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Abstract 

W e  apply our  newly proposed singularity-consistent 
path tracking approach to  nonredundant  parallel-link 
manipulators.  W e  analyze the singvlarit ies of such 
mech.anisms, assuming that the output-l ink m,oves o n  
a predef ined and parameterizable path. Especially, we 
focus o n  the so-called instantaneous self-motion type 
singularity. W e  propose a closed-loop controller that 
guarantees asymptotic stability when  t r a c k i q  paths 
through such a singularity. A s  a comprehensive an-  
alytical example we use  a planar f ive bar mechanism.  
A computer simulation s tudy  i s  also presented, using 
the same  example, as well as a H E X A  parallel robot 
structure. 

1. Introduction 

A considerable attention in literature has been paid 
to analyzing singularities of serial-chain robotic mech- 
anisms. In comparison, there is only a limited num- 
ber of works that analyze singularities of parallel-chain 
robotic mechanisms [l], [2]-[4], [8], [12], [13]. As far 
as control around singularities is concerned. only a 
few papers are available regarding serial-link manipu- 
lators, aid there is almost no discussion on this topic 
for parallel-link devices. 

Recently we proposed a new method for path plan- 
ning and control of serial link manipulators, around. 
and at singularities, called szngularzty-consastent path 
tractzng [ 5 ] ,  161. We have shown that while tracking 
paths passing through singularities of a generic robotic 
mechanism, it is generally possible to  achieve stability. 
and at some specific singularities even asymptotic sta- 
bility can be guaranteed. In this paper me show that it 

is straightforward to apply the singularity-consistent 
formulation t o  parallel link manipulators. 

The paper is organized as follows. In section 2: 
we derive the singularity-consistent equations for a 
parallel-link manipulator. Singularity analysis from 
the viewpoint of predefined path tracking capability 
is presented in section 3. An analytical example is 
shown in section 4. A closed-loop controller is pro- 
posed in section 5 .  Results from a computer simu- 
lation. including a planar and a spatial example, are 
given in section 6. Finally, a discussion and conclusion 
can be found in section 7. 

2. Singularity-Consistent Kinemakic 
Formulation for Parallel Robots 

It is well known that  the kinematic function of a 
parallel robot is represented as an implicit smooth 
vector-valued function 

V(P, 0)  = 0, (1) 

reflecting the physical phenomenon of a closed kine- 
matic chain [l], 1111. In the above notation 0 E !Rn 
denotes the coordinates of the active joints (the actu- 
ated joints). whereas p E %Iz” stands for the output- 
link coordinates‘. 

Velocity-based control of parallel-link manipulators 
utilizes the following equation. obtained after differen- 
tiation of eq. (1): 

DD,cp(P; @)P+%V(P, @)Q = 0, (2) 

where 2, denotes the differential operator. In coordi- 
nate form, both differential mappings ’DPp and V~cp 

‘We consider only non-redundant systems 
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are represented by n x n matrices. Velocity-based con- 
trol after the above equation degrades sevlerely when- 
ever any of the above mappings, or both, become ill- 
conditioned. 

In this paper, we propose a new formulation of the 
velocity equation to avoid the above drawback. Sup- 
pose that the output-link path call be parametrized 
as p = 7 ( s ) ,  where 7 : 3' -+ is a smooth function 
and the parameter s is not, time. Then, the kinematic 
function is rewritten as: 

After differentiation, we obtain 

T 
where the mapping V,p = ( ds d; ... d i  ) is 
an n-dimensional vector-valued function, whereas tlie 
mapping Dop is represented by an n x n matrix. It 
is apparent that  with this representation, system di- 
mension is decreased, as compared to  the dimension 
o,f the "conventional" equation (2). 

