
An Optimal Algorithm for Scanning All Spanning
Trees of Undirected Graphs

著者 塩浦 昭義
journal or
publication title

SIAM journal on computing

volume 26
number 3
page range 678-692
year 1997
URL http://hdl.handle.net/10097/46864

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235941839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AN OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING
TREES OF UNDIRECTED GRAPHS∗

AKIYOSHI SHIOURA† , AKIHISA TAMURA‡ , AND TAKEAKI UNO§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 3, pp. 678–692, June 1997 005

Abstract. Let G be an undirected graph with V vertices and E edges. Many algorithms have
been developed for enumerating all spanning trees in G. Most of the early algorithms use a technique
called “backtracking.” Recently, several algorithms using a different technique have been proposed
by Kapoor and Ramesh (1992), Matsui (1993), and Shioura and Tamura (1993). They find a new
spanning tree by exchanging one edge of a current one. This technique has the merit of enabling
us to compress the whole output of all spanning trees by outputting only relative changes of edges.
Kapoor and Ramesh first proposed an O(N +V +E)-time algorithm by adopting such a “compact”
output, where N is the number of spanning trees. Another algorithm with the same time complexity
was constructed by Shioura and Tamura. These are optimal in the sense of time complexity but
not in terms of space complexity because they take O(V E) space. We refine Shioura and Tamura’s
algorithm and decrease the space complexity from O(V E) to O(V +E) while preserving the time
complexity. Therefore, our algorithm is optimal in the sense of both time and space complexities.

Key words. optimal algorithm, spanning trees, undirected graphs

AMS subject classifications. 05C30, 68R10

PII. S0097539794270881

1. Introduction. Let G be an undirected graph with V vertices and E edges. A
spanning tree of G is defined as a connected subgraph of G which contains all vertices
but no cycle. In this paper, we consider the enumeration of all spanning trees in an
undirected graph. Many algorithms for solving this problem have been developed,
e.g., [7, 8, 4, 5, 6, 9], and these may be divided into several types.

The first type [7, 8, 4], to which many of the early algorithms belong, uses a
technique called “backtracking.” This is a useful technique for listing the kinds of
subgraphs, e.g., cycles, paths, and so on. Gabow and Myers [4] refined the algorithms
of Minty [7] and Read and Tarjan [8]. Their algorithm uses O(NV+V+E) time
and O(V+E) space, where N is the number of all spanning trees. If we enumerate
all spanning trees by outputting all edges of each spanning tree, their algorithm is
optimal in terms of time and space complexities.

Recently, several algorithms [5, 6, 9] that use another technique have been de-
veloped. These algorithms find a new spanning tree by exchanging one pair of edges
instead of backtracking. Furthermore, if we enumerate all spanning trees by out-
putting only relative changes of edges between spanning trees, we can compress the
size of output to Θ(N+V), and hence the total time complexity may be reduced. In
fact, Kapoor and Ramesh [5] proposed an O(N+V+E) time and O(V E)-space algo-
rithm by adopting such a “compact” output, which is optimal in the sense of time
complexity. On the other hand, Matsui [6] developed an O(NV+V+E)-time and
O(V+E)-space algorithm for enumerating all spanning trees explicitly, by applying
the reverse-search scheme [3]. Reverse search is a scheme for general enumeration

∗ Received by the editors July 11, 1994; accepted for publication (in revised form) July 10, 1995.
http://www.siam.org/journals/sicomp/26-3/27088.html
† Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1

Oh-okayama, Meguro-ku, Tokyo 152, Japan (shioura@is.titech.ac.jp).
‡ Department of Computer Science and Information Mathematics, University of Electro-

Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182, Japan (tamura@im.uec.ac.jp).
§ Department of Systems Science, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku,

Tokyo 152, Japan (uno@is.titech.ac.jp).

678

OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING TREES 679

problems (see [1, 2]). Shioura and Tamura [9] also developed an algorithm generating
a compact output with the same time and space complexities as the Kapoor–Ramesh
algorithm by using the reverse-search technique. The Kapoor–Ramesh algorithm and
the Shioura–Tamura algorithm, however, are not efficient in terms of space complexity
because they take O(V E) space.

The main aim of this paper is to obtain an algorithm that generates a compact
output and is optimal in the sense of both time and space complexities by refining
the Shioura–Tamura algorithm. When the process goes to a lower-level node of the
computation tree of the original algorithm, some edge set can be efficiently divided
without requiring extra information. However, in order to efficiently restore such an
edge set when the process goes back to the higher-level node, the algorithm requires
extra O(E) information. Since the depth of the computation tree is V−1, it takes
O(V E) space. We propose a useful property for efficiently restoring the edge set
and a technique for restoring it which uses extra O(V) space in all, while the time
complexity remains O(N+V+E).

In section 2, we explain the technique for enumeration of spanning trees and
compact outputs. In section 3, we define a nice child–parent relationship between
spanning trees and propose a näıve algorithm. In section 4, we show some properties
which are useful for efficient manipulation of data structures in our implementation.
Our implementation is presented in section 5, and the time and space complexities
are analyzed.

