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Abstract. In this note, we study the covering radii of extremal doubly even
self-dual codes. We give slightly improved lower bounds on the covering radii
of extremal doubly even self-dual codes of lengths 64, 80 and 96. The cover-
ing radii of some known extremal doubly even self-dual [64, 32, 12] codes are
determined.

1. Introduction

The covering radius R(C) of a binary code C of length n is the smallest integer R
such that spheres of radius R around codewords of C cover the space F

n
2 where F2

is the finite field of order 2. The covering radius is a basic and important geometric
parameter of a code. A vector a of a coset U = x + C is called a coset leader of
U if the weight of a is minimal in U , and the weight of a coset U is defined as the
weight of a coset leader. The covering radius R(C) is the same as the maximum of
weights of all the nontrivial cosets of C.

A code C is called self-dual if C = C⊥ where C⊥ is the dual code of C. A binary
self-dual code C is called doubly even if all codewords have weight ≡ 0 (mod 4) and
singly even if some codeword has weight ≡ 2 (mod 4). The minimum weight d of a
self-dual code C of length n is bounded by d ≤ 4[n/24]+ 4 unless n ≡ 22 (mod 24)
when d ≤ 4[n/24] + 6 [14, 17]. We call a self-dual code meeting this upper bound
extremal.

Assmus and Pless [1] studied the covering radii of extremal doubly even self-
dual codes. In particular, they determined the covering radii of extremal doubly
even self-dual codes of lengths up to 32 and length 48, and gave bounds for lengths
40, 56, 64, . . . , 96.

In this note, we investigate the covering radii of extremal doubly even self-dual
codes. In Section 2, we give a lower bound on covering radii of linear codes which is
a sharpening of the sphere-covering bound. Although our bound does not lead to an
improvement over the one obtained by [6, (2)] for lengths up to 96, we remark that
the bound obtained by [6, (2)] improves the published lower bounds on the covering
radii of extremal doubly even self-dual codes of lengths 64, 80 and 96. In Section
3, we relate the covering radii to singly even neighbors. Namely we establish a
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Length n R(Cn) Length n R(Cn)
8 2 56 8–10
16 4 64 9–12
24 4 72 10–12
32 6 80 11–14
40 6–8 88 12–16
48 8 96 13–16

Table 1. Bounds on covering radii of extremal doubly even self-
dual codes

relationship between extremal singly even self-dual codes with shadow of minimum
weight 4µ+4 and extremal doubly even self-dual codes with covering radius 4µ+4,
for length 24µ+16. In Section 4, the covering radii of some known extremal doubly
even self-dual codes are determined for length 64. From the results for lengths up to
56 (see Section 2), the Delsarte bound seems to give a rather good upper bound on
the covering radii of extremal doubly even self-dual codes. However, our calculation
indicates that the covering radii of many extremal doubly even self-dual codes of
length 64 do not meet the Delsarte bound. We do not know any other published
result of determination of the covering radii of extremal doubly even self-dual codes
of length 64, and 64 seems to be the smallest length for which the Delsarte bound
is rarely met.

2. Bounds on Covering Radii

Assmus and Pless [1] gave bounds on the covering radii of extremal doubly even
self-dual codes of lengths up to 96. In this section, we investigate covering radii
of (extremal) doubly even self-dual codes. A simple counting gives the following
sphere-covering bounds for even codes.

Proposition 1 (cf. [6, (2)]). Let C be an even [n, k] code. Then

∑

2i≤R(C)

(

n

2i

)

≥ 2n−k−1 and
∑

2i+1≤R(C)

(

n

2i + 1

)

≥ 2n−k−1.

Let Cn be an extremal doubly even self-dual code of length n. According to the
published results, it is known that 8 ≤ R(C64), 10 ≤ R(C80) and 12 ≤ R(C96) [1,
Table III] (see also [4, Table 5], [12, Table 11.5], [16, Table II]). Using Proposition 1,
we give slightly improved bounds.

Proposition 2. Let Cn be an extremal doubly even self-dual code of length n. Then
9 ≤ R(C64), 11 ≤ R(C80) and 13 ≤ R(C96).

Proof. Since
(

64
1

)

+
(

64
3

)

+
(

64
5

)

+
(

64
7

)

< 231, R(C64) ≥ 9 by Proposition 1. The
others are similar.

We list in Table 1 the bound on the covering radius of an extremal doubly even
self-dual code of length n ≤ 96. We remark that the covering radius for length 16
was incorrectly reported as 2 in [1, Table III], reproduced in [4, Table 5], [16, Table
II], and then corrected in [12, Table 11.5].

We now give a sharpening of Proposition 1.

Advances in Mathematics of Communications Volume 1, No. 2 (2007), 251–256



Covering radii of self-dual codes 253

Proposition 3. Let C be a code of length n with weight enumerator
∑n

i=0 Aiy
i. If

C has covering radius r, then
(

n

w

)

≤

n
∑

i=0

Ai

∑

0≤j≤r
j≡i+w (mod 2)

(

i
i+w−j

2

)(

n − i

w − i+w−j
2

)

,

for all integers w with 0 ≤ w ≤ n.

