
Finding Subsets Maximizing Minimum Structures

著者 徳山  豪
journal or
publication title

SIAM journal on discrete mathematics

volume 12
number 3
page range 342-359
year 1999
URL http://hdl.handle.net/10097/46866

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235941847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


FINDING SUBSETS MAXIMIZING MINIMUM STRUCTURES∗
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Abstract. We consider the problem of finding a set of k vertices in a graph that are in some
sense remote. Stated more formally, given a graph G and an integer k, find a set P of k vertices for
which the total weight of a minimum structure on P is maximized. In particular, we are interested in
three problems of this type, where the structure to be minimized is a spanning tree (Remote-MST),
Steiner tree, or traveling salesperson tour.

We study a natural greedy algorithm that simultaneously approximates all three problems on
metric graphs. For instance, its performance ratio for Remote-MST is exactly 4, while this problem
is NP -hard to approximate within a factor of less than 2. We also give a better approximation
for graphs induced by Euclidean points in the plane, present an exact algorithm for graphs whose
distances correspond to shortest-path distances in a tree, and prove hardness and approximability
results for general graphs.
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AMS subject classifications. 58Q25, 05C85, 05C05

PII. S0895480196309791

1. Introduction. Let G[P ] denote the subgraph of a graph G induced by a
vertex subset P . We are interested in the following spanning tree (Remote-MST)
problem:

Remote-MST. Given a complete undirected edge-weighted graph
G = (V,E) and integer k, find a subset P of V of cardinality k
such that the cost of the minimum weight spanning tree on G[P ] is
maximized.

We also study the traveling salesperson (Remote-TSP) and Steiner tree (Remote-
ST) problems, where the objective is to maximize the minimum traveling salesman
tour and the minimum Steiner tree of the induced subgraph, respectively. These
problems are illustrated in Figure 1.1.

Minimum weight spanning trees (MST), minimum weight Steiner trees, and min-
imum weight tours (TSP, or traveling salesperson tours) are fundamental combina-
torial structures, and the problems of finding such optimal structures are not only
useful in applications but also a rich source of research on exact and approximate
algorithms. All of these problems consist of finding a subset maximizing the total
weight of edges of minimum combinatorial structures constructed from the subsets.
Except for Remote-ST, these structures are contained in the subgraph induced by
the subset.
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   MST-Remote 4-set 
    and its MST 

Steiner-remote 4-set 
and its Steiner tree

  TSP-remote 4-set 
  and its TSP tour

Fig. 1.1. Remote planar point sets.

From a practical point of view, the Remote-MST (or Remote-ST) k-set of a
network can be viewed as the set of k nodes among which communicating information
is most expensive. Thus, the remote subsets can be applied to the evaluation of the
communication performance of networks.

They can also be applied to clustering problems. Indeed, we originally faced
these problems when trying to find a good “starting tour” of a large TSP instance
(a circuit board drilling problem [19] that occurred at a manufacturing plant) with
more than 10,000 nonuniformly distributed cities. To obtain a short approximate TSP
tour by construction heuristics, it is effective to start with a subtour (starting tour)
consisting of a relatively small number of sample cities capturing the global structure
of the point distribution [20]. For this purpose, random sampling is not suitable,
since it may miss some critical cities, and approximate TSP tours constructed from
the associated starting tour often respond poorly to improvements by local search
heuristics. The exact or approximate Remote-MST and Remote-TSP solutions
seem to give better starting tours.

General framework. The problems under study can be generalized to the
following framework. Let Π be a minimization problem whose solution is a subset
of the edge set satisfying a particular property with respect to a given subset P of
vertices. Let the cost of a solution be the sum of the weight of the edges in the solution.
Let π(P ) denote the minimum cost value for a node set P . We are interested in the
following problem:

Remote-Π. Given a graph G = (V,E) and integer k, find a subset
P of V of cardinality k such that π(P ) is maximized.

Our results. In section 2 we present approximation algorithms for metric graphs,
general graphs, Euclidean graphs, and trees.

Metric graphs are graphs with nonnegative weights that satisfy the triangular
inequality: for any three nodes u, v, w, d(u, v) + d(v, w) ≥ d(u,w). The distance of
the edge (u, v), denoted d(u, v), is the weight of the edge. One example of a metric
graph is the shortest-path distance graph D(G) of a graph G, where the weight of the
edge (u, v) in D(G) is defined to be the weight of the minimum weight path between
u and v of G.

We apply in section 2.1 a known greedy algorithm to obtain simultaneous approx-
imations of all three problems in metric graphs. We obtain performance ratios of 4 for
Remote-MST and 3 for Remote-TSP, both of which are tight for this algorithm,
while the ratio for Remote-ST is at most 3 and at least 2.46.

For Remote-MST in general graphs, we give in section 2.2 an algorithm that
finds a solution within a factor of k − 1 from optimal.
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Table 1.1
Approximability of remote problems.

Π General Metric R2

l.b. u.b. l.b. u.b. u.b.
MST n1−ε k − 1 2 4 2.25
TSP ∞ 2 3
ST 4/3 3 4/3 3 2.16

Euclidean graphs are a special class of metric graphs, where the vertices corre-
spond to points in the plane and the weight of an edge is the Euclidean distance
between the points. The results obtained for the metric case, in combination with
results on the Steiner ratio in the plane, yield asymptotic ratios of 2.31 (resp., 2.16)
for the Remote-MST (resp., Remote-ST) problem.

In section 2.4, we give linear time algorithms for computing Remote-ST and
Remote-MST when the set of edges in G with noninfinity weights forms a tree.