2. Compact output. Let G be an undirected graph (not necessary simple) with
V vertices {v1, . . . , vV } and E edges {e1, . . . , eE}. We define two types of edge sets
which are necessary for our algorithm, so-called fundamental cuts and fundamental
cycles. Let T be a spanning tree of G. Throughout this paper, we represent a spanning
tree by its edge set of size V−1. For any edge f ∈ T, the deletion of f from T yields two
connected components. The fundamental cut associated with T and f is defined as
the set of edges connecting these components and is denoted by Cut(T\f). Likewise,
we define the fundamental cycle associated with T and g 6∈ T as the set of edges
contained in the unique cycle of T ∪ g. We will denote it as Cyc(T∪g). By definition,
T\f∪g is a spanning tree for any f ∈ T and any g ∈ Cut(T\f). Similarly, for any
g 6∈ T and any f ∈ Cyc(T∪g), T∪g\f is also a spanning tree. These properties are
useful for enumerating spanning trees because by using fundamental cuts or cycles,
we can construct a different spanning tree from a given one by exchanging exactly
one edge.

Given a graph G, let S(G) = (T ,A) be the graph whose vertex set T is the set
of all spanning trees of G and whose edge set A consists of all pairs of spanning
trees which are obtained from each other by exchanging exactly one edge using some
fundamental cut or cycle. For example, the graph S(G1) of the left one, G1, is shown
in Figure 2.1.

Our algorithm finds all spanning trees of G by implicitly traversing some spanning
tree D of S(G). In order to output all (V−1) edges of each spanning tree, Θ(|T | ·V) =
Θ(N · V) time is required. However, if we output all edges of the first spanning tree
and then only the sequence of exchanged edge pairs of G obtained by traversing D, we
need only Θ(|T | + V) = Θ(N+V) time because |D| = |T |−1 and exactly two edges
of G are exchanged for each edge of D. Furthermore, by scanning such a “compact”
output, one can construct all spanning trees. Since we adopt such a compact output,
it becomes desirable to find the next spanning tree from a current one efficiently in
constant time.

680 AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO

T0

S(G)

v1

v2

v4v3

e5
e1

e2 e3

G

e4

1

1

Fig. 2.1. Graph G1 and graph S(G1).

3. Basic ideas and the näıve algorithm. In this section, we explain the basic
ideas and the näıve algorithm.

We define the total orders over the vertex set {v1, . . . , vV } and the edge set
{e1, . . . , eE} of G by their indices as v1 < v2 < · · · < vV and e1 < e2 < · · · < eE .
Particularly, we call the smallest vertex v1 the root. For each edge e, we call the
smaller incident vertex the tail, denoted by ∂+e, and call the larger one the head,
denoted by ∂−e. Relative to a spanning tree T of G, if the unique path in T from the
vertex v to the root v1 contains a vertex u, then u is called an ancestor of v and v is
a descendant of u. Similarly, for two edges e and f in T, we call e an ancestor of f
and f a descendant of e if the unique path in T from f to the root v1 contains e. A
“depth-first spanning” tree of G is a spanning tree which is found by some depth-first
search of G. It is known that a depth-first spanning tree is defined as a spanning tree
such that for each edge of G, its one incidence vertex is an ancestor of the other.

In our algorithm, we make several assumptions regarding the vertex set and the
edge set of G.

Assumption 1. T 0 is a depth-first spanning tree of G.

Assumption 2. T 0={e1, . . . , eV−1}.
Assumption 3. Any edge in T 0 is smaller than its proper descendants.

Assumption 4. Each vertex v is smaller than its proper descendants relative to
T 0.

Assumption 5. For any two edges e, f 6∈ T 0, if e < f , then ∂+e ≤ ∂+f.

Vertices and edges of graph G2 in Figure 3.1 satisfy these assumptions. In fact,
one can find T 0 and sort vertices and edges of G in O(V+E) time so that G satisfies
the above assumptions by applying Tarjan’s depth-first search [10]. We note that
Assumptions 1, 2, and 3 are sufficient for the correctness of our algorithm. However,
we further need Assumptions 4 and 5 for an efficient implementation.

For any nonempty subset S of {e1, . . . , eE}, Min(S) denotes the smallest edge in

OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING TREES 681

e7

v2

e2

v3

e3 e4
v4 v5

e1

e6

v1

e5

Fig. 3.1. Graph G2.

S. For convenience, we assume that Min(∅) = eV .
Lemma 3.1 (see [9]). Under Assumptions 1 and 3, for any spanning tree T c 6= T 0,

if f = Min(T 0 \ T c), then Cyc(T c∪f) ∩ Cut(T 0\f) \ f contains exactly one edge.
Proof. The set T 0 \ f has exactly two components, one containing ∂−f and the

other containing ∂+f. Therefore, the unique path Cyc(T c∪f) \ f from ∂−f to ∂+f in
T c contains at least one edge in Cut(T 0\f). Hence Cyc(T c∪f) ∩Cut(T 0\f) \ f 6= ∅.

Since T 0 is a depth-first spanning tree, we may assume without loss of generality
that the head of any edge is a descendant of its tail relative to T 0. Let e be the first
edge from ∂−f on the path such that e ∈ Cut(T 0\f). Then the head ∂−e is a descen-
dant of ∂−f relative to T 0, and the tail ∂+e is an ancestor of ∂+f. From Assumption 3
and the minimality of f, ∂+e and ∂+f are connected in T c∩T 0. Thus there is no edge
contained in Cut(T 0\f) between ∂+e and ∂+f in the path Cyc(T c∪f) \ f. Hence e is
the only edge in Cyc(T c∪f) \ f and Cut(T 0\f).

Consider the graph G2 of Figure 3.1. Here let T 0 = {e1, e2, e3, e4} and T c =
{e4, e5, e6, e7}. In graph G2,

f = Min{e1, e2, e3} = e1,

Cyc(T c∪f) = {e1, e5, e7},
Cut(T 0\f) = {e1, e5, e6}.

