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In this paper, we review subadditive approaches which arise in the theory of mathematical programming and
computational complexity. In particular, we explain the duality theorem of integer programming and techniques to
prove formula-size lower bounds as fundamental subjects in mathematical programming and computational
complexity, respectively. We discuss parallel visions of these two different areas by showing some connections
between them.
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1. Introduction

In this paper, we overview existing studies concerned with subadditivity in two distinct areas, optimization and
complexity theory, and give parallels between optimization and complexity theory. The word ‘‘parallel’’ has (at least)
two different meanings: ‘‘two lines do not intersect’’ and ‘‘analogy.’’ Like the meanings of the word ‘‘parallel,’’ the two
areas (i.e., optimization and complexity theory) are independent and never to be unified, but have many similar notions
between them. Therefore, some tools in one area may be useful to enhance the research in the other area. The aim of
this paper is to give an introductory tutorial of interdisciplinary researches by moving back and forth between the two
areas. Most of sections are divided into two parts: the one part is on optimization theory and the other part on
complexity theory.

1.1 Mathematical Programming and Notion of Subadditivity

Linear programming (LP) and integer programming (IP) have a wide range of applications, and optimization
techniques for linear and integer programming problems have been developed extensively by various researchers. From
complexity-theoretic viewpoint, linear programming problem belongs to the complexity class P, which is the sets of
problems solvable by polynomial time computation. On the other hard, integer programming problem is one of the
representative NP-hard problems, which means that, if integer programming problem is proved to be in P, then we can
conclude P ¼ NP.

The duality theorem for linear programming problem is well known and can be found in almost all textbooks of
mathematical programming as a basic result [32, 37]. Similarly, the duality theorem for integer programming problem
has been also studied for a long period of time [8, 15, 26, 31, 32]. According to the duality theory in linear programming
and integer programming, dual problems of linear programming problems have additive properties, while dual
problems of integer programming problems have subadditive properties. In this sense, the gap between tractability and
intractability in computation of linear and integer programming problems would be roughly explained by the difference
between additivity and subadditivity.

The notion of subadditivity appears at many scenarios in the theory of computation. It is informally stated by the
following sentences. Let S be a set which is closed under some binary operation like þ as follows.

x; y 2 S) xþ y 2 S

Elements in S can be scalars, vectors or matrices depending on the situation. If a function � : S! < satisfies

�ðxÞ þ �ðyÞ � �ðxþ yÞ;

for any x; y 2 S, then we call � a subadditive function for S. If the inequality always holds with equality, i.e.,
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�ðxÞ þ �ðyÞ ¼ �ðxþ yÞ;
then we call � an additive function for S. A simple example of subadditive functions is the square root function as we
have ffiffiffi

x
p
þ

ffiffiffi
y
p
�

ffiffiffiffiffiffiffiffiffiffiffi
xþ y
p

for all x; y � 0.
In the contexts of mathematics, there is a notion of Caratheodory’s outer measure, which is abstraction of the size

of area and essentially subadditive. Its intuition of subadditivity is illustrated in Figure 1. There may be a lot of
unexplored tools in measure theory which might be useful to show existence of certain subadditive functions.

We have explained that in the theory of mathematical programming, additive property is easy to handle, while
subadditive property is hard to handle. This is also the case for a fundamental problem in computational complexity as
explained in the next subsection.

1.2 Circuit Complexity, Formula Complexity, and Limits of Computation

A circuit takes only a fixed-length input while a Turing machine can take an input whose length is not determined in
advance. This is why circuits are called non-uniform computation models while Turing machines are called uniform
computation models. Polynomial-time computation by a Turing machine can be simulated by polynomial-size circuits,
where each circuit is constructed for each fixed length of inputs (see, e.g., [3]). Circuits are much stronger than Turing
machines in the sense that we have a possibility to use more tricks for constructing smaller circuits due to the
information of the input length determined in advance. This partially explains why it is hard to show circuit-size lower
bounds in general. Nevertheless, circuit complexity is intensively studied to measure complexity of problems because
we can analyze their concrete bounds by combinatorial approach. Proving a super-polynomial circuit-size lower bound
means a separation between the most important complexity class P and other complexity classes beyond P. In
particular, a super-polynomial circuit-size lower bound for a function in NP implies P 6¼ NP. Despite many efforts, the
current best circuit-size lower bound for an explicit function in NP is 5n� oðnÞ [13, 23].

Since it is extremely hard to obtain a strong circuit-size lower bound which yields a separation of complexity classes
and even to give a slight improvement, it is a better way to aim at solving a weaker problem. Formula is a restriction of
the circuit model where out-degree of each node in a formula is bounded by one, as shown in Figure 2. Formula is a
fundamental computational model in its own right as such a structure appears in many fields of computer science, e.g.,
SAT. Deriving a formula-size lower bound for an explicit Boolean function is a fundamental problem in computational
complexity theory as a weaker version of the circuit-size lower bound problem. The current best formula-size lower
bound of n3�oð1Þ by Håstad [9] is larger than the best circuit-size lower bound.

Fig. 1. Subadditivity of the size of area (Caratheodory’s outer measure).

Fig. 2. Difference between circuit (the DAG on the left side) and formula (the tree on the right side).
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Spira [43] proved that the circuit-depth lower bound problem is essentially equivalent to the formula-size lower
bound problem in the sense that a Boolean functions is expressible by a polynomial size formula if and only if it is also
expressible by a logarithmic depth circuit. Therefore, a super-polynomial formula-size lower bound for an explicit
Boolean function f implies a super-logarithmic circuit-depth lower bound. This consequence yields a separation
between NC1 and a complexity class including such f . For example, a super-polynomial formula-size lower bound for
a function in NP implies NC1 6¼ NP. The complexity class NC1 (abbreviation of Nick’s Class) named after Nick
Pippenger is defined as the set of problems which are computable in logarithmic depth circuits. Depth complexity of
circuits is quite important from several viewpoints. For example, a critical path in a hardware system essentially affects
the performance of CPUs. Moreover, parallel time complexity is modeled as depth complexity of circuits in many
studies. Thus, we can insist that proving circuit-depth lower bound is significant to clarify the limits of constructing
efficient parallel algorithms. In addition to the depth complexity of Boolean circuits, the complexity class NC1 has been
characterized by several ways like bounded-width polynomial-size branching programs [4].

Since proving a formula-size lower bound is one of the most fundamental problems in computation complexity
theory, there are a lot of methods to derive improved lower bounds. One of the most classical methods to prove
formula-size lower bounds is the one invented by Khrapchenko [20] who proved an n2 formula-size lower bound for the
parity function. As generalizations of Khrapchenko’s method, there are a lot of techniques studied to improve formula-
size lower bounds. However, improvements are very rare. Karchmer, Kushilevitz and Nisan [18] formulated the
formula-size problem as an integer programming problem called the rectangle bound and introduced a technique called
the LP bound, which gives a lower bound by using a feasible solution of the dual problem of its LP relaxation. In our
recent studies, we have devised stronger versions of the LP bound [44, 45]. Both of them can be interpreted as
exploration into subadditivity beyond the original LP bound [18], which is additive.

1.3 Organization of This Paper

This paper is organized as follows. In Section 2, we briefly overview the use of subadditivity in optimization and in
complexity theory. In Section 3, we give illustrative examples of some complexity measures by colored figures. In
Section 4, we consider tight linear programming formulations of subadditive measures. Formulations are given for
polytopes associated with formula complexity and more generally for set partition polytopes. In Section 5, we discuss
clique constraints and their application to set partition polytopes in connection with subadditive functions. In particular,
we give some interpretation of clique constraints for set partition polytopes in terms of subadditive functions. The paper
is intended as an introductory lecture note and does not give an exhaustive survey. Since there are detailed treatments of
the topics in existent survey and original articles [8, 21, 44, 45], we would like to put special emphasis on connection
between optimization and complexity theory, and to give intuitive explanations by using colored figures.

2. Review on Use of Subadditivity in Optimization and Complexity Theory

We review the use of subadditivity in optimization and complexity theory in Section 2.1 and 2.2, respectively.

Subadditive

Integer Programming

NP-hard (intractable)

Additive

Linear Programming

P (tractable)

Exploring Tractable Subadditive Measures

⇒ Expanding Tractable Range of Problems

Fig. 3. Exploring the limits of subadditive approaches to enhance the possibility of computation.
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2.1 Linear Programming and Integer Programming: Additivity versus Subadditivity

In this subsection, we briefly overview the theory of integer programming duality to explain subadditive approaches
in optimization. Although the duality theorem can be stated in more generalized forms such as conic mixed integer
programming [31], we here focus on only integer programming for simplicity. We assume that the reader is familiar
with the basics of the linear and integer programming theory. Please refer to the standard textbooks (e.g., [37]) for
details on general theory and to the survey paper by Güzelsoy and Ralphs [8] for integer programming duality.

