pattern of curvature factor of yield curve as depicted in the 

lower panel of figure 3.2. 

Moreover, one can observe that �̂�1𝑡 and  −�̂�2𝑡 follow almost the same pattern in figure 

3.1. There is a sharp decline in �̂�1𝑡 as well as the slope factor �̂�2𝑡 in early 2001 till mid-2002 

and is followed by the gradual recovery process. This behavior of the level and slope factors is 

closely related to the monetary policy regimes of the Japanese economy during the decade. In 

early 1998 in the Japanese economy, the demand was falling and the economy was heading into a 

recession and financial instability.
34

 In order to avoid the severe recession, the so-called zero 

interest rate policy (ZIRP) was introduced and an easy monetary policy was adopted.
35

 The 

economy did not respond quickly, however, it started to show some signs of recovery in the 

spring of 2000 and as a consequence, the ZIRP was lifted in August 2000. Almost as soon as the 

interest rate was raised, the Japanese economy entered into another recession and many urged 

changes in monetary policy and return to ZIRP.
36

 In February 2001, the Bank of Japan (BOJ) 

introduced the Lombard lending facility as well as cut the official discount rate from 0.5% to 

0.35%.
37

 However, these measures did not show any significant impact and further steps to 

easing in monetary policy are taken. The target inter-bank rate was lowered immediately to 0.15 

percent, and would go down to zero, as conditions warranted. The official discount rate was 

sharply cut to 0.1 percent. During this regime, we observe that the long rates as well as the slope 

of yield curve have a downward trend. This confers that fall in long rates was larger than the 

decline in short rates. Hence, the slope was falling along with alteration in the shape of yield 

curve.  

                                                   
34

 The effects of Asian financial crisis were heading towards the Japanese economy and financial instability became 

prominent as one large bank and one small bank, a large securities firm and a medium-size securities firm all 

failed and credit lines between western financial institutions and Japanese financial institutions became severely 

limited in November 1997 (Ito and Mishkin, 2004). 
35

 The overnight call rate was radically reduced to 0.25% in September 1998 and to 0.15% in early 1999 from 0.5%. 
36

 First, the ICT bubble ended and stock prices in the Japanese stock market were heading down, suggesting 

investment and consumption would be adversely affected in the near future. Second, the US economy was 

beginning to show weakness and Japanese exports to the United States were expected to decline in the future. 

Third, the inflation rate was still negative, and there was no sign of an end to deflation. It was not known at the 

time, but the official date for the peak of the business cycle turned out to be October 2000. The growth rate of 

2000:III turned negative, which was offset to some extent by a brief recovery in 2000:IV. 
37 The Lombard lending facility was to lend automatically to banks with collateral at the official discount rate, so 

that the interest rate would be capped at 0.35%. However, the market rate was at around 0.2 – 0.25%, so there 

was little real impact from the introduction of the Lombard facility. 
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Figure 3.2: Time Series Plot of Nelson-Siegel Estimated Factors with Macroeconomic Variables 

The estimated level and curvature factors (𝛽1𝑡and 𝛽3𝑡) are plotted vs. annual growth of the M2 (Money Supply) 

and Inflation rate respectively. Inflation rate is the 12-month percent change in the consumer price index. 
 

During the last quarter of 2002 the regime switched as in September 2002, the Bank started 

to purchase equities that the commercial banks held. The action was justified by the BOJ on the 

ground that it would reduce the risk of commercial banks, and it was made clear that it is not 

intended as monetary policy tool, but rather as financial market stabilization policy. However, it 

was not explained why the resulting risk to the BOJ balance sheet due to financial stabilization 

policy was not a big concern, while it was for monetary policy (Ito and Mishkin, 2004). 

Furthermore, the Bank made it explicit that it would continue ZIRP until deflationary concerns 

subside and the inflation rate is clearly above zero. The new policy was a big improvement over 

the last regime. Despite the good performance in the GDP growth rate in 2003:IV, the financial 

and capital market participants were expecting that ZIRP will continue for a long time. Thus, 

during the recovery regime the long end is gradually rotating and hence the slope is on increasing 

trend. The process completes around late 2004. 

Thus, during the initial period of ZIRP and severe recession, we observe a sharp decline in 

the yields of long-term bonds and the slope of yield curve; and during the period of recovery, the 

yield curve long end as well as the slope is on the increasing trend. This suggests that the state of 

economy was clearly depicted by the behavior of level and slope factors of the yield curve and 

yield curve depicts stances of monetary policy and is an important leading indicator of the 

business condition and the state of economy. 
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Table 3.4: Descriptive Statistic of the Yield Curve Residuals 

Maturity  Mean  Std. Dev.  RMSE  MAE �̂� (1) �̂� (6)           �̂� (12) 

Yields-Macro Model 

3 

6 

9 

12 

15 

18 

21 

24 

30 

36 

48 

60 

72 

84 

96 

108 

120 

180 

240 

300 

-0.014 

-0.028 

-0.032 

-0.003 

0.001 

0.004 

0.004 

-0.001 

-0.001 

-0.008 

0.001 

-0.009 

-0.016 

-0.006 

0.020 

0.038 

0.050 

0.004 

-0.003 

0.030 

0.094 

0.083 

0.081 

0.029 

0.015 

0.013 

0.012 

0.015 

0.018 

0.022 

0.014 

0.023 

0.040 

0.060 

0.067 

0.051 

0.051 

0.074 

0.097 

0.081 

0.094 

0.087 

0.087 

0.029 

0.015 

0.011 

0.013 

0.015 

0.018 

0.022 

0.014 

0.024 

0.043 

0.060 

0.070 

0.063 

0.070 

0.063 

0.077 

0.064 

0.068 

0.057 

0.05 

0.022 

0.012 

0.008 

0.009 

0.011 

0.014 

0.017 

0.011 

0.02 

0.034 

0.047 

0.054 

0.051 

0.056 

0.055 

0.063 

0.063 

0.489 

0.436 

0.545 

0.368 

0.375 

0.156 

0.037 

0.139 

0.260 

0.371 

0.212 

0.447 

0.491 

0.621 

0.632 

0.632 

0.455 

0.689 

0.688 

0.484 

0.260 

0.238 

0.338 

0.296 

0.279 

-0.022 

0.044 

-0.003 

0.102 

0.358 

0.077 

0.332 

0.360 

0.486 

0.501 

0.525 

0.350 

0.604 

0.529 

0.253 

0.157 

0.056 

0.014 

0.186 

0.262 

0.125 

0.087 

0.118 

0.057 

0.033 

-0.013 

-0.017 

0.094 

0.227 

0.293 

0.338 

0.214 

0.411 

0.364 

0.171 

Yields-Only Model 

3 

6 

9 

12 

15 

18 

21 

24 

30 

36 

48 

60 

72 

84 

96 

108 

120 

180 

240 

300 

-0.019 

-0.032 

-0.035 

-0.005 

0.001 

0.003 

0.004 

0.001 

-0.001 

-0.007 

0.001 

-0.008 

-0.017 

-0.008 

0.016 

0.033 

0.043 

-0.012 

-0.024 

0.005 

0.093 

0.083 

0.081 

0.029 

0.015 

0.012 

0.013 

0.015 

0.019 

0.022 

0.014 

0.023 

0.042 

0.063 

0.072 

0.057 

0.056 

0.066 

0.079 

0.083 

0.095 

0.089 

0.088 

0.030 

0.015 

0.012 

0.013 

0.015 

0.019 

0.023 

0.014 

0.024 

0.045 

0.064 

0.074 

0.065 

0.070 

0.066 

0.082 

0.083 

0.069 

0.058 

0.052 

0.023 

0.012 

0.008 

0.009 

0.011 

0.014 

0.017 

0.011 

0.02 

0.035 

0.050 

0.057 

0.051 

0.057 

0.056 

0.066 

0.068 

0.591 

0.594 

0.684 

0.344 

0.423 

-0.043 

-0.057 

0.161 

0.333 

0.519 

0.333 

0.475 

0.567 

0.682 

0.678 

0.684 

0.558 

0.742 

0.735 

0.516 

0.326 

0.255 

0.350 

0.288 

0.246 

0.033 

-0.026 

-0.022 

0.078 

0.344 

0.088 

0.339 

0.353 

0.476 

0.485 

0.491 

0.275 

0.609 

0.563 

0.328 

0.141 

0.047 

0.007 

0.203 

0.282 

0.082 

0.135 

0.132 

0.069 

0.045 

-0.043 

-0.023 

0.105 

0.242 

0.308 

0.362 

0.262 

0.407 

0.333 

0.117 

Note: The table presents summary statistic of the residuals 휀̂ for different maturity times of the measurement 

equation of both models using monthly data 2000:01–2011:12. RMSE and MAE are the root mean squared errors 

and mean absolute error respectively. �̂� (𝑖) denotes the sample autocorrelations at displacements of 1, 6, and 12 

months. The number of observations is 144. 
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Furthermore, table 3.4 and figure 3.3 present the descriptive statistics and the three 

dimensional plot of the smoothed residuals for all the maturities. Both the models fit the yield 

curve remarkably well. Table 3.4 contain the estimated mean, standard deviation, mean absolute 

fit error (MAE), root mean squared fit error (RMSE) and autocorrelation at various displacements 

of the residuals, expressed in basis points, for each of the 20 maturities that we consider. The 

mean error is negligible at all maturities for both the models. However, comparing with respect to 

RMSE and MAE, the yields-macro model fits the yield curve slightly pretty than the yields-only 

model for all maturities. Furthermore, the residuals persistency of yields-macro model is lower 

than of yields-only model almost for all maturities. 

 

 

Figure 3.3: Nelson-Siegel Model based Yield Curves Residuals, 2000:01-2011:12 

The sample consists of monthly smoothed estimated residuals from January 2000 to December 2011 (144 months) 

for maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120, 180, 240, and 300 months (20 

maturities). 

 

It turns out that the fit is more appealing in most cases. Some months, however, especially 

those with multiple maxima and/or minima are not fitted very well. It becomes apparent by the 

large residuals in these months. 

Moreover, table 3.5 presents four different criterions to compare the in-sample fit of the 

yield curve. Table 3.5 contains the estimated Log likelihood ratio, Akaike information criterion, 

Schwarz information criterion and Hannan-Quinn information criterion for both the models. The 

Log likelihood ratio of yields-macro model is greater than that of the yield-only model, 

suggesting that the inclusion of macroeconomic factors leads to estimate the yield curve more 

accurately. Similarly, the other three criterions AIC, SIC and HQ also support this argument as 

they are smaller for yields-macro model than of the yields-only model. 
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Table 3.5: In-sample Fit Diagnostic Statistics of the Nelson-Siegel Model 

Models Yields-Macro Model Yields-Only Model 

Log likelihood 

AIC criterion 

SIC criterion 

HQ criterion 

4384.668 

-59.851 

-58.133 

-58.272 

4311.996 

-58.347 

-57.543 

-57.020 

Note: The table presents the in-sample fit performance of the yields-macro and yields-only models 

specified in the state-space representation, using four different criterions. AIC is the Akaike 

information criterion, SIC is the Schwarz information criterion and HQ is the Hannan-Quinn 

information criterion. 
 

In summary, we have explained that both the models provide an evolution of the term 

structure closer to reality. These models in the state-space representation are capable to distill the 

term structure of interest rate quite well and describe the evolution and the trends of the 

government bonds market. However, the yields-macro model provides a little better fit of the 

yield curve than the yields-only model. More importantly, the lag correlation of the signal system 

innovations in the yields-macro model is lower than of the yields-only model and leads to the 

reliability of the yields-macro model results. This suggests that the common phenomenon of the 

high degree of residuals persistency for various maturities in the class of statistical models of 

yield curve can be avoided by the inclusion of macroeconomic factors in the system of yield 

curve model. Furthermore, the use of term spread in forecasting future economic activity and 

stock market seems to have noticeable role and long end of yield curve can explain the exchange 

rate and inflationary expectations. 

3.4. Out-of-Sample Forecasting 

A good approximation to yield curve dynamics should not only fit well in-sample, but also 

produces satisfactory out-of-sample forecasts. For the out-of-sample performance, the similar 

models are estimated as for the in-sample fit. To assess the forecasting performance of the models, 

the sample is divided into the initial estimation period January 2000 to December 2007 and the 

forecasting period January 2008 to December 2011. We estimate and forecast recursively, using 

data from January 2000 to the time that the forecast is made, beginning in January 2008 and 

extending through December 2011, i.e., the models are estimated recursively with an expanding 

data window. Interest rate forecasting is done by constructing factor predictions using the state 

equations and subsequently substituting these predictions in the measurement equations to obtain 

the interest rate forecasts. Three forecast horizons,  = 1, 6 and 12 months ahead are considered. 

The  -month ahead factors forecasts, 𝜉𝑡+ℎ, are iterated forecasts which follow from forward 

iteration of the state equations (3.6) for yields-only model and (3.9) for yields-macro model as: 
 

 𝜉𝑡+ℎ|𝑡 = �̂�
ℎ𝜉𝑡|𝑡 (3.20) 

 

where �̂�ℎ denotes the matrix �̂� multiplied by itself   times and 𝜉𝑡|𝑡 is the last available factor 

estimates. The first three elements of 𝜉𝑡+ℎ|𝑡  in (3.20) is subsequently substituted in the 
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observation equations (that are �̂�𝑡+ℎ|𝑡) , results in: 
 

 �̂�𝑡+ℎ|𝑡(𝑚) = Λ(�̂�)(�̂�𝑡+ℎ|𝑡) (3.21) 
 

where �̂�𝑡+ℎ|𝑡 is the (3×1) vector consists of yield curve three factors. We use the in-sample 

shape parameter 𝜏 estimate to compute the factor loadings in forecasts. Furthermore, we define 

�̂�𝑡+ℎ|𝑡(𝑚) as  �̂�𝑡,𝑡+ℎ(𝑚) is the forecasted yield in period 𝑡 for 𝑡    period (for i
th

 maturity). 

As a benchmark model for comparing out-of-sample forecast, we use the univariate AR(1) 

specification of yield: 
 

 𝑅𝑡+ℎ(𝑚) = 𝛿0  𝛿1𝑅𝑡(𝑚)  휀𝑡+ℎ  (3.22) 
 

for  = 1, 6, and 12, and 휀𝑡 ∽ 𝑁( , σ
2).38

 

3.4.1. Term Structure Forecast Results 

In tables 3.6, 3.7 and 3.8, we compute the descriptive statistics of h-month-ahead out-of-sample 

forecasting results of yields-macro, yields-only and AR(1) yield models, for maturities of 3, 6, 12, 

24, 60, 120, 180, 240, and 300 months for the forecast horizons of  = 1, 6, and 12 months. We 

define forecast errors at time 𝑡 for 𝑡    as [𝑅𝑡+ℎ(𝑚) − �̂�𝑡,𝑡+ℎ(𝑚)], where �̂�𝑡,𝑡+ℎ(𝑚) is the 

forecasted yield in period 𝑡  for 𝑡    period and is not the Nelson–Siegel fitted yield. 

𝑅𝑡+ℎ(𝑚) is the actual yield in period 𝑡   . We examine a number of descriptive statistics for 

the forecast errors, including mean, standard deviation, mean absolute error (MAE), root mean 

squared error (RMSE) and autocorrelation at various displacements. 

    Table 3.6 reports the results of one month ahead forecasts of yields-macro, yields-only as 

well as AR(1) models of yield. The AR(1) model plays a roll of benchmark for evaluating the 

empirical performance of the yields-macro and the yields-only models. The one month ahead 

forecasting results for both the yields-macro and yields-only models considerably outperform 

those of the AR(1) model in terms of MAE and RMSE for any maturity. The yields-only model 

appears suboptimal in comparison with the yields-macro as the forecasts errors are serially 

correlated. However, the lag autocorrelation of the forecasts errors of yields-macro model for all 

maturities are smaller and negligible as compared to the yields-only and AR(1) models. The 

mean, MAE and RMSE of forecast errors of yields-macro model are slightly smaller than that of 

yields-only model for all maturities. Furthermore, MAE, RMSE and lag correlation of the 

forecast errors of yields-only model are smaller as compared to the AR(1) model of yield. In 

relative terms, the results indicate that yields-macro model outperform both the yields-only as 

well as the AR(1) model and yields-only model comes with much accurate forecasts than the 

AR(1) specification for the one month ahead forecast horizon. 

The results of 6 months and one year ahead forecast in table 3.7 and 3.8 respectively reveal 

that matters worsen radically with longer horizon forecasts. For 6 months ahead forecast the 

                                                   
38

 The random walk model could be a benchmark model. We, in fact, ran the random walk model of yield, but the 

AR(1) specification of yield outpace the random walk forecasts (results of random walk are not reported). 
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yields-macro as well as the yields-only models outperform the AR(1) model in term of mean 

forecast errors, MAE, RMSE and lag autocorrelation for all maturities. Moreover, forecasts of the 

yields-macro model are much precise than of the yields-only specification for all maturities both 

in terms of RMSE and error persistency. The 6 month ahead forecasts results seem not good as 

the one month ahead forecasts in term of lag autocorrelation for all the three models.  

 

 Table 3.6: Out-of-Sample 1 Month Ahead Forecasting Results 

Maturity      Mean Std. Dev.    MAE    RMSE     �̂� (1)      �̂� (6)       �̂� (12) 

Forecast Summary for Yields-Macro Model 

3 

6 

12 

24 

60 

120 

180 

240 

300 

-0.004 

-0.028 

-0.001 

0.004 

-0.006 

0.044 

-0.012 

-0.024 

0.005 

0.128 

0.120 

0.119 

0.149 

0.192 

0.176 

0.180 

0.184 

0.194 

0.069 

0.058 

0.023 

0.011 

0.020 

0.057 

0.055 

0.066 

0.068 

0.019 

0.022 

0.001 

0.001 

0.001 

0.005 

0.005 

0.009 

0.010 

0.522 

0.419 

0.319 

0.401 

0.447 

0.476 

0.537 

0.599 

0.622 

-0.059 

-0.070 

-0.111 

0.117 

-0.124 

-0.163 

-0.028 

0.042 

-0.030 

-0.017 

-0.008 

0.077 

0.185 

-0.010 

-0.099 

-0.085 

-0.030 

-0.086 

Forecast Summary for Yields-Only Model 

3 

6 

12 

24 

60 

120 

180 

240 

300 

-0.005 

0.043 

0.003 

0.005 

-0.019 

0.006 

-0.006 

-0.032 

-0.008 

0.029 

0.056 

0.012 

0.015 

0.094 

0.083 

0.022 

0.083 

0.023 

0.084 

0.075 

0.069 

0.096 

0.142 

0.135 

0.136 

0.146 

0.150 

0.043 

0.044 

0.047 

0.062 

0.077 

0.055 

0.052 

0.053 

0.060 

0.849 

0.813 

0.601 

0.443 

0.669 

0.673 

0.780 

0.800 

0.661 

-0.076 

-0.115 

-0.026 

-0.045 

-0.092 

-0.169 

-0.068 

-0.111 

-0.015 

-0.181 

-0.178 

0.038 

-0.008 

-0.081 

0.040 

-0.019 

-0.042 

0.058 

Forecast Summary for AR(1) Model 

3 

6 

12 

24 

60 

120 

180 

240 

300 

-0.080 

-0.067 

-0.029 

-0.055 

-0.123 

-0.136 

0.025 

0.035 

-0.138 

0.126 

0.102 

0.129 

0.203 

0.299 

0.212 

0.185 

0.190 

0.163 

0.131 

0.104 

0.109 

0.184 

0.278 

0.193 

0.143 

0.154 

0.170 

0.149 

0.122 

0.133 

0.211 

0.324 

0.252 

0.187 

0.193 

0.214 

0.884 

0.881 

0.888 

0.846 

0.743 

0.567 

0.494 

0.553 

0.672 

0.446 

0.447 

0.380 

0.355 

0.286 

0.058 

-0.028 

-0.161 

-0.186 

-0.004 

-0.006 

-0.131 

-0.061 

0.053 

0.085 

0.037 

-0.042 

-0.105 

Note: The table reports the results of out-of-sample 1-month-ahead forecasting using state-space specification for the 

yields-macro and yields-only models along with the AR(1) forecasts of yields for various maturities. We estimate the 

models recursively from 2000:1 to the time that the forecast is made, beginning in 2008:1 and extending through 

2011:12. We define forecast errors at 𝑡  1 as  𝑅𝑡+1(𝑚) − �̂�𝑡,𝑡+1(𝑚), where �̂�𝑡,𝑡+1(𝑚) is the 𝑡  1 month ahead 

forecasted yield at period 𝑡, and we report the mean, standard deviation, mean absolute errors (MAE) and root mean 

squared errors (RMSE) of the forecast errors, as well as their first, 6
th

 and 12
th

 sample autocorrelation coefficients. 
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Table 3.7: Out-of-Sample 6 Months Ahead Forecasting Results 