Therefore, Cyc(T c∪f) ∩ Cut(T 0\f) \ f = {e5}.
Given a spanning tree T c 6= T 0 and the edge f = Min(T 0 \ T c), let g be the

unique edge in Cyc(T c∪f)∩Cut(T 0\f) \ f. Clearly, T p = T c∪f\g is a spanning tree.
We call T p the parent of T c and T c a child of T p. Lemma 3.1 guarantees that each
spanning tree other than T 0 has a unique parent. Since |T p ∩ T 0| = |T c ∩ T 0|+1
holds, T 0 is the ancestor of all spanning trees. For the graph G1 in Figure 2.1, all
child–parent pairs are shown by the arrows in Figure 3.2. Each arrow goes from a
child to its parent. We can see that all arrows construct a spanning tree of S(G1)
rooted at T 0.

Let D be the spanning tree of S(G) consisting of all child–parent pairs of span-
ning trees. Our algorithm implicitly traverses D from T 0 by recursively scanning all
children of a current spanning tree. Thus we must find all children of a given spanning
tree, if they exist. The next lemma gives a useful idea for this.

Lemma 3.2 (see [9]). Let T p be an arbitrary spanning tree of G, and let f and g
be two distinct edges. Under Assumptions 1, 2, and 3, T c = T p\f∪g is a child of T p

682 AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO

T0

S(G)

T7T6

T1T4

T5
T3

T2

1

Fig. 3.2. Child–parent relations in S(G1).

if and only if f and g satisfy the following conditions:

f < Min(T 0 \ T p) and g ∈ Cut(T p\f) ∩ Cut(T 0\f) \ f.(3.1)

Proof. Under Assumptions 1 and 3, T c is a child of T p if and only if the following
conditions hold:

T c is a spanning tree different from T 0;(3.2)

f ′ = Min(T 0 \ T c) and g′ ∈ Cyc(T c∪f ′) ∩ Cut(T 0\f ′) \ f ′,(3.3)

T p = T c∪f ′\g′.(3.4)

We first show that f = f ′ and g = g′. From (3.2), (3.3), and (3.4), T c and T p are
different spanning trees. Assume to the contrary that f 6∈ T p; then T p \ f = T p.
Since T c is a spanning tree and f 6= g, we have g ∈ T p and T c = T p\f∪g = T p, which
is a contradiction. Thus f ∈ T p and g 6∈ T p. From (3.4), T p = {T p\f∪g}∪f ′\g′, and
hence f = f ′ and g = g′ must hold.

Conditions (3.2), (3.3), and (3.4) imply

f ∈ T p ∩ T 0 and g 6∈ T p ∪ T 0.(3.5)

On the other hand, under Assumption 2, (3.1) implies (3.5). Moreover, (3.1) and (3.5)
imply (3.2) and (3.4). All we have to do is to show that (3.1) and (3.3) are equivalent
under conditions (3.2), (3.4), and (3.5).

From the definition of T c and (3.5), T 0 \ T c = T 0 \ (T p\f∪g) = (T 0 \ T p)∪{f}.
Hence Min(T 0 \ T c) = Min(Min(T 0 \ T p)∪{f}). This implies that f = Min(T 0 \ T c)
if and only if f < Min(T 0 \ T p). Since T p and T c = T p\f∪g are distinct, g ∈
Cyc(T c∪f) is equivalent to g ∈ Cut(T p\f). Therefore, the second condition of (3.1)
is equivalent to the second condition of (3.3).

OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING TREES 683

Let ek be the largest edge less than Min(T 0 \ T p). From Lemma 3.2, we can
find all children of T p if we know the edge sets Cut(T p\ej) ∩ Cut(T 0\ej) \ ej for
j = 1, 2, . . . , k. Consider the graph G = G1 defined in Figure 2.1 and T p = T 1 (see
Figure 3.2). In this case, e1 and e2 are the only edges smaller than Min(T 0 \ T 1) = e3
and

Cut(T 1\e2) ∩ Cut(T 0\e2) \ e2 = {e2, e4} ∩ {e2, e4} \ e2 = {e4},
Cut(T 1\e1) ∩ Cut(T 0\e1) \ e1 = {e1, e3, e4} ∩ {e1, e4, e5} \ e1 = {e4}.

Therefore, T 1 has only the two children, T 1\e2∪e4 and T 1\e1∪e4.
In the rest of paper, we abbreviate Cut(T p\ej)∩Cut(T 0\ej) \ ej as Entr(T p, ej)

on the grounds that any edge in Cut(T p\ej) ∩ Cut(T 0\ej) \ ej can be “entered”
into T p in place of ej . From the above consideration, we can construct the following
algorithm.

Algorithm all-spanning-trees(G);
input: a graph G with a vertex set {v1, . . . , vV } and an edge set {e1, . . . , eE};

begin
by using a depth-first search,

• find a depth-first spanning tree T 0 of G,
• sort vertices and edges to satisfy Assumptions 2, 3, 4, and 5;

output(“e1, e2, · · · , eV−1, tree,”) ;{output T 0}
find-children(T 0,V−1);

end.