For convenience of notation, we augment the active- 
joint space by the path parameter s: 

q = (s ,  ( 5 )  

and rewrite eq. (3) as 

where 77 : S R n f l  ---f Xn is smooth because it is com- 
posed of two smooth mappings. Let us introduce a 
linear local model a t  q: 

(7) 

where the tangential space mapping Dqq is composed 
of Ds7 ,  the gradient function for 7, and the tangen- 
tial space mapping Z > S p  of the kinematic function'. 
In fact, we arrived a t  a homogeneous n x (n  + 1)- 
dimensional system. A set of solutions exists, that  
can be represented as follows: 

4 = Wq), ( 8 )  

where b is an arbitrary scalar, and U E is the 
so-called nul1 space function [7]. We points out that 
the formulation of the type (8) is easily implemented 
for path planning and control, as shown on our previ- 
ous works [ 5 ] ,  [6].  The arbitrary scalar b can  he deter- 
mined from tlie desired motion velocity. The system is 

'When not missleading, we shall oniitt fiincticinal depen- 
dence. 

decoupled in terms of direction of motion, represented 
by the null space function U, and velocity, represented 
by the scalar variable b. 

At this point, without a loss of generality, 
we shall take advantage of the fact that  for 
a number of parallel-link mechanisms the map- 
ping Dgp is represented in a diagonal form: 
' D g p  =diag( d!' d;2 ... dEn ). Then, the 
column-augmented system matrix is 

whereas the null space fuiiction becomes 

u(q) = (  v, U 1  ... 21, ) T ,  (9) 

n 

1 4i 1 

ds 
U ,  = nd!i, U ;  = - - n d ! ; ,  i = 1 ,..., n. 

Note that the division hy dyi in the ii; term is used for 
convenience of notation only. 

The above representation simplifies the singularity 
analysis considerably, as we shall show in the next 
section. 

3. Singularity Analysis from the View- 
point of Pre-Defined-Path Tracking 
Capability 

Most studies on singularities of robotic mechanisms 
focus on the identification and classification of singular 
configurations in a general sense, without considering 
a specific motion path for the output link. In our re- 
cent works introducing the singularity-consistent tech- 
nique for serial-link manipulators, we took a different 
approach, that  is based on analyzing the singularity 
with regard to the desired end-effector path [5] ,  [7]. 
This approach provides useful insight into the path 
tracking capability a t  the singularity. The analysis re- 
vealed the existence of two types of veloczty relatzons 
a t  a singular point : 

e Type A velocity relation, when the null space 

e Type B velocity relation, when the null space 
function u(q) does not vanish, and 

function vanishes. 

The importance of analyzing for tlie specific veloc- 
ity relation is related to the path tracking capability. 
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In terms of control, Type A relation yields asymptotic 
stability, while tlie stability with Type B relation is 
generally not asymptotic, and hence, special assump- 
tions are to  be made [ 5 ] .  ’iT7e conclude therefore tha t  
besides a general singularity analysis: it  is crucial to 
analyze the singularity for tlie specific velocity relation 
under the pre-defined path condition. 

Next, we shall analyze the singularities of a parallel- 
link manipulat,or. Note that  with regard to  eq. (4). 
a non-singular configuration q would imply the non- 
singularity of both matrices Dsq(q) and Dsv(q). 
With regard to  the column-augmented system and the 
null space function (g), a non-singular configuration q 
implies: 

e V’d;;(q) #O and 3df(q) # 0, i = 1: ..., n. 

On the other hand; a singular configuration q, is 
identified by either of the following four conditions: 

e instantaneous self-motion (S l ) :  3d!i(q,) =O and 

e dua,l instantaneous self-motion (S2): Vd! i (qs )  # 

e bifurcation I (S3): 3d! j (qs)  =O and d; (q , )  = 0: 
e bifurcation 17 (S4): two or more d:;(q,) = 0. 

I t  is apparent that  a t  the first two types of singular- 
ity tlie velocity relation is of Type A. The first singu- 
larity (SI) is an instantaneous self-motion singularity 
since the first element of the null space function van- 
ishes, and the output link must pause. So te  also that  
G ; ( q s )  # o implies Vd:j(qs) # 0, j # i and da(qs) # O. 
This is a codimension 1 singularit,y. 

