
Filtering Multi-set Tree: Data Structure for Flexible Matching
Using Multi-track Data

Kazuyuki NARISAWA�, Takashi KATSURA, Hiroyuki OTA and Ayumi SHINOHARA

Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

Received May 17, 2014; final version accepted October 1, 2014

Multi-track data are multi-set sequences that are suitable for representing time series data, such as multi-sensor
data, polyphonic music data and traffic data. The permuted pattern matching problem aims to determine the
occurrences of multi-track patterns in multi-track text by allowing the order of the pattern tracks to be permuted. In
this study, we address permuted pattern matching by proposing a new data structure called a filtering multi-set tree
(FILM tree). The FILM tree is a complete binary tree based on a spectral Bloom filter (SBF) with hash functions.
This data structure is very simple but powerful, and it can be applied to both exact and approximate matching
problems. We present experimental results that demonstrate the efficiency of our FILM tree-based approach.

KEYWORDS: data structure, multi-track, permuted pattern matching

1. Introduction

The rapid development of sensor devices, means that various types of traffic information can be obtained easily from
multiple places at the same time and stored as time series data. The analysis of these traffic data provides many benefits,
which are of great importance. For example, the detection of traffic jam facilitates the selection of alternative routes to a
destination that avoid traffic jams. In addition, classification of normal and abnormal behaviors of cars and people based
on previous data may allow the development of evacuation maps for emergency situations such as earthquakes.
Analysis of traffic information can determine important relationships among data. For example, if a traffic accident
occurs, it will cause traffic jams in the surrounding area. To discover the relationships among various places, the
associations among information from several places should be regarded as a pattern. The traffic information for specific
place is generally represented as time series data. Therefore, we need to consider methods that allow multiple datasets
to be treated as single data types.

A suitable method is permuted pattern matching, which was proposed recently by Katsura et al. [7]. Permuted
matching allows strings, called tracks, to be swapped in multi-track strings. For example, let us consider a multi-track

text T ¼
t1;
t2;
t3

0
@

1
A ¼ ababa;

aabbb;
bbaab

0
@

1
A and a multi-track pattern P ¼ p1;

p2

� �
¼ ab;

bb

� �
. In standard two-dimensional

pattern matching, the pattern P only matches ðt1½3 : 4�; t2½3 : 4�Þ. In permuted pattern matching, however, P matches
positions 1, 3, and 4, i.e., ðt1½1 : 2�; t3½1 : 2�Þ, ðt1½3 : 4�; t2½3 : 4�Þ, and ðt2½4 : 5�; t1½4 : 5�Þ. If the number M of the tracks
of the pattern is equal to that of the text N, this is called a full-permuted matching problem, whereas if M < N, it is
a sub-permuted matching problem. Various algorithms and data structures have been proposed for permuted pattern
matching problems, which depend on the specific situations (see Table 1). The paper [7] proposed algorithms based on
three data structures: (1) the multi-track suffix tree (MTST) that is an indexing structure for full-permuted pattern
matching with a fixed multi-track text, (2) the Aho-Corasick automaton (AC automaton) that is suitable for sub-
permuted pattern matching with a fixed multi-track pattern, and (3) the generalized suffix array (GSA) that is suitable
for sub- and full-permuted pattern matching problems if both the multi-track text and multi-track pattern are fixed.
Moreover, we can consider easily an algorithm employing the generalized suffix tree (GST) that is applicable to the
sub- and full-permuted pattern matching problems with fixed multi-track text. These algorithms are efficient for exact
permuted pattern matching problems. However, they are not suitable for handling numerical sequence data, for which
approximate matching is indispensable in practical applications.

In the present study, we propose a simple and powerful data structure that we refer to as a filtering multi-set tree
(FILM tree). The FILM tree is a complete binary tree based on spectral Bloom filter (SBF) [3], which utilizes hash
functions. Using this data structure, we can solve permuted pattern matching problems for versions of all combinations

2010 Mathematics Subject Classification: Primary 62F12, Secondary 62F05.

This work is supported by JSPS KAKENHI Grant Numbers 23300051 and 25240003.
�Corresponding author. E-mail: narisawa@ecei.tohoku.ac.jp

Interdisciplinary Information Sciences Vol. 21, No. 1 (2015) 37–47
#Graduate School of Information Sciences, Tohoku University
ISSN 1340-9050 print/1347-6157 online
DOI 10.4036/iis.2015.37

http://dx.doi.org/10.4036/iis.2015.37

exact/approximate and sub-/full-permutation. We demonstrate the performance of our approach experimentally for
approximate permuted pattern matching problems with some hash functions.