2.1.1 Linear Programming Relaxation and Linear Programming Duality

In this subsection, we review basics of linear programming and integer programming. To define a linear
programming problem and an integer programming problem, we will use the following notation: A is an m� n constant
matrix, b is an m-dimensional constant vector, c is an n-dimensional constant vector and x is an n-dimensional variable
vector, where vectors are column vectors. In addition, aj denotes the j-th column of A, and bi, ci, and xi denote the i-th
components of b, c and x, respectively. We define ½m� ¼ f1; � � � ;mg, and ½n� ¼ f1; � � � ; ng. We also denote by N the set
of natural numbers, where it is assumed in this paper that N includes 0.

We consider the following integer programming problem:

min cTx

s.t. Ax ¼ b;

x 2 Nn:

ð2:1Þ

We also consider the following linear programming relaxation of the integer programming problem (2.1):

min cTx

s.t. Ax ¼ b;

x � 0:

ð2:2Þ

In the following, we often restrict our attention to the case where each component of A and b is either 0 or 1; in such a
case, the polytope given as the feasible region of (2.2) is called a set partition polytope.

The dual problem to the LP problem (2.2) is given as

max bTy

s.t. ATyþ z ¼ c;

z � 0:

ð2:3Þ

Here, y is an m-dimensional variable vector and z is an n-dimensional variable vector. The constraints of the dual
problem can be replaced with a single constraint ATy � c by deleting the variable vector z.

The duality theorem in linear programming is stated as follows.
Theorem 2.1 (Linear Programming Duality).

. (weak duality) For any x and ðy; zÞ which are feasible in (2.2) and (2.3), respectively, we have cTx � bTy.

. (strong duality) If at least one of (2.2) and (2.3) has an optimal solution, then both of (2.2) and (2.3) have optimal
solutions and their optimal value are the same.

2.1.2 Integer Programming Duality and Subadditive Dual

In this subsection, we explain the duality theory in integer programming with connection to subadditivity. Some of
the basic results developed in the theory of linear programming can be extended to integer programming. In particular,
there are a long series of studies on integer programming duality, although it is not well known compared to linear
programming duality.

A function F : <m! <[ fþ1g is called subadditive if FðyÞ þ Fðy0Þ � Fðyþ y0Þ holds for any y; y0 2 <m, where <
is the set of real numbers. We consider the following optimization problem:

max FðbÞ
s.t. FðajÞ � cj ð j 2 ½n�Þ;

Fð~0Þ ¼ 0;

F : subadditive;

ð2:4Þ

where ~0 ¼ ð0; � � � 0Þ and a function F is a variable of the problem.
In the literature of integer programming, a duality theorem is firstly shown by Johnson [14, 15]. The following

duality theorem for the equality version of the integer programming problem (2.1) is given by Lasserre [26].
Theorem 2.2 (Integer Programming Duality [26]).

. (weak duality) For any x and F which are feasible in (2.1) and (2.4), respectively, we have cTx � FðbÞ.

. (strong duality) If at least one of (2.1) and (2.4) has an optimal solution, then both of (2.1) and (2.4) have optimal
solutions and their optimal value are the same.
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Proof. We here show a proof based on Lasserre [26]. The first part of the theorem can be proven as follows:

FðbÞ ¼ FðAxÞ ¼ F
Xn
j¼1

ajxj

 !
�
Xn
j¼1

FðajxjÞ ¼
Xn
j¼1

FðajÞxj �
Xn
j¼1

cjxj ¼ cTx;

where we use the fact that F is subadditive and xj is a nonnegative integer for j 2 ½n�.
To prove the second part of the theorem, we define a function F� : <m! <[ f	1g by

F�ðdÞ ¼ inffcTx j Ax ¼ d; x 2 Nng ðd 2 <mÞ: ð2:5Þ

We first show that F� is a feasible solution of (2.4). By the weak duality and the assumption that at least one of (2.1)
and (2.4) has an optimal solution, we have F�ðdÞ > �1. From this inequality and the definition of F�, it can be shown
that F�ð~0Þ ¼ 0 and F�ðdÞ > �1 holds for all d 2 <m. It is easy to see that the function F� satisfies FðajÞ � cj for all
j 2 ½n�.

The subadditivity of the function F� can be shown as follows, where y; y0 2 <m:

. Suppose F�ðyÞ < þ1 and F�ðy0Þ < þ1, and let x and x0 be optimal solutions of the integer programming
problem (2.5) with d ¼ y and d ¼ y0, respectively, i.e., F�ðyÞ ¼ cTx and F�ðy0Þ ¼ cTx0. Then, xþ x0 is a feasible
solution of the integer programming problem (2.5) with d ¼ yþ y0 because yþ y0 ¼ Aðxþ x0Þ. Therefore, we also
have F�ðyþ y0Þ � cT ðxþ x0Þ ¼ F�ðyÞ þ F�ðy0Þ.

. If F�ðyÞ ¼ þ1 or F�ðy0Þ ¼ þ1, then it holds that F�ðyÞ þ F�ðy0Þ ¼ þ1 � F�ðyþ y0Þ.

We finally show the second part of the theorem by using the function F�. If (2.1) has an optimal solution x�, then we
have cTx� ¼ F�ðbÞ by the definition of the value F�ðbÞ. Hence, F� is an optimal solution of (2.4) by the weak duality.

On the other hand, if (2.4) has an optimal solution, then F�ðbÞ < þ1 holds, and therefore the definition of the value
F�ðbÞ implies that there exists an optimal solution x� of (2.1) such that cTx� ¼ F�ðbÞ. This implies, in particular, that x�

and F� are optimal solutions of (2.1) and (2.4), respectively. �

The function F� given by the optimal value F�ðdÞ of the problem (2.5) is called the optimal value function. The
difference between subadditivity and additivity can be roughly illustrated as in Figure 4 by using the optimal value
function, where m ¼ 1 is assumed. The red zigzag line corresponds to the optimal value function of the original integer
programming problem, while the green straight line corresponds to the optimal value function of its linear
programming relaxation. The green line can be obtained by calculating F�ðdÞ after replacing x 2 f0; 1g by its relaxation
x � 0. The complexity of the line reflects the complexity of the optimization problem.

The set of all subadditive functions is huge and hard to represent in a compact manner. Hence, we need sophisticated
techniques to cope with subadditive functions. To explore feasible solutions of the problem (2.4), a lot of theoretical
and experimental results have been obtained in the literature as summarized in the survey of Güzelsoy and Ralphs [8].
They are also useful to explore hard problems in the theory of computational complexity as explained in the subsequent
sections.

Fig. 4. The difference between additivity and subadditivity in terms of the optimal value function.
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2.2 Subadditive Measures and LP-Based Methods in Complexity Theory

In this subsection, we explain basics notions in complexity theory, which are essential to understand linear
programming based approaches to prove formula-size lower bounds. Approaches of these kinds are useful to prove
lower bounds in many scenarios.

2.2.1 Formula Complexity and Formal Complexity Measure

First, we discuss a subadditive measure known as ‘‘formal complexity measure’’, which gives a lower bound on
formula size. We give definitions of formula size and monotone formula size of a Boolean function. See the recent book
[16] and also the classical one [47] for the detailed treatment on formula complexity.
Definition 2.3 (Formula Size). A formula is a binary tree with each leaf labeled by a literal (i.e., either a variable or
its negation) and each internal node labeled by either of the binary connectives ^ and _. The size of a formula is
defined as the number of its leaves. We define formula size Lð f Þ of a Boolean function f as the smallest size of a
formula computing f . A monotone formula is a formula without negations. We also define Lmð f Þ as the smallest size of
a monotone formula computing a Boolean function f .

The complexity class NC1 denotes, in this paper, the non-uniform version of NC1, which is sometimes denoted by
NC1/poly, and is defined as the set of problems computable by a logarithmic depth circuit. Spira [43] showed that it is
equivalent to the class of languages computable by a polynomial size formula.
Theorem 2.4 ([43]). Let dð f Þ be the minimum depth of a circuit computing a Boolean function f . Then, Lð f Þ � 2dð f Þ

and dð f Þ � Oðlog Lð f ÞÞ.
The latter inequality is nontrivial while the former one is clear. By Theorem 2.4, proving a super-polynomial formula-
size lower bound leads to a separation between NC1 and other complexity classes beyond NC1. Shannon [38] proved
by a so-called counting argument that almost all Boolean functions with n input variables require circuit size of at least
�ð2n=nÞ. Using the counting argument, we can also show the following analogue for formulas.
Theorem 2.5 ([38]). Almost all Boolean functions require formula size of at least �ð2n=log nÞ.

