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Abstract

We formulate baseball as a finite Markov game with approximately 3.5 million states.
The manager of each opposing team is the player who maximizes the probability of their
team winning. We derive, using dynamic programming, a recursive formula which is satisfied
by Markov perfect equilibria and the value functions of the game for both teams. By solving
this recursive formula, we can obtain optimal strategies for each condition. We demonstrate
with numerical experiments that these can be calculated in approximately 1 second per game.

Keywords Markov game, dynamic programming, optimal strategies in baseball.

1 Introduction

Similar to the various problems within corporations, even in sports, there are several successful
cases that have employed scientific methods. For example, using a technique known as Saber-
metrics, Billy Beane, the general manager of Oakland Athletics in the Major League, built up
a powerful team on a low budget. And in Japanese professional baseball, making full use of
the information system BOS (Baseball Operation System) contributed to the successes of the
Hokkaido Nippon-Ham Fighters, who won the league four times, and became the top team in
Japan once in the seven years after 2006.

On the other hand, a method exists for analyzing baseball that uses Markov chains, and has
been extensively studied by several authors (Bellman [1], Bukiet et al. [2], Cover and Keilers [3],
Howard [5], Turocy [8], and others). The first scholar to have applied Markov chains to Baseball,
seems to be Howard [5]. He said that the discrete nature of events in baseball constituted a
natural Markov model. He suggests the optimization of strategies (especially sacrifice bunts
and stolen bases), which maximizes the expected runs scored in one inning by using dynamic
programming. In other words, this is a Markov decision process (MDP) approach. Bellman [1]
proposes a more detailed formulation. His model analyzes not only a batter-by-batter level, but
also a pitch-by-pitch level. He provided a subtle insight into strategies through a discussion based
on the two criteria of maximizing the expected number of runs scored, as well as the threshold
probability of scoring at least k runs in one inning. However, due to the shortage of computing
capacity at the time, these approaches using dynamic programming were not implemented.

At the same time as the work of Bellman, in 1977, D’Esopo and Lefkowitz [4] propose a
scoring index (SI) as an evaluation index for the expected number of runs scored in one inning
assuming that the same player steps up to the plate repeatedly. Under the same assumption,
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Cover and Keilers [3] in 1977 propose a similar index, the OERA (Offensive Earned-Run Average)
value, as an index to evaluate the expected number of runs scored in a single game. In the
OERA model, the baseball rules are simplified to apply the absorbing Markov chain model in
the calculation of the expected runs scored. Bukiet et al. [2] in 1997 take into consideration
of the batting order. They give an algorithm to calculate the expected runs scored in a game
assuming the nine players constituting the team step up to the plate in a given order. Further,
a method for approximately computing the winning percentage is also proposed. These studies
can be classified as Markov chain approaches with matrix analysis.

In 2008, Turocy [8] produces a model to also couple the strategies of the opposing team with
the Bellman’s approach by using a Markov game, which is a multi-agent extension of MDPs (e.g.
see Shapley [7] and Zachrisson [9]). Here, the manager of each opposing team maximizes the
probability of their team winning. Since the model adopts the MLB rule to play extra innings
until a winner is determined, the states for an extra inning can be identified as being the same as
for the ninth inning. In addition, by establishing an upper limit of 30 runs for the run difference
(mercy-rule), his stochastic game has a finite number of states, and a finite number of actions,
and so a Markov perfect equilibrium (MPE) exists. The total number of states in this case is
approximately 2.13 million. Turocy performed numerical experiments using backward induction
(dynamic programming) from the start of the game up to the completion of the eighth inning,
and using a fixed-point approximation by a value-function iteration for the ninth inning. The
details of such as the recursive formula and the algorithm are omitted in the paper, but he
states that the values of the game (the equilibrium winning percentages for both teams) could
be solved with high accuracy in less than a minute.