In section 3, we prove approximation hardness results for the three problems. Let
n denote the number of vertices in the input graph. Remote-MST of general graphs
cannot be approximated within a factor of Ω(n1−ε), for any ε > 0, unless NP ⊆ ZPP
(i.e., unless polynomially bounded zero-error randomized algorithms exist for all prob-
lems inNP ). This proof is generalized to the remoteness versions of degree-constrained
subgraph problems, with or without connectivity requirement. These problems include
MST, TSP, minimum weight matching, cycle cover, degree-constrained spanning tree,
and a number of other well-studied problems. For Remote-TSP we can prove a still
harder inapproximability bound, since like the ordinary TSP problem, it cannot be
approximated on general graphs within any ratio, unless P = NP .

On metric graphs, these problems are also NP -hard to approximate within a
factor less than 2. Without loss of generality we may assume that the input to the
Remote-ST problem is a metric graph. We show it to be hard to approximate within
a ratio less than 4/3.

We summarize the main approximability results of the paper in Table 1.1. It
lists the results obtained for each of the MST, TSP, and ST remote problems with
lower and upper bounds for approximability in general graphs, metric graphs, and
Euclidean graphs.

Related work. Problems of maximizing minimum structures have applications
to the location of undesirable facilities. For instance, hazardous facilities like nuclear
plants or ammunition dumps should be located as far from each other as possible to
minimize vulnerability. A not insubstantial body of literature has been developed on
the subject; see [11] for a survey, primarily from a management science viewpoint. The
focus has been on two structures not dealt with in this paper: the minimum weight
of any edge in the k-set and the average, or equivalently the sum, of the weights of
edges between pairs in the k-set. For the former problem, known as the k-Dispersion
problem, Ravi, Rosenkrantz, and Tayi [25] showed that the greedy furthest-point
algorithm obtains a performance ratio of 2 on metric graphs, improving on a weaker
bound of [29]. They also showed that approximating within a factor of less than 2
is NP -hard. Independently, Tamir [27] proved the same upper bound for the same
algorithm (see also [28]).

A dispersion problem with the criteria of maximizing the average distance be-
tween vertices in the k-set was considered by Ravi, Rosenkrantz, and Tayi in [25],
and they gave a different greedy algorithm with a ratio of 4. Hassin, Rubinstein, and
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Tamir [15] gave an algorithm with a performance ratio of 2. Kortsarz and Peleg [17]
considered this latter problem on general weighted graphs, under the name heavy sub-
graph problem, and gave a sequence of algorithms that converges with a performance
ratio of O(n0.3885). While different minimum structures have been proposed in the
location theory literature, we are not aware of work analyzing algorithms for such
problems.

Problems on Euclidean graphs can be regarded as belonging to computational
geometry. The problems of finding a subset with cardinality k of a planar point set
maximizing the perimeter or area of convex hull (minimum perimeter enclosing poly-
gon) of the subset has been studied in the literature and nearly linear time algorithms
are known [2, 3, 7]. However, the authors know no previous results on computing
subsets maximizing other minimum structures.

Problems of finding subsets minimizing the minimum weight of a combinatorial
structure are more common [1, 10, 24, 14]. In particular, the problem of finding the
k-set minimizing the weight of the minimum MST was studied by Ravi et al. [24], who
proved NP -hardness and gave the first approximations. The performance ratios have
recently been improved to 3 for general graphs [14] and 1 + ε for Euclidean graphs
[21, 5].

Chandra and Halldórsson [8] continued the work started in this paper and an-
alyzed a number of other remote problems. In particular, they gave an O(log k)-
approximate algorithm for two problems suggested in a previous version of the cur-
rent paper: computing a k-set maximizing the minimum weight matching, and the
k-defense problem, where the objective π(P ) is

∑
v∈P minu∈P−{v} d(u, v).

Notation. A spanning tree of a node set P is a subtree of G whose node set is
P . A Steiner tree of P is a spanning tree of a superset of P . A tour of P is a cycle
that contains all the vertices of P . The weight of a tree or a tour is the sum of the
weight of the edges in it.

We denote the minimum spanning tree, minimum Steiner tree, and TSP tour of
P by MST (P ), ST (P ), and TSP (P ), respectively. The weights of these minimum
solutions are denoted by mst(P ), st(P ), and tsp(P ). For a graph H, the maximum
cost of MST (P ) over all k-node sets P is denoted by r-mst(H). In general, for
a problem Π and node set P , the minimum structure and the minimum value are
denoted by Π(P ) and π(P ), respectively, and the optimal value of Remote-Π (i.e.,
the maximum weight of the minimum Π-structure) is denoted by r-π(H).

The approximation ratio of an algorithm for Remote-MST on a given input
graph G is the ratio of the largest MST weight of a set of k points to the MST
weight of the k-set output by the algorithm. The same holds for other problems. The
performance ratio ρ of the algorithm is the maximum approximation ratio over all
instances. A problem is approximable within a factor of t if there exists a polynomial
time algorithm for the problem with a performance ratio at most t. A problem Π1 is
as hard to approximate as problem Π2 if an approximation of Π2 within a factor of
f(n) implies an approximation of Π1 within a factor of O(f(n)).

Given a graph G and value γ, the bivalued network HG,γ is a complete graph
on the same vertex set as G, where the weight of an edge is 1 if the edge is in G
and γ otherwise. Let G[P ] denote the subgraph of G induced by a vertex subset P .
Namely, P ⊂ V (G) and E(G[P ]) = {(v, u) | (v, u) ∈ E(G) and v, u ∈ P ⊆ V (G)}.
The distance graph D(G) of a graph G has the weight of an edge (u, v) equal to the
length of the shortest path from u to v in G.
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2. Algorithms.

2.1. Metric graphs. In this section, we assume that G = (V,E) is metric
unless otherwise stated. Let the distance between a node u and a set of nodes be the
minimum distance between u and any node in the set, d(v, P ) = minp∈P d(v, p).