Proof methods for formula-size lower bounds [18, 20] can be explained in terms of a notion of formal complexity
measure, which is defined by a subadditivity constraint for formulas.
Definition 2.6 (Formal Complexity Measure). We define B as the set of Boolean functions and N as the set of
natural numbers. A formal complexity measure is defined as a function � : B! N satisfying the following conditions:

. If f is computable by a literal or its negation, then �ð f Þ � 1.

. Otherwise, � satisfies
– �ð f1 ^ f2Þ � �ð f1Þ þ �ð f2Þ,
– �ð f1 _ f2Þ � �ð f1Þ þ �ð f2Þ.

Formula size itself is one of formal complexity measures, specifically, the largest one. An important property is that
any formal complexity measure gives a formula-size lower bound.
Lemma 2.7. For any Boolean function f and any formal complexity measure �, Lð f Þ � �ð f Þ.

Therefore, any sort of subadditive functions are useful to give formula-size lower bounds and worth to investigate. A
good example such subadditive functions is a notion of graph entropy [42]. Note that a similar statement holds for the
formula size of monotone formulas if we define a measure by removing ‘‘its negation’’ from the definition of formal
complexity measure.

On the other hand, there are some known results which indicate the difficulty to give strong lower bounds of formal
complexity measure. The next theorems state that a lower bound of formal complexity measure on a certain Boolean
function must also work for many Boolean functions. Therefore, any proof of a strong lower bound on a certain
Boolean function through formal complexity measure is as hard as that of many Boolean functions.
Theorem 2.8 ([36]). For a formal complexity measure �, we assume �ð f Þ > s for some Boolean function
f : f0; 1gn ! f0; 1g. Then, for at least ð1=4Þ-fraction of all Boolean functions g : f0; 1gn! f0; 1g, we must have
�ðgÞ � s=4.

We can also give the following bound by detailed analysis.
Theorem 2.9 ([36]). If �ð f Þ > s holds for some Boolean function f , then for all " > 0 we have

�ðgÞ � �
s

ðnþ logð1="ÞÞ2

� �

for at least ð1� "Þ-fraction of all Boolean functions g on n input bits.

2.2.2 Protocol Partition Number and Rectangle Bound

We then explain two complexity measures of Boolean functions, called the protocol partition number and the
rectangle bound. The protocol partition number exactly characterizes formula size through a communication game
given by Karchmer and Wigderson [19]. The rectangle bound is useful to give a lower bound of formula size and can be
formulated as an integer programming problem as explained in the next subsection.

We consider the following matrix called the communication matrix which comes from the game of Karchmer and
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Wigderson [19].
Definition 2.10 (Communication Matrix). Given a Boolean function f , its communication matrix is defined as a
matrix such that rows and columns of the matrix are indexed by the elements in X ¼ f�1ð1Þ and Y ¼ f�1ð0Þ,
respectively, and each cell of the matrix contains the set of indices i with xi 6¼ yi. For convenience, we often regard a
communication matrix as a relation Rf 
 X � Y � f1; 2; � � � ; ng, which is given as

Rf ¼ fðx; y; iÞ j x 2 X; y 2 Y ; xi 6¼ yig:

We also define a monotone version of the communication matrix and the relation associated with a monotone Boolean
function f as

Rm
f ¼ fðx; y; iÞ j x 2 X; y 2 Y ; xi ¼ 1; yi ¼ 0g:

A combinatorial rectangle is a direct product X0 � Y 0 with X0 
 X and Y 0 
 Y . A combinatorial rectangle X0 � Y 0 is
called monochromatic if every cell ðx; yÞ 2 X0 � Y 0 contains the same index i.

A cover of a communication matrix Rf is a set of monochromatic rectangles such that every cell in X � Y is
contained by at least one monochromatic rectangle in the set. We define two complexity measures related with cover as
follows. For a combinatorial rectangle X0 � Y 0, its partition is defined as a pair of X01 � Y 0 and X02 � Y 0 with X0 ¼
X01 [ X02 and X01 \ X02 ¼ ;, or a pair of X0 � Y 01 and X0 � Y 02 with Y 0 ¼ Y 01 [ Y 02 and Y 01 \ Y 02 ¼ ;.
Definition 2.11 (Rectangle Bound and Protocol Partition Number). The rectangle bound for a communication matrix
Rf , denoted as CDðRf Þ, is the minimum size of a cover with disjoint monochromatic rectangles. A protocol partition of
Rf is a set of disjoint monochromatic rectangles obtained by a recursive partition of X � Y . The minimum number of
disjoint monochromatic rectangles in a protocol partition of Rf is denoted as CPðRf Þ, called the protocol partition
number.

The following relation is known between the protocol partition number and the rectangle bound. For a proof, we
recommend [28].
Theorem 2.12 ([18]). For any Boolean function f , we have CDðRf Þ � CPðRf Þ � 2Oðlog2 CDðRÞÞ.

The first inequality in Theorem 2.12 is easy to see from the definitions of the rectangle bound and the protocol
partition number because a protocol partition itself is a cover with disjoint monochromatic rectangles.

Karchmer and Wigderson [19] show that formula complexity is equal to the protocol partition number.
Theorem 2.13 ([19]). For any Boolean function f , we have CPðRf Þ ¼ Lð f Þ and CPðRm

f Þ ¼ Lmð f Þ.

2.2.3 Linear Programming Relaxation of Rectangle Bound

Karchmer, Kushilevitz and Nisan [18] formulate the rectangle bound for a communication matrix as an integer
programming problem and consider its LP relaxation. Let M be the set of all monochromatic rectangles and xr be a
variable associated with a monochromatic rectangle r 2 M. The definition of the rectangle bound can be regarded as the
optimal value of a certain set partition problem formulated as follows:

min
X
r2M

xr

s.t.
X
r3c

xr ¼ 1 ðfor each cell c in the matrixÞ;

xr 2 f0; 1g ðfor each monochromatic rectangle r 2 MÞ:

ð2:6Þ

Its LP relaxation is given as

min
X
r2M

xr

s.t.
X
r3c

xr ¼ 1 ðfor each cell c in the matrixÞ;

xr � 0 ðfor each monochromatic rectangle r 2 MÞ:

ð2:7Þ

The dual problem of the LP relaxation (2.7) is given as

max
X
c

wc

s.t.
X
c2r

wc � 1 ðfor each monochromatic rectangle r 2 MÞ;

wc 2 < ðfor each cell c in the matrixÞ:

ð2:8Þ

From the LP duality theorem, construction of a feasible solution of the dual problem gives a formula-size lower bound.
We define the linear programming bound LPðRÞ (LP bound, for short) as the optimal values of the linear programs
(2.7) and (2.8) above, which are equal by the duality theorem.

Karchmer, Kushilevitz and Nisan [18] show that the LP bound cannot prove a lower bound larger than 4n2 for non-
monotone formula size in general. Lee [29] proves that the LP bound of Karchmer, Kushilevitz and Nisan [18] is better
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(i.e., larger) than the quantum adversary bound of Laplante, Lee and Szegedy [24], which in turn subsumes most of
known techniques such as Khrapchenko [20], its extension by Koutsoupias [22] and a key lemma used in the proof of
Håstad [9] showing the current best formula-size lower bound of n3�oð1Þ.

In Figure 5, we summarize the idea of LP based methods to prove formula-size lower bounds. Since the dual
problem of the LP relaxation is a maximization problem, the objective function value of any feasible solution is smaller
than that of the optimal solution. Some ideas to extend this method using subadditivity will be discussed in the
subsequent sections with connection to the subadditive dual theory in integer programming.

3. Illustrative Examples of Protocol Partition Number, Rectangle Bound, and LP Bound

In this section, we explain complexity measures of formulas by using colored figures. For this purpose, we consider a
4-bit Boolean function called Ambainis’ function [1] which outputs 1 if and only if x1 � x2 � x3 � x4, or x1 � x2 �
x3 � x4 holds. In Figure 6, we present a formula for Ambainis’ function and the associated communication matrix.

Fig. 6. A communication matrix and a formula for Ambainis’ function.

Optimum Solution for Primal IP Problem

Optimum Solution for Primal LP Problem

Optimum Solution for Dual LP Problem

A Feasible Solution for Dual LP Problem

Formula Size Lower Bound

Fig. 5. Linear programming based approaches to prove formula-size lower bounds.
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In Figure 7, we divide the whole rectangle into two combinatorial rectangles colored by blue and red. The blue
rectangle on the upper side corresponds to blue-enclosed sub-formula on the left side. The red rectangle on the lower
side corresponds to red-enclosed sub-formula on the right side.

In Figure 8, the blue rectangle in Figure 7 is partitioned into green and blue rectangles, and the red rectangle in
Figure 7 is partitioned into yellow and red rectangles. Similarly to Figure 7, each rectangle corresponds to each sub-
formula enclosed by four colors. Green and yellow rectangles are monochromatic but have different properties. The
yellow rectangle corresponds to the positive literal x4 because the 4th bit is 1 in each row and 0 in each column. The
green rectangle corresponds to the negative literal :x4 because the 4th bit is 0 in each row and 1 in each column.