Maturity     Mean Std. Dev.    MAE    RMSE     �̂� (1)      �̂� (6)       �̂� (12) 

Forecast Summary for Yields-Macro Model 

3 

6 

12 

24 

60 

120 

180 

240 

300 

-0.005 

-0.018 

0.004 

0.005 

-0.008 

0.039 

-0.012 

-0.021 

0.011 

0.153 

0.148 

0.169 

0.216 

0.268 

0.230 

0.240 

0.251 

0.267 

0.102 

0.098 

0.112 

0.147 

0.195 

0.171 

0.167 

0.170 

0.185 

0.039 

0.037 

0.045 

0.063 

0.087 

0.079 

0.104 

0.127 

0.137 

0.700 

0.660 

0.671 

0.720 

0.725 

0.726 

0.766 

0.790 

0.707 

-0.237 

-0.254 

-0.231 

-0.237 

-0.188 

-0.115 

-0.023 

0.046 

0.026 

-0.115 

-0.097 

-0.022 

0.016 

-0.007 

-0.089 

-0.110 

-0.047 

-0.051 

Forecast Summary for Yields-Only Model 

3 

6 

12 

24 

60 

120 

180 

240 

300 

-0.006 

-0.019 

0.004 

0.006 

-0.009 

0.041 

-0.014 

-0.023 

0.012 

0.147 

0.140 

0.158 

0.201 

0.250 

0.222 

0.234 

0.245 

0.260 

0.110 

0.108 

0.125 

0.161 

0.210 

0.176 

0.167 

0.167 

0.187 

0.039 

0.039 

0.046 

0.072 

0.093 

0.081 

0.118 

0.145 

0.160 

0.745 

0.693 

0.721 

0.742 

0.732 

0.743 

0.793 

0.822 

0.841 

0.262 

0.209 

0.244 

0.245 

0.178 

0.190 

0.258 

0.296 

0.292 

0.127 

0.144 

0.149 

0.174 

0.059 

-0.120 

-0.150 

-0.098 

-0.106 

Forecast Summary for AR(1) Model 

3 

6 

12 

24 

60 

120 

180 

240 

300 

-0.376 

-0.416 

-0.216 

-0.165 

-0.184 

-0.148 

0.109 

0.144 

-0.165 

0.279 

0.286 

0.156 

0.203 

0.262 

0.210 

0.179 

0.171 

0.163 

0.411 

0.448 

0.377 

0.242 

0.284 

0.201 

0.138 

0.244 

0.289 

0.468 

0.505 

0.195 

0.262 

0.320 

0.256 

0.179 

0.176 

0.175 

0.892 

0.832 

0.716 

0.781 

0.742 

0.797 

0.852 

0.885 

0.897 

0.551 

0.558 

0.460 

0.415 

0.319 

0.394 

0.220 

0.294 

0.310 

0.150 

0.177 

0.074 

0.116 

0.113 

0.091 

0.046 

0.133 

0.182 

Note: The table presents the results of out-of-sample 6-month-ahead forecasting using state-space specification for 

the yields-macro and yields-only models along with the AR(1) forecasts of yields for various maturities. We estimate 

the models recursively from 2000:1 to the time that the forecast is made, beginning in 2008:1 and extending through 

2011:12. We define forecast errors at 𝑡  6 as  𝑅𝑡+6(𝑚) − �̂�𝑡,𝑡+6(𝑚), where �̂�𝑡,𝑡+6(𝑚) is the 𝑡  6 months 

ahead forecasted yield at period 𝑡, and we report the mean, standard deviation, mean absolute errors (MAE) and root 

mean squared errors (RMSE) of the forecast errors, as well as their first, 6
th

 and 12
th

 sample autocorrelation 

coefficients. 

 

For 12 months ahead, both the yield curve models based on Nelson-Siegel specification, i.e., 

yields-macro and yields-only, perform well than the benchmark AR(1) specification, as the MAE 

and RMSE of both the former models are lower than of the AR(1) model. However, the 

autocorrelation of the forecast errors for all the three models is almost same for all the maturities. 

It is worth noting, that related papers such as Bliss (1997), de Jong (2000) and Diebold and Li 

(2006) also find serially correlated forecast errors, often with persistence much stronger than ours. 
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Moreover, MAE and RMSE comparisons at various maturities reveal the preference of 

yields-macro over yields-only model even at longer horizon forecast.
39

 

 

Table 3.8: Out-of-Sample 12 Months Ahead Forecasting Results 

Maturity      Mean Std. Dev.    MAE    RMSE     �̂� (1)      �̂� (6)       �̂� (12) 

Forecast Summary for Yields-Macro Model 

3 

6 

12 

24 

60 

120 

180 

240 

300 

0.006 

-0.005 

0.002 

0.003 

-0.019 

0.032 

-0.019 

-0.024 

0.008 

0.184 

0.182 

0.211 

0.266 

0.318 

0.259 

0.260 

0.269 

0.284 

0.129 

0.131 

0.154 

0.196 

0.240 

0.174 

0.162 

0.162 

0.176 

0.046 

0.044 

0.054 

0.084 

0.117 

0.104 

0.149 

0.183 

0.202 

0.835 

0.813 

0.832 

0.847 

0.812 

0.801 

0.814 

0.818 

0.829 

-0.040 

-0.052 

0.000 

-0.018 

-0.046 

-0.045 

-0.009 

0.041 

0.023 

-0.111 

-0.073 

-0.044 

-0.030 

-0.057 

-0.079 

-0.124 

-0.077 

-0.095 

Forecast Summary for Yields-Only Model 

3 

6 

12 

24 

60 

120 

180 

240 

300 

0.007 

-0.006 

0.003 

0.003 

-0.020 

0.034 

-0.019 

-0.024 

0.007 

0.180 

0.178 

0.205 

0.260 

0.309 

0.252 

0.256 

0.266 

0.281 

0.133 

0.135 

0.160 

0.204 

0.250 

0.180 

0.165 

0.165 

0.177 

0.047 

0.045 

0.055 

0.084 

0.119 

0.108 

0.153 

0.188 

0.206 

0.842 

0.821 

0.837 

0.852 

0.829 

0.809 

0.833 

0.854 

0.869 

0.010 

-0.018 

0.017 

-0.024 

-0.071 

-0.072 

-0.042 

0.004 

-0.012 

0.174 

0.167 

0.182 

0.154 

0.065 

0.005 

-0.025 

0.016 

0.024 

Forecast Summary for AR(1) Model 

3 

6 

12 

24 

60 

120 

180 

240 

300 

-0.080 

-0.067 

-0.029 

-0.055 

-0.123 

-0.136 

0.025 

0.035 

-0.138 

0.126 

0.102 

0.129 

0.203 

0.299 

0.212 

0.185 

0.190 

0.163 

0.136 

0.144 

0.179 

0.284 

0.278 

0.193 

0.183 

0.174 

0.187 

0.149 

0.122 

0.133 

0.211 

0.324 

0.252 

0.187 

0.193 

0.214 

0.867 

0.897 

0.856 

0.848 

0.825 

0.921 

0.858 

0.840 

0.872 

0.386 

0.352 

0.569 

0.726 

0.698 

0.425 

0.335 

0.424 

0.431 

0.252 

0.235 

0.457 

0.601 

0.593 

0.308 

0.206 

0.266 

0.300 

Note: The table reports the results of out-of-sample 12-month-ahead forecasting using state-space specification for the 

yields-macro and yields-only models along with the AR(1) forecasts for various maturities. We estimate the models 

recursively from 2000:1 to the time that the forecast is made, beginning in 2008:1 and extending through 2011:12. We 

define forecast errors at 𝑡  12  as  𝑅𝑡+12(𝑚) − �̂�𝑡,𝑡+12(𝑚) , where �̂�𝑡,𝑡+12(𝑚)  is the 𝑡  12months ahead 

forecasted yield at period 𝑡, and we report the mean, standard deviation, mean absolute errors (MAE) and root mean 

squared errors (RMSE) of the forecast errors, as well as their first, 6
th

 and 12
th

 sample autocorrelation coefficients. 

 

                                                   
39

 We also computed the 24 months ahead forecasts for the yields-macro, yields-only and AR(1) models to evaluate 

the performance for the longer horizon forecasts, though not reported here for the save of space. The 

Nelson-Siegel specifications perform better than the AR(1) model even for the longer horizon, while the 24 

months ahead forecasts are not as good as the short horizon forecasts possibly due to small sample size. 
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In summary, the out-of-sample forecasts results indicate that the Nelson-Siegel specification 

of yield curve comes with more accurate and precise forecasts as compared to the benchmark 

forecasts models such as random walk and AR(1). Furthermore, the forecasts of yields-macro 

model seem reasonably well in term of lower forecasts errors and lags autocorrelation than the 

yields-only model. In term of lower RMSE, our results for all the three forecast horizons are 

preferred than that of related studies, i.e., Bliss (1997), de Jong (2000) and Diebold and Li (2006). 

The results of yields-macro model suggest that the autocorrelation of forecasts errors could be 

eliminated/reduced by the inclusion of various yield curve related variables in the model.  

3.4.2. Out-of-Sample Forecast Accuracy Comparisons 

To assess the overall quality of the out-of-sample forecasts of the models, we use a number of 

standard forecasts errors evaluation criteria. In the first subsection, we compute the Trace Root 

Mean Squared Prediction Error (TRMSPE), which summarizes the forecasting performance of 

each model. TRMSPE does not belong to the class of formal statistical tests but rather is a 

standard criterion, which is widely used to assess forecast accuracy. To test the statistical 

accuracy of the forecasts of all the three models, we consider the standard statistical tests in 

subsections 3.4.2.2 and 3.4.2.3. We employ Diebold and Mariano (1995) test to the loss 

differential quadratic errors and the standard t-test to the absolute values of forecast errors. 

Particularly, it is worth noting that the null hypothesis is same and the sign of statistic has a clear 

meaning in both the tests.
40

 Therefore, the results of the two tests can be directly compared in 

terms of statistical significance and sign. 

3.4.2.1. Trace Root Mean Squared Prediction Error 

The Trace Root Mean Squared Prediction Error (TRMSPE) combines the forecast errors of all 

maturities and summarizes the performance of each model, thereby allowing for a direct 

comparison between models. Given a sample of (𝑇 − 𝑇0) out-of-sample forecasts of 𝑁 distinct 

maturities with  −months ahead forecast horizon, we compute the TRMSPE as follows: 
 

 

𝑇𝑅𝑀 𝑃𝐸 = √
1

𝑁(𝑇 − 𝑇0)
∑ ∑[𝑅𝑡+ℎ(𝑚) − �̂�𝑡,𝑡+ℎ(𝑚)]

2
𝑇

𝑡=𝑇 

𝑁

𝑚=1

 (3.23) 

 

where �̂�𝑡,𝑡+ℎ(𝑚) is the forecasted yield in period 𝑡 for 𝑡    period, [𝑅𝑡+ℎ(𝑚) − �̂�𝑡,𝑡+ℎ(𝑚)] 

is the forecast errors at 𝑡    for yield and 𝑇0 is the first month of forecasting period (January 

2008). 

In table 3.9, we report the TRMSPE for all the three models, i.e., yields-macro, yields-only 

and AR(1) model for all the three forecasts horizons. The overall performances of yields-macro 

                                                   
40

 One should be aware of the difference that we use squared forecast errors in the Diebold and Mariano (1995) 

forecast accuracy comparison test and absolute forecast errors in the t-test. 
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and yields-only models are much superior to that of the AR(1) benchmark model in terms of 

TRMSPE for all the three forecast horizons. It suggests that both specifications of Nelson-Siegel 

model (with and without macroeconomic variables) of yield curve outperform the AR(1) 

forecasts of yield. Table 3.9 shows that the forecasts errors of all the three models are getting 

larger as, the forecast horizons become longer.  
 

Table 3.9: TRMSPE Results for Out-of-Sample Forecasts Accuracy Comparisons 

TRMSE 1 Month Forecasts 6 Months Forecasts 12 Months Forecasts 

Yields-Macro Model 

Yields-Only Model 

AR(1) Model 

0.002 

0.003 

0.120 

0.041 

0.044 

0.218 

0.046 

0.062 

0.248 

Note: The table reports the Trace Root Mean Squared Prediction Error (TRMSPE) results of 

out-of-sample forecasts accuracy comparison for horizons of one, 6, and 12 months for all 

the three models. 
 

However, the TRMSPE of the yields-macro model for 12 months ahead forecast is much 

smaller than that of the yields-only model, while the former TRMSPE for the one and six months 

horizons are marginally better than the latter one. Thus, introducing macroeconomic variables 

into the yields curve model improves yield curve forecasts as compared to the yields-only model. 

Based on the TRMSPE criterion, we can conclude that the yields-macro and yields-only 

models clearly outperform the AR(1) specification, and the yields-macro model is fairly better 

than the yields-only model at least for the longer forecast horizon. 

3.4.2.2. Diebold-Mariano Test 

We employ the Diebold and Mariano (1995) test for the squared forecast errors in order to get a 

more deep insight. Their test makes a direct comparison between the two competitive models for 

each maturity and each forecast horizon. We are interested in testing the hypothesis about 

equality of the squared errors (i) between the yields-only model and AR(1) specification of yield, 

and (ii) between yields-macro and yields-only models.  

The main feature of Diebold and Mariano (DM, 1995) test of forecast accuracy lies in its 

direct applicability to quadratic loss functions, multi-period forecasts, and forecast errors that are 

non-Gaussian with non-zero mean and serial and contemporaneous correlation (correlated across 

maturities as well as over time). Defining the squared forecast errors as: 
 

 
𝑒𝑡 = [𝑅𝑡+ℎ(𝑚) − �̂�𝑡,𝑡+ℎ(𝑚)]

2
 (3.24) 

 

The basic component of Diebold and Mariano test statistic is the observed difference series of the 

squared forecast errors as: 
 

 𝑑𝑡 = 𝑒1𝑡 − 𝑒2𝑡 (3.25) 
 

where 𝑒1𝑡 and 𝑒2𝑡 are the quadratic loss functions of the two competing models as defined in 



63 

 

(3.24) for 𝑡 = 𝑇0  1, 𝑇0  2,… , 𝑇 . We test the null hypothesis 𝐻0 𝐸(𝑑𝑡) =   against the 

alternative hypothesis 𝐻1 𝐸(𝑑𝑡)   . 

Assuming covariance stationarity and other regularity conditions on the process 𝑑𝑡, we use 

the standard result that: 
 

 
√(𝑇 − 𝑇0)(�̅� − 𝜇)

𝑑
→𝑁[ , 2𝜋𝑓𝑑( )] (3.26) 

 

where 𝑓𝑑( ) is the spectral density of 𝑑𝑡  and �̅� is the sample mean of 𝑑𝑡 over time. The 

Diebold-Mariano (DM) test statistic is computed as: 
 

 
𝐷𝑀 =

�̅�

√2𝜋𝑓𝑑( )/(𝑇 − 𝑇0)

   𝑁( ,1) 
(3.27) 

 

where 𝑓𝑑( ) is a consistent estimate of 𝑓𝑑( ). This test also corrects for the autocorrelation that 

multi-period forecast errors usually exhibit.
41

 Diebold and Mariano (1995) use a Newey-West 

type estimator for sample variance of the loss differential to account for this concern.
42

 

We apply the Diebold and Mariano (1995) test to forecast errors of two pairs of models and 

the results are presented in table 3.10. In first step, we compare the forecast accuracy of 

yields-only and AR(1) model, and subsequently make a comparison of yields-macro model 

forecast errors with those of yields-only model in the second step for each maturity and each 

forecast horizon. 

The results in the table 3.10 for the first pair point towards the universal significant 

difference of the RMSE for all the three horizons and all maturities forecasts of the yields-only 

and AR(1) model, as all DM-stat are significantly different from zero. The negative values shows 

that yields-only model outperforms all the competing forecasts of AR(1) specification of yield (in 

first pair 𝑒1𝑡 and 𝑒2𝑡 are the squared forecast errors functions of yields-only model and AR(1) 

model respectively). 

The DM-Stat reported in table 3.10 for the second pair of models (yields-macro and 

yields-only), indicates a significant difference of the RMSE for one month ahead forecast of 

yields-macro and yields-only model. The p-value is equal zero for all maturities for  = 1. Most 

notably the negative values indicate superiority of yields-macro model forecasts as we consider 

𝑒1𝑡 and 𝑒2𝑡 the quadratic loss functions of yields-macro and yields-only models respectively. 

Comparison of the 6 and 12 months ahead forecasts of both models specify that 11 out of 18 

Diebold–Mariano statistics show a statistically significant (at 10% significance level) superiority 

of yields-macro model over the yields-only model. The results of Diebold and Mariano (1995) 

test suggest that the resilient predictive power of the yields-macro model at the 1-month-ahead 

horizon is very attractive for short-term bond trading activities and credit portfolio risk 

                                                   
41

 See, Diebold and Mariano (1995) for detail. 
42

 See, Andrews (1991) for detailed econometric applications. 
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management. Furthermore, it also shows that such extended model (yields-macro model) can 

form the basis for predicting the stock market performance and state of economy in near future. 
 

Table 3.10: Diebold-Mariano Test-statistic 

Maturity 

Yields-Only against AR(1) Model  Yields-Macro against Yields-Only Model 

  1 Month 

  Forecast 

  6 Months 

 Forecast 

  12 Months 

 Forecast 

  1 Month 

  Forecast 

 6 Months 

 Forecast 

12 Months 

Forecast 

3 

6 

12 

24 

60 

120 

180 

240 

300 

-10.111
***

 

-9.899
***

 

-11.510
***

 

-12.008
***

 

-8.103
***

 

-3.881
***

 

-2.444
***

 

-2.975
***

 

-3.387
***

 

-3.565
***

 

-3.709
***

 

-2.356
***

 

-2.108
***

 

-2.155
***

 

  -1.396
*
 

-2.265
***

 

  -1.916
**

 

 -1.268
*
  

-2.239
***

 

-2.464
***

 

-3.544
***

 

   -1.929
**

 

-2.115
***

 

   -1.822
**

 

  -1.349
*
 

   -1.749
**

 

  -1.257
*
 

-3.811
***

 

-4.068
***

 

-3.994
***

 

-4.007
***

 

-4.740
***

 

-4.117
***

 

-3.910
***

 

-3.969
***

 

-3.985
***

 

-1.253
*
 

-1.210
*
 

-1.299
*
 

 -1.741
**

 

-3.143
***

 

-1.193
*
 

0.115 

0.827 

-1.531
*
 

  -0.949 

  -0.956 

  -1.398
*
 

-2.574
***

 

-1.858
**

 

  -1.515
*
 

  -0.934 

  -0.056 

   0.435 

Note: The table presents Diebold–Mariano forecast accuracy comparison test results of the yields-only model 

against the AR(1) specification of yield and yields-macro model against the yields-only model for 1, 6, and 12 

months ahead forecasts. The null hypothesis is that the two forecasts have the same root mean squared error. ***, 

** and * show the statistical significance at 1%, 5% and 10% respectively. 
 

Beside the Diebold and Mariano (1995) test to assess the overall quality of the 

out-of-sample forecasts of the models, we also employ the t-test for the mean equality of absolute 

forecast errors to evaluate the robustness of our forecast comparison tests results. 

3.4.2.3. Mean Equality Test for the Absolute Forecast Errors 

The mean equality test for the absolute forecast errors is based on the standard t-test. We employ 

the t-test for the absolute forecast errors in order to make a direct comparison between the models 

for each maturity and each forecast horizon. Defining, 𝑥𝑖𝑡 as the absolute forecast errors for 

model 𝑖 in period 𝑡, where 𝑖 = 1,2 (models) and 𝑡 = 1,2, … , 𝑇, we test the null hypothesis 

𝐻0 𝜇1 = 𝜇2 against the alternative hypothesis 𝐻1 𝜇1  𝜇2. 

Under the normality assumption and inequality of sample variances for the paired samples, 

the t-statistic for the equality of means is computed as: 
 

 
𝑡 =

�̅�1 − �̅�2

√1
𝑇
( 1
2   2

2)

 𝑡(2𝑇−2) 
(3.28) 

 

where �̅�1 and �̅�2  are the sample means and  1
2  and  2

2  are the sample variances for the 

absolute forecast errors of the two competing models and 𝑇 is the total number of observations. 

The t-statistic in (3.28) has t-distribution with 2(𝑇 − 1) degrees of freedom under the null 

hypothesis.  