In this paper, similar to Turocy, we consider a game-theoretic approach for baseball. Baseball
is formulated as a finite Markov game with approximately 3.5 million states. Here, whereas
Turocy counts the combination of all the states including those that are unreachable, in our
model, only the states which are reachable are counted. We also suppose that the manager of
each team maximizes the probability of their team winning. The principal differences compared
to Turocy’s model are the two points that, (a) in order to consider the success rate with stolen
bases in more detail, the identity of the runner on first base is stored in the state, and (b) the
rule from Japanese baseball that extra innings are restricted to a maximum of three is included,
so the game may end in a draw. Because of the mercy-rule and the finiteness of the number
of extra innings, the length of the game also becomes finite. Hence, at least one pure-strategy
MPE does exist in our model, and they can be found using backward induction. We derive a
recursive formula that is satisfied by the MPEs and the value functions of the game, and carry
out numerical experiments to solve it.

In Section 2, we provide a finite Markov game as a formulation for baseball. States, actions,
state transitions with simplifying rules, and payoff functions are all defined in detail. Here, we
make use of the MDP methodology, which reduces a probability criterion down to an expectation
criterion (e.g. Kira et al. [6]). In Section 3, we define MPEs and the value functions of the
game, and derive the recursive formula that is satisfied by them. By solving this, the optimal
strategies for each state are obtained, such as a sacrifice bunt or a stolen base. Section 4 performs
computational experiments. We calculate the recursive formula for just reachable states from
the initial state by implementing the depth-first search of the game tree. In this way, the value
functions of the game for both teams and a pure-strategy MPE can be found in about 1 second.
The results obtained from numerical examples in this study are described. Concluding remarks
and future direction are discussed in Section 5.

2 Formulation as a Markov game

In this section, baseball is formulated as a Markov game.
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2.1 States

Let S be the state space. A state s = (ι, τ, ω, λ, r, b) ∈ S is made up of 6 components. Each
component is defined as follows:

1. ι ∈ {1, 2, . . . , 12} represents the current inning. ι = 9 is the final inning, and for a tie,
extra innings are played up to a maximum of ι = 12.

2. τ ∈ {0, 1} represents offense in the top half of the inning (τ = 0) or offense in the bottom
half of the inning (τ = 1).

3. ω ∈ {0, 1, 2, 3} represents the current number of outs.

4. λ is the current run difference and represents the value found by subtracting the runs of
the home team (last-batting team) from the runs of the away team (first-batting team).

5. r = (r3, r2, r1) represents the state of the runners.

• r3 ∈ {0, 1} takes a value 0 if there is no runner on third base, and a value 1 if a runner
is present.

• r2 ∈ {0, 1} takes a value 0 if there is no runner on second base, and a value 1 if a
runner is present.

• r1 ∈ {0, 1, . . . , 9} takes a value 0 if there is no runner on first base, and the same
value as the batting order of the runner if a runner is present.

Only r1 distinguishing between runners is in order to take into account the success rate,
which is dependent on the runner when performing a stolen base from first to second base.
In this paper, neither a stolen base from second to third base, nor a stolen base from third
to home base, are considered.

6. b = (b1, b2) indicates to which batter the batting order rotates.

• b0 ∈ {1, 2, . . . , 9} indicates to which batter the batting order of the first-batting team
rotates. It represents, when in offense (τ = 0), that the b0-th batter steps up to the
plate. When in defense (τ = 1), it means that the leadoff hitter in the next inning is
the b0-th batter.

• b1 ∈ {1, 2, . . . , 9} similarly indicates to which batter the batting order of the last-
batting team rotates.

The initial state s0 at the start time of the game is as follows:

s0 = (ι, τ, ω, λ, r, b)0 = (1, 0, 0, 0, (0, 0, 0), (1, 1)).

SQ denotes the total states (absorbing states) at the end of the game:

SQ := S0
Q ∪ S1

Q ∪ S2
Q ∪ S3

Q,

where
S0

Q = {s ∈ S | ι ≥ 9, τ = 1, ω = 3, λ > 0},
S1

Q = {s ∈ S | ι = 9, τ = 0, ω = 3, λ < 0} ∪ {s ∈ S | ι ≥ 9, τ = 1, λ < 0},
S2

Q = {s ∈ S | ι = 12, τ = 1, ω = 3, λ = 0},
S3

Q = {s ∈ S |λ ≤ −30} ∪ {s ∈ S |λ ≥ 30}. (mercy-rule)

S0
Q and S1

Q correspond to a victory for the first-batting team and a victory for the last-batting
team, respectively. S2

Q corresponds to a tie in the 12th inning after playing extra innings. We
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note that the mercy-rule refers to the establishment of a called game during the inning. By
adopting both the Japanese professional baseball rules (i.e., the number of extra innings is
finite) and the above mercy-rule, we get a finite Markov game. In addition, we equate the state
s, such that ω = 3 and s /∈ SQ, with the corresponding state after the inning is over.