In Figure 9, we finally partition the whole rectangles into these ten monochromatic rectangles. Each of the ten

Fig. 8. A protocol partition at depth 2 for Ambainis’ function.

Fig. 7. A protocol partition at depth 1 for Ambainis’ function.
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colored monochromatic rectangles corresponds to each of ten literals. We can verify by an exhaustive search that the
formula of size ten for Ambainis’ function is optimal.

In Figure 10, eight colored monochromatic rectangles cover the whole rectangle. It shows that an upper bound of
eight for the rectangle bound of Ambainis’ function. The rectangle partition by eight rectangles, however, is not a
protocol partition because any bisection of the whole rectangle divides at least one of the eight monochromatic
rectangles. The example shows that there are some cases in which the rectangle bound is strictly smaller than the
formula size.

In Figure 11, we illustrate how to obtain a feasible solution of the dual of the LP relaxation for Ambainis’ function.
We assign weight 1=2 to each colored cell containing only one index, and assign 0 to other cells. It is easy to see that
the sum of all weights is 8 and the assignment satisfies all the constraints of the dual of the LP relaxation. The solution
shows that the LP bound of 8 is the same as the rectangle bound.

In Figure 12, we give a summary of the complexity measures discussed in this section. By Theorem 2.13, the
protocol partition number of 10 is the same as the formula size. While both of the rectangle bound and the LP bound
have the same value of 8 in this case, there is an integrality gap between integer programming and its linear

Fig. 10. A rectangle partition of Ambainis’ function.

Fig. 9. A protocol partition at depth 3 for Ambainis’ function.
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programming relaxation in general. Other complexity measures such as Khrapchenko [20] and quantum adversary
bounds [10, 24] are smaller than the value of the LP bound as mentioned in Section 2.2.3.

4. Tight LP Formulations for Integer Programming Problems via Subadditivity

In this section, we discuss tight LP formulations for some IP problems by using subadditivity. In the first subsection
we introduce a new lower bound for the formula size by using an extended formulation of the LP bound, and in the
second subsection we discuss a tight LP formulation for a more general IP problem (2.1).

4.1 Quasi-Additive Bound: LP Formulation of Formal Complexity Measure

In this subsection, we devise a stronger version of the LP bound named ‘‘the quasi-additive bound,’’ which is derived
from a concept of subadditive rectangle measure by Hrubeš, Jukna, Kulikov and Pudlák [11]. While the new bound is a
natural extension of the original LP bound (2.8) defined as a relaxation of the rectangle bound in Section 2.2.3, it is
shown that the new bound can surpass the rectangle bound [45]. In fact, the quasi-additive bound is strong enough to
give the protocol partition number of any Boolean function.

Let R be a communication matrix of a Boolean function, and denote by � the set of all combinatorial rectangles. We
also denote by M 
 � the set of all monochromatic rectangles of R. We call � : �! < a subadditive rectangle
measure if it satisfies the following two properties:

Fig. 12. Comparison of complexity measures for Ambainis’ function.

Fig. 11. A solution structure for the dual of the LP bound for Ambainis’ function.
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(1) Normalization: �ðmÞ � 1 for each monochromatic rectangle m 2 M.
(2) Subadditivity: �ðrÞ � �ðr1Þ þ �ðr2Þ for each combinatorial rectangle r 2 � and its arbitrary partition r1 and r2.

Hrubeš et al. [11] show the following theorem by a simple inductive argument.
Theorem 4.1 ([11]). For any communication matrix R and any subadditive rectangle measure �, the value �ðX � YÞ
gives a lower bound of the protocol partition number CPðRÞ, where X � Y is the whole rectangle of the communication
matrix R.

A remarkable fact is that, if we strengthen the condition ‘‘Subadditivity’’ to
(3) Additivity: �ðrÞ ¼ �ðr1Þ þ �ðr2Þ for each combinatorial rectangle r 2 � and its arbitrary partition r1 and r2, then

the resulting rectangle measure gives the same bound as the LP bound (2.8).
We then give a definition of quasi-additive bound.

Definition 4.2 (Quasi-Additive Bound [45]). Let C be the set of all cells in a communication matrix R. We define the
quasi-additive bound QAðRÞ as the optimal value of the following LP formulation:

max
X
c2C

Vc

s.t.
X
c2r

Vc þ
X
c 62r

Vc;r � 1 ðfor each r 2 MÞ;

X
c 62r1

Vc;r1 þ
X
c 62r2

Vc;r2 �
X
c 62r

Vc;r ðfor each r 2 � and its arbitrary partition r1 and r2Þ:

ð4:1Þ

This bound is called the quasi-additive bound because it can be regarded as an extension of the original LP bound
(2.8) which has additive property. It is potentially strong enough to prove the tight bound for the protocol partition
number of any Boolean function. On the other hand, the numbers of variables and inequalities explode exponentially
compared to the original LP bound. We can eliminate the redundancy of the formulation (4.1) of the quasi-additive
bound by summarizing variables as Vr ¼

P
c 62r Vc;r for each combinatorial rectangle r and adding a constraint

VX�Y ¼ 0, although the size of the formulation is still exponentially large.
From now on, we clarify the potential of the quasi-additive bound to prove formula-size lower bounds. First, we

show that the quasi-additive bound is stronger than the LP bound and gives a lower bound of the protocol partition
number.
Lemma 4.3 ([45]). For any communication matrix R, LPðRÞ � QAðRÞ � CPðRÞ.

Proof. If we set Vc;r ¼ 0 for each c and r in the LP formulation (4.1), the resulting LP problem is nothing but the
formulation of the LP bound (2.8). Hence, we have LPðRÞ � QAðRÞ.

To prove QAðRÞ � CPðRÞ, we regard �ðrÞ ¼
P

c2r Vc þ
P

c 62r Vc;r as a rectangle measure and show that � is a
subadditive rectangle measure. We have �ðX � YÞ ¼

P
c2C Vc, which is equal to the objective function value of (4.1),

because C ¼ X � Y is the whole rectangle associated with R. The condition ‘‘Normalization’’ for � is equivalent to the
first constraint in (4.1), while ‘‘Subadditivity’’ for � is equivalent to the second constraint in (4.1) due to the additivity
of
P

c2r Vc. Thus, if assignments of Vc and Vc;r satisfy the first and second constraints of (4.1), then � is a subadditive
rectangle measure. Consequently, we have QAðRÞ � CPðRÞ because �ðX � YÞ � CPðRÞ by Theorem 4.1. �

There are some examples for which quasi-additive bound surpasses the rectangle bound. This fact is interesting since
an extension of LP relaxation can be stronger than the original IP formulation.
Theorem 4.4 ([45]). There exists a communication matrix R such that QAðRÞ > CDðRÞ.

In fact, we can prove that the quasi-additive bound is strong enough to give the protocol partition number.
Theorem 4.5 ([45]). For any communication matrix R, QAðRÞ ¼ CPðRÞ.

Proof. By Lemma 4.3, it suffices to show that QAðRÞ � CPðRÞ. For this, we construct a feasible solution of the
problem (4.1) whose objective value is equal to CPðX � YÞ (¼ CPðRÞ) by using the protocol partition number CPðrÞ for
each combinatorial rectangle r. We arbitrarily take each assignment of Vc under the condition

P
c2C Vc ¼ CPðX � YÞ.

Then, we assign Vc;r so as to satisfy
P

c 62r Vc;r ¼ CPðrÞ �
P

c2r Vc; such assignments exist because every variable Vc;r

always appears in the form of
P

c 62r Vc;r. By definition, we have CPðrÞ ¼ 1 for each monochromatic rectangle r.
Moreover, CPðrÞ is subadditive for each combinatorial rectangle r because the protocol partition number is defined as
the minimization over arbitrary partitions. Therefore, the assignments satisfy all the constraints of the quasi-additive
bound. �

From Theorems 2.13 and 4.5 we obtain the following relationship between the quasi-additive bound and the formula
complexity.
Corollary 4.6. For any Boolean function f , QAðRf Þ ¼ Lð f Þ and QAðRm

f Þ ¼ Lmð f Þ.
By Theorem 4.5, we can regard the quasi-additive bound (maximization problem) as a dual problem of the protocol

partition number (minimization problem). We should emphasize that any feasible solution of the formulation (4.1) of
the quasi-additive bound gives a lower bound of the formula size by Corollary 4.6, while protocol partitions give only
upper bounds of the formula size.