Central to our approach is the concept of an anticover.

Definition 2.1. A set P of vertices p1, p2, . . . is an anticover of a graph if

1. d(pi, pj) ≥ r for i 6= j and
2. mini{d(v, pi)} ≤ r for any node v ∈ V .

The radius of P is the largest value r for which P is an anticover. The size of an
anticover is its number of vertices.

r

Fig. 2.1. Anticover (black points) of size 7 of a Euclidean graph.

An anticover is illustrated in Figure 2.1. An anticover can be constructed effi-
ciently by the greedy furthest-point algorithm [12, 29, 25] given in Figure 2.2.

Greedy(G)
pick an arbitrary node v
P ← {v}
for i ← 2 to k
v ← node in V − P furthest from P
P ← P ∪ {v}

end

Fig. 2.2. The greedy furthest-point algorithm.

It is easy to see that the node set found by Greedy is an anticover of size k and
that its radius is the distance between the node v chosen last and P − {v}.

We apply Greedy to obtain simultaneous constant-factor approximations of the
remote MST, TSP, and Steiner problems. The same algorithm was applied to ap-
proximate the k-Dispersion problem [29, 25] as well as the Euclidean k-clustering
problem [12], indicating a level of universality of this approach and an applicability
to multiobjective computing.

Theorem 2.2. An anticover of size k is a 4-approximation of Remote-MST
and a 3-approximation of Remote-ST and Remote-TSP.

Proof. Let P be an anticover of G and let r denote its radius. Let Q be any set
of k points.
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Any pair of points in P is of distance at least r, so

mst(P ) ≥ (k − 1)r.(2.1)

Each point q in Q is of distance at most r from P ; thus the tree obtained by connecting
Q to MST (P ) via the shortest edge is of weight at most mst(P ) + kr. That is,

st(Q) ≤ st(P ∪Q) ≤ mst(P ) + kr.

The ratio (Steiner ratio) of the weight of an MST of a set of k points to that of its
Steiner tree is at most 2(k − 1)/k. It follows that

mst(Q)

mst(P )
≤ 2

k − 1

k

(
1 +

kr

(k − 1)r

)
≤ 4− 2

k
.

Similarly,

st(P ) ≥ k

2
r

because of the Steiner ratio, and

st(Q) ≤ st(P ∪Q) ≤ st(P ) + kr.

Hence, a performance ratio of 3 follows.
Furthermore,

tsp(P ) ≥ kr.

Connecting each point of Q to its nearest point in P by a pair of directed edges (with
different directions), we can form a tour of P ∪ Q of length at most tsp(P ) + 2kr.
Thus,

tsp(Q) ≤ tsp(P ∪Q) ≤ tsp(P ) + 2kr ≤ 3 · tsp(P ).

The Steiner ratio 2(k− 1)/k holds even if the tree is restricted to be a path; thus
the results hold equally for degree-constrained versions of the problems.

While the analysis of the approximation ratio in Theorem 2.2 obtained by Greedy
appears loose, it is actually asymptotically optimal for both Remote-MST and
Remote-TSP. We give lower bounds on the performance of Greedy that holds for
any choice of the initial starting vertex.

Theorem 2.3. The performance ratio of Greedy for Remote-MST on metric
graphs is asymptotically 4.

Proof. We construct a family of instances for which Greedy is destined to perform
poorly independent of its choice of a starting vertex.

Let Gt be an unweighted graph with vertex set {c, p1, p2, . . . , pt, q1, q2, . . . , qt}.
Let p1, . . . , pt, c be connected into a path, and let each qi be connected to both p1 and
p2. Gt contains no further edges.

Let G′t,z be the graph formed by taking z copies of Gt with a single c vertex
common to all copies (Figure 2.3). Thus we have a connected graph on 2tz + 1
nodes. For convenience, we use notations such as p1-vertex, p-vertex, q-vertex, and
c-vertex. To force the algorithm to prefer the p-vertices, we perturb the distances
between vertices as follows: the lengths d(c, pt) are stretched to 1+2ε and the lengths
d(pi, pi+1) to 1 + ε for i ≥ 1.
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pp

ppc 6 3

2 1

p-vertex q-vertex

p
4

p
5

Fig. 2.3. Lower bound example for Greedy.

The hard instance is the distance graph D(G′t,z) with z sufficiently large. Observe
that the distance between q-vertices in different copies is 2t(1+ ε), while the distances
between p1 vertices is 2t(1 + ε) + 2ε. Thus a p1 vertex is the furthest vertex from any
set of at most z − 1 vertices.

Let k = tz. The set of the first z vertices selected by Greedy contains at least
(z − 1) p1-vertices. Thus, Greedy cannot select a q-vertex adjacent to a selected p1-
vertex. Consequently, the number of q-vertices which Greedy can select is at most
t. Also, Greedy must select the vertex c, whose neighbors are all of distance at least
1 + 2ε. Thus, ignoring the ε terms, mst(P ) ≤ zt+ 2(t− 1) for any set P of k points
selected by Greedy.

Let Q consist of the tz different q-vertices. Let qi and q′i be vertices in different
copies of Gt. Then

mst(Q) = z(t− 1)d(qi, qi+1) + (z − 1)d(qt, q
′
1)

= 2z(t− 1) + (z − 1)(2t)

= 4zt− 2z − 2t.

If z = t, we have that

ρ ≥ mst(Q)

mst(P )
= 4−O

(
1√
k

)
.

Although the above lower bound is applicable only to the solution generated by
Greedy, we conjecture that 4, rather than the lower bound of 2 that we will give in
Theorem 3.4, is the best possible performance ratio for the problem.

