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Abstract 

The dynamic Nelson-Siegel (DNS) model and even the Svensson generalization of the model have 

trouble in fitting the short maturity yields and fail to grasp the characteristics of the Japanese 

government bonds (JGBs) yield curve, which is flat at the short end and have multiple inflection 

points. Therefore, a closely related generalized Nelson-Siegel model (GDNS) with two slopes and 

curvatures is considered and compared empirically to the traditional DNS in terms of in-sample fit 

as well as out-of-sample forecasts. Furthermore, the GDNS with time-varying volatility component, 

modelled as standard EGARCH process, is also considered to evaluate its performance in relation to 

the GDNS. The GDNS models unanimously outperforms the DNS in terms of in-sample fit as well 

as out-of-sample forecasts. Moreover, the extended model that accounts for time-varying volatility 

outpace the other models for fitting the yield curve and produce relatively more accurate 6- and 

12-month ahead forecasts, while the GDNS model comes with more precise forecasts for very short 

forecast horizons. 
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1. Introduction 

The term structure of interest rates is a static function that relates the time-to-maturity to the zero 

rates at a given point in time. The conventional way of measuring the term structure is by means of 

the spot rate curve, or yield curve, on zero-coupon bonds. However, the entire term structure is not 

directly observable, which gives rise to the need to estimate it using some approximation technique. 

There are a wide variety of diverse yield models, with objective to accurately model and describe 

the future yield curve structure as much possible. However, the modelling of a yield curve is more 

complicated than any other asset pricing. In recent years, the Nelson-Siegel (1987) model and its 

extended versions have been credited for its high efficacy in the in-sample fitting and out-of-sample 

forecasting of the term structures of interest rates. Many existing studies (as well as some major 

central banks around the globe) have been employing the class of Nelson-Siegel (NS) models 

including the Svensson (1995), Bliss (1997), and Bjork and Christensen (1999) models to estimate 

and construct zero-coupon yield curves. The Nelson-Siegel type models, because of its 

parsimonious structure and efficiency in capturing the general shapes of the yield curves, rank them 

very popular among the term structure models and, therefore, are widely used by market 

practitioners and central banks.1  

However, when we estimate the Japanese government bonds (JGBs) yield curve, selecting a method 

without careful consideration might result in the estimation of a curve that does not grasp the 

characteristics of the JGBs yield curve and the use of such a zero curve could lead to wrong 

conclusions. For JGBs since 1999, yield curves under the zero interest rate policy (ZIRP) and the 

quantitative easing monetary policy (QEMP) have distinctive features. During this periods, the yield 

curve has a flat shape near zero at the short-term maturities. The second feature frequently seen in 

the JGBs interest rate term structure is that it has a complex shape with multiple inflection points.2 

Moreover, at some dates the curve is initially falling and then gradually rising (Ullah et al. 2013a, 

b). Some models and estimation methods may not grasp this kind of curve features and shape. 

Using the Nelson-Siegel functional form, Ullah et al. (2014b) has shown that both the dynamic 

Nelson-Siegel (DNS) as well as affine Nelson-Siegel (AFNS) cannot fit attractively the short 

maturities if the estimate of decay parameter 𝜆 is constrained to be smaller than 0.025 (which fits 

well long maturities).3 On the other hand, leaving the 𝜆 to be unconstrained implies to fit short 

maturities very well (𝜆 takes the value around 0.2751). In addition, Christensen et al. (2009) show 

that the main in-sample problem with the regular Nelson-Siegel model is that, for reasonable 

choices of 𝜆 (which are empirically in the range from 0.5 to 1.0 for U.S. Treasury yield data), the 

                                                   
1 However, the original Nelson-Siegel type of models are not on par with the dynamic term structure models such as 

affine or quadratic term structure models, or the Heath et al. (1992) arbitrage-free models. 
2 For example, on February 17, 2009, the seven-year interest rate becomes relatively low compared with the six-year 

and eight-year rates (Kikuchi and Shintani, 2012). Detail description of these features of JGBs yield curve is given in 

Ullah et al. (2013a, 2014b), Kim and Singleton, (2012), and Kikuchi and Shintani, (2012). 
3 The parameter 𝜆 in Nelson-Siegel spot rate function specifies the location of the hump or the U-shape on the yield 

curve. Therefore, the range of shapes the curve can take is dependent on 𝜆. The small values of 𝜆, which have rapid 

decay in regressors, tend to fit low maturities interest rates quite well and larger values of 𝜆 lead to more appropriate fit 

of longer maturities spot rates. 
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factor loading for the slope and the curvature factors decay rapidly to zero as a function of maturity. 

Thus, the model only has the level factor to fit yields with maturities of ten years or longer. In 

empirical estimation this limitation shows up as a lack of fit either at the short end of curve or of the 

long-term yields (Christensen et al. 2009). This implies that the regular Nelson-Siegel model in 

both forms, i.e., affine and non-affine versions, cannot replicates the stylized facts and features of 

the Japanese bond market yield curve, particularly during the ZIRP and QEMP periods. 

The more carefully and thorough investigation of JGBs yield curve shapes and descriptive features 

and of the Nelson-Siegel yield curve functional form, suggest that the single decay parameter 𝜆 in 

the function is at the heart of this problem. The parameter 𝜆 determines the exponential decay rate 

and there is a trade-off between fitting the curvature at short maturities and at long maturities. 

In order to avoid such difficulties and select a better candidate model to accurately grasp the 

characteristics of the JGBs yield curve, in this paper, we consider the generalized version of the 

Nelson-Siegel model that is discussed in Svensson (1995) and Christensen et al. (2009). Foremost 

among these is the Svensson (1995) extension to the Nelson-Siegel curve.4 The Svensson extension 

adds a second curvature term, which allows for a better fit at long maturities. Following Svensson 

(1995) and Christensen et al. (2009), we add second slope and also second curvature to the standard 

Nelson-Siegel model and introduce a dynamic version of this model, called as generalized dynamic 

Nelson-Siegel (GDNS) model, which corresponds to a modern five-factor term structure model.5 

The inclusion of second slope will be helpful to fit the very short maturities attractively, as we 

restrict the role of the newly added slope and curvature factors to the short end of the curve by 

assuming 𝜆1 < 𝜆2.6 Moreover, prior studies (e.g., Koopman et al. 2010; Ullah et al. 2014b) show 

that the inclusion of common volatility component in the DNS improves not only improves the 

in-sample fitting performance but also the forecasts at the longer horizons. Therefore, we generalize 

this approach to the GDNS (Nelson-Siegel model with two slopes and curvature factors).  

More specifically, to avoid lack of fitting at the short end of JGBs yield curve, this paper extend the 

standard DNS three-factor model to the five-factor model and also consider its extended version 

that accounts for time-varying volatility. We estimate the three-factor (DNS), five-factor (GDNS) 

and five-factor with time-varying volatility (GDNS-EGARCH) models and compare the results in 

terms of in-sample fitting and out-of-sample forecasting using the JGBs yield data. We find 

remarkably good in-sample fit and out-of-sample for the GDNS model. We show that the 

                                                   
4 It is used at the Federal Reserve Board (see Gurkaynak et al. 2007), the European Central Bank (see Coroneo et al. 

2008), and many other central banks (see Bank for International Settlements, 2005). Detailed discussion is given in De 

Pooter (2007). 
5 Assuming a second-order differential equation, to describe the movements of the yield curve, with the assumption of 

real and un-equal roots, the solution will be the instantaneous implied forward rate function. The solution for the yield 

function can be found by integrating the forward rate function. The resulting yield curve function will consists of five 

factors (one level, two slopes and two curvatures factors) and two decay parameters, i.e., 𝜆1 and 𝜆2, which corresponds 

to two different roots of the second-order differential equation. 
6 Besides its wide use, the Svensson (1995) model in its dynamic form cannot be derived in the standard finance 

arbitrage-free affine term structure representation (Christensen et al. 2009). However, the model with two slopes and 

curvature can easily be derived in the arbitrage-free affine framework, by generalizing the method adopted in 

Christensen et al. (2011). 
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five-factor GDNS model of the yield curve not only outperforms the standard DNS in terms of 

in-sample fit but also at all forecast horizons. The inclusion of EGARCH effect is helpful only for 

the long horizon forecasts, but worsens the short horizon forecasts. Moreover, we relate the five 

factors in the GDNS models to the relevant macroeconomic variables that is helpful to interpret the 

factors in the macroeconomic scenario, which is one of the widely debated issue that Svensson 

(1995) fails to offer insight into the economic nature of the underlying forces that drive movements 

in interest rates. This issue has been addressed by a burgeoning macro-finance literature, which is 

described in Rudebusch and Wu (2007, 2008). 

The remainder of the paper is structured as follows. Section 2 briefly describes the dynamic Nelson- 

Siegel model and generalized dynamic Nelson-Siegel with and without the time-varying common 

volatility component (we call the former GDNS-EGARCH and the latter as GDNS). Estimation 

method is also discussed in the same section. Section 3 presents the data structure and estimation 

results, while Section 4 describes the out-of-sample forecast performance of the models. Finally, 

section 5 concludes the paper, and appendices contains some additional details (helpful to 

understand the models in detail). 

 

2. The term structure models 

In this section, we briefly review the three term structure models that are used to estimate and 

forecast the yield curve, namely the dynamic Nelson-Siegel (DNS) three-factor model, the extended 

five-factor generalized dynamic Nelson-Siegel (GDNS) model and the GDNS with time-varying 

volatility (GDNS-EGARCH). In section 2.4, the models are presented in generalized state-space 

framework along with a brief reference to the estimation method employed in this study to estimate 

and forecast the yield curve. Lastly, the procedure of implementing the maximization routine and 

selection of initial values (seeds) for parameters are discussed in section 2.5. 

  

2.1. The dynamic Nelson–Siegel model (DNS) 

The Nelson-Siegel model is able to provide a good fit to the cross section of yields at a given point 

in time, and this is a key reason for its popularity among the financial market practitioners. 

However, to understand the evolution of the bond market over time, a dynamic representation is 

required. Diebold and Li (2006) have shown such representation by replacing the parameters with 

time-varying factors- the so called DNS model. The DNS model fits the yield curve with the simple 

functional form as: 

 

𝑅𝑡(𝑚) = 𝛽1𝑡 + 𝛽2𝑡 [
1 − exp(−𝜆𝑚)

𝜆𝑚
] + 𝛽3𝑡 [

1 − exp(−𝜆𝑚)

𝜆𝑚
− exp(−𝜆𝑚)] + 𝜀𝑡(𝑚) (1) 

 

where  𝑅𝑡(𝑚) is the zero-coupon yield for maturity 𝑚 at time 𝑡 , 𝑚 = 1,2, … , 𝑁;  𝑡 = 1,2, … , 𝑇 . 

Given the Nelson-Siegel factor loadings, Diebold and Li (2006) show that 𝛽1𝑡, 𝛽2𝑡 and 𝛽3𝑡 can be 

interpreted as level, slope, and curvature factors. Therefore, we consider 𝛽𝑡 = (𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡)′ as the 
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unobservable vector of three latent factors of level, slope and curvature respectively. The constant 

parameter 𝜆 is the decay parameter of the factor loading of the yield curve slope. In addition, it is 

easy to show that the parameter 𝜆 determines the exponential decay rate and there is a trade-off 

between fit curvature at short maturities and at long maturities. 

Furthermore, once the model is viewed as a factor model, a dynamic structure can be postulated for 

the three factors, which yields a fully dynamic version of the original Nelson-Siegel model. For 

modelling the entire yield curve consistently and simultaneously, we need a state-space formulation 

of the model.7 Therefore, we assume that the yield curve latent factors vector 𝛽𝑡 follow a vector 

autoregressive process of first order, which allows to formulate the yield curve latent factors model 

in the state-space form, with observation and transition equations (2 and 3 respectively) as: 

 

 𝑅𝑡 = Λ(𝜆)𝛽𝑡 + 𝜀𝑡 (2) 

 𝛽𝑡+1 = (𝐼3 − 𝐴)𝜇 + 𝐴𝛽𝑡 + 𝑣𝑡+1 (3) 

 
[

𝜀𝑡

𝑣𝑡+1
] ∼ 𝑁 ([

0
0

] , [
Ω 0
0 Σ𝑣

]) (4) 

 

where  𝑅𝑡  is (N×1) vector of zero-coupon yields, Λ(𝜆) is (N×3) matrix of loadings, 𝛽𝑡 =

(𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡)′ is the (3×1) vector of latent factors of the yield curve, 𝜇 is (3×1) vectors of factors 

mean, and 𝐴 is (3×3) full-matrix of parameters. The 𝜀𝑡 and 𝑣𝑡  are (N×1) and (3×1) innovations 

vectors of the observation and state equations respectively, Ω is (N×N) covariance matrix of the 

measurement equation innovations, and Σ𝑣 is (3×3) covariance matrix of the state innovations.  