Table 3.11 presents the results of testing the equality of absolute mean forecast errors. The 

absolute mean forecast errors of the yield-only model is universally smaller than that of the 
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AR(1), as the observed t-stat are negative and highly significant for all maturities and forecast 

horizons, as shown by the left panel of table 3.11. Furthermore, the yields-macro model 

outperforms the yields-only model for almost all the maturities and forecast horizons, with a few 

exceptions only for 6 and 12 months ahead forecasts at relatively longer maturities as shown by 

the right panel. It is worth noting that the t-test in table 3.11 gives almost the same results as 

those of the Diebold and Mariano test in table 3.10. 
 

Table 3.11: t-test Statistic for Out-of-Sample Forecasts Accuracy Comparisons 

Maturity 

Yields-Only against AR(1) Model  Yields-Macro against Yields-Only Model 

1 Month 

Forecast 

6 Months 

Forecast 

12 Months 

Forecast 

1 Month 

Forecast 

6 Months 

Forecast 

12 Months 

Forecast 

3 

6 

12 

24 

60 

120 

180 

240 

300 

-9.509
***

 

-10.148
***

 

-7.254
***

 

-8.172
***

 

-6.034
***

 

-6.744
***

 

-3.601
***

 

-4.054
***

 

-3.779
***

 

-8.196
***

 

-9.289
***

 

-4.467
***

 

-5.089
***

 

-3.439
***

 

-4.625
***

 

  -1.662
*
 

  -2.356
**

 

  -2.243
**

 

-3.802
***

 

-3.902
***

 

  -2.222
**

 

  -2.125
**

 

 -1.698
*
 

-3.854
***

 

  -2.114
**

 

  -2.025
**

 

-4.872
***

 

-6.421
***

 

-6.153
***

 

-5.538
***

 

-5.726
***

 

-4.929
***

 

-6.564
***

 

-4.082
***

 

-3.949
***

 

-5.647
***

 

 -2.183
**

 

-3.972
***

 

-4.215
***

 

 -2.137
**

 

3.837
***

 

 -2.271
**

 

1.055 

 0.741 

-0.529 

   -2.178
**

 

   -2.155
**

 

-4.662
***

 

   -3.078
**

 

-4.095
***

 

  -0.541 

  -0.004 

  -0.265 

  -1.697
*
 

Note: The table reports the t-test results of the mean equality of the absolute forecast errors of the 

yields-only model against AR(1) specification of yield and yields-macro model against the yields-only 

model for 1, 6 and 12 months ahead forecasts accuracy comparison. The null hypothesis is that the two 

forecasts errors (absolute values) have the same mean error. The degree of freedom for t-statistic is (94), 

(82) and (70) in one month, 6 months and 12 months ahead forecasts respectively.
 
***, ** and * show the 

statistical significance at 1%, 5% and 10% respectively. 
 

The results of all the three tests in this study unanimously suggest that the Nelson-Siegel 

specifications outperform the competing benchmark forecasts models such as the AR(1) and 

random walk specifications.
43

 Moreover, within the class of Nelson-Siegel models, the 

yields-macro model has an attractive and greater success than the yields-only model in 

forecasting the yields for short and medium-term maturities, and the former is still comparable to 

the latter for a longer horizon forecast. 

3.5. Conclusion 

The Nelson-Siegel framework of yield curve provides means for an effective time series analysis 

of yield data. This chapter has examined the role of macroeconomic and stock market variables in 

the dynamic Nelson-Siegel framework with the purpose of fitting and forecasting the term 

structure of interest rate on the Japanese government bond market. The yield curve model 

(proposed extended model) of this study explicitly incorporates both yields factors (level, slope, 

and curvature) and macroeconomic variables (overall economic activity, exchange rate, stock 

prices index (TOPIX) and inflation rate).  
                                                   
43

 An alternative benchmark model would be a random walk. We compared the forecast errors of the AR(1) and the 

random walk models by using the TRMSPE and the DM test (not reported here). The results show that the AR(1) 

specification is much superior to the random walk for forecasting the yields. 
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For the in-sample fit, we find that both the yields-macro and yields-only models are capable 

of distilling the term structure of interest rate quite well, and of describing the evolution and the 

trends of the Japanese government bonds market. The yields-macro model also leads to a better 

fit than the yields-only model does in terms of the MAE, RMSE as well as residuals 

autocorrelation. Regarding the term structure forecasts, the Nelson-Siegel framework of yield 

curve considerably outperforms the benchmark simple time series models such as an AR(1) and a 

random walk. For the short horizon forecasts, the out-of-sample predictability of the yields-macro 

model is superior to the yields-only model for all maturities examined in this study. And for the 

longer horizons, the former is still compatible to the latter. Moreover, the autocorrelation of 

forecasts errors of yields-macro model is much smaller and negligible as compared to the 

yields-only model, and to the persistency of errors in other related studies such as Bliss (1997), 

de Jong (2000), Diebold and Li (2006) and Ullah (2012). 

The overall accuracy in the in-sample fit and the out-of sample forecasts of the proposed 

yields-macro model ranks it to be a good candidate among the various competing yield curve 

models in order to forecast the future yield, stock market performance and state of economy. This 

study also suggests that the correlation problem of residuals across maturities in in-sample fit and 

persistency of forecast errors could be avoided by incorporating the relevant macroeconomic and 

equity market factors in the statistical analysis of term structure models. 

 

 

 

 

 

 

 



67 

 

 

Chapter 4 

Dynamics of the Term Structure of Interest 

Rates and Monetary Policy 

Is Monetary Policy Effective during ZIRP? 

4.1. Introduction 

A long standing empirical literature has shown that monetary policy is a major factor in the 

movements of the yield curve. Among other works, Bernanke and Blinder (1992), Estrella and 

Hardouvelis (1991) and Mishkin (1990) explore the informational content of the spread between 

long and short-term yields (as an indicator of monetary policy) to forecast the future economic 

activity and inflation in the US market. They find that the slope of the term structure appears to 

carry information about future inflation and also provide evidence that an inverted yield curve 

reflects expectations of a declining rate of real activity. However, monetary transmission is 

complex and operates through many diverse channels. Other related studies in this regard, include 

Kozicky and Tinsley (2001), Svensson (2003), and Bernanke et al. (2005), have modeled the 

short-term interest rate as monetary policy instrument into the term structure framework. A 

common result of this strand is that the relation between the term spread and economic activity 

may be that the slope of yield curve reflects the stance of monetary policy. If the policymakers 

raise short-term interest rates, long-term rates are usually not increasing one-to-one with them but 

slightly less. Hence, the spread tightens and even might become negative. Higher interest rates 

slow down overall spending and, consequently, stagnates the economic growth. Therefore, a 

small or negative slope of the yield curve will be an indication for a slower growing economy and 

a decline in inflation in the future. 

These models, however, fail to reflect the stances of monetary policy on real economic 

activity through the yields spread because of the unusual shape of Japan’s yield curve, which is 

flatter for shorter maturities.
44

 Furthermore, the short-term interest rate — the most important 

and conventional monetary policy instrument — has been bounded at zero in Japan and, hence, is 

no longer a policy instrument. The alternative may be monetary easing or some other 

                                                   
44

 This reflects the expectation that the Bank of Japan (BOJ) will not raise the target rate for a considerable period. 
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non-conventional measures.
45

 The goal of the central bank is, therefore, to affect the economy 

across the yield curve, bringing down long-term rates, thereby, boosting the economy. Therefore, 

it is more appropriate to consider the impact on medium to long-term maturities yields rather than 

only the term spread, as they are the fundamental conduits for the transmission of monetary 

policy.
46

 

This chapter addresses this issue by formulating a yield curve model that integrates 

monetary policy as well as real economy factors in the term structure model. The objective is to 

examine the effectiveness of such policy (monetary easing and non-conventional policy tools) in 

affecting the yield curve, using the Japanese experience of zero interest rate policy (ZIRP) and 

quantitative easing monetary policy (QEMP). To be precise, we are interested to figure out the 

transmission mechanism through which the monetary policy affects the real economy. In 

evaluating the effectiveness of QEMP during the ZIRP period, we focus on the expectation 

channel. The effectiveness of such channel depends on the credible commitment of the central 

bank of maintaining the future policy rate at zero.
47

 The desired intermediate effect of the 

monetary policy will be that the reduction of expected future short-term rates will be transmitted 

to the long end of the yield curve. The decline in the long-term interest rates will, in turn, lead to 

increased expectations of inflation and will stimulate activity.  

Given that the conventional monetary policy instrument, the short-term interest rates, is not 

effective in combating the deflationary cycle and debt deflation after the short-term interest rate 

has reached zero because the policy instrument cannot be lowered further, we aim to understand: 

 Should the central bank just watch things deteriorating in the cyclical process and wait for 

the invisible hand, expecting that things will get better soon (economy will get recovered)? 

 Should the central bank use tools that are beyond conventional policy instruments to get the 

economy out of a deflationary cycle? 

To respond to these questions, we have to evaluate the transmission mechanism of policy shocks 

through the short, medium, and long-term bond yields to the real economy. For this purpose, we 

use a three-factor term structure model, based on the classic contribution of Nelson and Siegel 

(1987). We incorporate three macroeconomic variables, i.e., the level of economic activity, 

money supply and inflation rate in the state-space representation along with stochastic volatility 

component in the yield curve model. 

                                                   
45

 Non-conventional tools include sale/purchases of foreign currency denominated bonds, equities (indexed equity 

funds listed on the exchange) and real estate (funds), and non-sterilized interventions. 
46

 We are aware of the previous studies which show that policy duration has a significant effect on the yield curve 

(Oda and Ueda, 2007; Okina and Shiratsuka, 2004 and Baba et al. 2005), but they do not examine the 

transmission of this positive effect to the real economy. Furthermore, in Ang and Piazzesi (2003), Hördahl et al. 

(2006), Wu (2002), Evans and Marshall (2007), and Nakajima et al. (2010) only few specific yields are taken into 

consideration and the impact, therefore, does not transmit to the real economy. Moreover, in Bernanke et al. 

(2005), the period of the BOJ’s policy is not considered and their empirical results provide only limited insights 

on monetary policy. 
47

 In the commitment regime of monetary policy, the central bank does not optimize the quadratic loss function 

every period, but, makes the credible commitments about what it will do in the future. By promising to take a 

certain action in future, the central bank can influence the public’s expectation about future policy rates and 

inflation. 
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The motivation to add a common stochastic volatility component in the yield curve model is 

to allow the model to capture latent exogenous shocks that affect the entire yield curve and are 

not captured by the three factors structure of level, slope and curvature. This extension increases 

the flexibility of the term structure model to accurately estimate the impact of macroeconomic 

policies shocks on yield curve after controlling for the influence of latent exogenous shocks.
48

 

Furthermore, considering the Japanese case is particularly interesting, because its economy has 

become very unstable and experienced significant institutional and monetary strategy changes 

during the last decade. In addition, taking into account the entire term structure instead of using 

only few yields in the observation equation might contribute to the economic interpretation of 

curvature factor of yield curve.
49

 

The study contributes to the existing literature in three ways. The first one is methodological. 

In calibration the multi-factors Nelson-Siegel model, we include the common stochastic volatility 

component that follows the EGARCH process, while adopting the state-space approach. The 

second, instead of using the conventional monetary policy tool, i.e., the short rates, we include 

the growth rate of money supply as indicator of QEMP to figure out the transmission mechanism 

of monetary policy to real economy through the yields of entire maturity spectrum. The third, we 

attribute an economic interpretation to the third unobservable component of the term structure, 

i.e., the curvature factor. 

We proceed as follows. Section 4.2 deals with the term structure model that integrates the 

yield curve factors with macroeconomic variables and explains the estimation method, while the 

data structure and estimation results are presented in 4.3. In section 4.4, we relate our framework 

to the expectation hypothesis. Finally, section 4.5 presents the conclusion of the chapter. 

4.2. Term Structure Model and Estimation Method 

The macro-finance literature has convincingly advocated the case for the existence of 

bidirectional link between the term structure and rest of the economy. To this end, we design a 

dynamic Nelson-Siegel (DNS) yield curve model with macroeconomic variables in the 

state-space framework that also allows for the time-varying stochastic volatility in yields for 

various maturities. We use the standard EGARCH specification to describe the volatility process 

of a common shock in the yields, while adopting the state-space approach. Adding a common 

stochastic volatility component increases the flexibility of the term structure model and enables it 

to fit attractively the more complex shapes of the yield curve.
50

 In this section, we discuss the 

                                                   
48

 The inclusion of common volatility latent factor also enables the three factors structure of yield curve of Nelson 

and Siegel (1987) to fit attractively more complex shapes of the yield curve. Moreover, the existence of a common 

volatility component can be of great importance to interest rate option traders, who manage risk in an entire book 

of interest rate volatility positions. Knowledge of a common component that determines volatilities in different 

parts of the yield curve allows traders to mitigate overall risk in the trading book by taking offsetting positions in 

different yields along the curve. 
49

 Given that the yield curve is summarized by three latent factors, i.e., level, slope and curvature, which can be 

obtained through Kalman filtering. 
50

 As Koopman et al. (2010) has shown by plotting some fitted curves, they find that allowing for time-varying 

volatility significantly increases the likelihood value relative to the traditional DNS model. 
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concept of time-varying factors and volatility in the DNS model. First, in subsection 4.2.1, we 

describe the model that incorporates macroeconomic variables as well as the common stochastic 

volatility term in state-space representation. The latent factors model is considered, since it will 

be a convenient vehicle for introducing the state-space representation. Second, subsection 4.2.2 

presents the estimation procedure of the model in the state-space framework using the Kalman 

filter algorithm. 

4.2.1. Yields-Macro Factors Model 

An intuitive way to represent our model is to cast the Nelson-Siegel (1987) functional form into 

state-space framework, which assumes that information about the term structure of interest rates 

can be summarized by three factors, i.e., the level, slope and curvature of the yield curve, as: 
 

 
𝑅𝑡(𝑚𝑖) = 𝛽1𝑡  𝛽2𝑡 0

1 − exp(−𝑚𝑖/𝜏)

𝑚𝑖/𝜏
1  𝛽3𝑡 0

1 − exp(−𝑚𝑖/𝜏)

𝑚𝑖/𝜏
− exp (

−𝑚𝑖
𝜏
)1  휀𝑡 (4.1) 

 

where 𝑅𝑡(𝑚𝑖) is the zero-coupon yield for maturity 𝑚 at time 𝑡, 𝑖 = 1,2, … ,𝑁;  𝑡 = 1,2, … , 𝑇, 

𝛽𝑡 = (𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡)
′  is the unobservable vector of three latent factors of level, slope and 

curvature respectively. The constant parameter 𝜏 is the decay parameter of the factor loading of 

the yield curve slope and also determines the optimum point of the curvature factor loading. 

Examination of the limits of the Nelson-Siegel model shows, where the interpretations of the 

factors come from, when time to maturity goes to infinity, we find the infinitely long end of the 

curve, which is given by 𝑙𝑖𝑚𝑚→∞ 𝑅𝑡(𝑚𝑖) = 𝛽1𝑡. Given the fact that the first factor loading is 

equal to 1, the 𝛽1𝑡 gets the interpretation of the level factors. Letting time to maturity goes 

towards zero, the infinitely short end of the curve can be obtained as, 𝑙𝑖𝑚𝑚→0 𝑅𝑡(𝑚𝑖) = 𝛽1𝑡  

𝛽2𝑡, meaning that the short rate is influenced by the first and second factors. Defining the slope of 

the yield curve as the long minus the short end, it can be seen that it is given by −𝛽2𝑡. The third 

factor loading in (4.1) approaches zero in both cases, when time to maturity goes to zero or 

infinity and is positive for intermediate values of 𝑚. Therefore, 𝛽3𝑡 affects the middle part of the 

yield curve and, hence, is interpreted as the curvature factor in the DNS model. 

Regarding the error term, 휀𝑡 , in the Nelson-Siegel model, the earlier studies assume 

that 휀𝑡~𝑁( , 𝜍
2𝐼𝑁). However, the interest rates are the result of trading at financial markets, 

therefore, the volatility in the series may have changed over time as well. That’s why, we assume 

that: 
 

 휀𝑡 =  𝜀휀𝑡
∗  휀𝑡

+ ,                                휀𝑡
+ ~𝑁( ,  )   (4.2) 

 

where  𝜀 and 휀𝑡
+ are (N×1) vectors of loadings and noise component respectively, and 휀𝑡

∗ is a 

scalar representing the common disturbance term. In this model 휀𝑡
∗ and 휀𝑡

+ are independent. 

The loading factor,  𝜀, determines how sensitive the different yields are to the common shock.  

The distribution of the common volatility component, 휀𝑡
∗, given the information up to time 

𝑡 − 1 (denoted by 휁𝑡−1) is: 
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 휀𝑡
∗|휁𝑡−1~𝑁( ,  𝑡)      (4.3) 

 

where  𝑡  follows the EGARCH specification, which is given by:
51

 
 

 
log( 𝑡) = 𝛾0  𝛾1

휀𝑡−1
∗

√ 𝑡−1
 𝛾2log( 𝑡−1)  𝜓.|

휀𝑡−1
∗

√ 𝑡−1
| − 𝔼 0|

휀𝑡−1
∗

√ 𝑡−1
|1/  (4.4) 

 

where 𝔼(|휀𝑡−1
∗ /√ 𝑡−1|)  is the expectation of the absolute value of a standard normally 

distributed random variable, which is equal to √2/𝜋. The volatility at 𝑡 = 1 is set equal to the 

unconditional expectation of the log variance, which is  𝔼[log( 𝑡)] = 𝛾0(1 − 𝛾2)
−1 . This 

specification for variance dynamics enable the common volatility component in the DNS model 

to account for asymmetric response to positive and negative shocks. 

As far as the macro variables are concerned, we include three key variables: the annual 

growth rate in industrial production  (𝐼𝑃𝑡)  and money supply (𝑀 𝑡)  and annual price 

inflation (𝐼𝑁𝐹𝑡). These variables represent, respectively, the level of real economic activity, 

monetary policy stances and the inflation rate, which are widely considered to be the minimum 

set of fundamentals needed to capture basic macroeconomic dynamics.
52

 

Diebold et al. (2006) and many others find that the time series of estimated factors of 

Nelson-Siegel model are highly persistent, which implies that these can easily be modeled as 

AR(1) or VAR(1).
53

 Furthermore, it allows to model the macroeconomy related factors in 

Nelson-Siegel model to assess its dynamic interaction with the yield curve factors. We assume 

that the yield curve latent factors vector 𝛽𝑡 along with the three macroeconomic factors follow a 

vector autoregressive process of first order, which allows us to formulate the yield curve latent 

factor model in the state-space form and to use the Kalman filter for obtaining 

maximum-likelihood estimates of the hyper-parameters and the implied estimate of 𝛽𝑡 . 

Furthermore, the time-varying variance,  𝑡 , depends on the past values of the unobserved 

common disturbance term, 휀𝑡
∗, which, therefore, has to be treated as a latent variable and should 

be included in the state vector. 

In the state-space representation the complete model with observation equation (4.5) and 

state equation (4.6) can be written as: 
 

 

[
𝑅𝑡(𝑚)
𝑍𝑡

] = [
Λ(𝜏)  𝜀  
  𝐼3

] [

𝛽𝑡
휀𝑡
∗

�̃�𝑡

]  [휀𝑡
+

 
] (4.5) 

 
𝛼𝑡+1 = *

(𝐼6 − 𝐴)𝜇
 

+  *
𝐴  
  

+ 𝛼𝑡  *
𝑣𝑡+1
휀𝑡+1
∗ + (4.6) 

                                                   
51

 Financial markets respond in different ways to positive and negative shocks and it is a common knowledge that 

volatility tends to increase quickly when negative news reaches to traders and investors, whereas, positive news 

usually has a much less pronounced effect. 
52

 For the expected theoretical relation between macroeconomic and yield curve factors, see Ullah et al. (2013). 
53

 Using the Japanese market data Ullah et al. (2013) and Ullah (2012) find that the three latent factors of yield curve 

are highly persistent and VAR(1) specification is more appropriate than the AR(1) as well as random walk 

specifications.   
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[
휀𝑡
+

𝑣𝑡+1
휀𝑡+1
∗
]~𝑁([

 
 
 
] , [
   
  𝑣  
   𝑡+1

]) (4.7) 

 

where 𝛼𝑡 = (𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡, 𝐼�̃�𝑡 , 𝑀 ̃𝑡 , 𝐼𝑁�̃�𝑡 , 휀𝑡
∗)
′
 is (7×1) latent vector,  𝑅𝑡(𝑚) is (N×1) vector of 

zero-coupon yields, 𝑍𝑡 = (𝐼𝑃𝑡 , 𝑀 𝑡 , 𝐼𝑁𝐹𝑡)
′ is (3×1) vector of macroeconomic factors, 𝛽𝑡 is 

(3×1) vector of Nelson-Siegel factors, Λ(𝜏) is (N×3) matrix of factors loadings, 𝐴 is (6×6) 

matrix of parameters, 𝜇 is (6×1) mean vector of factors, 𝐼6 and 𝐼3 are (6×6) and (3×3) identity 

matrices respectively and  𝜀 is (N×1) vector.  𝑣 is (6×6), the covariance matrix of innovations 

of the transition system and is assumed to be unrestricted, while the covariance matrix   of the 

innovations to the measurement system of (N×N) dimension is assumed to be diagonal. The latter 

assumption means that the deviations of the observed yields from those implied by the fitted yield 

curve are uncorrelated across maturities and time.
54

 Furthermore, the variance of 휀𝑡+1
∗  is  𝑡+1 

and will be modeled as EGARCH process, specified in (4.4). 

