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Abstract 
For a class of parallel-link manipulators we develop 
a general formulation of the equation of motion, 
suitable for parallel computations. W e  analyze the 
torque requirement when moving through various self- 
motion type singularities on a path generated under 
the singularity-consistent framework. The formula- 
tion contributes mainly to the analysis of a singularity 
which is typical for parallel robots only, known from 
previous studies as LLovermobility. '' W e  show that if 
the dynamics of the system is taken under considera- 
tion, it is possible to move through such a singularity. 
This analysis motivates the introduction of the con- 
cept of dynamic singularity consistency. As  a com- 
prehensive analytical example we use a jive bar robotic 
mechanism. 

1. Introduction 
A considerable attention in literature has been paid 
to analyzing singularities of serial-chain robotic mech- 
anisms. In comparison, there is only a limited num- 
ber of works that analyze singularities of parallel-chain 
robotic mechanisms [1]-[6]. As far as path planning 
and control around singularities is concerned, only a 
few papers are available regarding serial-link manipu- 
lators, and there is almost no discussion on this topic 
for parallel-link devices. 

In our previous work [7], [8] we proposed the 
singularity-consistent path tracking approach which 
guarantees stable motion of a nonredundant robotic 
mechanism following a pre-specified path that can pass 
close to, or through, some singularities. In our recent 
work [9], [lo] we applied successfully the above ap- 
proach to parallel-link manipulators. Especially, we 
have shown that it is possible to generate feasible 
paths that would reconfigure the mechanism moving 
thereby through a so-called instantaneous self-motion 

singularity. This has been also experimentally verified 
at  our lab with the fast 6 DOF HEXA parallel robot 
[5], [ll]. Other types of singularities, such as dual self- 
motion and bifurcation, have been also discussed, but 
the feasibility of motion through them remains to be 
studied. 

The aim of this paper is to introduce a dynamics for- 
mulation within the singularity-consistent path track- 
ing framework. This will allow us to accomplish the 
necessary feasibility study in terms of torque require- 
ments during the motion close to, or through, the sin- 
gularity. Thereby, we shall focus especially on the dual 
self-motion singularity. 

The paper is organized as follows. In section 2, we 
present some background on the singularity-consistent 
formulation for a parallel-link robot. The equation of 
motion is derived in section 3. Discussion on singu- 
larity consistency from dynamical viewpoint can be 
found in section 4. An analytical example is presented 
in section 5. Results from a computer simulation are 
given in section 6. Finally, the conclusion can be found 
in section 7. 

2. Singularity- Consistent 
Kinematic Formulation for Parallel 
Robots : Background 

It is well known that the kinematic function of a par- 
allel robot is represented as an implicit smooth vector- 
valued function 

P(P, 8,) = 0, (1) 

reflecting the physical phenomenon of a closed kine- 
matic chain [l], [12]. In the above notation 8, E Rn 
denotes the coordinates of the active joints (the actu- 
ated joints), and p E R" stands for the output-link 
coordinates'. 

'We consider only non-redundant systems. 
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Velocity-based control of parallel-link manipulators 
utilizes the following equation, obtained after differ- 
entiation of eq. (1): 

D,CP(P, + D ~ C P ( P ,  @,)ea = 0, (2) 

where 2) denotes the differential operator. In coordi- 
nate form, both differential mappings V,cp and Vscp 
are represented by n x n matrices. Velocity-based con- 
trol after the above equation degrades severely when- 
ever any of the above mappings, or both, become ill- 
conditioned. 

To avoid the above drawback, we proposed a re- 
formulation of the kinematics under the assumption 
that the output-link path can be parameterized [9]. 
Suppose that p = y(s) is the parameterization, where 
y : 8 --+ 8n is a smooth function and the parameter 
s is not time. Then, the kinematic function is rewrit- 
ten as: 

cp(Y(S), @a) = 0. ( 3 )  

D~CP(Y(S) ,  0,)s + Vecp(y(s), @,)e,  = 0, (4) 

where the mapping D,cp = ( df d i  ... d i  ) is 
an n-dimensional vector-valued function, whereas the 
mapping VQ(P is represented by an n x n matrix. It is 
apparent that with this representation, the system’s 
dimension is decreased, as compared to the dimension 
of the “conventional” equation (2). 