2. Notations

Let � be a finite set of symbols, which is called an alphabet. An element of �� is called a string. For a string w, jwj
denotes the length of w, and w½i� denotes the i-th symbol of w for 1 � i � jwj. The empty string is denoted by ", that is,
j"j ¼ 0. Let x � y, briefly denote by xy, be the concatenation of strings x and y. Then, w ¼ w½1�w½2� . . .w½jwj�. Let �n

be the set of strings of length n. For a string w ¼ xyz, strings x, y, and z denote the prefix, substring, and suffix of w,
respectively. The substring of w that begins at position i and ends at position j is denoted by w½i : j� for
1 � i � j � jwj, i.e., w½i : j� ¼ w½i� w½iþ 1� � � �w½ j�.

Let �N be the set of all N-tuples ða1; a2; . . . ; aNÞ with ai 2 � for 1 � i � N, which is called a multi-track alphabet.
An element of �N is called a multi-track character (mt-character), and an element of ��N is called a multi-track string
(or simply multi-track), where the concatenation of two multi-track strings is defined as ða1; a2; . . . ; aNÞ �
ðb1; b2; . . . ; bNÞ ¼ ða1b1; a2b2; . . . ; aNbNÞ. For a multi-track T ¼ ðt1; t2; . . . ; tNÞ 2 �n

N , the i-th element ti of T is called
the i-th track, the length of multi-track T is denoted by jTjlen ¼ jt1j ¼ jt2j ¼ � � � ¼ jtN j ¼ n, and the number of tracks in
multi-track T or the track count of T, is denoted by jTjnum ¼ N. Let �þN be the set of all multi-tracks of length at least 1,
and let EN ¼ ð"; "; . . . ; "Þ denote the empty multi-track of track count N. Then, ��N ¼ �þN [fENg. For a multi-track
T ¼ XYZ, multi-track X, Y, and Z represent the prefix, substring, and suffix of T, respectively. T½i� denotes the i-th
mt-character of T for 1 � i � jTjlen, i.e., T ¼ T½1�T½2� . . .T½jTjlen�. The substring of T that begins at position i and
ends at position j is denoted by T½i : j� ¼ ðt1½i : j�; t2½i : j�; . . . ; tN½i : j�Þ for 1 � i � j � jTjlen.

Definition 2.1 (Permuted multi-track). Let X ¼ ðx1; x2; . . . ; xNÞ be a multi-track of track count N. Let r ¼
ðr1; r2; . . . ; rKÞ be a sub-permutation of ð1; . . . ;NÞ, where 1 � K � N. A permuted multi-track of X specified by r is
a multi-track ðxr1 ; xr2 ; . . . ; xrK Þ, which is denoted by either Xhr1; r2; . . . ; rKi or Xhri. If K ¼ N, r is called a full-
permutation and Xhri is called a full-permuted multi-track of X. If K < N, r is called a sub-permutation and Xhri is
called a sub-permuted multi-track of X.

Definition 2.2 (Permuted-match). For any multi-tracks X ¼ ðx1; x2; . . . ; xjXjnum Þ and Y ¼ ðy1; y2; . . . ; yjYjnum Þ with

jXjlen ¼ jYjlen and jXjnum � jYjnum, we say that X permuted-matches Y, which is denoted by X v
./
Y, if X ¼ Y0 for

some permuted multi-track Y0 of Y. In particular, if jXjnum ¼ jYjnum, then we say that X full-permuted-matches Y,
which we denote by X ¼./ Y. Otherwise, i.e., if jXjnum < jYjnum, then we say that X sub-permuted-matches Y.

Figure 1 shows examples of numerical multi-tracks and a permuted multi-track. Consider a multi-track T and a
multi-track pattern P in (a) and (d) of Fig. 1. Since t2½2 : 4� ¼ p2 and t3½2 : 4� ¼ p1, we can say that multi-track pattern
P sub-permuted-matches T½2 : 4�.

The problem we consider is formally defined as follows.

Problem 2.3 (Permuted pattern matching problem). Given multi-tracks T and P, output all positions i that satisfy
P v
./
T½i : iþ jPjlen � 1�.

When jTjnum ¼ jPjnum, the problem is called the full-permuted pattern matching problem, and when jTjnum < jPjnum,
it is called the sub-permuted pattern matching problem.

3. Approximate Permuted Pattern Matching

We extend the concept of multi-track strings to numerical data, by extending the domain � of the finite set of
symbols to the set R of real numbers. We say that a multi-track T ¼ ðt1; . . . ; tNÞ is a multi-track numerical sequence or
numerical multi-track if each entry ti½ j� is a numerical value in R. In this study, we address the approximate matching

Table 1. Comparisons of algorithms using data structures for permuted-pattern matchings.

Permutation type

Data structure String Numerical Constructed for

sub full sub full

MTST [7] 3 text

AC automaton [7] 3 3 pattern

GSA [7] 3 3 text and pattern

GST 3 3 text

FILM tree (this present study) 3 3 3 3 text

38 NARISAWA et al.

problem for multi-track numerical sequences, which is defined in a metric space with a distance function D for multi-
tracks as follows.