The main reasons why the Nelson-Siegel model is popular among market practitioners are its 

parsimonious functional form (in contrast to spline models) and its effectiveness in capturing the 

general shapes of the yield curve (including increasing, decreasing, humped, inverted-humped, and 

even S-type). Inspired by these advantages, several extensions have been proposed to increase the 

flexibility of model to fit optimally more irregular and complex shapes such as twists.8  

 

2.2. The generalized dynamic Nelson-Siegel model (GDNS) 

Despite the good empirical performance and parsimonious structure, the DNS model suffer from the 

lack of fitting the yield curve when the curve has multiple humps and inflection points. The single 

decay parameter 𝜆 implies either to fit attractively the short rate or the long rates. This difficulty can 

                                                   
7 Moreover, Diebold et al. (2006) find that the time series of estimated factors of Nelson-Siegel model are highly 

persistent, which implies that these can easily be modeled as AR(1) or VAR(1). Using the Japanese market data Ullah et 

al. (2013a), and Ullah et al. (2013b) find that the three latent factors of yield curve are highly persistent and VAR(1) 

specification is more appropriate than the AR(1) and random walk specifications. 
8 Two typical examples in this line are Bjork and Christensen (1999) and Svensson (1995). Bjork and Christensen 

(1999) make progress in this direction by adding a fourth factor to the NS model. The fourth factor also affects 

short-term maturities as the second component and can be interpreted as a second slope factor. The model only 

introduces one more parameter 𝛽4𝑡  in that two slope factors are governed by the same parameter but with different 

decay rates. Svensson (1995) suggests another kind of four-factor extended NS specification by adding a second 

curvature factor. 
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be overcome by introducing the second slope and curvature factors in the standard DNS model.9  

In the JGBs market, for the estimated 𝜆 (which are empirically in the range from 0.025 to 0.019), 

the factor loading for the curvature factor does not increase sharply to play its due role at the short 

end, while the slope factor loading is close to one (does not decay rapidly), and thus, the model only 

has the level and slope factors to fit yields with maturities of 3-month to 36-month (for these 

maturities the yield curve is flat and also has some humps). Therefore, sometimes the estimated 

yield becomes negative if much weighted is assigned to slope factor than the level factor because of 

having negative estimate of 𝛽2𝑡 (due to the fact of observing the upward sloped curve almost for 

all 𝑡 during the ZIRP and QEMP periods). Furthermore, if 𝜆 is allowed freely to vary, the model 

suffers ruthlessly from the lack of fit at the long end of curve. 

To overcome this limitation in fitting the cross section of yields, we employ the extended version of 

the Nelson-Siegel yield curve with an additional slope as well as curvature factors to the JGBs 

market data, defined as: 

 

𝑅𝑡(𝑚) = 𝛽1𝑡 + 𝛽2𝑡 [
1 − exp(−𝜆1𝑚)

𝜆1𝑚
] + 𝛽3𝑡 [

1 − exp(−𝜆2𝑚)

𝜆2𝑚
]

+ 𝛽4𝑡 [
1 − exp(−𝜆1𝑚)

𝜆1𝑚
− exp(−𝜆1𝑚)]

+ 𝛽5𝑡 [
1 − exp(−𝜆2𝑚)

𝜆2𝑚
− exp(−𝜆2𝑚)] + 𝜀𝑡(𝑚) 

(5) 

 

This generalized dynamic Nelson-Siegel model, which we denote as the GDNS model, is a 

five-factor model with one level, two slopes, and two curvatures factors. Here 𝛽1𝑡  is the 

asymptotic value of the spot rate function, which can be seen as the long-term interest rate and is 

assumed to be positive (𝛽1𝑡 > 0). Furthermore, 𝛽2𝑡 and 𝛽3𝑡 determines the rate of convergence 

with which the spot rate function approaches its long-term trend. Furthermore, the factors 𝛽4𝑡 and 

𝛽5𝑡 determines the size and the form of the humps. The two slopes and curvatures factors are 

governed by the two different decay rates, i.e.,  𝜆1 and 𝜆2. In this framework, 𝛽2𝑡 and 𝛽3𝑡 refers to 

the first slope and slope factors, while  𝛽4𝑡 and 𝛽5𝑡 can be termed as first and second curvature 

factors, respectively. 

If 𝜆1 < 𝜆2, then the value of 𝜆1 will serve to fit the long rates attractively (the first slope and 

curvature factors, i.e., 𝛽2𝑡 and 𝛽4𝑡 loadings will approach comparatively slowly to its asymptotic 

values, apparent in figure 1), while 𝜆2 will be helpful to fit the short end of cure more reasonably 

(the second slope and curvature, i.e.,  𝛽3𝑡 and 𝛽5𝑡 loadings will decay more rapidly, shown in figure 

1). 

                                                   
9 The model with two slope factors (as in Bjork and Christensen, 1999) or two curvatures (such as in Svensson, 1995) 

may also serve the purpose of fitting curves with special shapes, such as twists, but Christensen et al. (2009) shows that 

the model, which accounts for two slope and curvature factors simultaneously, outperforms the standard Bjork and 

Christensen, (1999) and Svensson, (1995) models. Secondly, the models with either two slopes or two curvatures 

cannot be derived in the affine framework (for detail see Christensen et al. 2009).  
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This extension increases the flexibility of the model, by allowing for two different slope and 

curvature factors that are governed by two different parameters 𝜆1 and 𝜆2, to fit curves with special 

shapes and multiple humps, such as twists. However, there is a trade-off between better fitting and 

parameters estimation. The functional form imposed on the forward rates to derive the spot rate 

function as in (5) leads to a flexible, smooth parametric function of the term structure that is capable 

of capturing many of the typically observed shapes that the of JGBs yield curve assumes over time 

and captures most of its empirical properties. 

It is worthwhile to mention that we impose the restriction of 𝜆1 < 𝜆2, which is non-binding due to 

symmetry. The factor loadings of the two slopes and curvatures in the yield function of the GDNS 

model are illustrated in figure 1 with 𝜆1 and 𝜆2 set equal to our estimates in section 3. 

<<Figure 1>> 

The GDNS is a five-factor model, the time dimension of the five factors can be modeled in terms of 

dynamics as an AR or VAR. However, we assume that the five time-varying factors follows the 

VAR(1) process because of the consistency with the DNS model presented in the previous section. 

The model in state-space framework can be written as: 

 

 𝑅𝑡 = Λ(𝜆1, 𝜆2)𝛽𝑡 + 𝜀𝑡 (6) 

 𝛽𝑡+1 = (𝐼5 − 𝐴)𝜇 + 𝐴𝛽𝑡 + 𝑣𝑡+1 (7) 

 
[

𝜀𝑡

𝑣𝑡+1
] ∼ 𝑁 ([

0
0

] , [
Ω 0
0 Σ𝑣

]) (8) 

 

The state-space specification for the GDNS is exactly similar to the one specified for DNS in (2-4), 

but the dimension of matrices and vectors is different. Here, Λ(𝜆1, 𝜆2) is (N×5) matrix of loadings, 

𝛽𝑡 = (𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡, 𝛽4𝑡, 𝛽5𝑡)′ is the (5×1) vector of latent factors of the yield curve, 𝜇 is (5×1) 

vectors of factors mean, 𝐴 is (5×5) full-matrix of parameters, 𝑣𝑡  is (5×1) innovations vector of the 

state equation, and Σ𝑣  is (5×5) covariance matrix of the state innovations. The dimensions 

of 𝑅𝑡 , 𝜀𝑡 and Ω are similar to the one defined for the DNS model. 

 

2.3. The generalized dynamic Nelson-Siegel model with time-varying volatility 

(GDNS-EGARCH) 

The standard DNS as well as GDNS models assumes that the volatility in interest rates is constant 

over time. However, the interest rates are the result of trading at bond market and the volatility in 

the series may be time-varying. Therefore, incorporating the concept of common volatility 

component of Harvey et al. (1992), we decompose the error term, 𝜀𝑡, in the GDNS model as: 

 

 𝜀𝑡 = Γ𝜀𝜀𝑡
∗ + 𝜀𝑡

+ ,                      𝜀𝑡
+ ~𝑁(0, Ω),         𝜀𝑡

∗|𝜁𝑡−1~𝑁(0, ℎ𝑡)        (9) 

 

where Γ𝜀 and 𝜀𝑡
+ are (N×1) vectors of loadings and noise component respectively, and 𝜀𝑡

∗ is a 

scalar representing the common disturbance term that has the time-varying variance denoted as ℎ𝑡. 
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The ℎ𝑡  follows the EGARCH(1,1) specification, which is given by:10 

 

 
log(ℎ𝑡) = 𝛾0 + 𝛾1

𝜀𝑡−1
∗

√ℎ𝑡−1

+ 𝛾2log(ℎ𝑡−1) + 𝜓 (|
𝜀𝑡−1

∗

√ℎ𝑡−1

| − 𝔼 [|
𝜀𝑡−1

∗

√ℎ𝑡−1

|])  (10) 

 

where 𝔼(|𝜀𝑡−1
∗ /√ℎ𝑡−1|) is the expectation of the absolute value of a standard normally distributed 

random variable, which is equal to √2/𝜋. This specification for variance dynamics enable the 

common volatility component in the GDNS model to account for asymmetric response to positive 

and negative shocks. 

Adding a common component allows the model to capture latent exogenous shocks that affect the 

entire yield curve and are not captured by the five-factor structure of the level, slopes and 

curvatures factors. This extension increases the flexibility of the term structure model and enables it 

to better fit more complex shapes of the yield curve.  

In the state-space representation the complete model (GDNS-EGARCH) can be written as: 

 

 
𝑅𝑡 = [Λ(𝜆1, 𝜆2) Γ𝜀] [

𝛽𝑡

𝜀𝑡
∗] + 𝜀𝑡

+ (11) 

 
𝛼𝑡+1 = [

(𝐼5 − 𝐴)𝜇
0

] + [
𝐴 0
0 0

] 𝛼𝑡 + [
𝑣𝑡+1

𝜀𝑡+1
∗ ] (12) 

 

[
𝜀𝑡

+

𝑣𝑡+1

𝜀𝑡+1
∗

] ~𝑁 ([
0
0
0

] , [

Ω 0 0
0 Σ𝑣 0
0 0 ℎ𝑡+1

]) (13) 

 

where 𝛼𝑡 = (𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡, 𝛽4𝑡, 𝛽5𝑡, 𝜀𝑡
∗)′ is (6×1) latent vector and Γ𝜀 is (N×1) vector showing the 

sensitivity of various yields to a common shock component. The definitions and dimensions of all 

remaining matrices and vectors is same as discussed in the GDNS model specification. Furthermore, 

we assume that the innovations, 𝜀𝑡
+ and 𝑣𝑡, as well as common volatility component, 𝜀𝑡

∗ , have 

Gaussian distribution. The model in equations (11 – 13) provides a flexible framework to fit the 

yield curve, while simultaneously accounts for the time-varying stochastic volatility in yields for all 

maturities.  

 

2.4. Statistical formulation of the models and estimation method 

In this subsection, the models are presented in the general state-space framework along with the 

estimation procedure. The estimation is based on the Kalman filter. For convenience, we introduce 

some new notations and rewrite the signal and state equations to obtain the generalized form for 

models. The state-space form of the models is given as: 

                                                   
10 Koopman et al. (2010) has used the GARCH specification to model the variance ℎ𝑡, but financial markets respond 

in different ways to positive and negative shocks and it is a common knowledge that volatility tends to increase quickly 

when negative news reaches to traders and investors, whereas, positive news usually has a much less pronounced effect 

(Ullah et al. 2014a). 
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 𝑅𝑡 = 𝐻𝑋𝑡 + 𝑤𝑡 ,      ∀ 𝑡 = 1,2, … , 𝑇  (14) 

 𝑋𝑡 = 𝐶 + 𝐹𝑋𝑡−1 +  𝑢𝑡 (15) 

 
[
𝑤𝑡

𝑢𝑡
] ∼ 𝑁 ([

0
0

] , [
𝐺 0
0 𝑄𝑡

]) (16) 

 

where the expressions of 𝐹, 𝑋𝑡, 𝐶, 𝐻, 𝐺, 𝑄𝑡, 𝑤𝑡  and 𝑢𝑡 in case of DNS, GDNS and 

GDFNS-EGARCH are given in Appendix-I. In all three models, the matrix 𝐺 is assumed to be 

diagonal for computational traceability, while the covariance matrix 𝑄𝑡 is non-diagonal. Moreover, 

the transition and the measurement errors are assumed to be orthogonal to the initial state. 

The Kalman filter algorithm is implemented along the lines of Hamilton (1994) to evaluate the 

Gaussian likelihood function and obtain the latent factor as well as estimates of the 

hyper-parameters. Denoting the optimal estimate of latent factors 𝑋𝑡 given the information until 

time 𝑡 − 1 or 𝑡, as 𝑋̂𝑡|𝑡−1 and 𝑋̂𝑡|𝑡 respectively, the recursive prediction step is calculated as: 

 

 𝑋̂𝑡|𝑡−1 = 𝐶 + 𝐹𝑋̂𝑡−1  (17) 

 𝑃𝑡|𝑡−1 = 𝐹𝑃𝑡−1𝐹′ + 𝑄𝑡 (18) 

 

where 𝑃𝑡|𝑡−1 is the mean square error (MSE) matrix at the prediction step. Using the measurement 

equation, these estimates are improved by observing 𝑅𝑡 , thus in the update step: 

 

 𝑋̂𝑡|𝑡 = 𝑋̂𝑡|𝑡−1 + 𝑃𝑡|𝑡−1𝐻′𝐾𝑡
−1𝜂𝑡  (19) 

 𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝑃𝑡|𝑡−1𝐻′𝐾𝑡
−1𝐻𝑃𝑡|𝑡−1 (20) 

 

where 𝜂𝑡 = 𝑅𝑡 − 𝐻𝑋̂𝑡|𝑡−1 (the forecast error vector) and 𝐾𝑡 = 𝐻𝑃𝑡|𝑡−1𝐻′ + 𝐺 (the MSE matrix of 

𝜂𝑡 ). The Kalman filter iterative process begins with 𝑋0  and 𝑃0  being set at the  𝜇 and 

unconditional covariance matrix respectively as discussed in Hamilton (1994). The last diagonal 

element of 𝑃0 in EGARCH based model is set equal to ℎ1, which is the unconditional expectation 

of the log variance and computed as 𝔼[log(ℎ𝑡)] = 𝛾0(1 − 𝛾2)−1. 