For convenience of notation, we augment the active- 
joint space by the path parameter s: 

After differentiation, we obtain 

T .  

T 
Q = (,,e:) ( 5 )  

and rewrite eq. ( 3 )  as 

where 77 : W+’ -+ !Rn is smooth because it is com- 
posed of two smooth mappings. Let us introduce a 
linear local model at q: 

where the tangential space mapping Dqq is composed 
of D,(p and D6(p2. In fact, we arrived at  a homoge- 
neous n x (n  + 1)-dimensional system. A set of solu- 
tions exists, that can be represented as follows: 

‘When not misleading, we shall omit functional dependence. 

where b is an arbitrary scalar, and U E Xn+’ is the 
so-called null space function. The system ( 8 )  repre- 
sents an autonomous dynamic system [13]. We point 
out that the formulation of the type (8) is easily im- 
plemented for path planning and control, as shown 
in our previous work [7], [8]. Since b is arbitrary, 
it can be determined from the desired motion veloc- 
ity, as a function of time. The system is decoupled 
in terms of direction of motion, represented by the 
null space function U, and velocity, represented by the 
scalar variable b. 

For a large class of parallel-link manipulators 
including spatial, such as the HEXA robot, as 
well as planar ones, such as the five bar mech- 
anism used as the analytical example below3, we 
have ’Dep =diag( d f l  d&, ... d!n ).  Then, the 
column-augmented system matrix becomes 

whereas the null space function is 

Note that the division by df% in the U, term is used for 
convenience of notation only. 

Based on the above formulation, a comprehensive 
classification of singularities has been proposed. These 
include 

instantaneous self-motion singularities; 
dual instantaneous self-motion singularities; 
two types of bifurcation singularities. 

Under certain conditions, the instantaneous self- 
motion may become continuos self-motion. More de- 
tails can be found in [9], [lo]. 
3. Equation of Motion 
Without loss of generality, we shall assume here that 
the parallel-link manipulator comprises of n serial 
chains, each of them having one active joint and n - 1 
passive joints, such that the system is statically de- 
termined at a non-singular configuration. There are 
numerous examples that can be described with such a 
notation including both spatial (e.g. Stewart-platform 

3See [l] for other examples. 
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type manipulators and HEXA type ones [ 5 ] ) ,  as well 
as a number of planar closed-loop mechanisms. 

We denote the joint coordinates of chain i as cPz = 

( flail 0; ) , where subscripts a and p stand for ac- 
tive and passive, respectively. The serial chain i exerts 
the wrench w, on the output link. Thus, the equation 
of motion can be written as 

T 

( i  = 1, ..., n) ,  

subject to 

5 W t  =o .  (11) 
2 = 1  

The notations M ,  C ,  G and J denote parts of the in- 
ertia matrix, vector of Coriolis and centrifugal forces, 
gravity forces, and the Jacobian matrix of the respec- 
tive serial chain. T,, is the joint torque which is to 
be determined. The constraint (11) has been imposed 
under the assumption that the mass of the output link 
is distributed and attached to each of the serial chains. 

Although the wrenches w,,(i = 1, ..., n) do not 
have to be known explicitly, we shall follow here a 
straightforward procedure that determines them from 
the lower “p” part of eqs. ( lo),  and using the con- 
straint (11). This yields a system of n2 equations in 
n2 unknowns. The solution of this system (i.e. U),) is 
then substituted into the upper “a” part of eqs. (10) 
to finally obtain the torque. The advantage of this ap- 
proach is twofold: (1) parallel computation is possible, 
and (2), dynamic singularities can be easily identified. 