One plausible approach for improving on the approximation produced by Greedy is
to postprocess the greedy solution with local improvement changes. Having obtained
an anticover P of radius at most r, it may be possible to move individual points
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further away from the other points. That is, for a point v ∈ P with d = d(v, P −{v}),
there may exist a point u ∈ V − P such that d(u, P − {v}) > d. This would improve
the bounds, using a strengthening of (2.1) to mst(P ) ≥∑v∈P d(v, P −{v})(k− 1)/k.

The hard instances constructed above demolish that hope, since no single point
can be moved further away. These instances can be easily modified to ensure that no
b points can be moved further away, for any fixed b.

Theorem 2.4. The performance ratio of Greedy for Remote-TSP is asymptot-
ically 3.

Proof. Our construction is based on the graphs G′t,z of the preceding theorem.
Assume z is even and consider an arbitrary matching of z copies of Gt into z/2 pairs.
Assign the weight α =

√
t to each edge between each pair Gt and Gt′ . Among these,

we add an additional ε weight to the edges incident on p1-vertices to ensure they will
always be favored.

Our graph G′′t,z is the graph obtained by adding the above edges to the original
G′t,z. Then Greedy selects the same set P as in Theorem 2.3, and there is a tour of P
using edges from MST (P ) as well as z/2 matching edges between p1 vertices. Thus
tsp(P ) = zt+ o(zt). On the other hand, tsp(Q) ≥ 3zt for the set Q consisting of the
q-vertices.

Theorem 2.5. The performance ratio of Greedy for the Remote-ST problem is
at least 32/13 ≥ 2.46.

Proof. Let z = k/2. Let ε be a number less than z−1/2.

Let T be an edge-weighted tree with V (T ) = {c, p, q, u1, u2, r}. Let d(p, u1) =
d(p, u2) = 12, d(p, r) = 7, d(c, r) = 1, and d(r, q) = 5 + ε for a positive real number
ε. We extend this tree by adding edges to obtain a complete graph T ′ in which the
distance between any pair of vertices is the minimum of 16 and the shortest distance
within this tree.

We construct a graph H containing z copies T ′(1), . . . , T ′(z) of T ′. Let the copy
of a vertex v in T ′(i) be denoted by v(i). The vertices c(1), c(2), . . . , c(z) are located
on a path with the distance between c(i) and c(j) is |i − j|z−1/2. Define distH(x, y)
to be the minimum of 16 and the shortest path distance on H.

We extend H by adding edges to obtain a graph G whose distance function is
denoted by distG. distG equals distH within each T ′(i) (i = 1, 2, .., z), while for
vertices v(i) and w(j) in distinct copies of T ′,

distG(v(i), w(j)) =

 distH(p(i), p(j)), v = p, w = p,
min{distG(p(i), p(j))− ε, distH(v(i), p(j))}, v 6= p, w = p,
min{distG(p(i), p(j))− 2ε, distH(v(i), w(j))}, v 6= p, w 6= p.

We can easily check that distG satisfies the triangle inequality. By construction, p(j)
is the node in T ′(j) that is the farthest from p(i) for any i 6= j. Also, if |j−i| > 16z1/2,
then p(j) is the node in T ′(j) that is the farthest from any other node in T ′(i).

Greedy applied to G first selects a node, say c(i0), and then picks all p(j) for which
|j− i0| > 16z1/2. So far, the distance from the farthest node to the current vertex set
is at least 16 + z1/2. Next, it picks at most two nodes (typically, u1(j) and u2(j)) in
each T ′(j) satisfying |j − i0| < 16z1/2.

Now, the distance from the farthest node to the current vertex set is reduced to
12+ε, and the algorithm selects all q(j) for which |j−i0| > 16z1/2. The algorithm has
by now selected k − O(z1/2) nodes; the choice of the remaining O(z1/2) is irrelevant
to our analysis.
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The length of the spanning tree of the output of the algorithm is (13 + ε)z +
O(z1/2). On the other hand, if we pick u1(i) and u2(i) for i = 1, 2, .., z, the length
of the spanning tree is 32z − O(z1/2). Hence, as z goes to infinity, the ratio be-
tween the cost of the optimal solution to that of the greedy solution approaches
32/13 ≈ 2.4615.

The precise determination of the performance ratio of Greedy for Remote-ST
remains an open problem.

2.2. General graphs. We give an approximation algorithm for Remote-MST
on general graphs, with a performance ratio of k − 1.

For a graph G and a positive weight α, define Gα to be the subgraph of G on
V (G) with edges whose weight is less than α.

HeavyEdge(G)
Determine the largest α such that
Gα is not (n− k + 1)-vertex-connected.

Let C be a cutset of Gα of size n− k.
Output P = V − C.

end

The desired α can be found by binary search on the at most
(
n
2

)
different edge-

weights. Since P , the subgraph induced by C, is not connected in Gα, an MST of P
must contain an edge of weight at least α. On the other hand, if edges of weight α
are added to Gα, any k-set must be connected. Thus,

r-mst (G) ≤ (k − 1)α ≤ (k − 1)mst(P ).

Corollary 2.6. HeavyEdge has performance ratio of k− 1 for Remote-MST.
For the Steiner tree problem, it suffices to consider the distance graph of the

input graph, which satisfies the triangular inequality. Thus we obtain the following
corollary of Theorem 2.2.

Corollary 2.7. Remote-ST of a general graph can be approximated within a
factor of 3.

2.3. Euclidean graphs. Let P be a set of n points {p1, . . . , pn} in the plane.
The Euclidean graph of P is the complete graph on the node set P , where the weight
of an edge (pi, pj) is the Euclidean distance d(pi, pj). We consider algorithms for
approximating Remote-MST and Remote-ST of this graph.