In case of the second singularity (S2): the motion of 
the mechanism can be considered as a special type of 
“self-motion”, which we call dual in.stantnneous se2f- 
mot ion .  We propose this term, having in mind the 
duality in properties of serial-link and parallel-link ma- 
nipulators [lo], [ll]. In tlie conventional sense, under 
self-motion of a (serial-link) mechanisin it is under- 
stood that  the end-effector is motionless while there is 
some motion in the joints (finite or infinite small). By 
dual self-motion of a parallel-link mechanism we mean 
just tlie opposite situation: the motion of the output- 
link does not imply any motion (finite or infinite small) 
in active-joint space. We note that, with a specific met- 
ric, both types of instantaneous self-mot,ion will yield 
finite self-motion. 

The dual iiistaataneous self-motion singularity de- 
serves special attention. Since the active joints must 
be at rest, obviously the output-link moves only due 
t,o the non-zero velocity in tlie passive joints. In this 
situation, it is essential that tlie actual motion of t,he 

vi (ss> # 0; 

0 and Vdf(qs) = 0; 

output-link follows strictly the parametrized trajec- 
tory in terms of position and velocity. since the mo- 
tion is unobservable. Any deviation from tlie trajec- 
tory will result in an uncontrollable state. In practice, 
due to various reasons, this requirement is hardly to  
he met. The discussion on possible approaches to  the 
problpm goes beyond the scope of this paper. 

.it the third and the fourth type of singularity the 
null space function (9) vanishes; the velocity relation 
is of Type B and there is a bifurcation. Bifurcation 
I depends on  d f (qs )  and hence, on the output-link 
path. In other words, a t  the same kinematically singu- 
lar configuration O s ,  there will be either a Bifurcation 
I (Type B) velocity relation, or an instantaneous self- 
motion (Type A) velocity relation, depending on the 
specific output-link path. On tlie other hand, at Bifur- 
cation 11. the rank of the tangential space mapping Vs 
decreases by more than one. There is no dependence 
on tlie output-link path at all. 

4. Analytical Example: A Five Bar 
Robotic Mechanism 

Let us consider a five bar mechanism as in Figure 1. 
lye regard this mechanism as a dual equivalent of a 2R 
planar serial-link arm. which we analyzed in [ 5 ] .  Point 
T is the end-point, 0 = (&.e,)  are the activp joint 
coordinates. a, ,  I ,  and m, denote the distance from the 
origin to  the active joint, arm length. and rod length. 
respectively. Further on, we assume that, the end-p&t 
has to track a straight-line path. parameterized as: 

cosy 
SI11 y p = s [ . ] + p y  

where s is the path parameter, y denotes the (con- 
stant) inclination angle of the path, and pZnZt denotes 
the end-point coordinates a t  tlie initial position. 

The 2-th element of the kinematic function is de- 
rived from the geometrical relation for the i-tli kine- 
matic chain: 

1 denotes the vec- 
(-l)%i + I; cos8; 

1; sin 8; 
where bi= 

-I 

tor from the origin to  the passive joint connecting tlie 
arm and the rod. 

Nest ,  we derive the tangential space mappings D,q 
and Do?: 
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and each element is 

rl:(q) = k; cos -{ + 2; cos(;/ - @i)  - R - p F i f  sin y: (13) 

Lvllere ki = ( - - ~ ) ~ - - l u ~  - pinif. On the other hand, we 
have 

r$i(q) = l i (k ;  sin 8; + s sin(y - 0;) + p F i t  cos (1s) 
The 11~11 space function is finally obtained as 

S o w  it can he easily verified that  whenever: 

0 either the left or the right kinematic subchaiii is 
extended, one of tlie elements d$ is zero., yielding 
singularity of type (Sl). The end-point must 
pause, since the first element of the null space 
function is zero. This represents self-motion in 
the conventional sense. 