Furthermore, in the GDNS-EGARCH model matrix 𝑄𝑡  contains ℎ𝑡+1  that is modeled by 

EGARCH process and relies on latent shocks at time 𝑡, which are unobservable. The ℎ𝑡+1 is 

computed by taking the conditional expectation at 𝑡 − 1of the latent variables in (10). For detail 

description on the computation of EGARCH process in the Nelson-Siegel framework, see Ullah et 

al. (2014a).11 

                                                   
11 The conditional expectation at 𝑡 − 1 of the latent variables in (10) gives: 

  log(ℎ𝑡) = 𝛾0 + 𝛾1𝔼𝑡−1 (
𝜀𝑡−1

∗

√ℎ𝑡−1

) + 𝛾2log(ℎ𝑡−1) + 𝜓𝔼𝑡−1 (|
𝜀𝑡−1

∗

√ℎ𝑡−1

| − 𝔼𝑡−1 [|
𝜀𝑡−1

∗

√ℎ𝑡−1

|])  
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The model parameters vector  ξ = (𝜆1, 𝜆2, 𝐻, 𝐶, 𝐹, 𝐺, 𝑄𝑡) are estimated by maximizing the 

log-likelihood function, assuming that the forecasting errors 𝜂𝑡  are Gaussian. The numerical 

optimization routine of Nelder-Mead, being popular as simplex algorithm, is used to maximize the 

log likelihood function and obtain the MLE estimates of the parameters. 

For inferences, the covariance matrix of the estimates is calculated by inverting the negative of the 

Hessian evaluated at the optimum, where the Hessian itself was approximated by finite differences 

after reverting back to the original parameterization, as suggested by Hamilton (1994). 

 

2.5. Models analysis 

Estimating the parameters of the Nelson-Siegel family of models in the state-space framework is 

done by finding parameter values that optimize the likelihood function. Due to the large number of 

parameters in the models presented, particularly the GDNS and GDNS-EGARCH, the optimization 

problems are of high dimensional and the likelihood surface may be very noisy (have multiple local 

maxima). In order to start the optimization procedure, we choose certain initial values for the model 

parameters that were expected to be most likely that lead to the global optimum. However, the 

sensitivity of the optimization outcome to the initial values will be large if certain dynamics are not 

present in the data and, hence, the algorithm can encounter difficulties in finding the global 

maximum of the likelihood function. 

This problem is avoided by choosing the more appropriate initial values for parameters vector 

denoted as ξ(0) in order to obtain the optimal MLE estimates of the hyper parameters. The process 

of choosing the initial values is carried out in multiple steps. We start with the most simple 

three-factor DNS model and subsequently extend the analysis to the highly parameterized GDNS 

and GDNS-EGARCH models. 

Initially few parameters are allowed to vary freely (i.e., mean vector 𝜇), while all other parameters 

are fixed to some constant values (fixed values are taken from Ullah et al. 2013b) and the log 

likelihood function is optimized over a randomly drawn sample from the entire data-set to obtain 

the optimal estimates for freely varying parameters. In the second stage, the parameters vector is 

expanded (decay parameter 𝜆 is included) and the log likelihood function is optimized once again. 

This information is incorporated into the next run. During the second run, 𝜇 is seeded with the 

previous run optimal values. In this way the parameter vector is steadily expanded until it includes 

the full set of parameters in the model and the parameter vector is fully specified. The full 

specification includes 39 parameters in the parameters vector. In this incremental progressing, we 

identify the starting values for almost all the parameters in the fully specified model. These 

identified values are then used as initial values, i.e., the parameters vector ξ(0), for optimizing the 

full model on the entire sample data-set. This process is discussed in detail in Ullah et al. (2014c). 

This whole process for the DNS model involves running the model 10 times, each time with an 

                                                                                                                                                                         

where the estimate of 𝔼𝑡−1(𝜀𝑡−1
∗ ) is the last element of 𝑋𝑡|𝑡 from the update step. 
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expanded parameters vector. Similar process is carried out to obtain the optimal seeds for the 

GDNS and GDNS-EGARCH models. The incremental steps for the GDNS model involves 14 runs, 

while 20 runs for the GDNS-EGARCH models. These simulated estimates are then used as initial 

values for the parameters vector to optimize the full models.12  

 

3. Empirical application 

In this section we provide empirical evidences on the in-sample fitting performance of the three 

models, i.e., DNS, GDNS and GDNS-EGARCH. In doing so we answer two principle questions: (i) 

what is the role of second slope and curvature factors in terms of in-sample fitting the yield curve? 

(ii) does incorporating the time-varying volatility in the yield curve model improve the performance 

of underlying model and what is the implication of implied time-varying volatility? We employ the 

Kalman filter algorithm to the panel of zero-coupon yields for various maturities derived from the 

bond pricing data in the Japanese bond market to obtain optimal estimates of the latent factors and 

the MLE estimates of the unknown parameters. The details of the data-set are provided in section 

3.1. The estimation results of models of the yield curve are presented in section 3.2. Furthermore, 

some performance features of the models in terms of in-sample fitting are also presented in the 

same section. 

 

3.1. Data description 

The empirical results are based on the Japanese interest rates that are constructed by employing the 

Fama-Bliss (1987) methodology of calculating the unsmoothed Fama-Bliss zero-coupon yields 

from bond pricing data. These have been constructed from average bid-ask price quotes, retrieved 

from the Japan Securities Dealers Association (JSDA) and the Tokyo Stock Exchange (TSE) bonds 

files. The bonds with maturity of less than two months and inflation indexed bonds are excluded 

from the sample.13 The remaining quotes are used to construct forward rates using the Fama and 

Bliss (1987) methodology. The forward rates are then averaged to construct constant maturity spot 

rates. These unsmoothed yields exactly price the underlying bonds. 

The resulting balanced panel data-set consists of 20 maturities over the period January 1996 to 

December 2013 with maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120, 

180, 240 and 300 months (20 maturities).  

The summary statistics of the yields for various maturities along with a three-dimensional plot of 

the data-set are discussed in detail in appendix II. The descriptive statistics and three-dimensional 

plot of the data show that the typical yield curve have been upward sloping and the short rates are 

                                                   
12 See Ullah et al. (2014c) for detail on drawing the random sample from the data-set, convergence criterion and steps 

of expanding the parameters vector. 
13 The bonds of maturity less than two months have almost same prices because of the very low interest during the 

sampled period and it implies to some strange estimates of the zero-coupon rates, such as the rate for one-month 

maturity is higher than of the one and half month maturity bonds. Moreover, the inflation indexed bonds have floating 

rates (coupon is not fixed) that change in each period. Therefore, the bonds with maturity of less than two months and 

floating rates are omitted from the sample at the stage of calculating the zero-coupon rates. 
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almost zero during the prolonged period except with a little rise in late 2006 and early 2007. During 

the period of a rise in very low maturity interest rates, the fall in the slope is also apparent. 

Moreover, short maturities are less volatile than long rates. 

 

3.2. Estimation results 

For given values of the system matrices, we use the Kalman filter to evaluate minimum mean 

square linear estimates (MMSLE) of the state vector at time 𝑡 given the observation. The Kalman 

filter is also used to evaluate the log likelihood function via the prediction error decomposition. The 

maximum likelihood estimates of the unknown parameters are obtained via the numerical 

optimization of the log likelihood function. To generate the results in this paper, we used the 

Simplex algorithm to perform the optimization.  

The Kalman filter is initialized using the 𝑋0 = 𝜇 and unconditional covariance matrix of the state 

vector 𝑃0, which is derived from the Gaussian distribution, given that the innovations of both signal 

and state equations are normally distributed. The Kalman filter algorithm is sensitive to the 

initializing values of parameters, we use the estimates of the parameters of the simulation exercise, 

discussed in section 2.5, as the initial values. 

Table 1 presents the estimated mean-reversion matrix  𝐴 and the estimated vector of mean 

parameters 𝜇 in panel 1, along with the estimated parameters of the EGARCH equation obtained 

for the GDNS-EGARCH model in panel 2. The results reveal that all the diagonal elements of the 

mean revision matrix 𝐴 are highly significant in all three setups. The level factor is most persistent 

in the DNS model, followed by the GDNS-EGARCH model. Considering the slope and curvature 

(first slope and curvature in GDNS and GDNS-EGARCH frameworks), the results indicate that the 

slope factor is more persistent in DNS and GDNS model than the curvature, while the latter is more 

persistent in the GDNS-EGARCH model. Regarding the second slope and curvature factors in 

GDNS and GDNS-EGARCH models, the persistency of  𝛽3𝑡 and  𝛽5𝑡 is reasonably lower as 

compared to the other factors, however, the second curvature is more persistent than the second 

slope factor in both setups. The results also show that the cross factors dynamics play a significant 

role in explaining the variation in all factors. In the DNS framework, the lagged curvature has 

positive significant impact on the level as well as the slope factors. The level factor has also 

significant negative impact on the curvature factor. In the generalized (extended) models, i.e., 

GDNS and GDNS-EGARCH, the cross-factor effects are almost similar in terms of statistical 

significance and direction of impact, except the impact of 𝛽2,𝑡−1 on 𝛽1𝑡 and 𝛽1,𝑡−1 on 𝛽3𝑡 (these 

impacts are significant in the GDNS while statistically insignificant in the GDNS-EGARCH 

specification). These two terms may be become insignificant because of the inclusion of the 

common volatility component in the model. Since, 13 out of 20 cross-factor interaction terms are 

significant statistically at 5 % level in the GDNS model, while 11 out of 20 are significant in the 

EGARCH based framework. The results show that the level, first slope and two curvatures play 

more prominent role than the rest of factors. More interestingly, by including the second slope and 
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curvature factors, the persistency of level factor falls remarkably (comparing the DNS with the 

GDNS and GDNS-EGARCH level factor persistency). The first slope and curvature in the extended 

models are more persistent than the second slope and curvature factors.  

<<Table 1>> 

The results indicate that the estimates of mean vector 𝜇 are highly significant in all three setups. For 

the estimated mean parameters, we find little change after adding the second slope and curvature 

factor to the model. It seems like the uncertainty about these parameters has declined notably. This 

ties in well with the fact that the factors have become less persistent, which allows the estimation to 

determine their means more precisely. Moreover, the elements of the estimated mean vector are a 

bit larger in the EGARCH based model as compared to the mean vector of the GDNS model, 

however, the uncertainty about the parameters falls significant in the GDNS-EGARCH model. 

The estimate of decay parameter in the DNS framework is almost similar to the estimated 𝜆1 for the 

GDNS and GDNS-EGARCH models. These estimates suggest that curvature factor loading reaches 

its maximum at about 72 months maturity in the DNS model, while the first curvature loading at 

about 63 and 66 months maturity in the GDNS and GDNS-EGARCH frameworks, respectively. 

This confers that the estimated 𝜆 in DNS and 𝜆1 in GDNS and GDNS-EGARCH serves to fit long 

rates attractively, because of very low decay rate of the slope and curvature factors loadings. 

Therefore, the first slope and curvature factors will affect the important intermediate range of 

maturities from 5 to 20 years of maturity. 

The estimated 𝜆2 in the two extended models suggest that the second curvature loading peaks at 

about 21 and 15 months maturity in the GDNS and GDNS-EGARCH models respectively. 

Therefore, the second slope and curvature factors take on very different roles in the fit of the model 

as compared to the standard DNS model. The rapid decay rate of the second slope loading will be 

helpful to fit the short rates more accurately and precisely, as it was one of the problem with the 

standard DNS model in fitting the JGBs yield curve during the zero interest rate policy (ZIRP) 

period. Furthermore, to clearly illustrate the role of second slope and curvature, in figure 1 we plot 

the loadings of slope and curvature factors for all the three models. Figure 1 shows that the path of 

loadings for slope and curvature in DNS and first slope and curvature in both extended models is 

almost similar because of having almost the same estimate for 𝜆 (in DNS) and 𝜆1 (in GDNS and 

GDNS-EGARCH). The second slope and curvature loadings in GDNS and GDNS-EGARCH 

corresponds to the estimate of 𝜆2, which have very high decay rate and are helpful to fit attractively 

the short rates. Thus, these two factors have a limited impact on yields beyond the five-year 

maturity. The inclusion of the new slope and curvature factors to the DNS model are also helpful to 

refrain the very short rates from becoming negative during the ZIRP period. 

Panel 2 of table 1 presents the estimates of the EGARCH equation parameters for the 

GDNS-EGARCH model. All the four estimates are statistically significant and the significance of 

fourth parameter, i.e., 𝜓 supports the hypothesis of asymmetric volatility in the common shock 

component. Moreover, the high and significant estimate of the 𝛾1 indicates that much weight is put 
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on recent shocks. The lag volatility coefficient 𝛾2 in the EGARCH equation is low but statistically 

different from zero. Therefore, the volatility of the common component is highly sensitive to the 

latest innovations; it increases quickly with large shocks and reverts soon thereafter. In order to 

obtain a better insight, in figure 2, common volatility ℎ𝑡  is plotted over time. Some historical events 

regarding the Japanese monetary policy and world financial market are clearly illustrated in the 

graph. 

<<Figure 2>> 

During early 1990s, the Japanese economy slowed down considerably because of stock market 

bubble burst of 1990.14 As a consequence, the discount rate was lowered to stimulate the economy 

and the monetary policy was also relaxed in response to weakening of the economy. The official 

discount rate (ODR) was gradually lowered from 5.5% to 1% in April 1995, and finally to 0.5% in 

September 1995. Due to easy monetary policy and fall in the discount rate, we observe that level 

factor of yield curve as well as the slope factor fall (apparent in figure 3 and 4). This phenomena is 

reflected by a higher volatility in bond prices and consequently in yields on bonds, as we observe a 

higher volatility in 1996. The impacts of Asian currency crisis of 1997 and bad debt crisis in 

1997-98 are also clearly highlighted by a rise in the estimated conditional volatility. The big spike 

in late 1999 and early 2000 corresponds to the adoption of zero interest rate policy (ZIRP) by the 

Bank of Japan (BOJ). The next two hikes, i.e., in May 2002 and mid-2004 are also relevant to the 

monetary policy regimes of the Japanese economy, as discussed in Ullah et al. (2014a). During the 

first period, the BOJ launched quantitative easy monetary policy (QEMP) to affect long-term 

interest rates in order to stimulate the economy, while in mid-2004 the forward rates jumped up 

sharply because of higher expectation of an exit from deflation and ZIRP in the near future. 