The anticover defined in the previous section gives a geometric covering of P
by k circles of radius r, each of which is centered by a point in P . Since st(P ) ≥√

3mst(P )/2 [9] in the Euclidean case, we immediately obtain the following.
Corollary 2.8. An anticover is a 4k−2√

3(k−1)
-approximation of Remote-MST

and a 2k+
√

3(k−1)√
3(k−1)

-approximation of Remote-ST in Euclidean graphs.

Thus, the approximation ratios are asymptotically at most 4/
√

3 ≈ 2.309 for
Remote-MST and (2 +

√
3)/
√

3 ≈ 2.155 for Remote-ST.
Unlike in the metric case, it seems that the approximation ratio depends on

the choice of the anticover. For the example in Figure 2.4, the worst anticover has a
(2
√

3+4)/3) ≈ 2.448 approximation ratio, which is near to the upper bound 14/3
√

3 ≈
2.694 for the Remote-MST 4-set.

2.4. Tree networks. In this section, we consider graphs in which the set of
edges with finite weights forms a tree. Let T be a weighted tree on n nodes. Define



SUBSETS MAXIMIZING MINIMUM STRUCTURES 351

The worst anticover leads
us to a 2.448 approximation 

Greedy gives a 
better solution

Fig. 2.4. Approximation by circle covers.

G(T ) to be a complete graph of order n, where the weight of an edge is the same as
in T if it exists in T and ∞ otherwise.

We first give efficient algorithms for the Remote-ST k-set of G(T ). Clearly, we
should select k leaves. If k = 2, the problem is the diameter path problem on a tree—
finding the pair of vertices of maximum distance—and can be solved in linear time. If
k exceeds the number of leaves of T , every set of k nodes containing all leaves forms
the (unique) optimal Remote-ST k-set. The following lemma (essentially given in
Peng, Stephens, and Yesha [23] for a slightly different problem) is the key observation.

Lemma 2.9. Any optimal Remote-ST (k − 1)-set is contained in an optimal
Remote-ST k-set.

Proof. Let S1 be an optimal Remote-ST (k − 1)-set and let S2 be any optimal
Remote-ST k-set. Let T1 (T2) be the Steiner tree spanned by S1 (S2) and let W (T1)
(W (T2)) be its weight. Then T1 ∩ T2 is a (possibly empty) tree.

The edge sets F1 = T1−T1∩T2 and F2 = T2−T1∩T2 are forests. Each connected
component (a tree) in the forest has a root, which is a vertex in T1 ∩ T2. If T1 ∩ T2 is
empty, we pick arbitrary vertices x in T1 and y in T2, consider the path from x to y
in T , and define the root of T1 (resp., T2) as its nearest node to y (resp., x) on the
path.

A leaf of these forests must be in either S2 − S1 or S1 − S2. For each leaf v of
these forests, let h(v) be the weight of the path from v to the root in the component
T0 containing v, and l(v) be the weight of the path to the nearest branch from v in
T0 (to the root if there is no branch). Then h(v) ≥ l(v), and equality holds if and
only if T0 is a path.

Consider a leaf v in S1 − S2 and a leaf w in S2 − S1. Unless h(v) = l(v) =
h(w) = l(w), either h(w) > l(v) or h(v) > l(w) holds. If h(w) > l(v), we consider
the set S1 − {v}+ {w} and observe that the spanning tree of this set has the weight
W (T1)+h(w)− l(v) > W (T1). This contradicts the assumption that S1 is an optimal
Remote-ST (k − 1)-set. Similarly, if h(v) > l(w), we derive a contradiction to the
fact that S2 is an optimal Remote-ST k-set. Therefore, h(v) = l(v) = h(w) = l(w)
holds for all pairs of leaves v in F1 and w in F2. We write l for l(v).

Hence the total weight of T1 is W (T1 ∩ T2) + |S1 − S2|l and that of T2 is W (T1 ∩
T2) + |S2 − S1|l. By definition, |S2 − S1| = |S1 − S2| + 1. Therefore, if we choose
any w ∈ S2 − S1, the Steiner tree of S1 ∪ {w} has the same length as that of S2;
hence S1 ∪ {w} is a Remote-ST k-set and it contains S1. Thus we obtain the
lemma.

This enables us to compute a Remote-ST k-set (more precisely, its spanning
tree) by a greedy algorithm: Starting from any diameter path, find the leaf farthest



352 HALLDÓRSSON, IWANO, KATOH, AND TOKUYAMA

from the current tree and update the tree by adding the leaf and the path from the
leaf. This takes O(kn) time. We can give a better algorithm, which is an analogue of
an algorithm of Shioura and Uno [26] for the problem in [23].

Consider a subtree H of T . Then T −H forms a forest F of rooted, directed trees
with roots drawn from the vertices of H. We partition the edges of F into a set of
directed paths such that for any internal node w on a path leading to a leaf l, the
weight of the subpath from w to l is maximum over all directed paths from w to a
leaf. This is easy to compute bottom-up in linear time for each tree in T by selecting
for each internal node the path of maximum weight through a child. Define for each
leaf l in F the benefit of l to be the weight of the path incident on l.

In particular, we consider a diameter path P as H. The above process computes
all the benefits of leaves of T − P in linear time. Then we can observe the following
lemma.

Lemma 2.10. The greedy algorithm adds the k− 2 leaves with the largest benefits
of T − P to P to obtain a Remote-ST k-set.

Proof. For any RST j-set and its Steiner tree H, the leaf v in T −H of largest
benefit is the one that is farthest from H. Moreover, for the tree H ′ obtained by
joining the path from v to H, the benefits of T −H ′ are by construction the same as
the benefits of T −H (except, of course, for v). Thus we have the lemma.

We can select the k largest benefits using a linear time selection algorithm, and
hence we have the following theorem.

Theorem 2.11. The Remote-ST k-set of G(T ) can be computed in O(n) time.