We illustrate how to construct a feasible solution of (4.1) and obtain a lower bound of the formula size by using an
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example of the 3-bit majority function. For a positive integer n, the majority function MAJn : f0; 1gn! f0; 1g is
defined by

MAJnðx1; � � � ; xnÞ ¼
1

Xn
i¼1

xi �
n

2

� � !
,

0 (otherwise).

8><
>:

Proposition 4.7. QAðRMAJ3
Þ � 5.

Proof. We consider a submatrix of the communication matrix of the 3-bit majority function shown in Figure 13. We
focus on a triplet of three cells c1 ¼ ð011; 100Þ; c2 ¼ ð101; 010Þ; c3 ¼ ð110; 001Þ, each of which has three indices. We
give the weight Vc ¼ �1=3 for each cell with three indices (i.e., c is either c1, c2, or c3), Vc ¼ 1 for each cell from the
other six cells with one index, and Vc ¼ 0 for each cell not in the submatrix.

We give each assignment of Vc;r in the following way. If a combinatorial rectangle r contains two cells of the triplet,
e.g., c2 and c3, we assign Vc1;r ¼ �1=3 for the remaining cell c1. If a combinatorial rectangle r contains one cell of the
triplet, e.g., c1, we assign Vc2;r ¼ 1=6 and Vc3;r ¼ 1=6 for the remaining two cells. In the remaining cases, we assign
Vc;r ¼ 0. Then, we can verify that the assignments satisfy all the constraints of the quasi-additive bound. As a
consequence, we have the lower bound of 5. �

While the quasi-additive bound is derived from the notion of formal complexity measure, its LP dual may be of
independent interest. For r; r1; r2 2 �, we denote r 7! ðr1; r2Þ if a pair of two combinatorial rectangles r1 and r2 is a
partition of a combinatorial rectangles r. Then, the LP dual of the quasi-additive bound (4.1) is formulated as follows,
where we use new variables Zr

r1;r2
associated with each r 7! ðr1; r2Þ, and X � Y 2 � denotes the whole combinatorial

rectangle:

min
X
r2M

Zr

s.t.
X
c2r2M

Zr ¼ 1 ðfor each c 2 CÞ;
X

r 7!ðr̂;r2Þ
Zr
r̂;r2
¼

X
r̂ 7!ðr1;r2Þ

Zr̂
r1;r2
þ Zr̂ ðfor each r̂ 2 M with r̂ 6¼ X � YÞ;

X
r 7!ðr̂;r2Þ

Zr
r̂;r2
¼

X
r̂ 7!ðr1;r2Þ

Zr̂
r1;r2

ðfor each r̂ 2 � with r̂ 62 M and r̂ 6¼ X � YÞ;

Zr
r1;r2
¼ Zr

r2;r1
� 0 ðfor each r 7! ðr1; r2ÞÞ;

Zr � 0 ðfor each r 2 MÞ:

ð4:2Þ

We can interpret the value
P

r̂ 7!ðr1;r2Þ Z
r̂
r1;r2

as the total number of protocol partitions from r̂. On the other hand, we
can interpret

P
r 7!ðr̂;r2Þ Z

r
r̂;r2

as the total number of protocol partitions into r̂ and another combinatorial rectangle.
Therefore, if r̂ is not monochromatic, these numbers should coincide in principle. We can regard this interpretation as
some kind of the conservation law for the protocol partition number. Relevant to this formulation, Kamiyama [17]
showed that the quasi-additive bound is equivalent to the dual problem of the LP relaxation of some integer
programming computing the protocol partition number.

4.2 Tight Representations for Set Partition Polytopes Derived from Subadditive Dual

In the previous subsection, we have discussed tight LP formulation concerned with formula complexity particularly.
In this subsection, we generalize this idea and introduce a novel tight LP formulation for set partition polytopes treated
in Section 2. It is derived from the theory of integer programming duality, as a dual for the subadditive dual.

Associated with the integer programming problem (2.1), we consider the following linear programming problem,
where IðvÞ ¼ fi j vi ¼ 1g for a vector v:

100 010 001

110 2 1 1,2,3
101 3 1,2,3 1
011 1,2,3 3 2

Fig. 13. A submatrix of the communication matrix of MAJ3.
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max bTy

s.t. aTj yþ zIðajÞ � cj ð j 2 ½n�Þ;
zI1 þ zI2 � zI1[I2 ðI1; I2 
 ½m�; I1 \ I2 ¼ ;Þ;
zIðbÞ ¼ z; ¼ 0:

ð4:3Þ

The problem (4.3) is equivalent to the dual (2.4) of the integer programming problem (2.1), as follows.
Lemma 4.8. Suppose that the LP formulation (2.4) has an optimal solution F� : <n !<[ fþ1g such that F�ðvÞ <
þ1 for every v 2 f0; 1gm. Then, for A 2 f0; 1gm�n and b 2 f0; 1gm, the LP formulations (2.4) and (4.3) are equivalent in
the sense that they have the same optimal value.

Proof. We first show that the optimal value of (4.3) is less than or equal to the optimal value of (2.4). For this, we show
that for every feasible solution of (4.3), there exists a feasible solution of (2.4) with has the same objective function
value.

For a feasible solution z; y of (4.3), we define a function F : f0; 1gn! < by

FðvÞ ¼ vTyþ zIðvÞ ðv 2 f0; 1gnÞ: ð4:4Þ

Then, we have

FðajÞ � cj () aTj yþ zIðajÞ � cj; ð4:5Þ

F is subadditive in the domain f0; 1gn () zI1 þ zI2 � zI1[I2 ðI1; I2 
 ½m�; I1 \ I2 ¼ ;Þ; ð4:6Þ
in addition, it holds that FðbÞ ¼ bTy and Fð~0Þ ¼ 0 since zIðbÞ ¼ z; ¼ 0. Since FðvÞ is a finite value for every v 2 f0; 1gn,
it is not difficult to obtain a subadditive function ~F : <n! <[ fþ1g such that fv 2 <n j ~FðvÞ < þ1g ¼ fv 2 <n j
v � 0g and ~FðvÞ ¼ FðvÞ for v 2 f0; 1gn. Hence, the function ~F is a feasible solution of (4.3) having the same objective
function value as z; y.

We then show that the optimal value of (4.3) is more than or equal to the optimal value of (2.4), which can be done in
a similar way as the proof above. Let F : <n! <[ fþ1g be an optimal solution of (2.4) such that FðvÞ < þ1 for
every v 2 f0; 1gm. Then, we can easily find z and y in (4.3) satisfying the equation (4.4) and zIðbÞ ¼ z; ¼ 0. Moreover,
(4.5) and (4.6) imply that such z and y give a feasible solution of the problem (4.3). Since bTy ¼ FðbÞ holds by (4.4) and
zIðbÞ ¼ 0, we see that the optimal value of (4.3) is more than or equal to the optimal value of (2.4). �

We consider the LP dual of the above formulation (4.3). We denote by I the set of all (unordered) pairs of nonempty
I1; I2 ( ½m� such that I1 \ I2 6¼ ;. For each ðI1; I2Þ 2 I, we associate a variable PI1;I2 . Then, the following dual problem
of (4.3) is formulated as follows:

min cTx

s.t. Ax ¼ b;

x � 0;X
I2:ðI1;I2Þ2I

PI1;I2 ¼
X

ðI0
1
;I0

2
Þ2I:I0

1
[I0

2
¼I1

PI0
1
;I0

2
þ xj ðI1 ¼ IðajÞ for some j 2 ½n�Þ;

X
I2:ðI1;I2Þ2I

PI1;I2 ¼
X

ðI0
1
;I0

2
Þ2I:I0

1
[I0

2
¼I1

PI0
1
;I0

2
ð8I1 
 ½m� : I1 62 fIðajÞ j j ¼ 1; 2; . . . ; ng [ f;; IðbÞgÞ;

PI1;I2 � 0 ððI1; I2Þ 2 IÞ:

ð4:7Þ

From Theorem 2.2 and Lemma 4.8, we can obtain the following theorem.
Theorem 4.9. Suppose that A 2 f0; 1gm�n and b 2 f0; 1gm. Then, the optimal value of the LP formulation (4.7) is
equal to that of the IP formulation (2.1).