Furthermore, the rise in 2008 and 2010 corresponds to the global financial crisis of 2008 and 

Euro-zone crisis of 2010 respectively. The last spike that occurs in early 2013 matches to the recent 

momentous move of the BOJ about the quantitative easing of monetary policy.  

In figure 3, we compare the level, the first slope, and the first curvature factors in the GDNS, 

GDNS-EGARCH and DNS models to their corresponding empirical proxies. Moreover, the second 

curvature of GDNS is also plotted with the ten-year maturity yield. The empirical level 

factor (𝐿𝑡) is defined as the 25-year yield, slope (𝑆𝑡) as the difference between the 25-year and 

3-month yields and curvature (𝐶𝑡) as two times the 2-year yield minus the sum of the 25-years and 

3- month zero-coupon yields. The pairwise correlation of estimated level factor in all three setups 

with empirically defined level factor is 𝜌(𝛽̂1𝑡
𝐷𝑁𝑆, 𝐿𝑡) = 0.9681, 𝜌(𝛽̂1𝑡

𝐺𝐷𝑁𝑆, 𝐿𝑡) = 0.8274 

and 𝜌(𝛽̂1𝑡
𝐺𝐷𝑁𝑆−𝐸𝐺𝐴𝑅𝐶𝐻, 𝐿𝑡) = 0.8421, whereas the correlation of the estimated first slope (i.e., 𝛽̂2𝑡) 

with the empirical slope is 𝜌(𝛽̂2𝑡
𝐷𝑁𝑆, 𝑆𝑡) = −0.9576, 𝜌(𝛽̂2𝑡

𝐺𝐷𝑁𝑆, 𝑆𝑡) = −0.9029 

and𝜌(𝛽2𝑡
𝐺𝐷𝑁𝑆−𝐸𝐺𝐴𝑅𝐶𝐻, 𝑆𝑡) = −0.6522. The correlation for first estimated curvature and empirical 

                                                   
14 Stock prices plummeted in the summer of 1992, to the level of 15,000 in Nikke 225 index, losing more than 60% of 

the peak value in two and half years. The quarter-to-quarter GDP growth rate became negative in the spring-summer of 

1992. 
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curvature is 𝜌(𝛽̂3𝑡
𝐷𝑁𝑆, 𝐶𝑡) = 0.7106, 𝜌(𝛽̂4𝑡

𝐺𝐷𝑁𝑆, 𝐶𝑡) = 0.6121 and 𝜌(𝛽̂4𝑡
𝐺𝐷𝑁𝑆−𝐸𝐺𝐴𝑅𝐶𝐻, 𝐶𝑡) = 0.9079, 

while the correlation of second curvature 𝛽̂5𝑡 with the ten-year maturity yields is -0.9436 and 

-0.9369 in the GDNS and GDNS-EGARCH models respectively.15 It indicates that the level factor 

is affected by the addition of a second slope and curvature factors in both GDNS and 

GDNS-EGARCH models. Also, the first slope and curvature factors have very similar sample paths 

across all three models, but their role become more limited to the long end in GDNS and 

GDNS-EGARCH as compared to its role in the DNS model. More importantly, there is a clear 

correlation between the second curvature factor and the ten-year yield (also evident from the 

right-bottom graph in figure 3), in both GDNS and GDNS-EGARCH models, implying that the 

impact of second slope is influential at the short end of the curve (until 10-year maturity). 

<<Figure 3>> 

Given the fairly large estimated correlation across factors in three models and also with their 

empirical proxies, and closely following pattern of empirically defined factors, it is legitimated to 

term the estimated latent variables as level, slope and curvature factors. 

Furthermore, the estimated factors of the extended models, i.e., GDNS and GDNS-EGARCH are 

closely related to the macroeconomic fundamental and will be helpful for the policy related issues 

(i.e., monetary policy) and forecasting the future state of economy. The time series of the yield 

curve factors’ estimates of GDNS model with potentially related macroeconomic variables are 

plotted in figure 4. The figure show the time series path of the estimated level 𝛽̂1𝑡 and first slope 

 𝛽̂2𝑡  factors against money supply  (𝑀𝑆𝑡) , the first curvature   𝛽̂4𝑡  against the inflation 

rate (𝐼𝑁𝐹𝑡) and second slope  𝛽̂3𝑡 factor against the growth rate in industrial production (𝐼𝑃𝑡).16 

The pattern of level factor along with the first slope factor is closely related to annual growth of 

money supply as depicted in the top pane of figure 4. It confers that shocks to monetary policy are 

important sources of variation in long end of the yield curve and pricing the long-term maturity 

bonds. The figure shows that fall in money growth is accompanied by a rise in the level factors, 

i.e., 𝛽̂1𝑡 and fall in the slope of yield curve ( 𝛽̂2𝑡 rises), while an increase in money supply is 

reflected by a fall in 𝛽̂1𝑡 and 𝛽̂2𝑡 (yield curve becomes steeper). It means that the monetary policy 

signal transmits through the yield curve level and spread factors to the real sector. It suggests that 

the shift of long end and hence, the slope of yield curve have important information about the state 

of economy. This mechanism is more obviously illustrated by the second slope factor, i.e., 𝛽̂3𝑡 (pane 

                                                   
15 The pairwise correlation of estimated factors across three models is as follows. The correlation of estimated level 

factor is 𝜌(𝛽̂1𝑡
𝐷𝑁𝑆, 𝛽̂1𝑡

𝐺𝐷𝑁𝑆) = 0.9217, 𝜌(𝛽̂1𝑡
𝐷𝑁𝑆 , 𝛽̂1𝑡

𝐺𝐷𝑁𝑆−𝐸𝐺𝐴𝑅𝐶𝐻) = 0.9805 and 𝜌(𝛽̂1𝑡
𝐺𝐷𝑁𝑆 , 𝛽̂1𝑡

𝐺𝐷𝑁𝑆−𝐸𝐺𝐴𝑅𝐶𝐻) = 0.8750, for 

the estimated first slope factor is  𝜌(𝛽̂2𝑡
𝐷𝑁𝑆 , 𝛽̂2𝑡

𝐺𝐷𝑁𝑆) = 0.9343, 𝜌(𝛽̂2𝑡
𝐷𝑁𝑆 , 𝛽̂2𝑡

𝐺𝐷𝑁𝑆−𝐸𝐺𝐴𝑅𝐶𝐻) = 0.5523 and 

𝜌(𝛽̂2𝑡
𝐺𝐷𝑁𝑆, 𝛽̂2𝑡

𝐺𝐷𝑁𝑆−𝐸𝐺𝐴𝑅𝐶𝐻) = 0.5317 , whereas for the first curvature across three models is  𝜌(𝛽̂3𝑡
𝐷𝑁𝑆, 𝛽̂4𝑡

𝐺𝐷𝑁𝑆) =

0.5352, 𝜌(𝛽̂3𝑡
𝐷𝑁𝑆 , 𝛽̂4𝑡

𝐺𝐷𝑁𝑆−𝐸𝐺𝐴𝑅𝐶𝐻) = 0.5671and 𝜌(𝛽̂4𝑡
𝐺𝐷𝑁𝑆 , 𝛽̂4𝑡

𝐺𝐷𝑁𝑆−𝐸𝐺𝐴𝑅𝐶𝐻) = 0.6281. The correlation of second slope 

and second curvature factors in the GDNS and GDNS-EGARCH models is 0.9193 and 0.9435 respectively. It shows 

that the estimated factors follows almost the same pattern and are closely correlated across models. 
16 The data for the macroeconomic variables, the annualized growth of industrial production (𝐼𝑃𝑡), the growth rate of 

𝑀2 money supply (𝑀𝑆𝑡) as an indicator of monetary policy; and inflation rate (𝐼𝑁𝐹𝑡), measured as annualized 

monthly changes in the consumer price index is obtained from the International Financial Statistics (IFS). 
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2 of figure 4), which has a very clear relation with the industrial production. The figure shows that 

decrease in second slope ( 𝛽̂3𝑡 rises) is followed by a fall in the real activity with one period lag and 

vice-versa, suggesting that decline in the slope of yield curve (becoming flat or more negatively 

sloped) can be considered as a signal of economic slowdown.17 

<<Figure 4>> 

Moreover, the variation in inflation is closely explained by the first curvature factor of the yield 

curve. The CPI based inflation rate closely follows the pattern of curvature factor of yield curve as 

depicted in the bottom panel of figure 4. The correlation between inflation rate and curvature factor 

is  𝜌(𝛽̂4𝑡, 𝐼𝑁𝐹𝑡−1) = −0.4366 , 𝜌(𝛽̂4,𝑡−1, 𝐼𝑁𝐹𝑡) = −0.3108  and  𝜌(𝛽̂4𝑡, 𝐼𝑁𝐹𝑡) = −0.3473 . In 

addition, the curvature factor is also closely related to the growth rate in money supply. 

Overall figure 4 suggests that during the initial period of adopting the ZIRP and QEMP and world 

financial crisis, we observe a decline in the yields of long-term bonds and slope of yield curve and 

during the period of recovery, the yield curve long end as well as slope are on the increasing trend. 

In particular, the curvature reflects the cyclical fluctuations of the economy too. Like the yield 

curve spread, a decrease in curvature is signaling towards economic slowdown and vice versa. It is 

worth noting that the fall in curvature appears to complement the transition from an upward sloping 

yield curve to a flat one. Furthermore, the curvature factor seems either to anticipate the future 

inflation or complemented by inflation rate, suggesting that the curvature factor is the main driving 

force of the inflation rate, and transmits the stance of monetary policy in yield curve shape and 

hence the economy.  

<<Table 2>> 

To compare the transition errors of the three models, the estimates of covariance matrices of the 

state innovations as depicted by Σ𝑣 are reported in table 2 (panel 1). The results indicate that all 

diagonal elements of the matrix Σ𝑣 that correspond to the variance of the state innovations are 

statistically significant in all three setups. Regarding the off-diagonal elements, the results show that 

two out of three covariance terms for DNS, four out of ten covariance terms for both GDNS and 

GDNS-EGARCH are statistically different from zero. Relatively, most of the variance and 

covariance terms for the GDNS-EGARCH are smaller than the corresponding term in GDNS and 

DNS, whereas that of GDNS are smaller than in the DNS setup. As most of the covariance terms in 

GDNS and GDNS-EGARCH are statistically not different from zero, we employ the Wald and 

Likelihood ratio (LR) tests for the joint significance of the off-diagonal elements of the matrix Σ𝑣, 

(i.e., considering the diagonal Σ𝑣). The results of Wald and LR tests are reported in the second 

panel of table 2 for all three models. Both the test statistics are highly significant and reject the 

null-hypothesis of the diagonality of the Σ𝑣 matrix for all three setups. The result is consistent with 

our prior expectation that the innovations of transition system are cross correlated and Σ𝑣 cannot be 

                                                   
17 One should be aware of two big fall in industrial production during late 2008 and early 2011. These two falls do not 

correspond to the domestic policy shocks, therefore, are not reflected by the yield curve slope. The former corresponds 

to the global financial crisis, during this period the Japanese exports fall sharply and hence the real activity slows down. 

The second fall refers to the impact of the great East Japan earthquake and tsunami of 2011.  
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reduced to a diagonal matrix. 

To get more deep insight regarding the in-sample fit performance of the three model, in table 3 

summary statistics for the fitted errors of three models are reported. With its additional flexibility, 

the GDNS model does show reasonable improvement in fit for all maturities over the DNS model, 

especially in the short maturities range both in terms of MAE and RMSE. The improvement for the 

short maturities is consistent with the premise that the second slope and curvature factors operating 

at short maturities. There is also a slightly better GDNS model fit with long-term yields. Regarding 

the comparison of the two extended models, the results indicate that GDNS-EGARCH outperforms 

the GDNS for 11 out of 20 maturities, while the latter have good performance for long maturities 

(i.e., 180, 240 and 300 months) and maturities range from 18-month to 3-year. Moreover, it is 

evident that the residuals autocorrelations across time for all maturities is considerably smaller of 

the EGARCH based model (GDNS-EGARCH) as compared to both DNS and GDNS models. If we 

focus on the fit of the GDNS and GDNS-EGARCH models in table 3, we see fairly uniform 

improvement in the fit in the maturity range from 36- month to ten years and a dramatic 

improvement in the fit of the 3- to 36-month maturities yields. The improved fit for the 

short-maturity yield in the GDNS based models relative to the DNS model reflects the important 

role of second slope and curvature factors. 

<<Table 3>> 

Overall, the results in table 3 suggest that there seems to be need for the more flexible and complex 

models to fit the yield curve attractively. Furthermore, the residual autocorrelation, which is a 

common phenomenon in most of the statistical class of models can be removed by considering the 

time-varying volatility in the yield curve models, as the common volatility component swift out the 

time-series effect from the residuals. 

A more visual inspection can be performed by looking at average observed (empirical) and fitted 

curves, as shown in figure 5. 

<<Figure 5>> 

All three models are almost coinciding and capture yield dynamics well, however, the DNS model 

suffer from over-estimating the average yield curve for very short and long maturities. The GDNS 

seems to be more attractive to fit the curve as it coincide at all point with the empirical observed 

average yields. However, the improvement over GDNS-EGARCH is very small. It appears that the 

DNS model does not fit the very short end very well, because the factors loading of curvature factor 

is very flat at the short end and play more significant role at the long end. Therefore, the inclusion 

of another slope and curvature factors can serve at the short end of curve.  