We next consider the Remote-MST problem on trees. Remote-MST of G(T )
is not a well-defined problem since we can almost always find a subset P whose MST
has infinity weight. Instead, we add a connectivity condition to the definition of a
remote k-set P , such that mst(P ) is maximized on the condition that mst(P ) 6= ∞.
Namely, MST (P ) must be an induced subtree of P in T . Thus, the problem becomes a
special case (where all edge weights are nonpositive) of the minimum weighted (k−1)-
cardinality tree problem defined by Fischetti et al. [13] if we reverse the sign of all
weights of T . We can thus apply their O(k2n) time dynamic programming algorithm.
Moreover, we can improve it to O(kn) time.

Theorem 2.12. The minimum weighted (k − 1)-cardinality tree of a weighted
tree can be computed in O(kn) time. Hence, the Remote-MST k-set of G(T ) under
the connectivity condition can be computed in O(kn) time.

Proof. We give a proof only for the computation of an optimal Remote-MST
k-set. For a node v, a v-optimal Remote-MST j-set refers to a j-set that induces
an optimal Remote-MST among those j-sets constrained to contain v.

Fix any internal node r as the root of T . The profile of a subtree T0 with root
r0 is the set consisting of the weights of r0-optimal Remote-MST j-sets for j =
1, 2, . . . ,min(k, |T0|), and the weight of the optimal Remote-MST k-set of T0 if
k > |T0|. We give a dynamic programming algorithm that sweeps the tree bottom-up
to compute the profile of T .

If r has only one child r1, then the r-optimal j-set of T is the union of r with the
r1-optimal j − 1-set of T1. Otherwise, let r1 be any child of r rooting the subtree T1

and let T2 be the tree obtained by cutting T1 and the adjoining edge from T .

The minimum spanning tree of the optimal Remote-MST j-set containing r in
T can be obtained by joining the r1-optimal Remote-MST j1-set of T1 and the r2-
optimal Remote-MST j2-set of T2 for a suitable pair j1 and j2 satisfying j1 +j2 = k.
The weight of the tree is simply the sum of these two parts. Thus the weight of the
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r-optimal Remote-MST j-set for j = 1, 2, . . . k can be computed in O(k2) time by
examining all combinations.

We can improve the analysis of the time complexity. We say that a node u of T
is heavy if both of its descendant trees have at least k/2 nodes and light otherwise.
The number of heavy nodes is at most n/k. We separately charge for operations at
the heavy nodes, which is of cost O(kn) in total. Let f(n) be the cost for operations
at all light nodes.

At a light node r rooting T with subtrees T1 and T2, Ti has ni nodes and mi =
ni − 1 edges. Since r is a branching node, mi ≥ 1 (i = 1, 2). T has m = n− 1 edges;
thus m ≥ m1 +m2 holds.

The profile for Ti has min(ni, k) weights of ri-optimal Remote-MST sets. Hence
to compute the profile of T , we need only to examine min(n1, k) min(n2, k) com-
binations, which takes O(min(n1, k) min(n2, k)) = O(min(m1, k) min(m2, k)) time.
Thus, the cost function f(m) (up to a constant factor) follows the formula f(m) ≤
f(m1) + f(m2) + min(m1, k) min(m2, k).

Consider g(m) = min{2km,m2}. We shall verify that g(m) satisfies g(m) ≥
g(m1)+g(m2)+min(m1, k) min(m2, k). Assume without loss of generality that m2 ≤
m1. Thus, m2 is smaller than k/2 at a light node.

Case 1. If 2k ≥ m, then g(m) = m2 ≥ (m1 +m2)2 ≥ m2
1 +m2

2 +m1m2.
Case 2. If m ≥ 2k, then g(m) = 2km ≥ 2km1 + km2 + km2 > min(2k,m1)m1 +

m2
2 + km2.

Hence f(m) < cg(m) for some constant c and thus is O(km). Since m = n − 1,
the complexity is O(kn).

The same algorithm can compute Remote-MST k-sets (with connectivity con-
dition) of decomposable graphs, such as series-parallel graphs, in O(kn) time.

3. Hardness. The decision version of Remote-MST (to decide whether there
exists a set of k vertices whose MST weight is more than a given threshold) is obviously
in NP . Instead of showing NP -hardness, we show approximation-hardness for both
general and metric graphs.

We shall be primarily interested in approximating the remote problems within a
function independent of k. Thus we ask about the worst-case performance ratio as k
ranges from 1 through n. Let α(G) denote the independence number of G, or the size
of a maximum independent set.

Theorem 3.1. Approximating Remote-MST is as hard as approximating
Independent Set.

Proof. Let g be the gap in the approximability of Independent Set. Thus, for
some value R, determining if α(G) = R or α(G) ≤ R/g is hard.

Let k be R and let γ be a value greater than k. We construct a bivalued graph
H = HG,γ on the same vertex set as G with the weight of an edge being 1 if contained
in G and γ otherwise. Refer to Figure 3.1.

If there is an independent set of size k in G, then that set has a value r-mst =
(k − 1)γ. On the other hand, suppose r-mst (H) ≥ (k − 1)γ/g. Notice that this is at
least (k/g−1)γ+(k−k/g), since γ ≥ k. Then there is a subset P of k vertices such that
MST (P ) contains at least k/g− 1 edges of weight γ. Let G[P ] be the subgraph in G
induced by P . It follows that G[P ] must contain at least k/g connected components.
Hence, α(G) ≥ α(G[P ]) ≥ k/g.

It follows that

α(G) = k ⇒ r-mst (H) = (k − 1)γ,
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Associated independent set of G

Max independent set of G

H
G

Approximate RMST of (k=5)

Optimal RMST of H  (k=5)G

Fig. 3.1. Graphs in Theorem 3.1.