There are several possibilities for solving the above 
mentioned n2 x n2 system. To support computational 
parallelism, we shall first derive the set of possible 
wrenches applied through the passive joints of each 
serial chain. Note that each lower 91” part represents 
the following underdetermined (n - 1) x n system: 

DP% = J,T,(4,)W%, (12) 

where 

D p i  = Mpi(+i)&i + C p z ( 4 i i  &i )  + G p i ( 4 i )  (13) 

stands for the passive-joint dynamics. The set of pos- 
sible wrenches for chain i is 

where wiit; denotes a particular solution, ui is an ar- 
bitrary scalar, and ni($i) stands for the null space 
vector of matrix Jp’i. Next, we impose the constraint 
(11): 

n n 

i=l i = l  

which results in 

- w = N(4)u ,  (16) 

with w = C~=lwzoz, w(4) = ( nl I ... I nn ), and 
U = (u1, . . . , u , ) ~ .  We shall refer to N ( 4 )  as the null 
space matrix. The last equation is solved for U. There- 
after, each U, is substituted into eq. (14), and the cor- 
responding wrench w, is obtained. 

The computational advantage of this approach is 
obvious: instead of solving an n2 x n2 system, we solve 
n + l  equations of dimension n x n .  n of those equations 
can be solved in parallel. The determination of the 
null space vector and the particular solution in eq. (14) 
requires approximately the same number of operations 
as needed for the inversion of an n x n matrix. 

The procedure for calculating the torque is sum- 
marized as follows. First, we derive the active-joint 
acceleration 8,. For this purpose we employ the au- 
tonomous equation (8) derived in the previous section 
under the singularity-consistent framework. As men- 
tioned, b is considered to be a function of the desired 
velocity on the path, and hence, it is time dependent. 
Differentiating eq. (8) with respect to time, we obtain 

q = &(t)v(q)  + b(t)i/(q). (17) 

q includes the active-joint acceleration. Second, we 
integrate numerically e, twice to obtain the respec- 
tive velocity and position. Thereafter, from the kine- 
matic function of the parallel robot, we derive the 
passive-joint position vector 8, , which is differentiated 
twice to obtain the respective velocity and accelera- 
tion. Next, the wrenches are obtained as described 
above. The procedure is completed by substituting 
the values obtained into the upper “a” part of eqs. 
(lo), and deriving the torques. 

4. Singularity-Consistency from the 

The procedure outlined in the previous section in- 
volves the inversion of matrix N ( 4 )  which is sensitive 
to  singularities. We note, however, that analyzing just 
the singularities of this matrix is not sufficiently. Ob- 
viously, eq. (16) will deliver a feasible solution for vec- 
tor U and hence for the torque, whenever this equation 
is consistent, and despite the fact that matrix N ( 4 )  

Viewpoint of Dynamics 
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is singular. Therefore, one should analyze eq. (16) in 
terms of consistency. Since vector w which appears on 
the left side, includes the passive-joint dynamics terms 
Dpz,  we conclude that the consistency depends upon 
the dynamics. That is why we speak about a spe- 
cial type of singularity, which can be termed dynamic 
singularity of parallel-link manipulators. 

We shall use the dynamic singularity notation to 
analyze for motion feasibility through the self-motion 
type singularities (direct task), defined in our previous 
work [9], [lo]. Another potential application would be 
path planning, in terms of joint positions and their 
derivatives, to allow for feasible motion through var- 
ious types of singularities (inverse task). The latter 
goes beyond the scope of this paper and will be dis- 
cussed elsewhere. 

5. Analytical Example: A Five Bar 

Let us consider a five bar mechanism as in Figure 1. 
Point T is the end-point, a,, 1, and m, denote the 
distance from the origin to the active joint, the arm 
length, and the rod length, respectively. Further on, 
we assume that the end-point has to track a straight- 
line path, parameterized as: 

Robotic Mechanism 

where s is the path parameter, y denotes the (con- 
stant) inclination angle of the path, and pinit denotes 
the end-point coordinates at  the initial position. The 
derivation of the kinematic relations can be found in 
the appendix. 