Problem 3.1 (Approximate permuted pattern matching problem). Given a numerical multi-track text T, numerical
multi-track pattern P, and a criterion � � 0, output all positions i that satisfy DðT½i : iþ m� 1�hri;PÞ � �, where r ¼
ðr1; r2; . . . ; rKÞ is a sub-permutation of ð1; . . . ;NÞ.

In this problem, we must specify the distance function DðX;YÞ for multi-tracks in order to measure the similarity of
X and Y. Several distance functions have been proposed for numerical data in previous studies. For example, the
dynamic time warping (DTW) [8] is often used for time series data. In the present study, we focus on a metric based on
the Euclidean distance.

Definition 3.2 (Euclidean distance). For two numerical tracks t1 and t2 of the same length n, the Euclidean distance
dðt1; t2Þ between t1 and t2 is defined by

dðt1; t2Þ ¼

ffiXn
i¼1

ðt1½i� � t2½i�Þ2
s

:

Next, we define the Euclidean distance for multi-track numerical sequences.

Definition 3.3 (Multi-track Euclidean distance). For two numerical multi-tracks X ¼ ðx1; x2; � � � ; xNÞ and Y ¼
ðy1; y2; � � � ; yNÞ where the length of xi and yi is n, the multi-track Euclidean distance is defined by

DðX;YÞ ¼
XN
j¼1

dðxj; yjÞ:

If M < N, then Problem 3.1 is called the approximate sub-permuted pattern matching problem, whereas if M ¼ N,
it is called the approximate full-permuted pattern matching problem. For example, consider the approximate per-
muted pattern matching problem in Fig. 1. For the multi-track text T in Fig. 1(a) and the multi-track pattern P in
Fig. 1(d), and given the criterion � ¼ 2, the solution is positions 1 and 2 because DðT½1 : 3�h2; 1i;PÞ ¼

ffiffiffi
2
p

and
DðT½2 : 4�h3; 2i;PÞ ¼ 0.

We present a naive algorithm for permuted pattern matching problems in Algorithm 1. This algorithm computes
all of the positions that P permuted- or approximate permuted-match with T½i : iþ m� 1�hri. The computation in line
4 of Algorithm 1 requires OðmMÞ time. This algorithm has two loops, where the outside loop requires OðnÞ and the
inside loop requires Oð N!

ðN�MÞ!Þ. Thus, Algorithm 1 runs in OðnmM N!
ðN�MÞ!Þ time. For Problem 2.3 and 3.1, the output

Fig. 1. Examples of multi-tracks.

Algorithm 1: Naive algorithm for permuted pattern matching problems

Input: multi-track text T, multi-track pattern P (and criterion �)
Output: matching positions of P in T

1 n ¼ jTjlen; N ¼ jTjnum; m ¼ jPjlen; M ¼ jPjnum;
2 for i ¼ 1 to n� mþ 1 do
3 foreach r 2 �N;M do
4 if T½i : iþ m� 1�hri and P (approximate) permuted-match then
5 output position i;
6 break
7 end
8 end
9 end

Filtering Multi-set Tree: Data Structure for Flexible Matching Using Multi-track Data 39

permutations r require Oðn N!
ðN�MÞ!Þ time, because the number of candidates is ðn� mÞ N!

ðN�MÞ!.
As a slightly more efficient approach, we note an algorithm that reduces the permuted pattern matching problem to

the minimum weight bipartite matching problem. For each position i on multi-track text T, we consider a weighted
bipartite graph Gi ¼ ðA [B; A� BÞ, where A ¼ f1; . . . ;Ng, B ¼ f1; . . . ;Mg, and the weight of an edge ð j; kÞ 2 A� B is
the distance dðtj½i : iþ m� 1�; pk½1 : m�Þ. The minimum weight perfect bipartite matching on Gi corresponds to the
distance DðT½i : iþ m� 1�hri;PÞ for the best choice of the permutation r. Because the construction of Gi for each
position i requires OðmNMÞ time, and the minimum weighted bipartite matching for Gi can be found in OðMðN þMÞ2Þ
time by the minimum cost flow algorithm [9, 10], the total time of this method is OðnMðmN þ ðN þMÞ2ÞÞ. In the next
section, we propose a more efficient method based on SBF and hash functions.

4. FILM Tree

In this section, we propose a new data structure FILM tree for solving permuted pattern matching problems in an
efficient manner. The matching using the FILM tree is based on the following proposition.

Proposition 4.1. For multi-tracks X ¼ ðx1; x2; . . . ; xjXjnum Þ and Y ¼ ðy1; y2; . . . ; yjYjnumÞ, let X and Y be multi-sets

X ¼ fx1; x2; . . . ; xjXjnumg and Y ¼ fy1; y2; . . . ; yjYjnumg. X v
./
Y if and only if X 	 Y .