α(G) ≤ k/g ⇒ r-mst (H) ≤ (k − 1)γ/g.

Thus, a gap in the approximation of Independent Set carries over to Remote-
MST.

H̊astad has recently strengthened the approximation hardness of Independent
Set to n1−ε for any ε > 0 [16]. This assumes that NP 6⊆ ZPP or that randomized
polynomial-time algorithms do not exist for NP.

We now generalize the hardness proof for Remote-MST to other problems.
Given a graph and integers ` and u, the degree-constrained subgraph problem (DCS) is
to find a subgraph of minimum weight such that the degree of each vertex is between
` and u, inclusive. Note that u may be only the trivial bound of n − 1. The DCS
minimization problem can be solved via a reduction to nonbipartite matching [18],
and it subsumes the assignment problem and problems of covering the vertices with
cycles or paths. If the subgraph must additionally be connected, we have connected-
DCS (CDCS) problems, which include TSP, MST, and the degree-constrained MST
problems.

Assume hereafter that Π is any such DCS problem with degree lower bound `.
For a given γ > 1, let H = HG,γ be the bivalued network on G that has the weight of
an edge being 1 if the edge is in G and γ otherwise. Fix some optimal Π-solution to
H and let Π(H) denote its set of edges. We sometimes abuse notation by denoting Π
for Π(H).

Lemma 3.2. Let G be a graph and γ ≥ 1. Let Heavy denote the set of γ-weight
edges in Π(H). Then,

α(G) ≥ |Heavy|
`2 + 1

.

Proof. The statement is trivial if |Heavy| ≤ `2 + 1; thus we assume the contrary.
Also, we assume that the number k of vertices in Π(H) is greater than any constant
power of `.
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Let Conn denote some minimal set of edges from Heavy such that Conn∪(Π(H)−
Heavy) is connected and spans H, if Π is a problem requiring connectivity. Otherwise,
let Conn be the empty set. Let Slack = Heavy − Conn. Let S denote the set of
vertices incident on fewer than ` edges in Π(H)− Slack.

We first observe that

α(G) ≥ |Conn|+ 1,(3.1)

since G must contain that many connected components. To satisfy the lemma, it
now suffices to bound the independence number in terms of the other heavy edges,
by α(G) ≥ |Slack|/`2.

Observe that each edge in Slack has an endpoint in S, and, furthermore, it has
an endpoint in S that is of degree exactly ` in Π(H). Otherwise, this edge would be
superfluous to Π(H), as connectivity and degree requirements are satisfied without
it. This implies that

|Slack| ≤ `|S|.
To complete the lemma, we need to show that all the edges in G[S] must be

in Π(H). That implies that each vertex in S is incident on at most ` − 1 edges in
G[S], and any maximal independent set of G[S] is of size at least 1

` |S|. Hence the
independence number of the whole graph is no less, and

α(G) ≥ α(G[S]) ≥ 1

`
|S| ≥ |Slack|

`2
(3.2)

as desired.
Claim 1. E(G[S]) ⊆ Π(H).
Suppose on the contrary that there were vertices x, y in S such that (x, y) ∈ G

but (x, y) 6∈ Π(H). Let (x, x′), (y, y′) be edges from Slack (where x′ and y′ are not
necessarily distinct).

We consider three cases depending on the degrees of x′ and y′ (in Π(H)). If x′ and
y′ are distinct and both of degree greater than `, then let Π′ = (Π−{(x, x′), (y, y′)})∪
{(x, y)}. If one of x′ and y′, say, x′, is of degree greater than `, then let Π′ =
(Π−{(x, x′), (y, y′)})∪{(x, y), (y′, z)}, where z is some vertex of degree ` nonadjacent
to y′. (Such a vertex must exist since there must be at least ` + 1 vertices of degree
`.)

Otherwise, the number of heavy edges in Π such that either x′ or y′ is either
incident on the edge or adjacent (via an edge in Π(H)) to one of its endpoints is at
most `2. Thus there must exist a third edge (x′′, y′′) from Slack such that x′ and
x′′ are nonadjacent, as well as y′ and y′′. Let Π′ = (Π − {(x, x′), (y, y′), (x′′, y′′)}) ∪
{(x, y), (x′, x′′), (y′, y′′)}.

In all cases, the edges removed from Π are from Slack, and thus Π′ is connected
and degree constraints are preserved. Hence Π′ is a valid solution of lesser cost,
contradicting the minimality of Π. The claim and the lemma then follow.

Theorem 3.3. Approximating Remote-DCS and Remote-Connected-DCS
problems is as hard as approximating Independent Set, for any fixed value of `.

Proof. Let γ be a number greater than uk and let H = HG,γ .
If there is an independent set of size k in G, then r-π(H) ≥ `

2kγ.

On the other hand, suppose r-π(H) ≥ `
2kγ/g. Then there is a subset P of k

vertices such that Π(P ) contains at least z ≥ `
2k/g edges of weight γ. By Lemma 3.2,

α(G[P ]) ≥ z/(`(`+ 1)) ≥ k/(2(`+ 1)g) = `
2kγ/g

′, where g′ = g/(`(`+ 1)).
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It follows that

α(G) = k ⇒ r-π(H) = `
2kγ,

α(G) ≤ k/g ⇒ r-π(H) ≤ `
2kγ/g

′.

Similarly, these problems are also hard to approximate in metric graphs within
a factor of 2 − δ for any δ > 0. We prove this here only for properties for which all
feasible solutions have the same number of edges; the general case is quite tedious,
especially for other connected properties.

Theorem 3.4. Let Π be a DCS problem with ` = u (e.g., TSP) or a connected
property with ` = 1 (i.e., (Degree-Constrained) MST). Then Remote-Π is hard
to approximate within a factor of 2− o(1) in the metric space with distances 1 and 2.