0 tlie two links adjacent to the end-point are 
aligned, both elements dB,i = 1 , 2  are zero, 
yielding singularity of type ( S a ) .  This represents 
the dual instantaneous self-motion of the mech- 
anism. 

0 both kinematic subchains are extended (:the pas- 
sive joint angles become zero), both (elements 
d!;, i = 1, 2 are zero: yielding singularity of type 
(S4). This t,ype of singularity represents a sta- 
tionary point of tlie nonlinear system (8). I t  can 
be easily verified that this particular singularity 
of tlie five bar mechanism represents an isolated 
point singularity (there are no real roots, it is 
not a bifurcation). 

I t  is seen that the majority of the singularities 
of the five-bar parallel-link robotic mechanism are 
characterized with Type A velocity relation This 
means that using tlie singiilarity-consistent formula- 
tion, Hin,em,atic control with, a s p p t o t i c  stability would 
be fer/,siblc. This will be sliown in tlie next section. 

5. Closed-Loop Controller 

In designing the closed-loop controller, we shall 
exploit the fact that  the kinematic functioii of tlie 

I 

@ actuated joint passive joint 

Figure 1. The five bar mechanism. 

parallel-link manipulator is an implicit one. and is 
written as in eq. (6). 11-e define a system error as 
e = q(q). This error includes the path tracking error 
implicitly. Further on, we use the following Lyapunov 
function candidate: 

where A is a positive definite gain matrix. Noting 
tha t  15 = ( V q ~ ) q ,  and substituting into tlie derivative 
of the Lyapuiiov function, we obtain 

Sext .  let 

where (o)+ denotes tlie pseudoinverse. With this 
choice of q, and a nonsingular matrix V,v, the system 
will be asymptotically stable because of the negative- 
ness of tlie derivative (18). We note that a nonsingular 
matrix V,q implies a regular point or an instanta- 
neous self-motion type singularity. 

The striictiire of this closed-loop controller is de- 
picted in Figure 2. 

6. Computer Simulation 

\Ye shall examine the performance of the proposed 
technique through computer simulation, using the five 
bar robotic mechanism from the analytical example, 
as well as a model of the HEXA parallel robot [8] ,  
[9]. In both cases, the closed-loop controller from the 
previous section is applied. 
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desired manipulator 

I 

Figure 2. The closed-loop controller. 

6.1. The Five Bar Robotic Mechanism 

The geometry of the mechanism is: I ,  = a ,  = 1 
m, m, = 1.12 in. The initial configuration has been 
defined by etnZt  = -5 rad, pinZt = 0 m, pinat = -1.5 
m. The desired path is a straight-line segment with 
constant slope angle y = rad. In the augmented 
joint space, this path induces a manifold represented 
by a closed-curve. as already pointed out.  Figure 3 vi- 
sualizes this curve mapped onto the active-joint space 
and onto the passive-joint space. 

The desired path velocity is specified by a constant 
b = 1. In this case, the velocity of the end-point is ob- 
tained "naturally", from the curvature of the straight- 
line-path-induced manifold in augmented joint space. 
The duration is set t o  14 s, which results in a full- 
cycle motion. The straight-path segment is traversed 
several times (see Figure 4) .  The mechanism moves 
through both types of instantaneous self-motion singu- 
larities3, including the dual instantaneous self-motion 
singularity ( 2 ) .  This demonstrates the fact tha t  the 
algorithm does not deteriorate, and delivers a proper 
active-joint velocity solution. Motion "through" the 
instantaneous self-motion singularities (1) is possible. 
since the end-point velocity becomes zero. whereas the 
active- and the passive-joint velocity of the extended 
chain are nonzero. At those singularities the end-point 
reverses the direction. On the other hand, motion 
"through" the dual instantaneous self-motion singu- 
larities (2) might be possible4, since both active-joint 
velocities are zero. whereas the end-point velocity and 
the two passive-joint velocities are continuous. The 
two system errors as defined in the previous section. 
are depicted in Figure 5 .  