Proposition 4.1 implies that we can determine whether P v
./
T½i : iþ m� 1� at position i or not by checking

fp1; . . . ; pMg 	 ft1½i : iþ m� 1�; . . . ; tN½i : iþ m� 1�g. For convenience, we treat a multi-track as a multi-set in the
following. In order to verify the multi-set inclusion relation efficiently, we use the spectral Bloom Filter (SBF) [3] that
is a data structure constructed for a given multi-set by using hash functions. Since the FILM tree is based on the SBF,
we describe the SBF at first in Section 4.1. Then, we provide a definition of the FILM tree in Section 4.2. The choice of
hash functions depends on the types of the permuted matching problem, thus we consider them in detail in Section 5.

4.1 Spectral Bloom filter

A spectral Bloom filter (SBF) for a multi-set Q is a data structure that answers the query of whether R 	 Q for any
given multi-set R.

Definition 4.2 (SBF [3]). Let H ¼ fh1; h2; � � � ; hkg be a set of k hash functions, hi : U! f0; � � � ; u� 1g, where the
domain U is either � or R. Let Q be a multi-set over U. A spectral Bloom filter SBFHðQÞ for Q using H is an integer
array of length !, defined by SBFHðQÞ ¼ ðCQ½1�;CQ½2�; � � � ;CQ½!�Þ such that

CQ½i� ¼
X
h2H

X
q2Q
½½hðqÞðmod!Þ þ 1 ¼ i��;

where ½½P�� is 1 if the predicate P is true and 0 otherwise.

For example, Fig. 2 shows two SBFs using two hash functions.

Definition 4.3. For two SBFs, SBFHðQ1Þ and SBFHðQ2Þ of the same size !, we define their addition and subtraction
by

SBFHðQ1Þ
 SBFHðQ2Þ ¼ ðCQ1
½1� þ CQ2

½1�;CQ1
½2� þ CQ2

½2�; � � � ;CQ1
½!� þ CQ2

½!�Þ;
SBFHðQ1Þ � SBFHðQ2Þ ¼ ðCQ1

½1� � CQ2
½1�;CQ1

½2� � CQ2
½2�; � � � ;CQ1

½!� � CQ2
½!�Þ:

We can easily verify the following properties.

Property 4.4. For any two multi-sets Q and R,
(1) SBFHðQÞ
 SBFHðRÞ ¼ SBFHðQ [RÞ,
(2) if R 	 Q, then minðSBFHðQÞ � SBFHðRÞÞ � 0.

Fig. 2. Spectral Bloom filters SBFHðQ1Þ and SBFHðQ2Þ using H ¼ fh1; h2g for Q1 ¼ fa; a; b; c; cg and Q2 ¼ fa; b; b; b; cg,
respectively.

40 NARISAWA et al.

We note that the converse of (2) in Property 4.4 does not always hold. For instance, let us consider Q ¼ fa; bg,
R ¼ fcg and H ¼ fh1; h2g such that h1ðaÞ ¼ 1, h2ðaÞ ¼ 2, h1ðbÞ ¼ 3, h2ðbÞ ¼ 4, h1ðcÞ ¼ 1, h2ðcÞ ¼ 3. Then we have
SBFHðQÞ ¼ ð1; 1; 1; 1Þ and SBFHðRÞ ¼ ð1; 0; 1; 0Þ, which yield that minðSBFHðQÞ � SBFHðRÞÞ ¼ 0, although R 6	 Q.
Therefore, if we use the condition minðSBFHðQÞ � SBFHðQ0ÞÞ � 0 to reply a subset query Q0 	 Q, we may encounter a
false positive.

We now estimate the probability Esbf that a false positive occurs, assuming that every hash function in H outputs
each value with equal probability, and Q contains s elements. Let fa be the number of occurrences of a 2 Q, and
mina ¼ minfCQ½h1ðaÞ�; . . . ;CQ½hkðaÞ�g. Then, it has been shown in [3] that if fa � mina, then

Esbf ’ ð1� e�ks=!Þk: ð4:1Þ
For k ¼ !

s
ln 2, the formula (4.1) is minimized as

Esbf min ¼ 2�k ’ 0:6185
!
s :

For example, if we take ! ¼ 8s, the probability that SBF replies a correct answer is 98%.