To see the difference between the LP formulation (4.7) and the original LP relaxation (2.2), we show two examples.
First, we consider the case where the constraint Ax ¼ b in (2.2) is given as

1 0 1

1 1 0

0 1 1

0
B@

1
CA

x1

x2

x3

0
B@

1
CA ¼

1

1

1

0
B@

1
CA:

It is easy to see that ðx1; x2; x3Þ ¼ ð1=2; 1=2; 1=2Þ is the unique solution of (2.2), while there exists no integral solution.
Additional constraints in the LP formulation (4.7) are given as follows:

Pf1;2g;f3g ¼ Pf1g;f2g þ x1 ðI1 ¼ f1; 2gÞ; ð4:8Þ
Pf2;3g;f1g ¼ Pf2g;f3g þ x2 ðI1 ¼ f2; 3gÞ; ð4:9Þ
Pf1;3g;f2g ¼ Pf1g;f3g þ x3 ðI1 ¼ f1; 3gÞ; ð4:10Þ

Pf1g;f2g þ Pf1g;f3g þ Pf1g;f2;3g ¼ 0 ðI1 ¼ f1gÞ; ð4:11Þ
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Pf2g;f1g þ Pf2g;f3g þ Pf2g;f1;3g ¼ 0 ðI1 ¼ f2gÞ; ð4:12Þ
Pf3g;f1g þ Pf3g;f2g þ Pf3g;f1;2g ¼ 0 ðI1 ¼ f3gÞ; ð4:13Þ

and PI1;I2 � 0 for any ðI1; I2Þ 2 I. Substituting (4.8) to (4.13), we have

x1 ¼ �ðPf1g;f2g þ Pf2g;f3g þ Pf3g;f1gÞ � 0:

Similarly, we have x2; x3 � 0. Consequently, these additional constraints in (4.7) rule out the solution
ðx1; x2; x3Þ ¼ ð1=2; 1=2; 1=2Þ.

Next, we consider the case where the constraint Ax ¼ b of (2.2) is given as

1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

0
BBB@

1
CCCA

x1

x2

x3

x4

0
BBB@

1
CCCA ¼

1

1

1

1

0
BBB@

1
CCCA:

In this case, (2.2) has two integral solutions ðx1; x2; x3; x4Þ ¼ ð1; 0; 1; 0Þ; ð0; 1; 0; 1Þ and infinitely many non-integral
solutions given by the convex combination of the two integral vectors, i.e.,

ðx1; x2; x3; x4Þ ¼ � � ð1; 0; 1; 0Þ þ ð1� �Þ � ð0; 1; 0; 1Þ
with 0 � � � 1. That is, the set of feasible solutions in (2.2) is equal to the convex hull of the set of feasible solutions in
the integer programming problem (2.1).

The additional constraints in (4.7) are given as:

Pf1;2g;f3g þ Pf1;2g;f4g þ Pf1;2g;f3;4g ¼ Pf1g;f2g þ x1 ðI1 ¼ f1; 2gÞ;
Pf2;3g;f1g þ Pf2;3g;f4g þ Pf2;3g;f1;4g ¼ Pf2g;f3g þ x2 ðI1 ¼ f2; 3gÞ;
Pf3;4g;f1g þ Pf3;4g;f2g þ Pf3;4g;f1;2g ¼ Pf3g;f4g þ x3 ðI1 ¼ f3; 4gÞ;
Pf1;4g;f2g þ Pf1;4g;f3g þ Pf1;4g;f2;3g ¼ Pf1g;f4g þ x4 ðI1 ¼ f1; 4gÞ;

Pf1;3g;f2g þ Pf1;3g;f4g þ Pf1;3g;f2;4g ¼ Pf1g;f3g ðI1 ¼ f1; 3gÞ;
Pf2;4g;f1g þ Pf2;4g;f3g þ Pf2;4g;f1;3g ¼ Pf2g;f4g ðI1 ¼ f2; 4gÞ;

Pf1g;f2g þ Pf1g;f3g þ Pf1g;f4g þ Pf1g;f2;3g þ Pf1g;f2;4g þ Pf1g;f3;4g þ Pf1g;f2;3;4g ¼ 0 ðI1 ¼ f1gÞ;
Pf2g;f1g þ Pf2g;f3g þ Pf2g;f4g þ Pf2g;f1;3g þ Pf2g;f1;4g þ Pf2g;f3;4g þ Pf2g;f1;3;4g ¼ 0 ðI1 ¼ f2gÞ;
Pf3g;f1g þ Pf3g;f2g þ Pf3g;f4g þ Pf3g;f1;2g þ Pf3g;f1;4g þ Pf3g;f2;4g þ Pf3g;f1;2;4g ¼ 0 ðI1 ¼ f3gÞ;
Pf4g;f2g þ Pf4g;f3g þ Pf4g;f1g þ Pf4g;f1;2g þ Pf4g;f1;3g þ Pf4g;f2;3g þ Pf4g;f1;2;3g ¼ 0 ðI1 ¼ f4gÞ;

Pf1;2;3g;f4g ¼ Pf1g;f2;3g þ Pf2g;f1;3g þ Pf3g;f1;3g ðI1 ¼ f1; 2; 3gÞ;
Pf1;2;4g;f3g ¼ Pf1g;f2;4g þ Pf2g;f1;4g þ Pf4g;f1;2g ðI1 ¼ f1; 2; 4gÞ;
Pf1;3;4g;f2g ¼ Pf1g;f3;4g þ Pf3g;f1;4g þ Pf4g;f1;3g ðI1 ¼ f1; 3; 4gÞ;
Pf2;3;4g;f1g ¼ Pf2g;f3;4g þ Pf3g;f2;4g þ Pf4g;f2;3g ðI1 ¼ f2; 3; 4gÞ;

and PI1;I2 � 0 for any ðI1; I2Þ 2 I. If we assign

Pf1;2g;f3;4g ¼ x1;

Pf2;3g;f1;4g ¼ x2;

Pf3;4g;f1;2g ¼ x3;

Pf1;4g;f2;3g ¼ x4;

and 0 to all other variables PI1;I2 , we can easily verify that these assignments satisfy all the above constraints. Therefore,
the additional constraints are redundant in this case.

We finally give a brief review of tight LP formulations of combinatorial optimization problems. Since Edmonds [6]
gave a tight LP formulation of the matching problem on undirected graphs, finding tight LP formulations of
combinatorial optimization problems becomes an important research topic in polyhedral combinatorics. From this
viewpoint, a technique called lift-and-project method is useful since it systematically incorporate tighter constraints
into any LP formulation. There are several lift-and-project methods such as Sherali and Adams [39, 40], Balas, Ceria
and Cornuéjols [2], Lovász and Schrijver [30], and Lasserre [25]. These techniques have attracted much attention in
researches on polyhedral combinatorics and optimization. Laurent [27] gave a comparison among these techniques.
Among the several techniques, the technique of Sherali and Adams [39, 40] has some advantages as the strongest one
for LP formulations with relatively simpler descriptions. These lift-and-project methods can give tight LP formulations
of any 0-1 integer programming problem. Sherali and Lee [41] studied an application of the lift-and-project method of
Sherali-Adams [39, 40] to the set partition polytope.

In contrast, our tight LP formulation for the integer programming problem (2.1) given in this subsection is
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completely different from those given by the lift-and-project methods. Although the number of constrains explodes
exponentially because the problem is NP-hard in general, the description is relatively succinct.

5. Clique Inequalities and Subadditivity

In this section, we first review a technique to improve formula-size lower bounds obtained from the LP bound. This
improvement is achieved by using clique inequalities, which give an important class of inequalities in the theory of
integer programming (see, e.g., [32, 37]). We illustrate the power of this technique by an application to the 3-bit
majority function. We then discuss connection between clique constraints and subadditive functions.

5.1 LP Bound with Clique Inequalities

We explain a stronger LP bound using clique inequalities. Let G ¼ ðV ;EÞ be an undirected graph such that the node
set V is given by the set of all monochromatic rectangles (i.e., V ¼ M), and two nodes are connected by an edge in E if
and only if the corresponding two monochromatic rectangles intersect. A clique is a set of nodes such that every pair of
nodes in the set is connected by an edge. Given a set q of monochromatic rectangles corresponding to a clique in the
graph G, a clique inequality is given by X

r2q
xr � 1:

This constraint is valid for all (integral) feasible solutions of the integer programming problem (2.6) since (2.6) is a
disjoint cover problem, i.e., we can assign the value one to at most one monochromatic rectangle in a clique in G.

We consider the following LP problem obtained by adding all clique inequalities to the LP bound (2.7):

min
X
r2M

xr

s.t.
X
r3c

xr ¼ 1 ðfor each cell c in the matrixÞ;
X
r2q

xr � 1 ðfor each clique q in GÞ;

xr � 0 ðfor each monochromatic rectangle r 2 MÞ:

ð5:1Þ

Its dual problem can be written as

max
X
c

wc þ
X
q

zq

s.t.
X
c2r

wc þ
X
q3r

zq � 1 ðfor each monochromatic rectangle r 2 MÞ;

zq � 0 ðfor each clique q in GÞ:

ð5:2Þ

Intuitively, this formulation can be interpreted as follows. Each cell c is assigned the weight wc. The summation of
weights over all cells in a monochromatic rectangle is bounded by one. This bound is decreased by the value zq if it is
contained in a clique q.