2.2 Actions

The manager of each team is the player maximizing the probability of their team winning. For
each state s ∈ S, if τ = 0 (the top half of the inning) then the first-batting team can choose
their actions. Conversely, if τ = 1 (the bottom half of the inning) then the last-batting team can
choose. Here, we let S0 and S1 be the sets of states of moves for, respectively, the first-batting
team and the last-batting team. Namely,

S0 = {s ∈ S | τ = 0, s /∈ SQ},
S1 = {s ∈ S | τ = 1, s /∈ SQ}.

In this paper, the action space is defined as

A = {batting, stolen base, sacrifice bunt}.

Let us consider a point-to-set valued mapping A : S → 2A \{ϕ}. A(s), called the feasible action
space, represents the set of all actions in state s. In this paper, we define them in the following
manner:

batting ∈ A(s), ∀s ∈ S,
stolen base ∈ A(s) ⇐⇒ r2 = 0, r1 ≥ 1,
sacrifice bunt ∈ A(s) ⇐⇒ ω = 0 or 1, r3 + r2 + r1 ≥ 1.

Hence, stolen bases are feasible if and only if there is no second base runner and there is a runner
present on first base, and sacrifice hits are feasible if and only if a runner is present with 0 or 1
outs.

Definition 2.1 (Markov policy). A mapping π0 : S0 → A is called a (deterministic) Markov
policy for the first-batting team if π0(s) ∈ A(s) for all s ∈ S0. Similarly, a mapping π1 : S1 → A
is called a Markov policy for the last-batting team if π1(s) ∈ A(s) for all s ∈ S1.

We denote the set of all deterministic Markov policies for the first-batting team and the
last-batting team by Π0 and Π1, respectively.

2.3 State transitions

For any a ∈ A, let us define X (a), the set of all results that can occur stochastically when the
action a is chosen, as follows:

X (a) =
{

{out, single, double, triple, home run, walk} if a = batting
{success, fail} otherwise.

We denote the graph of A(·) by Gr(A). Namely,

Gr(A) = {(s, a) | a ∈ A(s), s ∈ S}.

For any (s, a) ∈ Gr(A) and any x ∈ X (a), p(x| s, a) represents the conditional probability with
which the result x occurs, given that action a is chosen in state s.

p(· | s, a) : X (a) → [0, 1], ∀(s, a) ∈ Gr(A),∑
x∈X (a)

p(x | s, a) = 1, ∀(s, a) ∈ Gr(A).
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Now, with the definition of the state, the state s = (ι, τ, ω, λ, r, b) includes information about
the inning number, whether it is the top or bottom half, the out count, the run difference, the
batting order of the batters, whether there are runners present or not, and also, the batting
order of the runner if one is present on first base. Therefore, the transition probability generally
depends on all of these states. However, in the numerical experiments carried out in Section
4, we assume that the transition probability depends only on the players that make a hit, or
perform sacrifice hits or stolen bases, and does not depend on those other components which
comprise the state.

This paper simplifies baseball in a similar manner to previous research. The simplifying rules
used in this paper are as below.
“Simplifying rules”

1. With a mishit (an out), neither a batter nor a runner can advance bases.

2. A single advances a runner on first base to third base, and runners on second and third
base reach the home plate.

3. A double and a triple allows all runners to reach the home plate.

4. It is assumed that there are no double plays.

5. For a successful stolen base, the runner on first base advances to second base.

6. For an unsuccessful stolen base, the runner on first base is out.

7. For a successful sacrifice hit, the runners advance one base forward, and the batter per-
forming the sacrifice hit is out.

8. For an unsuccessful sacrifice hit, the runner closest to the home plate is out, the other
runners advance one base forward, and the batter is then the runner on first base.

If these simplifying rules are followed, then the next state s′ is determined uniquely when in
state s, action a is chosen, and result x occurs. We denote this next state by

s′ = t(s, a, x).