4.2 FILM tree

Definition 4.5 (FILM tree). Let T be a multi-track of length jTjlen ¼ n, and m be a positive integer. Let H ¼
fh1; h2; � � � ; hkg be a set of k hash functions hi : U! f0; . . . ; u� 1g, where the domain U is either �m or Rm. A FILM
tree FILMmðTÞ of size m for T is a complete binary tree containing 2dlog2 ne leaves, where each node v represents an SBF
of size ! defined as follows. If v is an i-th leaf node with 1 � i � n� mþ 1, then v represents SBFHðT½i : iþ m� 1�Þ.
If i > n� mþ 1, it represents an empty SBF, that is ð0; 0; � � � ; 0Þ. If v is an inner node, v represents the SBF sL
 sR,
where sL (reps. sR) is the SBF represented by the left (resp. right) child of v. In the sequel, we identify a node v with the
SBF that v represents.

Figure 3 shows a simple example of a FILM tree. The number of nodes of a FILMmðTÞ is 2dlog2 neþ1 � 1 ¼ OðnÞ
because the number of leaves is 2dlog2 ne and each inner node has exactly two children. Each node represents an SBF so
that it requires Oð!Þ space. Thus, FILMmðTÞ needs Oðn!Þ space. Algorithm 2 shows a construction algorithm for the
FILM tree, in which the tree structure is implemented as an array A in a standard way; the left (resp. right) child of a
node A½i� is stored in A½2i� (resp. A½2iþ 1�).

By using FILMmðTÞ, we can efficiently solve both the full- and sub-permuted pattern matching problems for a multi-
track pattern P of length jPjlen ¼ m. Algorithm 3 shows the matching algorithm. At line 2, it computes a query filter
QF ¼ SBFHðPÞ for P using the same set H of hash functions. All positions i satisfying P v

./
T½i : iþ m� 1� can be

found by a depth first search of the FILM tree, defined as the recursive function DFS in line 4. When the algorithm
visits c-th node v in the search, if minðFILMmðT½c�Þ � QFÞ � 0 and v is a leaf (line 6 and 7), then the algorithm outputs
c� leafNumþ 1 as a candidate of permuted-matching position.

The output of Algorithm 3 contains at least all positions i satisfying P v
./
T½i : iþ m� 1� for 1 � i � n� mþ 1. The

correctness is shown as follows. Let cl ¼ SBFHðClÞ and cr ¼ SBFHðCrÞ be sibling leaves of the FILM tree computed
from substrings Cl and Cr of multi-track T. Assume that P permuted-matches Cl, that is P 	 Cl. Because

Fig. 3. Example of a FILM tree, using only one hash function (k ¼ 1).

Filtering Multi-set Tree: Data Structure for Flexible Matching Using Multi-track Data 41

QF ¼ SBFHðPÞ, we have minðcl � QFÞ � 0 by Property 4.4 (2). Let v be the parent node of cl and cr. Then, v ¼
SBFHðCl [CrÞ from Property 4.4 (1) and the definition of the FILM tree. Now, P 	 ðCl [CrÞ holds, thus
minðv� QFÞ � 0. Recursively, minðu� QFÞ � 0 holds for all ancestor nodes u of cl. Therefore, all positions i

satisfying P v
./
T½i : iþ m� 1� can be found correctly by the depth first search of the FILM tree. Remark that the

output of this algorithm may contain some false positives with small probability, as we have already mentioned in
Section 4.1. Thus, to obtain the correct matching positions, we have to verify whether P v

./
T½i : iþ m� 1� holds or not

for each candidate position i, in a naive way.

5. Hash Functions

By selecting suitable hash functions for the SBF, FILM trees can be adopted to solve various permuted pattern
matching problems. In this section, we introduce two types of hash functions; one for exact matching of string data, and
the other for approximate matching of numerical data.

5.1 Rolling hash for multi-track strings

In permuted pattern matching for multi-track string, we need a hash function for strings in order to consider a FILM
tree for strings. We adopt a simple rolling hash found in Karp–Rabin string matching algorithm [6].

Definition 5.1. We define a rolling hash hrhðtÞ for a string t of length l by

hrhðtÞ ¼ t½1�al�1 þ t½2�al�2 þ � � � þ t½l�a0 (mod qÞ;
where a is a prime number and q is a positive integer.

Algorithm 2: FILM tree construction algorithm

Input: multi-track text T and an integer m
Output: FILMmðTÞ

1 n ¼ jTjlen; N ¼ jTjnum;
2 height ¼ dlog2 ne;
3 lea fNum ¼ 2height;
4 for i ¼ 1 to n� mþ 1 do
5 FILMmðTÞ½lea fNumþ i� 1� ¼ SBFHðT½i : iþ m� 1�Þ
6 end;
7 for j ¼ 1 to height do
8 beginNode ¼ 2height� j;
9 endNode ¼ 2�beginNode� 1;

10 for i ¼ beginNode to endNode do
11 FILMmðTÞ½i� ¼ FILMmðTÞ½2i�
 FILMmðTÞ½2iþ 1�
12 end
13 end;
14 output FILMmðTÞ as a FILM tree