Proof. Let wt(x) denote the weight of a vector x ∈ F
n
2 . Then

(

n

w

)

= |
⋃

x∈C

{z ∈ F
n
2 | wt(z) = w, wt(x − z) ≤ r}|

≤
∑

x∈C

|{z ∈ F
n
2 | wt(z) = w, wt(x − z) ≤ r}|

=

n
∑

i=0

∑

x∈C
wt(x)=i

r
∑

j=0

|{z ∈ F
n
2 | wt(z) = w, wt(x − z) = j}|

=

n
∑

i=0

∑

x∈C
wt(x)=i

∑

0≤j≤r
j≡i+w (mod 2)

(

i
i+w−j

2

)(

n − i

w − i+w−j

2

)

=

n
∑

i=0

Ai

∑

0≤j≤r
j≡i+w (mod 2)

(

i
i+w−j

2

)(

n − i

w − i+w−j
2

)

.

We remark that, Proposition 1 follows from Proposition 3 by taking the sum of
the inequalities for all even (or odd) w. Proposition 3 generalizes the argument
given in the proof of [1, Theorem 3]. It gives R(C32) ≥ 6 for an extremal doubly
even self-dual code C32 of length 32 by taking w = 6, while Proposition 1 only gives
R(C32) ≥ 5. We do not know, however, that Proposition 3 gives a stronger bound
than Proposition 1 for extremal doubly even self-dual codes for length other than
32.

If we do not restrict our attention to extremal doubly even self-dual codes, there
are cases where the bound in Proposition 3 is stronger than the one in Proposition 1.
Indeed, let Z24 be the unique singly even self-dual [24, 12, 6] code. The code Z24

has weight enumerator

1 + 64y6 + 375y8 + 960y10 + 1296y12 + · · · + y24.

Applying Proposition 3 with w = 5 gives the bound R(Z24) ≥ 5, while Proposition 1
only gives R(Z24) ≥ 4. In fact, it is known that Z24 has covering radius 5 (cf. [3]).

Also, if D32 is a doubly even self-dual [32, 16, 4] code having 1, 2 or at least
65 codewords of weight 4, then we have R(D32) ≥ 6 by taking w = 6, 6 or 12,
respectively, in Proposition 3, while Proposition 1 only gives R(D32) ≥ 5. However,
since all doubly even self-dual [32, 16, 4] codes have been classified [18], one can
directly determine the covering radius for all such codes. In fact, we have verified
that every doubly even self-dual [32, 16, 4] code has covering radius 6, 7 or 8.

For lengths up to 32 and length 48, the covering radius of an extremal doubly
even self-dual code is uniquely determined (see Table 1). For length 40, a large
number of inequivalent extremal doubly even self-dual codes are known, however,
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only two extremal doubly even self-dual codes with covering radius 7 which does not
meet the Delsarte bound are known (cf. [11]). By the Delsarte bound, the covering
radius of an extremal doubly even self-dual code of length 56 is at most 10. By
finding a coset of weight 10, the covering radius of D11 in [7] was determined as 10
in [20]. Similarly, we have verified that more than one thousand extremal doubly
even self-dual [56, 28, 12] codes found in [9] and [10] have covering radius 10. We do
not know whether there exists an extremal doubly even self-dual [56, 28, 12] code
with covering radius 8 or 9.

From known covering radii for lengths up to 56, the Delsarte bound seems to give
a rather good upper bound on the covering radii of extremal doubly even self-dual
codes. However, as we shall see in Section 4, the covering radii of many extremal
doubly even self-dual codes of length 64 do not meet the Delsarte bound.

3. Length 24µ + 16

In this section, we establish a relationship between extremal singly even self-dual
codes with shadow of minimum weight 4µ + 4 and extremal doubly even self-dual
codes with covering radius 4µ + 4, for length 24µ + 16.

Let C be a singly even self-dual code and let C0 denote the subcode of codewords
having weight ≡ 0 (mod 4). Then C0 is a subcode of codimension 1. The shadow S
of C is defined by Conway and Sloane [7], to be C⊥

0 \C. There are cosets C1, C2, C3

of C0 such that C⊥
0 = C0 ∪ C1 ∪ C2 ∪ C3 where C = C0 ∪ C2 and S = C1 ∪ C3 [7].

Two self-dual codes C and C′ of length n are said to be neighbors if the dimension
dimC ∩C′ is n/2−1. If C is a singly even self-dual code of length divisible by eight
then C has two doubly even self-dual neighbors, namely, C0 ∪ C1 and C0 ∪ C3.