Moreover, in (4.7), we assume that the innovations, 휀𝑡
+ and 𝑣𝑡, as well as common volatility 

component, 휀𝑡
∗ , have Gaussian distribution. The model in equations (4.4 – 4.7) provides a 

flexible framework for analyzing the interaction between the yield curve and macroeconomy, 

while simultaneously accounts for the time-varying stochastic volatility in yields for all 

maturities. In addition, the proposed specification guarantees positive forward rates at all 

horizons and a discount factor that approaches to zero as maturity increases. 

4.2.2. State-space Estimation of the Model 

In this subsection, the estimation procedure based on the Kalman filter for the dynamic 

Nelson-Siegel model with time-varying volatility is explained. For convenience, we introduce 

some new notations and rewrite the signal and state equations in (4.5) and (4.6) respectively, to 

obtain the generalized form of DNS model with time-varying volatility in state-space form. 
 

 𝑦𝑡 = 𝐻𝛼𝑡  𝑤𝑡 (4.8) 

 𝛼𝑡+1 = 𝐶  𝐾𝛼𝑡  𝐺𝑢𝑡+1 (4.9) 

 
*
𝑤𝑡

𝑢𝑡|휁𝑡−1
+  𝑁 (*

 
 
+ , [
𝑅  
  𝑡

]) (4.10) 

 

where the expressions of 𝑦𝑡, 𝛼𝑡, 𝐻, 𝐶, 𝐾, 𝐺, 𝑢𝑡 and 𝑤𝑡 are given in appendix E.  

The Kalman filter algorithm consists of two steps to find a minimum mean squared error 

estimate of the latent vector 𝛼𝑡, namely the prediction and the update steps. At a given time 𝑡, we 

form an optimal prediction of 𝑦𝑡 based on all information available up to time 𝑡 − 1, denoted 

by 𝑦𝑡|𝑡−1. This prediction can be made using (4.8) and �̂�𝑡|𝑡−1, which can be calculated using (4.9) 

and 𝑦𝑡−1|𝑡−1. After obtaining the prediction on 𝑦𝑡, the prediction error 휂𝑡|𝑡−1 and its covariance 

                                                   
54

 Given the large number of observed yields used, the diagonality assumption of covariance matrix of the 

measurement errors is necessary for computational tractability. 
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matrix 𝐹𝑡|𝑡−1 can be calculated to obtain information on 𝛼𝑡 that is not yet contained in 𝑦𝑡|𝑡−1. In 

the update step the estimate of 𝛼𝑡 at time 𝑡 using information up to time 𝑡 − 1, �̂�𝑡|𝑡−1 is 

updated by incorporating the new information from the prediction error to obtain �̂�𝑡|𝑡. The 

estimate �̂�𝑡|𝑡  contains information up to time 𝑡. The prediction step is summarised by the 

following four equations: 
 

 �̂�𝑡|𝑡−1 = 𝐶  𝐾�̂�𝑡−1|𝑡−1  (4.11) 

 𝑃𝑡|𝑡−1 = 𝐾𝑃𝑡−1|𝑡−1𝐾
′  𝐺 𝑡𝐺

′ (4.12) 

with 

 휂𝑡|𝑡−1 = 𝑦𝑡 − 𝐻�̂�𝑡|𝑡−1 (4.13) 

 𝐹𝑡|𝑡−1 = 𝐻𝑃𝑡|𝑡−1𝐻
′  𝑅 (4.14) 

 

and the update step is described by the two equations given as follows:  
 

 �̂�𝑡|𝑡 = �̂�𝑡|𝑡−1  𝑃𝑡|𝑡−1𝐻
′𝐹𝑡|𝑡−1
−1 휂𝑡|𝑡−1  (4.15) 

 𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝑃𝑡|𝑡−1𝐻
′𝐹𝑡|𝑡−1
−1 𝐻𝑃𝑡|𝑡−1 (4.16) 

 

where 𝑃𝑡  is the covariance/MSE matrix of �̂�𝑡  in the prediction and update steps. These 

equations enable the Kalman filter to estimate all latent variables recursively for 𝑡 = 1,2, … , 𝑇. 

Matrix  𝑡 contains  𝑡+1 that is modeled by EGARCH process and relies on latent shocks 

at time 𝑡 , which are unobservable. Kim and Nelson (1999) shows that taking conditional 

expectation of the latent variables in (4.4) gives: 
 

  log( 𝑡) = 𝛾0  𝛾1𝔼.
휀𝑡−1
∗ |휁𝑡−1

√ 𝑡−1
/  𝛾2log( 𝑡−1)  𝜓𝔼.|

휀𝑡−1
∗ |휁𝑡−1

√ 𝑡−1
| − 𝔼 0|

휀𝑡−1
∗ |휁𝑡−1

√ 𝑡−1
|1/  (4.17) 

 

where the estimate of 𝔼(휀𝑡−1
∗ |휁𝑡−1) is the last element of �̂�𝑡−1|𝑡−1 from the filtering/update step. 

In order to start the recursion, the initial value for 𝛼𝑡  is set equal to the unconditional 

mean, 𝛼1|0 = 𝔼(𝛼𝑡) =  , and the initial covariance matrix of the state vector, 𝑃1|0, is: 
 

 
𝑃1|0 = [

  
  1

] (4.18) 

 

where   is chosen such that  −W 𝑊′ =  𝑣 and  1 is the unconditional expectation of the 

log variance defined in section 4.2.1.
55

 This initiation enables the Kalman filter to provide a 

minimum mean squared error estimate of 𝛼𝑡 at every time 𝑡 = 1,2, … , 𝑇, given information up 

to time 𝑡 − 1 and given the hyper-parameters. 

The Kalman filter provides estimates for the latent variables and the unknown 

hyper-parameters have to be estimated using maximum likelihood method. Collecting all 

                                                   
55 We define vector 𝜉𝑡  consists of the first six elements of 𝛼𝑡 vector and model it as: 

 𝜉𝑡 = 𝑊𝜉𝑡−1  𝑣𝑡,       𝑣𝑡  𝑁( ,  𝑣)  

where 𝜉𝑡 = (𝛽1𝑡 − 𝜇1, 𝛽2𝑡 − 𝜇2, 𝛽3𝑡 − 𝜇3, 𝐼𝑃𝑡−𝜇4 , 𝑀 𝑡 − 𝜇5 , 𝐼𝑁𝐹𝑡  − 𝜇6)
′ , 𝑊 is (6×6) and  𝑣  is (6×6) 

covariance matrices of error term 𝑣𝑡 . We derive the unconditional mean and covariance of  𝜉𝑡 , which is 

summarized as 𝜉𝑡  𝑁( ,  ). For detail of initializing the Kalman filter, see Hamilton (1994). 
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unknown parameters of the measurement and state equations into 

휃 = (𝜏, 𝜇, 𝐴,  ,  𝑣,  𝜀 , 𝛾0, 𝛾1, 𝛾2, 𝜓), and assuming that 휀𝑡
+ and 𝑣𝑡 are normally distributed, the 

distribution of 𝑦𝑡 conditional on 휁𝑡−1is also Gaussian as 𝑦𝑡|휁𝑡−1~𝑁(𝑦𝑡|𝑡−1, 𝐹𝑡|𝑡−1);  hence, the 

Gaussian log likelihood is given by: 
 

log 𝐿 (휃) = −
𝑁𝑇

2
log(2𝜋) −

1

2
∑log(|𝐹𝑡|𝑡−1(휃)|)

𝑡

−
1

2
∑(휂𝑡|𝑡−1

′ [𝐹𝑡|𝑡−1(휃)]
−1
휂𝑡|𝑡−1)

𝑡

 (4.19) 

 

Numerical optimization of the log likelihood function (4.19) yields maximum likelihood 

estimates of the hyper-parameters. The process to find the latent factors and consistent estimates 

of the hyper-parameters is recursive one. The procedure is started by initiating the recursion using 

certain starting values for the hyper-parameters (휃0) that enable the Kalman filter to obtain 

estimates of the latent factors  (𝛼𝑡
0) , conditional on the initial choice for the parameters. 

Subsequently, given (𝛼𝑡
0), the likelihood function (4.19) is maximized in the optimization step to 

obtain new estimates of the hyper-parameters,  (휃1), that yield a higher likelihood. These 

estimates are used in the Kalman filter again to obtain new estimates of latent factors, (𝛼𝑡
1) and 

the corresponding likelihood value and so on. These recursive steps in the algorithm continue 

until the estimates of the hyper-parameters converge and we find the optimum of the likelihood 

function.
56

  

4.3. Empirical Results 

We have constructed a monthly time series panel of unsmoothed Fama-Bliss zero-coupon yields 

for Japanese treasuries of different maturities between 2000 and 2011. We combine this panel 

with a data set of macroeconomic time series for the same sample period. The details of the data 

set are provided in section 4.3.1. The estimation results for the joint interaction of macro and 

yield curve factors along with the EGARCH results are presented in section 4.3.2. Section 4.3.3 

presents the results of some formal statistical tests of contemporaneous and lagged interaction 

between macro and yield curve factors. Finally, in section 4.3.4 and 4.3.5, we discuss the 

estimation results for macroeconomic and yield curve factors impulse response functions and 

variance decompositions respectively.  

4.3.1. Data Description 

We consider the Japanese government bond yields with maturities of 3, 6, 9, 12, 15, 18, 21, 24, 

30, 36, 48, 60, 72, 84, 96, 108, 120, 180, 240 and 300 months. The yields are derived from 

bid/ask average price quotes, from January 2000 through December 2011, using the Fama and 

Bliss (1987) methodology. Yields extracted from pricing data by Fama-Bliss method exactly 

(precisely and accurately) price the included bonds and facilitate to avoid having negative spot 

rates during the lower short-term interest rate period. For the macroeconomic variables, we use 

data on the following three variables: the annualized growth of industrial production (𝐼𝑃𝑡), the 

                                                   
56

 We set the convergence criterion of (1 −6) for the change in the norm of the parameter vector 휃 from one 

iteration to the next. 
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growth rate of 𝑀2 money supply (𝑀 𝑡) as an indicator of monetary policy, and inflation 

rate (𝐼𝑁𝐹𝑡), measured as annualized monthly changes in the consumer price index. 

The data for the price quotes of Japanese government bonds is taken from the Japan 

Securities Dealers Association (JSDA) bonds files, while for the three macroeconomic variables 

is obtained from the International Financial Statistics (IFS) published by International Monetary 

Fund (IMF). Summary statistics of the yields for various maturities along with the three 

dimensional plot of the data set and the descriptive statistics of the macroeconomic variables is 

provided in section 1.4. 

4.3.2. Estimation Results of the Model 

To estimate the dynamic factors model, we use the Kalman filter algorithm suggested in 

Hamilton (1994). For given values of the system matrices, the Kalman filter is used to evaluate 

the log likelihood function via the prediction error decomposition. The maximum likelihood 

estimates of the unknown parameters are obtained via the numerical optimization of the Gaussian 

log likelihood function by iterating the Marquardt algorithm, using numerical derivatives. The 

Kalman filter is initialized using the unconditional mean (zero) and unconditional covariance 

matrix of the state vector, which are derived from the Gaussian distribution for the first 6 

components in state vector, given that the innovations of both signal and state equations are 

normally distributed. 

The estimation results of the parameters of state equation are presented in the first panel of 

table 4.1. High persistency in the yield curve latent factors can be seen from the diagonal 

elements of the coefficient matrix, all being close to one, however the lagged own dynamics of 

macroeconomic variables are not as strong as of the yield curve factors.
57

 Moreover, the lagged 

value of the second factor, which proxies for the slope of yield curve, has a significant influence 

on the level factor along with the statistically significant lagged impact of money supply and 

inflation rate on industrial production and of  𝑀 𝑡−1 on inflation rate. This significant relation 

encourages the use of a VAR model to describe the dynamics of the latent factors in the dynamic 

Nelson-Siegel model instead of the more parsimonious AR(1) specification. Regarding the yield 

macro dynamics, industrial production is positively while the growth rate of money supply is 

negatively related to the overall yield level. Furthermore, the slope factor is also affected by these 

two variables, i.e., positively by  𝐼𝑃𝑡−1 and negatively by  𝑀 𝑡−1. This suggests that monetary 

policy shocks account for significant fluctuations in the yield curve shape and policy shocks to 

short-term interest rates are likely to affect the medium to long-term interest rates. One important 

channel, through which monetary policy works, is the long end of yield curve, shaping them so 

that, in turn, they affect the level of economic activity. This relation is consistent with the 

expectation hypothesis of the yield curve theory. Moreover, the inflation rate has a positive 

statistically significant impact on the yield curve curvature. 
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 The own-lag coefficient of the second and third factor of yield curve  (𝛽2𝑡  and  𝛽3𝑡) are greater than 0.9, while of 

  𝛽1𝑡  and   𝑀 𝑡 are greater than 0.8. However, stationarity is assured, because the largest eigenvalue of the matrix 

𝐴 is 0.920. No value lies outside the unit circle. 
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Table 4.1: Latent Factors VAR(1) and EGARCH Models Parameters Estimates 

Panel 1: Latent Factors VAR(1) Model Parameters Estimates 

         𝜇           𝛽1,𝑡−1           𝛽2,𝑡−1            𝛽3,𝑡−1       𝐼𝑃𝑡−1     𝑀 𝑡−1 𝐼𝑁𝐹𝑡−1 

𝛽1𝑡 
 

3.011 

(0.222) 
0.871 

(0.041) 
0.021 

(0.005) 

0.018 

(0.214) 
0.019 

(0.001) 
-0.070 

(0.008) 

-0.019 

(0.017) 

𝛽2𝑡 
 

-2.794 

(0.210) 

-0.227 

(0.163) 
0.920 

(0.286) 

-0.002 

(0.703) 
0.031 

(0.001) 
-0.038 

(0.004) 

-0.017 

(0.093) 

𝛽3𝑡 
 

-2.127 

(0.825) 

-0.285 

(0.314) 

-0.189 

(0.459) 
0.908 

(0.056) 

-0.161 

(0.217) 

0.014 

(0.016) 
0.126 

(0.050) 

𝐼𝑃𝑡 
 

2.500 

(0.267) 

-0.314 

(0.239) 
-0.838 

(0.217) 

-0.147 

(0.104) 
0.573 

(0.080) 
0.457 

(0.193) 
0.333 

(0.217) 

𝑀 𝑡 
 

4.573 

(0.305) 

0.187 

(0.135) 
1.182 

(0.627) 
-0.645 

(0.214) 

-1.076 

(0.917) 
0.889 

(0.185) 

0.305 

(0.877) 

𝐼𝑁𝐹𝑡 
 

-0.012 

(0.002) 
-0.640 

(0.073) 

0.172 

(0.872) 

0.232 

(0.976) 

-0.599 

(0.931) 
0.258 

(0.037) 
0.689 

(0.039) 

Panel 2:Test for the Joint-Significance of Individually Insignificant Coefficients  

Test Statistic Value df P-value 

Wald Statistic 

LR Statistic 

41.557 

39.262 

17 

17 

0.000 

0.000 

Panel 3: EGARCH Model Parameters Estimates 

𝛾0 𝛾1 𝛾2 𝜓 

-0.217 

(0.018) 
0. 861 

(0.128) 
0. 229 

(0.018) 
0.973 

(0.407) 

Note: The table reports the estimates for the parameters of the transition equation of yields-macro factors 

dynamics and of EGARCH specification in the dynamic Nelson-Siegel model. Panel 1 presents the estimates for 

the vector 𝜇 and matrix 𝐴, while panel 2 shows the results of the Wald-test and likelihood ratio (LR) test for 

the joint significance of individually insignificant coefficients in matrix 𝐴 . The null hypothesis is that 

insignificant coefficients are simultaneously equal to zero. Both the test statistics are Chi-square with their 

respective degrees of freedom (df). P-value is the probability value of the test statistic. Panel 3 shows the 

parameters’ estimates of the volatility processes (EGARCH) of the common component in the yield curve 

model. The standard errors are in parenthesis. Bold entries denote parameter estimates significant at the 5 

percent level. 
 

It is interesting to observe that the impact of yield curve factors on macroeconomy is much 

stronger than of macro on yield curve factors. The spread factor, often used as a predictor of 

economic recessions, has a negative significant effect on the level of economic activity and 

positive effect on money supply, suggesting that a decrease in the slope of yield curve (becoming 

flat or negatively sloped) can be considered as a signal of economic slowdown. It also confirms 

that the BOJ responds with more expansionary monetary policy in subsequent period, when the 

yield curve becomes flat and vice versa. Furthermore, the curvature factor is negatively related to 

money supply, implying that the curvature factor contains information about the expected stance 

of monetary policy and could also be informative about the evolution of the economy (Monch, 

2006).
58

 The results also confer that the level of economic activity and money supply do not 

responds to the level factor rapidly. They may take more time to respond. Moreover, the negative 

lagged impact of level factor on inflation rate suggests that as the long end of yield curve goes 
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 It shows that the BOJ responds with more expansionary policy as the yield curve becomes flat (curvature falls).  



77 

 

down, inflationary expectations become stronger as a consequence of rise in aggregate demand. It 

indicates that the long end of yield curve contains important information about the future inflation. 

Finally, the parameter 𝜏 is estimated at 59.795 with a standard error of 0.959, indicating that the 

estimate is highly significant. It implies that the loading on the curvature factor is maximized at a 

maturity of about 5 years. 

As many of the coefficients in matrix 𝐴 are statistically insignificant, Wald-test and LR 

(likelihood ratio) test for their joint significance are employed and the results are presented in the 

second panel of table 4.1. Both the test statistics reject the null-hypothesis of joint insignificance 

of the 17 individually insignificant coefficients in the state equation. This suggests that inclusion 

of macroeconomic factors in the Nelson-Siegel specification of yield curve improves the model’s 

overall fit and prediction power (Ullah et al. 2013). 

Financial market volatility in many prior studies is characterized by asymmetric volatility 

rather than symmetric. For example, stock market volatility tends to surge when indices are 

falling and revert back to normal levels only gradually when prices increase. This phenomenon is 

also present in interest rate markets, as studied by Dungey et al. (2009), who find US treasuries to 

increase (and, hence, the yields fall) in volatile times. Yet, the standard GARCH model is not 

able to allow for different responses of volatility to negative and positive shocks and, therefore, 

implies a perfectly symmetric structure on the volatility process. In order to allow for asymmetric 

dynamics, we estimate the EGARCH specification of the volatility process for the common 

component in the Nelson-Siegel model. The third panel of table 4.1 presents the estimates of the 

parameters for the EGARCH specification given by equation (4.4). The results support the 

hypothesis of asymmetric volatility dynamics in the common shock component as all parameters, 

including 𝜓, are statically significant, supporting the finding of Dungey et al. (2009). 

The high and significant estimate of the 𝛾1 indicates that much weight is put on recent 

shocks. The lag volatility coefficient 𝛾2 in the EGARCH equation is low but statistically 

different from zero. Therefore, the volatility of the common component is highly sensitive to the 

latest innovations; it increases quickly with large shocks and reverts back soon thereafter. 

In order to obtain a better insight, in panel (a) of figure 4.1, common volatility ( 𝑡) is 

plotted over time along with the estimate of  𝜀 vector (indicating the sensitivity of various 

maturities yields to volatility process of the common component) in panel (b). Some historical 

events are clearly illustrated in the graph. Firstly, the spike in May 2002 coincides exactly with 

the sharp fall in the slope of yield curve during this period (see figure 4.2). This is the turning 

point of monetary policy regime in the Japanese economy as discussed in Ito and Mishkin (2004), 

Ito (2005) and Ullah et al. (2013). During this period, the Bank of Japan (BOJ) launched 

quantitative easing (QEMP) to affect long-term interest rates in order to stimulate the economy. 