The overall conclusion from in-sample fit is consistent with the findings in Christensen et al. (2009) 

as the inclusion of another slope and curvature factors considerably improve the in-sample fit of 

yield curve model, especially at the short maturities. Moreover, the improvement of EGARCH 

based model over the GDNS is very minor in terms of residuals MAE and RMSE, however, in 

terms of residuals persistency across time the model that accounts for time-varying volatility 
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outperforms the rest of two models. The great success of the extended models may be due to two 

slopes and curvatures factors that play a different role at the two ends of the curve. 

 

4. Out-of-sample forecasting 

Up to now, we have illustrated the in-sample fit performance of three Nelson-Siegel type models. 

However, a good yield curve model should also come with more accurate and precise forecasts of 

the future yields as emphasized by Duffee (2002). Furthermore, there is no guarantee that the more 

flexible models which achieve a better in-sample fit will also perform well in out-of-sample 

forecasting because of potential over-fitting. In this section, we investigate whether the in-sample 

superiority of the more flexible models, i.e., GDNS and GDNS-EGARCH models carry over to 

out-of-sample forecasts.  

The yield forecasting is done by constructing factor predictions using the state equations and 

subsequently substituting these predictions (predicted state variables) in the measurement equations 

to obtain interest rate forecasts. In the forecasting procedure, we first estimate the parameters of the 

different models over a subsample period for the state space framework as in (14-16). From the 

Kalman filter we obtain the filtered latent factors and subsequently predict the ℎ-month ahead 

forecast at every point in the out-of-sample period by iterating forward the state equation ℎ-periods. 

The ℎ-month ahead forecast of the state vector is given by: 

 

 
𝑋̂𝑡+ℎ|𝑡 = [𝐼𝑑 − (∑ 𝐹̂𝑖

ℎ−1

𝑖=0
)] 𝐶̂ + 𝐹̂ℎ𝑋̂𝑡|𝑡 (21) 

 

where 𝐼𝑑 is the (d × d) identity matrix (𝑑 = 3, 5 and 6 for DNS, GDNS and GDNS-EGARCH 

models respectively), 𝐶̂ and 𝐹̂ are the state equation parameters estimates and 𝑋̂𝑡|𝑡 is the last 

available factor estimates in the update step. Three forecast horizons, ℎ = 1,6 and 12 months ahead, 

are considered. We estimate and forecast recursively, using data from January 1996 to the time that 

the forecast is made, beginning in January 2007 and extending through December 2013.18 After the 

state vector is forecasted, the ℎ-month ahead yield forecasts follow from: 

 

 𝑅̂𝑡+ℎ|𝑡 = 𝐻̂𝑋̂𝑡+ℎ|𝑡 (22) 

 

where 𝑅̂𝑡+ℎ|𝑡 is the (N×1) vector define as  𝑅̂𝑡,𝑡+ℎ(𝑚), the forecasted yield in period 𝑡 for 𝑡 + ℎ 

period, and the other parameters are as defined before. The forecast errors for the ℎ-step ahead 

forecasts are calculated as: 𝑒𝑡,𝑡+ℎ = 𝑅𝑡+ℎ − 𝑅̂𝑡,𝑡+ℎ, where 𝑅𝑡+ℎ is the actual observed yield vector 

at 𝑡 + ℎ and the 𝑅̂𝑡,𝑡+ℎ is the (N×1) vector of the ℎ-month ahead forecasted yields in period 𝑡. 

Moreover, in the EGARCH based model the common shock component is zero in expectation and it 

                                                   
18 It means that we estimate and forecast recursively. For the first forecast, the models are estimated by using data from 

1996:01 to 2006:12. Then, one month data is added to re-estimate the models, and another forecast is constructed. 
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does not play a direct role in the forward iterations of the state equation to forecast the yield curve. 

Therefore, the predictions only depend on the five factors representing level, two slopes and two 

curvatures, because only the first five elements of 𝐶 and the upper (5×5) block of 𝐹 contain 

non-zero values. However, the time-varying volatility component is accounted for in the filtering 

steps in the Kalman filter and, therefore, affects the estimates of the factors. Hence, the common 

shock does have an indirect influence on the predictions through 𝑋̂𝑡|𝑡. 

As a benchmark, we can include the AR(1) or VAR(1) model of yield to forecast the term structure, 

but it is clearly evident from the relevant literature that the standard DNS model outperforms all the 

naive time series forecasts for short as well as long forecast horizons (Diebold and Li, 2006; De 

Pooter 2007; Ullah et al. 2013b). Therefore, we do not report the results of the comparison of all 

three models (considered in this study) with the forecasts of AR(1) model.19 

 

4.1. Term structure forecast results 

Tables 4, 5 and 6 show the results of the forecasts of the DNS, GDNS and GDNS-EGARCH 

models for maturities of 3, 6, 12, 24, 36, 60, 120, 180, 240 and 300 months of the ℎ = 1,6 and 12 

months, respectively. The tables report various descriptive features of the computed errors, 

including mean, standard deviation, MAE, RMSE and autocorrelation at various displacements. 

Three main aspects, MAE, RMSE and errors persistency, are focused to evaluate the performance 

of each of the three models. 

For a 1-month forecast horizon, in table 4, there seems that the GDNS model dominates the scene in 

terms of MAE and RMSE, whereas GDNS-EGARCH outpace the other two models in terms of 

errors persistency. Furthermore, the GDNS model clearly outperforms its counterpart DNS model 

for all maturities in terms of all the considered properties, i.e., MAE, RMSE and errors 

autocorrelations. As compared to the EGARCH based specification, the GDNS has lower forecast 

errors until 10 years maturities, whereas the former is better for maturities beyond 120 months. 

Between the DNS and GDNS-EGARCH, the latter model has worse forecast power than the former 

as the RMSE is higher for all maturities except the last three maturities (very long maturities). The 

performance of the GDNS-EGARCH at the long end may be attributed to the second slope and 

curvature factors. Even with very small forecast errors, the forecasts of GDNS and DNS do not 

seem optimal as the forecast errors are highly persistent. 

<<Table 4>> 

Predictions results at the medium and long horizons (i.e., 6- and 12-month ahead) show a better 

performance of the GDNS-EGARCH than the rest of the two models in terms of all the considered 

attributes. For a 6-month ahead forecast the model with time-varying volatility component 

outperforms the other two models in terms of mean forecast errors, MAE, RMSE and lag 

                                                   
19 We, in fact, ran the random walk and AR(1) model of yield, but all three models, i.e., DNS, GDNS and 

GDNS-EGARCH models outpace the benchmark AR(1) and random walk specification of yield forecasts, therefore 

the results are not reported. 
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autocorrelation for all maturities, whereas the GDNS has lower MAE and RMSE than the standard 

DNS for all maturities. The 6-month ahead forecasts results seem not as good as the one-month 

ahead forecasts in terms of RMSE for the DNS and GDNS models. 

<<Table 5>> 

<<Table 6>> 

For 12-month ahead, the GDNS-EGARCH have better performance than the rest of the two other 

models in terms of RMSE and errors persistency for all maturities. Moreover, the GDNS model has 

more accurate and precise forecasts than the DNS for most of the maturities, whereas the lag 

autocorrelation of the forecast errors is same for both models.  

In summary, the out-of-sample forecasts results indicate that for very short horizon forecasts, i.e., 

one month, the GDNS model outperforms the rest of two models and even the simple DNS comes 

with more accurate forecasts than the complex GDNS-EGARCH model. While for the medium and 

long forecast horizons, such as 6- and 12-month ahead, the EGARCH based model have more 

accurate forecasts than their counterpart GNDS and simple DNS model. Moreover, the GDNS have 

better performance than the DNS at both 6- and 12-month ahead forecast horizons. 

 

4.2. Out-of-sample forecast accuracy comparisons 

We use two standard forecast error evaluation criteria to assess the quality of the out-of-sample 

forecasts. In particular, we report the trace root mean squared prediction error (TRMSPE) as well as 

compute the Diebold and Mariano (1995) test statistic for loss differential quadratic errors. The 

former combines the forecast errors of all maturities and summarizes the performance of each 

model, thereby allowing for a direct comparison between models. The Diebold and Mariano (DM) 

test is a standard statistical test that compares the squared forecast errors of two competing models 

and is most commonly applied test for comparing the forecast accuracy. 

 

4.2.1. Trace root mean squared prediction error 

For evaluating the forecast performance, the full sample of forecast errors, i.e., for all 20 maturities 

and forecast periods, is considered to compute the trace root mean squared prediction error 

(TRMSPE). Given a sample of 𝑇 out-of-sample forecasts of 𝑁 distinct maturities with ℎ−month 

ahead forecast horizon, we compute the TRMSPE as follows: 

 

 

𝑇𝑅𝑀𝑆𝑃𝐸 = √
1

𝑁𝑇
∑ ∑ [𝑅𝑡+ℎ(𝑚) − 𝑅̂𝑡,𝑡+ℎ(𝑚)]

2𝑇

𝑡=1

𝑁

𝑚=1
 (23) 

 

where 𝑅̂𝑡,𝑡+ℎ(𝑚) is the forecasted yield in period 𝑡 for 𝑡 + ℎ period, [𝑅𝑡+ℎ(𝑚) − 𝑅̂𝑡,𝑡+ℎ(𝑚)] is 

the forecast errors at 𝑡 + ℎ for yield and 𝑡 starts from 2007:01 for ℎ = 1, 2007:06 for ℎ = 6, and 

2007:12 for ℎ = 12. The results of TRMSPE for all three models are given in table 7. At first sight 
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the results shows that the forecasts becomes worse as the forecast horizon becomes longer, and 

there is no single model that dominates for all the forecast horizons. However, the performance of 

GDNS-EGARCH based specification is better at the six-month and one-year ahead forecasts. For 

the one-month ahead forecast, the GDNS beats the rest of the two models. 

<<Table 7>> 

Furthermore, the GDNS outperforms the DNS for all three forecast horizons. More importantly, the 

simple DNS outperforms the GDNS-EGARCH model for one-month ahead forecast horizon. 

 

4.2.2. Diebold–Mariano test 

We employ the Diebold and Mariano (1995) test to assess the forecast performance for each 

maturity for the different pairs of models. The comparison is made in three pairs between the three 

models, i.e., (i) the GDNS against the simple DNS model, (ii) GDNS-EGARCH against the DNS 

model, and (iii) GDNS-EGARCH against the GDNS model. Given a pair of two competing 

forecasting models, i.e., 1 and 2, the difference between the two quadratic loss functions is 

computed as  𝑑𝑡 = 𝑒1𝑡
2 − 𝑒2𝑡

2 , where 𝑒1𝑡
2  and 𝑒2𝑡

2  are the quadratic loss functions of the two 

competing models, the DM test statistic is computed as: 

 

 
𝐷𝑀 =

𝑑̅

√2𝜋𝑓𝑑(0)/𝑇

  ~𝑁(0,1) 
(24) 

 

where 𝑓𝑑(. ) is the consistent estimate of the spectral density of 𝑑𝑡 and 𝑑̅ is the sample mean of 

𝑑𝑡 for 𝑡 = 1,2, … , 𝑇. The null-hypothesis is: 𝐻0: 𝐸(𝑑𝑡) = 0 (meaning that both models have same 

squared forecasts errors) against the alternative hypothesis 𝐻1: 𝐸(𝑑𝑡) ≠ 0. We apply the Diebold 

and Mariano (1995) test to forecast errors of three pairs of models and the results are presented in 

table 8 for all the three forecasts horizons. 

The results in table 8 for the first pair point towards the universal significant difference of the 

RMSE for all three horizons and all maturities forecasts of the GDNS and DNS model except the 

10-, 15- and 20-year maturities for ℎ = 12. All the DM-statistics are significantly different from 

zero (except the 3 maturities for the 12-month forecast horizon) .The negative values show that the 

GDNS model outperforms all the competing forecasts of the DNS specification (in first pair 𝑒1𝑡 

and 𝑒2𝑡 are the forecast errors of the GDNS and DNS models respectively). 

Concerning the second pair of comparison, the result indicate that the GDNS-EGARCH 

outperforms the DNS for all maturities for  ℎ = 6 and 12, as all DM-stat are negative and 

significantly different from zero. For ℎ = 1, the DNS has lower forecast errors until 10-year 

maturity than the GDNS (most test stat are significant and positive), whereas GDNS has more 

accurate forecasts for very long maturities (15-, 20- and 25-year maturities). In this 

pair 𝑒1𝑡 and 𝑒2𝑡 correspond to the forecasts errors of GDNS-EGARCH and DNS respectively. 
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<<Table 8>> 

The DM-Stat reported in table 8 for the third pair of models (GDNS-EGARCH against the GDNS), 

indicates a significant difference of the RMSE for all the three forecasts horizons of the two 

competing models. It is worthwhile to mention that the negative values indicate superiority of 

GDNS-EGARCH model forecasts as  𝑒1𝑡
2  and  𝑒2𝑡

2  refer to the quadratic loss functions of 

GDNS-EGARCH model and GDNS model respectively. The results show that the 

GDNS-EGARCH unanimously outperforms the GDNS for ℎ = 6 and 12. For ℎ = 1, the GDNS has 

more accurate forecasts than the EGARCH based model for maturities until 10-year, whereas the 

latter outperforms the former for maturities beyond 120-month.    

The results of Diebold and Mariano (1995) test suggest the resilient predictive power of the two 

slope and curvature based extended model at all three horizons. Moreover, the Diebold and Mariano 

(1995) test validates the results obtained from the TRMSPE criterion of evaluating the forecast 

performance of the models. 