The null space function of the five bar mechanism 
is obtained as 

The singularity analysis of this function revealed the 
existence of several types of singularities [9], [lo]. In 
this paper, we shall perform the dynamic analysis with 
regard to only self-motion type singularities. More 
specifically, it has been shown that whenever: 

either the left or the right kinematic subchain is 
extended, one of the elements d!i, (i = 1,2)  van- 
ishes, yielding the so-called instantaneous self- 
motion type singularity. The end-point must 
pause, since the first element of the null space 
function vanishes (WO = 0). It is easily seen that 
with proper path definition, 3w; # 0, (i = 1,2) .  

the two links adjacent to the end-point are 
aligned, both elements d f ,  (i = 1,2) are zero, 
yielding the so-called dual self-motion type sin- 
gularity, when the active joints are motionless 
(Vwi = 0, (i = 1,2))  but the velocity of the 
end-point is non-zero (WO # 0), either instanta- 
neously, or continuously. 

T 0 actuated joint passive joint 

Figure 1. The five bar mechanism. 

It is straightforward to derive the time derivative of 
the null space function, using the following expressions 
(see the appendix): 

d;(q) = 1, sin(y - O,,)O,, - S, 

Ci;,(q) = i,{~,,[k, COSe,, - s c ~ ~ ( y  - e,,) 

(20) 

and 

z n z t  - p2 sin O,,] + 3 sin(y - e,,)}. (21) 

Next, we consider the analysis for dynamic singu- 
This completes the kinematic derivations. 

larities. For each of the two serial chains we have 

(22) T J,, = m, ( -sin4, cos4, ) , 
where 4, = e,, + O p z .  

tained using the pseudoinverse of the above matrix: 
Particular forces acting at  the end-point are ob- 

The null space is also easily derived as 

n, = ( cos$, sin$, l T .  (24) 

Dynamic singularities will be analyzed for by looking 
at  the consistency of 

D sin $1 + + sin 4 2  

- cos $1 - m2 d P 2  cos $2 I =  
1230 
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sin41 sin42 ] [ zt ] * [ (25) 

Whenever the above system is consistent, a proper 
solution for uu.1,~~ can be obtained, and the actual 
forces at the end-point will be 

w, = (-1)+1(?& +utn,). (26) 
These forces, substituted into the upper part of the 
equation of motion, yield directly the joint torque. We 
point out again that the whole procedure runs in par- 
allel, except when solving the system (25), which is 
just an 2 x 2 one. 

6. Computer Simulation 
The geometry of the mechanism is: 1, = a, = 1 m, 
m, = 1.12 m. We assume that the links do not have 
any inertia, and three mass points are assigned to the 
passive joints as: one at  the end-point (1 kg), and two 
at the passive joints (0.01 kg). We assume also that 
the linkage is in a horizontal plane, and thus gravity 
terms are eliminated. The desired path is a straight- 
line segment with constant slope. The desired path 
velocity is specified by a constant b = 1. In this case, 
the velocity of the end-point is obtained “naturally”, 
from the curvature of the straight-line-path-induced 
manifold in augmented joint space. 

In the first simulation the initial configuration has 
been selected as 6Jlyzt = -$ rad, pin’’ = 0 m, pinzt = 
-1.5 m. The desired-path slope angle is y = 
rad. We have studied this sample motion in terms 
of velocities, in our previous work [9], [IO]. Figure 
2 shows the result. It is seen that the mechanism 
moves through several singular configurations. These 
are self-motion type singularities: (1) denotes the con- 
ventional self-motion, while (2) stands for the dual 
self-motion. First, from the torque graph we see that 
around the dual self-motion singularity discontinuos 
torque are generated. These are obviously not due 
to  kinematic singularities, since all velocities are very 
smooth (and also the accelerations, of course). As ex- 
pected, the reason is the singularity of the null space 
matrix n and the inconsistency of eq. (25). We can 
conclude that the motion through the dual self-motion 
singularity on that particular path is not feasible. Sec- 
ond, it is seen that at  the conventional self-motion sin- 
gularities (1) no excessive joint torque are required, 
and hence, the motion through this type of singular- 
ity is feasible. This has been also confirmed from our 
initial experimental results with the HEXA parallel 
robot [14]. 