Algorithm 3: Permuted pattern matching algorithm using FILMmðTÞ (jTjlen ¼ n)

Input: pattern P satisfying jPjlen ¼ m

Output: matching positions of P in T /* it may contains some false positives */

1 lea fNum ¼ 2dlog2 ne;
2 QF ¼ SBFHðPÞ;
3 DFSð1Þ; /* start depth-first-search from the root node */

4 Function DFSðcÞ
5 submin ¼ minðFILMmðTÞ½c� � QFÞ;
6 if submin � 0 then
7 if c � lea fNum then /* FILMmðTÞ½c� is a leaf node */

8 output c� lea fNumþ 1

9 else /* FILMmðTÞ½c� is an inner node */

10 DFSð2cÞ;
11 DFSð2cþ 1Þ
12 end
13 end
14 end

42 NARISAWA et al.

An advantage of the rolling hash is its efficiency. We can calculate the hash value hrhðti½ j : jþ m� 1�Þ in Oð1Þ time
after calculating the value hrhðti½ j� 1 : jþ m� 2�Þ, because the following equation holds for any position j in a text ti;

hrhðti½ j : jþ m� 1�Þ ¼ a � hrhðti½ j� 1 : jþ m� 2�Þ þ ti½ jþ m� 1� (mod qÞ:

5.2 Locality sensitive hashing for numerical multi-tracks

In the approximate permuted pattern matching, if each Euclidean distance between tracks of the text and the pattern
is small, the multi-track Euclidean distance is small. Based on this idea, we select hash functions for the Euclidean
distance. We use the locality sensitive hashing (LSH), that is a hashing algorithm for the nearest neighbor search
problem [1, 2, 4, 5]. The hash values of a hash function in a LSH family are in a collision with high probability if input
data are similar. Different LSH families can be used for different distance functions. In this paper, we use the following
hash function, that is one of the standard LSH families for Euclidean metric space.

Definition 5.2. We define a locality sensitive hashing function hlsh : Rm! N by

hlshðvÞ ¼
a � vþ b

r

� �
;

where each entry of a 2 Rm is selected independently from a stable distribution, r is a positive real number, and b is
selected uniformly from the range ð0; r�.

By using LSH functions hlsh, we can directly construct a FILM tree for numerical data, without converting them
into strings. During the construction, we need to prepare some hash functions. The number of hash functions is
determined by the expected collision probability. The construction time of FILM tree depends on the number of hash
functions.

6. Experiments

We performed three sets of experiments. In the first two of them, we assessed the construction time and search time
of our algorithm on random data. In the third one, we performed experiments on real-world data. Throughout the
experiments, we used a Linux machine with a 2.4GHz Intel# Xeon CPU EE5-2609 and 256GB RAM, running Debian
7.0. In the experiments on random data, we used the following basic parameter values: the length of a text
jTjlen ¼ 100000, the number of tracks of a text jTjnum ¼ 1000, the length of a pattern jPjlen ¼ 300, the alphabet size of
a multi-track string text j�j ¼ 26, the number of hash functions k ¼ 1 and the size of a SBF used in a FILM tree
! ¼ 10000.

In the experiments, we compared our algorithms using the FILM tree with a multi-track suffix tree (MTST).
However, MTST can be applied only to multi-track strings. Thus, we prepared numerical data for the FILM tree and
string data for MTST converted from the numerical data in the following manner; the value range of numerical data is
divided into equal j�j parts, and each divided part is assigned to a distinct character. Note that the construction time of
MTST excludes the time of this conversion.

A naive implementation of SBF in Algorithm 2 and Algorithm 3 would be an integer array. Instead of it, we used an
associative array in the experiments, because SBFs are very sparse, that means most elements are 0’s, especially if they
are near to the leaves. By storing only non-zero elements in the associative array, we can greatly reduce the memory
requirement of SBFs. Moreover, the operations u
 v and u� v can be computed efficiently, that depends only on the
number of non-zero elements, but not the size !.

6.1 Construction time on random data

The first set of our experiments assesses the construction time of FILM trees on random data. We varied the values of
jTjlen, jTjnum and !, and compared the construction time of FILM trees using rolling hash (RH) and LSH with that of
multi-track suffix trees (MTSTs) [7]. In this experiment, we used random numerical data for FILMLSH and the string
data converted from the numerical data for FILMRH and MTST.

Figure 4 shows the results. In this figure, the y-axes represent the construction times (seconds), and they are on
logarithmic scales in Figs. 4(b) and 4(c). The x-axes represent the length jTjlen of the multi-track text, the number
jTjnum of tracks, and the size ! of SBF in FILM tree in Figs. 4(a), 4(b), and 4(c), respectively. In all experiments,
MTST was the fastest among them, and FILM trees were much slower than MTST. The construction time of FILM tree
depended on jTjlen and !.