2.4 Payoff function

Since, for any Borel set B and any random variable X, we know the relation

Pr(X is in B ) = E[1B(X) ], 1B(X) =
{

1 if X is in B,
0 otherwise .

The approach, using this relation to reduce a probability criterion to an expectation criterion,
is often used in the field of Markov decision processes (see Kira et al. [6]). Thus, we define
the terminal payoff functions r0, r1 : SQ → {0, 1} for the last-batting team and the first-batting
team as follows:

r0(s) =
{

1 λ > 0,
0 λ ≤ 0,

r1(s) =
{

0 λ ≥ 0,
1 λ < 0.

If the game is won, a payoff of 1 is acquired, whereas a loss or a tie is a payoff of 0. Suppose
that Markov policies π0 ∈ Π0 and π1 ∈ Π1 are employed by the first-batting team and the last-
batting team, respectively. In this case, the Markov game commencing from each state s can
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be regarded as a Markov chain. In other words, if we let Xn be the state after n step transition
from the initial state s0, then {Xn} is the Markov chain satisfying

Prπ0,π1(Xn+1 = s′ |Xn = s) =


p(x | s, πi(s)) if s ∈ Si, s′ = t(s, πi(s), x),

1 if s ∈ SQ, s′ = s,
0 otherwise.

Let T be the arrival time of {Xn} to SQ. Namely,

T := min{n |Xn ∈ SQ} < ∞.

We can define the probabilities of the first-batting team winning and the last-batting team
winning, denoted by v0(s; π0, π1) and v1(s; π0, π1) respectively, as follows:

v0(s; π0, π1) = Eπ0,π1 [r0(XT ) |X0 = s] ,
v1(s; π0, π1) = Eπ0,π1 [r1(XT ) |X0 = s] .

3 Markov perfect equilibria and dynamic programming

In this section, we define a Markov perfect equilibrium and the value functions of the game, and
derive the recursive formula for effectively computing them.

A Markov perfect equilibrium is a profile of Markov policies that yields a Nash equilibrium
in every proper subgame.

Definition 3.1 (Markov perfect equilibrium, MPE). A profile of (deterministic) Markov policies
(π∗

0, π
∗
1) for the first-batting team and the last-batting team is called a (pure-strategy) MPE if it

is a subgame perfect equilibrium. Namely, it satisfies

v0(s; π0, π
∗
1) ≤ v0(s; π∗

0, π
∗
1), ∀s ∈ S, ∀π0 ∈ Π0,

v1(s; π∗
0, π1) ≤ v1(s; π∗

0, π
∗
1), ∀s ∈ S, ∀π1 ∈ Π1.

Remark 3.1 (existence of the equilibria). In the most general context, the action chosen by a
policy in each state may be randomized. However, it is well-known that at least one pure-strategy
MPE exists for a finite Markov game with perfect information. We thus restrict our attention
to the class of pure-strategy MPEs.

Definition 3.2 (the value functions of the game). Let (π∗
0, π

∗
1) be a Markov perfect equilibrium,

and for any state s ∈ S, let V0(s) and V1(s) be the probabilities of the first-batting team winning
and the last-batting team winning when in state s, respectively. That is,

V0(s) = v0(s; π∗
0, π

∗
1), s ∈ S,

V1(s) = v1(s; π∗
0, π

∗
1), s ∈ S.

Then the functions V0 and V1 are called the value functions of the game for the first-batting team
and the last-batting team, respectively.

Remark 3.2 (uniqueness of the value functions). It is also well-known that the value function
of the game for each team is unique. In other words, all equilibria must result in the same
probability of the team winning.
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Theorem 3.1 (Bellman equation). The value functions satisfy the following recursive formula.

V0(s) =



r0(s) s ∈ SQ,

Max
a∈A(s)

∑
x∈X (a)

V0(t(s, a, x))p(x|s, a) s ∈ S0,∑
x∈X (π∗

1(s))

V0(t(s, π∗
1(s), x))p(x|s, π∗

1(s)) s ∈ S1.

V1(s) =



r1(s) s ∈ SQ,∑
x∈X (π∗

0(s))

V1(t(s, π∗
0(s), x))p(x|s, π∗

0(s)) s ∈ S0,

Max
a∈A(s)

∑
x∈X (a)

V1(t(s, a, x))p(x|s, a) s ∈ S1.