The second hike corresponds to the jump in forward rates. Forward rates jumped up in 

mid-2004, because of higher expectation of an exit from deflation in the near future. However, it 

fell in the latter half of 2004 because of the BOJ released ―Outlook for Economic Activity and 

Prices‖ in October 2004, in which slight positive inflation rate in terms of change in CPI was 
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expected by policy board members. During this period, the prices of JGBs (Japanese Government 

Bonds) declined rapidly and the long end of yield curve rotated upward, because of (i) economic 

recovery as the growth rate increased close to 6% (quarter to quarter rate, annualized) in 2003:IV 

and first 2 quarters of 2004
59

 and (ii) the BOJ adopted some of the non-conventional measures of 

monetary policy including purchases of long bonds to boost the economy. So, during the period 

of an increase in forward rates and rapid economic recovery, the interest rate on long-term bond 

rises and, hence, the volatility in bond market as well.
60

 

During the global financial crisis of 2008, the time series shows an increase in volatility 

too.
61

 Yet, in the two small spikes, the latest corresponds to the start of the problems concerning 

the Eurozone in early 2010. Furthermore, the response to global financial crisis of 2008 is a bit 

stronger than to recent Eurozone sovereign debt crisis. 

Overall, the estimated stochastic volatility pattern over time shows that volatility is high 

during the quantitative easing monetary policy regime while drops sharply in the post QEMP 

periods. Apparently, the panic following the two former domestic policy shocks caused extreme 

surges in volatility of the common component in the dynamic Nelson-Siegel EGARCH model as 

compared to the last two global events. Yet, this should not be surprising as these events actually 

concerned sovereign debt of the global financial markets and, therefore, cannot be directly 

translated into the Japanese government treasury yields. 

Panel (b) of figure 4.1 plots the loadings in the vector  𝜀 against maturity. For the 3 months 

maturity the loading is fixed at the value of 1 in order to overcome identification issues. The 

overall pattern of loadings across maturities is roughly similar to that of Koopman et al. (2010), 

who find a remarkably lower sensitivity of the 12 months and 9 years maturities. The 9 years is 

the before last maturity in their sample and we, therefore, compare it to the 20 years yield, for 

which the estimated loading is nearly zero. Hence, it seems that regardless of the choice of 

maturities included in the sample, the dynamic Nelson-Siegel EGARCH model fits the loadings 

to the common component in such a manner that the shortest and longest maturities are more 

sensitive to common shocks and the maturities in between much less.
62

 Overall, the plot shows 

that the short rates are more sensitive to shocks than the long rates. The estimated sensitivity of  

                                                   
59

 For details, see the report ―Japanese Economy 2004 Prospect for Continuous Recovery and Risks‖ (Summary) 

Directorate General for Economic Research, Cabinet office, December 2004.  
60

 After a significant fall in stock prices in 2002 and again in the spring of 2003, the stock market regained 

confidence for the rest of the year, as did the economy as a whole. The Nikkei 225 index recorded a low of 7,600 

in April 2003, less than one fifth of the peak at the end of 1989.The growth rate increased close to 6% (quarter to 

quarter rate, annualized) in 2003:IV and 2004:I. Optimism spread to the economy. The size of deflation shrank 

from about 1% to near zero by the end of 2004. Furthermore, in mid-2004, the BOJ adopted some of the 

non-conventional measures proposed by critics, including purchases of long bonds (Ito and Mishkin, 2004 and Ito, 

2005). 
61

 A financial crisis that arose in the US mortgage market in late-2007 after a sharp increase in mortgage 

foreclosures, mainly subprime, collapsed numerous mortgage lenders and hedge funds. The meltdown spilled 

over into the global credit market as risk premiums increased rapidly and capital liquidity was reduced. The sharp 

increase in foreclosures and the problems in the subprime mortgage market were largely blamed on loose lending 

practices, low interest rates, a housing bubble, and excessive risk taking by lenders and investors. 
62

 Here the shortest rate means yield of maturity of one year, whereas, the longest rates corresponds to yields of 

maturities of 25 years and beyond.  
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Panel (a): Common Volatility ( 𝑡) 

Panel (b): Common Volatility Component Loadings (  ) 

Figure 4.1: Dynamic Nelson-Siegel EGARCH Common Volatility (𝒉𝒕)and Loadings (𝚪𝛆) 
The figure shows a plot of the volatility ( 𝑡) of the common shock component (휀𝑡

∗) over time for the dynamic 

Nelson-Siegel EGARCH model in panel (a). Panel (b) plots the loadings for the different yields against maturity (in 

months). The loadings are the elements of the vector (  ) and are defined as the sensitivities of the various yields to 

the common shock. 
 

short rates such as 3, 6, and 9 months maturities yields is smaller than of the results of earlier 

empirical studies, particularly for the US market and, therefore, the shape of the curve is a bit 

different as compared to the one in Koopman et al. (2010). It may be due the sticking of the very 

short rates to zero in the Japanese market during much of the sampled period. Therefore, we 

compare the sensitivity of one year maturity rate to the initiating point of curve in Koopman et al. 

(2010).  

Furthermore, the time series of the yield curve factors’ estimates with potentially related 

macroeconomic variables are plotted in figure 4.2.
63

 The time series path of level factor along 

with the slope factor is closely related to the annual growth of money supply as depicted in the 

left panel of figure 4.2. It confers that shocks to monetary policy are important sources of 

variation in the long end of the yield curve and pricing the long-term maturity bonds. The 

variation in the slope of yield curve, because of the shift in the long end, carries information 
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 One should be aware that rather than smoothed estimates, we plot the update step (filtered) estimates of the yield 

curve factors. 
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about the state of economy. Moreover, the variation in inflation is closely explained by the 

curvature factor of the yield curve. The CPI based inflation rate closely follows the pattern of the 

curvature factor of the yield curve as depicted in the right panel of figure 4.2. The correlation 

between inflation rate and curvature factor is  𝜌(�̂�3𝑡, 𝐼𝑁𝐹𝑡−1) =  .182 , 𝜌(�̂�3𝑡−1, 𝐼𝑁𝐹𝑡) =

 .364  and 𝜌(�̂�3𝑡, 𝐼𝑁𝐹𝑡) =  .316. In addition, the curvature factor is also closely related to the 

growth rate in money supply. 

The figure shows that the three latent factors of yield curve, i.e., level, slope and curvature, 

are closely related to the monetary policy regimes of the Japanese economy during the last 11 

years. After a prolonged stagnation and financial instability because of 1990s assets bubble burst 

and bad debt crisis of 1997, the Japanese economy was heading towards another severe recession 

in early 1998. The average growth rate had been extremely low, at around 1% since 1992, and the 

financial institutions had become very weak. Many financial institutions failed in November 1997 

and the psychology of the financial market turned extremely negative in the spring of 1998. The 

growth rate turned negative in the first quarter of 1998, the fragile financial institutions were 

downgraded by credit rating agencies and obliged to pay a higher interest rate in the interbank 

market (known as Japan premium), and prices started to decline.
64

 In order to avoid the severe 

recession, the so-called zero interest rate policy (ZIRP) was introduced.
65

 The economy did not 

respond quickly, however, it started to show some signs of recovery in the spring of 2000, as a 

consequence, the ZIRP was lifted in August 2000. Almost as soon as the interest rate was raised, 

the Japanese economy entered into another recession and many changes are urged in monetary 

policy, including the return to ZIRP.
66

 In February 2001, the Bank of Japan (BOJ) introduced the 

Lombard lending facility as well as cut the official discount rate from 0.5% to 0.35%.
67

 However, 

these measures did not show any significant impact and further steps to easing in monetary policy 

were taken. The target inter-bank rate was lowered immediately to 0.15%, and would go down to 

zero, as conditions warranted. The official discount rate was sharply cut to 0.1%. Furthermore, 

the non-conventional quantitative easing was also decided to be used as a tool for an easy 

monetary policy. During this regime, we observe that the long rates as well as the slope of yield 

curve have a downward trend. The curvature factor and inflation rate also fall during this period, 

but, a closer look at the right of figure 4.2 reveals that the inflation rate follows the path of 

curvature with one period lag. The drop in curvature factor confers that the fall in long rates was 

larger than the decline in short rates. Hence, the slope was falling along with alteration in the 

shape of yield curve (becoming flat). 

During the last quarter of 2002 the regime switched as in September 2002, the BOJ started 
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 Three events contributed to the weakening of the Japanese economy in 1997-98: (i) the consumption tax (VAT) 

rate was increased in April 1997, (ii) Japan’s banking crisis erupted in November 1997 and continued to the spring 

of 1999, and (iii) the Asian currency crisis started in July 1997 and continued to the spring of 1998. The Japanese 

financial institutions had to pay the Japan premium, when they borrowed dollars in the London offshore markets 

(Ito and Harada, 2005). The growth rates were quickly going down and so was the inflation rate. 
65

 The overnight call rate was radically reduced to 0.25% in September 1998 and to 0.15% in early 1999 from 0.5%. 
66

 See Ullah et al. (2013) for the detailed description. 
67

 Detailed description of the Lombard lending facility is given in Ullah et al. (2013). 
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to purchase equities that the commercial banks held. The action was intended as monetary policy 

tool (Ito and Mishkin, 2004). Furthermore, commitment to ZIRP was declared until the 

deflationary concerns subside along with an additional policy measure of quantitative easing 

(QE) in March 2001. The new policy was a big improvement over the last regime and economy 

showed some signs of recovery in the latter half of 2003 and early 2004. Despite the good 

performance in the GDP growth rate in 2003:IV, the financial and capital market participants 

were expecting that the ZIRP will continue for a long time. During this period (known as 

recovery regime), the long end is gradually rotating and, hence, the slope is on increasing trend. 

The curvature of yield curve increases only until the end of 2003 along with a minor increase in 

the inflation rate. The process completes around late 2004. 
 

 
Figure 4.2: Time Series Plot of Nelson-Siegel Estimated Factors with Macroeconomic Variables 

Model-based level and slope (estimated 𝛽1𝑡  and −𝛽2𝑡) are plotted with annual growth of the 𝑀2 (Money Supply) 

and the curvature factor of yield curve (𝛽3𝑡) with the Inflation rate. Inflation rate is the 12-month percent change in 

the consumer price index. 
 

As the signs of economic recovery became clearer, an exit from QEMP became a popular 

topic in 2005 in the BOJ meetings. The market started to expect that the Bank would make a 

move to exit from QEMP and raise the interest rate. The BOJ finally terminated QEMP in March 

2006, citing that the QEMP conditions had been satisfied and decided to lower the excess 

reserves gradually. Thus, in early 2006, there is a rapid decrease in the growth rate of money 

supply. This phenomenon is reflected with an increase in the level factor and the slope of the 

yield curve along with a sharp decline in the curvature factor. The fall in curvature factor is 

accompanied with an increase in inflation rate. The fall in curvature was a signal of entering into 

another recession as the yield curve was becoming flat once again. The behavior of curvature 

factor is consistent with the signal of the slope factor in early 2006. It suggests that the economy 

was responding to an exit from the QEMP and the yield curve was signaling out another 

recession; however, the ZIRP was still effective.  

Furthermore, during the global financial crisis of 2008 and Eurozone debt crisis of 2010, the 

long as well as the short end go down, but the response of short end is not as strong as of long 
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rates. Thus, the slope falls and the curvature factor moves to right (apparent in the right panel of 

figure 4.2), means that the yield curve was becoming flat. During the financial crisis of 2008, the 

Japanese exports fall rapidly and the inflation rate goes to negative once again (it is like a supply 

side shock for the domestic economy). The fall in curvature and, hence, the slope of yields curve 

was signaling another future recession, and in response the inflation rate was falling. 

In summary, during the initial period of adopting the ZIRP, the QEMP and the world 

financial crisis, we observe a decline in the yields of long-term bonds and the slope of the yield 

curve. While in the period of recovery, the yield curve long end as well as the slope are on the 

increasing trend. In particular, the curvature reflects the cyclical fluctuations of the economy too. 

Like the yield curve spread, a decrease in curvature is signaling towards economic slowdown and 

vice versa. It is worth noting that the fall in curvature appears to complement the transition from 

an upward sloping yield curve to a flat one. Furthermore, the curvature factor seems either to 

anticipate the future inflation or complemented by the inflation rate, suggesting that the curvature 

factor is the main driving force of the inflation rate, and transmits the stance of monetary policy 

in the yield curve shape and, hence, the economy.  

The estimate of covariance matrix of the state innovations, as depicted by  𝑣 in (4.7), along 

with the results of Wald and LR tests for its diagonality are shown in table 4.2. There are only 8 

out of 15 individually significant covariance terms (whereas 7 are insignificant) at the 5% level of  
 

Table 4.2: Estimate of Covariance Matrix    and its Diagonality Test 

Estimates of Covariance Matrix    

 
휂̂1𝑡 휂̂2𝑡 휂̂3𝑡 휂̂4𝑡 휂̂5𝑡 휂̂6𝑡 

휂̂1𝑡 
 

1.461 

(0.094) 
     

휂̂2𝑡 
 

-0.029 

(0.003) 
1.232 

(0.705) 
    

휂̂3𝑡 
 

-0.047 

(0.050) 
0.041 

(0.009) 
0.347 

(0.031) 
   

휂̂4𝑡 
 

0.159 

(0.015) 

0.069 

(0.008) 

0.329 

(0. 740) 
1.978 

(0.003) 
  

휂̂5𝑡 
 

-0.217 

(0.194) 
-0.184 

(0.041) 

0.034 

(0.036) 

-0.049 

(0.040) 
0.822 

(0.027) 
 

휂̂6𝑡 
 

0.038 

(0.007) 
0.027 

(0.015) 
-0.050 

(0.004) 

0.096 

(0.107) 
0.115 

(0.044) 
1.441 

(0.281) 

Test for Diagonality of Covariance Matrix    

Test Statistic Value df P-value 

Wald Statistic 

LR Statistic 

31.409 

36.874 

15 

15 

0.000 

0.000 

Note: The upper panel of table reports the estimate of the covariance matrix of 

innovations of the transition equation. The standard errors are in parenthesis. The 

lower panel presents the results of the Wald-test and LR-test for the null hypothesis 

that the covariance matrix    is diagonal. Both the test statistics are Chi-square with 

their respective degrees of freedom (df). P-value is the probability value of the test 

statistic. Bold entries denote parameters estimates significant at the 5 percent level. 



83 

 

significance. We perform the Wald and LR tests for the joint significance of the off-diagonal 

elements of the matrix and both the test statistics reject the null-hypothesis of the diagonality of 

the  𝑣 matrix with very high probability. The result is consistent with our prior expectation that 

the innovations of transition system are cross correlated. 

4.3.3. Formal Tests for Macro and Yield Curve Factors Interactions 

The coefficient matrix 𝐴 and the covariance matrix  𝑣 shown in table 4.1 and 4.2 respectively 

are crucial for assessing the interactions between the yield curve factors and the macroeconomic 

variables. The (6×6) matrices 𝐴 and  𝑣 are partitioned into four (3×3) blocks as:  
 

 
𝐴 = [

𝐴1 𝐴2
𝐴3 𝐴4

]                                𝑣 = [
 1  2

′

 2  4
] (4.20) 

 

where 𝐴1 and 𝐴4 show the yield curve factors and macroeconomic variables dynamics with its 

own lags respectively. Furthermore, 𝐴2  and 𝐴3 show the extent of lagged linkage from 

macro-to-yields and yields-to-macro factors respectively. Moreover, we attribute all the 

covariance terms given by the block  2 to the contemporaneous effect of yield curve factors on 

the macro variables in accordance to the order of yield and macro factors, employed in the state 

equation (4.6). As such, there are two links from yields to the macroeconomy in our setup: the 

contemporaneous link given by  2 and the effects of lagged yields on the macroeconomy are 

embodied in 𝐴3. Conversely, links from the macroeconomy to yields are symbolized in 𝐴2. 
 

 

Table 4.3: Tests for Yields-Macro Factors Interactions 

Null Hypothesis Number of 

Restrictions 

Wald Test Statistic  LR Test Statistic 

Test Statistic P-value Test Statistic P-value 

𝐴2 =   

𝐴3 =   

 2 =   

𝐴2 = 𝐴3 =   

𝐴2 =  2 =   

𝐴3 =  2 =   

𝐴2 = 𝐴3 =  2 =   

9 

9 

9 

18 

18 

18 

27 

41.126 

32.665 

21.207 

54.956 

49.189 

47.279 

96.647 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

 31.071 

 26.369 

 34.471 

 61.178 

 42.502 

 53.612 

117.019 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

Note: The table presents the results of the Wald-test and LR-test for the no lagged and/or 

contemporaneous yields-macro factors interaction. 𝐴2, 𝐴3 and  2 refers to the relevant blocks of 𝐴 

and  𝑣  matrices. 𝐴2  and 𝐴3 show the extent of lagged linkage from macro-to-yields and 

yields-to-macro factors respectively, and  2 refers to the contemporaneous effect of yield curve 

factors on the macro variables. Both the test statistics are Chi-square with the degrees of freedom 

equal to the number of restrictions. P-value is the probability value of the test statistic. 

We employ the likelihood ratio (LR) and Wald tests for the various restrictions of yield and 

macro dynamics (on the matrix 𝐴 and  𝑣) and the results of both tests are reported in table 4.3. 

Both the tests reject the no individual contemporaneous as well as the lagged interaction 

hypothesis (as the null hypothesis of (i)  𝐴2 =  , (ii)   𝐴3 =  , and (iii)    2 =   are rejected). 
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Furthermore, the null hypothesis of no interaction of two joint restrictions and three joint 

restrictions are also rejected with very high probability (as the null hypothesis of (i)  𝐴2 =   𝐴3 =

 , (ii)   𝐴2 =    2 =  , (iii)  𝐴3 =  2 =  , and (iv)  𝐴2 = 𝐴3 =  2 =   are rejected). The results 

suggest that both hypotheses, of ―no macro to yields‖ depicted by 𝐴2 and ―no yields to macro 

for contemporaneous as well as lagged impact‖ depicted by 𝐴3 and  2 respectively, should be 

rejected at a very high level of significance. It confers that there is clear statistical evidence in 

favor of a bi-directional link between the macroeconomy and the yield curve factors. 

4.3.4. Macroeconomic and Yield Curve Impulse Response Functions 

Following Diebold et al. (2006), we consider the dynamic relationships between the macro and 

the yield curve factors through impulse response analysis. From an estimated VAR, we compute 

variance decomposition (VDCs) and impulse response functions (IRFs) which serve as tools for 

evaluating the dynamic interactions and strength of causal relations among variables in the 

system.
68

 In simulating IRFs and VDCs, it should be noted that VAR innovations may be 

contemporaneously correlated. This means that a shock in one variable may work through the 

contemporaneous correlation with innovations in other variables. Therefore, the responses of a 

variable to shocks in another variable of interest cannot be adequately represented and isolated 

shocks to individual variables cannot be identified (Lutkepohl, 1991). Therefore, we use 

Cholesky factorization which orthogonalizes the innovations as suggested in Sims (1980) to solve 

this identification problem. This strategy requires a pre-specified causal ordering of the variables, 

because the results from VDCs and IRFs may be sensitive to the variables’ ordering. The 

ordering of variables suggested in Sims (1980) starts with the most exogenous variable in the 

system and ends with the most endogenous variable.
69

 

To see whether the ordering could be a problem, the contemporaneous correlations of VAR 

error terms are checked (results are not reported to conserve space). The results show that there 

are high correlations among the three yield curve factors (𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡) and between the yield 

curve factors and growth rate of money supply (𝑀 𝑡). Other correlations are mostly less than 

0.25. Based on the strength of correlation, we arrange the variables according to the following 

order: (𝐼𝑃𝑡, 𝐼𝑁𝐹𝑡,  𝑀 𝑡, 𝛽3𝑡, 𝛽2𝑡, 𝛽1𝑡).
70

 

                                                   
68

 In estimating VAR model, one should be aware of the stationarity consideration of the variable in the system, 

otherwise the results may be suffered from spurious relationship. A regression involving the levels of I(1) series 

will produce misleading results (Phillips, 1986). We use all the six factors in deviation form in order to ensure 

stationarity. Furthermore, all the roots of transitional matrix lie inside the unit circle. See appendix F for the 

derivation of VAR model to simulate the IRFs and VDCs. 
69

 To avoid the subjective criteria of pre-specified ordering of variables, we also computed the generalized impulses 

(GIRF) as described in Pesaran and Shin (1998). The resulting responses (not reported here to save space) are 

almost similar to the one obtained from Cholesky factorization. 
70

 In Diebold et al. (2006), the order is reverse as they put yield curve factors before macroeconomic variables. The 

intuition behind their ordering is that the yield curve observations are dated at the beginning of the month, whereas 

for the macroeconomic variables, the end of month data is used. Under this identification scheme, yield factors are 

assumed to be contemporaneously unaffected by the macro factors. But in our case, we do not assume that 

macroeconomic factors do not contemporaneously cause variation in the yield factors as we use the end of 

month’s price quotes to calculate the zero-coupon yields and macroeconomic data is also collected at the end of 

each month. 
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There are four blocks of impulse responses, i.e., yield curve factors responses to macro 

shocks, macro variables responses to yield factors shocks, yield to yield factors shocks, and 

macro to macro variables shocks, but given the focus of this chapter, here we consider only the 

former two blocks. Particularly, we focus on the yield curve factors response to monetary policy 

shocks and back to real activity and inflation rate. The results of impulse response functions of 

the two blocks along with 90% confidence band are presented in figure 4.3.
71

 Overall the results 

convey an interesting message that the response of macro variables to yield factors is much 

stronger than the response of latter to the former variables shocks. 