Using an example of the 3-bit majority function considered in Section 4.1, we explain how to prove a formula-size
lower bound by using the problem (5.2). The original LP bound (2.7) provides a lower bound of at most 4.5, which can
be easily checked by giving an upper bound to the primal problem. As formula size must be an integer, this already
implies a lower bound of 5 on the formula size of the 3-bit majority function. By using clique constraints, we can
directly show the lower bound of 5.

We call a cell singleton if it contains only one index. A notion of singleton cell plays an important role in the proof
given below because the indices of singleton cells in a monochromatic rectangle must be the same.
Proposition 5.1 ([44]).

LðMAJ3Þ ¼ LmðMAJ3Þ ¼ 5:

Proof. We have a monotone formula ðx1 ^ x2Þ _ ððx1 _ x2Þ ^ x3Þ for MAJ3, which implies LmðMAJ3Þ � 5. From the
definition, LðMAJ3Þ � LmðMAJ3Þ. To show LðMAJ3Þ ¼ LmðMAJ3Þ ¼ 5, it suffices to prove the inequality LðMAJ3Þ �
5. For this, we construct a feasible solution of the dual problem (5.2) which has the objective function value equal to 5.

The communication matrix of the 3-bit majority function is shown in Figure 14. We consider a set q� of all
monochromatic rectangles of the communication matrix which contain at least two singleton cells. Note that if
a rectangle contains two cells ð�1; �1Þ and ð�2; �2Þ, it also contains both ð�1; �2Þ and ð�2; �1Þ. Hence, a mono-
chromatic rectangle is in q� if and only if it contains one of the three 2� 2 monochromatic rectangles in Figure 15. It is
clear from this observation that every pair of monochromatic rectangles in q� intersects, and therefore q� corresponds to
a clique.

344 UENO



As a solution of the dual problem (5.2), we assign weights wc ¼ 1 for all singleton cells in the submatrix and wc ¼ 0

for other cells. There are six singleton cells in the submatrix and hence the total weight
P

c wc is 6. We assign zq� ¼ �1

for the clique q�, and zq ¼ 0 for all other cliques q 6¼ q�. Then, the objective function of the dual problem (5.2) is equal
to 6� 1 ¼ 5.

Now, we show that w and z defined above satisfy all constraints of the dual problem (5.2). It is easy to see from
Figure 14 that every monochromatic rectangle contains at most two singleton cells. For a monochromatic rectangle
containing at most one singleton cell, the constraints are clearly satisfied because the summation of weights in the
monochromatic rectangle (i.e.,

P
c2r wc) is 0 or 1, while

P
q zq � 0 holds since zq � 0. For a monochromatic rectangle

which contains exactly two singleton cells, we have
P

c2r wc ¼ 2, while the monochromatic rectangle is contained in
the clique q� and therefore

P
q zq � �1. Thus, all the constraints are satisfied. �

The best formula-size upper and lower bounds of majority functions are Oðn4:57Þ [33] and dn=2e2 (¼ ðlþ 1Þ2 when
n ¼ 2lþ 1), respectively, which can be proven by the classical result of Khrapchenko [20]. The best monotone upper
and lower bounds of majority functions are Oðn5:3Þ [46] and bn=4cnð1þ log n

n�2
Þ [35], respectively. Using the idea

described above, we can slightly improve the non-monotone formula-size lower bound as follows, while no previously
known techniques has been able to improve it since 1971.
Theorem 5.2 ([44]). It holds that LðMAJ2lþ1Þ � ðlþ 1Þ2 þ 1.

Although our improvements of lower bounds seem to be small, it breaks a stiff barrier (known as the certificate
complexity barrier [24]) of previously known proof techniques.

Here, we illustrate a key idea for the proof of Theorem 5.2. The complete proof is available in the original paper
[44]. The idea is based on the decomposition theory of Boolean functions [5, 12, 34]. Namely, we can decompose the
majority function with an odd number of input bits into compositions of 3-bit majority functions. A similar idea also
works for communication matrices. We consider 3� 3 submatrices obtained as follows. From 2lþ 1 input bits, we fix
2l� 2 arbitrary bits and assume that they have the same number of 0’s and 1’s. Then, we consider the remaining three
bits. If the 2lþ 1 input bits compose a minterm (i.e., the input bits give a ‘‘minimal’’ vector among all vectors satisfying
the majority function), the three bits are either 110, 101 or 011. If the 2lþ 1 input bits compose a maxterm (i.e., the
input bits give a ‘‘maximal’’ vector among all vectors which do not satisfy the majority function), the three bits are
either 100, 010 or 001. Thus, we have a 3� 3 submatrix, which has the same structure as the communication matrix of
the 3-bit majority function as shown in Figure 16.

5.2 Generator Subadditive Functions and Clique Constraints

In the previous section, we consider clique constraints for the LP bound. While clique constraint seems to be
irrelevant to the notion of subadditivity at the first glance, they are closely related, as explained below. To relate the two
notions, we review a subadditive approach studied by Klabjan [21].

The survey paper by Güzelsoy and Ralphs [8] shows an excellent overview of several methods to construct
subadditive functions, which are classified as follows:
(1) Obtained from known families of relaxations.
(2) Obtained as a by-product of a primal solution algorithm, such as branch-and-bound.

100 010 001 000

110 2 1 1,2,3 1,2
101 3 1,2,3 1 1,3
011 1,2,3 3 2 2,3
111 2,3 1,3 1,2 1,2,3

Fig. 14. The communication matrix of MAJ3.

100 010 001

110 1 1,2,3
101 1,2,3 1
011

100 010 001

110 2 1,2,3
101
011 1,2,3 2

100 010 001

110
101 3 1,2,3
011 1,2,3 3

Fig. 15. Three 2� 2 monochromatic rectangles containing two singleton cells.
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(3) Constructed explicitly in closed form using a finite procedure.
Among them, we here pick up a method called ‘‘generator subadditive function’’ by Klabjan [21].
Definition 5.3 (Generator Subadditive Function [21]). Given a vector � 2 <m, a generator subadditive functions
F� : <m

þ ! < is defined as

F�ðdÞ ¼ �Td �max
X
i2E
ð�Tai � ciÞxi j AEx � d; x 2 Z jEjþ

( )
; ð5:3Þ

where E ¼ fi 2 ½n� j �Tai > cig is called the generator set and AE is the submatrix of A consisting of the columns with
indices in E.

The next theorem shows that any generator subadditive function F� is a feasible solution of the IP dual problem
(2.4), and therefore the value F�ðbÞ gives a lower bound for the optimal value of the IP problem (2.1).
Theorem 5.4 ([21]). For any �, the generator subadditive function F� satisfies the following properties:
(1) F� is subadditive and F�ð0Þ ¼ 0.
(2) F�ðaiÞ � �Tai � ci for all i 2 ½n� n E.
(3) F�ðaiÞ � ci for all i 2 E.

Moreover, Klabjan [21] developed a methodology to compute an ‘‘optimal’’ generator subadditive function in the sense
that it is an optimal solution of the IP dual problem (2.4) and the value F�ðbÞ matches the optimal value of the (2.1).

In the following, we explain the connection between generator subadditive function and the primal-dual pair of LPs
(5.1) and (5.2), where we again use an example of the 3-bit majority function as in the previous subsection. In
particular, we show that the formula-size lower bound of 5 for the 3-bit majority function can be also obtained by using
some generator subadditive function with an appropriate �, in a similar way as we did in the proof of Proposition 5.1.

Recall that in the LP problem (5.1), each row of the matrix A and each component of the parameter vector �
correspond to a cell of the communication matrix, while each column ai of the matrix A corresponds to a
monochromatic rectangle of the communication matrix. Also, note that ci ¼ 1 for all i. We consider a generator
subadditive function F� with the parameter vector � given as in the assignment of wc in the proof of Proposition 5.1,
i.e., �c ¼ 1 for all the singleton cells and �c ¼ 0 for other cells. Then, for each column vector ai, the value �Tai is equal
to the number of singleton cells in the monochromatic rectangle corresponding to ai. Since �Tai > 1 for each i 2 E, the
generator set E is given as the set of monochromatic rectangles containing two singleton cells, and therefore it
corresponds to a clique q� considered in the proof of Proposition 5.1.