3The type of the singularity is indicated with numbers. 
4Study on the dynamics of motion is necessary to clarify- t,his 

possibility. 

Figure 3. Closed-curve mappings of the straight-line 
path. 

velocities [rads], [m/s] 
2 

1 5  

I 

0 5  

0 

-0 5 

-1 

1 -1.5 1 
-2 I 

0 2 4 6 8 1 0 1 2 1 4  
time [SI 

Figure 4. Motion along a straigli-line path with 135 
deg inclination. 

6.2. The HEXA Parallel-Link Robot I 

The HEXA robot has been studied in our recent 
works (81. [9]. where the reader can find the main ge- 
ometrical and kinematical parameters. This is a very 
fast six DOF parallel-link robot (Figure 6). \Ye ap- 

system errors [m'm] 

#1 - fi; 0.006 

#2 ....... ; 
i': 

0.005 / I  : i  : j  
I ,  

0.004 1 
I .  

0.003 

0.002 

0.001 

0 

-0.001 

-0.002 ' I 
0 2 4 6 8 1 0 1 2 1 4  

time [SI 

Figure 5. System errors. 
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ply tlie technique suggested in this paper to  the robot. 
The desired output-link path is specified as a straiglit- 
line. The initial position of tlie out,put-link ir; selected 
as -0.704 m along the vertical axis, while the orienta- 
tion is +0.128 rad around that axis. This initial con- 
figuration has been chosen to  guarantee robot motion 
only through instantaneous self-motion type singular- 
ities, while the output link moves along a path parallel 
to tlie horizontal z axis. The duration of the :motion is 
10 s. Basically, the motion is performed with constant 
scaling factor h = 3 x lo6. This value was determined 
experimentally in order to obtain realistic joint veloci- 
ties. Only during the initial/fiaal 2 s of the mlotion, we 
use a fifth order polynoinial for h in order to  guarantee 
smooth acceleration/deceleration. 

Simulation results are shown in Figure 7. [t is seen 
that while the path parameter s is a t  its maximum, 
the diagonal element d& moves through zero, indi- 
cating an instantaneous self-motion type singularity. 
Around this singularity, the output-link is obviously 
a t  rest (constant s). Motion continues smoothly, while 
the output-link reverses direction. Later on, the robot 
miters another singularity of the same type, with re- 
configuration of the second kinematic chain (d!, goes 
through zero). The (active) joint angles and velocities 
are also displayed in the figure. 
note that motion “through” each 
by using only one of the motors. 

It is interesting to  
singularity is done 

7. Conclusion and Discussion 

In this paper, the newly proposed singularity- 
consistent path tracking approach has been app l id  
to  nonredundant parallel-link manipulators. We ana- 
lyzed tlie singularities of such mechanisms, based on 
the new formulation. Especially, we focused on the in- 
stantaneous self-motion type singularity. A controller 
has been proposed, that guarantees asymptotic sta- 
bility when tracking paths through such a singularity. 
As a comprehensive analytical example we used the 
planar five bar mechanism. The same example was 
studied with computer simulation. The theoretical 
results have been confirmed through another simula- 
tion using the HEXA parallel robot structure. hfean- 
while, successful experimental verification has been 
done with HEXA. The results will be reported else- 
where. ’CVe note that computational requirements are 
not demanding. since the null space function is easily 
calculated. 

In this work we have also shown that  theoretically 
it is possible to  move through the dual instantaneous 
self-motion singularity as well. In order to  evaluate 
the feasibility for practical implementation, study 011 

the  motor-torque requirement is necessary. Finally, 
further study on the bifurcation-type singularities is 
needed, both from a theoretical and from a practical 
viewpoint. 
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Figure 7. HEXA simulation results. 
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