    Considering the responses of the yield curve to the macro shocks, the slope and level factors 

show very little response than the curvature factor to the shocks in all the three macroeconomic 

variables. It attributes to the prominent role and economic interpretation of the curvature factor of 

term structure. The results show that a stochastic positive shock in the industrial production 

immediately push down the long end with an increase in the slope factor (the yield curve become 

less positively sloped or more negatively sloped), suggesting that the yield curve becomes flatter 

in response to the supply side shocks. However, the curvature factor moves to left with a 4 to 5 

months delay, indicating that inflation expectation rises as a result of expansionary monetary 

policy in subsequent periods during recession. After 15 months, the long end goes up and the 

yield curve becomes steeper (as 𝛽2𝑡 falls and 𝛽3𝑡 reaches to its maximum). This behavior of 

long rates is consistent with the inflationary expectation hypothesis of Fisher (1896). Furthermore, 

the behavior of all three yield curve factors in subsequent periods is consistent with the idea that 

during recessions, premia on long-term bonds tend to be high and yields on short bonds tend to 

be low. Hence, during recessions, upward sloping yield curve not only indicates bad times today, 

but also better times tomorrow. Shocks in inflation rate immediately push up 𝛽2𝑡 (decreases the 

slope) and down the level factor, however the curvature factor immediately moves to left. The 

reaction of slope as well as level factor is consistent with the behavior of Japanese economy 

during the first decade of 21
st
 century. The inflation rate is almost zero and the surprise to actual 

inflation cannot give a boost to long rates but it falls in accordance to the long-run expectations. 

However, in response to a change in the level factor, the slope as well as curvature factors react. 

Positive shocks to money supply induce the long rates to rise and, hence, the slope increases 

(meaning 𝛽2𝑡 falls), however, the curvature factor reacts much stronger than the former two. 

The fall in curvature factor is associated with a rise in inflationary expectation, consistent with 

the expected positive impact of money supply on inflation rate. Recalling that the ultimate 

objective of the Japanese monetary policy during the decade is to affect the yield curve level in 

order to stimulate the economy, the success of monetary policy could be defined as a decrease in 

the long end of the yield curve either via expected short-term rates (policy-duration effect), term 

premium (portfolio-rebalancing channel) or both of them. However, this represents only an 

intermediate target in an attempt to generate economic recovery and to stop deflation. The final  
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 VAR satisfies the stability condition as all roots lie inside the unit circle. 
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Figure 4.3: Impulse Responses of Yields-Macro Factors to Cholesky one S.D. Innovation 

The figure shows the reactions of three yield curve factors (i.e., 𝛽1𝑡 , 𝛽2𝑡 , 𝛽3𝑡  denoted by level, slope and curvature 

factors respectively) and three macroeconomic variables (i.e., 𝐼𝑃𝑡  , 𝑀 𝑡  , 𝐼𝑁𝐹𝑡 ) to a shock in each exogenous 

variables in the VAR(1) model over 40 months. We simulate the VAR(1) model of yield and macro factors and 

compute response of each factor to Cholesky one standard deviation innovation. The solid blue line denotes the 

estimated response, while the red dashed line shows  2( 𝐸) (plus-minus two standard error) confidence band. 
 

goal of the BOJ is expected to be, to increase inflation expectations and thus future short-term 

interest rates, which, in turn, will raise the long-term interest rates. As argued by Nagayasu 

(2004), monetary policy mechanisms take one to two years to achieve their full effects. It seems 

appropriate to expect that the effectiveness of QEMP, if any, would result in an increase in the 

level factor. Therefore, during the ZIRP and QEMP, the long end immediately jumps up in 

response to a shock in monetary policy. The rise in the level factor reflects the strengthening 
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credibility of the BOJ and, thus, the effectiveness of its policy. Indeed, as argued in Diebold et al. 

(2006) and Bianchi et al. (2009), if monetary policy is credible, the level factor, other things 

being equal, should fall after a positive shock to call rate, because the expectation of future 

inflation declines. Since, the BOJ commits itself during the QEMP period to maintain the 

short-term rates to a zero level, the decline in the level factor after an increase in the call rate is 

by analogy equivalent to a rise in this factor to a monetary policy expansion. This can be due to 

an expectation of the economic recovery and rise in inflation, indicating a monetary policy 

success. 

The lower block of figure 4.3 summarizes impulse response functions of macroeconomic 

variables to unexpected increase in the yield curve factors. The level shock has a negative effect 

on industrial production, although its impact seems small but is statistically significant. It 

reinforces the idea that the contribution of macroeconomic variables to level factor variation, if 

any, comes from the level of economic activity. Furthermore, a positive surprise change in the 

level factor indicates an increase of inflation and monetary expansion. However, the inflation 

increases a little and reverts to zero immediately, but the response of money growth is more 

prolonged. It suggests that the BOJ adopts an expansionary monetary policy in response to a 

decline in aggregate spending, results from a sudden increase in the long-term interest rate.
72

 

The responses to an unexpected positive change in the slope factor are consistent with the 

monetary policy stances in the Japanese economy. An increase in the slope factor means a 

reduced spread between long-term and short-term bonds, which indicates a monetary policy 

tightening and, thus, economic activity declines within the upcoming 3 to 4 months.
73

 The 

direction of reaction of the 𝐼𝑃𝑡  contributes to the view that the yield curve slope acts as an 

indicator of the future state of economy. The reaction of inflation looks qualitatively similar to 

the response to the level shock. An unexpected increase of the slope factor is followed by an 

initial increase in inflation rate, but it is short lived and very small. The money growth rate falls 

in response to the slope shock but reverts to zero immediately and then increases. It confers that 

the BOJ implements the expansionary monetary policy, as the spread between the long and short 

end tightens, to avoid the upcoming recession. 

 Unlike Diebold et al. (2006), the macroeconomic variables have significant reactions to the 

positive change in curvature factor. The increase in curvature means transition from flat yield 

curve to a steeper one. The economic activity expands along with an increase in inflation rate in 

response to an unanticipated positive shock in the curvature of yield curve. It suggests that the 

curvature is a leading indicator/main driving force of future inflation and also reflects the cyclical 

fluctuations of the economy. It advocates that the curvature factor also presents the stances of 

monetary policy and can predict the future path of economy and inflationary expectations. The 
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 The increase in the long term interest rate (as a result of an increase in the short rates, according to the expectation 

hypothesis) causes a decline in aggregate spending. 
73

 Normally a decrease in yield curve slope announces an economic slowdown. But the loading of the slope factor in 

our model decreases with maturity and corresponds to the difference between short and long-term yields, therefore 

an increase in this factor corresponds to a decrease in the term spread. 
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reaction of monetary policy is virtually zero in response to a change in curvature factor, 

consistent with the prevailing economic situation during the decade in the Japanese economy. 

Summarizing, it turns out that the contribution of macroeconomic variables, though small in 

magnitude but does not quickly shift to low levels, suggest a significant role of the 

macroeconomic variables in influencing the yield curve during the long-lasting economic 

stagnation in the Japanese economy. The lower block that sums up the reaction of the 

macroeconomic variables in response to the shocks in the yield curve factors suggests that, after 

the short-term interest rate has reached zero, the monetary policy signals can be transmitted 

significantly and with higher probability (as all the responses are statistically significant) to the 

real sector through the yield curve three factors. 

4.3.5. Macroeconomic and Yield Curve Variance Decompositions 

Variance decompositions (VDCs) is an alternative method to IRFs for examining the effects of 

exogenous shocks on dependent variables. It shows how much of the forecast error variance for 

any variable in a system is explained by innovations to each explanatory variable over a series of 

time horizons. Usually, own series shocks explain most of the error variance, although the shock 

will also affect other variables in the system. From table 4.4, the VDC substantiates that the 

spread factor of yield curve plays an influential role in the variation of yield level. Furthermore, a 

significant role is also played by the entire three macroeconomic variables in fluctuating the yield 

level factor; however, the relative role of industrial growth is more prominent than the other two. 

It confers that, rather than monetary policy, the supply side shocks also contribute significantly to 

the variation of long-term interest rate. This indicates that news about the future evolution of 

output might be more important for the dynamics of the yield curve than inflationary concerns for 

that period.  

The variation in slope factor mainly comes from the level factor and monetary policy. The 

impact of monetary policy is consistent with the behavior of spread and monetary growth in 

figure 4.2. Furthermore, the changes in the curvature factor are attributed to the shift of long end 

of yield curve and variation in inflation rate. However, at the longer horizon forecasts, the slope 

and the other two macroeconomic variables (i.e., money supply and industrial growth) play a 

significant role as well. But the slope factor contributes a bit more than the rest of two (𝐼𝑃𝑡 and 

𝑀 𝑡) to explain the variation in 𝛽3𝑡. 

Regarding the variance decomposition of the extant of economic activity (represented by the 

growth rate of industrial production), it is apparent that the slope factor plays a crucial role at all 

horizons of forecasts, followed by the curvature factor in contributing the variation in 𝐼𝑃𝑡. The 

variance appears to be explained about 4 to 6 percent by each of the level factor and inflation 

innovations. It highlights the idea that the slope of yield curve and its curvature factor signals out 

the state of economy in near future. This indicates that the information about the slope and the 

curvature of the yield curve might be an important signal about the future evolution of output 

than the long rates and inflationary concerns for that period.  
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Table 4.4: Variance Decompositions of Yield Curve Factors and Macroeconomic Variables 

Period              𝛽1𝑡              𝛽2𝑡              𝛽3𝑡               𝐼𝑃𝑡               𝑀 𝑡               𝐼𝑁𝐹𝑡 

Variance Decomposition of   𝒕 

1 

12 

24 

40 

75.864 

71.876 

65.614 

63.696 

11.977 

13.818 

18.725 

15.819 

0.572 

0.818 

1.942 

1.134 

5.193 

5.985 

6.297 

9.754 

4.128 

4.296 

4.524 

5.749 

2.187 

3.207 

3.798 

3.856 

Variance Decomposition of   𝒕 

1 

12 

24 

40 

3.493 

5.986 

5.236 

5.356 

88.214 

85.078 

83.94 

82.762 

0.757 

1.347 

1.469 

1.879 

1.676 

2.238 

2.759 

3.068 

5.453 

5.006 

6.265 

6.426 

0.406 

0.345 

0.326 

0.508 

Variance Decomposition of  𝟑𝒕 

1 

12 

24 

40 

25.723 

27.111 

27.824 

26.105 

4.426 

10.676 

12.859 

10.801 

62.844 

37.831 

32.197 

31.888 

0.061 

2.634 

5.772 

6.002 

1.220 

5.987 

7.664 

8.751 

5.726 

8.695 

13.683 

16.451 

Variance Decomposition of   𝒕 

1 

12 

24 

40 

4.473 

4.056 

6.137 

6.731 

4.465 

18.531 

23.592 

25.185 

0.428 

7.996 

9.124 

10.482 

86.755 

63.676 

54.649 

50.365 

0.728 

1.482 

1.568 

2.239 

3.150 

4.259 

4.930 

4.935 

Variance Decomposition of   𝒕 

1 

12 

24 

40 

3.224 

10.729 

12.899 

12.815 

9.514 

23.725 

27.357 

26.125 

6.844 

12.811 

10.360 

11.003 

0.236 

4.85 

4.977 

6.455 

79.764 

43.118 

34.119 

32.323 

0.418 

4.767 

10.288 

11.279 

Variance Decomposition of    𝒕 

1 

12 

24 

40 

1.034 

1.239 

1.306 

1.873 

3.963 

3.732 

5.215 

6.385 

12.001 

13.910 

14.007 

14.409 

15.197 

18.018 

17.246 

16.570 

0.603 

1.460 

2.627 

2.771 

67.202 

61.640 

59.599 

57.992 

Note: The table reports the results of variance decompositions of all the six variables in the system. We simulate 

the VAR(1) model of yield and macro factors and compute the contribution of innovations of each explanatory 

variable over a series of time horizons. Each entry is the proportion of the forecast variance (at the specified 

forecast horizon) for a 1, 12, 24 and 40 months’ time horizons that is explained by the particular factor. 
 

Looking at the variance decomposition of money supply, it shows that the slope factor is the 

dominant factor, followed by the level and curvature factors. Productivity shocks also contribute 

after one year but less than the inflation rate in explaining the variance of monetary growth. The 

result is consistent with the idea that the shape and particularly the curvature of yield curve 

represent the stances of monetary policy to affect the level of economic activity and inflation rate 

in the economy.  

Finally, the variation in inflation is explained by industrial production to a greater extent. It 
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suggests that supply side shocks are more influential in determining the path of inflation rather 

than the demand side during the first decade of 21
st
 century in the Japanese economy; because 

during the QEMP, the contribution of monetary policy shock is negligible. This is consistent with 

the ineffectiveness of the QEMP in affecting the expectation about future inflation as well as the 

long end of yield curve, because the inflation response veers to zero and becomes insignificant 

more rapidly.
74

 Regarding the contribution of yield curve factors, the variation in the inflation is 

largely due to the curvature factor of yield curve. The remaining factors such as 𝛽1𝑡, 𝛽2𝑡 and 

𝑀 𝑡 contribute marginally in the variance decomposition of inflation rate. 

4.4. Evidence on the Expectation Hypothesis and Time-varying Term Premium 

The crucial link between the central bank’s instrument and long-term interest rates is the 

expectation hypothesis (EH) of the yield curve theory.
75

 It provides an indication about how 

anticipation of future monetary policy decisions affects the economy. This issue is especially 

important for the Japanese economy because the principal channel suggested by either ZIRP or 

QEMP is the expectation channel. One important channel through which monetary policy works 

is the long-term interest rates, shaping them so that in turn they affect the level of economic 

activity. The expectation that the policy of low short-term interest rates may be maintained for a 

substantial period of time will likely lower medium to long-term interest rates, which in turn will 

rise inflationary expectations and boost economic activity. However, the empirical support for the 

EH and the effectiveness of the policy commitment is rather mixed. Thornton (2004) applies a 

bivariate VAR for long-term and short-term interest rates for the period from March 1981 to 

January 2003. He shows that the EH does not hold for the Japanese case. One possible 

explanation for the empirical failure of the EH is the presence of a time-varying term premium 

(liquidity and risk premia). Time-variation in term premia might arise because of changes in 

preferences of market participants toward risk. In addition, the term premium could also vary 

with the business cycle, as investors might be more risk-averse in recessions than in booms. 

In this study, we use a time-varying risk premium latent factor model to review the validity 

of traditional EH and the effects of the BOJ’s expectations management on the JGBs yield curve. 

The implicit assumption behind our time-varying latent factors model is that the agents review 

their expectations about uncertainty regarding inflation, real activity and monetary policy in each 

period and, hence, the term premia is time-varying. This assumption allows us to perform 

accurate predictions and makes the model more flexible and realistic. 

In terms of our notations in section 1.2 and 4.2, which pertain to the pure discount bond 

yields in our data set, the theoretical bond yield is denoted as 𝑅𝑡(𝑚)
𝐸𝐻. The model is: 
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 It suggests that rather than the demand side, the supply shocks (oil price, fall in exports due to East Asian crisis, 

US crisis and Eurozone crisis) should also be considered possible reasons for the prolonged deflationary period in 

Japan. 
75 The traditional expectation hypothesis of the term structure states that movements in long rates are due to 

movements in expected future short rates. Any term or risk premia are assumed to be constant through time. 
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 𝑅𝑡(𝑚) = 𝑅𝑡(𝑚)
𝐸𝐻  𝜙𝑡(𝑚)  휀𝑡 (4.21) 

 

where 𝜙𝑡(𝑚) is a time-varying term premium that may also vary with the maturity and 

𝑅𝑡(𝑚)
𝐸𝐻 is the theoretical bond yields which is defined as: 

 

 

𝑅𝑡(𝑚)
𝐸𝐻 = (

1

𝑚
) ∑ 𝐸𝑡𝑅𝑡+𝑖(1)
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 𝜙𝑡(𝑚) = 𝜙𝑡−1(𝑚)  𝑣𝑡 (4.23) 
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Specifically, we compare the theoretical bond yields 𝑅𝑡(𝑚)
𝐸𝐻 , constructed via (4.22), plus 

𝜙𝑡(𝑚) under the assumption that the expectation hypothesis does not hold, with the actual bond 

yields 𝑅𝑡(𝑚). We construct the expected future 1-month maturity yields by iterating forward the 

estimated yield model using the measurement equation (4.5) and the state equation (4.6) 

for 𝐸𝑡𝑅𝑡+𝑖(1); and then compute the theoretical bond yields at each point in time using (4.22). 

Furthermore, the term premium is computed by using the state-space model with the signal 

equation specified in (4.21) and state equation in (4.23), assuming that the latent factor 

𝜙𝑡(𝑚) follows the random walk process. We use the Kalman filter algorithm as discussed in 

section 4.2.2 to estimate the time-varying term premia. 
 

 
Figure 4.4: Estimated Yields  [ 𝒕( )

    ̂𝒕( )] 

The figure presents time series plot of the estimated yields [𝑅𝑡(𝑚)
𝐸𝐻  �̂�𝑡(𝑚)] along with the actual bond 

yields 𝑅𝑡(𝑚). The estimated yields are depicted by dashed red line, whereas the actual yields by solid blue line. The 

number of observations is 144. 
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Figure 4.4 provides some selected maturities estimated yields together with their actual 

counterpart. The estimated yields [𝑅𝑡(𝑚)
𝐸𝐻  �̂�𝑡(𝑚)] are tracking actual yields very well, 

despite limited deviation that occurs during the last 3 months of 2003 and late 2007. However, 

overall the results indicate that the expectation hypothesis of the term structure of interest rates 

does not hold during the ZIRP/QEMP period, because the estimated term premia vary 

considerably during the sampled period.
76

 

Furthermore, the estimated term premia of some selected maturities is shown in figure 4.5. 

There is substantial variation over time in the behavior of the term premium for all the maturities. 

In   particular, it is interesting to note that during the ZIRP and the QEMP period (2001-2006), 

the term premia decline to a lower level. This could be due to the heavy demand for JGBs from 

the BOJ during that period. 

 

 

Figure 4.5: Estimated Term Premium 

The figure presents time series plot of the estimated term premium 𝜙𝑡(𝑚) under the assumption that the expectation 

hypothesis does not hold. The number of observations is 144. 

4.5. Conclusion 

This chapter explores the evolution between the yield curve and the Japanese economy with a 

special focus on examining the effects of the quantitative easing strategy in Japan on the yield 

curve and the possible feed-back effect on the real sector by applying a macro-finance model. 
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 We tried the model with fixed term premia, however the theoretical yield deviate too much from the actual yield. 

It suggests the supportive evidence in regard of time-varying term premia. Results are not reported to conserve 

space. 
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The yield curve model of this study explicitly incorporates both yields factors (level, slope, and 

curvature) and macroeconomic variables (overall economic activity, money supply and inflation 

rate). We also extend the model in Diebold et al. (2006) to include time-varying stochastic 

volatility in the yield model (observation equation) in state-space framework.  

Empirical results from the yields-macro factors model show that there is statistically 

significant bidirectional causality between the macroeconomic and yield curve factors; however 

by contrast with conventional wisdom, macro variables play a less prominent role in explaining 

the yield factors as compared to the strength of effect from latter to the former. Furthermore, 

volatility in bond markets is found to be asymmetrically affected by positive and negative shocks 

and more sensitive to recent innovations rather than the lag volatility. Short maturities tend to be 

more sensitive to the common shocks in interest rate market than the long maturities. 

The structural decomposition indicates that it is the entire term structure of interest rate that 

transmits the policy shocks to the real economy rather than the only yields spread (as considered 

in the previous studies regarding the Japanese economy). The monetary policy signals passes 

through the yield curve level and slope factors to stimulate the economic activity. The curvature 

factor, besides reflecting the cyclical fluctuations of the economy, acts as the leading indicator for 

future inflation. The curvature factor seems either to anticipate or is accompanied by inflation 

rate. One can infer from the overall results that the slope and curvature factors (in our framework) 

serve as leading counter-cyclical and pro-cyclical indicators respectively. 