Lemma 3.1. Let C0 be a doubly even [24µ + 16, 12µ + 7, 4µ + 4] code. Let D1, D2

(resp. C) be the doubly even self-dual codes (resp. the singly even self-dual code)
containing C0. The following statements are equivalent:

(i) the minimum weight of C⊥
0 is 4µ + 4,

(ii) for at least one of i = 1, 2, the minimum weight of Di and that of C⊥
0 \Di are

both 4µ + 4,
(iii) for each of i = 1, 2, the minimum weight of Di and that of C⊥

0 \ Di are both
4µ + 4,

(iv) the minimum weight of C and that of its shadow are both 4µ + 4.

Proof. Let S be the shadow of C. Then we have

(1) C⊥
0 = C ∪ S = D1 ∪ (C⊥

0 \ D1) = D2 ∪ (C⊥
0 \ D2).

A self-dual code of length 24µ + 16 has minimum weight at most 4µ + 4. The
minimum weight of the shadow of an extremal singly even self-dual code of length
24µ + 16 is at most 4µ + 4 [2]. By the Delsarte bound, the covering radius of an
extremal doubly even self-dual code is at most 4µ + 4. By these bounds, each part
of the three decompositions (1) of C⊥

0 has minimum weight at most 4µ + 4. We
then see that each of the three assertions (ii)–(iv) are equivalent to (i).

The following proposition characterizes the Delsarte bound for extremal doubly
even self-dual [24µ + 16, 12µ + 8, 4µ + 4] codes.

Proposition 4. If D is an extremal doubly even self-dual [24µ+16, 12µ+8, 4µ+4]
code with covering radius 4µ + 4, then D has an extremal singly even self-dual
[24µ + 16, 12µ + 8, 4µ + 4] neighbor whose shadow has minimum weight 4µ + 4.
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Conversely, if C is an extremal singly even self-dual [24µ + 16, 12µ + 8, 4µ + 4]
code whose shadow has minimum weight 4µ + 4, then the two doubly even self-dual
neighbors of C are both extremal doubly even self-dual [24µ + 16, 12µ + 8, 4µ + 4]
codes with covering radius 4µ + 4.

Proof. Suppose that D is an extremal doubly even self-dual [24µ+16, 12µ+8, 4µ+4]
code with covering radius 4µ + 4. Then there is a coset w + D of weight 4µ + 4.
Define C0 by C0 = (D ∪ (w + D))⊥. Then Lemma 3.1 implies that the singly even
self-dual code C containing C0 is an extremal neighbor of D whose shadow has
minimum weight 4µ + 4. The converse is immediate from Lemma 3.1.

4. Length 64

In this section, we determine the covering radii of some known extremal doubly
even self-dual codes of length 64.

It is known that there are precisely four inequivalent extremal doubly even self-
dual [64, 32, 12] codes constructed from symmetric 2-(31, 10, 3) designs [13]. The
design No. 2 in [19] gives rise to a code D with the largest automorphism group
among the four codes. There are exactly 45 (resp. 21) inequivalent pure (resp.
bordered) double circulant extremal doubly even self-dual codes of length 64 [8].
These codes are denoted by P1, . . . , P45 (resp. B1, . . . , B21) in [8]. We determine the
covering radii of these codes as follows. Due to computer time limitations, we have
only been able to accomplish our search in extremal doubly even self-dual codes
with relatively large automorphism groups.

By the Delsarte bound, the covering radius of an extremal doubly even self-
dual code of length 64 is at most 12. By modifying the method in [15], we have
verified that there is no coset of weight 12 for the codes D, P1, . . . , P45, B1, . . . , B21.
Similarly, we have found a coset of weight 11 for the codes D, Pi and Bj where

i ∈ ΓP = {3, 4, 8, 10, 11, 13, 15, 16, 20, 23, 24, 25, 30, 33, 35, 41, 43},

j ∈ ΓB = {1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 21},

and there is no coset of weight 11 for the remaining codes. Moreover, we have found
a coset of weight 10 for the remaining codes. Hence we have the following:

Theorem 4.1. The covering radii of the codes D, Pi Bj are 11 for i ∈ ΓP and
j ∈ ΓB. The covering radii of the codes Pi, Bj are 10 for i 6∈ ΓP and j 6∈ ΓB

Theorem 4.1 indicates that there are many extremal doubly even self-dual codes
with covering radius not meeting the Delsarte bound (compare with lengths 40 and
56). Recently an extremal singly even self-dual [64, 32, 12] code with shadow of min-
imum weight 12 was found in [5], after a manuscript of this note was first circulated.
By Proposition 4, this leads to an extremal doubly even self-dual [64, 32, 12] code
with covering radius 12. We do not know whether there exists an extremal doubly
even self-dual [64, 32, 12] code with covering radius 9.

By Corollary 2 to Theorem 1 in [1], the cosets of weights 11 and 12, if there are
any, have unique weight enumerators. The unique weight enumerator for weight 11
is:

312y11 + 6392y13 + 74512y15 + 640272y17 + 4060312y19 + 19150296y21

+ 68319936y23 + 186730176y25 + 394257136y27 + 646744176y29

+ 827500128y31 + · · ·

Advances in Mathematics of Communications Volume 1, No. 2 (2007), 251–256
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(see [5] for weight 12).
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