6.2 Search time on random data

The experiments in the second set concern with the search time on random data. The search using the FILM tree
depends on the size ! of SBF, and the height of the FILM tree that reflects the length jTjlen of text. On the other hand,
the search using MTST depends on the length jPjlen of pattern. Thus, we compared the search time of FILMLSH,
FILMRH and MTST for various values of jTjlen, jPjlen and !.

Filtering Multi-set Tree: Data Structure for Flexible Matching Using Multi-track Data 43

Figure 5 shows the results. The y-axes represent the search times (seconds) on logarithmic scales. The x-axis in
Fig. 5(a) represents the length jTjlen of the multi-track text. The matching algorithm using the FILM tree needs to
search from the root node to leaf nodes in order to identify the matching positions. The search time depends on the
height of the FILM tree, which is Oðlog2 nÞ with respect to the text length n ¼ jTjlen. The result shows that we can
ignore this influence from a practical viewpoint. The x-axis in Fig. 5(b) represents the length jPjlen of the pattern.

 0

 500

 1000

 1500

 2000

 2500

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+006

tim
e

(s
ec

)

the length of text

FILM (LSH)
FILM (RH)

MTST

 1

 10

 100

 1000

 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

)

the number of track

FILM (LSH)
FILM (RH)

MTST

 10

 100

 1000

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e

(s
ec

)

the size of filter

FILM (LSH)
FILM (RH)

MTST

(c) The size ω of SBF varied from 10000 to 100000, while the other param-
eters were fixed as | |len = 100000, | |num = 1000 and m = | |len = 300.
Because MTST does not use SBF, the construction time of it is constant.

(b) The number |aa|num of tracks varied from 100 to 1000, while the other
parameters were fixed as | |len = 100000, m = | |len = 300, and ω = 10000.

(a) The length |aa|len of text varied from 100000 to 1000000, while the other
parameters were fixed as |aa|num = 1000, m = |aa|len = 300, and ω = 10000.

Fig. 4. Comparison of the construction time on random data.

44 NARISAWA et al.

Concerning with MTST, as we expected, the search time increases as the pattern P becomes longer, because we have to
traverse a path of length jPjlen in MTST. If we implement SBF in the FILM tree with a normal array, the search time
does not depend on the length of the pattern in principle. However, we had confirmed in a preliminary experiment that

 0.0001

 0.001

 0.01

 0.1

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+006

tim
e

(s
ec

)

the length of text

FILM (LSH)
FILM (RH)

MTST

 0.0001

 0.001

 0.01

 0.1

 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

)

the length of pattern

FILM (LSH)
FILM (RH)

MTST

 0.0001

 0.001

 0.01

 0.1

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e

(s
ec

)

the size of filter

FILM (LSH)
FILM (RH)

MTST

(c) The size ω of SBF varied from 10000 to 100000, while the other parame-
ters were fixed as |aa|len = 100000, |aa|num = |aa|num = 1000 and |aa|len = 300.
Because MTST does not use SBF, the search time of it is constant.

(b) The number |aa|num of tracks varied from 100 to 1000, while the other
parameters were fixed as |aa|len = 100000, |aa|num = |aa|num = 1000 and ω =
10000.

(a) The length |aa|len of the text varied from 100000 to 1000000, while the
other parameters were fixed as |aa|num = |aa|num = 1000, |aa|len = 300 and
ω = 10000.

Fig. 5. Comparison of the search time on random data.

Filtering Multi-set Tree: Data Structure for Flexible Matching Using Multi-track Data 45

the search time of this implementation was very slow and required large memory, compared to MTST. Thus, we
decided to use associative arrays for SBFs. In consequence, the search time of FILM tree is faster than that of MTST,
although it mildly depends on the pattern length jPjlen. The x-axis in Fig. 5(c) represents the size ! of SBF. If we use
normal arrays for SBFs, the search using FILM tree would slow down as ! increases. However, thanks to the
associative array implementation, we obtained much faster search, that is practically independent of !.

All results in these experiments show that our proposed method using FILM tree outperforms MTST on search time
in any cases.

6.3 Construction time and search time on traffic data

The third set is the experiments for real-world data. We used some traffic data comprised of car speed measurements
at 702 monitoring points on Tokyo Metropolitan Expressway in Japan. We regarded a time series of them as a multi-
track numerical text T with jTjnum ¼ 702. At each monitoring point, the average speed of the cars were recorded at
every 5 minutes for one year, so that the length jTjlen was 105120.

 1

 10

 100

 1000

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e

(s
ec

)

the size of filter

MTST
FILM (LSH, m=36)
FILM (LSH, m=72)

FILM (LSH, m=144)
FILM (LSH, m=288)

FILM (RH, m=36)

FILM (RH, m=72)
FILM (RH, m=144)
FILM (RH, m=288)

(a) Construction time.