The results of the aforementioned two tests in this study unanimously suggest that the generalized 

dynamic Nelson-Siegel specifications (model with two slopes and curvatures) outperform the 

competing benchmark DNS model. Moreover, the inclusion of time-varying volatility component 

implies to worsen the 1-month ahead forecasts, whereas improves the predictive power of the model 

at longer horizons forecasting. 

 

5. Conclusion 

Estimating the JGBs zero curve with the dynamic Nelson-Siegel model has trouble in fitting the 

short maturity yields and fails to grasp the characteristics of the JGBs yield curve. For JGBs, since 

1999, yield curves under the zero interest rate policy and the quantitative easing monetary policy 

are distinctive. During these periods, the yield curve has a flat shape near zero at the short-term 

maturities and often has a complex shape with multiple inflection points. In this study, we address 

these issues and consider the generalized version of the Nelson-Siegel model with two slopes and 

curvatures, the so called generalized dynamic Nelson-Siegel (GDNS) model, which corresponds to 

a modern five-factor term structure model. The inclusion of second slope and curvature is helpful to 

fit the very short maturities, by restricting the role of the newly added slope and curvature factors to 

the short end of the curve. We argue that in addition to second curvature as in Svensson (1995), the 

second slope improves the model performance in terms of in-sample fit as well as out-of-sample 

forecasts. Finally, we show that introducing the common volatility component improve the 

in-sample fit of the model. 

Moreover, the volatility in bond market is found to be asymmetrically affected by the positive and 

negative shock and recent shocks play more prominent role in explaining the current volatility 

rather than the lag volatility.  

Regarding the out-of-sample forecasts, the results indicate that the model with two slopes and 

curvatures (GDNS) model outperforms its counterpart DNS model for all forecasts horizons. 
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Allowing for time-varying volatility in the model (GDNS-EGARCH) enables it to better capture 

dynamics in the most volatile yields and produce relatively more accurate forecast at 6- and 

12-month ahead horizons. However, the GDNS and even the simple DNS model outperform the 

GDNS-EGARCH at the short one-month forecast horizon. It seems that the GDNS model has 

higher forecasting capability for the short forecast horizons, i.e., one month, while the 

GDNS-EGARCH model has excellent performance for the medium and longer forecast horizons.  

Summarizing, it turns out that the richer parameterization of model leads to a better in-sample fit 

and out-of-sample performance. Since, the GDNS based term structure models are characterized by 

having a more rich specification, which usually improves in-sample as well as out-of-sample 

forecasts, implying that the simplicity of the model comes at the cost of poor fit and future forecast.  

Appendix-I 

Coefficients and latent variable in the general state-space form 

In the statistical formulation of the models in section 2.4, the matrices and vectors for the state and 

observations equations should be considered as follows. The matrices and vectors in state-space 

system in (14-16) for the simple DNS model should be defined as:  

 

𝐻 = Λ(𝜆): (N×3) 𝑋𝑡 = [𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡]′: (3×1) 𝑤𝑡 = 𝜀𝑡: (N×1) 

𝐶 = [𝐼3 − 𝐴]𝜇: (3×1) 𝐹 = 𝐴: (3×3) 𝑢𝑡 = 𝑣𝑡: (3×1) 

𝐺 = Ω: (N×N) 𝑄𝑡 = Σ𝑣: (3×3)  

where Λ(𝜆) is (N×3) matrix of loadings, 𝛽𝑡 = (𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡)′ is the (3×1) vector of latent factors 

of the yield curve, 𝜇 is (3×1) vectors of factors mean, and 𝐴 is (3×3) full-matrix of parameters. 

𝜀𝑡 and 𝑣𝑡  are (N×1) and (3×1) innovations vectors of the observation and state equations 

respectively, Ω is (N×N) covariance matrix of the measurement equation innovations, and Σ𝑣 is 

(3×3) covariance matrix of the state innovations (assumed to be a full-matrix rather than a diagonal 

one).  

While, for the GDNS model in the state-space system can be written as: 

 

𝐻 = Λ(𝜆1, 𝜆2): (N×5) 𝑋𝑡 = [𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡, 𝛽4𝑡, 𝛽5𝑡]′: (5×1) 𝑤𝑡 = 𝜀𝑡: (N×1) 

𝐶 = [𝐼5 − 𝐴]𝜇: (5×1) 𝐹 = 𝐴: (5×5) 𝑢𝑡 = 𝑣𝑡: (5×1) 

𝐺 = Ω: (N×N) 𝑄𝑡 = Σ𝑣: (5×5)  

The state-space specification for the GDNS is exactly similar to the one for DNS, but here the 

dimension of matrices and vectors is different.  Λ(𝜆1, 𝜆2) is (N×5) matrix of loadings, 𝛽𝑡 =

(𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡, 𝛽4𝑡, 𝛽5𝑡)′ is the (5×1) vector of latent factors of the yield curve, 𝜇 is (5×1) vectors of 

factors mean, 𝐴 is (5×5) full-matrix of parameters, 𝑣𝑡 is (5×1) innovations vectors of the state 

equation, and Σ𝑣 is (5×5) covariance matrix of the state innovations (assumed to be a full-matrix). 

The dimensions of 𝜀𝑡 and Ω are similar to the one defined for the DNS model. 

Furthermore, for the GDNS-EGARCH model the system should be defined as: 
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𝐻 = [Λ(𝜆1, 𝜆2) Γ𝜀]: (N×6) 𝑋𝑡 = 𝛼𝑡 = [𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡, 𝛽4𝑡, 𝛽5𝑡, 𝜀𝑡
∗]′: (6×1) 𝑤𝑡 = 𝜀𝑡

+: (N×1) 

𝐶 = [
(𝐼5 − 𝐴)𝜇

0
] (6×1) 𝐹 = [

𝐴 0
0 0

]: (6×6) 𝑢𝑡 = [
𝑣𝑡+1

𝜀𝑡+1
∗ ]: (6×1) 

𝐺 = Ω: (N×N) 
𝑄𝑡 = [

Σ𝑣 0
0 ℎ𝑡+1

]: (6×6)  

where 𝛼𝑡 = (𝛽1𝑡, 𝛽2𝑡, 𝛽3𝑡, 𝛽4𝑡, 𝛽5𝑡, 𝜀𝑡
∗)′ is (6×1) latent vector and Γ𝜀 is (N×1) vector showing the 

sensitivity of various yields to a common shock component. The definitions and dimensions of all 

remaining matrices and vectors is same as discussed in the GDNS model specification. In all three 

model the matrix Ω is assumed to be diagonal for computational traceability, while the covariance 

matrix Σ𝑣 is non-diagonal. 

 

Appendix-II 

Data description 

We consider JGB yields with maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 

120, 180, 240 and 300 months. The yields are derived from bid/ask average price quotes, from 

January 1996 through December 2013, using the Fama and Bliss (1987) methodology. 

Table A1 provides summary statistics for the data-set. For each maturity, we report mean, standard 

deviation, minimum, maximum, skewness, kurtosis, and autocorrelation coefficients at various 

displacements. The summary statistics reveal that the average yield curve is upward sloping. 

Unconditional volatility increases by maturity and yields for all maturities are persistent, however, 

relatively short rates persistency is higher than those of the long rates. 

<<Table A1>> 

<<Figure A1>> 

In addition to the findings in table A1, we see few interesting characteristics in figure A1, which 

plots cross-section of yields over time. The first noticeable fact is that long term yields vary 

significantly over time. Second, the short rates are almost zero during the prolonged period except 

with a little rise in late 2006 and early 2007 that causes a fall in the slope of the curves (apparent in 

figure). Moreover, when short rates are stuck at zero, the long end seem more volatile than the short 

end of the curves. 
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<<Tables>> 
 

Table 1. Latent factors and EGARCH models parameters estimates of the GDNS-EGARCH, GDNS and DNS models 

Panel 1: Estimates of matrix 𝑨 and vector 𝝁 

 𝜇 𝐴(. ,1) 𝐴(. ,2) 𝐴(. ,3) 𝐴(. ,4) 𝐴(. ,5) 

GDNS-EGARCH model 

𝐴(1, . ) 
3.3001 

(0.0439) 
0.7289 

(0.0157) 

0.0596 

(0.3172) 
0.1502 

(0.0950) 
-0.1193 

(0.0323) 
-0.1588 

(0.0289) 

𝐴(2, . ) 
-2.5629 

(0.0160) 

-0.0277 

(0.0276) 
0.8100 

(0.0213) 
-0.4039 

(0.0774) 

-0.0618 

(0.1248) 
-0.1296 

(0.0239) 

𝐴(3, . ) 
 -0.7042 

 (0.0560) 

0.0636 

(0.0498) 
-0.1367 

(0.0580) 
0.4217 

(0.0191) 
0.3232 

(0.1988) 

0.0179 

(0.0272) 

𝐴(4, . ) 
-1.6677 

(0.0460) 

-0.0567 

(0.1711) 

0.0571 

(0.1997) 
-0.3406 

(0.1355) 
0.9869 

(0.0451) 

0.0283 

(0.1348) 

 

𝐴(5, . ) 
-0.4235 

(0.1470) 
-0.4420 

(0.0243) 

0.0079 

(0.6519) 
-0.1083 

(0.0523) 
0.2030 

(0.0858) 
0.4586 

(0.2418) 

𝜆1 0.0271 (0.0001) 
    

𝜆2 0.1098 (0.0002)   
  

GDNS model 

𝐴(1, . ) 
2.7494 

(0.1423) 
0.6786 

(0.0158) 
0.0606 

(0.0115) 
0.0505 

(0.0021) 
-0.0920 

(0.0038) 
-0.0504 

(0.0045) 

𝐴(2, . ) 
-2.5450 

(0.0711) 

-0.0195 

(0.0133) 
0.9268 

(0.0072) 
-0.2227 

(0.0085) 

-0.0699 

(0.2190) 
-0.1675 

(0.0044) 

𝐴(3, . ) 
-0.0640 

(0.0583) 
0.1473 

(0.0020) 
-0.1217 

(0.0053) 
0.3908 

(0.0063) 
0.2583 

(0.0049) 

0.0232 

(0.0440) 

𝐴(4, . ) 
-1.6820 

(0.4497) 

-0.0995 

(0.0645) 

0.0717 

(0.0532) 
-0.2098 

(0.0059) 
0.9200 

(0.0012) 

0.0215 

(0.0267) 

 

𝐴(5, . ) 
-0.6042 

(0.0983) 
-0.1310 

(0.0083) 

0.0361 

(0.0029) 
-0.0976 

(0.0036) 
0.0903 

(0.0066) 
0.6199 

(0.0065) 

𝜆1 0.0287 (0.0005) 
    

𝜆2 0.0919 (0.0022)   
  

DNS model 

𝐴(1, . ) 
2.0355 

(0.0127) 
0.8685 

(0.0179) 

0.0380 

(0.0411) 
0.1960 

(0.0620)   

𝐴(2, . ) 
-1.7975 

(0.1116) 

0.1287 

(0.1059) 
0.8665 

(0.0052) 
0.3180 

(0.0058)   

𝐴(3, . ) 
-1.9433 

(0.0639) 
-0.1081 

(0.0154) 

0.0333 

(0.0397) 
0.6375 

(0.0483)   

𝜆 0.0254 (0.0004) 
    

Panel 2: EGARCH model parameter estimates in the GDNS-EGARCH model 

GDNS-EGARCH 

model 

𝛾0 𝛾1 𝛾2 𝜓 

0.1112 

(0.0491) 
0.7583 

(0.0909) 
0.6456 

(0.0409) 
0.2832 

(0.1079) 

Note: The table reports the estimates for the parameters of the transition equation of GDNS- EGARCH (five-factor model with 

time-varying volatility), GDNS (five-factor model) and DNS (three-factor model) models and of EGARCH specification. Panel 

1 presents the estimates for the vector 𝜇 and matrix 𝐴 along with the decay parameters 𝜆 estimates, while panel 2 shows the 

parameters’ estimates of the volatility processes (EGARCH) of the common component in the five-factor yield curve model. 

The standard errors are in parenthesis. Bold entries denote that parameter estimates are significant at the 5% level. 