π∗
0(s) ∈ arg max

a∈A(s)

∑
x∈X (a)

V0(t(s, a, x))p(x|s, a), s ∈ S0. (1)

π∗
1(s) ∈ arg max

a∈A(s)

∑
x∈X (a)

V1(t(s, a, x))p(x|s, a), s ∈ S1. (2)

Theorem 3.2. The profile (π∗
0, π

∗
1) of a Markov policy for the first-batting team satisfying (1),

and a Markov policy for the last-batting team satisfying (2) is an MPE.

4 Computational results

Table 1 shows the probability parameters for the starting order of the Fukuoka Softbank Hawks,
and was compiled based on the values achieved in Japan’s professional baseball 2013 season [10].
Some of the stolen base success rates and sacrifice hit success rates for players with extremely
small numbers of attempted stolen bases and sacrifice hits have been adjusted. Specifically, for
the success rate of stolen bases for players with less than 4 attempted stolen bases over the year,
the minimum of 0.7 and the actual value was adopted. Similarly, the minimum of 0.8 and the
actual value was adopted for the sacrifice hit success rate for players with less than 4 attempted
sacrifice hits over the year. The numbers in the Lineup column indicate the batting order for
the players. Lineup A is the actual batting order which had been established by the closing
stage of the 2013 season. Lineup B is a batting order created by shuffling them at random.

Table 1: Probability parameters

A computational experiment was performed to find a MPE and the values of the games
between lineup A and lineup B. The experimental results are as shown in Table 2.
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Table 2: Values of the games
Bad first v.s. field fast Pr(A wins) Pr(B wins) Pr(tie game)

Lineup A v.s. B 1⃝ 0.5008 2⃝ 0.4893 0.0099
Lineup B v.s. A 3⃝ 0.5046 4⃝ 0.4856 0.0098

Advantage of field fast 3⃝− 1⃝ 0.0038 2⃝− 4⃝ 0.0037 —

• CPU Time: 1.26 sec / game

• Environment: a desktop PC with Intel R⃝ CoreTM i7-3770K 16GB memory installed

And the winning percentages, under the conditions where there is a tie in the 8th inning and
the both teams in the 9th inning start with batter number 1, are given in Table 3.

Table 3: Values of the games starting in the 9th inning
Bad first v.s. field fast Pr(A wins) Pr(B wins) Pr(tie game)

Lineup A v.s. B 1⃝ 0.5079 2⃝ 0.4373 0.0548
Lineup B v.s. A 3⃝ 0.5172 4⃝ 0.4284 0.0544

Advantage of field fast 3⃝− 1⃝ 0.0093 2⃝− 4⃝ 0.0089 —

In computational experiments, while performing a depth-first search of the “game tree” as an
extensive form game of baseball, the recursive formula of Theorem 3.1 was solved for just those
states that were reachable from the initial state s0. Changing the run difference established in a
called game from 30 runs to 60 runs and once again performing the computational experiments,
the difference in the values of the game V0(s0) and V1(s0) were less than 10−10. It follows that
we can reasonably consider the error from using the mercy-rule as practically zero.

We note that when the manager of each team makes decisions about hits, stolen bases, and
sacrifice hits, the runs scored by the opposing team (the run difference) must be considered to
win. For both lineup A and lineup B, if we subtract the winning percentage for each team when
batting first from the winning percentage when batting last, then we get a positive value. This
coincides with the result by Turocy [8]. Further, this difference appears to be more significant
from the 9th inning onwards. This is because the last-batting team always has one more inning’s
worth of information to study about the opposing team’s runs.

5 Summary and Future Challenges

In this paper, baseball has been formulated as a finite Markov game with approximately 3.5
million states. We demonstrated that the Markov perfect equilibria and the values of the games,
where both teams’ managers maximize the probabilities of their respective team winning, can
be computed in about one second per game.

In the future, we think that a raised level of analysis will be the object of the research, and
not just the optimization of such strategies as sacrifice hits and stolen bases. For example, the
authors are confident that the model given in this paper can be utilized to predict how the
team’s winning percentage would change with the introduction and release of players, and in
the sensitivity analysis of a player’s performance and the team’s winning percentage. At the
same time as applying these using more detailed actual data, we would also like to investigate
it’s use in other topics as challenges for the future.
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