Procedure find-children(T p,k);
input: a spanning tree T p and an integer k with ek < Min(T 0 \ T p);

begin
if k ≤ 0 then return;
for each g ∈ Entr(T p, ek) do begin

{output all children of T p not containing ek}
T c := T p\ek∪g;
output(“−ek,+g, tree,”);
find-children(T c,k−1); {find the children of T c}
output(“−g,+ek,”);

end;
find-children(T p,k−1); {find the children of T p not containing ek−1}

end.

In this algorithm, procedure find-children() finds all children of each spanning tree.
When it is called with two arguments T p and k, it finds all children of T p not con-
taining an edge ek. Whenever it finds such a child T c, it recursively calls itself again
to find all children of T c. In this stage, arguments are set to T c and k−1 because if
k > 1, then ek−1 becomes the largest edge less than Min(T 0 \ T c). If all children of T p

not containing ek have been found, it recursively calls itself again to find all children
of T p not containing ek−1. In this case, arguments are T p and k−1. Initially, algo-
rithm all-spanning-trees(G) calls find-children() with arguments T 0 and V−1, and
all spanning trees of G are found. Figure 3.3 shows the enumeration tree of spanning
trees in graph G1.

Theorem 3.3 (see [9]). Algorithm all-spanning-trees() outputs each spanning
tree exactly once.

684 AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO

T0

T1

T2 T3

T4

T5

T6 T7

Fig. 3.3. Enumeration tree of spanning trees in G1.

Proof. From Lemma 3.2, every spanning tree different from T 0 is output once for
each time its parent is output. From Lemma 3.1, for any spanning tree T c other than
T 0, its parent always exists and is uniquely determined. Since T 0 is the ancestor of
all spanning trees, the algorithm outputs each spanning tree exactly once.

4. Manipulating data structures. In our algorithm, we define each state
when we find all children of T p not containing ek by a pair (T p, k). When we call
procedure find-children(T p, k), the current state becomes (T p, k), and if we find a
child T c of T p not containing ek, the state moves to (T c, k−1). After all children of
T p not containing ek have been found, the state moves to (T p, k−1). At the state
(T p, k), the entering edge set Entr(T p, ek) is required to output all children of T p

not containing ek. After the state moves to (T c, k−1) (or (T p, k−1)), the entering
edge set Entr(T c, ek−1) (or Entr(T p, ek−1)) is required for the first time. The key
point is finding an entering edge set Entr(T c, ek−1) (or Entr(T p, ek−1)) efficiently.
To construct an entering edge set efficiently, our implementation maintains the edge
sets Can(ej ;T

p, k) for j = 1, . . . , k defined below. Let T p be a spanning tree and k be
a positive integer with ek < Min(T 0 \ T p). For each edge ej (j = 1, . . . , k), we define
Can(ej ;T

p, k) by

Can(ej ;T
p, k) = Entr(T p, ej) \

k⋃
h=j+1

Entr(T p, eh).(4.1)

Here we use this notation in the sense that Can(ej ;T
p, k) is a set of “candidates”

of the entering edges Entr(T p, ej) for a leaving edge ej at the state (T p, k). We can
find Entr(T p, ek) very easily by maintaining Can(ej ;T

p, k) for j = 1, . . . , k because
Can(ek;T p, k) = Entr(T p, ek) from the definition in (4.1). When we find a child
T c of T p, we update Can(ej ;T

p, k) for j = 1, . . . , k to Can(ej ;T
c, k−1) for j =

1, . . . , k−1. On the other hand, after we have found all children of T p not containing
ek−1, we construct Can(ej ;T

p, k−1) for j = 1, · · · , k−1 from Can(ej ;T
p, k) for j =

1, . . . , k. The efficiency of our implementation depends on how to maintain Can(∗; ∗, ∗)
efficiently.

Figure 4.1 shows the states and edge sets Can(∗; ∗, ∗) during the enumeration of
all spanning trees of G1 in Figure 2.1. For example, at the initial state (T 0, 3),

OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING TREES 685

, 3)(T0 (, 2)T0

T0

(, 1)T0

T1 (, 2)T1 (, 1)T1

:{}
:{
:{

e
e
e

1

2

3

e
e

4

5

}
}

:{
:{

e
e

1

2

}
}

e
e

5

4

e1 :{ e 4 }, e5

}
e
e

1

2

:{}
:{ e 4

e1 :{ }e 4

T2 (, 1)T2

:{}e1

T3

T4 (, 1)T4

T5

5e1 :{ }e
T6 T7

Fig. 4.1. Movement of the state and Can(∗; ∗, ∗).

Can(e1;T 0, 3) = ∅,
Can(e2;T 0, 3) = {e4},
Can(e3;T 0, 3) = {e5}.

At the succeeding states (T 1, 2) and (T 0, 2),

Can(e1;T 1, 2) = ∅,
Can(e2;T 1, 2) = {e4},

and

Can(e1;T 0, 2) = {e5},
Can(e2;T 0, 2) = {e4}.

Here we consider how to maintain such edge sets. First, we show that the initial
edge sets Can(ej ;T

0, V−1) for j = 1, . . . , V−1 can be found easily.
Lemma 4.1 (see [9]). Under Assumptions 1, 2, 3, and 4,

Can(ej ;T
0, V−1) = {e | e 6∈ T 0, ∂+e ≤ ∂+ej and ∂−e = ∂−ej}(4.2)

(j = 1, . . . , V−1)

Proof. Since Entr(T 0, ej) = Cut(T 0\ej) \ ej , Can(ej ;T
0, V−1) can be written

as

Can(ej ;T
0, V−1) =

[
Cut(T 0\ej) \ ej

]
\

V−1⋃
h=j+1

[
Cut(T 0\eh) \ eh

]
.