In addition, the proposed yields-macro factors model does not empirically substantiate the 

traditional expectation hypothesis during the ZIRP and QEMP regimes. 
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Chapter 5 

Conclusion and Policy Implications  
Pricing assets in the fixed-income market is an important field in financial econometrics. The 

most basic asset in the fixed-income market is the zero-coupon bond. The complete set of 

zero-coupon bonds of all maturities results in the term structure of interest rates that forms the 

basis of the fixed-income market. The term structure of interest rates is also an important element 

in macroeconomics and finance. For macroeconomics, in a monetary policy context, forward 

rates are potentially useful as indicators of market expectations of future interest rates, inflation 

rate and exchange rate as discussed by Svensson (1994) and Sodelind and Svensson (1997) and 

the yield curve carries information about future GDP growth as shown by Estrella and Mishkin 

(1996, 1998). For finance, fixed income portfolio managers and risk managers make use of the 

yield curve for pricing derivatives (e.g., interest rate futures and options) and performing hedging 

operations. However, the market does not provide us securities at all the desired maturities and 

what we observe is only an incomplete set of yields across the maturity spectrum. This way, to 

overcome this problem, it is necessary to use some model to observe the yields for the entire 

maturity spectrum.  

5.1. Summary 

This thesis deals with the analysis of term structure theory and its application, with a particular 

focus on the modeling and forecasting aspects of the yield curve. Furthermore, the proposed 

models are related to the state of economy and monetary policy issues. Advanced time series 

models and sophisticated mathematical tools are applied to analyze the time-varying relationship 

between yields and time to maturity. Four major research objectives are addressed: (i) to compare 

the different modeling and estimation techniques' ability to characterize and predict the 

time-varying nature of the yield curve, (ii) to evaluate the out-of-sample forecast performance of 

the statistical class of models with and without macroeconomic variables in the state-space 

representation, (iii) to examines the effect of monetary policy stances on term structure and the 

possible feed-back effect on the real sector during zero interest rate policy (ZIRP) period, and (iv) 

do the state-space representation and estimation through Kalman filter (one-step procedure) of the 

model lead to better in-sample fit and more accurate forecasts than the two-step estimation 

approach? 

Regarding the first research objective, in chapter 2, the short-term CIR model is calibrated 

using the maximum likelihood estimation method and the dynamic Nelson and Siegel (1987) 
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model using non-linear least squares procedure. Furthermore, the linearized version of 

Nelson-Siegel model is also estimated for comparison purposes. For the in-sample fit, there is a 

significant lack of information on the short rates CIR model. Contrary to CIR model, the 

Nelson-Siegel model is capable to distill the term structure of interest rate quite well and describe 

the evolution and the trends of the market for time-varying 𝜏𝑡 estimation process. Fixing the 

shape parameter 𝜏𝑡 to the median value leads to fit the yield curve better than the CIR model but 

not than the non-linear estimation process of the Nelson-Siegel model. Regarding the term 

structure forecast, the CIR model should be considered too poor to describe the term structure in 

the simulation based context. It generates a downward slope average yield curve. On the other 

hand, the Nelson-Siegel model is not only compatible to fit attractively the yield curve but also 

accurately forecast the future yield for various maturities. The Nelson-Siegel model is capable to 

replicate most of the stylized facts of the Japanese market yield curve.  

Targeting the second question, in chapter 3, the dynamic Nelson-Siegel model with and 

without macroeconomic variables in the state-space representation is evaluated through Kalman 

filter. The proposed extended model explicitly incorporates both yields factors (level, slope, and 

curvature) and macroeconomic variables (overall economic activity, exchange rate, stock prices 

index and inflation rate). The Nelson-Siegel type models in the state-space framework 

considerably outperform the benchmark simple time series forecast models such as AR(1) and 

random walk. The yields-macro model incorporating macroeconomic factors leads to a better 

in-sample fit of the term structure than the yields-only model. The out-of-sample predictability of 

the former for the short horizon forecasts is superior to the latter for all maturities examined, and 

for the longer horizons the former is still compatible to the latter. Inclusion of macroeconomic 

factors can dramatically reduce the autocorrelation of the forecasts errors, which has been a 

common phenomenon of statistical analysis in the previous term structure models. 

Regarding the monetary policy and the practical significance of the model, in chapter 4, a 

joint macro-finance latent factors model is formulated that integrates monetary policy as well as 

real activity factors in the term structure model, to examine the effect of the monetary policy 

stances on term structure and the possible feed-back effect on the real sector. The analysis 

indicates that it is the entire term structure that transmits the policy shocks to the real economy 

rather than the yields spread only. The monetary policy signals passes through the yield curve 

level and slope factors to stimulate the economic activity. The curvature factor, besides reflecting 

the cyclical fluctuations of the economy, acts as a leading indicator for future inflation. In 

addition, policy influence tends to be low as the short end becomes segmented toward 

medium/long-term of the yield curve. Furthermore, the volatility in the bond markets is found to 

be asymmetrically affected by the positive and negative shocks and short end tends to be more 

sensitive to stochastic shocks than the long maturities. We also related our yield curve modeling 

approach to the traditional macroeconomic approach based on the expectations hypothesis. The 

analysis shows that the expectation hypothesis does not hold during the ZIRP and QEMP 

regimes. 
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While answering the question, which of the selected estimation approaches is more suitable to 

predict the path of time-varying term structure of interest rate for the sample under consideration, 

one can compare the results of in-sample fit and out-of-sample forecast accuracy of 

Nelson-Siegel model in chapter 2 and 3. The results show that one-step estimation approach leads 

not only to better in-sample fit but also produces out-of-sample forecasts with greater accuracy. 

More importantly, the residuals of in-sample fit and the out-of-sample forecast errors based on 

the Kalman filter are less persistent than those of the two-step approach. Therefore, simultaneous 

estimation through Kalman filter based on the conditional expectation and conditional variance 

can be considered superior to the latter in terms of in-sample fitting as well as out-of-sample 

predictability. 

5.2. Policy Implications 

The results in this dissertation have several implications for policy. First, the analysis of the 

dynamic Nelson and Siegel (1987) yield curve model is relevant for how central banks and 

financial institutions analyze the term structure. If financial institutions and central banks are 

looking for a model to study the evolution of the yield curve in Japanese market, the 

Nelson-Siegel family of models could be a good candidate. 

Second, the inclusion of macroeconomic and equity market related variables in the standard 

yield curve model improves the fit of the model and comes up with more accurate forecasts and 

less persistent forecast errors. 

Third, the dynamic extension of standard Nelson-Siegel model (inclusion of macroeconomic 

factors) provides a framework to predict the future path of expected inflation, stock market and 

other macroeconomic variables that are of a particular relevance and considered as leading 

indicators of the future state of economy. 

Fourth, the modeling approach in chapter 4 provides a more flexible framework to analyze 

the effectiveness of monetary policy in ZIRP regime and figure out the transmission mechanism 

of monetary policy. The study highlights the importance of the yield curve factors for policy 

analysis which can serve as leading pro-cyclical or counter-cyclical indicators.  

5.3. Directions for Further Research 

The study offers many directions and opens many interesting challenges for future research. 

Though, the statistical class of models comes up with encouraging results in in-sample fit as well 

as forecasts, it is necessary to introduce extensions in the standard Nelson-Siegel model that 

incorporate additional flexibility in the yield curve model in order to fit accurately the curves 

with multiple maxima and/or minima.
77

 We are aware of the popular extension by Svensson 

(1994), but it leads to high degree of correlation between the loadings (multicolinearity) and 

makes it difficult to estimate the parameters precisely. These correlations are affected by the 

shape parameter 𝜏𝑡 value as illustrated in Annaert et al. (2000). 

                                                   
77

 De Pooter (2007) also notes that the shape parameter 𝜏𝑡 cannot handle the complete set of shapes the curve takes. 
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Another key aspect of the term structure is time-varying stochastic volatility. The interest 

rate volatility for various maturities can be modeled in many different ways. The alternative 

specification (to EGARCH model used in chapter 4) for the asymmetric effect of positive and 

negative shocks can be TARCH and TGARCH. Moreover, the volatility can also be linked with 

macroeconomic events as one can proceed with GARCHX specification. For this reason, this 

study suggests further extensions in state-space framework of yield curve model in such a way to 

introduce TARCH, TGARCH or GARCHX effects, and compare the in-sample fit as well as 

future yields predictability performance among the various extensions.  

Furthermore, the lag-lead (causality) analysis between the yield factors and the stock market 

will be of a higher significance for the efficiency analysis of both markets, the bond and stock. 
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Appendix A 

Implied Forward and Spot Rates  

This appendix deals with the derivation of implied forward rates and spot rates functions defined 

in (1.3) and (1.4) respectively. 

1. Implied Forward Rates 

Suppose that 𝑅𝑡(1) and 𝑅𝑡(2) are spot rates with 𝑃𝑡(1) and 𝑃𝑡(2) prices for one and two years 

maturities discount bonds respectively in period 𝑡. Assuming a unit face value of both bonds 

implies that 𝑃𝑡(1) > 𝑃𝑡(2). One can consider the following two alternatives: 

1. Investing the amount 𝑃𝑡(2) in the two years maturity bond and receiving exp[2𝑅𝑡(2)] 

annually;  

2. Investing 𝑃𝑡(1) in one year maturity bond today and receiving exp[𝑅𝑡(1)] at the end of 

period 𝑡  and reinvesting this amount in the one year bond with price 𝑃𝑡+1(1)  having 

yield 𝑅𝑡+1(1), which is the period (𝑡  1) spot rate for the bond with maturity of one year.  

The no-arbitrage condition implies that 𝑃𝑡+1(1) and 𝑅𝑡+1(1) must satisfy the following two 

conditions, respectively. 
 

 𝑃𝑡(2) = 𝑃𝑡(1). 𝑃𝑡+1(1)  

 exp[−2. 𝑅𝑡(2)] = exp[−𝑅𝑡(1)] . exp[−𝑅𝑡+1(1)]  
 

However, in spot market at 𝑡  both  𝑅𝑡+1(1) and 𝑃𝑡+1(1) are not observable and can, 

therefore, be referred to as implied forward rate 𝑓𝑡(1) and implied forward price respectively. 

The yield satisfying these conditions is also referred to as the implied forward rate of a one year 

bond belonging to the period 𝑡  1.  
 

 𝑃𝑡(2) = 𝑃𝑡(1). exp[−𝑅𝑡+1(1)]  

 𝑃𝑡(2) = 𝑃𝑡(1). exp(−𝑓𝑡(1))  

 𝑓𝑡(1) = −log[𝑃𝑡(2)/𝑃𝑡(1)]  

 
𝑓𝑡(1) = −log 01  

𝑃𝑡
′(1)

𝑃𝑡(1)
1  

 
𝑓𝑡(1) = −

𝑃𝑡
′(1)

𝑃𝑡(1)
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Extending the argument to 𝑛-period case, the no-arbitrage condition implies that: 
 

 𝑃𝑡(𝑛) = 𝑃𝑡(1). 𝑃𝑡+1(1). 𝑃𝑡+2(1)…𝑃𝑡+𝑛(1)  

 exp[−𝑛𝑅𝑡(𝑛)] = exp[−𝑅𝑡(1)]. exp[−𝑅𝑡+1(1)]. exp[−𝑅𝑡+2(1)]… exp[−𝑅𝑡+𝑛(1)] 
 

The solution yields to: 
 

 
𝑓𝑡(𝑚) = −

𝑃𝑡
′(𝑚)

𝑃𝑡(𝑚)
  

2. Spot Rates 

The discount function in (1.1) implies that: 
 

 log[𝑃𝑡(𝑚)] = −𝑚𝑅𝑡(𝑚)  
 

Differentiating with respect to 𝑚 yields: 
 

 𝑑

𝑑𝑚
log[𝑃𝑡(𝑚)] = − 0𝑅𝑡(𝑚)  𝑚

𝑑𝑅𝑡(𝑚)

𝑑𝑚
1  

 

From (1.3) 
 

 
−𝑓𝑡(𝑚) = − 0𝑅𝑡(𝑚)  𝑚

𝑑𝑅𝑡(𝑚)

𝑑𝑚
1  

 
∫ 𝑓𝑡(𝑢)
𝑚

0

𝑑𝑢 = ∫ 0𝑅𝑡(𝑢)  𝑢
𝑑𝑅𝑡(𝑢)

𝑑𝑢
1

𝑚

0

𝑑𝑢  

 
∫ 𝑓𝑡(𝑢)
𝑚

0

𝑑𝑢 = [𝑢. 𝑅𝑡(𝑢)]0
𝑚  

 
𝑅𝑡(𝑚) =

1

𝑚
∫ 𝑓𝑡(𝑢)
𝑚

0

𝑑𝑢  
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Appendix B 

CIR Model Results for 3, 6, 12 and 18 Months Maturity Data  

The results of initial estimates of OLS along with the MLE optimal estimates using the dataset 

for 3 months, 6 months, 12 months, and 18 months maturity periods for the entire sample 

(2000:01–2011:12) are depicted in table A-1. The results of MLE show that the average fitted 

yield curve is upward sloping. Figure A-1 plots the average observed yields and the estimated 

yield curves for all the four maturities data. It shows that the CIR model plots an upward sloping 

yield curve like the observed positively sloped average yield curve. However, the discrepancy 

between the estimated curves for all the four data sets and average observed yield curve is very 

high.   

 

Table A-1: Results of the MLE Estimation of the CIR Model 

Maturity 
 

            �̂�          �̂�           �̂�    log L 

3 Months 

 

Initial (OLS) 

MLE 

0.8729 

1.4762 

0.0017 

0.0017 

0.0983 

0.0743 

 

5969.100 

6 Months 

 

Initial (OLS) 

MLE 

1.1527 

1.9030 

0.0017 

0.0017 

0.1350 

0.0821 

 

5794.000 

12 Months 

 

Initial (OLS) 

MLE 

0.7615 

1.5163 

0.0021 

0.0022 

0.0982 

0.0788 

 

6190.400 

18 Months 

 

Initial (OLS) 

MLE 

0.8642 

1.6859 

0.0026 

0.0027 

0.0876 

0.0807 

 

6542.700 

Note: The table presents the initial OLS and MLE estimated results of 𝜉 vector using the time series 

data of 3 months, 6 months, 12 months, and 18 months maturities from 2000:01–2011:12. log L 

denotes the log likelihood value of the MLE estimation. The number of observations is 144. 
 

Furthermore, we estimate the CIR model for the two sub-periods, sub-period 1(2000:01–

2006:12) and sub-period 2 (2007:01–2011:12) to observe the yield curve behavior during the 

prolonged period of zero policy rates. In table A-2, we provide the initial estimates and MLE 

estimated parameters for the two subsets of data, i.e., the zero interest rate period (2000– 2006) 

and the non-zero interest rate period (2007–2011). Furthermore, the estimated yield curves for 

both the sub-periods are depicted in figure A-2. 

The maximum likelihood estimates for the first sub-period shows that the fitted yield curve 

is negatively sloped, however for the second sub-period the estimated yield curve has an upward 

slope for all the four maturities data sets.  
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Figure A-1: Fitted Yield Curves with the CIR Model 

Actual average (data-based) and fitted (model-based) yield curves for various maturities are plotted. The fitted yield 

curves are obtained by evaluating the CIR function at the MLE estimated �̂�, �̂� and �̂� from table A-1. 
 

Overall the results of 3 months, 6 months, 12 months, and 18 months maturities data sets 

generate the same yield curve as we have estimated using the two years maturity data for the 

overall sample as well as for the two sub-periods, however, the 24 months yield data fits the 

estimated yield curve slightly better than the 3 months, 6 months, 12 months, and 18 months at 

short maturities. 
 

Table A-2: Results of the MLE Estimation of the CIR Model for Sub-Periods 

Maturity               �̂�             �̂�             �̂�    log L 

Sub-Period I (2000:01– 2006:12) 

3 Months 
Initial (OLS) 

MLE 

1.3230 

3.7744 

0.0011 

0.0008 

0.1119 

0.0825 

 

3344.000 

6 Months 
Initial (OLS) 

MLE 

1.3230 

3.7744 

0.0011 

0.0008 

0.1119 

0.0825 

 

4121.000 

12 Months 
Initial (OLS) 

MLE 

0.6122 

2.2455 

0.0024 

0.0017 

0.1116 

0.0885 

 

3371.000 

18 Months 
Initial (OLS) 

MLE 

0.6577 

1.9660 

0.0028 

0.0023 

0.0899 

0.0829 

 

3708.600 

Sub-Period II (2007:01– 2011:12) 

3 Months 
Initial (OLS) 

MLE 

0.8952 

1.0691 

0.0020 

0.0022 

0.0771 

0.0696 

 

2676.200 

6 Months 
Initial (OLS) 

MLE 

1.1414 

1.3698 

0.0023 

0.0024 

0.0779 

0.0700 

 

2709.500 

12 Months 
Initial (OLS) 

MLE 

1.4333 

1.8056 

0.0027 

0.0028 

0.0770 

0.0701 

 

2856.600 

18 Months 
Initial (OLS) 

MLE 

1.5149 

2.0789 

0.0031 

0.0032 

0.0852 

0.0807 

 

2910.600 

Note: The table presents the initial OLS and MLE estimated results of 𝜉 vector using the time series data of 

3 months, 6 months, 12 months, and 18 months maturities for two sub-periods, i.e., sub-period 1 (2000:01 –

2006:12) and sub-period 2 (2007:01 – 2011:12). log L denotes the log likelihood value of the MLE 

estimation. The number of observations for the first sub–period and second sub–period is 84 and 60 

respectively. 
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Figure A-2: Fitted Yield Curve with the CIR Model for Two Sub-Periods 

Actual average (data-based) and fitted (model-based) yield curves for two sub-periods, i.e., sub-period 1 (2000:01 –

2006:12) and sub-period 2 (2007:01 – 2011:12) using the time series data of 3 months, 6 months, 12 months, and 18 

months maturities are plotted. The fitted yield curves are obtained by evaluating the CIR function at the MLE 

estimated �̂�, �̂� and �̂� from table A-2. 
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Appendix C 
Derivation of Analytical Gradient   ( , 𝝉) for the Non-Linear 

Ordinary Least Square of the Nelson-Siegel Model 

To minimize the sum of squared zero-coupon yield errors, the objective function 𝐹(𝛽, 𝜏) is as 

given in (2.16): 
 

 𝐹(𝛽, 𝜏) = [𝑅(𝑚) − 𝛬(𝜏)𝛽]2 (A-1) 
 

Differentiate the objective function in (A-1) w.r.t 𝛽 and 𝜏, 
 

 𝜕𝐹

𝜕𝛽1
= [−2(𝑅(𝑚) − 𝑏)] =   (A-2) 

 𝜕𝐹

𝜕𝛽2
= [−2𝜏𝑎. (𝑅(𝑚) − 𝑏)] =   (A-3) 

 𝜕𝐹

𝜕𝛽3
= [−2[𝜏𝑎 − exp(−𝑚/𝜏)]. (𝑅(𝑚) − 𝑏)] =     (A-4) 

                 
𝜕𝐹

𝜕𝜏
= [2 {−𝛽2 (𝑎  

exp (−𝑚/𝜏)

𝜏
)

− 𝛽3 (𝑎 −
exp (−𝑚/𝜏)

𝜏
−
exp (−𝑚/𝜏).𝑚

𝜏2
)} . (𝑅(𝑚) − 𝑏)] =   

(A-5) 

 

where 
 

 
𝑎 =

[1 − exp(−𝑚/𝜏)]

𝑚
  

 𝑏 = −𝛽1 − 𝛽2𝑎𝜏 − 𝛽3[𝑎𝜏 − exp(−𝑚/𝜏)]  
 

The system of equations derived analytically in (A-2), (A-3), (A-4) and (A-5) is non-linear 

and can be solved numerically. The numerical solution of the system implies to the Nelson-Siegel 

estimated factors vector �̂�𝑡 = (�̂�1𝑡, �̂�2𝑡, �̂�3𝑡, �̂�𝑡)
′. 
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Appendix D 

Out-of-Sample Forecast Performance of the Nelson-Siegel Model  

We follow the Diebold and Li (2006) method and model the estimated four time-varying factors 

of Nelson-Siegel model as first order auto-regressive and vector auto-regressive and make out of 

sample forecast for one month, 6 months and 1 year horizons.
78

 The yield forecasts based on 

underlying univariate AR(1) factor specifications are: 
 

 �̂�𝑡+ℎ(𝑚) = Λ(�̂�𝑡+ℎ)�̂�𝑡+ℎ  (A-6) 

 �̂�𝑡+ℎ = 𝐴0  𝐴1�̂�𝑡  휀𝑡+ℎ (A-7) 
 

where 𝐴0 is (4×1) vector of constants, 𝐴1 is (4×4) diagonal matrix, �̂�𝑡 = (�̂�1𝑡, �̂�2𝑡, �̂�3𝑡, �̂�𝑡)
′ 

and 휀𝑡+ℎ ∽ 𝑁( ,  ) is (4×1) error vector. 𝐴0 and 𝐴1 are obtained by regressing �̂�𝑡 on �̂�𝑡−ℎ. 