 0.0001

 0.001

 0.01

 0.1

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e

(s
ec

)

the size of filter

MTST (m=36)
MTST (m=72)

MTST (m=144)
MTST (m=288)

FILM (LSH, m=36)
FILM (LSH, m=72)

FILM (LSH, m=144)
FILM (LSH, m=288)

FILM (RH, m=36)
FILM (RH, m=72)

FILM (RH, m=144)
FILM (RH, m=288)

(b) Search time.

Fig. 6. Comparisons of construction time and search time on the real traffic data. The size ! of SBF varied from 10000 to 100000,
and the pattern length m ¼ jPjlen was changed to 36, 72, 144, and 288.

46 NARISAWA et al.

As typical applications on the traffic data, we are interested in various subjects; for instance, detecting traffic jams,
finding some common patterns in them, and extracting some relations among them, with respect to the time, week, and
month, and so on. In the most of all these processing, pattern matching is indispensable as a fundamental operation.
Therefore, we evaluated the real performance of our proposed method on these data for pattern matching. We examined
four lengths of patterns, jPjlen ¼ m ¼ 288 (one day record), 144 (12 hours), 72 (6 hours), and 36 (3 hours), and each
pattern was randomly cut out from the text jTjlen. As is the previous subsection, we fixed j�j ¼ 26 and k ¼ 1, and
varied the size ! of SBF.

Figure 6(a) shows the construction time, and Fig. 6(b) shows the search time, both in logarithmic scales. We observe
that the tendency of the performance is similar to the one for the random data; although construction of FILM tree is
slower than that of MTST, searching using FILM tree is much faster in most situations, and the choice of the size !
does not affect the running time very much. We conclude that our proposed method provides an efficient way to support
pattern matching on multi-tracks of this amount of numerical data.

7. Conclusion

In this study, we proposed a new data structure FILM tree to solve the permuted pattern matching problem for multi-
tracks. FILM tree can be applied to the various types of permuted pattern matching problems, depending on the hash
functions employed. We considered some examples to demonstrate the effectiveness of this approach, such as full/sub-
permuted pattern matching problems on string multi-tracks and full/sub-permuted approximate pattern matching
problems on numerical multi-tracks, as well as providing their algorithms. FILM tree requires Oðn!Þ space, where n

and ! are the lengths of the multi-track text and the size of SBF, respectively. We performed a comparison with MTST
for the full-permuted pattern matching problem and demonstrated that FILM tree can search patterns faster than MTST.

FILM tree is a simple and powerful data structure for permuted pattern matching problems, but it is only suitable for
fixed length patterns. Thus, we need to consider the development of a version for variable length patterns in our future
research.

REFERENCES

[1] Broder, A. Z., Charikar, M., Frieze, A. M., and Mitzenmacher, M., ‘‘Min-wise independent permutations,’’ In Proceedings of
the 30th Annual ACM Symposium on Theory of Computing, pages 327–336 (1998).

[2] Charikar, M., ‘‘Similarity estimation techniques from rounding algorithms,’’ In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing, pages 380–388 (2002).

[3] Cohen, S., and Matias, Y., ‘‘Spectral Bloom filters,’’ In Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pages 241–252 (2003).

[4] Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S., ‘‘Locality-sensitive hashing scheme based on p-stable distributions,’’
In Proceedings of 20th Annual Symposium on Computational Geometry, pages 253–262 (2004).

[5] Indyk, P., and Motwani, R., ‘‘Approximate nearest neighbors: Towards removing the curse of dimensionality,’’ In Proceedings
of the 30th Annual ACM Symposium on Theory of Computing, pages 604–613 (1998).

[6] Karp, R. M., and Rabin, M. O., ‘‘Efficient randomized pattern-matching algorithms,’’ IBM Journal of Research and
Development, 31(2): 249–260 (1987).

[7] Katsura, T., Narisawa, K., Shinohara, A., Bannai, H., and Inenaga, S., ‘‘Permuted pattern matching on multi-track strings,’’ In
Proceedings of SOFSEM 2013: Theory and Practice of Computer Science, pages 280–291 (2013).

[8] Sakoe, H., and Chiba, S., ‘‘Dynamic programming algorithm optimization for spoken word recognition,’’ IEEE Transactions
on Acoustics, Speech and Signal Processing, 26: 43–49 (1978).

[9] Busacker, R. G., and Gowen, P. J., ‘‘A procedure for determining a family of minimum cost flow networks,’’ Operations
Research Office Technical Report, vol. 15 (1961).

[10] Dijikstra, E. W., ‘‘A note on two problems in connexion with graphs,’’ Numerische Mathematik, 1(1): 269–271 (1959).

Filtering Multi-set Tree: Data Structure for Flexible Matching Using Multi-track Data 47