 

 

 

 

 



29 

 

 

 

 

Table 2. Estimates of covariance matrix 𝚺𝒗  and its diagonality test  

Panel 1: Estimates of covariance matrix 𝚺𝒗 

 Σ𝑣(. ,1) Σ𝑣(. ,2) Σ𝑣(. ,3) Σ𝑣(. ,4) Σ𝑣(. ,5) 

GDNS-EGARCH model 

Σ𝑣(1, . ) 
0.5459 

(0.0378)     

Σ𝑣(2, . ) 
-0.0009 

(0.0101) 
0.1377 

(0.0093) 
   

Σ𝑣(3, . ) 
0.0029 

(0.065) 
0.1564 

(0.0125) 
0.0002 

(0.0001) 
  

Σ𝑣(4, . ) 
0.0569 

(0.0107) 
0.7973 

(0.0518) 

0.0181 

(0.0555) 
0.0097 

(0.0018) 
 

Σ𝑣(5, . ) 
0.0025 

(0.0383) 
0.3279 

(0.0193) 

0.0038 

 (0.0311) 

0.0189 

(0.0808) 
0.0028 

(0.0012) 

GDNS model 

Σ𝑣(1, . ) 
0.6088 

(0.0038)     

Σ𝑣(2, . ) 
0.0041 

(0.0090) 
0.1656 

(0.0030) 
   

Σ𝑣(3, . ) 
0.0024 

(0.0017) 
0.3065 

(0.0096) 
0.0002 

(0.0001) 
  

Σ𝑣(4, . ) 
0.0306 

(0.0015) 
0.9634 

(0.0029) 

0.0126 

(0.0120) 
0.0076 

(0.0027) 
 

Σ𝑣(5, . ) 
0.0026 

(0.0161) 
0.4343 

(0.0058) 

0.0031 

(0.0050) 

0.0110 

(0.0169) 
0.0021 

(0.0004) 

DNS model 

Σ𝑣(1, . ) 
0.5911 

(0.0374)     

Σ𝑣(2, . ) 
0.0025 

(0.0034) 
0.3041 

(0.0152)    

Σ𝑣(3, . ) 
0.6097 

(0.0512) 
0.7967 

(0.0196) 
0.0098 

(0.0036)   

Panel 2: Tests for diagonality of covariance matrix 𝚺𝒗 

Model GDNS-EGARCH model GDNS model DNS model 

Test Test statistic df P-value Test statistic df P-value Test statistic df P-value 

Wald Test 65.0753 10 0.000 57.6382 10 0.000 51.4872 3 0.000 

LR Test 73.5302 10 0.000 69.2951 10 0.000 41.05394 3 0.000 

Note: The table shows the estimates of the covariance matrices Σ𝑣 of the innovations in the state equations for the 

GDNS- EGARCH (five-factor model with time-varying volatility), GDNS (five-factor model) and DNS (three-factor 

model) yields models in panel 1. The lower panel (panel 2) presents the results of the Wald test and likelihood ratio 

(LR) test for the null hypothesis that the covariance matrix Σ𝑣 is diagonal. Both test statistics are chi-square with their 

respective degrees of freedom (df). The P-value is the probability value of the test statistic. The standard errors are in 

parenthesis. Bold entries denote that parameter estimates are significant at the 5% level. 
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Table 3. Descriptive statistics of the yield curve residuals 

 GDNS-EGARCH model GDNS model DNS model 

Maturity  Mean  SD MAE RMSE 𝜌̂ (1) 𝜌̂ (6)  Mean  SD MAE RMSE 𝜌̂ (1) 𝜌̂ (6)  Mean  SD MAE RMSE 𝜌̂ (1) 𝜌̂ (6) 

3 -0.035 0.192 0.145 0.135 0.616 0.518 -0.037 0.196 0.148 0.199 0.831 0.642 -0.069 0.298 0.252 0.306 0.919 0.660 

6 0.019 0.200 0.150 0.215 0.625 0.548 -0.078 0.204 0.156 0.218 0.846 0.651 -0.107 0.304 0.256 0.321 0.924 0.670 

9 0.045 0.252 0.148 0.226 0.601 0.502 -0.118 0.218 0.174 0.247 0.860 0.655 -0.141 0.311 0.262 0.340 0.926 0.676 

12 0.065 0.240 0.197 0.255 0.608 0.546 -0.169 0.236 0.204 0.290 0.874 0.658 -0.185 0.318 0.271 0.368 0.926 0.681 

15 0.051 0.265 0.185 0.241 0.761 0.547 -0.196 0.257 0.225 0.323 0.886 0.662 -0.207 0.327 0.280 0.386 0.926 0.684 

18 0.023 0.289 0.365 0.426 0.676 0.546 -0.108 0.281 0.178 0.232 0.897 0.667 -0.242 0.335 0.291 0.413 0.924 0.686 

21 -0.014 0.312 0.358 0.418 0.545 0.547 -0.170 0.307 0.180 0.229 0.905 0.671 -0.174 0.345 0.196 0.239 0.923 0.687 

24 -0.057 0.332 0.354 0.412 0.416 0.541 -0.124 0.332 0.191 0.234 0.912 0.675 -0.125 0.354 0.217 0.280 0.921 0.687 

30 -0.143 0.385 0.342 0.396 0.412 0.537 -0.188 0.382 0.232 0.269 0.922 0.681 -0.139 0.273 0.293 0.278 0.919 0.687 

36 -0.226 0.410 0.333 0.386 -0.562 0.541 -0.250 0.427 0.287 0.327 0.928 0.686 -0.353 0.392 0.355 0.398 0.918 0.686 

48 -0.338 0.459 0.309 0.363 0.517 0.535 -0.261 0.497 0.376 0.428 0.934 0.689 -0.372 0.427 0.382 0.473 0.917 0.684 

60 -0.238 0.518 0.301 0.360 0.518 0.515 -0.375 0.543 0.440 0.500 0.936 0.690 -0.491 0.459 0.491 0.829 0.919 0.682 

72 -0.233 0.549 0.299 0.360 0.610 0.507 -0.263 0.572 0.464 0.528 0.936 0.689 -0.480 0.487 0.480 0.529 0.922 0.680 

84 -0.214 0.574 0.287 0.349 0.457 0.499 -0.296 0.587 0.448 0.512 0.936 0.686 -0.310 0.512 0.481 0. 570 0.925 0.679 

96 -0.215 0.605 0.267 0.333 0.525 0.489 -0.332 0.595 0.407 0.469 0.934 0.683 -0.439 0.534 0.439 0.494 0.928 0.677 

108 -0.213 0.616 0.253 0.320 0.514 0.486 -0.259 0.598 0.364 0.423 0.933 0.680 -0.177 0.554 0.378 0.437 0.930 0.676 

120 -0.201 0.601 0.244 0.315 0.430 0.494 -0.230 0.597 0.322 0.380 0.931 0.676 -0.218 0.571 0.338 0.380 0.932 0.674 

180 -0.091 0.644 0.255 0.319 0.705 0.481 -0.261 0.581 0.210 0.264 0.922 0.656 -0.200 0.633 0.207 0.299 0.937 0.666 

240 0.049 0.643 0.271 0.334 0.628 0.483 -0.119 0.568 0.188 0.244 0.915 0.639 -0.157 0.670 0.195 0.165 0.937 0.661 

300 0.161 0.667 0.262 0.317 0.691 0.475 -0.175 0.560 0.221 0.283 0.910 0.626 -0.163 0.693 0.230 0.290 0.937 0.657 

Note: The table presents summary statistic of the residuals for different maturity times of the measurement equation of GDNS- EGARCH (five-factor model with time-varying volatility), GDNS 

(five-factor model) and DNS (three-factor model) yield curve models, using monthly data 1996:01–2013:12. RMSE and MAE is the root mean squared errors and mean absolute error 

respectively. 𝜌̂ (𝑖) denotes the sample autocorrelations at displacements of 1 and 6 months. The number of observations is 216. 
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Table 4. Out-of-sample 1-month ahead forecasting results 

Maturity Mean SD MAE RMSE 𝜌̂ (1) 𝜌̂ (6) 𝜌̂ (12) 

Forecast summary for GDNS-EGARCH model 

3 0.1124 0.2875 0.2246 0.3069 0.1401 0.2163 -0.0804 

6 0.1468 0.2402 0.1977 0.2801 0.0875 0.1945 -0.1099 

12 0.1411 0.1927 0.1680 0.2377 0.0053 0.1608 -0.1006 

24 -0.0249 0.1834 0.1447 0.1838 -0.3976 0.0175 -0.1496 

36 -0.2383 0.1974 0.2811 0.3086 -0.3108 0.0162 -0.1378 

60 -0.5107 0.2215 0.5240 0.5561 0.0387 0.1045 0.0137 

120 -0.3856 0.2022 0.3934 0.4348 0.2545 0.1693 0.0879 

180 -0.0752 0.1917 0.1608 0.2046 0.1281 0.0937 -0.0732 

240 0.1409 0.1717 0.1724 0.2212 0.0786 0.0846 -0.1291 

300 0.2184 0.1790 0.2258 0.2816 0.2290 0.0877 -0.0782 

Forecast summary for GDNS model 

3 0.0307 0.0960 0.0860 0.1002 0.5801 0.1091 0.1623 

6 0.0454 0.0866 0.0834 0.0972 0.5203 0.0760 0.1102 

12 0.0716 0.0744 0.0859 0.1029 0.4371 0.0074 0.0163 

24 0.1029 0.0863 0.1085 0.1339 0.1741 -0.0373 0.0032 

36 0.1029 0.1052 0.1077 0.1467 0.1359 0.0485 -0.0072 

60 0.0782 0.1362 0.1036 0.1562 0.2535 0.1224 0.0705 

120 0.1217 0.1479 0.1445 0.1507 0.1454 0.0578 0.0798 

180 0.1677 0.1650 0.1900 0.2344 0.1608 0.0722 -0.0452 

240 0.1825 0.1707 0.2043 0.2491 0.2565 0.1066 -0.0115 

300 0.1225 0.1927 0.1703 0.2273 0.4403 0.1482 0.0438 

Forecast summary for DNS model 

3 0.2470 0.1334 0.2585 0.2803 0.8340 0.4373 0.0321 

6 0.2330 0.1308 0.2452 0.2667 0.8317 0.4223 0.0245 

12 0.2087 0.1197 0.2194 0.2401 0.8390 0.4158 0.0184 

24 0.1636 0.1142 0.1739 0.1991 0.7952 0.3863 0.0182 

36 0.1150 0.1261 0.1272 0.1700 0.7165 0.3795 0.0297 

60 0.0514 0.1513 0.1103 0.1588 0.6355 0.3870 0.1031 

120 0.1495 0.1682 0.1844 0.2241 0.3930 0.3293 0.1488 

180 0.2846 0.1566 0.2927 0.3243 0.2292 0.2195 0.0046 

240 0.3667 0.1357 0.3679 0.3907 0.1333 0.1582 -0.0506 

300 0.3528 0.1371 0.3550 0.3781 0.2822 0.1788 -0.0349 

Note: The table reports the results of out-of-sample 1-month ahead forecasting using state-space specification for the 

GDNS- EGARCH (five-factor model with time-varying volatility), GDNS (five-factor model) and DNS (three-factor 

model) yield curve models for various maturities. We estimate the models recursively from 1996:01 to the time that the 

forecast is made, beginning in 2007:01 and extending through 2013:12. We define forecast errors at 𝑡 + 1 as 𝑅𝑡+1(𝑚) −

𝑅̂𝑡,𝑡+1(𝑚), where 𝑅̂𝑡,𝑡+1(𝑚) is the 𝑡 + 1 month ahead forecasted yield at period 𝑡, and we report the mean, standard 

deviation, mean absolute errors (MAE) and root mean squared errors (RMSE) of the forecast errors, as well as their first, 

6th and 12th sample autocorrelation coefficients. 
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Table 5. Out-of-sample 6-month ahead forecasting results 

Maturity Mean SD MAE RMSE 𝜌̂ (1) 𝜌̂ (6) 𝜌̂ (12) 

Forecast summary for GDNS-EGARCH model 

3 -0.9588 0.5117 0.2570 0.2950 0.1821 -0.0106 -0.0985 

6 -0.6973 0.4417 0.2239 0.3002 0.1808 -0.0050 -0.0912 

12 -0.5438 0.3579 0.3060 0.3211 0.1805 -0.0036 -0.0900 

24 -0.8725 0.3331 0.2885 0.3242 0.1683 -0.0345 -0.0470 

36 -1.3757 0.3657 0.1629 0.2910 0.2496 0.0428 0.0148 

60 -2.0853 0.4391 0.2740 0.3137 0.4366 0.2368 0.1561 

120 -2.3906 0.5012 0.2037 0.3725 0.6701 0.4541 0.3049 

180 -2.2280 0.4917 0.3280 0.3809 0.6364 0.3771 0.2537 

240 -2.0882 0.4581 0.3882 0.4371 0.6251 0.2969 0.1646 

300 -2.0602 0.4577 0.3602 0.4097 0.6641 0.2276 0.1136 

Forecast summary for GDNS model 

3 0.2451 0.2030 0.2621 0.3173 0.8425 0.3861 0.2194 

6 0.2714 0.1920 0.2784 0.3316 0.8564 0.4099 0.2331 

12 0.3077 0.1710 0.3077 0.3514 0.8593 0.3705 0.2161 

24 0.3462 0.1596 0.3462 0.3808 0.8263 0.3268 0.2079 

36 0.3437 0.1770 0.3437 0.3859 0.8087 0.3536 0.2007 

60 0.2978 0.2389 0.3004 0.3807 0.8026 0.3635 0.2045 

120 0.2807 0.3376 0.3375 0.4371 0.7659 0.1924 0.2055 

180 0.2774 0.3955 0.3814 0.4807 0.7669 0.1141 0.1233 

240 0.2569 0.4192 0.3785 0.4890 0.7725 0.0843 0.1040 

300 0.1699 0.4440 0.3655 0.4723 0.7777 0.1150 0.0721 

Forecast summary for DNS model 

3 0.5424 0.2453 0.5424 0.5945 0.8815 0.5642 0.1015 

6 0.5268 0.2423 0.5268 0.5791 0.8829 0.5694 0.1106 

12 0.4920 0.2309 0.4921 0.5427 0.8777 0.5681 0.1182 

24 0.4318 0.2186 0.4323 0.4832 0.8894 0.5760 0.1427 

36 0.3756 0.2197 0.3792 0.4343 0.8952 0.5925 0.1836 

60 0.3105 0.2385 0.3218 0.3904 0.8961 0.6307 0.2620 

120 0.4433 0.2765 0.4569 0.5214 0.8922 0.6375 0.3581 

180 0.6078 0.2539 0.6078 0.6580 0.8901 0.6107 0.3372 

240 0.7065 0.2171 0.7065 0.7386 0.8968 0.6193 0.3466 

300 0.6998 0.2112 0.6998 0.7305 0.9037 0.6152 0.3215 

Note: The table reports the results of out-of-sample 6-month ahead forecasting using state-space specification for the GDNS- 