The multivariate VAR(1) model specification is same as in (A-7) but we modify 𝐴1 to be (4×4) 

full matrix rather than a diagonal matrix. 

We estimate and forecast recursively, using data from January 2000 to the time that the 

forecast is made, beginning in January 2008 and extending through December 2011. 

Subsequently, we substitute the forecasted factors �̂�𝑡+ℎ at time 𝑡 in (A-6) to get the forecasted 

yield denoted as �̂�𝑡,𝑡+ℎ(𝑚). 

In tables A-3, A-4 and A-5, we compute the descriptive statistics of  -month-ahead out-of 

sample forecasting results of the dynamic Nelson–Siegel models of AR(1) and VAR(1) 

representation of �̂�𝑡 = (�̂�1𝑡, �̂�2𝑡, �̂�3𝑡, �̂�𝑡)
′, for maturities of 3, 6, 12, 18, 24, 36, 60, 120, 180, 240 

and 300 months for the forecast horizons of  = 1, 6 and 12 months. 

We define forecast errors at 𝑡    as [𝑅𝑡+ℎ(𝑚) − �̂�𝑡,𝑡+ℎ(𝑚)], where �̂�𝑡,𝑡+ℎ(𝑚) is the 

forecasted yield in period 𝑡  for 𝑡    period and is not the Nelson–Siegel fitted yield. 

𝑅𝑡+ℎ(𝑚) is the actual yield in period 𝑡   . We examine a number of descriptive statistics for 

the forecast errors, including mean, standard deviation, mean absolute error (MAE), root mean 

squared error (RMSE) and autocorrelations at various displacements. 

The results of one month ahead forecast of AR(1) and VAR(1) representation are reported in 

table A-3. The one month ahead forecasting results appear suboptimal as the forecast errors 

appear serially correlated. The average forecast errors and RMSE are much smaller than that of 

                                                   
78

 Diebold and Li (2006) model the three estimated factors of Nelson-Siegel model �̂�𝑡 = (�̂�1𝑡 , �̂�2𝑡 , �̂�3𝑡)
′ as they 

assume the shape parameter 𝜏𝑡is constant. Contrarily, we model the four estimated factors of Nelson-Siegel model  

�̂�𝑡 = (�̂�1𝑡 , �̂�2𝑡 , �̂�3𝑡 , �̂�𝑡)
′, assuming a time-varying 𝜏𝑡. 
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the related work such as Bliss (1997), de Jong (2000) and Diebold and Li (2006). In relative 

terms, RMSE comparison at various maturities reveals that AR(1) forecasts are slightly better 

than the VAR(1), however in term of serial correlation of errors the VAR(1) outperform the 

AR(1) specification. 

 

Table A-3: Out-of-Sample 1 Month Ahead Forecasting Results 

Maturity     Mean Std. Dev.    MAE    RMSE       �̂� (1)        �̂� (12)       �̂� (24) 

Forecast Summary for AR(1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

0.049 

0.022 

-0.022 

-0.046 

-0.079 

-0.120 

-0.152 

-0.003 

0.098 

0.128 

0.087 

0.152 

0.143 

0.148 

0.181 

0.197 

0.227 

0.251 

0.188 

0.169 

0.162 

0.145 

0.102 

0.102 

0.126 

0.163 

0.187 

0.227 

0.255 

0.145 

0.157 

0.172 

0.139 

0.047 

0.039 

0.028 

0.037 

0.039 

0.050 

0.077 

0.065 

0.052 

0.045 

0.028 

0.865 

0.850 

0.892 

0.870 

0.856 

0.821 

0.768 

0.547 

0.495 

0.550 

0.643 

-0.067 

-0.076 

-0.073 

-0.059 

-0.029 

0.000 

0.059 

0.093 

0.045 

-0.018 

-0.067 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

Forecast Summary for VAR(1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

0.048 

-0.053 

-0.222 

-0.348 

-0.460 

-0.612 

-0.735 

-0.515 

-0.277 

-0.141 

-0.107 

0.208 

0.321 

0.552 

0.764 

0.928 

1.166 

1.375 

1.213 

0.944 

0.744 

0.598 

0.140 

0.245 

0.147 

0.235 

0.383 

0.396 

1.080 

0.596 

0.761 

0.593 

0.477 

0.079 

0.143 

0.515 

0.426 

0.073 

0.527 

1.012 

0.557 

0.376 

0.806 

0.478 

0.829 

0.825 

0.841 

0.846 

0.847 

0.848 

0.847 

0.83 

0.826 

0.816 

0.826 

-0.048 

0.063 

0.112 

0.119 

0.123 

0.124 

0.126 

0.128 

0.120 

0.117 

0.111 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

The table presents the results of out-of-sample 1-month-ahead forecasting using AR (1) and VAR (1) specification of 

the estimated factors. We estimate all models recursively from 2000:1 to the time that the forecast is made, beginning 

in 2008:1 and extending through 2011:12. We define forecast errors at 𝑡  1 as  𝑅𝑡+1(𝑚) − �̂�𝑡,𝑡+1(𝑚), where 

�̂�𝑡,𝑡+1(𝑚) is the 𝑡  1 month ahead forecasted yield at period 𝑡, and we report the mean, standard deviation, mean 

absolute errors and root mean squared errors of the forecast errors, as well as their first, 12
th

 and 24
th

 order sample 

autocorrelation coefficients. 

 

The results in table A-4 and A-5 of 6 months and one year ahead forecast respectively, 

reveal that matters worsen radically with longer horizons forecast. For 6 months ahead forecast, 

the AR(1) forecasts are slightly better than the VAR(1), while for the 12 months ahead, the 

VAR(1) performs better than the AR(1) in terms of lower RMSE. However, in regard of 

auto-correlation of the forecast errors, VAR(1) outperforms AR(1) for all maturities in both 6 and 

12 months ahead forecasts. 
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Table A-4: Out-of-Sample 6 Months Ahead Forecasting Results 

Maturity     Mean Std. Dev.    MAE    RMSE       �̂� (1)        �̂� (12)         �̂� (24) 

Forecast Summary for AR(1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

0.096 

0.078 

0.050 

0.037 

0.013 

-0.018 

-0.049 

0.070 

0.145 

0.159 

0.110 

0.184 

0.172 

0.177 

0.208 

0.224 

0.254 

0.278 

0.210 

0.185 

0.176 

0.166 

0.122 

0.116 

0.126 

0.154 

0.173 

0.205 

0.234 

0.169 

0.191 

0.200 

0.163 

0.077 

0.066 

0.061 

0.082 

0.088 

0.102 

0.107 

0.080 

0.070 

0.059 

0.044 

0.883 

0.867 

0.889 

0.872 

0.852 

0.809 

0.755 

0.571 

0.527 

0.587 

0.689 

-0.067 

-0.071 

-0.065 

-0.046 

-0.017 

0.012 

0.070 

0.104 

0.060 

-0.026 

-0.081 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

Forecast Summary for VAR(1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

-0.660 

-0.647 

-0.622 

-0.589 

-0.573 

-0.539 

-0.474 

-0.194 

-0.008 

0.083 

0.086 

0.451 

0.435 

0.434 

0.454 

0.463 

0.484 

0.502 

0.413 

0.363 

0.312 

0.270 

0.698 

0.680 

0.661 

0.647 

0.642 

0.633 

0.597 

0.366 

0.265 

0.228 

0.201 

0.095 

0.063 

0.057 

0.144 

0.132 

0.142 

0.140 

0.247 

0.271 

0.239 

0.183 

0.820 

0.808 

0.813 

0.828 

0.830 

0.828 

0.820 

0.724 

0.666 

0.636 

0.643 

0.040 

0.065 

0.075 

0.083 

0.090 

0.092 

0.101 

0.127 

0.116 

0.100 

0.070 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

The table presents the results of out-of-sample 6-month-ahead forecasting using AR (1) and VAR (1) specification of 

the estimated factors. We estimate all models recursively from 2000:1 to the time that the forecast is made, beginning 

in 2008:1 and extending through 2011:12. We define forecast errors at 𝑡  6 as  𝑅𝑡+6(𝑚) − �̂�𝑡,𝑡+6(𝑚), where 

�̂�𝑡,𝑡+6(𝑚) is the 𝑡  6 months ahead forecasted yield at period 𝑡, and we report the mean, standard deviation, mean 

absolute errors and root mean squared errors of the forecast errors, as well as their first, 12
th

 and 24
th

 order sample 

autocorrelation coefficients. 

 

Furthermore, we also compute the Trace Root Mean Squared Prediction Error (TRMSPE) 

which combines the forecast errors of all maturities and summarizes the performance of each 

model, thereby allowing for a direct comparison between the models.
79

 In table A-6, we report 

the TRMSPE for both the specifications of yield curve factors, i.e., AR(1) and VAR(1) for all the 

three forecasts horizons. 
 

                                                   
79

 Given a sample of 𝑇 out-of-sample forecasts of 𝑁 distinct maturities with  −months ahead forecast horizon, 

we compute the TRMSPE as follows: 

 

𝑇𝑅𝑀 𝑃𝐸 = √
1

𝑁𝑇
∑∑[𝑅𝑡+ℎ(𝑚) − �̂�𝑡,𝑡+ℎ(𝑚)]

2
𝑇

𝑡=1

𝑁

𝑚=1

  

where �̂�𝑡,𝑡+ℎ(𝑚) is the forecasted yield in period 𝑡 for 𝑡    period. 
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Table A-5: Out-of-Sample 12 Months Ahead Forecasting Results 

Maturity      Mean Std. Dev.    MAE    RMSE         �̂� (1)        �̂� (12)         �̂� (24) 

Forecast Summary for AR(1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

0.093 

0.075 

0.046 

0.032 

0.006 

-0.028 

-0.065 

0.050 

0.129 

0.150 

0.108 

0.197 

0.183 

0.188 

0.216 

0.230 

0.258 

0.281 

0.211 

0.186 

0.179 

0.170 

0.130 

0.125 

0.138 

0.167 

0.187 

0.221 

0.246 

0.169 

0.183 

0.196 

0.163 

0.083 

0.070 

0.061 

0.075 

0.077 

0.084 

0.091 

0.074 

0.066 

0.057 

0.045 

0.848 

0.874 

0.897 

0.896 

0.882 

0.881 

0.798 

0.612 

0.557 

0.612 

0.716 

-0.003 

-0.074 

-0.070 

-0.054 

-0.029 

-0.068 

0.048 

0.078 

0.034 

-0.049 

-0.098 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

Forecast Summary for VAR(1) Specification 

3 

6 

12 

18 

24 

36 

60 

120 

180 

240 

300 

-0.081 

-0.091 

-0.106 

-0.109 

-0.127 

-0.149 

-0.172 

-0.035 

0.064 

0.100 

0.067 

0.150 

0.135 

0.135 

0.162 

0.185 

0.236 

0.309 

0.299 

0.271 

0.236 

0.208 

0.135 

0.129 

0.144 

0.171 

0.198 

0.251 

0.305 

0.229 

0.199 

0.191 

0.164 

0.041 

0.034 

0.031 

0.033 

0.038 

0.059 

0.111 

0.175 

0.177 

0.139 

0.099 

0.590 

0.510 

0.599 

0.699 

0.722 

0.746 

0.758 

0.676 

0.639 

0.609 

0.621 

-0.070 

-0.080 

-0.059 

-0.024 

0.026 

0.066 

0.087 

0.015 

-0.049 

-0.073 

-0.073 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

The table presents the results of out-of-sample 12-month-ahead forecasting using AR (1) and VAR (1) specification 

of the estimated factors. We estimate all models recursively from 2000:1 to the time that the forecast is made, 

beginning in 2008:1 and extending through 2011:12. We define forecast errors at 𝑡  12  as  𝑅𝑡+12(𝑚) −

�̂�𝑡,𝑡+12(𝑚), where �̂�𝑡,𝑡+12(𝑚) is the 𝑡  12 months ahead forecasted yield at period 𝑡, and we report the mean, 

standard deviation, mean absolute errors and root mean squared errors of the forecast errors, as well as their first, 12
th

 

and 24
th

 order sample autocorrelation coefficients. 
 

The performances of AR(1) is to some extent superior to that of the VAR(1) model of 

factors in terms of TRMSPE for the one month and six months ahead forecasts horizons, while 

the VAR(1) outperform the AR(1) for twelve months ahead forecasts. It suggests that for longer 

horizons forecasts the multivariate VAR(1) specification of factors can forecast the future yields 

with greater accuracy than the univariate AR(1) model of factors. 
 

Table A-6: TRMSPE Results for Out-of-Sample Forecasts Accuracy Comparisons 

TRMSPE 1 Month Forecasts 6 Months Forecasts 12 Months Forecasts 

AR(1) Model of Factors 0.046 0.076 0.079 

VAR(1) Model of Factors 0.054 0.085 0.055 

Note: The table reports the Trace Root Mean Squared Prediction Error (TRMSPE) results of 

out-of-sample forecasts accuracy comparison for horizons of one, 6, and 12 months for both 

AR(1) and VAR(1) specification of factors. 
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In summary, the out-of-sample forecast results of the Nelson-Siegel seem reasonably well in 

terms of lower forecast errors, however the errors are serially correlated. These results are slightly 

different from Dieobld and Li (2006). In term of lower RMSE, our results for all the three 

horizons forecast are preferred than that of related studies. Diebold and Li (2006) have a great 

success in forecasts, particularly in terms of the errors persistency, using a different dataset with 

maturities up to 10-year, whereas we have maturities up to 25-year. The original Nelson-Siegel 

framework might forecast the long maturities sub-optimally. The serial correlation of forecast 

errors may likely come from a variety of sources, some of which could be eliminated, such as, 

pricing errors due to illiquidity may be highly persistent and could be reduced by including 

variables that may explain mispricing as suggested by Dieobld and Li (2006).  
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Appendix E 

Coefficients in the General State-space Form 

 

 
𝑦𝑡 = [

𝑅𝑡(𝑚)
𝑍𝑡

] 
𝛼𝑡 = [𝛽𝑡

′, 𝐼�̃�𝑡 , 𝑀 ̃𝑡 , 𝐼𝑁�̃�𝑡, 휀𝑡
∗ ]
′
 

 
H = [

Λ(𝜏)  𝜀  
  𝐼3

] 𝐾 = [
𝐴  6
 6
′  

] 

 
𝐶 = *

(𝐼6 − 𝐴)𝜇
 

+ 
𝐺 = 𝐼7 

 
𝑤𝑡 = [

휀𝑡
+

 
] 𝑢𝑡 = *

𝑣𝑡+1
휀𝑡+1
∗ + 

 
𝑅 = *

  
  

+  𝑡 = [
 𝑣  
  𝑡+1

] 

 

where 𝛼𝑡 = (𝛽𝑡
′, 𝐼�̃�𝑡 , 𝑀 ̃𝑡 , 𝐼𝑁�̃�𝑡, 휀𝑡

∗ )
′
= (𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡, 𝐼�̃�𝑡 , 𝑀 ̃𝑡 , 𝐼𝑁�̃�𝑡, 휀𝑡

∗)
′
 is the (7×1) vector of 

yield curve and macroeconomic factors,  𝑅𝑡(𝑚)is (N×1) vector of zero-coupon yield, 𝑍𝑡 =

(𝐼𝑃𝑡 , 𝑀 𝑡 , 𝐼𝑁𝐹𝑡)
′  is the (3×1) vector of macroeconomic factors, 𝛽𝑡  is (3×1) vector of 

Nelson-Siegel factors, Λ(𝜏)  is (N×3) matrix of factors loadings, 𝐴  is (6×6) matrix of 

parameters, 𝜇 is (6×1) mean vector of factors, 𝐼6 and 𝐼3 are (6×6) and (3×3) identity matrices 

respectively and  𝜀 is (N×1) vector.  𝑣 is (6×6), the covariance matrix of innovations of the 

transition system and   is the (N×N) dimension covariance matrix of the innovations to the 

measurement system. Furthermore, 휀𝑡
+ is the (N×1) error vector of measurement equation and 

𝑣𝑡+1 is (6×1) innovation vector of first six state equations.  
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Appendix F 
The VAR Model and Calculation of Impulse Response Functions 

and Variance Decompositions 
 

The VAR (1) models considered in this study, in general notations can be written as: 
 

 𝑦𝑡 = 𝜇  𝐴𝑦𝑡−1  휀𝑡 (A-8) 
 

where 𝑦𝑡 is (𝑚  1) vector of endogenous variables, 𝜇 is the constant vector and 𝐴 is the 

(𝑚  𝑚) transition matrix. The errors 휀𝑡 follow: 
 

 휀𝑡~𝑁( ,  ) (A-9) 
 

where   is (𝑚  𝑚) covariance matrix and is assumed to be non-diagonal. Letting that the 

unconditional mean of 𝑦𝑡 is 𝑐 = (𝐼𝑚 − 𝐴)
−1𝜇, where 𝐼𝑚 is  (𝑚  𝑚) identity matrix. We 

can write (A-8) as: 
 

  𝑦𝑡 − 𝑐 = 𝜇  𝐴(𝑦𝑡−1 − 𝑐)  휀𝑡 (A-10) 
 

Assuming that all roots of 𝐴 lie inside the unit circle, we can write the moving average (MA) 

representation of the VAR in (A-10) as: 
 

  
𝑦𝑡 − 𝑐 =∑ 𝐴𝑖

∞

𝑖=0
휀𝑡−𝑖 =∑ Ψ𝑖

∞

𝑖=0
휀𝑡−𝑖 (A-11) 

 

For 𝑖 = 1,2, ….  and  Ψ𝑖 = 𝐴
𝑖 , where 𝐴𝑖  denotes the matrix 𝐴 multiplied by itself 𝑖  times, 

but Ψ0 = 𝐼𝑚. 

As shown in section 4.3.2 that the covariance matrix of VAR is non-diagonal, therefore we 

cannot compute the IRFs using the original residuals 휀𝑡 and the interpretation of elements in 

𝐴 in (A-8) is not straightforward. We use a Cholesky decomposition to transform the innovations 

so that the resulting components are uncorrelated. Specifically, we derive a lower-triangular 

matrix 𝐿 such that   = 𝐿𝐷𝐿′, where 𝐷 is a diagonal matrix and the diagonal elements of 𝐿 are 

unity. The transformed residuals take the form as 𝑣𝑡 = 𝐿
−1휀𝑡 , then 𝔼(𝑣𝑡𝑣𝑡

′) = 𝐷 . But 𝐷 is 

diagonal, verifying that the elements 𝑣𝑡 are contemporaneously uncorrelated. We compute the 

response of 𝑦𝑡 to a one standard deviation shock in 휀𝑡 as: 
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 𝜕𝑦𝑡+𝑠
𝜕𝑣𝑗𝑡

= Ψ𝑠𝑙𝑗 (A-12) 

 

The variance decompositions (VDCs) provide information about the relative importance of 

each random innovation in the system in affecting the variables in the VAR. The contribution of 

the j
th

 variable to the mean squared error (MSE) of the   period ahead forecast, under the 

assumption of non-diagonal   is: 
 

 𝑀 𝐸𝑗( ) = 𝑉𝑎𝑟(𝑣𝑗𝑡)[𝑙𝑗𝑙𝑗
′  Ψ1𝑙𝑗𝑙𝑗

′Ψ1
′  Ψ2𝑙𝑗𝑙𝑗

′Ψ2
′  ⋯ Ψ𝑠−1𝑙𝑗𝑙𝑗

′Ψ𝑠−1
′ ] (A-13) 

 

The 𝑀 𝐸 is given by: 
 

 
𝑀 𝐸( ) =∑ 𝑀 𝐸𝑗( )

𝑘

𝑗=1
 (A-14) 

 

where both  SE and  SE𝑗 are (𝑚  𝑚) matrices. We compute the VDC at forecast horizon   

as the fraction of 𝑀 𝐸 of the i
th

 variable due to shocks to the j
th

 variable: 
 

 
𝑉𝐷𝐶𝑖

𝑗( ) =
𝑀 𝐸𝑖𝑖

𝑗( )

𝑀 𝐸𝑖𝑖( )
 (A-15) 

 

where 𝑀 𝐸𝑖𝑖  and 𝑀 𝐸𝑖𝑖
𝑗( ) are the (𝑖, 𝑖) elements of the 𝑀 𝐸 and 𝑀 𝐸𝑗matrices respectively. 