Proof. Let γ = 2, H = HG,γ . Observe that any feasible solution to Π has the
same number e of edges: `k/2 in the former case and k − 1 in the latter case.

If there is an independent set of size k in G, then r-π(H) = 2e. On the other
hand, suppose r-π(H) ≥ e(1 + δ). Then there is a subset P of k vertices such that
π(P ) ≥ e(1 + δ). Thus Π(P ) contains at least eδ edges of weight 2. By Lemma 3.2,

α(G) ≥ eδ

`(`+ 1)
.

Let δ′ = δk/[(k − 1)`(`+ 1)]. Then

α(G) = k ⇒ r-π(H) = 2e,

α(G) < δ′k ⇒ r-π(H) < e(1 + δ).

Hence the problem is hard to approximate within 2−1/f(n), where f(n) is a function
growing with n.

Theorem 3.3 can also be extended to problems involving t-connectivity (for t =
ko(1)). It can also be extended to other remote-Π problems that satisfy the following
property: If F is a feasible solution to Π and (v, u) and (x, y) are edges in that
solution, then F − {(v, u), (x, y)} ∪ {(v, x), (u, y)} is also a feasible solution to Π.

One example is when π(P ) =
∑
v∈P minu∈P d(u, v). The corresponding remote

problem, that of finding a k-vertex set P maximizing this quantity, was considered by
Moon and Chaudhry [22] under the name k-Defense problem. The above reduction
shows that approximating it within n1−ε in general graphs is hard.

The Remote-TSP problem is harder yet; like the underlying TSP problem, it
cannot be approximated within any representable function.

Theorem 3.5. Let W be a polynomial representable value. Then approximating
Remote-TSP in general graphs within a factor W is NP -complete.

Proof. We give a reduction from Hamilton circuit for k = n.
Given a graph G on n vertices, construct the complete weighted graph H with

vertex set V (G) ∪ {u1, . . . , un}. Define the edge weights by

w(u, v) =

 (Wn)2 if u, v ∈ V (G), (u, v) 6∈ E(G),
W if u, v ∈ V (H)− V (G), and
1 otherwise.

Observe that H can be represented in size polynomial in n.
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Suppose G does not contain a Hamilton circuit. Then V (G) is a remote k-set
whose minimum salestour is of cost at least (Wn)2. On the other hand, if G does
contain a Hamilton circuit, then V (H)−V (G) is a k-set whose minimum salestour is
of cost Wn, while any other k-set has lesser cost. It follows that an algorithm that can
approximate Remote-TSP within a factor less than Wn will decide the Hamilton
circuit problem.

For Remote-ST, one can always assume that the graph G is metric, since the
minimum Steiner tree of a node set P inG can be realized in the shortest-path distance
graph D(G).

Theorem 3.6. Approximating Remote-ST within a factor of 4/3−δ is NP -hard
for any δ > 0.

Proof. Given a graph G = (V,E), we construct a graph H as follows. Replace
each edge of G by a path with two edges, and connect the middle vertices of the paths
into a clique. More formally, H contains a vertex for each vertex vi in V as well
as each edge ej in E. A vertex vi is adjacent only to those vertices ej for which vi
intersects ej in G. Vertices ej are completely connected into a clique.

The input to Remote-ST is the distance graph D(H) of H. If we consider two
vertices in G, they will be of distance 2 in H if they are adjacent in G and of distance
3 in H if they are nonadjacent in G.

An independent set in G corresponds to a set of vertices in H that have no
neighbors in common. Hence, the cost of the minimum Steiner tree of that set in
D(H) is 2(k − 1).

A loner in a Steiner tree is a leaf whose neighbor is not adjacent to another leaf.
Suppose there are two loners in a Steiner tree of D(G) that were adjacent in G. Then
the four edges connecting them to the remaining tree could be replaced by three edges
all incident on the corresponding edge-vertex in D(G). Hence, given a k-set P , we
can easily find a Steiner tree of P where loners form an independent set in G. If p
is the number of loners, then the cost of the Steiner tree constructed will be at most
3
2 (k − p− 1) + 2p = 3

2 (k − 1) + 1
2p.

If, now, we could guarantee finding a k-set where the minimum Steiner tree is of
size at least 3

2k + 1
2p, it follows that the independence number of G is at least p. By

the hardness of the independent set problem, it is hard to decide whether r-st (G) is
2(k − 1) or ( 3

2 + o(1))(k − 1).

4. Concluding remarks. If we remove the cardinality condition from the
Remote-MST problem, we have the following problem:

Remote-MST subset. Find a subset Q of V such that mst(Q) is
maximized.

The Remote-MST subset problem can be considered to be an inverse problem to the
Steiner problem. Whereas the Steiner problem asks for a superset Q′ of P minimizing
MST (Q′), the Remote-MST subset problem calls for a subset Q of V maximizing
MST (Q).

In the metric case, returning V as the solution trivially gives an approximation
equal to the Steiner ratio, or 2 for general metric graphs and 2/

√
3 for Euclidean

graphs. We pose the question of improved ratios as an open problem.
Another open problem concerns the complexity classification of Remote-ST and

Remote-TSP. They are in Σ2
p, at the second level of the polynomial time hierarchy,

and are NP -hard, from our results. We conjecture that they are also hard for Σ2
p.

Other open problems include proving NP -hardness of Remote-MST (and per-
haps MAX-SNP-hardness) in the Euclidean plane and giving better bounds for the
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approximation ratios for each problem. In particular, a good approximation algo-
rithm for Remote-ST will be very useful in applications. Also, a fast algorithm
would be needed; when we apply approximate Remote-TSP k-sets to large-scale
TSP heuristics, subquadratic time algorithm is essential.
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