EGARCH (five-factor model with time-varying volatility), GDNS (five-factor model) and DNS (three-factor model) yield curve 

models for various maturities. We estimate the models recursively from 1996:01 to the time that the forecast is made, beginning 

in 2007:01 and extending through 2013:12. We define forecast errors at 𝑡 + 6 as  𝑅𝑡+6(𝑚) − 𝑅̂𝑡,𝑡+6(𝑚), where 𝑅̂𝑡,𝑡+6(𝑚) is 

the 𝑡 + 6 months ahead forecasted yield at period 𝑡, and we report the mean, standard deviation, mean absolute errors (MAE) 

and root mean squared errors (RMSE) of the forecast errors, as well as their first, 6 th and 12th sample autocorrelation 

coefficients. 
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Table 6. Out-of-sample 12-month ahead forecasting results 

Maturity Mean SD MAE RMSE 𝜌̂ (1) 𝜌̂ (6) 𝜌̂ (12) 

Forecast summary for GDNS-EGARCH model 

3 -0.1960 0.5088 0.2066 0.3981 0.2957 0.0970 -0.1071 

6 -0.1680 0.4396 0.2822 0.3616 0.3130 0.1076 -0.1013 

12 -0.2060 0.3397 0.3107 0.3736 0.3258 0.1151 -0.0949 

24 -0.0022 0.2699 0.0022 0.3030 0.3216 0.1113 -0.0648 

36 -0.3549 0.2743 0.2549 0.3019 0.3891 0.1451 0.0546 

60 0.3464 0.3355 0.2464 0.2161 0.5607 0.2989 0.2601 

120 0.4136 0.4193 0.3136 0.3583 0.7600 0.4765 0.4050 

180 0.1674 0.4094 0.5674 0.6162 0.7410 0.4185 0.3605 

240 -0.0844 0.3794 0.4844 0.5314 0.7287 0.3795 0.3385 

300 0.1341 0.3768 0.4341 0.6820 0.7546 0.3684 0.2883 

Forecast summary for GDNS model 

3 0.4019 0.1866 0.4019 0.4125 0.8832 0.5361 0.0605 

6 0.3906 0.1821 0.3906 0.4303 0.8799 0.5484 0.0765 

12 0.3608 0.1776 0.3608 0.4015 0.8786 0.5589 0.0973 

24 0.3034 0.1673 0.3034 0.3458 0.8764 0.5633 0.1256 

36 0.2525 0.1695 0.2539 0.3033 0.8749 0.5740 0.1393 

60 0.2059 0.1985 0.2208 0.2848 0.8760 0.5865 0.1622 

120 0.3925 0.2789 0.4125 0.4802 0.8867 0.6151 0.2408 

180 0.5850 0.2658 0.5850 0.6416 0.8730 0.5781 0.1868 

240 0.7013 0.2270 0.7013 0.7365 0.8884 0.5792 0.1526 

300 0.7021 0.2190 0.7021 0.7349 0.9030 0.5480 0.1163 

Forecast summary for DNS model 

3 0.2902 0.2948 0.3225 0.4120 0.9262 0.3144 0.0612 

6 0.3258 0.2804 0.3392 0.4283 0.9283 0.3200 0.0597 

12 0.3706 0.2456 0.3709 0.4435 0.9262 0.3136 0.0480 

24 0.4004 0.1639 0.4004 0.4322 0.8933 0.2748 0.0803 

36 0.3767 0.1237 0.3767 0.3961 0.7938 0.3861 0.2213 

60 0.2785 0.2602 0.2807 0.3797 0.8236 0.4638 0.0340 

120 0.1523 0.5694 0.4651 0.5849 0.8487 0.3862 -0.0246 

180 0.0741 0.7030 0.5824 0.7012 0.8372 0.3318 -0.0667 

240 0.0092 0.7675 0.6367 0.7612 0.8417 0.3063 -0.0748 

300 -0.1096 0.8198 0.7026 0.8205 0.8454 0.2749 -0.0790 

Note: The table reports the results of out-of-sample 12-month ahead forecasting using state-space specification for the 

GDNS- EGARCH (five-factor model with time-varying volatility), GDNS (five-factor model) and DNS (three-factor 

model) yield curve models for various maturities. We estimate the models recursively from 1996:01 to the time that the 

forecast is made, beginning in 2007:01 and extending through 2013:12. We define forecast errors at 𝑡 + 12 as  

𝑅𝑡+12(𝑚) − 𝑅̂𝑡,𝑡+12(𝑚), where 𝑅̂𝑡,𝑡+12(𝑚) is the 𝑡 + 12 months ahead forecasted yield at period 𝑡, and we report 

the mean, standard deviation, mean absolute errors (MAE) and root mean squared errors (RMSE) of the forecast errors, 

as well as their first, 6th and 12th sample autocorrelation coefficients. 
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Table 7. TRMSPE results for out-of-sample forecasts accuracy comparisons 

Models 1-Month Forecasts 6-Month Forecasts 12-Months Forecast 

GDNS-EGARCH 0.3426 0.2805 0.5420 

GDNS 0.1523 0.3906 0.6896 

DNS 0.2285 0.5154 0.8177 

Note: The table reports the Trace Root Mean Squared Prediction Error (TRMSPE) results of 

out-of-sample forecasts accuracy comparison for horizons of one, 6 and 12 months for the GDNS- 

EGARCH (five-factor model with time-varying volatility), GDNS (five-factor model) and DNS 

(three-factor model) yield curve models. In computing the TRMSPE, the full sample of forecast 

errors, i.e., all 20 maturities are considered. 

 

 

 

 

 

 

 

 

Table 8. Diebold-Mariano test-statistic 

Maturity GDNS against the DNS GDNS -EGARCH against the DNS GDNS -EGARCH against the GDNS 

 ℎ = 1 ℎ = 6 ℎ = 12 ℎ = 1 ℎ = 6 ℎ = 12 ℎ = 1 ℎ = 6 ℎ = 12 

3 -16.1197 -5.6590 -4.5744 6.2309 -5.7338 -4.3965 4.6225 -4.0934 -3.6948 

6 -17.3014 -5.7459 -4.6164 7.5572 -6.3357 -5.0498 4.3847 -3.6128 -3.3839 

12 -18.6461 -5.9578 -4.8574 4.7051 -6.8170 -5.5443 4.0098 -2.8836 -2.9928 

24 -15.4306 -5.7198 -5.1394 -0.9358 -7.4021 -5.8402 3.4245 -3.6946 -3.9072 

36 -12.1140 -5.1633 -4.9224 9.9702 -3.0128 -2.9585 7.7791 -5.1795 -4.8942 

60 -9.0910 -4.0592 -3.5434 11.2967 -8.0174 -6.9923 11.663 -6.4979 -5.1444 

120 -4.3118 -1.7738 -0.5361 11.2739 -7.6368 -5.6484 7.1096 -6.2767 -3.6512 

180 -1.4093 -2.5706 0.8075 -5.1324 -7.2303 -5.0971 -1.2871 -5.8346 -2.8920 

240 -1.1294 -2.0717 0.7601 -1.8927 -7.1725 -4.8872 -0.4498 -5.7670 -2.4532 

300 -2.5528 -3.0951 -2.5554 -2.6976 -7.0722 -4.8844 -3.9152 -5.7728 -2.3494 

Note: The table presents Diebold–Mariano forecast accuracy comparison test results of 1, 6 and 12 months ahead forecast 

horizons for the GDNS- EGARCH (five-factor model with time-varying volatility), GDNS (five-factor model) and DNS 

(three-factor model) yield curve models. Three different pairs of comparison are considered, i.e., the GDNS against the DNS, 

GDNS -EGARCH against the DNS and GDNS -EGARCH against the GDNS forecasts. The null hypothesis is that the two 

forecasts have the same mean squared errors. The negative sign show the superiority of GDNS and GDNS -EGARCH over 

DNS model in the first and second pairs of comparisons respectively, while superiority of GDNS –EGARCH over GDNS 

(positive sign indicates preference of GDNS over GDNS –EGARCH model) in the third pair of comparison. Bold entries 

denote that the test statistic is insignificant at the 10% level. 
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Table A1. Descriptive statistics of yields data across maturities 

Maturity Mean SD Max Min Skewness Kurtosis 𝜌̂ (1) 𝜌̂ (6) 𝜌̂ (12) 

3 0.2094 0.2108 0.6956 0.0004 0.8717 2.2229 0.8812 0.7738 0.5673 

6 0.2121 0.2136 0.7330 0.0041 0.8636 2.2869 0.8674 0.7508 0.5809 

9 0.2285 0.2265 0.7699 0.0017 0.8518 2.2889 0.8614 0.7210 0.5818 

12 0.2702 0.2408 0.8720 0.0041 0.6956 2.1064 0.8459 0.6773 0.5324 

15 0.3000 0.2616 0.9910 0.0002 0.6922 2.1563 0.8491 0.6674 0.5444 

18 0.3314 0.2845 1.1136 0.0130 0.7287 2.3042 0.8513 0.6620 0.5465 

21 0.3638 0.3063 1.2377 0.0265 0.7444 2.4077 0.8535 0.6612 0.5498 

24 0.3952 0.3276 1.3614 0.0192 0.7776 2.5691 0.8563 0.6649 0.5473 

30 0.4673 0.3683 1.6030 0.0266 0.8743 2.9792 0.8598 0.6660 0.5425 

36 0.5397 0.4097 1.8466 0.0505 0.9548 3.3446 0.8616 0.6693 0.5414 

48 0.7044 0.4839 2.3083 0.0886 1.0271 3.7517 0.8659 0.6819 0.5348 

60 0.8559 0.5458 2.6796 0.1139 1.0691 3.9729 0.8714 0.6938 0.5287 

72 1.0030 0.5869 2.9704 0.1537 1.1181 4.1919 0.8722 0.6970 0.5206 

84 1.1554 0.6057 3.1963 0.2364 1.1785 4.4380 0.8700 0.6925 0.5053 

96 1.3080 0.6120 3.3739 0.3470 1.2049 4.6344 0.8663 0.6864 0.4891 

108 1.4432 0.6108 3.5155 0.4468 1.2537 4.8852 0.8665 0.6860 0.4809 

120 1.5618 0.6095 3.6304 0.5283 1.2698 5.0693 0.8663 0.6844 0.4708 

180 1.9339 0.5410 3.7790 0.7577 1.2324 5.2687 0.8435 0.6319 0.4063 

240 2.1755 0.5113 3.9802 0.9341 1.3751 6.2681 0.8358 0.6020 0.3286 

300 2.3484 0.4743 3.9030 1.0703 0.8599 5.1924 0.8273 0.5621 0.2757 

Note: The table shows descriptive statistics for monthly yields at different maturities. The last three columns contain 

sample autocorrelations at displacements of 1, 6 and 12 months. The sample period is 1996:01–2013:12. The number of 

observations is 216. 
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Figure 1. The slope and curvature factor loadings in the yield functions of the DNS, GDNS and GDNS-EGARCH models. 

The left-hand figure shows the slope and curvature factors loadings in the yield function of the DNS model with  𝜆 =
0.0254. The figure in middle shows the factor loadings of the two slopes and two curvatures in the yield function of the 

GDNS model with 𝜆1 and 𝜆2 equal to 0.0287 and 0.0919, respectively, while the right-hand figure shows the factor 

loadings of two slopes and two curvatures in the yield function of the GDNS-EGARCH model with 𝜆1 and 𝜆2 equal to 

0.0271 and 0.1098, respectively. The 𝜆 values are set equal to the estimated values obtained in section 3.2, and the require 

maturity is measured in months. 

 

 
 

 
Figure 2. GDNS-EGARCH common volatility (ℎ𝑡). The figure shows the plot of the volatility (ℎ𝑡) of the common 

shock component (𝜀𝑡
∗), which is modelled as EGARCH process, over time for the generalized dynamic Nelson-Siegel 

EGARCH (GDNS-EGARCH) model 
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Figure 3. Time series plot of estimated factors and their empirical proxies. Model-based level, slope and curvature (i.e., 

estimated factors) vs. data-based level, slope and curvature (i.e., empirical proxies), where level is defined as the 25-year 

yield, slope as the difference between the 25-year and 3-month yields and curvature as two times the 2-year yield minus 

the sum of the 25-years and 3- month zero-coupon yields. Rescaling of estimated factors is based on Diebold and Li 

(2006). 
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Figure 4. Time series plot of GDNS model estimated factors with macroeconomic variables. The estimated level and 

first slope factors (𝛽̂1𝑡and −𝛽̂2𝑡) are plotted vs. annual growth of the M2 (Money Supply) in the top figure. In the 

lower left pane, the second slope factor (𝛽̂3𝑡) is shown with the annual growth rate of industrial production (𝐼𝑃𝑡). 

The 𝛽̂3𝑡  is scaled on the left y-axis, while 𝐼𝑃𝑡  is measured on the right y-axis. The lower right pane presents the first 

curvature factor estimate (𝛽̂4𝑡) against the annual inflation rate. The 𝛽̂4𝑡  is scaled on the left y-axis, while 𝐼𝑁𝐹𝑡  is 

measured on the right y-axis. Inflation rate is the 12-month percent change in the consumer price index. 
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Figure 5. Mean yield curves and residuals. The figure shows the empirical yield curve and the mean estimated yield 

curves (mean fitted yields against maturities) and averaged residuals of the GDNS- EGARCH (five-factor model with 

time-varying volatility), GDNS (five-factor model) and DNS (three-factor model) yield curve models. The average 

fitted curves are computed by substituting the smoothed estimates of the yield curve factors and the estimated 𝜆s in the 

corresponding signal equations. The left pane shows the mean yields curves, while averaged residuals are shown in 

right pane. The averaged residual are computed as the mean of residuals across time for 20 distinct maturities. 

 

 

 

 

 
Figure A1. The figure shows the yield curves, 1996:01–2013:12. The sample consists of monthly yield data from 

January 1996 to December 2013 (216 months) for maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 

108, 120, 180, 240 and 300 months (20 maturities). 

 

 

 

 