Under Assumptions 1 and 4, an edge e 6∈ T 0 belongs to Cut(T 0\ej) if and only if ∂−e
is a descendant of ∂−ej and ∂+e is an ancestor of ∂+ej relative to T 0. In addition,
under Assumption 3, for e 6∈ T 0, ej is the largest edge with e ∈ Cut(T 0\ej) if and
only if ∂−e = ∂−ej and ∂+e ≤ ∂+ej .

686 AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO

From Lemma 4.1, we can find Can(ej ;T
0, V−1) for j = 1, . . . , V−1 in O(V +E)

time by applying a depth-first search.
Lemma 4.2. For any spanning tree T p and any positive integer k with ek <

Min(T 0 \ T p), let g be an arbitrary edge in Entr(T p, ek) ∪ {ek}. Under Assumptions
1, 2, 3, and 4, the following relation holds for a spanning tree T = T p\ek∪g and an
edge ej with j < k:

Entr(T, ej) =

{
Entr(T p, ej) if ej ∈ A,
Entr(T p, ej) \ Entr(T p, ek) otherwise,

(4.3)

where A is the set of ancestors of the edge et in T 0 with ∂−et = ∂+g if it exists;
otherwise, A = ∅.

Proof. We note that if g ∈ Entr(T p, ek), then T is a child of T p and if g = ek,
then T = T p. Each descendant of ∂−ek relative to T p is a descendant of ∂−g rela-
tive to T, and vice versa. Therefore, for any ej ∈ A, Entr(T, ej) = Entr(T p, ej).
If ej 6∈ A is an ancestor of ek, then Entr(T, ej) ⊆ Entr(T p, ej). More precisely, for
any edge e∈Entr(T p, ej) such that ∂−e is a descendant of ∂−ek relative to T p, e
does not belong to Entr(T, ej), and the other edges obviously belong to Entr(T, ej).
That is, Entr(T, ej) = Entr(T p, ej) \ Entr(T p, ek). If ej is not an ancestor of ek,
Entr(T, ej) = Entr(T p, ej) = Entr(T p, ej) \ Entr(T p, ek) holds because Entr(T p, ej)
∩ Entr(T p, ek) = ∅.

Lemma 4.3 (see [9]). Let T p be a spanning tree and let k be a positive integer
with ek < Min(T 0 \ T p). Under Assumptions 1, 2, 3, and 4, for any edge g ∈
Can(ek;T p, k) ∪ {ek} and for a spanning tree T = T p\ek∪g, the following relation
holds:

Can(ej ;T, k−1) =

 Can(ej ;T
p, k) ∪ [Can(ek;T p, k) ∩ {e|∂+e<∂+g}]

if ∂−ej = ∂+g,
Can(ej ;T

p, k) if ∂−ej 6= ∂+g.
(4.4)

Proof. From the assumptions, for two edges e and f with e, f < Min(T 0 \ T p),
e is an ancestor of f relative to T 0 if and only if e is an ancestor of f relative to T p,
so we will omit the phrase “relative to T 0 (or T p)” for such edges. Let et be the edge
with ∂−et = ∂+g if it exists, and let A be the set of edges in T 0 which are ancestors
of et if et exists; otherwise, A = ∅. We prove (4.4) by using relation (4.3).

Case 1. If ej 6∈ A, then

Can(ej ;T, k−1)

= [Entr(T p, ej) \ Entr(T p, ek)]

\

 k−1⋃
h=j+1, eh 6∈A

(Entr(T p, eh)\Entr(T p, ek)) ∪
k−1⋃

h=j+1, eh∈A
Entr(T p, eh)

= Entr(T p, ej) \

k⋃
h=j+1

Entr(T p, eh) = Can(ej ;T
p, k).

Case 2. If ej ∈ A, then

Can(ej ;T, k−1)

= Entr(T p, ej) \

 k−1⋃
h=j+1, eh 6∈A

(Entr(T p, eh)\Entr(T p, ek)) ∪
k−1⋃

h=j+1, eh∈A
Entr(T p, eh)

OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING TREES 687

= Can(ej ;T
p, k)

⋃Entr(T p, ej) ∩
Entr(T p, ek) \

k−1⋃
h=j+1, eh∈A

Entr(T p, eh)

 .
If ej = et, then there is no edge eh with j < h < k and eh ∈ A. Therefore,

Can(ej ;T, k− 1) = Can(ej ;T
p, k)

⋃
[Entr(T p, ej) ∩ Entr(T p, ek)]

= Can(ej ;T
p, k)

⋃[
Can(ek;T p, k) ∩ {e | ∂+e < ∂−et}

]
.

If ej is a proper ancestor of et, then Entr(T p, ej)∩Entr(T p, ek) ⊆ Entr(T p, et), and
et satisfies j < t < k and et ∈ A. Hence Can(ej ;T, k−1) = Can(ej ;T

p, k).
Lemma 4.3 guarantees that at most one of the sets Can(∗;T p, k) is updated when

we want to find all children of T c or all children of T p containing ek. In Figure 4.1,
when the state moves from (T 0, 3) to (T 0, 2), e1 is the edge such that ∂−e1=∂+e3 and
the following equations hold:

Can(e2;T 0, 2) = Can(e2;T 0, 3) = {e4}
Can(e1;T 0, 2) = Can(e1;T 0, 3) ∪

[
Can(e3;T 0, 3) ∩ {e | ∂+e<∂+e3}

]
= ∅ ∪

[
{e5} ∩ {e | ∂+e<v2}

]
= {e5}.