In the second simulation the desired-path slope an- 
gle is modified as y = $ rad. This results in symmet- 
rical motion of both chains, leading to the alignment 

2 

1.5 

1 

0.5 

0 

-0.5 

-1 

velocities [radk] 

time [SI 
torques [Nm] 

15000 
joint 1 - 
joint 2 ....... 

10000 I 

-15000 ‘ 
0 2 4 6 8 1 0 1 2 1 4  

time [SI 
determinant of the null space matrix 

02 

0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

-1.2 

-1.4 I 
0 2 4 6 8 1 0 1 2 1 4  

time [SI 

Figure 2. Motion along a straigh-line path with 135 
deg inclination. 

of the rods (see Figure 3). The configuration repre- 
sents a dual self-motion singularity in terms of instan- 
taneous motion. As seen from Figure 3, the velocities 
are not excessive, and hence, the discontinuos torque 
are due to the dynamic singularity. Analyzing this sin- 
gularity with physical arguments, it is clear that the 
actuators are not able to generate the necessary end- 
point forces to support the motion on the desired path. 
The only thing which can be done at  the singularity 
is just switching the sign of the (maximum) torque. 
In practice this might be enough to move through the 
singularity. 
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In the final simulation the initial configuration is 
modified with pinzt = -0.5 m. Following the same 
desired-path slope as in the previous case, the link- 
age encounters another type of singularity, with the 
two rods overlapping. This is a dual self-motion sin- 
gularity in terms of continuous motion. The results 
are shown in Figure 4. It is interesting to note that no 
excessive torque are required, and the mechanism can 
move smoothly trough the singularity. This demon- 
strates the dynamic consistency condition, despite of 
the singularity of the null space matrix. The joint 
torque are able to fully support the motion of the end- 
point on the specified path. 

7. Conclusion 
We developed a general formulation of the equation of 
motion of a parallel robot, suitable for parallel com- 
putations. Using this formulation, we analyzed the 
torque requirement when moving through various self- 
motion type singularities on a path generated under 
the singularity-consistent framework. The formula- 
tion contributes mainly to the analysis of a singularity 
which is typical for parallel robots only, known from 
previous studies as "overmobility." We have shown 
that if the dynamics of the system is taken under con- 
sideration, it is possible to move through such a sin- 
gularity. This analysis motivated the introduction of 
the concept of dynamic singularity consistency. 

Appendix 
The i-th element of the kinematic function of the five 
bar mechanism is derived from the geometrical rela- 
tion for the i-th kinematic chain: 

08 

06 

04 

0 2  

0 

-08 

1 

where q = (s, e,,, 0 , 2 ) T  is the augmented joint space 

- 
- 
- 
- 
-~ 

l i ! /  - 

(-l)'-'u, + I ,  coS6,, vector, b, = I, sin 0,, 1 denotes the 

vector from the origin to the passive joint connecting 
the arm and the rod. 

Next, we derive the tangential space mappings VD,q 
and Dsq: 

and each element is 

d t ( q )  = k,  cosy + I ,  COS(? - 0,%) - s - pinzt sin 7, (29) 

where k,  = (-l)"-'az - ~ 4 ~ ' ~ .  On the other hand, we 

m &3 
(2) 

velocities [radisl 

-200 I I 
0 0 1  0 2  3 3  : A  0 5  0 6  C -  0 8  

t-762 is] 
d e t e n r t m  I fE -&@I space matru: 

I ,  I 

Figure 3. 
motion singularity. 

Motion through instaratmeam d u d  s l f -  

have 

w 
and 

&(q  Y = l l (k t  sin 6,: - 5 xn(y - 0,, - $'- cos 0,, . 

(3: 
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