In the following, we restrict our attention to the case d ¼ ~1 ¼ ð1; 1; . . . ; 1Þ since the function F� is a feasible solution
of the IP dual problem (2.4) and therefore the value F�ð~1Þ gives a formula-size lower bound. If d ¼ ~1, then the
inequality AEx � d in the definition of generator subadditive function (5.3) is equivalent to the clique inequality for q�.
Since we have �Tai � ci ¼ 2� 1 ¼ 1 for all i 2 E, the maximum in (5.3) is achieved by setting any one variable xi with
i 2 E to 1 and any other variables to 0. Hence, we have

�max
X
i2E
ð�Tai � ciÞxi j AEx � ~1; x 2 Z jEjþ

( )
¼ �1:

This value corresponds to the assignment of zq� ¼ �1 in Section 5.1. We have � � ~1 ¼
P

c wc, which is equal to the

Fig. 16. The communication matrix for the 5-bit majority function.
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number of singleton cells, i.e., � � ~1 ¼ 6. Hence, it holds that

F�ð~1Þ ¼ �T ~1�max
X
i2E
ð�Tai � ciÞxi j AEx � ~1; x 2 Z jEjþ

( )
¼ 6� 1 ¼ 5:

That is, we obtain the lower bound of 5 by using a generator subadditive function.
In the discussion above, the inequality AEx � ~1 is regarded as a clique constraint. This kind of reinterpretation of

clique constraint would be helpful to generalize ideas and to borrow some techniques developed in the theory of integer
programming duality and subadditive functions. For example, there are some generalized notions of clique constraint
such as orthonormal constraint [7] and rank constraint.

To explain the notion of rank constraint, we consider the graph G defined in Section 5.1. Let H be a (node-)induced
subgraph of G, and denote by �ðHÞ the maximum size of an independent set in H. Recall that a node set is an
independent set of a graph if any pair of vertices in the set is not connected by an edge. Then, the rank constraint is
given as X

r2H
xr � �ðHÞ;

where r 2 H means the node corresponding to a rectangle r is contained in the induced subgraph H. If H is a clique,
then we have �ðHÞ ¼ 1, and therefore a rank constraint for such H is the same as a clique constraint.

Validity of a rank constraint for the integer programming problem (2.6) can be shown as follows. Recall that each
node in the graph G represents a rectangle and two vertices in G is connected by an edge if and only if the
corresponding rectangles intersect. Since the rectangles in a partition of a communication matrix are mutually disjoint,
the set of such rectangles correspond to an independent set of the graph G. Hence, any induced subgraph H of G

contains such rectangles at most �ðHÞ.
Associated with the LP bound with rank constraints, we consider its LP dual formulated as follows:

max
X
c

wc þ
X
H

�ðHÞzH

s.t.
X
c2r

wc þ
X
H3r

zH � 1 ðfor each monochromatic rectangle rÞ;

zH � 0 ðfor each subgraph HÞ:

ð5:4Þ

Similarly to the case of clique constraints, we can show a formula-size lower bound by giving a feasible solution for
this dual problem.

6. Conclusions

In this paper, we have reviewed some topics in which subadditivity plays an important role. In particular, we have
explained some connection between the theory of integer programming duality and linear programming based
technique proving formula-size lower bounds. These topics were explained from the viewpoints of the difference
between subadditivity and additivity.

Some existing framework to derive formula-size lower bounds gets stuck because of the difficulty to cope with
subadditivity. Based on the P 6¼ NP conjecture, subadditivity is hard to handle in general. It has also revealed, however,
that there exist some special kinds of subadditivity which can be handled in practice. They can be a new frontier in both
research areas of algorithms and complexity theory.

We believe that intrinsic property of computation can be captured as the difference between additivity and
subadditivity as presented in this paper. While its complete understanding seems to be difficult due to the P 6¼ NP
conjecture, exploring some tractable subadditive functions would be hopeful ways to seek new frontiers in both
mathematical programming and computational complexity.
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[3] J. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I, 2nd edition. Springer, 1994.
[4] D. A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. Journal of

Computer and System Sciences, 38(1):150–164, 1989.

Exploring the Limits of Subadditive Approaches 347
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[11] P. Hrubeš, S. Jukna, A. Kulikov, and P. Pudlák. On convex complexity measures. Theoretical Computer Science, 411:1842–
1854, 2010.

[12] T. Ibaraki and T. Kameda. A theory of coteries: Mutual exclusion in distributed systems. IEEE Transactions on Parallel and
Distributed Computing, PDS-4(7):779–794, July 1993.

[13] K. Iwama and H. Morizumi. An explicit lower bound of 5n� oðnÞ for Boolean circuits. In 27th International Symposium of
Mathematical Foundations of Computer Science (MFCS 2002), volume 2420 of Lecture Notes in Computer Science, pages
353–364. Springer, 2002.

[14] E. L. Johnson. Cyclic groups, cutting planes and shortest paths. In T. Hu and S. Robinson, editors, Mathematical
Programming, pages 185–211. Academic Press, 1973.

[15] E. L. Johnson. Integer Programming: Facets, Subadditivity, and Duality for Group and Semi-group problems. SIAM, 1980.
[16] S. Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms and Combinatorics. Springer,

2012.
[17] N. Kamiyama. A note on the quasi-additive bound for Boolean functions. Journal of Math-for-Industry, 4:119–122, 2012.
[18] M. Karchmer, E. Kushilevitz, and N. Nisan. Fractional covers and communication complexity. SIAM Journal on Discrete

Mathematics, 8(1):76–92, 1995.
[19] M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-logarithmic depth. SIAM Journal on

Discrete Mathematics, 3(2):255–265, 1990.
[20] V. M. Khrapchenko. Complexity of the realization of a linear function in the case of �-circuits. Mathematical Notes, 9:21–23,

1971.
[21] D. Klabjan. Subadditive approaches in integer programming. European Journal of Operational Research, 183(2):525–545,

2007.
[22] E. Koutsoupias. Improvements on Khrapchenko’s theorem. Theoretical Computer Science, 116(2):399–403, 1993.
[23] O. Lachish and R. Raz. Explicit lower bound of 4:5n� oðnÞ for boolean circuits. In Proceedings of the 33rd Annual ACM

Symposium on Theory of Computing, (STOC 2001), pages 399–408. ACM Press, 2001.
[24] S. Laplante, T. Lee, and M. Szegedy. The quantum adversary method and classical formula size lower bounds. Computational

Complexity, 15(2):163–196, 2006.
[25] J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization, 11(3):796–

817, 2001.
[26] J. B. Lasserre. Integer programming duality and superadditive functions. Contemporary Mathematics, 374:139–150, 2005.
[27] M. Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxations for 0-1 programming.

Mathematics of Operations Research, 28(3):470–496, 2003.
[28] T. Lee. Kolmogorov Complexity and Formula Size Lower Bounds. PhD thesis, University of Amsterdam, January 2006.
[29] T. Lee. A new rank technique for formula size lower bounds. In Proceedings of the 24th Annual Symposium on Theoretical

Aspects of Computer Science (STACS 2007), volume 4393 of Lecture Notes in Computer Science, pages 145–156. Springer,
2007.

[30] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on Optimization,
1(2):166–190, 1991.

[31] D. A. Morán R., S. S. Dey, and J. P. Vielma. A strong dual for conic mixed-integer programs. SIAM Journal on Optimization,
22(3):1136–1150, 2012.

[32] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.
[33] M. S. Paterson, N. Pippenger, and U. Zwick. Optimal carry save networks. In Boolean function complexity, volume 169 of

London Mathematical Society Lecture Note Series, pages 174–201. Cambridge University Press, 1992.
[34] E. L. Post. The two-valued iterative systems of mathematical logic, volume 5 of Annals Mathematical Studies. Princeton

University Press, 1941.
[35] J. Radhakrishnan. Better lower bounds for monotone threshold formulas. Journal of Computer and System Sciences,

54(2):221–226, 1997.
[36] A. A. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Sciences, 55(1):24–35, 1997.
[37] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
[38] C. Shannon. The synthesis of two–terminal switching circuits. Bell System Technical Journal, 28:59–98, 1949.
[39] H. D. Sherali and W. P. Adams. A hierarchy of relaxation between the continuous and convex hull representations for zero-one

programming problems. SIAM Journal on Discrete Mathematics, 3:411–430, 1990.
[40] H. D. Sherali and W. P. Adams. A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one

programming problems. Discrete Applied Mathematics, 52(1):83–106, 1994.
[41] H. D. Sherali and Y. Lee. Tighter representations for set partitioning problems. Discrete Applied Mathematics, 68(1-2):153–

167, 1996.
[42] G. Simonyi. Graph entropy: A survey. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 20:399–

348 UENO



441, 1995.
[43] P. Spira. On time-hardware complexity tradeoffs for boolean functions. In Proceedings of the 4th Hawaii Symposium on

System Sciences, pages 525–527, 1971.
[44] K. Ueno. A stronger LP bound for formula size lower bounds via clique constraints. Theoretical Computer Science, 434(1):87–

97, 2012.
[45] K. Ueno. Breaking the rectangle bound barrier against formula size lower bounds. International Journal of Foundations of

Computer Science, 24(8): 1339–1354, 2013.
[46] L. G. Valiant. Short monotone formulae for the majority function. Journal of Algorithms, 5(3):363–366, 1984.
[47] I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.

Exploring the Limits of Subadditive Approaches 349