On the other hand, when the state moves from (T 0, 3) to (T 1, 2), no candidate edge
set is updated because there is no edge with ∂−et=∂

+e5:

Can(e2;T 1, 2) = Can(e2;T 0, 3) = {e4},
Can(e1;T 1, 2) = Can(e1;T 0, 3) = ∅.

In our implementation, we use the global variables candi(∗) and leave. At the
state (T p, k), variable candi(ej) (j=1, . . . , k) represents the edge set Can(ej ;T

p, k)
and variable leave represents the edge set {ej | j ≤ k and Can(ej ;T

p, k) 6= ∅}. We
can check in constant time whether or not the current spanning tree has children by
checking to see if leave 6= ∅. Suppose that each edge set is represented as an ascending
ordered list realized by a doubly linked list. We also use (i) a data structure for a
given graph G so that two incidence vertices of any edge are found in constant time
and (ii) a data structure for the initial spanning tree T 0 so that for any vertex v other
than the root, the unique edge e with ∂−e = v is found in constant time. Recall that
graph G satisfies the following assumption.

Assumption 5. For any two edges e, f 6∈ T 0, if e < f , then ∂+e ≤ ∂+f.
From this assumption, one can find the edge set Can(ek;T p, k) ∩ {e|∂+e<∂+g}

by searching the ordered list candi(ek) from the beginning. Thus we can complete
this in time proportional to the size of this edge set. Merging two edge sets can be
executed in time proportional to the sum of the size of two edge sets. Therefore,
it takes O(|Can(et;T

p, k)| + |Can(ek;T p, k) ∩ {e|∂+e<∂+g}|) time to update edge
sets candi(∗) when the current state (T p, k) goes to a succeeding state (T, k−1). If
candi(et) changes from empty to nonempty, then we must insert an edge et into leave.
Since leave is an ascending ordered list, we can complete it in O(|{e∈leave|e<et}|) =
O(|{ej |j < t and Can(ej ;T

p, k) 6= ∅}|) time.
On the other hand, when the state goes back from (T, k−1) to (T p, k), we must

reconstruct Can(∗;T p, k) from Can(∗;T, k−1). To do this, we must restore the edges
Can(ek;T p, k) ∩ {e|∂+e<∂+g} from candi(et) to candi(ek). In the Shioura–Tamura
algorithm [9], such a restoration is efficiently executed by recording Can(ek;T p, k) ∩

688 AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO

{e|∂+e<∂+g} before state (T p, k) goes to (T, k−1). However, this idea requires O(V E)
extra space since the depth of recursive calls of the algorithm is O(V). In the rest of
this section, we discuss our idea for reducing extra space.

Let Head(ej ;T
p, k) denote the head set of edges contained in Can(ej ;T

p, k).
Then we have the following result.

Lemma 4.4. Under Assumptions 1, 2, 3, and 4, all head sets Head(ej ;T
p, k) for

j = 1, . . . , k are mutually disjoint at any state (T p, k).
Proof. From Lemma 4.1, Head(ej ;T

0, V−1) = {∂−ej} at the initial state (T 0, V−1)
if Can(ej ;T

0, V−1) is nonempty. Thus the assertion is true at the initial state.
We assume that the lemma holds at state (T p, k) and prove that this holds at the

next state (T p\ek∪g, k−1), where g ∈ Can(ek;T p, k) ∪ {ek}. From Lemma 4.3, the
following relation holds:

Head(ej ;T, k−1) =

{
Head(ej ;T

p, k) ∪HS if ∂−ej = ∂+g,
Head(ej ;T

p, k) if ∂−ej 6= ∂+g,
(4.5)

where HS is the head set of all edges in Can(ek;T p, k) ∩ {e|∂+e<∂+g}. Because
HS ⊆ Head(ek;T p, k) and each Head(ej ;T

p, k) for j = 1, . . . , k−1 does not intersect
HS, all head sets Head(ej ;T

p, k−1) for j = 1, . . . , k−1 are mutually disjoint.
By Lemma 4.4, the head set HS of edges in Can(g;T p, k) ∩ {e|∂+e<∂+g} has

no intersection with any head set Head(ej ;T
p, k) (j = 1, . . . , k−1). Hence if we can

find HS before restoring candi(∗), it is easy to pick up the edges Can(ek;T p, k) ∩
{e|∂+e<∂+g} = {e ∈ Can(et;T, k−1)|∂−e ∈ HS} from Can(et;T, k−1).

In Figure 4.1, when the state goes back from (T 0, 1) to (T 0, 2), all edges
in Can(e2;T 0, 2) ∩ {e|∂+e<∂+e2} = {e4} must be restored from candi(e1) =
Can(e1;T 0, 1) = {e4, e5} to candi(e2). The head set of Can(e2;T 0, 2)∩{e|∂+e<∂+e2}
is equal to {v3}. In this case, e4 ∈ candi(e1) is put back into candi(e2) to reconstruct
Can(e2;T 0, 2).

Our implementation uses the global variables head(∗) to represent each
Head(ej ;T

p, k) for j=1, . . . , k at state (T p, k). Suppose that each head set is rep-
resented by a (not necessarily ascending) doubly linked list. From Lemma 4.4, we
require O(V) space for manipulating these head sets.

Now we describe two procedures for manipulating the data structures candi(∗),
leave, and head(∗) when the current state (T p, k) goes to a succeeding state (T, k−1)
or (T, k−1) goes back to (T p, k), respectively. The procedure for the first case is shown
below.

Procedure update-data-structure(ek,g);
{the current state (T p, k) goes to a succeeding state (T, k−1) = (T p\ek∪g, k−1)}
begin

et := the edge in T 0 with ∂−et = ∂+g if it exists, otherwise return;
move {e∈candi(ek)|∂+e < ∂+g} from candi(ek) to candi(et);
if candi(et) changes from empty to nonempty then insert et into leave;
HS := the head set of the edges in {e∈candi(ek)|∂+e < ∂+g};
for each maximal sublist of consecutive elements of HS in head(ek) do begin

record the first element of the sublist and its position in head(ek) on a stack;
delete the sublist from head(ek);
add this to the end of head(et);

end;
record the position of the first element of HS in head(et) on a stack;

end.

OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING TREES 689

head(ek)

head(et)

head(ek)

head(et)

maximal sublists

A B C

the first element
 of maximal sublists

v1 v2

v1v1

v2

v2 v3

L 2

L 3

1L

v3

v3

stack

v2 B,

v1 A,

v3 C,

Fig. 4.2. Update of head(∗).

When the state changes from (T p, k) to (T, k−1), we must move the head set HS of
all edges in Can(ek;T p, k) ∩ {e|∂+e<∂+g} from head(ek) to head(et). At this time,
we do not move each element of HS one by one but move each maximal sublist of
consecutive elements of HS in head(ek) to head(et) as Figure 4.2. Then the extra
space for recording positions of such maximal sublists is O(V) in all because the
number of maximal sublists is at most |head(ek) \ HS| + 1, and head(ek) \ HS is
unchanged until the state comes back to (T p, k). It is easy to manipulate head(∗)
in the same time as candi(∗) because |HS| ≤ |Can(ek;T p, k) ∩ {e|∂+e<∂+g}|. Here
we omit details. Thus the time complexity of the procedure is O(|Can(et;T

p, k)| +
|Can(ek;T p, k) ∩ {e|∂+e<∂+g}|+ |{ej |j < t and Can(ej ;T

p, k) 6= ∅}|).
The second procedure restores data structures in the following way.

Procedure restore-data-structure(ek,g);
{the state (T p\ek∪g, k−1) goes back to (T p, k)}
begin

et := the edge in T 0 with ∂−et = ∂+g if it exists, otherwise return;
find HS by the record of the position of its first element in head(et);
delete HS from head(et);
move {e∈candi(et)|∂−e ∈ HS} from candi(et) to the beginning of candi(ek);
if candi(et) changes from nonempty to empty then delete et from leave;
move each sublist in HS to the correct place in head(ek)

by using records on a stack;
end.

Since we recorded the first element of head vertices which were added to head(et), we
can find HS in constant time. For each edge in candi(et), we can check in constant
time whether it is in HS by marking all elements of HS in advance. Hence we can re-
store candi(∗) inO(|Can(et;T, k−1)|) = O(|Can(et;T

p, k)|+|{e ∈ Can(ek;T p, k)|∂+e
<∂+g}|) time. The deletion of an edge from leave is completed in constant time. The

690 AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO

head set HS is returned from head(et) to head(ek) in time proportional to the number
of maximal sublists by the information of the places in head(ek). Therefore, procedure
restore-data-structure() takes O(|Can(et;T

p, k)| + |{e ∈ Can(ek;T p, k)|∂+e<∂+g}|)
time.

5. An optimal implementation and its analysis. Finally, we describe our
efficient implementation and analyze its time and space complexities. Our implemen-
tation is shown below.

Algorithm all-spanning-trees(G);
input: a graph G with a vertex set {v1, . . . , vV } and an edge set {e1, . . . , eE};

begin
by using a depth-first search, (simultaneously) execute

• find a depth-first spanning tree T 0 of G,
• sort vertices and edges to satisfy assumptions 2, 3, 4, and 5,
• for each ej∈T 0, candi(ej) := {e|e 6∈ T 0, ∂+e ≤ ∂+ej and ∂−e = ∂−ej},
• for each ej∈T 0, head(ej) := {∂−ej},
• leave := {ej ∈ T 0|candi(ej) 6= ∅};

output(“e1, e2, . . . , eV−1, tree,”); {output T 0}
find-children(); {of T 0}

end.

Procedure find-children(); {T p:current spanning tree}
begin

if leave = ∅ then return;
Q := ∅;
ek := the last entry of leave;
delete ek from leave;
while candi(ek) 6= ∅ do begin

g := the last entry of candi(ek);
delete g from candi(ek), and add g to the beginning of Q;
output(“−ek,+g, tree,”); {output T c := T p\ek∪g}
update-data-structure(ek,g);
find-children(); {find children of T c}
restore-data-structure(ek,g);
output(“−g,+ek,”); {reconstruct T p := T c∪ek\g}

end;
move all entries of Q to candi(ek);
update-data-structure(ek,ek);
find-children(); {find children of T p containing ek}
restore-data-structure(ek,ek);
add ek to the end of leave;

end.

Now we discuss the time complexity of our implementation. The next lemma is
useful for analyzing the time complexity.

Lemma 5.1 (see [9]). Suppose that T is a spanning tree and that k is a positive
integer with ek < Min(T 0 \ T). Under Assumptions 1, 2, 3, and 4, for any edge
gj ∈ {ej} ∪ Can(ej ;T, k) (j ≤ k), T ′ = T \ {e1, . . . , ek} ∪ {g1, . . . , gk} is a spanning
tree.

OPTIMAL ALGORITHM FOR SCANNING ALL SPANNING TREES 691

Proof. Let T j = T \ {ej , . . . , ek} ∪ {gj , . . . , gk} for j = 1, . . . , k. Obviously, T k is
a spanning tree. We suppose that T j is a spanning tree. If j ≥ 2, from Lemma 4.3,
Can(ej−1;T, j−1) ⊆ Can(ej−1;T j , j−1). Thus T j−1 = T j\ej−1∪gj−1 is a spanning
tree.

In algorithm all-spanning-tree(), the time required other than for calling find-
children() is O(V+E). At state (T p, k), O(# of children of T p not containing ek) time
is taken to execute procedure find-children() other than for the maintenance of data
structures. Now we consider the time complexities of the maintenance of data struc-
tures. From the discussion in section 4, it takes O(|Can(et;T

p, k)|+ |Can(ek;T p, k)∩
{e|∂+e<∂+g}|+ |{ej |j < t and Can(ej ;T

p, k) 6= ∅}|) time to maintain data structures
when the state changes between (T p, k) and (T p\ek∪g, k−1), where et is an edge with
∂−et=∂

+g. We consider the following two cases.
Case A. Maintenance for finding children of T c (i.e., g ∈ Can(ek;T p, k)).
Case B. Maintenance for finding children of T p containing ek (i.e., g = ek).
Note that Case A occurs exactly one time for each spanning tree T c other than

T 0 and that Case B occurs at most one time for each spanning tree T p and for each
edge ek ∈ {e|e1 ≤ e < Min(T 0 \ T p)}. In Case A, |Can(et;T

p, k)|+ |Can(ek;T p, k) ∩
{e|∂+e<∂+g}| is bounded by the number of children of T c not containing et. Moreover,
for each edge ej with j < t and Can(ej ;T

p, k) 6= ∅, there is a child of T c not containing
ej . Therefore, the time complexity in Case A is O(# of children of T c). In Case B,
|Can(ek;T p, k) ∩ {e|∂+e<∂+ek}| is bounded by the number of children of T p not
containing ek. From Lemma 5.1, T p has at least |{e∈Can(ek;T p, k)|∂+e<∂+ek}| ×
|Can(et;T

p, k)| grandchildren which contain neither ek nor et. Similarly, |{ej |j <
t and Can(ej ;T

p, k) 6= ∅}| is bounded by the number of grandchildren of T p not
containing ek. Thus the time complexity in Case B is

O(# of children of T p not containing ek) +
O(# of grandchildren of T p not containing ek).

We recall that procedure find-children() checks in constant time whether T p has
children. From the above discussion, the total required time of find-children() at
state (T p, k) is

O(# of children and grandchildren of T p not containing ek).

Thus the total time complexity of our implementation is O(N+V+E).
Finally, we consider the space complexity. At any state, the edge sets

candi(ej) (j = 1, . . . , V−1) have no intersection with each other, and neither do
the head sets head(ej) (j = 1, . . . , V−1). Thus we need O(V+E) space for candi

and O(V) space for head. Obviously, the cardinality of leave is at most V−1. As
we described in section 4, the size of the stack recording positions maximal sublists
of HS is O(V) in all. The total size of local variables Q in find-children() is O(E)
because each edge is stored in one of the global variables candi(∗) or local variables
Q. Hence the space complexity of our implementation is O(V+E).

Theorem 5.2. The time and space complexities of our implementation are
O(N+V+E) and O(V+E), respectively.

In this paper, we proposed an efficient algorithm for enumerating all spanning
trees. This is optimal in sense of time and space complexities.

Acknowledgment. We are greatly indebted to Professor Yoshiko T. Ikebe of
Science University of Tokyo for her kind and valuable comments on this manuscript.

692 AKIYOSHI SHIOURA, AKIHISA TAMURA, AND TAKEAKI UNO

REFERENCES

[1] D. Avis and K. Fukuda, A basis enumeration algorithm for linear systems with geometric
applications, Appl. Math. Lett., 4 (1991), pp. 39–42.

[2] D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of
arrangements and polyhedra, Discrete Comput. Geom., 8 (1992), pp. 295–313.

[3] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Appl. Math., 65 (1996),
pp. 21–46.

[4] H. N. Gabow and E. W. Myers, Finding all spanning trees of directed and undirected graphs,
SIAM J. Comput., 7 (1978), pp. 280–287.

[5] S. Kapoor and H. Ramesh, Algorithms for enumerating all spanning trees of undirected and
weighted graphs, SIAM J. Comput., 24 (1995), pp. 247–265.

[6] T. Matsui, An algorithm for finding all the spanning trees in undirected graphs, Research
Report, Department of Mathematical Engineering and Information Physics, University of
Tokyo, Tokyo, 1993.

[7] G. J. Minty, A simple algorithm for listing all the trees of a graph, IEEE Trans. Circuit
Theory, CT-12 (1965), p. 120.

[8] R. C. Read and R. E. Tarjan, Bounds on backtrack algorithms for listing cycles, paths, and
spanning trees, Networks, 5 (1975), pp. 237–252.

[9] A. Shioura and A. Tamura, Efficiently scanning all spanning trees of an undirected graph, J.
Oper. Res. Soc. Japan, 38 (1995), pp. 331–344.

[10] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972), pp.
146–160.

